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Modeling and simulation are essential decision-making tools in many applications.
Such decision making tools become increasingly important in today’s increas-
ingly service-oriented and ever changing economy. Recent events also suggest
that many human decisions are transacted in a geo-spatial context. No where
is it more obvious than the recent advances in telecommunication that bridge
the geographic gap between anywhere in the world. This means that modern
decision and risk analyses should take into full account the geo-spatial context
in which they are being applied.

In today’s information age, decision making also manifests itself in the
prevalence of location-based services, as afforded by today’s ubiquitous mobile
or cell phone usage. As we commute to work, travel on business or pleasure, we
make geo-spatial decisions, such as where to obtain gasoline, where to have
lunch, and where to see the sights. It is also reflected in the popularity of such
Internet engines as Google Earth. Google Earth combines satellite imagery,
maps and the power of Google search to put the world’s geographic and ancil-
lary information at one’s fingertips. In response, Microsoft and Yahoo are racing
to transform online maps into full-blown browsers, organizing a diversity of infor-
mation for better decision making.

Such information technology (IT) advances have given rise to the
prevalence of E-commerce, and recently mobile commerce. When corpora-
tions device their business plans, they make geo-spatial decisions, such as
where the prevalent suppliers and markets are. IT also found its way into
E-government, where local, state and federal governments regulate and
provide services within their geographic domain through the help of infor-
matics, a broad academic field encompassing information science, IT, algo-
rithms, and social science. To make better decisions, there is an increased
emphasis on analytics, or the  science of analysis. In other words, how an en-
tity (i.e., business) arrives at an optimal or realistic decision based on exist-
ing data. One estimate suggests that 85 percent of existing data
contain spatial attributes. “Mining” such spatial data is still an art, rather
than a science.

Motivated by this trend, my personal conviction materialized in four
books on this subject in the last decade. Obviously, what I wrote (and edited)
were merely the first attempts to address a newly emerging and changing field.
Concentrating on the current book, I am not sure my writing responded to the
genuine needs of the readership. At the same time, the readership—by the
 nature of this field—consists of an increasingly diverse audience of many
 disciplines. For example, among the audience are practicing professionals and
university students, constituting two of many disparate groups requiring dif-
ferent writing styles. Unlike a classic first book in calculus or economics, it is
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xvii
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often a challenge to select, within a limited number of pages, the most cogent
topics for decision-making in a geo-spatial context. Aside from exercising my
best judgment, all I can promise is to improve my writing over time. This is the
motivation behind writing this Second Edition on the modeling and simulation
tools to support decisions based on geo-spatial data.

MOTIVATION FOR A SECOND EDITION
It has almost been a decade since the first edition of Location Theory and Decision
Analysis appeared. During these years, I have received numerous feedbacks from
both my students as well as from professionals. While the feedbacks have been
positive, it is clear—for a number of reasons—that the book needs updating.

It goes without saying that any inadvertent mistakes that I know of in the
First Edition have now been corrected in the Second Edition. The reader can agree
that many of these mistakes are typographical errors that typically slip into the
first printing of a book. While not fatal, they are certainly annoying, and it is best
to get rid of them when they are found.

In 2005, a sequel to Location Theory and Decision Analysis was published by
Springer, entitled Location, Transport and Land-Use: Modelling Spatial-Temporal
Information. This companion book has been long waited by many readers, inasmuch
as the two books are intimately related. With this sequel publication, it should
 become obvious to the readership that my plan has always been to provide the basic
building blocks in Location Theory and Decision Analysis, serving as a survey of the
 decision analytic tools required for further study of the general subject of modeling
spatial-temporal information. In other words, Location Theory and Decision Analysis
is meant to pave the way for more specialized books on the subject, including
Location, Transport and Land-Use. This is particularly important for an audience
that comes from increasingly diverse disciplines (as mentioned)—engineering,
management science, regional science, economics, geography, policy sciences,
 applied mathematics—just to name a few. Each discipline has been educated
 formally in a different way. For example, engineers and mathematicians are better
prepared quantitatively, but sometimes lack the broader perspective that economists
and management  scientists have. The breadth of coverage in Location Theory and
Decision Analysis, while ambitious, is simply to introduce concepts and techniques
that may not be familiar to a particular discipline, in order for them to fully partici-
pate in the truly interdisciplinary field of spatial decision-making.

At the same time, there is a common body of knowledge all our reader-
ship relies on. My modest writing project is to outline this body of knowledge,
which includes analytical techniques for modeling and simulation, as well as
such IT as the computer software that support decision making. To underscore
this point, I have added a subtitle to the Second Edition, Analytics of Spatial
Information Technology. The complete book title now reads: Location Theory and
Decision Analysis: Analytics of Spatial Information Technology—Second Edition.

Oftentimes, each discipline uses different jargons to connote the same
idea. I have always wished to array these jargons and put them on a common
 denominator. This will facilitate dialogue between traditional disciplines. It is my
opinion that this is a mandatory step for a more advanced study on a  common
subject. Whether done well or not, I am fully convinced that Location Theory and
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Decision Analysis has taken the first step in this direction. It presents the basic
building blocks for more in-depth studies in modeling and simulation, facility-lo-
cation studies, transportation modeling, urban/regional planning, policy analy-
sis, urban and transport geography, and other related disciplines.

What I tried and plan to do is really a “tall order.” Fortunately, I was not
alone to “deliver” this work. Based on the insightful feedbacks of my students,
friends, and colleagues, here are the resulting changes I have incorporated in the
Second Edition of Location Theory and Decision Analysis.

PEDAGOGY
The First Edition was written for a technical audience, by which I mean a number
of quantitative or analytical disciplines—whether they be management scientists,
engineers, social scientists, or applied mathematicians. I made a bold assumption
on the background of the readership when I wrote the First Edition in year 2000.
In hindsight, I might have assumed too much in the background of the audience.
Not to be defensive, I was trying to introduce to other disciplines quite a few
ideas and techniques indigenous to a specific discipline. In the lengthy appen-
dices, I tried to review some basic mathematical techniques. All these have to be
done in a limited number of pages, lest I would be reproducing separate books on
decision making, simulation, optimization, microeconomics, geographic informa-
tion system, satellite imagery, and the like.

As it turned out, while the First Edition might be good for professional use,
my impression is that it was not totally responsive to classroom use. Meanwhile, IT
has progressed leaps and bounds in the interim decade. Correspondingly, a main
thrust of the Second Edition is to provide additional educational materials, includ-
ing introductory Exercises and other pedagogic materials, to tailor toward educa-
tional programs that offer related courses on this subject. A major effort is also to
strengthen the IT to support decision making in a spatial context. Toward this end,
I have added two more chapters just on the topic:

Chapter 7—Analytics and Spatial Information Technology: Retrospect
and Prospects

Chapter 8—A Software Survey of Analytics and Spatial Information
Technology

In the First Edition, most of the exercises were either geared toward an
advanced audience, or were open-ended case studies. Stressing the interrelation-
ship among various topics in spatial decision-making, these “Synthesis Exercises”
were organized into a single “appendix” at the end of the book, rather than seg-
regated by chapters. In the Second Edition, I wish to supplement this approach
with more introductory problems that are suitable for those who are exposed to
the subject for the first time. These exercises are now prepared individually for
each book chapter, as with most textbooks. I designed these new exercises as pre-
ludes and introduction to the more indepth “Synthesis” exercises.

In composing these new exercises, extra care has also been taken in leading
the student step-by-step toward answering the questions posed. Two strategies were
followed. First, a set of self-instructional “modules” was developed. Benefitting
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from my colleagues at Stony Brook University (State University of New York at
Stony Brook), the fundamental principles of analysis were introduced in these mod-
ules. Trained in formal pedagogy, these colleagues—including Robert Seidman and
Thomas Liao—initiated a set of courseware consisting of “fill in the blanks”
 modules. As first drafted by Gary Hom, these modules cover “Empirical Modeling,”
“Probability,” “Probability Distribution and Queuing,” “Graph Optimization,”
“Risk Assessment” and “Linear Programming.” As I deployed and streamlined
these modules over the decades, student feedbacks have been excellent from a
 diverse audience. Included in the CD/DVD and complete with solutions, this is one
of the major milestones in this Second Edition. It is totally consistent with current ed-
ucational emphasis on “interactive learning,” in which students learn by engaging
themselves, rather than passively absorbing materials from the instructor’s lectures.

As I approach my forty-year milestone in higher education, I become
 convinced that students learn best when they are motivated. I can even go further
by suggesting that motivation is the best teacher. It can overcome other impedi-
ments to learning, including incomplete background knowledge. The motivated
student would simply take the time to catch up on her background, while a less
motiv ated student would be condemned by such a impediment. In fact, the Self-
Instructional Modules described in the last paragraph, aside from filling in some
background gaps, are structured to put students from different background in the
proper “frame of mind.” My thesis is that learning the fundamentals of modeling
and simulation requires the proper attitude, as learners of other disciplines do. If
spatial decision making means an understanding of how humans function in
today’s location-based-services environment, the five modules are intended to
cultivate this attitude. These modules examine not only the mathematical/ana-
lytical media, but also the socioeconomic genre that underpins the environ.

While the main body of the text concentrates on location theory and
 decision analysis, there are some computational aspects of model solution that read-
ers may wish to review. The four technical appendices from the First Edition—
System Stability, Statistical Tools, Markovian Processes, and Optimization
Schemes—have been updated. While we assume a background of college algebra
and calculus in our presentations, the Self-Instructional Modules serve as “icebreak-
ers” to “ease” the less prepared readers into these rather condensed methodological
reviews. As with other book appendices, these reviews are geared toward those
specifically  interested in the subject. To the extent that we are trying to cater to a mul-
titude of disciplines, there will be a tendency from time to time, albeit infrequent in
nature, to re-state the obvious. This is unavoidable in any attempt to reach a multi-
disciplinary audience. Each appendix is designed to be self-contained. References to
outside sources and Chan (2005) are intended for further reading on the subject.

The second strategy I adopted in writing the Second Edition is actually
an extension of the Self-Instructional Modules, by way of end-of-the-chapter
guided Exercises. Instead of “filling in the blanks,” the guided Exercises consist of
more than just posing questions. They involve extended remarks on key points
mentioned in the text. It is hoped that these pedagogic suggestions, integrated
into the posed questions, are helpful and useful to the students. Also, they are 
intended to assist instructors in understanding why the particular exercise 
contributes toward learning the subject at hand. In summary, we fully subscribe
to the philosophy of `active’ or participatory learning and instruction. More will
be said about this  philosophy in the following paragraphs.
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STATE-OF-THE-ART
Logically, another thrust of the Second Edition is the inclusion of new refer-
ences published since 2001, when the First Edition was prepared. Best of all,
these new references are fully integrated into the text for a state-of-the-art 
examination of the subject at hand. The sequel book Location, Transport and
Land-Use, published in 2005, supplements with additional references in the
order of several orders of magnitude. The new references for the Second
Edition are much more focused on geo-spatial decision-making technology,
and are concentrated in the two new chapters, bearing the titles that speak for
themselves: “Analytics and Spatial Information Technology” and the accom-
panying “A Software Survey.” While the original edition has five software that
comes with it, the software has now been expanded to include image-classification
models in the PATTERN folder.

It is convenient that the two books—the current volume and the 2005
monograph—follow identical mathematical notations and terminologies, elimi-
nating the task of getting used to different definitions and notations. To make it
more convenient for the readers, I have reproduced the mathematical symbols at
the back of this Second Edition, together with an updated glossary of Technical
Concepts. I am particularly fond of the glossary, since it highlights the many fun-
damental concepts upon which the field is developed. The readers will recall that
the glossary also provides a unifying delineation of cross-disciplinary terms in
common use. It should supplement the book index in helping readers with unfa-
miliar terms.

Many have already discovered that there is a web site that supports the
two books. Simply use an Internet search engine or e-mail me at my lifetime ad-
dress ychan@alum.MIT.edu to locate the website. In the current Second Edition, I
have printed solutions to the Self-Instructional Modules and selected solutions to
the Synthesis Exercises. As a complement, the web-page posts a much larger col-
lection of Synthesis Exercises. Of particular interest is an Instructor’s Guide that
provides solutions to one of every two of these exercises on the average.
Moreover, it also has a digital version of the list of mathematical symbols and the
glossary of Technical Concepts. It serves as a single reference site for readers of
my two books.

SCIENTIFIC COMPUTING
While their outlines are printed in the Second Edition, I have decided to provide a
bulk of the materials on the CD/DVD that accompanies the book. This will facili-
tate  updating on a more frequent basis than the significant task of producing yet
 another printed edition of the book. As mentioned, a complete treatise on the com-
putational IT support on the subject is documented in two new chapters. Chapter 7,
entitled “Analytics and Spatial Information Technology,” provides the parameters
and the trend governing the computational support for spatial decision making. In
so doing, it also summarizes the state-of-the-art in Location Theory and Decision
Analysis. Chapter 8, entitled “A Software Survey of Analytics and Spatial
Information Technology,” gives a screened list of supporting software. All these are
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complemented with my expanded supporting software for the two books, which is
also posted on my website.

In today’s IT, the line between business software (such as spread-
sheet and word precessing) and scientific computing (such as algorithms)
has been blurred. Spreadsheets have been playing a prominent role in
modeling and  simulation, providing computations formerly reserved only
for scientific  computing. This is further complemented by Visual Basic for
Applications, which allows decision support systems to be developed from
spreadsheets, when assisted by a bit of programming. Meanwhile, software
such as Scientific WorkPlace has put word processing and computer 
algebra system under one roof, complete with symbolic processing (as
made available by Maple or MuPAD). MATLAB, a corner stone of scientific
computing, has found its way into business applications, including 
built-in links for MS Excel database, financial applications, and a report
generator. This blurring effect has been well recognized throughout the
modeling community.

In this regard, I wish to clearly enunciate a philosophy I have been 
following. I like to minimize the reader’s requirement to purchase expensive
software. Most of the computing requirements for my exercises—both the new
ones and the old ones—can be satisfied with the software that comes with the
book CD/DVD, a regular Microsoft office suite such as Excel, or freeware such
as OCTAVE, a public domain version of MATLAB. I also alert the reader, where
appropriate, the availability of quality public-domain software. Chapters 7 and
8 alert readers to quite a few “freeware,” mainly developed by educational and
scientific institutions. Of particular interest is open-source software, which 
allows the user to build upon the available source codes. In fact, the software
that comes with this book is open-source, in that I have included the sources
codes, where applicable.

Where there is a suggestion for a commercial software, the purchasing
decision is totally at the discretion of the reader. Today, many of the software ven-
dors allow downloading of trial versions, facilitating the readers to judiciously
 select the ones that best suit their individual tastes. The bottom line is that the
readers are not mandated to buy extra commercial software to use my book or to
perform the exercises included in this book.

I have given some serious thoughts about packaging commercial 
software as part of the book. Being a new, interdisciplinary field, spatial 
decision-making has a broad and emerging scope of coverage. For that reason,
the number of related software packages is diverse and numerous. As a result,
a large number of them are needed in combination. Being a developmental
field, most of the spatial IT software resides on university campuses and 
research institutions, and is in the public domain. There is also a thriving open-
source community that share developmental software. Instead of packaging a
suite of commercial software, I am providing the salient features of these mod-
eling and simulation tools in Chapter 7, features that users should look for in
a software. Accompanying this is the listing of relevant commercial and 
public-domain software in Chapter 8. The listing will be updated as new 
information technologies become available.
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INFORMATION TECHNOLOGY
In the years since the First Edition appeared, IT has advanced by leaps and
bounce. Many printed materials have been replaced by electronic soft files, using,
for example, the Acrobat Portable Data Format (PDF). The Internet has also made
it possible for students to rely on postings on the Internet, instead of going
through printed volumes on library shelves. While there is still a definite place for
printed words, serious thoughts need to be given to the best medium to 
document information. I believe that while easily dated materials should take 
advantage of the convenience of today’s IT, information that is likely to survive
the rigorous test of time still has its place in printed words.

Sometimes, there is a fuzzy area. I judge the lengthy Self-Instructional
Modules are likely to stand the test of time, but their bulk speaks against placing
them in the printed volume. They are best provided in soft copies on the CD, free-
ing up printed pages for more critical improvements in the text. Besides, their
availability in a digital form will allow readers to port the information around dif-
ferent platforms. As a common denominator, however, all the archival documents
on the CD/DVD are provided in PDF. Aside from its universality, the basic infor-
mation can be extracted as text files for a relevant application of interest to the
reader. The data sets, for example, can be directly extracted for the relevant com-
puting platforms

As a companion of the current Second Edition volume are a set of
PowerPoint presentations that cover the entire volume. These are included on the
CD/DVD that accompanies the book. These presentations are intended for both
the  instructors and the students. While the presentations are based on the Figures
and Tables in the text, they are supplemented by my teaching experience using
the book as a text. Some of the presentations are animated, as enabled by the cur-
rent features of MS PowerPoint. To cut across the media, the presentations are
also prepared in PDF files in case the readers choose to go beyond MS products.
Going beyond the presentations, available to the readers are the instructional ma-
terials for multiple courses that have adopted the current volume as a text, rang-
ing from Decision and Risk Analysis to Optimization. For the latest set of course
notes, simply drop me a line at ychan@alum.MIT.edu

In general, extensive use of soft instead of hard copies has a final, impor-
tant advantage. It saves production cost by cutting down the number of printed
pages. This ultimately reduces the sales price and saves money for the readers.

USE OF THIS BOOK
In my forty years of teaching, I have taught in diverse instructional programs,
 including systems engineering, operations research, civil engineering, policy
 sciences, plus technology and society. Since this book reflects my experience, 
I believe it is suitable for use in each of the aforementioned programs.
Universal to all Systems Engineering programs is a course in Decision and Risk
Analysis. Toward this, the current volume is as good a textbook as others, with
the pervasive geo-spatial information required in today’s work place. Many
civil engineering programs require students to take a course in systems 
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engineering. I believe this book, with its focus on spatial modeling and simu-
lation, is ideally suited for that purpose, given civil engineers are responsible
for constructed infrastructures that dot the landscapes of modern society.
Management Science/Operations Research programs often offer a course on
Decision Analysis, for which the book can serve as a text. Industrial
Engineering programs offer a course on Facility Location, for which this text
may be suitable. Known by many names, policy sciences and management
refer to treatment of public/societal issues through analytical means. This dis-
cipline is often housed within management or public administration schools.
Irrespective of where it resides, this book can serve that audience in foundation
courses in modeling, particularly when it has geographic implications.

Here are some example courses that maybe served by the contents of the
current volume. For this purpose, let us excerpt from various university cata-
logues:

▫ “Decision and Risk Analysis” (graduate course in Systems Engineering
Certificate and Master’s Degree, Stevens Institute of Technology)

Cover analytic techniques for rational decision-making that addresses uncer-
tainty, conflicting objectives, and differing risk attitudes. Learn about modeling
uncertainty, rational decision-making principles, representing decision problems
with value trees, decision trees and influence diagrams, solving value hierarchies,
defining and calculating the value of information, incorporating risk attitudes
into the analysis, and conducting sensitivity analyses.

▫ “Engineering System Design” (undergraduate course in Civil & Environmental
Engineering Department, MIT)

This class provides an introduction to quantitative models and qualitative frame-
works for studying complex engineering systems. Also taught is the art of ab-
stracting a complex system into a model for purposes of analysis and design
while dealing with complexity, emergent behavior, stochasticity, non-linearities
and the requirements of many stakeholders with divergent objectives.

▫ “Facilities Location, Layout and Material Handling” (undergraduate course in
Industrial Engineering Department, Texas A&M University)

Analytical treatment of facilities location, physical layout, material flow and han-
dling, combined with heuristics algorithms to assist in the design of produc-
tion/service facilities; fundamental concepts applied through a sequence of de-
sign projects.

▫ “Methods of Policy Analysis” (master’s course in the Heinz School of Public
Policy & Management, Carnegie-Mellon University)

This course is designed to teach students practical techniques for analyzing public
policy problems and developing effective solutions to them. Students will learn a
series of interrelated methods of policy analysis and gain experience in analyzing
realistic policy cases using those methods. Students are assumed to have mastered
these skills: Applied Economic Analysis, Empirical Methods, Management Science,



PREFACE TO THE SECOND EDITION xxv

Policy & Politics, Organizational Design and Implementation, Financial Analysis,
Management Information Systems, Professional Writing, and Professional Speaking.
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Preface

Location Theory and Decision Analysis is tailored toward upperclass and graduate-
level courses that include location decision making. It includes the fundamental
theories and analysis procedures of that process. With these fundamentals
 carefully and comprehensively compiled, it is amply suited for courses such as
management science, operations research, economics, civil and environmental en-
gineering, industrial engineering, geography, urban and regional planning and
policy sciences. The book also serves as an overview of the relationship between
location, transport, and land use decisions. As such it introduces more advanced
topics as documented in Chan (2005) and Easa and Chan (2000).

This book is unique in that it integrates existing practical and theoretical
works on facility location and land use. Instead of dealing with individual facil-
ity location or the resulting land use pattern alone, it provides the underlying
principles that are behind both types of models. Of particular interest is the em-
phasis on counter-intuitive decisions, which are often overlooked unless deliber-
ate steps of analysis are taken. Being oriented toward the fundamental principles
of infrastructure management, the book transcends the traditional engineering
and planning disciplines, where the main concerns are often exclusively physical
design, fiscal, socioeconomic, or political considerations.

Employing contemporary quantitative models and case studies, the book
discusses the siting of such facilities as transportation terminals, warehouses,
 nuclear power plants, military bases, landfills, emergency shelters, state parks,
and industrial plants. The book also demonstrates the use of satellite imagery,
 computer-based data-retrieval technologies (such as geographic information
 systems), and statistical tools for forecasting and analyzing implications of land
use decisions. The idea is that land use shown on a map is necessarily a conse-
quence of individual, and often conflicting, siting decisions.

The analytical community has made significant progress in recent years
in the basic building blocks of spatial analysis. Current models have captured
 accurately many of the bases of facility-siting decision making—proximity to
 demand, competition among existing facilities, and the availability of utilities and
other institutional supports. Throughout this text, accessibility (as afforded by
transportation) and infrastructure support (as provided by utilities and sewers)
are used as determinants of location decisions. Competitive and statistical deter-
minants that are not based on accessibility alone are also covered.

However, a novel feature of Location Theory and Decision Analysis is the
recognition that in today’s service economy, the traditional concepts of accessibil-
ity need to be broadly interpreted. Evidence indicates, for example, that half of
the shopping currently done is by mail, telephone, or the Internet. Thus the defi-
nition of “a trip to the shopping mall,” and hence the conventional judgment in
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siting a retail facility, need to accommodate such a change. “Global reach” rede-
fines the concept of accessibility and distance in all sectors of the economy,
 including E-commerce, international corporations, and even the defense commu-
nity. Half the globe away now means a few hours of flight time or seconds of
telecommunication time. Conversely, congested streets can make cross-town
travel almost impossible, and thus encourage telecommuting. Again a redefini-
tion of accessibility and hence the conventional wisdom in office site selection is
required. The theme of change carries throughout the book, serving to unify
many of the spatial location models discussed.

The advances in remote sensing imagery and geographic information
systems today facilitate much of spatial analysis. Electronic devices, such as satel-
lites, sensors, computers, and telecommunications technology, make the collec-
tion and processing of data much faster, which in turn assists in the problem
 solving process.  The book discusses how information can be stored in such a way
that it can be directly translated to a format for real-time decision making. This
means simple and transparent models that are database compatible and require
minimal data manipulation in the solution process. These models become the
tools for analysis and decision making. Location Theory and Decision Analysis gives
the reader a comprehensive insight into the use of these tools—identifying,
 assembling and utilizing the important information for problem solving, rather
than prescribing verbatim software instructions. 

ORGANIZATION OF THE BOOK
As mentioned, this book contains a comprehensive review of the fundamental
principles. Questions such as why facilities locate where they do and why popu-
lation and employment activities distribute on the map as they do are answered.
The first few chapters include the underlying determinants of facility location
and land use, as well as the techniques that are essential to analyze these location
decisions. In addition, these chapters discuss databases from remote sensing and
geographic information systems (GIS), statistical tools for data analysis and fore-
casting, optimization procedures for choosing the desirable course of action, and
multicriteria decision-making techniques to tie the entire analysis procedure
 together. Key concepts in economics, one of the most important disciplines in
 explaining the organization in space, are also reviewed.

The first five chapters—which include economics, descriptive and pre-
scriptive techniques, and multicriteria decision making—constitute an excellent
quantitatively oriented survey course in this field. If needed, the appendices pro-
vide for a review of the mathematical tools. Where there is room in the curricu-
lum, a more advanced treatment will include the “Remote Sensing and GIS”
chapter. While the first five chapters redefine location by such concepts as
telecommuting, Chapter 6 drives it home. In this last chapter, new ways to store,
organize, process, and transmit spatial data are reviewed.

Location Theory and Decision Analysis purposefully accommodates the dif-
ferent technical backgrounds and career objectives of its readers. For example, spa-
tial economics principles are introduced in Chapter 2, allowing the non-economists
to acquire the basic economic concepts that underlie much of the location literature.
It serves as an excellent overview of the entire book. As another example, multicriteria
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decision making is reviewed in Chapter 5, with an emphasis on how it assists in
 location decisions. It includes discussion of state-of-the-art  concepts and technology
that may not be familiar to those outside the fields of management science and
 operations research. For example, I illustrate how an obnoxious facility, such as a
noisy airport, can be located by taking into consideration all the stakeholders con-
cerns. Most importantly, liberal numerical examples and graphics are used to get the
point across. My diverse background, which spans technical consulting firms, gov-
ernment, academia, and the defense community, enables me to communicate with
different audiences in terms of a common  language. Beyond the classroom, profes-
sionals who seek an update on the fundamentals on location decisions will find this
book helpful. The professional  audience will find the crosscutting discussion of tech-
nical concepts in Appendix 5 particularly helpful, since it unifies the findings from
different disciplines.

Exercises and case studies are used throughout the book. Rather than a
set of mechanical calculations, the exercises and case studies are designed to
 extend many of the concepts covered in the book. They also play an important
role in integrating the many diverse principles advanced in the text. One objec-
tive of the exercises is to challenge the readers creatively to use the data sets and
computer software that come with Location Theory and Decision Analysis. While the
basic exercises are well structured, readers are often asked to perform their own
case studies, using the data sets if desired, and arrive at open-ended results. For
the sake of synergy, all the exercises are placed together at the end of the book,
rather than included separately at the end of individual chapters. To assist both
instructors and students, answers to the exercises are available on my web site.
Please contact me by email at ychan@alum.MIT.edu for information about the
web site. Students and professionals should enter in the Subject line: REQUEST
FOR SAMPLE SOLUTIONS, and instructors should enter: REQUEST FOR 
INSTRUCTOR’S GUIDE.

SOFTWARE
A CD-ROM provided with the text provides sample software. The main purpose
of the CD is to supplement the basic ideas covered in the text. Aside from exten-
sive databases, it contains software to implement some of the basic concepts
 presented. It also challenges the reader to investigate further through hands-on
experiences with case studies. In view of the rapid progress in information
 technologies and to avoid obsolescence, the book is not specifically tied to a  single
generation of information technology. Rather, the book is problem-oriented and
provides a set of procedures and a set of data for analysis that can transcend the
technological evolution. Hands-on experiences are discussed with respect to the
basic models employed, rather than the particular software or hardware. 

One software program used for processing remote sensing images (cour-
tesy of Dr. T. S. Kelso) illustrates some of the spatial statistical concepts and GIS.
The remainder are software implementations of some of the facility-location and
land-use concepts discussed in this book. While the book introduces the various
analytical techniques in a pedagogic fashion, the software provides practical
 implementations. The programs are therefore not purely for the classroom; they
have real potential for everyday, operational use.
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1. All files on the CD are ASCII-text files. Where possible, both source
codes and executable codes are given—mainly for the ease of
 execution and modification by the users. Program documentation is
 included as README files.

2. While references are made to supporting software for extended use
of some of the programs, all programs are self-contained, and they
have been developed or refined by the author and his associates.
The programs do not require supporting software or language
 compilers.

As mentioned, sample data sets are provided to allow demonstration of the
 software. Most of the data are drawn from real-world case studies.

The programs have been extensively tested, but still there can be no
 absolute guarantee of faultlessness. It is impossible for me to provide any pro-
gramming support for the software, but I am keenly interested in and would
 appreciate any feedback from users regarding their experiences with the pro-
grams or the book. To provide your comments, simply contact me by email
at ychan@alum.MIT.edu and include in the subject line: SUGGESTIONS FOR
THE BOOK.
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ABOUT THE COVER

This radar image shows the massive urbanization of Los Angeles, California. The
complete image extends from the Santa Monica Bay at the left to the San Gabriel
Mountains at the right. Downtown Los Angeles is on the right side of the text-
book’s cover. The complex freeway system is visible as dark lines throughout the
image. Some city areas, such as Santa Monica in the upper left, appear red due to
the alignment of streets and buildings to the incoming radar beam.

The image was acquired by the Spaceborne Imaging Radar-C/X-band
Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour
on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and 
U. S. space agencies, is part of NASA’s Mission to Planet Earth. The radar images
illuminate earth with microwaves allowing detailed observations at any time,
 regardless of weather or sunlight conditions. The multi-frequency data will be
used by the international scientific community to better understand the global
 environment and how it is changing. The SIR-C/X-SAR data, complemented by
aircraft and ground studies, will give scientists clearer insights into those envi-
ronmental changes that are caused by nature and those changes that are induced
by human activity.
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“Where the telescope ends, the microscope begins. Which of the two has
the grander view?”

Victor Hugo

I. OBJECTIVES
This book has three basic objectives. The first objective is to identify the observed
 regularities in location decisions. This involves examining and answering questions
such as: Why do public and private facilities locate themselves the way they do?
What factors do real estate developers  consider when picking sites for deve -
lopment? Why do people live in a certain location, and why do they often work
in a location different from where they live? Why are focal points such as airports,
 terminals, and  depots situated at certain nodes in a network? Throughout
this book, we will try to answer some of these questions, so that readers can
 judiciously locate facilities and guide development toward desired goals.

While we often take notice as to why certain facilities are placed in  certain
areas, we get as many explanations about such location decisions as the number
of experts we ask. Each seems to offer a plausible explanation. Such  explanations
can be any combination of economic, technical, social, political, and behavioral
reasons, not to mention such philosophies as feng shui—which roughly translated
means “location and orientation [of a facility] with respect to the elements of
 nature” (Love, Morris, and Wesolowsky 1988). Are there  really discernible
 patterns about these location decisions? Many of us have  observed that ports and
cities of the world are often  located on major trade routes, usually at the conflu-
ence of rivers, a convenient deep sea harbor, or where railroads come together.
Scientists envision future habitats in the galaxies being located at Lagrangian
points—locations that are stable enough that space stations located there, when
perturbed by slight  impacts, will restore their position after reasonable oscilla-
tions. Based on these  examples, it stands to reason that there may be some  location
patterns one can  discern. These patterns, when observed to be consistently
 recurring in one area after another, are  referred to as regularities. These regulari-
ties are not anywhere as precise as  scientific laws, nor can they often be explained
in terms of cause-effect relationships. One event does not  necessarily occur
 because of a previous event. As a result, we have to go by the observed patterns
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2 CHAPTER 1 Introduction

only and to treat those recurring patterns merely as some generally agreed upon
facts. From there, analytical models can be built to reflect these premises. The
first objective of this document then, is to understand, in a systematic manner,
the  regularity with which different location decisions are made, so that system-
atic procedures can be defined to anticipate similar situations that may arise in
the  future.

We should quickly point out there is a difference between the systematic
analysis proposed here and comprehensive, or holistic planning, which goes
under different names such as morphology, concurrency, or planning theory.
That body of knowledge, while extremely valuable, has been treated in excellent
texts elsewhere, including those that are required reading in such professional
 examinations as those of the American Institute of Certified Planners (AICP), and
in such documents as Land Use by Davis (1976). This book aims at a different area
that is by definition more narrowly focused. We ask more specific questions, such
as “how does transportation affect location decisions?”; “how does infrastruc-
tural support influence development of a certain area?”; or “how does trans-
portation combined with infrastructural support affect  facility location and land
use?” In other words, we examine one factor at a time, one criterion at a time, and
the cumulative effects rather than the simultaneous effects of all factors across all
criteria. Distinction is also made between the treatment here and an approach
taken by two notable publications—one by the American Society of Civil
Engineers (1986), the Urban Planning Guide, and  another by Brewer and Alter
(1988), The Complete Manual of Land Planning and Development. The Guide is an
 excellent document that discusses a whole host of planning topics, ranging from
waste to energy planning, with a design flavor as an undertone. Brewer and
Alter’s publication is a comprehensive description of site layout planning and
 design. As illustrated by examples at the end of this chapter, the focus here is on
analytics, with quantitative model building as a key instrument. Thus this book
serves as a useful companion to such documents as the Guide and represents
an area that has not been covered sufficiently for many who feel the need for
state-of-the-art analytic tools to make capital-intensive location decisions—the
step prior to detailed design.

The second objective is to review the operational analysis techniques that have
been applied in the field. In this regard, we report on case studies that span a num-
ber of user groups—from public and private facility location to land
 development. For example, we would look at the factors that go into the  location
of a nuclear power plant in seismically active areas in California, the location of
state parks in the greater New York metropolitan area, the choice of distribution
centers for military logistics, the siting of satellite tracking stations in Canada, tar-
get location in search and rescue missions, and the land development in several
major North American cities, including a systematic study of bifurcation devel-
opment in a medium-sized city: York, Pennsylvania. We also examine case stud-
ies around the world, including the economic impact of the Kansai International
Airport outside Osaka, Japan. The common theme is how location regularities
and spatial impacts can be quantified in a set of procedures or models.

The third objective—to be able to stand back and critique some of these
 modeling experiences—requires asking whether they have been successful and
valid. In other words, what are the assets and liabilities of the various  techniques
that have been employed? Perhaps one can think of this book as a consumer’s
guide to location analysis and land use models. A user can look up the price tag
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of using a particular model, and also the benefits, specifically  regarding the prob-
lem being solved. The only time that a model or analysis procedure can help
is when the user is fully aware not only of its strong points, but its shortcomings
as well. Only under those circumstances can an engineer, an analyst, a planner,
or a manager employ the most appropriate tool toward the problem at hand, and
avoid overkill with exotic technology, below-par performances with an outdated
tool, and misfits between problem and analysis tools in general.

What are the more visible results and benefits from reading this text?
For engineers, analysts, planners, and managers, the question is easy to answer.
As long as infrastructure represents a major capital  expenditure and supports
 economic well being and quality of life, this book serves the important role of
 articulating investment in these  infrastructure improvements. Such infrastruc-
ture may include tracking stations, depots, terminals, roads, factories, ware-
houses, hazardous  facilities, office buildings, and housing. Both in public
 decisions and in corporate planning, the analytical skills discussed in this book
can mean savings or benefits in terms of a huge number of dollars. To students
and researchers, this book serves as a useful compendium of spatial analysis
techniques. It is a  comprehensive collection, and the presentation style is peda-
gogic, starting from the basic building blocks to the more advanced concepts.
We point out the commonalities among models used to locate facilities one at a
time and to forecast the development pattern in an entire area. In this regard, it
is a unified volume on  spatial science—defined here to mean the analytical
techniques that explicitly recognize the spatial elements in a study. The term
spatial science, when used in this context, encompasses the traditional
 disciplines of  facility location, transportation, logistics, land use, regional science,
quantitative geography, and  spatial economics. This book introduces to students
and specialists in each of these disciplines the broader perspective as viewed
from collective wisdom—a perspective that is absolutely  essential to furthering
the art of spatial science.

II. DETERMINANTS OF LOCATION
One goal of this book is to uncover the observed regularities of location deci-
sions, in other words, the apparent underlying forces that shape  development.
We shall examine four major determinants of location.

A. Technological Factors
The first determinant refers to physical principles that govern location and infra-
structural supports such as highways, airports, railroads, power supply, sewers,
and irrigation. These supports make the functioning of the facility possible.
Notice that these go beyond the availability of  transportation and utilities. The
 example about building a space station drives this home. Only Lagrangian points
in spatial mechanics will allow the location of a permanent habitat/resupply
 station in deep space at which spaceships can dock conveniently with the assur-
ance that it is a  stable station that can survive the impact of objects. Likewise,
satellite tracking  stations must be where visibility is at its best to observe the
 desired orbits most of the year. It stands to reason that a station too far north in
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the Northern Hemisphere will be unsuitable to track satellite orbits around the
equator, not to mention that infrastructural support such as roadways and
 utilities will be scanty in these  arctic  regions. When the American West was
 developed, the railroad was the key  instrument. Today, in the Midwest of the
United States, one can still trace the  location of towns in regular intervals along
the rail lines on the prairie. They were apparently developed from water refilling
stations  required for the steam locomotives of the day. The separation represents
the length during which all the water carried on a train evaporated—a techno-
logical factor in its truest sense.

B. Economic and Geographic Factors
A person lives at a location convenient for carrying out daily activities, both
work and non-work, commensurate with the ability and willingness to pay
for the corresponding residential cost. For those who cannot  afford the
prime  locations, housing a little bit further away is the only choice. A host
of theories exists to explain this phenomenon, including land rent and loca-
tion theories. On a historical basis, cities have located on trade routes, per-
haps due to  accessibility to markets. To command a competitive edge in today’s
retail  market, warehouses are often situated in the midst of the demand, where
 consumers have easy access to stored goods through the retail outlets. The most
graphic example may be in emergency planning. Quick, efficient medical evacu-
ation of the wounded  dictates a judicious placement of hubs through which the
injured can be quickly transported and eventually delivered to hospitals for
medical care.

C. Political Factors
Zoning represents an institutionalized consensus in the community  regarding
the legitimate use of the land. Fiscal and jurisdictional considerations are also
quite common. During the latter part of the 20th  century, there have been free
 enterprise zones designated by the People’s Republic of China to manufacture
and conduct business with the free world. Some of these are located across the
border from Hong Kong and Macao. These zones enjoy special jurisdictional
and fiscal privileges—incentives for  investment and workers. Finally, there are
 eminent  political decisions for location as well. For example, the Dallas-Fort
Worth Airport in the United States sprawls across two counties, apparently for
political  reasons—which in part explains its  having a huge horizontal layout
rather than a more vertically integrated structure. On a larger scale, many guide-
lines are  enacted as legislation. The location of airports, for example, is subject to
numerous environmental regulations. Brewer and Alter (1988) and Chapin and
Kaiser (1979), among others, have a good review of the  national, state, and local
legislation that governs land use in general.

D. Social Factors
Dominance, gradient, and segregation, centralization and decentralization, and
invasion and succession are social factors that determine  location. Humans tend
to congregate into communities. On the other hand, they tend to segregate them-
selves for certain other reasons, which  results in the reservation of certain land
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 accessible only by selected groups. Thus there are segregated regions  reserved for
colonial citizens in a newly discovered land to the exclusion of  natives of the land.
Certain public facilities are segregated between women and men for  privacy
 reasons. Between the phenomenon of togetherness and separation, all the shades
exist in between. This explains to some extent the myriad of development
 patterns that we see through recorded history. These social and behavioral fac-
tors vary depending on the values of the time and the context of the culture. They
are somewhat difficult to quantify in a set of systematic  procedures.

III. THE ROLE OF ANALYSIS
Some explanations of the perplexing issues raised can be found by the  judi-
cious employment of analysis techniques. Obviously, analysis of the problems
posed above requires a set of very specialized skills. The techniques  required
of the  analyst include descriptive and prescriptive tools. Descriptive tools are
the  techniques that echo location regularities that we observe around us.
They are the  representation of observed patterns by way of such methodolo-
gies as simulation and statistics, or more causal explanations such as  regional
 economics. Through the use of computers, one can build a mathematical
replica of the  scenario and use it to test out alternative policies—much like
 architects will build a scale model of a building for study in a studio. Graphic
 display of information,  afforded by today’s geographic information systems,
greatly facilitates such analysis (Thrall, McClanahan, and Elshaw-Thrall 1995;
Transportation Research Board 2000; Ozbay and Mukherjee 2000).

Prescriptive tools, on the other hand, try to identify a course of  action for
decision makers. For example, to achieve the community goals and objectives,
one specifies a set of policies and plans by means of goal-directed methodologies.
A mathematical model can be formulated, from which one  obtains a blueprint for
future development. As with descriptive models,  computers are often utilized to
operationalize optimization  models of various sorts, including those that take
into account multiple criteria, echoing a pluralistic decision-making environment
typical of  location decisions. Advances in computational techniques have made
it practical to identify desired courses of action or facility locations, which was
 impossible only ten years ago. While part of the advances have been due to the
computational machinery, our  understanding of prescriptive techniques has also
made dramatic gains in the past decades.

Analysis can reveal counter-intuitive results that can easily be over-
looked if such a set of rigorous thoughts are not carried out. This pertains obviously to
 complex situations where there are just too many factors to consider for the  unaided
mind to comprehend. What is more  interesting is that they may arise in rather
 simple situations as well. We will demonstrate a couple of these below, which
 hopefully make a strong case for the analysis procedures advanced in this text.

A. Airport Example
Suppose a common airport is to be built to service New York City and New
Haven, Connecticut—a distance of about 80 miles. Where is the best location
 considering the combined populations of the two cities—with  approximately 14
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million in New York and 2 million in New Haven? Notice the question asked here,
being a narrowly  focused one, is simply how to reduce the travel requirement for all
the 16 million  residents of the area—in terms of total person-miles-of-travel (PMT).
Most people who are asked the question responded by saying that the  airport should
be somewhere in between the two cities. Some even pointed out that it should be
closer to New York than to New Haven, since New York is a larger city. The more
 technically minded calculated that it should be 10 miles outside Manhattan and 70
miles away from New Haven on the major highway that  connects the two cities.

The correct answer in this case is that the airport, from a purely accessi-
bility standpoint, should be as close to New York as possible. It is that  location
that will require the lowest PMT. To show this, just pick three possible locations:

▫ halfway between New York and New Haven, resulting in a travel
 requirement of (40 � 14 � 40 � 2) or 640 million PMT.

▫ 10 miles outside New York and 70 miles from New Haven,  resulting
in a PMT of (10 � 14 � 70 � 2) or 280 million.

▫ located right at New York and a full length of 80 miles from New
Haven, resulting in (0 � 10 � 80 � 2) or 160 million PMT!

When presented with this result, people quickly pointed out that it is
 impossible to locate a new airport at New York, since there is simply no land.
Others pointed out that environmentally speaking, no one will  accept an
 airport close to New York City. But that was not the question. The question—
which still appears in black and white above—simply focuses on one aspect: the
total PMT!

We will come back to this in a case study later, where we will point out that
those having knowledge of linear programming—a prescriptive technique—will
readily recognize an extreme point—either New York or New Haven—as the site for
the airport, not somewhere in between.1 We will at that time bring in other consid-
erations, including the environment, and show how the location may change as a
 result of these additional factors. In other words, we answer the question for the
 accessibility factor, then the environmental factor and so on—building up the
 complexity as we move along, rather than facing them simultaneously as in
more holistic planning methodologies. In Chapter 5 under “Interactive Frank-Wolfe
Example,” we illustrate how decision-theoretic tools can assist, without an explicit
knowledge on valuation, in considering noise impacts.

B. Manufacturing Plant Example
Another example equally illustrates the role of analysis as advocated here.
Suppose a major manufacturer opens an additional plant in Home Town, with a
payroll of 1000 workers. What will the future population and  employment
 increase be in Home Town? We further know that each household in Home Town
has 2.5 people on the average, of which there is only one breadwinner. For every
five additional people, one more support service employee is  required. In other
words, there are multiplier  effects on the economy, wherein one dollar of payroll
generates more than its value in the local economy. The manufacturing employ-
ees will require support services such as shopping, medical, recreation, and so
forth, involving new employees who also bring in their families who again
 require more services.
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According to the parameters given above, a moment’s reflection will
show that the 1000 new manufacturing jobs will bring into town 2500
 people,  including dependents. These 2500 people will also require support
services in Home Town—including medical, shopping, recreation, and so
forth—and generate 500 secondary jobs. These secondary service jobs bring
into town  another 1250 population (500 � 2.5), including employees and fam -
ily members. (In this case, every five people require one secondary service
 employees.) Now the total new employment in town is (1000 � 500) or 1500,
and the total new population is 3750 (2500 � 1250). The process goes on as
shown in Table 1.1, eventually  stabilizing at about 2000 additional employees
and 5000  additional people.

Figure 1.1 depicts the growth profile of Home Town in terms of
 population and employment. The growth profile stabilizes in time period 7. On
the same figure is shown the growth profile when household size is  increased
from 2.5 to 5. In this case, the growth will perpetuate forever, as shown by the
straight line of Figure 1.1. When the support service  requirement is raised
from 1 to 1.25 employees for every 5 people, totally uncontrolled growth will
result, as shown again in Figure 1.1. Apparently, any slight increase beyond
the watershed points of 5  people in a household and 1 service employee for
every 5 people will fuel the fire of growth to a fury. On the other hand,  family
size a tiny bit smaller than 5 or  service  requirement less than 1 employee in 5
results in a stabilized growth in due course. The watershed point is an
 important piece of information for all who are interested in the future of
Home Town. A technical term for the  dividing line  between growth versus
stagnation is bifurcation. Without  descriptive analysis such as the above,
these  bifurcation points are not  obvious to simple, intuitive  reasoning.

C. A Combined Example
Now, combining the above examples, if 1000 new jobs are added both to New
Haven and to New York City, if the average family size is 2.5 people in New York
and 5 people in New Haven, and if there is 1 service employee for every 5  people

Basic- Support- Support-
Time Basic employ service service Total Total

increment employ pop emp pop employ pop

1 1000 2500 500 1250 1500 3750

2 — — 250 625 1750 4375

3 — — 125 312.5 1875 4687.5

4 — — 62.5 156.25 1937.5 4843.75

5 — — 31.25 78.13 1968.75 4921.88

6 — — 15.63 39.06 1984.38 4960.94

7 — — . . . . . . . . . . . .

Table 1.1 ECONOMIC FORECAST OF HOME TOWN
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in both places, New Haven will experience unlimited growth while New York
will be stagnating. It does not take long for the labor force of New York to see job
opportunities in New Haven and respond to them in terms of reverse commut-
ing. Nor does it take long for the unlimited growth in New Haven to outgrow its
physical or infrastructural capacity. Given the growth in New Haven will have to
go somewhere, this will possibly mean the spread of wealth back to New York.
Figure 1.2 represents this interaction  between the cities schematically. The time
 increment is on the vertical axis and the  spatial interaction is on the horizontal
axis. Different growth profiles, combined with the physical limitation to unlim-
ited growth, result in an interesting development pattern between the two cities.

With a changing demographic profile, the location of a regional airport
will have to be reconsidered. We have already demonstrated that from purely an
accessibility standpoint, the airport should be located at the more populated
of the two cities. Now with New Haven enjoying unlimited growth while
New York is stabilizing at 14,005,000, it is only a matter of time before New
Haven will surpass New York in terms of population (assuming the physical lim-
itation to growth has yet to be reached). The regional airport will eventually be
located at New Haven instead of New York. The interesting, somewhat counter-
 intuitive, fact is that the best location for the airport will switch abruptly the
minute New Haven has one person more than New York—no sooner and no

Figure 1.1  BIFURCATION IN POPULATION GROWTH
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Figure 1.2  ECONOMIC INTERACTION BETWEEN NEW YORK 
AND NEW HAVEN OVER TIME
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later. The moment that the New Haven population exceeds New York’s is a
 bifurcation point, at which precipitous changes occur in the fundamental
 behavior of the system.

IV. ANALYTICAL TECHNIQUES
These examples drive home the point that analysis is an indispensable supple-
ment to intuition in capital-intensive location decisions. These examples
are merely  abstractions of case studies that will be presented in detail in later
chapters and in Chan (2005), where the highly simplified situations used
above are protracted into the multicriteria and pluralistic decision-making
process (Massam 1988) common in location debates. Suffice to say here that
 sophisticated analytical techniques have been  developed in recent decades
to perform these studies. These techniques are based—by and large—on
 operations  research, statistics, economic analysis, and systems science. The con-
tribution of this book is not just the collection of these techniques, but more
 importantly the extension of them into the spatial context. Thus the well-known
extremal point optimality of linear programming (LP) is now  extended from the
Euclidean space of LP into the physical map of the Northeast, including the
 metropolis of New York and New Haven. It will be seen that when a  triangle of
three cities—say New York, New Haven, and Newark, New Jersey are involved,
the complexity of locating a regional  airport compounds many fold, resulting in
the classic brain teaser: the Steiner-Weber problem. The  airport can now be
 located—again based on proximity—at any of the three cities or in the  interior
point of the triangle, as will be discussed in Chapter 4. Anyone who has worked
with this problem can testify to the fact that the Steiner-Weber problem is not
simply an extension of LP—it goes well  beyond.

NEW YORK

Time increment Population PopulationEmployment Employment

0 2500 1000

1 3750 1500

2 4375 1750
Reverse commuting?

Reverse commuting?

Reverse commuting?

Population migration?

3 4687.5 1875

4 4843.75 1937.5

5 4921.88 1968.75

… … …

NEW HAVEN

2500 1000

5000 2000

7500 3000

10000 4000

12500 5000

15000 6000

… …
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The same can be argued about the Home Town development  example.
As seen above, the simple aspatial statement of the problem can quickly get
complicated as we extend to two cities interacting with one  another: say
 between New York and New Haven. It will be shown in sequel that the under-
lying theory is input-output analysis, a branch of knowledge economists since
Leontief have developed to explain trade between such economic sectors as
manufacturing, service, and housing. Including the spatial element into
input-output analysis, however, compounds the model significantly, raising a
whole host of conceptual and model calibration problems as evidenced in the
well-publicized Lowry-Garin derivative models. When fully developed,  several
important factors have to be  reckoned with here, including spatial competition
such as in an oligopoly market consisting of several well-defined competitors,
and hence supply-side investment strategies to stimulate subareal and areal
 economic growth. Intimately related is the fundamental  assumption about
 factor substitution—for example, to what extent can labor be traded off against
capital in the spatial production process. In other words, can labor savings be
 effected by better equipment and production facilities at certain sites? Simply
put, the Lowry-Garin derivative models are more than just a straightforward
 extension of aspatial input-output analysis.

Given the complexity of including a spatial dimension, is there a fun-
damental basic building block of spatial interaction: the foundation that en-
ables  spatial generalization of most analysis techniques? Yes, there is, in fact, a
simple spatial law, credited to Tobler (1965) which states that “Everything is re-
lated to everything else, but closer things are more related than distant things.”
The power lies in the beguiling simplicity of the statement, which finds its way
into pervasive applications in facility location, land use, and image processing.
It turns out that geographers, transportation planners, electro-optics
 researchers, and statisticians have all worried about this phenomenon for
decades, if not  centuries. At the core is the concept of a neighbor, which is inti-
mately tied to the definition of proximity or spatial separation (Nicholas et al.
2004). Spatial sep aration in this case goes well beyond just the Euclidean metric
or bee-line  distance. It is best thought of as a price system that organizes location
 decisions, much as the familiar  monetary price that allocates scarce  resources in
microeconomics; a higher price discourages consumption while a lower price
stimulates consumption. 

Alternatively, proximity is the metric that establishes correlation among en-
tities in space, such as pixels in an image. Thus accessibility in urban commuting
takes on a very different light than proximity  between two pixels (picture ele-
ments) in a satellite image (Faghri et al. 2001). Yet in some ways, the funda-
mental principles governing both are remarkably similar in concept, namely
Tobler’s first law as  outlined above. Furthermore, both the urban  planner and
the remote sensing analyst have the common goal of monitoring land use.

The gravity model, which relates spatial interaction as a direct function
of  activity levels and inverse function of spatial separation, is one of the popular
imp lementations of Tobler’s law. Thus more traffic is found  between high-
 density  residential and employment centers that are close together than in lower
density ones that are further apart. Likewise, satellites that monitor  pollution
will  observe pollutants  dissipating in inverse-square  relationship to the point
source. Calibration of the gravity model, however, is by no means simple, often
nec essitating a fundamental re-examination of an entire array of basic statistical
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 principles (Sen and Smith 1995). By now, the reader should have a taste of the
complexity of spatial science.

The above represents merely a few examples of interest. In modeling and
simulating spatial systems, these additional questions often arise (Larson and
Odoni 1981):

1. Given the coordinates of an incident requiring dispatching of a
 service unit (such as an ambulance or a fire truck), in which
 geographical subdivision did this incident occur?

2. Which available service unit is the closest one (in terms of travel
 distance or travel time) to a request for assistance?

3. Which zones have areas in common with a particular police precinct?
4. Which city blocks lie closest to each new voting center, so that  voters

can be assigned to the closest voting precinct?
5. Which ZIP-code areas contain segments of a particular highway or

railroad?
6. Given that a refuse incinerator is to be built and that it has a certain

geometrically described pattern of smoke dispersal, which voting
districts will be affected by the pollutants?

7. Which geographical subdivisions have overlapping parts with the
various noise contours (reflecting different noise exposure) that will
result from a proposed airport runway?

Notice that all these questions have spatial attributes. In the following
chapters, we will take up these questions one at a time. In Chapter 6, we will talk
about image processing and geographic information  systems that constitute some
methods to answer these questions, using pattern recognition and districting.
While humans can look up the answers manually on a map, however,  software
has to be instructed to answer these questions. For computer-based modeling and
simulation—a focus of this book—it invariably requires us to carry out these two
fundamental analytical steps:

Step 1: To decide in which zone the event location will be, obtain a
sample from the probability mass function depicting the
 relative likelihood of events among zones.

Step 2: To identify the exact location of the event, obtain a sample from
a uniform distribution over the zone selected (assuming that an
event is equally likely to occur anywhere within a zone).

Aside from the discussions forthcoming in subsequent chapters, Larson
and Odoni (1981) amounts to a dearth of literature that  codifies these steps. It
 provided a way to generate events that are geographically distributed among
and within zones in accordance with some pre-specified probability law. They
also addressed this reverse question: “Given a point with a coordinate (x, y), in
which geographical zone is it contained?” A “point-polygon method” was
 introduced to answer this question. Let us focus on simple polygons, or polygons
with no overlapping sides. Suppose such a polygon has n clockwise ordered
 vertices, a set of procedures can be devised based on a sorting algorithm with
computational complexity O (n log2 n).

Using these procedures, one can also check whether zones overlap
with each other and, if so, to identify the pairs of zones that overlap, as well
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as whether the overlap is partial or if one zone is fully included in another.
It is also possible to identify the polygon that forms the intersection of two
overlapping zones. Unfortunately, there are no shortcuts for doing this faster
than the straightforward method. In the worst case, each side of polygon
A will  intersect every side of B (and vice versa), there will be a total of n2   inter -
sections (if A and B are n-sided polygons), and therefore the computational
 effort must also be at least O(n2).

V.  CONCLUDING REMARKS
While making facility location and land use decisions is truly an art, there
 appears to be an information base that can or should explain, perhaps one factor
at a time, these decisions. Factors range from technological and political to
 economic and social. Our purpose in this book is to trace the effects of these
 factors, not necessarily in a holistic manner, but rather by trying to identify the
consequence of each decision. Prescriptive and  descriptive methodologies play a
role in clarifying these decisions. For  example, some of the phenomena are
counter-intuitive, and an analytical framework will  extend our intuition a long
way  toward seeing  details that are not apparent to the unaided mind. The
 examples of airport location and the corridor  development between New York
and New Haven should drive this home.

Today’s headlines are filled with competition for industries to  locate in a
certain locale, state, or nation, perhaps for both economic and political gains. In fact,
facility location decisions have faced humankind throughout history. A  familiar ex-
ample can be found in the development of the steel industry in the United States.
While iron ore was found in the convenient open pits of the Mesabi Range in
Minnesota, coal was plentiful in Pennsylvania. Considering the amount of coal re-
quired, it constituted the more expensive of the two commodities to transport.
Thus, we saw the historical development of steel mills in Pittsburgh,
Pennsylvania; while iron ore was shipped through Duluth, Minnesota, coal was
collected at Pittsburgh via the Monongahela River. Perhaps this is another exam-
ple of the LP application in airport location, where the  facility is located at either
one of the extreme points, rather than somewhere in between.

In today’s economy, where globalization and technological innovation
 become dominant factors, it is critical to ask how location conditions vis-a-vis struc-
ture and strategies of the firm play a part in the competitive market. When the
 innovation process is explained in terms of product cycle and diffusion,  relevant
 location factors are stressed and a hierarchical  pattern of innovation in space is
 arrived at. On the other hand, evolutionary and network theories point to the rele-
vance of historically evolved firm structures and strategies. Empirical evidence
seems to accommodate both schools of thought (Todtling 1992). In some firms, there
appeared to be a pronounced differentiation of innovation across space, such as
con centration of research and development and product inno vation in the largest
agglomerations. However, strong innovation activities,  corresponding more with
the evolutionary model, were in addition identified in old industrial areas and
newly industrialized rural areas. It is required, more than ever, to discern the rel-
evant factor that plays the pivoting role under these mixed development pat-
terns, particularly when location  decision  becomes  paramount.
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Facility location and land use decisions are highly capital-intensive and
highly valued. In an emergency situation, a location decision often makes the
 difference between security and danger. Nowhere is it more apparent than the
 ongoing debate on hazardous facility location, where a fine line exists  between
perception and reality. Recent advances in multicriteria decision- making
 techniques can shed some light in the debate between the proponents of and
the opposition to such facilities. In short, location decisions have long-term
 effects on the regional and interregional economy and profound  implications on
the quality of life. Modern analysis techniques can shed light on the matter and
can have significant rewards in more informed choices.

VI.  EXERCISES

Self-Instructional Module: EMPIRICAL MODELING 
(to be found on the attached CD/DVD)2

Models range from the simple (one equation) to the complex, requiring computer
processing. (A model of the national economy of the U.S., for example, can  easily
consists of hundreds if not thousands of equations.) This module works with
models of one equation, serving as an introduction to modeling, such as the
urban growth and decline example in Chapter 1, and the econometric models
covered in Chapters 2 and 3 of the textbook. After completing this module the
reader should:

(a) Be exposed to model construction based on empirical data.
(b) Become familiar the use of power/exponential functions in econo-

metric modeling—a useful background for spatial development
modeling.

(c) Understand the somewhat counter-intuitive properties of power or
exponential functions through log-linear transformation using semi-
log graphs.

This Modeling module serves as an excellent introduction to the often
counter-intuitive findings offered by mathematical models, such as the urban
growth and decline and airport-location example in Chapter 1. The body of this
text is replete with examples of these counter-intuitive findings.

It is the author’s wish that many readers’ curiosity would be aroused
by these findings, particularly regarding the explanation of these unusual
 phenomena. As such, those who are mathematically inclined may wish to review
the Appendix entitled “Control, Dynamics, and System Stability,” which offers a
number of mathematical explanation of unexpected system behaviors.

Problem 1: Further Discussions on Table 1.1
The calculations in Table 1.1 can be simplified if we employ some algebra.
Let us define these terms:
Basic employment = EB = 1,000
No. of persons per household = f = 2.5



No. of retail/service employees generated per person = a = 0.2
Support service employment = ER

Total employment = E
Total population = N
With these terms, Table 1.1 can be expressed mathematically as Table 3.1, which
is reproduced here for convenience

Basic emp  Service 
Time EB pop ER pop E N

1 EB fEB afEB afEB EB(1 + af ) fEB(1 + af )
2 a2f2EB a2f3EB EB(1 + af + a2f 2) fEB(l + af + a2f2)
3 a3f3EB a3f 4EB EB(1 + af + a2f 2 + a3f3) fEB(1 + af + a2f2 + a3f 3)
• • • • •

• • • • •

m amfmEB amfm+lEB EB(1 + af + a2f2 + a3f3 + • • •) fEB(1 + af + a2f2 + a3f3 + • • •)

When m → ∞, it forms a “geometric series,” as will be explained in book
Chapter 3, Section III:
Total employment is E = EB(1 − af)−1 = 1000 (1 – (0.2)(2.5))–1 = 2000
Total population is N = fEB(1 − af)−1 = 2.5 � 1000 (1 – (0.2)(2.5))–1 = 5000

(a)  Reconstruct Table 1.1 for total employment and population when 
a = 0.2 and f = 5.

(b) Reconstruct Table 1.1 for total employment and population when 
a = 0.25 and f = 5

(c) Does the process stabilize in (a)? How about (b)?

Problem 2: Further Discussions on Airport Location
The book discussion on airport location was based on the “median” concept, or
we wish to minimize the sum of person-miles of travel for both the New York
and New Haven residents. There is another concept in facility location, namely
that of the “center” concept, in which the facility is located where the distance for
the person furthest away is minimized. In other words, we wish to soften the
 inconvenience to those living far away.

Let us define x as the distance the airport is from New York. Under the
center concept, the weighted distance from New York is 14x. On the other hand,
the weighted distance from New Haven is 2(80 − x). A Table can be  constructed
for different values of x:

x 14x 2(80 − x) Max Min(Max)

10 140 140 140 140
20 280 120 280 280
30 420 100 420 420
40 560 80 560 560
50 700 60 700 700
60 840 40 840 840
70 980 20 980 980

14 CHAPTER 1 Introduction
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It appears that the best airport location will now be 10 miles from New York,
or 70 miles from New Haven. Just to be careful, we can check for x = 5, which yields
14x = 70 and 2(80 − x) = 150. This is no better than what we have  currently. It appears
that we have the “optimal” location as is.

(a)  For Figure 1.2, please compute the center location of the airport at
time increments 0, 1, 2, 3, 4 and 5.

(b) Discuss the stability of this airport location compared to that 
obtained by the ”median” concept.

ENDNOTE
1 An introduction to linear programming is contained in Chapter 4 and also in Appendix 4.
2 The answer to this Modeling module is attached at the end of this textbook.
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Most of the underlying theories of facility location and land use models are
 basically economic concepts, and many of their input/output variables are
 economic measures. To understand these relationships better, a general knowledge
of economic concepts and methodology is helpful. We recognize that theories have
been offered by economists to explain the growth and distribution of industrial
 activities in an area. It is insightful to summarize their experiences—particularly
the theories used in regional and interregional economics. This includes such con-
cepts as economic-base theory (or export service theory) of gravitational interac-
tion and theory of interregional flow. Through such a review, one sharpens the
focus on the validity and limitations of these analysis methodologies.

We will also outline the basic techniques for evaluating the impact of a
proposed policy on transportation systems, utility systems, and zoning codes.
When an evaluation measure is often phrased in terms such as cost, benefit,
 equity, and efficiency, a clear understanding of these terms is necessary.
Conversely, when indicators such as opportunity and quality of life are output
from the model, they are much more meaningful if one can relate them to the
 economic theories of cost/benefit and equity/efficiency. Such an understanding
would help the inquiring mind to understand the assumptions based upon which
the measures are derived. Finally, for the model builder, the review of economic
methods would help them configure better models and submodels.

I. ECONOMIC CONSTRUCTS FOR ACTIVITY 
ALLOCATION AND FORECASTING

Econometricians have been forecasting economic activities such as population
and employment for a long time. Two types of forecasting methodologies can 
be broadly classified—forecasting on the basis of cross-sectional data versus that

2
Economic Methods
of Analysis
“Two and two the mathematician continues to make four, in spite of the
whine of the amateur for three, or the cry of the critic for five.” 

James McNeill Whistler

Y. Chan, Location Theory and Decision Analysis, 2nd ed., DOI 10.1007/978-3-642-15663-2_2, 
© Springer-Verlag Berlin Heidelberg 2011
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based on time-series data. Using cross-sectional data, models are calibrated on
the current spatial distribution of activities, thus examining a “snapshot” of the
population/employment distribution on the map. A time-series approach, on the
other hand, would utilize not only the current pattern, but also previous pat-
terns, which allows an observation over two or more time periods. The former is
a static way of forecasting, while the latter is more dynamic. In other words, the
 former assumes the general activity distribution pattern will prevail over time,
whereas the latter recognizes explicitly that changes over time are an integral
part of the development. Aside from their important role in the development lit-
erature, the three economic concepts—economic-base theory, location theory,
and input-output models—are selected for further discussion because the first
two  illustrate cross-sectional forecasting methodology, while the last one illus-
trates time-series forecasting.

A. Economic-Base Theory
The term economic base has many different usages and meanings so that it is
 necessary to clarify the definition for use here. In general, the term economic
base has been applied to activities thought of as being major, fundamental, or
of  considerable importance in the economic structure of an area. The economic
base of a community consists of those economic activities that are vital to the
continued functioning and existence of that community. An economic-base
study is an attempt to determine those economic activities devoted to the
 export of goods and services beyond the study area’s borders. This activity is
thought of as being the primary reason for the earning ability and economic
growth of the community. Because these basic industries sell their products and
services outside of the area, nonbasic or service industries can be supported
within the community’s boundaries. For example, barbers, dry cleaners, shoe
repairers, grocery clerks, bakers, and movie operators serve others in the area
who are engaged in the  principal activities of the community, which may be
mining, manufacturing, trade, or some other industry. These service industries
have as their main function the provision of goods and services for persons
 living in the community.

This distinction of basic and nonbasic sectors of economic activity in an
area is illustrated in Figure 2.1. Note that the income of the nonbasic  sector is
 dependent upon the income of the basic sector so that it seems that the service
 industries only exist to serve basic workers and other service workers. Hence,
fluctuations in income or employment in the basic sector will ultimately affect
 income and employment in the nonbasic sector. Since the nonbasic sector activi-
ties depend upon the basic sector, changes in the basic sector will have a net
 effect on the entire study area economy when some multiplier is applied to the
 economic-base method of analysis. The economic-base multiplier attempts to
 predict the change that will occur in the study area economy given a forecast of
changes in certain basic activities. A significant part of the analysis involves the
construction of these impact multipliers. They are numerical constants intended
to impose the effects of changes in the demand for an area’s goods and services
upon the volume of employment or income in that region. For example, a
 government contract for a defense item increases employment in a firm by 2000
jobs. Indirectly both contract and job increases might generate still more work
 opportunities and produce a total increase in local employment two or more
times a multiple of the original 2000.
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Example
Using employment as the unit of measure, classify the employment of all indus-
tries in the study area as basic or nonbasic. Establish the Normal Ratio, the rela-
tionship between basic and nonbasic employment that usually exists:

Normal Ratio � (Assume a 2:1 normal ratio,
for example.)

Total Employment � Nonbasic Employment � Basic Employment. Assuming
the total study area employment to be 90,000, then nonbasic employment is now
60,000 and basic employment is 30,000.

Multiplier � � �
60,00

3
0
0
�

,00
3
0
0,000

�� 3

If basic employment is forecast to increase by 15,000, the total increase in non-
basic employment would be 3 � 15,000 � 45,000. Then the total employment for
the forecast year becomes 15,000 � 45,000 � 90,000 � 150,000. Since the normal
ratio of 2:1 still holds, nonbasic employment is 100,000 and basic employment
is 50,000. ■

Thus, economic-base theory is to describe the development of economic
activities in a typical area or region. The development of economic activities in a
specific area can be explained in terms of the following four stages:

Nonbasic Employment
���

Basic Employment

Total Employment
���
Basic Employment

Figure 2.1  CONCEPT OF BASIC VERSUS NONBASIC ACTIVITIES

Nonbasic
sector

Study area

$
$

$
$

Basic
sector

Exports

Exports
Exports

ExportsService

Service

Service

Service

SOURCE: Adapted from Newman (1972). Reprinted with permission.
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Step 1: Calculate the total population and employment and the amount
of constituent basic and nonbasic (service) employment;

Step 2: Estimate the proportion of basic employment to population
and that of population to service employment;

Step 3: Estimate the future trend in the basic employment; and 
Step 4: Calculate the total employment and total future population on

the basis of the future trend in basic employment. 

In other words, basic employment has to be determined exogenously, then based
on the multipliers such as labor force participation rate and population-serving
ratio, which are the two proportions mentioned in Step 2, future employment 
and population in the region are estimated. Aside from the example above,
 another numerical example of the economic-base concept was given in Chapter 1
in Table 1.1. 

The validity of future estimates of employment (or any other variables)
depends upon the relative stability of the nonbasic-to-basic ratio developed.
However, the economic-base method still has many problems to be solved. Some
of these are:

1. Determining which activities are basic and nonbasic;
2. Choosing which units of measurement best represent the  economy;

and
3. Establishing the geographic area boundaries for which the base

study is to be made.

In addition to these conceptual problems, other criticisms of the economic-
base method have been registered. As the size of the study increases, the ratio of non-
basic to basic employees increases with a resultant increase in the multiplier. As a
consequence, large areas have very large multipliers which do not truly  reflect total
economic change due to changes in the basic sector. It becomes apparent that the 
e conomic-base multiplier method is most applicable to relatively small areas and
towns. Some critics challenge the premise that basic activities are more  important
than service activities because of the important contributions of such factors as the
transportation system, communications network, and other systems serving the
community. This criticism is important because planners use the basic-nonbasic
 distinction to emphasize which industries should be built up to improve the
 community’s economy and to improve the balance of payments. Industries that
 produce goods which are presently imported would be neglected under this
premise. More technical treatment of the subject will be found in Chapter 3.

B. Location Theory
Location theory, a study of the effects of space on the organization of economic
activities, is a body of knowledge about the location of different activities or the
rationing of different resources so as to achieve desirable spatial interaction. It has
its genesis from early studies of the relative locations of plants and industry, in
which the availability of raw material and the accessibility to consumer markets
are of primary importance. According to the spatial price theory, transportation
cost is the price for rationing resources and economic activities. For example,
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manufacturing plants and industries find the most convenient locations at close
proximity to the input resources (both labor and raw materials) or consumer
 markets in order to minimize transportation costs. Another good example is a
family’s choice of housing location, in which a tradeoff is made between the trans-
portation costs and other expenditures and values. If a heavy weight is placed on
freedom from the noise and rush of the central city, the family locate at a distance
away from the city and pay the transportation cost. In their decision, the utility of
a serene environment is much higher than the utility of being close to jobs and
other urban amenities. 

One of the familiar location models is the gravity model, which states
that the interaction between two subareas is proportional to their activity levels,
but inversely related to their spatial separation. Reilly’s law of gravitational
 attraction, for example, is based on the concept of spatial interaction. One of the
first retail models was constructed out of this theory. This model uses the num-
ber of business activities, people, store sales, area, and so forth as an index of size
and the fundamental measure of attractiveness of a central place. Consider a
household located at I′ choosing between the shopping centers at A and B as
shown in Figure 2.2, or the reverse situation where a shopping center I′ is to be
located to serve the population at A and B. In general, the markets captured from
A and B are in the ratio

�
T
T

A

Β′
′

� � �
W
W

A

B
� ��

d
d

A

B��
2

(2.1)

where WA and WB are the sizes of A and B, where TA', TB' represent proportions
of trade (percentage of sales for example) from I to A and B respectively, and dB,
dA is the distance from B and A respectively, with dA + dB = dAB.

From Equation 2.1 attractiveness of A and B with respect to point I’,
when A and B are of equal size (WA � WB), can be represented as TA'dA

2 � TB'dB
2.

Notice the appeal of A and B is a function of both distance away and sales vol-
ume. To locate a shopping center at I' equally appealing to both the population
centers A and B, or to say it the other way, to find the point I′ where a shopper is
indifferent  between shopping centers A and B, we set TA' � TB' in Equation 2.1
and solve for dB. In general, an equation can be derived that states the watershed
trade area bounded between A and B, measured in miles (km) from B, is 

dB ��1 � (W
d

A

A

/
B

WB)1/2� (2.2)

Figure 2.2  BREAK POINT MODEL
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Example
Let dAB � 36 miles (57.6 km); WA � 92 retail activities, WB � 90 retail activities;
then dB � 17.8 miles (28.5 km) from location B according to Equation 2.2. ■

The Reilly model may be an acceptable approximation for such location
decisions in rural areas where central places are rather distinguishable. In a more
developed area, however, a large number of shopping centers and population
centers are involved. The overlapping market areas will be too complex to be
 resolved by this idealized model. Another formulation of the gravity model was
proposed by Lakshmanan and Hansen (1965). This model allocates retail dollars,
determining the percentage of the population in subarea i that will go to the
shopping center j to spend their money:

(expenditure)ij � (expenditure)i ��

W

kW
j/

k/
�

�

�
ij
�
ik

�

where � is the travel time and � is the positive exponent to be calibrated. This
states that the total consumer retail expenditure of population in subarea i is 
allocated toward each shopping center j in accordance with the gravity formula.
Notice travel distance d is replaced by time � in this formulation. We will see
more of this interchangeability between time and distance in subsequent discus-
sions throughout this book. Huff’s probabilistic model (1962) is yet another
 example of the gravity model, stating that the probability a consumer located at i
will visit shopping center j is

�
�

W

kW
j/

k/
�

�

�
ij
�
ik

� (2.3)

Example 
Suppose there are two shopping malls 5 and 10 miles (8 and 16 km) away
 respectively, each with 800 and 300 thousand square feet (72 and 27 thousand m2)
retail floor space. According to Huff’s model, the probabilities a consumer will
patronize these two malls are respectively

� 0.08
(2.4)

� 0.92

assuming an exponent � � 2 (Dickey 1983). ■

Variants of location theory are found in literature on multicommodity
flow as well as short-run and long-run equilibria of economic activities.
Multicommodity-flow models describe the simultaneous allocation of popula-
tion, employment, resources and finished products between places of supply and
demand. In the short run, most economic activities, including the places of sup-
ply and demand, are fixed in location. In the long run, however, they could 
relocate themselves somewhere else corresponding to the rationing scheme of 

(800)(1/52)
���
(800)(1/52) � (300)(1/102)

(300)(1/102)
���
(800)(1/52) � (300)(1/102)
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the spatial price system. Short- and long-run multicommodity flows are often
modeled by a generalized version of the gravity model and optimization 
models—subjects covered in Chapter 4.

C. Input-Output Models
Input-output models, developed by Leontief (1953), will be introduced with
 respect to two particular applications: local-impact studies and interregional-flow
studies. As an example, local-impact studies reveal the possible changes in a
 single region. Interregional-flow studies, on the other hand, are to show the struc-
tural  relationship between regions. The effect of an autonomous shock—such as
the  precipitous injection of basic employment into the study area as mentioned in
 economic-base theory—may be traced to, and through, the region under con -
sideration. An essential part of an input-output model is an input-output table,
which documents a set of economic multipliers similar to those found in
 economic-base theory. The input-output table (matrix) eventually gives rise to a
set of simultaneous equations with production (or technical) coefficients (the mul-
tipliers) and activity variables. The set of equations can trace out, on a multi-
 sectoral basis, the implication of introducing a new industry into the study area
(the  autonomous shock). For example, if a new tourist trade is introduced into the
area as a way to boost the local economy, what would be the implications on the
 economic activities associated with tourism such as the associated retail and
 entertainment industries? The set of simultaneous equations merely chain-up the
sequence of effects together in a mathematical formulation through the use of a
table or matrix where the rows are inputs (e.g., tourists) and the columns are
 outputs (e.g., retail sales). It can be thought of as a huge revenue/expenditure
 accounting system. The revenue side of the balance sheet shows how the output
for each industry is distributed, and the expenditure side records for each indus-
try the distribution-of-inputs per unit-of-output from all industries.

An example of such an input-output matrix is shown in Table 2.1
(Chapin and Kaiser 1979). Shown for a single region, the table records horizon-
tally the output for each particular sector of the economy measured in terms of
receipts from sales (of goods or services) to every other sector. Thus sector 1 may
be the tourist industry, sector 2 may be retail, sector 3 entertainment, and sector 4

Table 2.1 EXAMPLE INPUT-OUTPUT TABLE

Tourism

sector

Retail

sector

Entertainment

sector

Household

sector

Final

demand

Tourism sector

Retail sector

Entertainment sector

Household sector

Charges against
final demand

$30

60

10

40

140

$20

20

40

20

100

$30

80

60

30

200

$25

30

50

15

120

$105

190

160

105

560

SOURCE: Chapin and Kaiser (1979). Reprinted with permission.
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Table 2.2  PRODUCTION (TECHNICAL) COEFFICIENTS FOR A SINGLE REGION

households. Households receive 25 million dollars during the current time
 period in wages as employees serving the tourist industry, the entertainment sec-
tor  receives 30 million dollars from tourism, retail receives 20 million dollars, and
the tourism sector spends 30 million on itself. Read vertically, the table shows
input in terms of dollars spent on purchases in a particular sector from all other
sectors. Thus local households as a whole spend 40 million dollars this time
 period on tourism, the entertainment industry spends 10 million dollars on the
tourism  industry as part of the intersectoral trade, and the retail industry spends
60  million dollars. 

The final demand column records purchases by the tourism, retail, enter-
tainment, and household sector—the dollar transactions after all intermediate
 processing and handling are completed. For example, tourists inject a total of 105
million dollars (first row sum) into the economy during this time period, divided
among retail purchases, entertainment, and direct use of local labor. The charges
against final demand in the bottom row are payments for tourism, retail trade,
 entertainment trade, and labor. Thus the fourth column (120 million) is the total
wages paid to the household for supplying the labor for the remaining three sectors
of the local economy, including the tourist industry, the third column is the total
 payment to the entertainment industry from other sectors and so on. These column
totals are defined as the activity variables. To the extent that the row sums are not the
same as column sums (or total purchases are not equal to payments) in Table 2.1, the
final equilibrium values of these activities, taking the multiplier effects into account,
are to be determined by the solution of a set of simultaneous equations.

From the dollar transactions in Table 2.1, production (or technical) coe -
fficients are derived by dividing each input in a give column by the total of all
 inputs in the column. The resulting coefficients, shown in Table 2.2, are read by
columns and indicate the cents-of-direct-inputs per dollar-of-output. Column 1
shows the input per dollar-value-of-output from each of all the other sectors
 supplying goods or services to sector 1. Thus the households contribute 29 cents
toward the dollar on tourism, the entertainment sector contributes 7 cents, retail
contributes 43 cents, and tourism pays itself 21 cents. The other columns show sim-
ilar relationships for the  retail, entertainment, and household sectors. The input-
output technique, therefore, establishes a basic relationship between the volume
output of any given industry in a region and the volume of input  required in the
production process from all other industries in this region. In this regard, the coef-
ficients are equivalent to the labor force participation rate and population-serving
ratio used in economic-base theory, except that the multipliers here are constructed
out of dollar volumes rather than in terms of people. To the extent that intersectoral
trade is governed by these multipliers aside from the seed activity (or autonomous

Tourism

sector

Retail

sector

Entertainment

sector

Household

sector

Tourism sector

Retail sector

Entertainment sector

Household sector

0.21

0.43

0.07

0.29

0.20

0.20

0.40

0.20

0.15

0.40

0.30

0.15

0.21

0.25

0.42

0.12
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shock), the projection of the local economy, to be manifested in the final values of
the activity variables, can only be determined  following the four steps of economic-
base theory, or alternatively solving the equivalent simultaneous equation set.

In the book, Chan (2005), more discussions of this Table can be found in
the chapter on “Spatial Equilibrium and Disequilibrium.” The similarity between
input-output theory and economic-base theory will be emphasized. Most impor-
tant, the input-output model will be extended from the current intraregional 
version to an interregional version.

II. ECONOMETRIC MODELING: 
INTERREGIONAL DEMOGRAPHIC 
PROJECTIONS

At the root of economic growth is population growth, for industrial wealth is
nothing but a manifestation of human resources. An integral part of spatial
 economics is therefore the projection of population in a regional and interre-
gional context. The demographic model is discussed here as a companion analy-
sis to economic-base theory and input-output analysis. It also serves to illustrate
 economic theories, which are supplemental to classic economic theory in
 regional science. Three of the basic issues involved in demographic analyses are
fertility, mortality, and migration. Fertility is the rate of childbirth in society.
Mortality refers to the death rate in society. Migration is the population move-
ment from one geographic location to another. Demographic analysis takes the
net effect of fertility, mortality, and migration and predicts the growth or decline
of population in the study area. The methods of analyzing demographic activi-
ties consist of population projection models, and matrix analyses of regional and
interregional growth and distribution (Jha 1972). Population projection models
are aggregate methods of extrapolating regional population growth from present
trends using statistical techniques. The matrix analysis of population growth, on
the other hand, is a more systemized method of projecting population growth,
being more explanatory about the determinants of demographic activities.

A. Population Projection Models
Two of the key concepts used in the population projection models are comparative
forecasting and extrapolation. Comparative forecasting is a very crude method and
could be rather unreliable if performed carelessly. This forecasting method is
 performed by selecting two areas, A and B, which have behaved similarly in their 
demographic growth patterns. It is assumed that the two areas should develop 
similarly in the future, meaning that if A’s population increases at a certain rate, B’s
population would increase at about the same rate. Notice that A can be a part of B
geographically. Parallel attempts are made to establish population and employment
growth rate for similar cities. (See the “Econometric Models” chapter in Chan [2005]).

Example
As shown in Figure 2.3, if the population growth of two areas A and B are similar
in the past from t to t � 3, and if the population of A is known for the rest of the
years from time period t � 4 to t � 5, we can have an idea of the population pro-
jection for area B for the corresponding years. In this method, we assume that the
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demographics of one area follow the same profile as the other. This will be true even
if there is a sharp decline in growth rate occurring around time period t � 3. ■

Extrapolation, on the other hand, uses statistical techniques to predict fu-
ture population growth based on the trend in the same area in the past. This is the
basic premise of almost all econometric models, in which the implicit  assumption
is that past trends prevail. It represents both the strength as well as the weakness
of this type of model. It is a strength since the forecasting methodology is flexible
and relatively easy to use. It is a weakness inasmuch as the  underlying behavior
of the study area is ignored, in preference for purely statistical correlations. The
common techniques employed in comparative and extrapolation models are
graphical, polynomial curves, ratio and correlation method, regression and
 covariance method, and inflow-outflow analysis.

1. Graphical Method. The graphical or manual technique consists of plot-
ting points on a graph to show population growth predictions. In this method,
past census data is used for plotting the graph of population versus time. Future
population is obtained by extending the graph in the same way as the trend in the
past. Thus in Figure 2.4, the population at t � 5 and t � 6 have been obtained by

Figure 2.3  POPULATION PROJECTION BY COMPARATIVE FORECASTING
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extending the graph. Simple as it may look, graphic plots of data are an essential,
indispensable first step in any econometric application. They allow the modeler
to get a feel of the data and more importantly to formulate a hypothesis about the
structural form of the model. Pairwise plots such as those shown in Figure 2.4 are
options in almost all statistical analysis software. Actual projection may not be
 actually performed manually, but the trend indicated by the plot is a most
 important piece of information for the modeler.

2. Polynomial Method. The polynomial-curve technique is a generalization
of the above concept. It is built upon the following linearized formula for each
forecast increment �t: N(t � �t) � �N(t) �t, where N(t) is the base-year popula-
tion, �t is the forecast period (whether it be one year, five years or ten years.), and
�N(t) is the population increase per time period �t.

Example
If for an area, the total population in base-year t is 4500 thousand and the  annual
increment has been 27 thousand, then the population in t � 10 will be equal to
4500 � (27)(10) � 4770 thousand. ■

Figure 2.4  GRAPHICAL PROJECTION OF POPULATION AT REGION C

60

50

40

65

55

45

P
o

p
u

la
ti

o
n

 (
in

 t
h

o
u

sa
n

d
s)

Year

30

35

25

t t  1 t  2 t  3 t  4 t  5

Data

Projection

Legend



28 CHAPTER 2 Economic Methods of Analysis

Polynomial curves are usually quite a bit more complex than the exam-
ple shown above. For each time period, �t, there exists a formal mathematical
equation with a different increment as determined by the function f(�t): 
N(t � �t) � N(t) � f(Δt). Oftentimes, polynomial projections put more weight on
present trends than past trends. One such weighting scheme is the exponential
smoothing technique where the weight decays exponentially over the length of
the elapsed time period, thus placing more value upon recent information. We
will defer the details until the “Spatial Time-Series” chapter in Chan (2005),
where formal projection methodologies will be discussed.

3. Ratio-and-Correlation Method. It might be possible that the popula-
tion growth of the study area is related to the population growth of another area,
or the region within which the area is located; or the population may be related
to some socioeconomic factor such as employment of another area or the region.
In this case, we use the ratio or coefficient of the relationship  between the two
areas for predicting future population, as shown in the  following example.

Example
If the ratio of population at area A and any other socioeconomic factor at area B
(including population) has been constant in the past years, then we can get the
future area A population using this constant. Let ZB(t) represent the population
or any other activity variable of area B at base year t, and suppose the ratio
NA(t)/ZB(t) � 0.8. 

If ZB(t � Δt) = 4000 in the forecast year t � Δt,

then �
N
ZB

A

(
(
t
t
)
)

� � �
NA(

4
t
0
�

00
�t)

� � 0.8 

or NA(t � Δt) = (4000)(0.8) = 3200 ■

In other words, the ratio-and-correlation method uses another activity
 variable to predict population growth, if population growth can be correlated with
an identifiable activity variable at a different area via a constant ratio. The reader
can imagine that an example can easily be constructed for the interregional input-
output model where the population in a region, being the support labor force for an
 industry, is simply related to the employment level at the work region by the labor-
force-participation rate. The gist of this method is straightforward. If Ni(t)/Zj(t) � con-
stant, then Ni(t � �t) � Zj(t � �t)(constant). This model can be generalized to read
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where area i can also be area j (i � j), meaning that population and employment
can be co-located in the same region. Here f(�) is a function showing how the
 constant can be determined by using historical information over n time  periods.
In the chapter on “Econometric Models” of Chan (2005), we will see how one can
expand a great deal upon this very simple idea of ratio and  correlation.

4. Regression and Covariance Analysis. This is one of the statistical
 calibration techniques widely used in population projection and for other activity
variables as well. Here, population is taken as a dependent variable and another
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 activity or factor is taken as an independent variable. Usually a simple bivariate
 regression may be represented like this: N � a � bX, where X is any explanatory or
independent factor, a and b are calibration constants that may be obtained by fit-
ting the model to the regional data. The companion covariance analysis, or analy-
sis of variance, measures the quality of the statistical fit of the model to the data.

Example
If the population of a state is associated with the increase in per capita income X,
and a and b have been calibrated to be 2,095,000 and 1,062 respectively. Further
suppose that the forecast-year per capita income in the state is 15,000, then
 according to the regression equation above, future state population is projected
to be (2,095,000) � (1,062)(15,000) � 36,880,000. ■

In general, while the regression equation does not necessarily have to
be linear to start out with, it is often reduced to the following linear form 
before  calibration can be performed: N � a � b1X1 � b2X2 � . . . , where X1, X2
and so forth are independent variables. The regression coefficients b1, b2 and so
forth are then calibrated for use in forecasting. Notice that the model assumes
that the linear  relationship between population and the independent variables
will hold over time—very similar to the previous models, from comparative
method to ratio-and-correlation method. The linearity assumption, and certain
assumptions about the statistical distribution of the data, may impose 
re strictions on what is normally a very flexible modeling procedure. The tech-
nical aspects of regression and covariance analysis are discussed in Appendix 2
of this book.

5. Inflow-Outflow Analysis. The inflow-outflow analysis predicts the
population of period t � Δt into the future considering both the gain and loss of
population in the area (termed inflow and outflow respectively.) The inflow is
predicted by the equation

(inflow) � (birthrate) N(t) � (in migration)

The outflow, on the other hand, is predicted by 

(outflow) � (death rate) N(t) � (out migration)

The population for the forecast year is predicted by combining the inflow and
outflow results using the equation: N(t � �t) � N(t) � (inflow 	 outflow). In sum-
mary, this method relates population projection to population growth, natural
 increase and decrease (due to birth and death respectively), and in-and-out
 migration via the following equation 

N(t � �t) � N(t) � ��(�t) � �M(�t) 

where �N(�t) is the natural increase or decrease in time period �t, and �M(�t) is the
net migration during period Δt. Substituting and rearranging the terms, one can
write N(t � �t) � N(t) � [b(�t)N(t) � δNI(�t)] � [d(�t)N(t) � δNo(�t)] where b(�t),
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d(�t) are the birthrates and death rates during period �t respectively, and δNr(�t),
δNI(�t) are the in-and-out migrations during period �t.

Example
If an area had a population of 4,500 for time period t, and the birthrate and death
rate per capita are 2 and 1 percent respectively and the in-and-out migrations are
234 and 198 respectively for the forecast time increment, then the forecast popu-
lation is 4,500 � (2(4,500/100) � 234) 	 (4,500/100 � 198) � 4,581. ■

B. Interregional Growth and Distribution
Matrix representation of population growth and distribution is convenient for esti-
mating the growth patterns of multi-regional populations. Two methods will be
 introduced here: cohort survival and components of change. The cohort survival
method is a way to determine population growth. Cohort, for this purpose, is
 defined as a group of people born within a given time period. The fundamental
concept of this analysis is: N(t � Δt) � G N(t), where the population at a future
 period N(t � Δt) is related to the current period t via a matrix G, the growth matrix.
For analytical purposes, the population is broken down into cohort age groups. The
matrix takes into account the death rates for each age group and incorporates them
as survival ratio at the main diagonal of the matrix. On the other hand, the
birthrates for each of the age groups are represented in the first row of the matrix.
For example, the birthrate for age groups under childbearing age is zero, and
 similarly for those over the childbearing age. However, each group within the child-
bearing age would have a certain birthrate, suggesting their capacity to reproduce.
The matrix determines the populations, by age group, for the forecast year based on
survival and birthrates. The matrix also ages the base-year population into older
groups for the forecast year. A group of residents in the five-to-ten-year age bracket,
for example, would transition into the ten-to-fifteen-year bracket if the forecast is
performed for a five-year increment. In summary, the following equation set incor-
porates all the above elements in a matrix notation.

where bi stands for the birthrate per person for group i, and sij stands for the
 surviving ratio of group i in group j.

Aside from birth-death considerations, the problem of interregional migra-
tion can be taken into account by using a migration matrix. This matrix is similar to
that used to model the survival rates of cohort groups, except that net immigration
and emigration rates are written in the main diagonal. Since the matrix is used to
model interregional population movement alone, no birthrates are included. In the
following matrix, where the row and column dimensions correspond to the
 different age groups, net interregional population migration is modeled: 

N1(t � Δt) 0 0 b3 b4 � � � bn�1 0 N1(t)
N2(t � Δt)

s12 0 0 0 � � � 0 0 N2(t) 
N3(t � Δt) 0 s23 0 0 � � � 0 0 N3(t) 

� � 0 0 s34 0 � � � 0 0 �
�

� � � � � � � � �
�

� 0 0 0 0 � � � sn�1 n 0 ��
Nn(t � Δt)

� � � �
Nn(t)

� (2.6)
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The growth of a region is predicted by adding the birthrate, survival-rate, and
 migration-rate matrices, which produces a growth-rate matrix by age group

Example
A simple numerical example would illustrate these matrices. Consider three age
groups: 0- to 20-year-olds, 20- to 40-year-olds and 40- to 60-year-olds. These
 hypothetical matrices can be written:

where the childbearing cohort group is defined as those 20 to 40 years old. 
We specify that 9 out of 10 people survive from the 0- to 20-year group to become
20- to 40-year-old adults. Ten percent more people in the 20- to 40-year-old group
 migrate into the area over 20 years—the length of the forecast period—and so on.
Summing these matrices, we have the net growth matrix 

If the base-year population in all age groups is 10,000, the forecast population
 distribution (in thousands) would be

It is predicted, therefore, that in 20 years more young people than older people
will be living in the study area. More precisely, there will be 15 thousand 0- to 
20-year-olds, 10 thousand 20- to 40-year-olds, and only 9 thousand 40- to 
60-year-olds. ■

0 0 0 � � � 0 0
m11 0 0 � � � 0 0
0 m23 0 � � � 0 0
0 0 m34 � � � 0 0� � � � � � � � � �
0 0 0 � � � ma	1 n 0

0 0 � � 0

�
0 0 � � 0

� �s12 0 � � 0 �m12 0 � � 0    
G � �←

0
b�→� � 0 s23 � � 0 � 0 m23 � � 0     

� � � � 0 � � � � �    
0 0 � � 0 0 0 � � 0    

0 1.5 0 0 0 0 0 0 0
G = 0 0 0 � 0.9 0 0 � 0.1 0 0 (2.8)� 0 0 0 � � 0 0.8 0 � � 0 0.1 0 �

0 1.5 0
G = 1.0 0 0� 0 0.9 0 �

N1(t � Δt) 0 1.5 0 10 15
N2(t � Δt) � 1.0 0 0 10 � 10 (2.9)�
N3(t � Δt) � � 0 0.9 0 ��10� � 9�

(2.7)
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C. Interregional Components of Change Model
Predicting interregional population is basically the same as predicting regional
population. The major differences are that instead of breaking down by age
groups, we stratify by specific regions, such as the East versus West Coast. This
basic concept is still used:

N(t � Δt) � N(t) � (births) 	 (deaths) � (migrants)

Symbolically, the components of change model may be stated in scalar terms for
each region i as

Ni(t � Δt) � Ni(t) � bi(t)Ni(t) 	 di(t)Ni(t) � mi(t)Ni(t)
� [1 � bi(t) 	 di(t) � mi(t)] Ni(t) (2.10)
� giNi(t)

where b, d, and m are birth-, death and net migration rates. For example, the crude
birth-, death and net migration rates from Table 2.3 give rise to the growth rate 
g = 1 � 0.1315 	 0.0473 � 0.0865 � 1.1707. These are called crude because they are
simply the births, deaths, and net migration over the period 1955–60 divided by
the 1955 base-year population in California, without taking into consideration
 migration from/to the rest of the United States or any place else. In fact, proper
estimation of these parameters is a subject of interest in real world applications.
Chan (2005) elaborates on this topic in the “Bifurcation and Disaggregation”
chapter. (Software and data, under the YI-CHAN folder, are also included on the
CD/DVD attached to this book to illustrate the estimation procedure.) Usually,
population, births, deaths, and migration are expressed in matrix forms, where
the row and column dimensions correspond to the number of regions being mod-
eled. The following model shows a two-region example in which the internal
births, deaths, and interregional net migration are analyzed.

� � � �� � � � � 	 � � � � ��� �
(2.11)

or in matrix notation N(t � Δt) � (I � B 	 D � M) N(t) � G N(t).

N1(t)
N2(t)

0 m21(t)
m12(t)  0

d1(t)  0
0  d2(t)

b1(t) 0
0   b2(t)

1   0
0  1

N1(t � �t)
N2(t � �t)

Table 2.3  CALIFORNIA AND THE REST OF THE UNITED STATES (1955–60)

1955 Pop etar noitargiMetar htaeDetarhtriBnoigeR

Calif

Rest of the US
(~US)

12,988,000

152,082,000

0.1315

0.1282

0.0473

0.0488

0.0865
(~US to Calif)

0.0074
(Calif  to ~US)
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Example
From the data in Table 2.3, the growth matrix is the sum of the identity, birth,
death, and migration matrices, where California is row/column 1 and the rest of
the United States is row/column 2 of such matrices:

G � � � � � � 	 � � � 

� � � � � (2.12)

The 1960 population in California and the rest of the United States can then be
computed as

� � � � �� � � � � ■ (2.13)

The discussion on interregional demographic model gives the reader a
flavor of the basic algebra found in similar model structures as the interregional
input-output model. It serves not only to introduce econometric modeling, but
also to generalize to a multi-regional level a key projection concept introduced
earlier in this chapter.

III. ECONOMIC CONSTRUCTS FOR 
COST-BENEFIT ESTIMATION

The previous sections have been devoted to the economic and econometric tech-
niques of prediction where future activities, such as the local economy, are projected.
In this section, we will concentrate on the methods of evaluation, in which a location
or land use policy is analyzed or evaluated with respect to its cost and benefits. There
are three economic concepts that are important to cost-benefit estimation:  equity,
 efficiency, and externality. Equity is a very precise concept in economics since it con-
notes the distribution of income and social benefits. An example may be the equal
accessibility of all segments of the population to such public services as school and
recreation (Marsh and Schilling 1994). Equity can be achieved through the natural
market forces, governmental intervention, or through public services and transfer
payments. The price system may sometimes be inadequate to effect an equitable dis-
tribution of goods and services; it may then be necessary to subsidize schools in a
less affluent neighborhood in order to render education opportunities for all. 

Efficiency, in our context, means the least costly distribution of resources
over space for the production of goods and services. An efficient urban structure,
for example, is to have complementary goods and services to be clustered
 together, whereby transportation costs are minimized.1 Such a clustered develop-
ment may mean the sacrifice of some open space that is sometimes highly valued.
Efficiency, therefore, is not necessarily the only objective of urban planning; other
factors need to be considered at the same time. 

0.0473    0
0   0.0488

0.1315     0
0    0.1282

1  0
0  1

1.0842  0.0865
	0.0074  1.0794

0      0.0865
	0.0074    0

27,236
164,061

12,988
152,082

1.0842  0.0865
	0.0074  1.0794

N1(1960)
N2(1960)
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Externality, for the purpose of the current discussion, refers to the effects
of a project other than those measured by the economic price system. In the
 provision of open space above, transportation cost does not accurately represent
the  price for the distribution of open space around the city, meaning that a
 precise, quantifiable price measure of the value of open space to an inhabitant is
not easily obtainable. Economists have a well-defined concept about price theory,
and they recognize that certain effects cannot be measured by price, including the
positive benefits of open space and the negative benefits of air pollution.
However, in a comprehensive accounting system, we may like to impute a cost to
the community for the deprivation of open space, or the onset of pollution, both
of which may be incurred in the industrial production process. This imputed cost
is an example of an externality (Dahlman 1988).

Having been equipped with these basic concepts, we are prepared to
 examine two sets of methodologies for estimating costs and benefits. The first is
shift-share analysis, which illustrates a technique to measure equity in a spatial
context. The second is theory of land values, which is included here to verify the
concept of efficiency.

A. Shift-Share Analysis
Shift-share analysis is a technique to divide the change in a socioeconomic measure
into two or more components. For example, the population growth in an area is
 attributable to both the regional growth pattern and the peculiarity of the area itself.
This technique can be used to measure the distribution of benefits: for instance,
which subarea in the study area will receive less than its equitable share of regional
growth and which will receive more. Rather than assuming a constant trend and a
constant share of the regional economic activities, shift-share analysis tries to explain
the change in the activity level in a particular subarea by two components. The first
component is an average activity change corresponding to an aggregate regional
change, while the second component is the difference between the average and
 actual changes in a subarea. This can be expressed by the following equation:

(subareal change) � (regional average change) � (competitive change)

For example, an urban area grows 10 percent over a five-year period, and two of
its zones A and B grow by five percent and 12 percent respectively. Zone A is at
a competitive disadvantage of five percent below while zone B is at an advantage
of two percent above the regional average, even though both are influenced by
the overall regional growth.

A general expression of shift-share analysis can be written for activity k
in subarea i:

ΔZk
i � δZk � δZk

i � �
Z
Δ

k

Z
(t

k

)
� Zk

i(t) � δZk
i (2.14)

which states that the total change of activity k in subarea i is due to subareal
change of activity k at the regional rate, adjusted for site-specific change at the
local level. Shift-share analysis is therefore a simple concept of splitting up the
change in activity from time period t to t � 1 into two functional components.
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The first component indicates the norm for the region as a whole and the second
the subareal deviation from the norm as mentioned. Notice that the competitive
component is introduced to measure the change in a subarea relative to the
 regional  average—showing the relative attractiveness of the subarea for the par-
ticular  activity under consideration.

The competitive component of change in activity k for subarea i, �� k
i , can

again be broken down into two components: the difference between subareal
change and the regional overall growth in sector k.

δZk
i � Zk

i(t)��Z
Δ
k
i

Z
(t

k
i

)
� 	 �

Z
Δ

k

Z
(t

k

)
�� (2.15)

Putting it altogether, we can see that δZk in Equation 2.14 defines the change in
importance of industrial sector k in subarea i over the time period, or the shift
component. Equation 2.15, on the other hand, defines the increase or decrease in
activity k due to the relative competitiveness of subarea i vis-a-vis other subar-
eas, or the share component. This accounts for the name shift-share analysis.

Example 
During the past five years, subarea i’s manufacturing (M) sector grew less
rapidly than did the region by 1.6 percent. Its commercial (C) sector, in contrast,
had a growth rate that exceeded that of the region’s by 3.8 percent. Regional
manufacturing and commercial growth rates are given as 0.276 and 0.402
 respectively (i.e., 27.6 percent and 40.2 percent), and the current subareal manu-
facturing and  commercial activity levels are $280,000 and $180,000 respectively.
Assuming a constant shift, what is the value of manufacturing and commercial
trade in a projected time period?

To answer this question, we add the national growth rate to the subarea’s
growth rate and multiply the result by the subarea’s current sectoral activity
level according to Equation 2.15, yielding the projected manufacturing and com-
mercial levels as requested:

δZM
i � (	0.016 � 0.276)280 � 72.8

δZC
i � (�0.038 � 0.402)180 � 79.2 (2.16)

In this shift-share example, the first term in Equation 2.14 disappears since we 
assumed constant shift (Krueckeberg and Silver 1974). ■

Figure 2.5 illustrates another example in the relationship between a
 regional economy and the national economy where all three components are
 present: national growth component, industrial mix component, and the com-
petitive component. It shows the input data required to estimate each of these
 components, as well as a graphic plot of a numerical example for regional
 employment. Thus the drop in regional employment from 1332 to 1321 thousand
is explained in terms of these components. The concepts presented in shift-share
analysis, while simple, are not readily used in the field, since we never discussed
how the growth rates are actually derived beyond the schematic as illustrated.
Chan (2005) shows in his “Spatial Equilibrium and Disequilibrium” chapter that
implementation potentials can be enhanced by including this concept within the
interregional version of input-output analysis.



36 CHAPTER 2 Economic Methods of Analysis

B. Theory of Land Values
Having completed our discussions on equity measurement, let us now turn to
the concept of efficiency and illustrate it through the theory of land values. Land
value is subject to the market forces of supply and demand and highly related to
location and transportation costs. An improvement of the transportation system,
such as new highway or subway construction, could affect land value signifi-
cantly. Dorau and Hinman, as far back as 1928, suggested tracing land value to
three additional explanatory variables: land income, rate of capitalization, and

National employment in the k th industry at the beginning of the period
National employment in the k th industry at the end of the period
Regional employment in the k th industry at the beginning of the period
Regional employment in the k th industry at the end of the period
Total national employment at the beginning of the period
Total national employment at the end of the period

National growth component for region
Industrial mix component for region
Competitive component for region
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 direct satisfaction from land ownership. Land income includes mortgages as well
as the rent collected from tenants on the property, and in general the usefulness
of the land corresponding to the various services it can render. While it may be
obvious that land value depends on how potential income can be obtained from
the land, it needs to be pointed out that such income includes not only those from
the current time period, but also the forthcoming periods. This means that the
rate of capitalization, such as interest rates, risk, and other investment prefer-
ences, are involved. The last explanatory factor—direct satisfaction from owner-
ship—needs little explanation. It pertains to the personal rewards that are not
measured by the monetary system. 

Thus it can be seen that in a cost-benefit analysis, if land value is the pri-
mary measure of benefit, there are a variety of means to effect the change in land
value, each of which would probably incur a cost. Improving accessibility by
building highways, for instance, is a way among many others. The theory of land
values helps to explain such a cost-benefit relationship, and in a practical sense,
contributes toward model building. Aside from the above observations, there are
several economic phenomena that are useful for model building as well. It is
 observed, for example, that land value or land rent declines with the distance
from the central business district. The further one goes away from the central
city, the lower the land value. Land rent and transportation costs are comple-
mentary. Thus in a hypothetical, circular city, the land values can be viewed as a
cone in three dimensions (see Figure 2.6). If one wishes to live in the central city,
the land rent is at a peak, but the transportation costs are at a minimum. On the
other hand, if one locates at the fringe of the city, the land rent will be low, but
the transportation cost will be high. You can either pay a high rent and be acces-
sible, or you can pay a low rent and be comparatively inaccessible, hence having
to pay more on transportation costs. Land rent is affected by transportation in
 another way. In the case of Philadelphia and other cities with a radial highway
system, the development follows along the freeways in a finger-like manner.
Suppose one adapts Burgess’s classic concentric zone structure to an urban area
consisting of contours of land value in rings around the city center. After a free-
way is built, the development would tend to align itself along the freeway,
stretching out the rings as indicated in Figure 2.7. In this case, Burgess’s theory
merges with Hoyt’s  sector theory,2  which suggests that there are modifications
to the Burgess’s concentric rings to reflect transportation corridors that induce
suburban development along the corridors.

Figure 2.6  LAND RENT AND TRANSPORTATION COST

Radius from city center

Land rent

Transportation cost

Legend
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C. Consumers’ Surplus
When economic efficiency is of concern, a valuation measure in spatial choice is
consumers’ surplus. The consumers’ surplus is defined as the difference
 between what consumers might be willing to pay for a location and what they
actually pay. As shown in Figure 2.8, the consumers’ surplus is the area between
the  demand curve and the spatial price. Since the demand function expresses the
users’ indifference between the utility of a location and money, it can be consid-
ered as an expression of the utility of locations in terms of prices. The consumers’
surplus, which is expressed in monetary units, is then a measure of the utility
provided to the consumer minus the cost of production, which is reflected in the
sale price to some degree. Maximization of consumers’ surplus is then a close
proxy of the maximization of the economic utility of the consumers. The evalua-
tion of projects through a consumers’ surplus analysis is widely, although gen-
erally only implicitly, used for large-scale public facilities. It is the only effective
means of  estimating economic benefits when the public facilities are so large as
to effect more than marginal changes in prices.

To estimate the change in consumers’ surplus brought about by any pro-
ject, it is necessary to know both the price and the scale of the facility built before
and after the project is completed. Figure 2.9 shows the change in consumers’
 surplus before and after a facility expansion from P�bef to P�aft, which increases the
number of consumers served from Vbef to Vaft. Algebraically, this change can be
 approximated by the trapezoid rule:

(Cbef 	 Caft)(Vbef � Vaft) (2.17)

Measurement of the equilibrium price C can be difficult when the project
is large enough to shift the demand curve by causing an income effect. Such an
 income effect is illustrated in Figure 2.10, where the tradeoff between housing and
transportation is considered.3  The effective increase in income caused by a price
 reduction on a major facility shifts the point of maximum utility from U*bef to U*aft.
The increase in income thus results in an increased demand for both transportation
and housing. The income effect of a price change is only significant when major

1
�
2

New highway

Land rent contour (before)

Land rent contour (after)

Legend

Figure 2.7  EFFECT OF TRANSPORTATION ON LAND USE
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 expenditure items are involved. For most families in the United States, these
would be transportation, housing etc. Price changes on these items can change the
level of consumption. Increased rent or housing costs could, for example, decrease
the  demand for travel. In developing countries, investments in basic infrastructure
such as transportation, housing, and power can, by decreasing the cost of these
items, significantly increase the effective income (I') of the inhabitants.

When income effect is involved, knowledge of the income elasticity of 

demand ��
d
V
V
�	�

d
I
I
′
′

�� is required in order to estimate the final price Caft along the

same demand curve. Equation 2.17 still provides a satisfactory, although more
 approximate, means of calculating consumers’ surplus. Chan (2005) illustrates this
calculation in his “Including Generation and Distribution” chapter, where he 
estimates the economic value of state parks. (The software that performs such cal-
culation is included on the attached CD/DVD under the STATEPRK folder.) In cal-
culating consumers’ surplus, the analyst must be careful to reckon with the effects
of  manipulations of the prices through a deliberated pricing policy. In systems that
are publicly owned, it is possible and sometimes desirable to set prices that cover
more or less than the total costs. Hydroelectric power in the western United States,
for example, was subsidized below average cost to promote development. Unless
the subsidies are deducted, this policy clearly  increases consumers’ surplus over
what it might be if full cost of the service were charged. Figure 2.11 shows the total
consumers’ surplus made up of that part by the market mechanism and the other
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Figure 2.8  CONSUMERS’ SURPLUS ILLUSTRATION
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part by regulation. Such changes in consumers’ surplus, effected by setting the
prices of services different from their costs, are not without expenditure. The
changes are indeed transfer payments that must be made up by subsidy, either
from taxes or from profits in some other part of the system and deducted from the
final consumers’ surplus calculations of the project.

IV. UTILITY THEORY
Utility theory is a common economic concept to explain location choice and deci-
sion among alternatives in general. A view of utility functions may be developed
in the following way. Each household is confronted with a choice between n dif-
ferent expenditures, including savings or dis-savings, within an income budget.
This can be expressed by the following equation where pi and xi refer to the price

and quantity of the i th expenditure: I' = 	
n

i = 1 
pi x . On the other hand, the household

derives a certain amount of satisfaction from the quantities of each commodity 
it purchases, and this degree of satisfaction, when added up, provides a total 
utility. This utility may be expressed as a function of the vector of purchases of
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Economic Methods of Analysis CHAPTER 2 41

Tr
an

sp
o

rt
at

io
n

Housing

PH (bef )

PT (bef )
U *bef

U *aftPT (aft )

PH (aft )

Indifference curve (after)

Indifference curve (before)

U
n

it
 s

p
at

ia
l p

ri
ce

Consumers served

Original
price

Breakeven
price

Consumers’
surplus
without
subsidy

Consumers’ surplus provided 
by subsidy and paid by transfers

Regulated
price

Demand curve

Total consumers’
surplus provided by 
the regulated price

Figure 2.11  SUBSIDY AND TRANSFER PAYMENT

Figure 2.10  THE INCOME EFFECT
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 commodities and services x: v � f(x); but this expression is vacuous until we specify
the form of the function f(x). One may assume, for example, that it could be linear:

v � 

n

i�1
wixi (2.18)

This says that utility is the weighted sum of the purchases. This turns out to be
not a very satisfactory idea because if a household tried to maximize its utility
under this simple form, the whole budget would be spent on the commodity or
service for which wi /pi was a maximum. Thus if the weight on travel was high
and transportation cost was low, a family might spend its entire income on
travel, which is somewhat absurd.

It would not help very much if we retain the linear model of Equation
2.18, but placed a requirement on the minimum consumption of each xi. This
would result in every commodity being consumed at its minimum level with the
exception of the most cost effective one. A more complicated model can easily be
devised in which various needs are each satisfied by a linear combination of
commodities, and minimum values are set for the satisfaction of each need. This
model is still unrealistic in that the minimum level of needs has to be set exoge-
nously. Normally within the household, choices are made between the levels of
satisfaction of various broad classes of needs—the need for housing, accessibil-
ity, non-housing, and non-location goods and services. Any linear model would
force us to make decisions about these tradeoffs outside the model.

What makes tradeoff and consumption both possible and necessary is
the fact that, for most goods, increasing quantities provide increasing satisfac-
tion, but at a decreasing rate. Thus if twice the space is available to a household
by moving further away from the city, the increased space may not double the
housing satisfaction. In some cases, it might even decrease it. If we assume that
increasing amounts of a commodity always add something to a household’s util-
ity, or at least never subtract from it. Suppose we also assume that the increase in
satisfaction for each additional unit of a given commodity is diminishing, we
have  familiar economic statements about utility functions which are usually
 expressed mathematically:

∂v/∂xi 
 0   i � 1, 2, . . . , n
∂2v/∂x2

i � 0   i � 1, 2, . . . , n (2.19)

An example function is

v = 
i
ai ln xi (2.20)

or alternatively

v � �
n

i�1
aixi (2.21)
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A form of the utility function corresponding to these two is extremely
useful for our discussion here because we are dealing with commodities which
are, in the western culture, absolutely essential. Every family must have housing,
access to employment, and other commodities such as food and clothing. If one
of these commodities is reduced to zero in Equation 2.21, the level of utility falls
to zero. A utility function of this type leads to tradeoffs that give adequate weight
to extreme deprivation of any of the essential commodities of life. While
Equations 2.20 and 2.21 are useful utility-function forms, alternative approaches
exist to quantify a decision maker’s values. In Chapter 5 the multi-attribute util-
ity theory will be introduced, which is based more on behavioral grounds.

A. Estimating Bid-Rent via Utility Function
Before utility can be measured, the terms of the utility function must be defined.
Part of the satisfaction from a particular residential location may be associated
with the accessibility to work and/or recreational facilities in an area. Another
may be connected to the availability of schools or pleasantness and quiet of the
community. Let us now see how these are actually being quantified. First, we
stratify the population by income, family size, and other socioeconomic factors,
not only to detect different behaviors, but also to be sure that we are dealing with
relatively uniform levels of housing and related expenditures. In the discussion
that follows, it should be understood that income is fixed at a class mean, or at
least falls within a relatively narrow range as a result of the stratification of indi-
vidual households.

Alonso (1970) has the idea of measuring utility with reference to income,
whereby the utility function takes into consideration the total available income.
In a family’s budget, let us define M' as the non-location expenditures, which
 include items such as food, clothing, and education. M' also includes savings at
a bank. Another expenditure is rent (r), which includes mortgage payments, rent,
and utility bills. Then we have transportation cost represented by T. Collectively
r and T are referred to as location expenditures. These budget components can
be broken down further, but the way we are doing it now satisfies our purpose.
All these expenditures must fit into the budget I′: I′ � M'� r � T, which says cer-
tain parts of the income go to location and another to non-location expenditures.
The simple equation above also underlines the complementary relationship
 between transportation outlay and rent, as covered earlier in this chapter when
we  discussed land rent theory.

We will now assume a particularly simple form of the utility function
 referenced as Equation 2.20:

v � ln M' � 
1 ln H � 
2 ln A � 
3 ln C′ (2.22)

Here, M' stands for the consumption of all non-location goods as discussed
above, while H, A, and C' stand respectively for the expenditure on providing
housing, accessibility, and community amenities. In Equation 2.22, 
1, 
2, and 
3
are coefficients defining the relative importance of housing, accessibility, and
amenities. We now introduce a basic assumption of overriding importance,
whose application to this problem is due to Alonso (1964, 1970). We assume that
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for a particular set of households of homogeneous tastes, utility is uniform wher-
ever they are located in the metropolitan area. We cannot, of course, be sure that
by defining homogeneous socioeconomic groups, we have actually defined
groups whose preferences in the housing market are also homogeneous. Given
some uniformity in tastes, however, the assumption of equal utility is based on 
elementary economic considerations. If the utilities being enjoyed are in fact not
equal and if there are locations in which a particular group could enjoy a higher
utility, members of that group will bid up the price of land and housing at that
 location. The higher cost of the housing package in this preferred area will, via
the budget constraint, reduce the amount of money available for purchase on
non-location commodities and thus reduce the level of utility enjoyed. Given
freedom to move in search of better housing opportunities, this type of bidding
will raise  demand in some locations and lower it in others to the point where all
utilities for this group have been equalized. This implies that there is a competi-
tive equilibrium and the assumption for freedom to move is again important in
achieving this equilibrium. See household groups A, B, and C of a high income
class trading off their preference between housing, accessibility, and amenities
expenditures in Figure 2.12(a). This contrasts with two households B and X in a
high and low income class respectively shown in Figure 2.12(b).

Given that the utilities of any particular locating group are fixed at any
particular point in time, the v which appears in Equation 2.22 is a constant, and
we redefine it as

v � ln I′ � ln F (2.23)

Since we are dealing with a homogeneous income group, ln I′ is a constant and 
F is an arbitrary constant whose role will appear below. If we now substitute 
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SOURCE: Adapted from Yeates and Garner (1980). Reprinted with permission.
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M' � I' 	 r 	 T and Equation 2.23 in Equation 2.22 and rearrange terms, we 
arrive at the following expression:

ln ([I′ 	 r 	 T]/I′) � ln F 	 
1 ln H 	 
2 ln A 	 
3 ln C′ (2.24)

This is an estimating equation which can be empirically tested and which
 expresses the proportion of non-location expenditures undertaken by each
family as a function of housing, accessibility, and community amenities in
each location. This equation has two essential properties. First, all the vari-
ables in it can be observed for a number of different household classes in a
number of  different locations, and consequently it can be determined. The
level of non-location expenditures can be estimated from this equation and
then, since I’ and T are known, the rent which would be offered can be esti-
mated using this equation. 

We will show how this important procedure can be achieved. If we
 exponentiate Equation 2.24, we get (I 	 r 	 T)/I′ � FH	
1A	
2C′	
3. Rearranging
terms, we can isolate rent on the left-hand side of the equation. We show this
value of rent as an estimated value: 

r � I′ 	 T 	 I′FH	
1A	
2C′	
3

This is equivalent to the form of the budget equation r � I′ 	 T 	 M'. These val-
ues of r are bid-rents discussed by Alonso in his development of the theory of 
location behavior. Expressing ln (1 	 [r � T]/I′) in Equation 2.24 in series, and 
re cognizing that (r 	 T)/I′ is a fraction, an approximation can be made only by
taking the first term of the series expansion4:

ln �1 	 �
r �

I′
T

�� � 	 �
r �

I′
T

� (2.25)

This says that our dependent variable is approximately equal to the (negative)
fraction of income spent on rent and transportation combined. This is analogous
to the dependent variable of many of the housing market analyses: the rent-
income ratio.

Notice the location expenditure is small compared to the rest of the bud-
get for a majority of the population. The fraction of income spent on location
 expenditures can be estimated by this simple formula; it serves as an approxi-
mation for the dependent variable in the Equation 2.24. The above analysis indi-
cates that there is substantial uniformity in the behavior among groups that have
been defined on socioeconomic grounds. This behavior can be characterized
through utility functions of a fundamentally simple nature. Data are available in
the census and elsewhere for providing values for these estimates. All of the
 relevant variables that we suggested on a priori basis turn out to be statistically
significant. The uses to which this analysis can be put must be discussed in
 conjunction with modeling the market clearing mechanism for housing. (See the
Herbert-Stevens model in Chapter 4.)
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B. Minimum-Cost Residential Location 
Alonso’s model of residential location would hold that households are located
to minimize the cost of housing and travel. For a monocentric metropolis, this cost
is expressed simply as C(d) � H � r(d) � a′Vd/l′, where C(d) is the total location
cost as a function of distance from the metropolitan area’s center, the land area
 desired for the parcel of land is assumed constant, r(d) is the cost of a unit-of-land
as a function of location, a' is the unit cost of commuting (cost per unit-of-
distance-traveled), d is the location’s distance from the workplace at the metro-
politan center, l' is the real discount rate on commuting trips due to such modern
day conveniences as telecommuting, and V' is the number of one-way commut-
ing trips taken per year (Lund and Mokhtarian 1994).

Since households are assumed to minimize this cost in their location
 decisions, 

Ċ (d*) � ṙ(d*) � a′V/l′ � 0    or    ṙ(d*) � 	a′V/l′ (2.26)

where the derivatives are evaluated at d*, the least-cost residential location.
Inasmuch as land prices tend to decrease with distance from the metropolitan
center, ṙ < 0. So long as this relationship holds and to the extent that telecom-
muting lessens the number of work trips per year (V1 � V0), telecommuting is 
associated with a more gentle land-rent gradient:

ṙ(d*)V0 � ṙ(d*)V1 � 0 (2.27)

Assuming that land prices follow a conventional exponential decay, then r(d) �
r0exp(	Kd), where r0 is the land price at the metropolitan area center and K is a
decay constant. Therefore, 

ṙ(d) � 	r0K exp(	K0) (2.28)

Combining Equations 2.26 and 2.28 yields r0K exp(	Kd*) = a′V/l′. This
 results in the least-cost residential location

d* � (l/K) ln [l′r0K/a′] 	 (ln V)/K (2.29)

Notice that this relationship consists of a constant term that does not vary with
commuting trips per year, minus a term that increases logarithmically with the
number of annual commuting trips.

How would residential location change with the onset of telecommuting?
To examine this, we define the change in least-cost location, 

�d* � d*(V1) 	 d*(V0)

Replacing Equation 2.29 into this definition yields 

�d* = [ln V0 	 ln V1]/K � ln (V0/V1)/K
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Note that this change in equilibrium location is affected by only the change in
commuting trips and the decay constant of land prices. Other factors entering
into the initial location decision do not affect the magnitude of change in the
equilibrium least-cost location (Bonsall and Shires 2006).

Example
Consider a household initially located 6.25 miles (10 km) from the metropolitan
center (d*0 � 6.25 mi) where 400 one-way commuting trips are made annually 
(V0 � 400). Land prices decay exponentially at a constant rate ranging from 8 per-
cent to 80 percent per mile (5 percent to 50 percent per km) or K � 0.08 to 0.8 per
mi. Figure 2.13 shows the change in equilibrium residential location as a function
of the number of commuting trips and land prices. It confirms the theoretical and
intuitively appealing finding in Equation 2.27, that residential location is affected
most by telecommuting in a sprawling city with long commuting  distances. ■

V. THE LOCATION DECISION
The above residential location discussions, particularly Equation 2.26, can be
 carried over to industrial activities.5 Assume that all activity takes place on a fea-
tureless plain consisting of land of equal quality. The rent that any producer will
be prepared to pay for a given unit of land i, r i, will be determined by its output
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Figure 2.13  CHANGE IN RESIDENTIAL LOCATION WITH TELECOMMUTING



48 CHAPTER 2 Economic Methods of Analysis

(the number of customer visitations) V, the price per unit at the market, �, direct
cost of production, c, the transport rate per unit of distance a’, and di, distance
from the market:

ri � V(� 	 c) 	 Va′di (2.30)

Here V, �, c, and a’ are assumed constant under conditions of perfect competi-
tion. This maximum rent, also referred to as bid-rent by Alonso (1960), is deter-
mined uniquely by the location of the site.

A. Bid-Rent Curves
Thus far we have assumed a single activity. If we introduce a second activity, it
is obvious that V, �, and c will not be constant and also it is likely that a’ will vary
according to weight or any special carriage requirements of the product.
However, since perfect competition and freedom of entry prevail, we would not
expect the profitability at the most favored location, which we can assume to be
arbitrarily close to zero, to differ. The reason is that it and all producers would
change production with consequent changes in price to restore an equality of
profit. Hence the only change to be made if we have more than one activity is to
introduce a’, the transport rate, as a determinant of r i. It is then obvious that by
knowing the transport rates for commodities we can derive the location pattern
of production about the market. High transport cost activities will locate at a
close distance and low transport cost activities will take locations further away.
We can determine a relationship between r and d for each a’; the maximum r i

payable at each di will determine the activity which will locate there.
Following Alonso (1964), this is best illustrated with a series of bid-rent

curves as shown in Figure 2.14. Each bid rent curve ridi is defined by the linear
Equation 2.30. Points d' and d'' define important switch points in land use
 between activities with different bid-rents. The piecewise linear line highlighted
in bold is the revealed rent function for the area on the basis that land is allocated
to the highest bidder.

B.  Industrial Location
Weber (Friedrich 1929) also started with the basic premise that particular loca-
tions do not have cost advantages in the actual manufacture of goods. However,
in addition to land, most manufacturing industry requires inputs of more than
one factor of production and, unlike land, these other factors cannot be assumed
to be uniformly distributed in general. The location of a plant will therefore
 depend on the relative pulls of the various material locations and the market.
Weber assumes these to be points rather than areas for simplicity. Assuming that
for a particular product these various points are not coincident, the critical fac-
tors to be considered will be the relative weights of inputs and outputs and the
 distances over which these relative weights of input and outputs must be moved.
Since transport rates depend on these two factors, the main interest was whether
industries would locate nearer the market or to the source of materials and this
could be related, through the transport costs, to whether the production process
was weight losing or weight gaining. The materials index, the ratio of material
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Figure 2.15  WEBER’S INDUSTRIAL LOCATION MODEL

weight to product weight, is a crude measure. It suggests that high values would
involve a location dominated by sources of materials and low values (less than
unity) would involve market domination, while values of about one would
 suggest location indifference. 

The basic location criterion is thus minimizing total transport costs,
 assuming that market price of the product and prices of factor inputs are given
and independent of location. The optimal location involves finding a set of
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 distances di the inputs must be moved and distance-to-the-market D: w1d1 �
w2d2 � . . .� wndn � D. Here w1 and w2, are the inputs required per unit of output.
Figure 2.15 illustrates the simplest case of such a model. The figure shows a
 location  triangle relating the market, node 3, to the two factor inputs at 1 and 2.
The  distances 3-1, 3-2, and 1-2 are geographic distances between the points. The
 optimal location for a plant at node 4 depends on the effective forces represented
by the lines linking it to each corner. These forces are proportional to the relative
weights of inputs or outputs as taken into account in the materials index. Node 4
can be found by constructing circles representing isocost lines centered on each
corner of the triangle and examining their intersections. The most interesting
 result from this model is the dominance of end-points, many of which appear
 optimal, in-between points are of little importance. Numerical examples of this
result are shown in Chapter 4.

C.  Residential Location Models
According to Alonso (1964), the consumer looking for a housing location maxi-
mizes a utility function v � v(x, s', d) where x is the quantity of a composite
 consumption good representing other activities engaged in by the consumer, s’ is
the average-size of site, and d is again the distance from the subarea of interest.
In his/her location decision, the consumer is constrained by his/her available
 budget bU, p”x � risi' � a'di � bU, where p” is the price of the composite
 consumption good. It is from this model that the bid-rent function for each indi-
vidual can be derived as the maximum amount a person is willing to pay for a
site that would be just as desirable as another.

If we interpret the value of ri in the above model as being the bid-rent for
that location, then from the maximization exercise, we derive
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where Ud and Ux are the appropriate marginal utilities of location and the
 composite consumption good. Rearranging Equation 2.31 in terms of marginal
rates of substitution, we obtain 
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The above equation states the following: The incremental satisfaction from relo-
cation (in terms of movement outward), which is obtained by substituting travel
for goods, must be exactly equal to the cost of that relocation in terms of chang-
ing rent costs and changing travel costs. For simplicity we can assume that the
good x has a price of unity such that 1/p” � 1. Furthermore, since the marginal
rate of substitution is assumed to be conventionally negative and since trans-
port costs will increase with distance, the land costs term must be negative.
Obviously sites must always have a non-negative size and hence ∂r/∂d � 0;
we thus have the basic result that rents must decline with distance and hence
the normal assumed shape of the bid-rent curve of Figure 2.16. In this figure, the
lines ri-di represent bid-rent curves for an individual household. The higher the
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curve, the lower the level of satisfaction. The curve r-r' is the equilibrium rent
function for the city formed as an envelope curve to the various bid-rent lines of
Figure 2.14. The  equilibrium rent and location for this household is represented
by (d*, r*).

VI. SCALE AND NUMBER OF PUBLIC 
FACILITIES

Consider a homogeneous service to be distributed over some spatially distrib-
uted population. Let us assume that the service is distributed from a point-
 representable system of approximately up to four facilities—p1, p2, p3 or p4—each
having an identical scale P� measured in terms of capacity, capital outlay, or some
other metric. The service is consumed by individuals who travel to the facilities
for this purpose, and the service is priced at zero, meaning a public service
 provided by government to the citizens in the area. Total consumption Q of the
service is the measure of effectiveness.

A. Static Short-Run Equilibrium
Now total consumption Q is a function of scale P and the number of facilities p

Q � Q(P�, p) (2.32)
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Total cost of the system Ct is made up of capital cost Cs and operating cost Co,
Ct � Cs � Co, where

Cs � Cs (P�, p) (2.33)

and

Co � Co(V) (2.34)

In other words, capital cost depends on the number and scale of facilities built,
while operating cost is related to the number of consumers served (V). The spa-
tial pattern of facilities for a given (P�, p) is that pattern for which V is maximized.
There exists a fixed budget bU between capital and operating expenditures.

Figure 2.17, Figure 2.18, and Figure 2.19 illustrate some likely properties
of Equations 2.32 through 2.34. Since the service is zero-priced, there is presum-
ably some upper limit V* to the amount that a population might be expected to
 consume. Holding the number of facilities constant in Figure 2.17, positive varia-
tion in scale may be expected to produce first increasing then decreasing positive
variations in demand. The curves in Figure 2.17 actually represent a family of
 sections through the surface of Equation 2.32. They are therefore demand or
 consumer coverage curves for the service, given a fixed number, pk, of facilities at
varying scales. Scale expenditures play a role of negative prices or subsidies. An
exactly analogous diagram could be made for the number of facilities, holding
scale constant. The general character of V (P�, p) is thus a function monotonically
increasing to some asymptote V*. It would look like a curved surface climbing
away from the origin.
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Cost relationships may be handled in a similar way. Figure 2.18 presents
a pattern of capital cost variations for constant levels-of-scale and number of
 facilities respectively. Although we assume that increase in scale eventually  incurs
higher marginal cost, there seems to be no reason for such an increase with the
replication of facilities. Rather, the reverse seems to hold. The capital cost surface,
Cs, may be generated from the families of sections in Figure 2.18. In short, increase
in scale results in lower marginal cost compared with construction of new facili-
ties in the beginning, and reverses itself as the system expands to full size.
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For operating cost, Co, several problems arise. We have made it a function
of total demand on the assumption that the marginal product for any variable
input to a given system does not vary with the form of the system itself, but only
with the aggregate quantity of services demanded and produced. The reason for
the distinction between capital and operating costs should be clear. The latter
 depends upon demand, representing the variable cost of responding to demand
at the level induced by the former. In part, this may be an artificial distinction.
Demand for a service does respond to the level of variable inputs insofar as it
 determines convenience and quality of service. We will avoid this complication
for the moment by assuming that variable inputs are added to maintain some 
constant level of quality. For simplicity, this relationship is represented as gener-
ally linear in Figure 2.18, although it should be noted that in terms of the variables
of Figures 2.17 and 2.18, it is likely to be nonlinear.

With appropriate assumptions about continuity and well-behaved func-
tions, the problem may now be formulated as a constrained maximization: Max
V � V(P�, p) subject to Ct � bU. The Lagrangian for this problem is z � V(P�, p)	
�[Cs(P�, p) � Co(V)	bU] for which the conditions for maximization become: 
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Similarly
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and
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z
� � Cs(P�, p) � Co(V) � bU (2.37)

Combining Equations 2.35 and 2.36, we obtain the maximization condition
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The equilibrium condition basically says that the maximal coverage is
 attained by a combination of scale expansion and new facility construction as
 justifiable by the marginal costs of the two ways to provide capacity. The conse-
quences of our assumption about variable operating cost show up immediately
in Equation 2.38. The equilibrium condition for demand maximization includes
only system variables. If this seems peculiar, we might reflect that operating cost
appears in Equation 2.37, which says that the cost for service coverage and system
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capacity expansion is limited by the budget available. Given our assumption that
a given increase in demand generates the same operating cost no matter whether
it derives from the scale or number of system components, its absence from
Equation 2.38 is less surprising. Whether that assumption is tenable is another
matter.

More significantly, this formulation evades the problem of location via its
cost structure, which is totally dependent upon scale and number of facilities and
has no spatial cost components. So far the researchers have been unable to incor-
porate the location problem into a pure analytic model. In view of the numerous
mathematical programming and heuristic approaches to this type of problem,
there would seem to be advantages to structuring the total problem as a computer
model. In analytical terms, this raises the problem of our assumption of continu-
ity in the variable p. Using a calculus-based model, we cannot simultaneously
 assume it would be continuous for scale analysis and discrete for a location-
effective algorithm. Perhaps an iterative estimation process is the way around this
problem, but the theoretical result is less precise. In any case, it seems probable
that the location problem for public facility systems must be attacked in tandem
with system structure and scale. Several problems still remain. Introduction of
variable facility scales in a single system is clearly necessary. As soon as this is
done, then questions of  hierarchy begin to arise.

The static equilibrium treated above is general in the sense that it deals
with simultaneous location and scale of all components of a facility system. The
equivalent partial problem might be formulated in several ways. If an increment
to a budget for an existing system is given, then we might be interested in deter-
mining the optimal addition to the system. This does not necessarily mean that
any new components are added. The entire budget increment could be spent on
scale changes. If the problem is to achieve a specified incremental gain in some 
effectiveness measure, the same qualifications would apply. In these circum-
stances it is not clear how a partial form should be specified. Possibly, it should
hold the present facility location structure constant and allow only scale changes
and new facility locations. Again, advances in more sophisticated methods than
simple calculus are necessary for addressing such problems.

B. Dynamic Long-Run Equilibrium

To analyze systems of facilities with static equilibrium analysis is to ignore a most
important characteristic: their changes over time. Facility systems are usually
built quite slowly, reacting to changes both in the size of the broader systems they
serve and in technology and social preferences. If the broader system is a grow-
ing city, then there may be conflict between static and dynamic system optima.
This may be especially true if, for whatever reason, decisions early in a system’s
development can effectively close off options for later forms. A geometric illus-
tration of a dynamic system conflicting with static solutions is offered by a  simple
model. Consider the circular and generally symmetric city represented in
Figure 2.20. At this particular size and for some local service, the optimal number
of  facilities is one, and it is located at the center, A. The city grows symmetrically
both in density and at its outer margin until it reaches the size shown in
Figure 2.21. At this new level the static-equilibrium solution, taking into account
a probable larger budget for the service, calls for two identical facilities, B. If they
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are  located symmetrically, there is no path of growth for this facility system from
stage 1 to stage 2 that does not call for removal of A. Whether that is likely
 depends on the rate of growth and the fixed capital investment in A.

The example is made artificial by the assertion of identical facilities. In
practice, accommodation may be partially achieved by variations in scale among
facilities. For example, the equivalent problem for three components might be to
approximate a symmetric uniform scale optimum by a variable scale but still
symmetric three-component system (see Figures 2.22 and 2.23 respectively). In
the latter, the original facility is retained at a larger scale than the others. Without
specifying particular forms for the relationships between spatial pattern, scale,
and demand, we cannot say much more than this.

The dynamic long-run equilibrium discussion above suggests two
modeling approaches. We may look for possible system growth paths through
time under varying constraints and criteria for effectiveness and try to identify
stages at which such paths coincide with static equilibrium solutions, or we
may set up static equilibrium solutions and try to construct minimum cost
paths to connect them. Since most facility system analyses are likely to start
with an existing set of components, most of which incur high relocation costs,
either form could be  employed. The choice is perhaps yet another version of
the process/end-state  conflict in planning models, in this case with both forms
involving specific criteria for choice since the decisions are public. Very little
work in this direction has been done. Chan (2005) discusses growth paths of
land use, rather than facility location, in his chapter on “Bifurcation and
Disaggregation.” The continuous generalization of facility location—land
use—is easier to model inasmuch as it avoids the discreteness or lumpiness

p  1
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Figure 2.20  FACILITY EXPANSION IN A CIRCULAR AND SYMMETRIC CITY

p  2

B
B

Figure 2.21  LARGER CITY WITH TWO FACILITIES
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that prevents smooth transition from stage to stage,  although bifurcation mod-
els do allow for precipitous happenings to take place. Again computer models
seem to be most promising given the mathematical  complexity of any reason-
able looking structure for analysis. (One such program, the Garin-Lowry
model, is included on the CD/DVD under the YI-CHAN folder.)

The main problem of locating public services, as can be seen, is choos-
ing the scale and the number of facilities at specified geographic locations that
would be most adequate to provide the public services for the budget alloca-
tion. The  theoretical exposé, while addressing most of the key considerations in
planning for public services, has to be further refined for specific applications.
Associated with the scale and location considerations, for example, are the
ways and means to make the public service available to the community. In this
regard, the spatial location of a facility becomes as important as the scale and
the number of facilities.

VII.  SPATIAL LOCATION OF A FACILITY
Consider the triangular network ABC as shown in Figure 2.24, where there are
three highways represented by the three edges of the triangle. A facility, for 
instance, a shopping mall, is to be located on the highway system so that the 
distance to the farthest population center A, B, or C is minimized. The demand at 
A, B, or C does not enter into the picture in this example; only distances are 
considered.

C

C

C

Figure 2.22  THREE FACILITIES AT UNIFORM SCALE

C CF3

Figure 2.23  THREE FACILITIES AT VARIABLE SCALE
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A. Center of a Network
Suppose for the time being the facility is to be located among candidate sites on
a highway between nodes A and B, which has a separation of 5 miles (8 km). Let
us place a facility at point I at a distance of x from node B. The distance function
between node A and point I is 5 	 x, and the distance function between node B
and I is simply x. These distance functions are shown in Figure 2.25 (Ahituv and
Berman 1988). We are supposed to find the one center location, or the location
which minimizes the farthest point away. The maximum distance is shown on
the upper envelope of Figure 2.25. The minimum occurs at x � 2.5 miles (4 km)
from A, or halfway between A and B, which is located at the lowest point on the
 envelope. This is sometimes referred to as the mini-max solution.

Unfortunately, the problem is more involved, since there is node C as
well. Let us examine the distance between points on link (A, B) and node C. If the
facility is located at node B, the shortest distance to node C would be 3 miles 
(4.8 km). When we move point I along the link (A, B) from B toward A, the short-
est distance function becomes 3 � x. This, however, stops when x reaches 3 miles
from node B, because at that point it is better to approach node C via node A. The
distance function from I to C becomes 9 	 x, where 9 is the sum of the distances
of links (B, A) and (A, C), and x remains to be the distance of point I from node B.
The complete distance function is given by 

dI3 � � (2.39)

The function is shown in Figure 2.26.
In Figure 2.27, we have combined the distance functions to nodes A and

B from Figure 2.25 with the distance function to node C in Figure 2.26. A new
upper envelope is drawn, which describes the maximum distance from I to
nodes A, B, and C, depending on the location of I on link (A, B). The minimum
of the maximum distance is obtained when the facility is placed at a distance
of x � 1 mile (1.6 km) from B. At this facility location, the maximum distance to
demands at A, B, and C is minimized at a value of 4 miles (6.4 km). In a similar

for 0 � x � 3
for 3 � x � 5

3 � x
9 	 x

C

A

34

5 Facility I
B

x

Figure 2.24  TRIANGULAR NETWORK ABC
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fashion, we proceed to inquire about the distance functions between points of
link (B, C) and node A, then link (C, A) and node B. The process is in fact quite
tedious. More  efficient algorithms are available to circumvent this exhaustive
search procedure, but they are beyond the scope of this text. Interested readers
are referred to the “Facility Location” chapter in Chan (2005).

B. Median of a Network
Suppose we are to locate a facility such that the average distance from a demand
node to the nearest facility is minimized—the minimum-of-the-weighted-sum
(mini-sum) solution. It has been shown (Hakimi 1964) that such a facility has to

Figure 2.25  DISTANCE FUNCTIONS BETWEEN A FACILITY AND DEMANDS
AT A AND B
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SOURCE: Adapted from Ahituv and Berman (1988). Reprinted with permission.



60 CHAPTER 2 Economic Methods of Analysis

be located at a node. This is distinctly different from the center problem above,
in which the facility can be anywhere on an arc (including the two nodes that
 define the arc also.) To show this nodal optimality condition for one median, we
 examine the network consisting of only one link, as depicted in Figure 2.26
(Ahituv and Berman 1988). A and B represent the two demand nodes, which are
separated by a distance dAB. The demand proportion generated at node A is TA',
while that at node B is TB' � 1 	 TA'. Suppose we place the facility at I on link (A,
B). Assume dA is the distance between node A and the facility I. The average
weighted distance for delivering the service from I to the consumers, or for the
consumers to access the facility, is

TA′dA � (1 	 TA′)(dAB 	 dA) � TA′dA 	 dAB 	 dA 	 TA′dAB � TA′dA � 

dAB(1 	 TA ) � dA(2TA′ 	 1) (2.40)
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Figure 2.26  CENTER DISTANCE FUNCTION FOR LOCATING FACILITY IN A
NETWORK

SOURCE: Adapted from Ahituv and Berman (1988). Reprinted with permission.
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The first term of the above equation is constant; it does not depend on the
location of I. The second term is a function of the location of I, or dA. Now suppose
node A generated more demand than node B, thus TA' > 1/2. Hence (2TA' 	 1) > 0
and Equation 2.40 is minimized when dA � 0, or when the facility is located at A.
However, if node B generated more demand than A, namely TA' < 1/2 and (2TA' 	 1)
< 0, Equation 2.40 is minimized when dA assumes its biggest possible value dAB. In
this case we will place the facility at node B. If the two nodes generate equal
 demand, facility I may be located anywhere on link (A, B) including the two nodes.
Figure 2.28 illustrates the above problem graphically. The average distance as
 represented by Equation 40 is plotted as a function of the distance from node A to
the facility I, dA. For TA' < 1/2, the median should be located at A, where the aver-
age distance is minimized. For TA' � 1/2, the median can be anywhere  between A
and B and the travel distance is the same. For TA' < 1/2, the facility should be lo-
cated at B. Figure 2.28 contrasts sharply with Figure 2.25 in that upper envelope in

Figure 2.27  COMBINED DISTANCE FUNCTION FOR FACILITY IN A NETWORK
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the  latter has a kink in the middle while the former is a monotonically increasing
or nondecreasing function. The former identifies a nodal optimum at either A or B,
while the latter locates an optimum in between the two nodes A and B.

This problem will be discussed again in Chapter 4, where the same prob-
lem will be formulated as a linear program, which yields the nodal optimality
 results  directly from the properties of a linear program. From the gravity model,
center and median discussions, it is quite clear that depending on the figure of
merit for evaluation, a facility can be located at very different places. It is there-
fore important to properly define an evaluation measure from the beginning of
an analysis.

C. Competitive Location and Games
Let us now illustrate competitive location decisions on a network. Suppose
there are already p facilities located. We wish to locate r new facilities that are
to  compete with the existing facilities for providing service to the customers at
the nodes. All demands are perfectly inelastic and the consumers’ preferences
are  binary. We assume customers will change their habits and use the closest
new  facility if and only if it is closer to them than the closest old facility. Ties

Figure 2.28  AVERAGE DISTANCE AS A FUNCTION OF MEDIAN LOCATION

SOURCE: Ahituv and Berman (1988). Reprinted with permission.
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are broken in favor of an old facility. Suppose there are two competitors, where
both players wish to control as large a share of the market as possible. The first
player selects p points for his facilities; the second player, having knowledge of
the competitor’s decision, selects r points. As the problem is presently stated,
each player has exactly one move and has to make the best move possible. This
is especially true in situations where the facilities are expensive to construct,
and once the  facilities are constructed no further moves can be contemplated.
The first player knows that once the p sites are selected, the second player will
then select the best possible r sites for the facilities. One may pose two possible
scenarios for this game to continue beyond the first move by each player
(Hakimi 1990).

(a) The facilities are mobile but for each player it takes a certain
amount of time to respond to the other player’s choice of sites
(move), assuming that the players do have the computational
power to make the best move at each step.

(b) The first player does not have the computational power to find r
centers while each player does have the capability of finding r me-
dians or p medians. For both cases, the question arises about where
the two players will end up.

Example 1
In the example shown in Figure 2.29(a), we assume p = r = 1, the payoff at each
node to be 1, and the arc lengths are all 1. In Figure 2.29(b) both players’ first
moves are indicated, where y1(1) is the mid-point on the edge (2, 3) which is a 
1-median. At this stage, it is the first player’s turn to move. That move (x1(2)) and
the second player’s response to it (y1(2)) are shown in Figure 2.29(c). Finally,
Figure 2.29(d) indicates the third move of the first player and the second player’s
response. At this stage, it is clear that the game will continue indefinitely.
Whichever player quits first is the loser and will control exactly one-third of the
market, leaving the rest to the other player. This example illustrates a situation
where the game does not reach an equilibrium, that is, where each player finds
that continuing to move is the only way to avoid being limited to the one-third
share of the market. Note that in the above example, the first move by the first
player, that is the choice of x1(1), is a 1-center of the network. ■

31

2

(a)

x1(1) x1(2) x1(3)

y1(1) y1(2) y1(3)

(b) (c) (d)

Figure 2.29  NON-EQUILIBRIUM EXAMPLE

SOURCE: Hakimi (1990). Reprinted with permission.
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Example 2
Let us now consider the network of Figure 2.30(a). Assume the payoff at each
node is 1, p � r � 2, and the arc lengths are all 1. The first player’s move {x1(1)
x2(1)} and the second player’s response {y1(1), y2(1)} are shown in Figure 2.30(b).
The first player’s second move {x1(2), x2(2)} and, correspondingly, the second
player’s second move {y1(2), y2(2)} are shown in Figure 2.30(c). The players’ third
moves {x1(3), x2(3)} and {y1(3), y2(3)} are again shown in Figure 2.30(d). Now it is
the first player’s turn again. He or she knows, of course, of the positions of his or
her competitor and finds that his or her present location is at a 2-median. Thus
he or she will not move from his or her present position which implies that the
 second player also will not move and the game is over. Thus the game terminates
in an equilibrium state. We note in passing that the first player’s position consti-
tutes a 2-center location of this tree network as well. ■

D. Imperfect Information
It can be seen that the spatial games illustrated above is based in part on the play-
ers’ lack of perfect information. We start with a single player making a decision
on the basis of a known set of information. The first decision to make is whether
the player is in the best situation achievable. If he or she is not then he or she
must take action. However, there are two problems: one is a lack of perfect
 information, such that what the player perceives is not necessarily true and
 because of this ignorance additional information might be needed. Secondly, the
player recognizes that even if the adjustment to improve the situation is made,
that might not be achieved in a given decision period. In general, our decision
maker is assumed to be extremely myopic, to the extent that the system state
does not change as a  result of his or her decision. We have a situation reminis-
cent of early attempts to solve classic models of oligopoly markets, in other
words, markets dominated by several players. Under these assumptions, the
market solution could be shown to be stable, as in the Cournot case where the
rival’s output is assumed constant in each decision period, and one adjusts his or

(a)

x1(1) x 2(1)

(b)

x1(1)

y1(1)
y2(1)

x 2(1)

(c)

x1(2) y2(2)

(d)

x1(3) y1(3) y2(3)

y1(2) x 2(2) x 2(3)

SOURCE: Hakimi (1990). Reprinted with permission.

Figure 2.30  EQUILIBRIUM EXAMPLE
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her output to maximize profit  accordingly. Or the market may be unstable, as in
the Bertrand or Edgeworth case, where the rival’s spatial prices are assumed con-
stant, and the price is  adjusted to under cut the rival.6 In these cases we need to
examine two features, whether a full stable equilibrium will be reached and, if
so, the speed at which this will take place. The critical factors will be the adjust-
ment to the assumed  optimal position and the possible error in making that as-
sumption. Oftentimes, we are concerned less with the final equilibrium itself and
more with the path leading to it. In this regard, we are particularly interested in
individual players’ reactions in each period (Vickerman 1980).

A more realistic model would need to relax the assumed myopia of in-
dividuals and introduce strategic reactions of the type adopted in game theory,
in which perfect knowledge is assumed. Starting with pure zero-sum games, for
 example, a conservative player is maximizing minimum gain while the other
equally conservative player is minimizing maximum loss. As implied in a zero-
sum game, gain to one player matches the amount of loss to the other. In general,
individuals are concerned not only with their own attempts to optimize but also
with any reactions of conflicting parties to their own actions. A simple example
will illustrate the complexities introduced here. A supermarket chain siting a
new store will recognize that other shops will be responding to the same stimuli
(for example, relative proximity to a new residential area) and that this may gen-
erate additional benefits such that the precise site cannot be planned indepen-
dently. It also realizes that competitors will also respond in an attempt to secure
new  markets themselves. The calculation depends additionally on the assump-
tions made about the response of customers, both existing and potential. In the
absence of collusion, all of these responses have to be given ahead of time, but
the final  solution will depend on how good those assumptions are. Once again
we shall need to be concerned with whether the path converges ultimately to a
stable equilibrium and the speed at which the adjustment takes place. In this case
it is not sufficient simply to take assumed responses and examine the behavior of
the  system, since non-myopic individuals concerned with improving their situa-
tions will also learn from revealed responses and accordingly may modify their
 responses in subsequent decisions. Hence, we also require a learning process
within the model.

It will be clear even from this simple description that a representative
model of this type will be unavoidably complex. While it would be possible to
proceed with continuous functions in a model, there is much to be said for  taking
a programming approach—an approach which involves systematic computa-
tional procedures (often using a computer.) Many of the decisions are of a dis-
crete nature and may involve thresholds and discontinuities that are awkward
for a continuous model. The use of discrete time periods also accommodates
varying degrees of myopia in adjustment. It is also important that we should
stress the  operation of the economy as a series of explicitly individual but inter-
dependent  decisions. The most useful approach to this type of problem is recur-
sive  programming, in which a relationship between given system states and
 expected actions is established, and so are the attempts to simulate a sequence of
expected actions through time (Nelson 1971).7

There are two possible assumptions about how the markets move into
equilibrium at the end of each period. One way is to require the markets to clear
period by period, so that a sequence of temporary equilibria is formed, or so that
disequilibrium can exist. This was illustrated in Section VI of this chapter, where
the transition between one, two and three facilities in a growth environment is
anything but continual. An assumption of equilibrium appears unrealistic and 
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almost contrary to the logic of an adaptive model that depends on the indepen-
dent, albeit linked, reactions of different individuals. Unrealistic as it may be, it
does have a number of convenient, simplifying properties. For example, it raises
the question of whether individuals attempt to move into full equilibrium. If
 experience teaches them to modify their behavior, it should also reveal the
 degree of success of such modification. Given these behavioral adaptations, a
policy of suboptimizing may be less costly than an attempt at complete opti-
mization. The sets of reactions might incorporate information about this learning
process in a full disequilibrium, wherein it is a conscious decision of individuals
that causes the failure to achieve market equilibrium.

It will be apparent that this approach enables a considerable degree of
˛flexibility in the structure and design of a model of the urban, and general spatial,
system. At this level of generality it is not possible to draw even qualitative
 conclusions about whether the results will differ substantially from those of an
equilibrium model. It does, however, seem reasonable to expect that, freed from a
 requirement of a dynamic equilibrium path or even a period by period establish-
ment of equilibrium, the spatial economy may well exhibit a rather different struc-
ture. The next step is therefore to use simple versions of this model to simulate the
development and structure of urban areas under, for example, different reaction
schedules. Such an approach may form an empirical base in the examination of the
performance and structure of urban economies under practical  planning regimes.
A further question is the extent to which such a model can be used to evaluate
urban changes, given most evaluation procedures are based on equilibrium met-
rics. For further details, see chapters starting with “Generation, Competition and
Distribution” and ending with “Spatial Equilibrium and Disequilibrium,” in Chan
(2005). (The reader may also wish to experiment with the software and data con-
tained in the attached CD/DVD under the YI-CHAN folder.)

VIII. ECONOMIC BASIS OF THE 
GRAVITY-BASED SPATIAL 
ALLOCATION MODEL

In the traditional literature, the most common location technique for land use (as
contrasted with facility location) is the gravity model. Here we will derive the
various forms of the gravity model based on the assumption that individuals
maximize their net benefits in choosing a destination facility (Cochrane 1975).
The trade proportions among competing shopping centers, for example, reflect
the overall probability of trips being made on the basis of the attractiveness and
 convenience of the shopping center. Various forms of gravity models have been
proposed. They are reviewed below in preparation for later parts of this book.

A. The Singly Constrained Model
Singly constrained gravity model is one in which the number of trips originating
in any subarea is assumed determined and fixed. These trips are being made to
any of the competing facilities that offer the service. In addition, the model
 assumes that at each destination there exists some quantity of activities that at-
tracts consumers to patronize that facility. Thus the activity at a shopping mall
may be the size of the mall measured in retail floor space. We do not know the
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precise value a trip maker might place on any particular trip, since tastes are in-
dividual. However, we hypothesize that we can assign a probability that this
value will fall between trip utilities v1 and v2 (see Figure 2.31.) Define consumers’
surplus as the net benefit of any trip after the trip cost has been subtracted from
the basic value or utility. Since we can estimate the cost of any particular trip, we
can estimate the probability that the surplus lies between any two values.

The central assumption of the present derivation of the gravity model is
that the probability that a particular trip maker from one subarea will travel to a
facility is the probability that the trip to that facility offers a surplus greater than
that of a trip to any other facilities. The probability of an individual trip to a 
facility being optimal increases with the activity or opportunity at that facility
and decreases with travel distance, since the net benefit is reduced by a greater
cost. We consider the effect of the number of opportunities offered by a facility.
Since we are interested in the probability that the trip to the facility is the best
choice, we first estimate the probability of the utility of the optimal (highest util-
ity) trip lying within particular bounds. The cumulative distribution function of
the largest v among n independent samples from a common underlying distrib-
ution is given by (v) � [F(v)]n where F(v) is the cumulative distribution func-
tion of the common underlying distribution. The reason is that the cumulative
distribution function is the probability that the value is less than or equal to v,
and the probability that the best of n is in this range is identical to that of all n
being less than or equal to v. Now provided n is moderately large (in double fig-
ures at least), Φ(v) is scarcely affected by the shape of the underlying distribution
 outside the upper tail (see Figure 2.32.) It is possible to develop an asymptotic
(large n) expression of Φ(v) based only on the shape of the upper tail. If the
upper tail can be approximated by a simple exponential function, as indicated in
Figure 2.32, Φ(v) rapidly approaches the simple asymptotic form

Φ(v) = exp[	ne	b(v 	 	v )] (2.41)

where v� is the average trip utility.

Figure 2.31  PROBABILITY DENSITY FUNCTION OF TRIP UTILITY
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Provided that we assume only that the underlying distribution is
 approximately exponential in the upper tail, the probability density function for
the utility of the best trip in any subarea is given by the differential of Equation
41. This distribution is indicated in Figure 2.33. It is a positively skewed distrib-
ution whose skewness is independent of b, v� and n. The mean is 

v� � �
b
1

�  [ln(n) � 0.577]

and the standard deviation is  � �/6�b�. As n increases, the distribution
 remains identical in form, but moves to the right of a distance proportional to
ln(n). It may be argued that we do not know the activity at a facility that attracts
trips. For our purpose, it is in fact only necessary to assume that the proportion
of trips ending up in facility j, Tj'n, is proportional to Wj, activity at facility 
j: Tj′n � c′Wj′ where c' is a proportionality constant. Hence for trips to facility 
j, (v) � exp[	c'Wje

	b(v 	 v� )].
We can now calculate the surplus (or net benefit) offered to a trip maker

from subarea i by the optimal trip to facility j. We define this surplus as the dif-
ference between the probabilistic utility v (the gross benefit of making the trip)
and a deterministic trip cost Cij incurred in making the trip. Cij is a generalized
cost incorporating direct payments, time costs, and so forth. The surplus is there-
fore given by Sij'� vi 	 Cij, and by substitution, we can obtain the probability that
the surplus will attain any particular value S':

Figure 2.32  CUMULATIVE DISTRIBUTION FUNCTIONS OF TRIP UTILITY

SOURCE: Cochrane (1975). Reprinted with permission.
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ij(S′) � exp[	c′Wje
	b(s′		v � Cij)] (2.42)

where ij(S') is the cumulative distribution function of the surplus accruing from
the preferred (optimal) trip between subarea i and facility j. Our basic assump-
tion throughout is that a trip maker will choose the trip from his origin subarea
that maximizes personal surplus. The probability that this trip from subarea i
will be to facility j is the probability that the highest surplus offered by a trip pos-
sibility in facility j is greater than the highest surplus offered by any other facil-
ity. This probability is given by

�∞

−∞
�′ij (S′)��

J

r�j
Φir(S′)�dS′ (2.43)

This equation considers all the joint probabilities that “the surplus
 resulting from the trip to facility j has a value in the neighborhood of S' (Φij(S'))
and that “the surplus resulting from a trip to another facility is less than S'.”
Integrating from 	∞ to ∞ assumes that the trip will always be made even if the
surplus is negative. However, if the cost determines which trip is made rather
than whether a trip is made at all, the probability of the surplus being negative
is very low and we can approximate with these limits of integration, which is
simpler computationally.

Equation 2.43 can be rewritten as 

�∞

−∞��
�



′

i

i

j

j

(
(
S
S
′
′
)
)

� ��
0

j
ij(S′)��dS′ (2.44)

SOURCE: Cochrane (1975). Reprinted with permission.
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Differentiating Equation 2.42, we obtain

�′ij(S′) � bc′Wj exp[	b(S′ 	 	v � Cij)	bWj e
	b(	v� � Cij)] (2.45)

Substituting Equations 2.42 and 2.45 into Equation 2.44, we obtain 

�
�

W

jW
j e

j

	

e	

bCij

bCij
�

which is the same as the gravity model of Huff, as indicated in Equation 2.3,
 except a power function of travel time is now replaced by a negative exponential
function of generalized spatial cost. Since the total number of trips originating
from subarea i is Vi, the expected number of trips Vij from subarea i to facility j is 

�
V
�j

i

W
W

j

j

e
e
	

	bC

bCi

i

j

j
� (2.46)

which is the customary form of the singly constrained gravity model. We can cal-
culate the total surplus arising from the trips actually made. The calculation uses
methods unfamiliar outside statistics (see Cochrane [1975] for derivation):

�
1
b

�
0
i

Vi �0.577 � ln�c′e b v� 

0

j
Wj e

	bCij�� (2.47)

We are normally only interested in the change in surplus resulting from a change
in trip costs from C0 to C’, which can be represented by 

�
1
b

��iVi ln����
j

j

W
W

j

j

e
e

	

	

b

b

C

C0

'

i

i

j

j
�� (2.48)

as shown in Equation 2.17 and illustrated in Figure 2.9.

Example
With the appropriate trip-utility, i.e., Wj = 1, and a single trip origin Vi = 1,
Equation 2.46 can be simplified to read �ij = exp(	bCij)/
j exp(	bCij), Equation
2.47 becomes Si’ = �

1
b

� ln 
i e
	bCij and Equation 2.48 becomes

�
1
b

� ln �

j

exp(	bC′ij)/

j

exp(	bC 0
ij)�

Notice that if the travel-choice set has only one option, the summation sign van-
ishes and Si’ � Ci � v�. Suppose b = 0.2, Ci1 � 5 and Ci2 � 8 for the base-year and
Ci1 � 5, Ci2 � 8 and Ci3 � 12 for the forecast year after an accessibility improve-
ment. These three expressions can be evaluated as shown in Table 2.4 and Table 2.5.
The second expression Si'—representing the utility or benefit (actually a disutility
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or dis-benefit in this case) from origin i—is evaluated at 2.8126 for the base-year,
and 2.0738 for the forecast-year. The third expression, representing the difference
in benefit attributable to accessibility improvement, is evaluated at (1/0.2) ln
[0.6605/0.5698] = 0.7386 (de la Barra 1989).

If b � 0.6, the surplus from origin i is evaluated at Si' � 4.7450 for the
base-year and 4.7227 for the forecast-year. The consumers-surplus increase is now
0.0228 (instead of 0.7386.) Remember that the b � 0.2 represents a low-sensitivity
group while b � 0.6 a high-sensitivity group, where sensitivity in this case refers
to responsiveness to cost. Thus the lower sensitivity group perceives a lower disu-
tility from the same travel choice set when compared with the high-sensitivity
group (2.81 against 4.75 in the base-year). For the consumer-surplus increase, the
low-sensitivity group clearly benefits more from the accessibility improvement

bCij exp(bCij) ij

Ci1  5

Ci2  8

Ci3  12

  Total

Ci1  5

Ci2  8

Ci3  12

  Total

0.2

0.6

0.3679

0.2019

0.0907

0.6605

0.0498

0.0082

0.0008

0.0588

0.5570

0.3057

0.1373

1.0000

0.8472

0.1401

0.0127

1.0000

6.8772

5.5092

Si

2.0738

4.7227

v

SOURCE: de la Barra (1989). Reprinted with permission.

Table 2.5  SAMPLE BENEFIT MEASURES AFTER ACCESSIBILITY
IMPROVEMENT

Table 2.4  SAMPLE BENEFIT MEASURES BEFORE ACCESSIBILITY
IMPROVEMENT

bCij exp(bCij) ij v

Ci1  5

Ci2  8

  Total

Ci1  5

Ci2  8

  Total

0.2

0.6

0.3679

0.2019

0.5698

0.0498

0.0082

0.0580

0.6457

0.3543

1.0000

0.8581

0.1419

1.0000

6.0629

5.4257

Si

2.8126

4.7450

SOURCE: de la Barra (1989). Reprinted with permission.
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(0.7386 versus. 0.0228). These results show the importance of these surplus indicators
in evaluating policy options. Traditionally, transport-related projects have been eval-
uated with a cost and time criterion, assuming that the preferred project will be the
one producing the least of the average-travel-cost �v, where v� = �i,j �ij Cij

. The nu-
merical example above shows that this is clearly a fallacy—v� has increased from 6.06
to 6.88 and from 5.43 to 5.51, respectively, after accessibility improvement! 

Using consumers’ surplus, accessibility improvement will always pro-
duce benefits, however small, and these benefits will not be the same throughout
various population groups. It can be seen, for example, that for the population
with a low sensitivity to cost, the percentage of trips destined for the nearest
zone, corresponding to Cil � 5, is 0.6457. By contrast, for the population with a
high-sensitivity to cost, the percentage rises to 0.8581. As a result, the average-
cost v� paid by the high-sensitivity group will be lower than that of the low-
 sensitivity group (5.43 against 6.06). In the forecast-year (after accessibility
 improvement), 14 percent of the low-sensitivity group can now access the distant
zone 3, against only 1 percent of the high-sensitivity group. Correspondingly, the
average-cost v�of the former group rises from 6.06 to 6.88, while the latter group
only moves from 5.42 to 5.51. The average utility indicators Si' show in both cases
an improvement when the new accessibility option is introduced, but they also
show that the low-sensitivity group benefits more, because the dis-utility moves
from 2.81 to 2.07 while the high-sensitivity group hardly moves from 4.75 to 4.72.
Hopefully, this numerical example drives home the usefulness of interpreting the
gravity model in terms of economic benefits.

B. The Doubly Constrained Model
Aside from a fixed number of trips originating from i, the doubly constrained
gravity model also restricts the number of trips ending in j. This model is appro-
priate for work trips where the number of trips emanating from the origin resi-
dential subarea every morning is perfectly inelastic, and these trips are heading
toward employment centers that have a specific number of jobs, at least in the
short run. If there is no constraint on trip ends, there will be some employment
centers j in which the number of unconstrained trip ends will exceed the number
of jobs available. We assume that under these conditions competition will lead to
the jobs being taken up by those trips for which the surplus available is greatest.
This will occur either because the utilities of the set of trip ends are bid down or
because the costs are bid up. In either case we may represent the effect as the
 addition of an extra cost rj to the trip, these additional costs are set such as to
 restrict demand to the jobs available.8

We then rewrite Equation 2.42 as

ij(S′) � exp[	c′Wj e
	b(S′ 	 v	� Cij � rj)].

Substituting in Equation 2.44 and integrating as before, we obtain the probabil-
ity of a trip ending up in employment center j:
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The number of trips from i to j is correspondingly

Vij � Vi��
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where rj is the calibration constant chosen such that �i Vij � Vj � c’Wj for all j as
mentioned. It is clear that this model is equivalent to the conventional doubly
constrained model

Vij � Vi��
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where aj0 � e	brj with both a and r representing a calibration constant. A numer-
ical example of the doubly constrained gravity model is found in Chapter 3. The
change in surplus resulting from a change in trip costs is given by
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In order to balance the number of trip destinations with the number of origins
over the entire area, some of the additional facility costs rj will be positive and
some will be negative. These values will result in aj0’s less than and greater than
one respectively. It should also be noted that the surplus expression represents
the benefit received solely by trip makers.

C. The Unconstrained Model
The unconstrained model is the most difficult of the gravity models discussed so
far, where the trip generation at origin is modeled in addition to trip distribution.
A partially constrained model is suggested by Cochrane (1975) in which it is
 assumed that there exists an upper limit to the number of trips generated by any
subarea—as the trip costs rise, some of the trips are no longer made. When
 integrating Equation 2.43 above, we took the limits of integration from 	∞ to ∞.
The low value was used because when the distribution of maximal surplus is
very much greater than zero the probability of a negative value of surplus is neg-
ligible and we can obtain a simple integral by using these limits. This assump-
tion implies that the primary economic force bringing about trip making is
stronger than those that decide the choice between destinations. If this is not the
case, we should integrate more precisely between limits of 0 and ∞. This implies
that the trip maker decides not to make even the optimal trip if the surplus is not
positive. Where the utility of the trip is only of the same order as the cost, this is
an important consideration. Certain social and recreational trips are likely to
come into this category, although trips such as work trips do not. More will be
said about this in the “Location-Allocation” chapter of Chan (2005). 

Integrating Equation 2.43 between the new limits leads to
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where b′ � 	c′ebv�. Trips executed Vij can be expressed in terms of this uncon-
strained model by

Vij � Vi(Wi, Wj, b′, b, Cij)�(Wj, b, Cij) (2.52)

where Vi is the trip-generation term and � is the trip distribution term. Each of
these two terms can be equivalenced to Equation 2.51 by setting

Vi � Wi[1	exp(	b′�jWj e
	bCij)]

and

�ij � �
�
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The trip-generation term constrains the total trips made in response to increases
in the cost of trip making. Hence, if costs rise on particular links, the total num-
ber of trips changes in accordance with the trip-generation term to a certain limit,
and the allocation of trips among destinations changes in accordance with the
gravity trip-distribution term meanwhile. Again, we will further develop this
model in the “Location-Allocation” chapter of Chan (2005).

D. The Intervening Opportunity Model
Besides the gravity model, another common spatial allocation model is the
 intervening opportunity model (IOM). The IOM is based on a probabilistic
 formulation, which states that the probability, dP, that a trip will terminate in a
destination is the joint probability that no termination point has been found
among the total number of opportunities n visited so far and that the trip ends
up in the current destination which offers an additional dn number of opportu-
nities: dP � [1	P(n)] L′ dn. Here P(n) is the probability that a termination point
is found in the volume of destinations n, and L′ is a constant probability that the
subarea visited is in fact the termination point for the trip. Solving the differen-
tial equation for P(n), the probability of finding a termination point in the n
 subareas visited is P(n) � 1	e	Ln. The expected number of trips from i, Vi, that
will terminate in j, Vij, is obtained by multiplying the total number of trips orig-
inating at i by the probability that the trip will terminate amid the nj additional
opportunities found in subarea j Vij �Vi [P(n�nj)	P(n)]. Substituting the value
of P(n) in the above equation, the usual form of the IOM is

Vij � Vi [e	L′n	e	L′(n � nj)] (2.53)

The basic theory of IOM states that (a) all opportunities are ordered by
increasing distance from the origin and (b) the probability of an activity to be
 located at a particular destination is equivalent to a series of Bernoulli trials,
where an activity is more likely to be located closer by than further away, every-
thing else being equal. Thus in the residential location example in Figure 2.34,
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▫ the probability of locating in destination 0 � L′
▫ the probability of locating in destination 1 but not in destination 0 �

L′(1	L′); and 
▫ the probability of neither locating in destinations 0 nor 1 but locating

in destination 2 � L′(1	L′)(1	L′).

In this example, there are five residential zones at a certain distance away from
the employment zone, and there are seven zones yet further away. Here the number
of zones within annular ring 0, 1, and 2 are n0 � 1, n1 � 5 and n2 � 7. The zones are
identified only by the annular ring in which they are located and all zones are assumed
to be of equal size to denote that each offers the same residential opportunities.
Alternatively, one can think of the destinations being ordered in increasing distance
from the employment origin, each with 1, 5, and 7 opportunities respectively as shown
in the lower part of the figure. If the probability of residential location in a zone, L′, is
1/2, we can compute the relative frequency of residential activity distribution as

▫ percentage of population living in origin 0 � e0	e	(1/2)(1) � 0.390
▫ percentage of population living in destination 1 � e 	(1/2)(1) 	 e 	( 1/2)(6)

� 0.556
▫ percentage of population living in destination 2 � e 	(1/2)(6) 	 e 	(1/2)(13)

� 0.048

and so on. 
The simple numerical example illustrates not only the computational

 mechanics of Equation 2.53, but also the problem of calibration. For example, we
observe that assigning the value of 1/2 to L′ is merely arbitrary; its value needs to
be calibrated from available trip-length-frequency data. Second, defining residen-
tial opportunity as the physical land area may be convenient, but a more workable

0 1

distance

Ring 2

Ring 1

Ring 0

Zones ordered in increasing distance

2
Employment origin

Residential destination

Legend

Figure 2.34  DEFINITION OF OPPORTUNITIES IN THE INTERVENING
OPPORTUNITY MODEL
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definition is likely to be problem specific and requires more effort. Finally, it is
noted that the population allocation percentages up to the second annular rings do
not add up to 100 percent. But if one considers additional annular rings ad infini-
tum, the sum of the percentages has to be unity according to Equation 2.53. Some
practitioners prefer this model on the grounds that it can be developed from a
 defined set of statistical assumptions. Others have been concerned by the fact that
the IOM has no intrinsic cost elements, and in particular does not distinguish the
case where the subsequent opportunity is marginally more distant.

Curiously, it is possible to derive the IOM as a special case of the gravity
model. We derive these models by assuming a relationship between the cost of
transport between two points and the number of intervening opportunities. If we
assume this to be of a power form: 

n � b″[Cij]
� (2.54)

then Cij � [b″]	1/� n1/� where travel cost is not a function of distance as alluded
to previously. In the singly constrained gravity model, we can write

Vij � Vi (2.55)

Substituting b[b″ ]1/� � b0
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and using the incomplete gamma function �′[x, y], Cochrane (1975) evaluated
Equation 2.55 as

Vij � Vi � � (2.56)

where n′ is the total number of opportunities in the study area. The gamma func-
tion can be considered as a set of related functions of the second variable, the
 particular function to be used being indicated by the first variable, which in this
case is �. If the number of opportunities is directly proportional to the cost as
 indicated in Equation 2.54, � is equal to one and the incomplete gamma function
becomes the negative exponential function. We then obtain 

Vij � Vi � �
If n’ is large, the usual form of IOM results: Vij � Vi [e	b0n	e	b0(n � nj)]. This de-
rivation illustrates a very important concept in the analysis of spatial-temporal
 information. Through spatial cost transformation, apparently unrelated models
can be equivalenced. We will have many other examples later on in this book and
in Chan (2005) to illustrate this point.

njexp(	b[b″]	1/� n1/�)
���
�jnjexp(	b[b″]	1/� n1/�)

�'[�,b0(n � nj)1/�]	�'[�,b0n1/�]
����
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e	b0n	e	b0(n � nj)

��
1 	 e	b0n′
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IX. CONCLUDING REMARKS
In this chapter we have reviewed many of the basic economic concepts of
 facility location and activity allocation. We saw that the determination of spatial
patterns—both in discrete facility locations and continuous land-use develop-
ments—can be explained in a set of common terms. These common constructs
range from median to center models, from input-output analysis to the gravity
model—all developed from basic economic concepts such as utility theory.
Modern-day econometrics also allows empirically based approaches to be used
to forecast future activity patterns. This is performed independent of the classic
economic concepts, as illustrated in the interregional demographic projection
section. In a fairly readable manner, it illustrates the basic building blocks of
spatial-temporal information. To be sure, analysis of spatial-temporal informa-
tion involves not only economic or econometric techniques, but the well-
 established economic concepts are convenient and familiar points of departure
for many who work in this field.

In the next few chapters, we will provide the ways and means to fur-
ther operationalize some of these concepts. In Chapter 3, we lay out the 
statistical  procedures; while in Chapter 4, we outline the optimization algo-
rithms. These techniques help to implement what were up to now theoretical
constructs in terms of solid operational procedures. Recent advances in both
descriptive and prescriptive tools allow us to realize some of the goals that our
predecessors can only dream of. We then introduce a more recent paradigm
for location decisions, multi-criteria decision making, which departs from 
traditional economics in  several ways. First, it is behaviorally based rather
than structurally based, complete with its own version of multi-attribute util-
ity theory. Second, it broadens our concepts of ranking locations and shows
that some counterintuitive results regarding transitivity and intransitivity
among candidate sites may occur. For  example, we demonstrate that site A
preferred to site B, and site B preferred to site C does not necessarily mean site
A is preferred to site C. Such recent  advances in behavioral and mathematical
sciences allow for a more innovative approach to modeling spatial decisions
in general. It is one of our objectives to report these  exciting developments
here in this volume.

X. EXERCISES

Self-Instructional Module: PROBABILITY 
(to be found on the attached CD/DVD)9

An understanding of probability is important to the decision maker. Many deci-
sions must be based on predictions of future events. Inevitably, the prediction of
future events has uncertainties and probable errors. An example is population
projection, as discussed in Chapter 2 of this text. An understanding of probabil-
ity concepts helps the decision maker to appreciate the significance of such 
uncertainties and probable errors.

This activity module is divided into three sections. The first section cov-
ers some of the theories of probability. The second section covers some rules of
counting. Finally, the third section builds upon the first and second sections and
illustrates with some interesting examples.
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By the end of this exercise, the student

(a)  would be familiar with these concepts: sample space, events, union
and intersection of events, empirical or frequency probability, sub-
jective probability, and permutation.

(b)  would have seen some useful application of these concepts.

This module serves to introduce or review the fundamental probability con-
cepts, which allows an understanding of what is information and imperfect  infor mation.
An example of imperfect information is given in Chapter 2, in  connection with
 locational competitions. Naturally, probability is required for the discussions in
Chapter 3, where a number of descriptive analysis tools, including simulation,
 subjective probability, curve fitting, and information theory are  formally discussed.

Probability is a prerequisite for an understanding of statistics, a basic building
block of analytics. As such, it serves as an excellent introduction to a  subsequent self-in-
structional module on Probability Distribution and Queuing. It is also a prerequisite for the
Appendices entitled “Review of Statistical Tools” and “Review of Markovian Processes”.

Problem 1: Gravity Model
The most common theory to explain spatial interaction is the Gravity Model,
which states in mathematical terms the relationships between “activity at zone j”
and “activity at origin zone i,” as governed by the “spatial cost between them:”

▫ Employment at zone i = Ei
▫ Spatial cost between i and j = dij
▫ Proportion of activities from origin i that end up in destination j = �ij

We can then write

Ei �ij (dij) = Ei

Correspondingly, populations Nj are to be distributed among the urban area
 according to

Nj = �i Ei �ij (dij)

which, when written for zone 2 in a city of three zones assumes the form

N2 = E1 �12(d12) + E2 �22(d22) + E3 �32(d32)

Here,

�12(d12) =       
N2/d2

12

N1/d2
11 + N2/d 2

12 + N3/d 2
13

and so on.

For the following study area:

From/To Zone 1 Zone 2 Zone 3

Zone 1 2 8 6

Zone 2 8 3 4

Zone 3 6 4 3

Base-yr pop: Nj 480 870 1020

Nj/d
2
ij

�
�kNk/d

2
ik
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�12(d12) = 870/82

480/22 + 870/82 + 1020/62 = 8.3950 x 10	2

(a)  Please calculate �11(d11) and �13(d13) and verify that the sum of
�11(d11), �12(d12) and �13(d13) adds up to the numerical value of unity.

Let us say the total employment in zone 1 is projected to be
500. Accordingly, it means that E1�12(d12) = 500 x 8.3950 x 10	2 =
41.975, or 42 workers from zone 1 will live in zone 2. In order to fore-
cast the total number of workers living in zone 2, however, two
 additional number are needed. They are E2�22(d22) and E3�32(d32).
The sum of the three numbers is the total number of employees liv-
ing in zone 2, in  accordance with the equation Nj = �i Ei �ij(dij).

(b)  Please calculate the number of employees living in zones 1 and 3.
Similarly, retail employment is located vis-a-vis people's resi-

dential choice. The probability that a shopping center will be located
at zone 2, given a residential location at zone 1, is given by this formula 

ER
2/d2

12

ER
1 /d2

11 + ER
2
/d2

12 + ER
3 /d2

13

Problem 2: Further Discussions on Forecasting 
It is commonly observed that population migration follows employment, albeit
with a time lag. Here, we wish to estimate the distribution of population over the
next six time periods following the introduction of employment (Chan 2005). The
following shows the time lag for the dependent population to move into town:

▫ 0% of the population moves in during period 1 when employment is
made available, 

▫ 10% of the population moves in during period 2, 
▫ 50% in period 3, 
▫ 20% in 4, 
▫ 10 in 5, and 
▫ the remaining 10 in 6. 

Such a time-lag relationship is also shown graphically below, where the number
of jobs and the population size are expressed in ten's. For example, 50 jobs as
shown in the top graph means actually 500 jobs, and a population of 10  actually
means 100 in the lower graph (Figure 2.35):

50

0
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40

30
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0 1 2 3 4 5 6

Input employment

Output population

Figure 2.35  INPUT–OUTPUT RELATIONSHIP
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While 500 jobs are introduced in time period 1, subsequent jobs are avail-
able in varying quantities—300 in period 2, 900 in period 3 and so on. The same
time-lag distribution is followed for subsequent employment introductions, as
shown in the following Table 2.6. From the Table 2.6, it is clear that the employ-

E m p lo ym e n t a n d  p o p u la t io n  o ve r  t im e
per iod e m p * 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 16 17 1 8 19 20 p o p*

1 5 0
2 3 5 5
3 9 2 5 3 2 8

439510164
266546555
16503813576
65752219337
36353016948
44451415689
64802675701
56704837811
668536143121
761044184331
93356178341
53351287751
73751618361
84353631671
146514133481
05403673191
341022137302

e m p 5 0 3 0 9 0 6 0 5 0 7 0 3 0 4 0 8 0 7 0 8 0 1 0 3 0 30 7 0 - - - - -

* F igu res  are  sh o w n  in  u n its  o f  10’s . F o r  exam p le , 50 jo b s ( in stead  o f  5
jo b s)  ar e in tro d u ced  to  th e  s tu d y area  in  p er io d  1.

Table 2.6  GROWTH IN ECONOMIC ACTIVITIES

ment can be gleaned from the bottom row. Each introduction of employment trig-
gers in-migration of population, following the given time-lag distribution. The row
sums amount to the total  population in the study area for each time period, which
are summarized in the right-most column in the Table 2.6. The following Table sim-
ply shows the  employment and population series side-by-side, as extracted from
the master Table 2.6 above:

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

emp 50 30 90 60 50 70 30 40 80 70 80 10 30 30 70 – – – – – 
pop 0 5 28 34 62 61 56 63 44 46 65 66 67 39 35 37 48 41 50 43

Repeat the calculations for the same employment series, except that the
time-lag distribution is now changed to 

▫ 0% of the population moves in during period 1, 
▫ 20% of the population moves in during period 2, 
▫ 40% in period 3, 
▫ 25% in 4, 
▫  15 in 5, and 
▫ the remaining 10 in 6. 
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ENDNOTES
1 ln Section VIII of Chapter 4, we will discuss how to measure efficiency using Data Development

Analysis, which is based on non-dominated solutions to more than one cost criterion.
2 A full explanation of Hoyt's theory is given in Section II.B of Chapter 6.
3 Figure 2.10 shows the tradeoff between the quantity of transportation and housing consumed in an

indifference curve. On an indifference curve, a family sacrifices travel for better housing or vice
versa for a given income. The tangency of the income/budget straight line and the indifference curve
is the consumption level of the family.

4 The series expansion for ln (1 � x), where 	1 � x � 1, is x � x2/2 � x3/3 � . . .
5 Much of the discussion in this section is taken from Vickerman (1980).
6 These two cases will be analyzed in detail in later chapters when we construct models of market

equilibrium.
7 Recursive programming is explained in Appendix 3. Chan (2005) also illustrated application of

 recursive programming in his “Location-Routing Models” chapter. A software example is included on
the attached CD/DVD under the RISE folder.

8 Chan (2005) discussed alternate ways to effect this reallocation in his “Lowry-based Models” and
“Bifurcation and Disaggregation” chapters. The readers may also wish to experiment with the
 software on the attached CD/DVD under the LOWRY and YI-CHAN folders.

9 The answer to this module is attached at the end of this text book.
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A distinction is made in our discussion between descriptive versus prescriptive
analysis techniques. A descriptive model is one that replicates the location and
land use decisions made in a study area, while a prescriptive model starts out with
a premise of existing practice and concentrates on the steps to arrive at a
 recommended course of action. Put in another way, a descriptive model sum -
marizes the set of observed data and tries to explain these observations in a
 systematic manner. A prescriptive model, on the other hand, takes the view that the
model has been constructed, and the model is used to choose a desirable course of
action. In Chapters 3 and 4, we will review these analysis tools, paving the way for
further analyses. The discussions here are geared toward problem solving; the
 development is therefore more intuitive than algorithmic or axiomatic in nature.
We supplement these discussions with more methodological background materials
attached as appendices of this book, where the readers will find self-contained
 reviews on optimization, stochastic process, statistics, and systems theory.

I. AN EXAMPLE
Three cities in Ohio—Cincinnati, Columbus, and Dayton—are planning a regional
airport for their residents. By pooling resources, these cities will obtain a superior
facility not possible without such cooperation. It is postulated that such an airport
will have to be contained within the triangle defined by the three cities (Hurter
and Martinich 1989). Within this triangle, it is not clear where the best location
should be. The reader may recognize this as a Weber problem, as introduced in
Chapter 2. If all three cities are equally important, one approach is to locate the
 airport in a central point convenient to all three cities. Such a location may be the

3
Descriptive Tools 
for Analysis

“Most of the fundamental ideas of science are essentially simple and may,
as a rule, be expressed in a language comprehensive to anyone.”  

Albert Einstein

Y. Chan, Location Theory and Decision Analysis, 2nd ed., DOI 10.1007/978-3-642-15663-2_3, 
© Springer-Verlag Berlin Heidelberg 2011
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common point of the angle bisectors to the triangle defined by the three cities, as
illustrated in Figure 3.1. The total travel time among the three cities is 27.63 �
53.51 � 44.31 � 125.46 minutes. This reflects the airport location most convenient
for any citizen, irrespective of where he or she lives.

What happens to the location if each city is weighted differently, or if the
siting decision is made by a central authority that has the aggregate interest of the
entire region in mind? Assuming 125 minutes is the optimum, one would  expect
that the total travel distance will be larger than 125, since parochial interests—
interests that stand in the way of the common good—are now taken into consid-
eration depending on the weight placed on each city. Similar to the bisector case,
each city pair would have combined airport travel times longer than the straight
line between them, inasmuch as the airport may be located toward the third city,
rather than along the corridor between the city pair concerned. Based on this
 reasoning and the above calculations, we can describe the candidate airport loca-
tion more precisely as a set of inequalities:

x1 � x2 � 70
x1 � x3 � 60
x2 � x3 � 90
x1 � x2 � x3 � 125
x1, x2, x3 � 0

The above set of equations is by no means the only, nor is it necessarily the best,
 description of this location problem. An advantage of this descriptive model is its
simplicity, which allows the construction of a prescriptive model by superposing

Figure 3.1  A LOCATION DETERMINED BY ANGLE BISECTORS

SOURCE: Claunch, Goehring, and Chan (1992). Reprinted with permission.
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an objective function such as minimizing the person-minutes-of-travel: Min 2x1 �
3x2 � x3, where the set of weights are the population sizes on each city. This
 example, simple as it may be, may bring out the difference between what we
mean by a descriptive versus a prescriptive model.

II. DESCRIPTIVE TECHNIQUES: 
ANOTHER EXAMPLE

In the example cited in Chapter 1, the relationship between basic and secondary
economic activities in New York City and New Haven is identified, and a model is
built to reflect the observed phenomenon. The relationship can often be displayed
graphically in a flow chart as a first step of the analysis. To operationalize the flow
chart, parameters such as the average size of a family in the study area need
to be calibrated. In Chapter 1, we have already sketched out a flow chart enti-
tled “Economic Interaction between New York and New Haven Over Time” and
 assumed some calibration parameters. The generic term, descriptive techniques,
is used to include logical flow charts and calibration. Such tools are the ways and
means to construct a model replicating the study area.

Generally speaking, there are six steps in building a descriptive model.
Again using the New York-New Haven development example,

Step 1: identifies the system components. In this example, there are
three economic sectors: basic, service, and household. They are
related in a pairwise manner in Figure 3.2. Basic employment
refers to the new jobs introduced to either New York or New
Haven. The household sector initially encompasses all the
 dependents of the workers brought into the area. Correspond -
ingly, service employment consists of additional jobs required
to support the households that are now located in the area.

Service

Basic

Household

Figure 3.2  BLOCK DIAGRAM OF THE NEW YORK-NEW HAVEN
DEVELOPMENT EXAMPLE
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Step 2: follows with a definition of what goes into these economic
 sectors. One may define, for example, all support services
 including such services as medical, fire, education, shopping,
food, and entertainment, under a single service sector rather
than seperating them into the public service sector (e.g.,
 medical, fire and education) and the private service sector (e.g.,
shopping, food, entertainment).

Step 3: defines specific variables corresponding to the sectors or
 subsystems. For example, one needs to define the basic
 employment as EB, service employment ER, and population N.
Attention is paid to geographic or spatial attributes too, such as
the population and employment in New York versus New
Haven. Finally, we distinguish the activities in the base year
versus the forecast year—in which case a temporal  attribute is
associated with the variables. In this example, five time  periods
were modeled.

Step 4: delineates the mechanisms of change or casual structure of the
system. Using the New York-New Haven example again, basic
employment is isolated as the seed for other  dependent devel-
opments, such as service employment and population.
Furthermore, the population and employment in New York
and New Haven interact with each other, as shown in the com-
muting pattern between the two cities, in which the  population
of one city may find employment in another.

Step 5: One decides between a descriptive versus prescriptive applica-
tion, that is to say, whether the model is to be used primarily to
answer what-if type questions or in plan specification. A
 descriptive formulation strives to capture the development
pattern of the study area as a primary focus. For a prescriptive
formulation, on the other hand, specific goals and objectives of
the community need to be explicitly modeled on top. In the
New York-New Haven example, a descriptive, rather than
 prescriptive, model is constructed.

Step 6: One assembles all the aforementioned elements into a coherent
model. This means the variables defined in Step 3 are  related to
each other in a set of equations or other mathematical frame-
work relating the logical structure identified in Step 4 and in
light of the application intent of Step 5. In subsequent discus-
sions, we will see how this is accomplished for the New York-
New Haven example.

There will be many occasions in an analysis professional’s career
when a model, whether descriptive or prescriptive, needs to be constructed.
The above six steps will become a handy checklist for model building. This
chapter will focus on descriptive techniques. These types of analysis tools will
be  discussed: simulation, queuing, econometrics, and calibration. They will be
 introduced in an order that parallels our discussions on model building. The
 sequence also starts with the less complex and progresses toward the more
 sophisticated.



Descriptive Tools for Analysis CHAPTER 3 87

III. SIMULATION
Perhaps no other tool can illustrate a descriptive model better than simulation,
since a simulation model simply replicates the existing phenomenon in the study
area. Simulation is a familiar analysis tool since it is easy to understand and
apply. Notice this does not make the claim that people invariably apply it 
correctly; in fact, the contrary is true. There are more misuses than valid uses of
simulation. It makes it so much more important, therefore, to put this analysis
tool inperspective.

In the first stage of building a simulation model, components of the
 system and their interrelationships need to be identified. These interrelationships
may be preliminary postulations that are subject to verification and validation in
later stages. The basic components of a system are best displayed in a block
 diagram. We have already discussed the example illustrated in Figure 3.2. In this
figure, the interdependency among the basic, service, and household  sectors is
shown by the use of arrows. Thus in a visual manner, one can see these economic
sectors are tied together. The next step in this type of descriptive modeling
 involves a logic flow chart. The flow chart details the aggregate relationship
identified in the block diagram, in which one examines the precise casual chain
of events. Figure 3.3 illustrates such a chart for the New York-New Haven
 example. Basic employment generates dependent population. The population
 requires  services, thus bringing in service employment. The service employees in
turn have their dependent population brought into the area. Figure 3.3 clearly
identifies basic employment as the seed of the subsequent activities.
Furthermore, it highlights the cyclical generation of population and service
 employment.

Simulation can be deterministic or stochastic. Deterministic simula-
tion can be best described as the modeling of the average condition of the
 system,  ignoring the transient and time-varying behavior. Stochastic simula-
tion, on the other hand, specifically gears toward the random fluctuation of the
system. The New York-New Haven example is a good illustration of determin-
istic simulation. If we ignore the spatial interaction between the two cities, a
simple model can be constructed. Suppose the variables are: basic employment

Dependent
population

( )

Support
services

Basic
employment

Service
employment

Figure 3.3  LOGIC FLOW CHART OF THE NEW YORK-NEW HAVEN
EXAMPLE



88 CHAPTER 3 Descriptive Tools for Analysis

EB, population N, average household size f, and service employment multiplier
a (defined as the number of service jobs generated from one resident.) The eco-
nomic development of either New York or New Haven (without commuting
 between the two cities) can be modeled by Table 3.1. which is basically a quan-
tification of the numerical calculations documented in Table 1.1 in Chapter 1 in
which the increase in basic employment generates subsequent development
through multiplier effect. The reader may wish to view the two tables side by
side for comparison purposes.

It can be seen that such a procedure points toward an employment
 increment of anfnEB and a population increment of anfn+1EB in the nth iteration.
In other words, each iteration through the loop between dependent population,
 support services, and service employment in Figure 3.3 generates another incre-
ment of activities. As iterations progress, which can be thought of as time
 progresses in this example, the amount of activities generated can become
smaller and smaller, remain the same, or increase, depending on the household
size f and the population serving ratio a. Thus the simulation will either yield
dampened growth or unlimited growth depending on the total employment
 series (1 � af � a2f2 � a3f3 � . . . )EB and the total population series f(1 � af �
a2f2 � a3f3 � . . . )EB.

Recognizing the similarities to a geometric series

1 � x � x2 � x3 � . . . � �1 �

1
x

� (x � 1), (3.1)

the series above have analytical solutions if af � 1, where the total employment
series sums up to EB/(1�af ) and the total population series sums up to
fEB/(1�af ). Thus in the New York-New Haven example in Chapter 1, where f �
2.5 and a � 0.2, the total employment is 1000/[1 � (0.2)(2.5)] � 2000, and the total
population is (2.5)(2000) � 5000. The series will have no immediate closed form
solution for af � 1 and af � 1. Thus simulation is a more versatile tool than
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Table 3.1  ILLUSTRATION OF A DETERMINISTIC SIMULATION ON REGIONAL
ECONOMIC DEVELOPMENT
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 analytical solutions in general, in that simulation can provide a solution where
analytical methods fail.

Another example of deterministic simulation is the limits to growth
model (Meadows et al. 1972). Following the procedures of this model, the
 feedback loop flow diagram of Figure 3.3 can be illustrated by using a positive
sign, meaning that there is a reinforcement effect among the variables, as is
 typical of the multiplier effect in a regional economy. In a world forecasting
model, Meadows et al. constructed a flow diagram consisting of both positive
and negative feedback loops, depicting the interactions among the various sec-
tors of the world economy. For example, population is positively related to the
birthrate, and negatively related to the death rate, meaning that an increase in the
birthrate will further increase the population, whereas an increase in the death
rate will  accelerate a decline in the population:

POPULATION � F1(BIRTH RATE, DEATH RATE)

Birth- and death rates are again dependent upon the industrial economy well-
being, agricultural food production, and the environmental condition:

BIRTH-DEATH RATE �
G(INDUSTRIAL OUTPUT PER CAPITA, FOOD PER CAPITA, POLLUTION)

In a similar manner, the feedback loops in Figure 3.4 can be represented in the
 remaining set of equations:

Figure 3.4  LIMITS TO GROWTH MODEL
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INDUSTRIAL OUTPUT � F2(CAPITAL INVESTMENT, POPULATION, RESOURCES)

POLLUTION � POLLUTION OF PREVIOUS YEAR �

(POLLUTION-GENERATION RATE) (INDUSTRIAL OUTPUT) 

RESOURCES � FIXED AMOUNT � (YEARLY RATE OF USE) (INDUSTRIAL OUTPUT)

FOOD � F3(POLLUTION, POPULATION)

Clearly, this logic-flow diagram is much more complex than the eco-
nomic-base model for New York-New Haven. The relationship needs to be
 expressed in the language of the computer to make the model feasible for use. In
the following computer run, the inputs to the model consist of:

birthrate � 0.035 (or 35 in 1000) per year

death rate � 0.015/year

food production rate � 1 percent growth per year

resource use rate � 0.4 percent/year

industrial output rate � 4 percent/year

pollution generation rate � 0.3 percent/year.

Starting out with these world statistics in 1970:

population (P) � 3.6 billion

food-production rate (F) � 1 unit/person (the average of 2000 calories
per person per day)

world resource (R) � 1 unit

industrial output (O) � 1 unit (equivalent to 2 trillion dollars)

pollution generation rate (X) � 1 unit.

The model in turn forecasts these statistics in the world through the year 2100.
The highly publicized doomsday result is sketched in Figure 3.5. After some 
transient phenomena, the steady state condition is reached where resources are
depleted and the world population dwindles to a few.

Other global simulation models include World Integrated Model, Latin
American World Model, United Nations Input-Output World Model, and Global
2000, just to name some of the major ones (Congressional Office of Technology
Assessment 1982). Worthy of note is that spatial elements are totally absent in
all these models, including the limits to growth model. In other words, the entire
world is treated as an entity and one does not distinguish between the conti-
nents, countries, states/provinces, and regions. We will see how such deficien-
cies can be redressed in subsequent discussions.
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Figure 3.5  WORLD FORECAST THROUGH 2100
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IV.  STOCHASTIC SIMULATION
While deterministic simulation serves as a good introduction, much of simulation
modeling involves uncertainty, which is an integral part of the model. Stochastic
simulation has its Monte Carlo variety and discrete event variety. Here, we define
Monte Carlo simulation as the model which addresses  uncertainty through ran-
dom number generators, which effectively generates probability distributions
through much the same idea as a roulette wheel. Thus the probability of certain
events taking place is determined by spinning such a roulette wheel. A clock may
be used to keep track of time increments, as was done in the limits to growth
model. At each time increment, an event may or may not happen depending
again on the random number generator that serves as the roulette wheel in the
computer. Discrete event simulation, on the other hand, goes one step further in
sophistication. It goes from the current event to the next event in sequence, with
the clock updated as it processes the next event. Most people associate this branch
of simulation with computer languages, including GPSS, SIMSCRIPT, GASP,
SLAM (Pritsker 1986) and SIMAN. Recent advances in computer science call for
object-oriented simulation languages that allow for model execution efficiency.
Discrete event simulation has not been as widely used as regular Monte Carlo
simulation in facility location and land use, simply because of the more aggregate
nature of location decisions. Recent requirements of a service economy, however,
have changed this practice dramatically, as we will see in Section V.

The best way to illustrate Monte Carlo simulation is still through
 examples. Many land use games are used to introduce students of planning to
the many political and institutional factors in development. One of these is the
Community Land Use Game (CLUG) developed by Feldt (1972). The decision-
making process on urban development is often characterized by conflicting
 interests seeking social, political, and financial gain. Short of actual experience
(which sometimes turns out to be costly), the use of games is one of the best ways
to highlight the issues. CLUG is usually played by three or more teams, each of
which consists of two or more members. A community is represented on a square
with a grid of secondary road network and spines of primary roads. A utility
plant, denoted by a circle, is set up, but without any distribution and collection
facilities (see Figure 3.6). The game board represents the site of a community yet
to be developed by the players. The local economy is connected with the outside
world through a transportation terminal (marked as a square at the waterfront).
The game simulates the development of a brand new community, as catalyzed
by the initial location of basic industries (or export service industries). In other
words, external investment starts the development of the local economy.

Parallel to the concept of the economic-base theory, there are three
 economic sectors represented in the game: 

1. Basic industries, consisting of full industries (FI) and partial indus-
tries (PI);

2. Residential sector, where the housing density ranges from sparse to
dense, as represented by single residence (R1), double residence
(R2), triple residence (R3), and quadruple residence (R4);

3. Service sector, which is exemplified by the central store (CS), local
store (LS), and office unit (O). Each of these economic units is char-
acterized by its construction cost, income, number of employees,
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payroll, service costs and so forth. Corresponding to these sectors are
also the land-use parcels (represented as a cell or square on the
board) on which development can take place.

Aside from these players, someone serves as a city manager, who represents the
community to the outside world, particularly in its financial management. He is
the exogenous party who constructed the transportation system connecting the
community with the outside world, thus laying the groundwork for future
 developments in the local community. The community develops the industries
that occupy the land ab initio and that provide a tax base for the construction of
the utilities. The industries, in turn, employ the labor forces from the residential
population. In accordance with the economic-base theory, secondary activities
such as the retail services are attracted into the city. The monetary flow between
these sectors serves as a link between the various activities, and the community
pays for their public utilities and other public services through taxes.

Figure 3.6  THE CLUG PLAYING BOARD
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SOURCE: Feldt (1972). Reprinted with permission.
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The development sequence is simulated by the following steps in
the game:

1.  Purchase land. Each team is an entrepreneur from the outside world
who is contemplating land purchase investment in the study area. A
bidding process is conducted, and the highest bidder on a parcel of
land will be awarded its ownership. 

2. Provide utilities. Since only the power plant exists in the beginning,
power lines have to be constructed before further development is
possible. Power lines have to be provided for at least one side of a
parcel before that land can be developed. A majority consensus
de -termines the precise location of a line. The construction of util-
ity sys tems is to be paid for from the general tax coffers of the
 community.

3. Renovate. If this is the second or higher round of the game, the study
area would have been built up already, consisting of a number of
 existing buildings. During the useful life of an existing building, there
is a chance that the building will be lost, and the chance  increases
with age. Table 3.2 determines the probability of loss via the use of a
pair of dice or a random number generator. For example, when the
building is 10 years old, it is condemned if the equivalent numbers on
a pair of dice are 5, 6, 7, or 8, which is equivalent of a loss probability
of 0.556. In the event that a building is condemned, it can be demol-
ished during the construction step of any round, in other words, at
the next step.

4. Construct building. New construction is now considered on all lands
owned by an entrepreneur, as long as utilities are available for the site.
Two chances are given to each team to either construct or pass. Any con-
struction decision should weigh income potential against cost.
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5. Designate employment. A contractual agreement is to be made 
between the industry/service sectors and the household sector about
the commitment of labor forces to employment opportunities. Thus
both the full and partial industries, stores, and the offices bid on the
existing labor pool, culminating in contracts being signed.

6. Set prices in local store (LS), central store (CS) and office (O). An
arrangement is to be worked out between the LS and CS with the
residential sector about the price of goods. Similarly, contracts are
signed between the office/industries and stores in regard to the
purchase of goods and services from one another.  While the unit
price can be negotiated with the stores and offices in the
 community, a fixed price is charged for goods and services 
purchased from the outside world through the city manager.

7. Receive income. In order to start the process, some incentives have to
be provided to the industries to start production. The city manager
gives income to the industries for putting people to work, a process
simulating receiving gross earnings from the manufactured goods.
The income is set above the wage rate in order to show a profit margin
above labor cost. This is the only money paid by the city manager to
the players; all other income is generated through payments among
teams for payrolls, payments to stores, and so forth.

8. Pay employees. Each team owning a land use which employs
 people from residential units owned by another team pays that
team a labor wage.

9. Pay LS, CS and O. Upon completing the exchange of payments for
meeting payrolls to employees, each team owning residential units
must make payments to the local and central stores with which they
are trading at the agreed-upon price.  Notice that each residential
unit must make payment to two kinds of stores, both local and
 central, corresponding to the two types of market baskets pur-
chased. Similarly, offices are paid for the services rendered.

10. Pay transportation. For each industry, the players compute the cost
of shipping to the terminal by counting the number of units of dis-
tance traveled, distinguishing the different unit costs  between a
major highway and a secondary road. If the industry is shopping at
an office on the board, the weighted distance to this unit should be
computed similarly. Then players take each residential unit in turn
and compute their transportation costs to work or shop also.
Finally, they finish off with the LS or CS, who also use the roads to
deliver their goods. These figures are then summed to yield the
total transportation cost for each team.1

11. Pay taxes. Tax is levied against the real estates as a percentage of
the respective assessed values. Charges are also made against the
community for construction of new utility lines, for maintenance of
old lines, and for social services for each residential unit. The
 comparison of this cost to total taxes raised can be shown to yield
the community surplus or deficit for the current round. When an in-
dividual team cannot meet its tax obligations, the city manager will
begin foreclosing until sufficient value has been received to meet
the required tax debt.
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These 11 steps illustrate the parallel between CLUG and the real world.
Particularly worthy of note is the renovation portion of the simulation, where the
probabilistic statement of the simulation comes in. This example shows graphi-
cally the use of Monte Carlo simulation in land use games and the similarity
 between certain aspects of gaming and simulation.

V. DISCRETE EVENT SIMULATION
To properly understand discrete event simulation, some background on queuing
and time-dependent random process (stochastic process) is necessary.2 Suppose a
fleet of vehicles is responding to service requests in a network. A model developed
by Larson, as cited by Ahituv and Berman (1988), aids in assessing the  system per-
formance under normal operating conditions (or under steady state of the system).
Larson’s hypercube model assumes that demands can be represented by different
independent point sources. The point sources are represented by a centroid, a reg-
ular node in the network where all demands around the vicinity are supposed to
originate. Calls for service arrive at the centroid according to a time-homogeneous
Poisson process, a random pattern that averages at a given arrival rate �″:

P(k) � �
�″

k

ke
!

��″
� k � 0, 1, 2, . . . (3.2)

where k is the random number of actual demand-requests per unit-time. The ser-
vice time �, setting aside the enroute travel time, for each vehicle unit is assumed
to be negative exponentially distributed—again a random process with a given
mean 1/�′: f�(�) � �′e��′�, where � denotes the random variable for service time.

A. Stochastic Process
Each vehicle server, say a fire truck that helps to put out a fire, may be in two
 possible states, busy or free. When a call arrives, a single vehicle unit is chosen
from those that are free and is immediately assigned to provide service. In the
event that all servers are busy, the call is either lost (in other words, passed to a
nearby jurisdiction for service) or queued until a unit becomes available. We call
the  former zero capacity queue (or the loss system model) and the latter infinite
 capacity queue. The hypercube model provides a steady-state analysis as an
 approximation to time non-homogeneity. With the model, many performance
measures of system effectiveness can be derived. Among the important measures
are the expected service unit response time, service unit dispatch frequencies,
 service unit workload, and the workload of a particular unit relative to the other
units. To demonstrate the model, refer to the sample network of Figure 3.7. We
 assume that service stations (depots) are located at nodes 2 and 5. At each station,
there is only one vehicle. Whenever there is a call, the dispatcher will assign the
closest available vehicle to serve the calling node. The dispatching center can
 assign only stationary vehicles while they are at their depots. The center cannot
contact a moving vehicle. When all units are busy, a special service unit from
 another jurisdiction will be dispatched (assuming a zero capacity queue). In
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 addition, we know that calls for service are issued, on the average, every 1/3
minute (�″ � 3). The average service takes 1 minute (�″ � 1). The length of the
links is measured in time units. The server’s speed of travel is constant, and the
demand for service, k, is equally divided among the centroids (i.e., the fraction of
demand among the centroids is f1 � f 2 � f 3 � f4 � f 5 � 1/5.)

Knowing that there is only one server vehicle at each depot, we may say
that at any time a depot either possesses an idle vehicle or it does not. We will
denote it by 0 or 1, respectively. A state of the system is defined to be a vector of
two components. The first component indicates the status (free or busy) of the
server at node 2, and the second component indicates the status of the server at
node 5. Since there are only two depots in the example, the entire network can be
in any of the following four states:

(0, 0)  the two vehicles are available at both nodes 2 and 5;

(0, 1)  only the vehicle from node 2 is available;

(1, 0)  only the vehicle from node 5 is available;

(1, 1)  no vehicle is available from either node 2 or node 5.

Now based on the shortest distance, we can devise a dispatching table for the
network, recalling that the policy is always to dispatch the closest available unit
and to do nothing if both vehicles are busy (ties can be broken arbitrarily).
Table 3.3 describes the dispatching rules for each of the four states:—
�designates “dispatch,” —designates “do not dispatch.” It is easily seen from
the table that the closest vehicle is dispatched whenever both vehicles are
 available [state (0, 0)]. In other states, there is only one dispatching possibility;
thus, there is no dilemma as to which unit to dispatch.

Now that we have established the dispatching rules, we would like to
 investigate the process by which the network changes from one state to another.
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SOURCE: Ahituv and Berman (1988). Reprinted with permission.

Figure 3.7  SAMPLE NETWORK FOR HYPERCUBE MODEL

SOURCE: Ahituv and Berman (1988). Reprinted with permission.
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For instance, when the network is in state (1, 0) at a certain time interval, it can
 either change to state (1, 1) if the vehicle at node 5 is assigned to a call, or it can
enter into state (0, 0) if the vehicle stationed at node 2 has been released from a
previous service call (and is back at node 2). The network cannot change directly
from (1, 0) to (0, 1) owing to the Poisson arrival and negative exponential service.
In other words, a transition from (1, 0) to (0, 1) would imply that two events can
occur in a very short time interval dt—the vehicle at node 5 is assigned while the
server at vehicle 2 is being freed at the same time. Figure 3.8 depicts the transitions
from one state to another. By observing Figure 3.8, we can use the information
about the service rate y1 and the call rate 	″ to derive the rate of the various
 transitions. For instance, when the network is in state (0, 1), it will change to state
(1, 1) at a mean rate of 3 per minute, because on the average there is a call every
1/3 minute. On the other hand, the transition from (0, 1) to (0, 0) is at a mean rate
of 1 per minute, since the average service time is 1 minute. A similar computation
can be preformed for state (0, 0). If a call arrives from node 1, 2, or 3, the vehicle
from node 2 will be dispatched. Since the rate of calls is 3 per minute and nodes
1, 2, and 3 each assume one-fifth of the overall demand, the transition rate from
state (0, 0) to state (1, 0) is 

� � � � (3) = 1.8

Similarly, the transition rate from (0, 0) to (0, 1) is 

� � � (3) = 1.2

These transition rates are again summarized in Figure 3.8.
Now we assume the network is in balance (steady state); namely, it

makes transitions from one state to another with a regularity that reflects an equi-
librium between demand for and supply of services. This implies that there are

1
�
5

1
�
5

1
�
5

1
�
5

1
�
5
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steady-state probabilities for being in the various states. We will denote them by 
P(0, 0), P(0, 1), P(1, 0), and P(1, 1). Equilibrium implies that the expected rate of leaving a
state is equal to the expected rate of entering into the same state.  For example, the
expected rate by which the network departs from state (0, 1) is 3 P(0, 1) + 1 P(0, 1).
The first term refers to a transition to (1, 1) while the second term refers to a tran-
sition to (0, 0). Similarly, the expected rate at which the network arrives at state
(0, 1) is a weighted sum of all the transition rates from states that can transition
into (0, 1); specifically, 1.2 P(0, 0) + 1 P(1, 1). Since in the steady state there should be
a balance between the expected rates of entering and leaving a certain state, we
may write a balance equation for (0, 1):

3 P(0, 1) � 1 P(0, 1) � 1.2 P(0, 0) � 1 P(1, 1)

Similarly, we can obtain balance equations for all the other states. For (0, 0), we
will obtain

                  1.8 P(0, 0) � 1.2 P(0, 0) � 1 P(0, 1) � 1 P(1, 0)

For (1, 0), we will obtain

1 P(1, 0) � 3 P(1, 0) � 1 P(1, 1) � 1.8 P(0, 0)

For (1, 1), we obtain 

1 P(1, 1) � 1 P(1, 1) � 3 P(1, 0) � 3 P(0, 1)

In addition to these balance equations, we know that the state probabilities
should add to 1:

P(1, 1) � P(1, 0) � P(0, 1) � P(0, 0) � 1

Figure 3.8  TRANSITION BETWEEN STATES IN A HYPERCUBE MODEL
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Now we have five equations to find a solution for four unknown proba-
bility values. Any three of the balance equations and the last one will do:

�1.2 P(0, 0) �4 P(0, 1) �1 P(1, 1) � 0
3 P(0, 0) �1 P(0, 1) �1 P(1, 0) � 0

�1.8 P(0, 0) �4 P(1, 0) �1 P(1, 1) � 0
P(0, 0) �P(0, 1) �P(1, 0) �P(1, 1) � 1

The solution to these equations provides the steady-state probabilities for the
 network: P(0, 0) � 0.1176, P(0, 1) � 0.1676, P(1, 0) � 0.1853, and P(1, 1) � 0.5295. The
 results indicate that more than 50 percent of the time the two vehicles will be busy
[P(1, 1)]. Around 11 percent of the time, the two servers will be idle [P(0, 0)]. The
 expected  response time for this example is (where R′ is the required time in
 dispatching a special reserve unit from a neighboring jurisdiction.)

P(0, 0)� �
i�1, 2, 3

fi d
2,i � �

i�4, 5
fi d

5,i� � P(0, 1) �
5

i�1
fi d

2,i � P(1, 0) �
5

i�1
fi d

5,i � P(1, 1)R′ (3.3)

With R′�10 and all time separations dkl obtainable from the shortest paths
on the Figure 3.7 network, the above expression can be verified to be
(0.1176)[(0.2)(3 � 0 � 1 � 4 � 0)] � (0.1676)[(0.2)(3 � 0 � 1 � 4 � 6)] �
(0.1853)[(0.2)(7 � 6 � 5� 4 � 0)] � (0.5295)(10) � 6.7677. The workload of the ve-
hicle at node 2 is P(1, 1) � P(1, 0) � 0.7148 or this vehicle is busy about 71 percent
of the time. The workload of the vehicle at node 5 is P(1, 1) � P(0, 1) � 0.6971. The
fraction of dispatches that send the vehicle from node 2 to node 1 is f1[P(0, 0) �
P(0, 1)] = (0.2)(0.1176 � 0.1676) � 0.0570.

B. Simulation
The memory and execution time required to solve the hypercube model equations
roughly doubles with each additional server. In other words, the procedure  requires
solving 2Q′ equations, where Q′ is the number of servers. This can amount to huge
computational requirements. Among ways to overcome this is discrete event simu-
lation, which has become an efficient tool. This is made possible by the availability
of very user-friendly simulation languages. Instead of solving  simultaneous equa-
tions, the simulation processes each demand-request through the  network. The term
discrete event refers to examining the next event, whether it be another demand
 generated, a demand ready to be served, and so on. The program turns the clock on
and eventually tallies up the performance statistics as computed analytically above.

It is not until recently that discrete event simulation has played a signif-
icant role in facility location. The City of Baltimore, for example, conducted a
study to locate Emergency Medical Services (EMS). A validated discrete event,
stochastic simulation model, Ambulance System Site Inspection Simulation
Technique (ASSIST), was used to measure the performance of the EMS, pointing
toward a city wide response time of 5 minutes; 95 percent of the demand was
 responded to within 10 minutes. Though these statistics indicated a well-run sys-
tem, the EMS administrators requested a study because of perceived inequities
in the spatial distribution of service, outlying areas tended to have higher
 response times than areas in the center of the city. ASSIST was used to validate
the location of EMS by an optimization model (Heller et al. 1989). Parameter
 estimation of the optimization model was based on the same data used in the
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simulation and, where necessary, deterministic estimation of random variables.
Emergency travel times were approximated in the simulation using two
 databases: (1) two travel time matrices, representing peak and off-peak (8-hour
time intervals each) traffic conditions for travel between the activity centroids of
any two nodes in the 207-node transportation network, and (2) about 4200
medic-unit run tickets that documented the spatial and geographic history of the
response. The travel time parameters in the location model, �ij, were defined by
the average of the estimated peak and off-peak emergency travel times.

EMS has been simulated as a non-homogeneous Poisson process, with
 arrival rates defined for 24 call zones and for 6 four-hour intervals. In other words,
different arrival rates are defined for each zone and each four-hour interval, rather
than a homogeneous process characterized by a single average arrival rate. For
the optimization model, mean daily demand at depot node j was estimated as

fj(i) � P(j|i) �
6

t�1
�″it

where j and i are depot and call nodes respectively, and �″it is the tth arrival rates
for call node s. Historical and simulated average daily demand for EMS service
system wide were both about 200 calls per day. Since there were 16 medic-units
(depots) in the historical system, this average was used to define a maximum
workload for any medic-unit. Perfectly balanced utilization would be achieved
at about 12.5 calls per day per unit. A total of 28 current and  potential medic-
unit  locations or home depots had been defined in the original study and were
 retained. A prescriptive model can be constructed by optimizing the figure of
merit as defined by Equation 3.3, including equity among call zones.

Let 
(W, p) � {j|yj � 1} be the siting result from the optimization of the 
location model with binary location-variable yj, maximum workload for a medic-
unit W, and p medic-units relocated. Solutions were generated for workloads 
W � ∞, and W � 18, 16, and 14. When the least constrained optimization was
solved (W � ∞), it was found that the maximum number of units relocated was 6;
thus the relocation model was solved for p � 1, . . . , 6. Example formulations of
such an optimization model can be found in the “Facility Location” and
“Measuring Spatial Separation” chapters of Chan (2005). Illustrative software is also
included in the enclosed CD/DVD under the SPACEFIL folder. Configuration
 solutions 
(w, p) to the various optimizations were obtained and, where possible,
system performance measures for the configurations were compared using
 statistical inference. The optimization measures are deterministic and do not lend
themselves to statistical comparison. All differences must be assumed to be signifi-
cant since the average is all that is available. Simulation, however, also  provides
sample variance so the t-test3 could be used to compare mean response times, M(W,
p), which were found by simulating the optimization solutions, 
(W, p). Here, t-val-
ues were calculated to compare M(W, p) among themselves and with the base case.

The t-statistics indicate that the optimization solutions produced the
 desired effect of mean response time reduction in the simulated system. At about
the 15 percent significance level, solutions to reduce mean response time were
found by the optimization model. However, the simulated W � ∞ solutions,
when compared to the base case, do not result in statistically significant mean
 response time changes, even at the 20 percent significance level. This  result is
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quite different from the optimization results, in which up to a 0.14 minute mean
response time reduction was achieved. Furthermore, if the significance level was
reduced to 30 percent, it is possible that the solution, 
(∞, p), for p � 3 and 6
 results in increases in mean response time (t-values of 1.21 and 1.16 respectively).
Finally, if significance levels were restricted to at least 10 percent, the t-values
 indicate that configuration solutions from the W � ∞  solution to relocate 3 to 6
units produced simulated mean response times significantly higher than the
 corresponding location solutions with maximum workload set at 16 and 18
 respectively. These differences between simulation and optimization models can
possibly be attributed to a homogeneous versus non-homogeneous assumption.

With the exception of these aberrations, optimal solution to the location of
EMS has been verified against simulation results overall. Simulation was shown to
be important and necessary for designing and verifying location  models. Without
the use of simulation, the effects projected from solutions  produced by determin-
istic optimization models may be erroneous or not statistically significant. In the
 following section and the next chapter, we will describe in more detail the basic
 philosophy behind optimization models, so that the reader can better appreciate
the statements made above. It should also be noted that this example illustrates
that  simulation has its proper place in spatial-temporal analysis. It can supplement
 stochastic process when the problem is too big to be solved analytically. It is also a
good verification tool when real world data are not available for model validation.

With the advantage of several years, a similar verification study was
 performed by Repede and Bernardo (1994). An optimization model that
 maximizes the expected demand coverage was constructed. Demand variations
over time or non-homogeneity was explicitly modeled in both the optimization
and simulation models in the study. The siting and fleet size (or the number of
ambulances) decisions obtained from the optimization model were input to a
simulation model that detailed the performance of the location and fleet size
 decisions. The computational cycle between the two models formed a decision
support system for the city of Louisville, Kentucky, with the optimization loca-
tion model prescribing the siting and the simulation model evaluating the siting
decision. In this case, validation data were available to gauge the quality of both
the conventional static optimization model and the dynamic decision-support
systems model proposed here. The decision-support system, which explicitly
recognized non-homogeneity, was found to yield better agreement with field
data. Better still, the decision-support system arrived at improved location
 decisions, corresponding to a 13-percent increase in coverage and 36 percent
 decrease in response time. This study again reinforces the role of stochastic
process—and simulation in particular—in location analysis.

VI. INVENTORY CONTROL USING 
MARGINAL ANALYSIS 

In facility location, siting of warehouses is often of interest. The intent is to place
a warehouse so that the transportation cost of resupplying its inventory is
 lowest, and so is the delivery cost to the stores or customers. Simulation and
 stochastic process can be used in inventory analysis, wherein the decision to
 reorder can be reached systematically to avoid stockout and excessive storage
costs. A common approach is to employ marginal analysis, which shows how a
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 descriptive tool can be used for optimization in special cases (Lapin 1975, Winston
1994). When the demand for the inventory in the warehouse is uncertain and its life-
time is limited, we have an example of the newsboy problem.4 Similar to selling
newspapers at the newsstand, the objective of the newsboy problem is to decide
how many items should be ordered at the beginning of each inventory cycle. The
 uncertain demand during the period d� expresses the number of items that
 customers will require during this period. Two types of outcomes may occur. If
 demand is no larger than the order quantity (z), sales will equal the quantity
 demanded d�. If demand is greater than the initial order, sales will be limited to the
order quantity z.

Three cost elements are considered: C is the unit cost of surplus inventory,
and c is the unit opportunity cost due to shortage. Let F(�) be the cumulative 
demand-function where � is the random variable for demand. To obtain the
 expected cost, we will assume that the probabilities for possible levels of demand
dF(�) is known. For an order quantity z and when demand is d�, the total cost is

C(z � d�)    if d� � z (3.4)
c(d� � z)    if d� � z

The expected total cost is � � CP(z � d�) � cP(z � d�). Such a cost function is
plotted in Figure 3.9. Equation 3.4 says that if demand is less than the order quan-
tity, we have overstocked at a per-unit cost of C, and if demand is higher than the
order quantity, we have understocked at a per-unit cost of c. Should we order one
additional unit dz, the surplus cost will be increased by C, but the stockout cost
will be reduced by c (or a �c change). This marginal cost can be represented by
the difference between overstocking cost and the reduction in stockout cost: 

�(z � dz) � �(z) � CP(z � d�) � cP(z � d�)

To order the optimal quantity, we order until the marginal cost is equal to zero,
assuming that we have the common situation of a convex cost function as shown
in Figure 3.9. In other words, starting out with having economy of scale, we order
until it starts to change over to dis-economy of scale:

CP(d� � z) � c(1 � P[d� � z]) � 0

The optimal order quantity z* is the smallest level z such that

CP(d� � z) � c(1 � P[d� � z]) = (C � c) P(d� � z)�c � 0 (3.5)

or

P(d� � z) � F(z) � �
C �

c
c

� (3.6)

This tells us that we need to calculate only the above ratio using the unit costs
given for the problem and establish the cumulative probability for demand. The
smallest demand z* with a cumulative probability that exceeds this ratio is the
order quantity that minimizes total expected cost.
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Example
Instead of direct substitution of numbers, we illustrate in this example how
such a result as shown in Equation 3.6 can be useful in parametric analysis
(Faneuff, Sterle, and Chan 1992). It also shows that marginal analysis has
its analytic properties, thus surpassing simulation in the modeling process
in limiting cases. Let demand be a uniform probability density function f(�) �
0.002. The cumulative function is then correspondingly F(�) � 0.002�.
Suppose the current inventory stands at 100 units, and the warehouse has a
storage  capacity of 500. Also the expected total cost ϕ(z) for an inventory
cycle is parametric on � and �: 2600 � (8 � � � �)z. The unit costs of over-
and under stocking (C and c) can be determined as a function of � and � by
solving this equation:

2600 � (8 � � � �)z � �500

100�z
c(0.002d�) � �100�z

0
C(0.002d�) (3.7)

where dF(�) � 0.002d� as mentioned. The right-hand side of the above equation
boils down to (0.8c � 0.2C) � (0.002C � 0.002c)z, which as a function of z consists
of the intercept (0.8c � 0.2C) and the slope (0.002C � 0.002c). By equating them
to the corresponding intercept and slope on the left-hand side of Equation 3.7
 respectively, we have two equations and two unknowns C and c:

0.8c � 0.2C � 2600
0.002(C�c) � �8����

This result is C � �400(� � �) � 600 and c � 100(� � �) � 3400.

According to Equation 3.5, the marginal cost is set at zero, �
d�

d
�
(
z
z)

� � 0,

for an optimal order quantity z*, or �
d�

d
�
(
z
z)

� � (C � c) F(z) � c � 0. Substituting the

 values for C, c and F(z) from above,

Figure 3.9  A CONVEX EXPECTED TOTAL-COST FUNCTION

Order quantity z

E
xp

ec
te

d 
to

ta
l c

os
t 

z * dz

z*

z* dz



Descriptive Tools for Analysis CHAPTER 3 105

�
d�

d
(
z
z)

� � (5.6 � 0.6� � 0.6�)z � 100(� � �) � 3400 � 0 (3.8)

which determines the optimal order quantity in terms of the parameters � and �

z* � (3.9)

In locating a warehouse, order quantity is specified for each location. This is
 illustrated in the “Simultaneous Location-Routing” chapter of Chan (2005). Here �
is the parameter to account for the given warehouse capacity and � for each delivery
 vehicle capacity—capacity that is needed to deliver supplies to a  demand  location. ■

VII. BAYESIAN ANALYSIS
Similar to inventory control, many facility location and land use analyses require a
rule to help make sound decisions. A descriptive tool to accomplish this is Bayesian
analysis, which includes the latest information on top of past knowledge in formu-
lating the decision rule. We will describe this method via an example of constructing
nuclear power plants on a proposed site considering safety and other environmen-
tal conditions. Based on site-specific environmental studies, we can summarize the
results in terms of two states of nature: (a) geotechnical condition ideal and (b) con-
dition marginal. Historical record of site-specific studies have shown that one out of
10 sites in the study area shows up as suitable, or P(ideal) � 0.1. This means that
P(marginal) � 0.9, or nine out of 10 sites are not suitable. Now the decision maker
faces two actions to consider for the construction project: (a) to build or (b) not to
build at the proposed site. A payoff matrix can be written for the savings in millions
of dollars for each nuclear power plant corresponding to the various decisions and
states of nature:

ideal marginal
—————————————-

build 1.3 �0.2
not-to-build 0 0

—————————————-

This payoff matrix says that if we decide to build at the site, and the site turns
out to be ideal, $1.3 million will be saved. On the other hand, if the site turns out
to be marginal, remedial engineering will cost an additional $200,000. Obviously,
a decision not to build does not incur any savings or cost. The expected return
for each decision can now be computed:

build:  0.1(1.3) � 0.9(�0.2) � �0.05 (3.10)not-to-build:  0.1(0) � 0.9(0) � 0

Based on these numbers, the not-to-build decision should be the course of action
since it is less costly.

100(� � �) � 3400
���
5.6 � 0.6� � 0.6�
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A. Bayesian Update
Instead of making the final decision based on historical records, it is decided that
additional information is to be gathered in order to have better knowledge about
the site. The immediate decision then involves having additional borings drilled
at $100,000 each or no additional work at (naturally) no cost. The boring may
 result in a positive statement about the suitability of the site or a negative state-
ment. From experience, the accuracy of boring tests are as follows:

P(positive|ideal) � 0.7 [or P(negative|ideal) � 0.3]
P(positive|marginal) � 0.2 [or P(negative|marginal) � 0.8]

This says that the chance that a boring will tell the true story when the site is suit-
able is 70 percent and the chance that it will tell the wrong story is 30 percent.
Likewise, the chance of telling the truth when the site is not suitable is 80 percent
and telling a lie 20 percent. 

The reliability of the boring test can be represented by graphical means
in terms of events and sample elements. The following diagram summarizes the
possible outcomes:

ideal marginal
—————————————

positive iiiiiii mm
negative iii mmmmmmmm

—————————————
m = 9 i

This indicates that the chance that the test will turn out to be positive given the
site is ideal (i) is seven out of 10, and that the test will turn out to be negative is
three out of 10. Similarly, the chance that the test will show up negative when the
site is marginal (m) is eight chances out of 10, while the chance that it will show
up positive is two out of 10 times. For every ideal site, there are nine marginal
sites. This event diagram is a convenient way of keeping track of sample
 elements. With this diagrammatic representation, the Bayes’ rule can be easily
 explained and summarized by the following equation

P(ideal|positive) � (3.11)

This equation shows how to compute the chance that the site is ideal given a pos-
itive result of a boring test, when all the information is available on the right-hand
side of the equation. Assuming the probability of a site being ideal given that a
positive boring test is not available, such a calculation is necessary to  arrive at a
build or not-to-build decision. Intuitively, if the boring test is positive, we tend to
infer the site is ideal, which can lead toward a build decision. Obviously, this
 inference can be made only under the following condition: The probability of the
site being ideal given a positive test is high. Thus the decision is made easy by
evaluating the above equation or assembling all the information on the right-hand
side of the equation.

P(ideal and positive)
���

P(positive)
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The assemblage of this general set of information is expedited by the
 application of Bayes’ rule, which can be represented conveniently by Figure 3.10,
a companion to the event diagram above. Assisted by the figure, these cal -
culations can be made by further breaking down the right-hand side of Equation
3.11 in terms of the given information:

P(ideal and positive) � P(ideal)P(positive|ideal)
� (0.1) (0.7)
� 0.07

P(positive) � P(ideal and positive) � P(marginal and positive)
� P(ideal) P(positive|ideal) + P(marginal) P(positive|marginal)
� (0.1)(0.7) + (0.9)(0.2)
� 0.25

which lead toward P(ideal|positive) � (0.07)/(0.25) � 0.28. These calculations can
be confirmed by the event diagram above by counting the sample elements 
row-wise and then column-wise for the event of interest. Thus the probability of
being ideal and positive is

7i/(7i � 3i � 2m � 8m) � 7i/(7i � 3i � 2[9i] � 8[9i]) � 0.07 and so on

B. Bayesian Decisions
Given the result of an additional boring is positive, the new payoff matrix, after
inclusion of the boring cost in dollars, is

ideal marginal
—————————————

build 1.2 �0.3
not-to-build �0.1 �0.1

—————————————

Figure 3.10  GRAPHIC REPRESENTATION OF BAYES’ RULE
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The expected return (in dollars) of the decision to build can be computed as

P(ideal|positive)(1.2) � P(marginal|positive)(�0.3)
� (0.28)(1.2) � (0.72)(�0.3)
� 0.12.

Since the expected return of the not-to-build decision is �0.1, the decision is
clearly to build if boring results are positive. Next is to decide between build or
not-to-build if the test is negative. Again, employing Bayes’ rule:

P(ideal|negative) � 

and following the same calculations as in the case of a positive boring result, it
can be shown that this conditional probability is evaluated at 0.04. The expected
return of building a plant is �0.24, and the expected return of the not-to-build
decision is �0.1. Thus the decision is clearly not-to-build if the test result is 
negative.

The next logical question is:  Should tests be conducted? In other words,
can we arrive at the same decision without the extra expense and trouble of bor-
ing tests? To answer this question, we calculate the expected return if testing is
conducted:

P(positive)(Payoff of a positive result) � P(negative)(Payoff of a negative result)
� (0.25){P(ideal|positive) [1.2] � P(marginal|positive)[�0.3]} � 

(0.75){P(ideal|negative) [�0.1] � P(marginal|negative)[�0.1]}
� (0.25)[0.28(1.2) � 0.72(�0.3)] � (0.75)[0.04(�0.1) � 0.96(�0.1)]
��0.045.

Likewise, we calculate the expected return if testing is not conducted, which is 
the same as the expected return of the not-to-build decision as computed in
Equation 3.10:

P(ideal)(payoff from an ideal condition) � 
P(marginal)(payoff from a marginal condition)
= (0.1)(0) � (0.9)(0)
= 0

Compared with incurring a cost of $100,000 to conduct a test, the decision is ob-
viously not to test.

C. Decision Tree
The best way to review the entire problem is by way of a decision tree, which
summarizes all the possible decisions and outcomes. Referring to the decision tree
of Figure 3.11, these with the given data are displayed. (a) The payoff matrices are
laid out in the Payoff column. (b) The cost of a test is 0.1 million dollars. This
means the cost of constructing a power plant is (0.3 � 0.1) � 0.2 million dollars.

P(ideal and negative)
���

P(negative)
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With the previous calculations summarized in the same figure, it can be verified
that the  expected return of building the plant, given testing is positive, can be eas-
ily computed from the information contained in Figure 3.11: E(build|positive) �
($0.03)/0.25 � $0.12, which says that the expected return given a boring test turns
out to be positive is $120,000. Similarly, the expected return of a not-to-build 
de-cision given a test is positive is:

E(not-to-build|positive) � (�$0.025)/0.25 � �$0.1

which amounts to a cost of $100,000. In the same way,

E(build|negative) = (�$0.18)/0.75 � �$0.24.
E(no-build|negative) = (�$.075)/0.75 � $�0.1.

Figure 3.11  BAYESIAN DECISION TREE
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Notice from the decision tree that it is meaningless to ask for the
 expected return of a build decision, E(build), without the qualification of “given
the test is positive,” “given the test is negative,” or “given there is no test.”
However, it is very meaningful to calculate the expected return of conducting a
test. Thus following the logical paths in the decision tree, E(test) can be easily
evaluated: E(test) � ($0.03) � (�$0.075) � �$0.045. Following a similar path on
the other side of the decision tree, the expected return of the no-test decision,
E(no-test), is obviously 0 even without any computation.

To round out the discussion on Bayesian decision making, we like to ask
the question: “How much is the boring worth in terms of the additional infor-
mation it buys?” This is referred to as the expected value of sample information,
and can be computed as

(expected value of optimal decision with sample info) � 
(expected value of optimal decision without sample info)
� $[(�0.045) � (0)]
� $0.045

Thus, the decision maker should be willing to pay up to $(�45,000 � (�100,000)) =
$55,000 for an additional boring test (sample information). (One can think of this
calculation as adding back the $100,000 sampling cost into the decision tree,
in order to fully  account for the full worth of the sampling test.) Since the test
 actually costs $100,000, we conclude that the test is not worthwhile. Consequently,
following the logical path to its logical conclusion on the decision tree, building the
plant at the proposed site is undesirable.

The above case study is a simple way to introduce Decision Analysis. In
this case study, a single metric, expression in dollars, is used throughout as the
criterion for evaluation. It is obvious that this represents the simplest case when
every measure can be quantified conveniently in terms of a cost expressed in dol-
lars. This subject will be further discussed in Chapter 5, entitled “Multicriteria
Decision Making,” where multiple metrics will be used to choose between
 alternatives. This generalization is in many ways a logical progression, as
pointed out by Tsoukias (2008), who argues eloquently that the decision-analysis
pro cedure is simply a subset of the body of knowledge known as Decision
Aiding Methodology.

D. Influence Diagram 
As an alternative to a Decision Tree, an influence diagram provides a simple
graphical representation of a decision problem (Clemens 1996; Wikipedia 2010).
It is a generalization of a Bayesian network, in which not only probabilistic infer-
ence problems but also decision-making problems can be modeled and solved.
By a decision-making problem, we mean choosing among alternatives following
the maximum expected utility criterion. The elements of a decision problem—
 decisions to make, uncertain events, and the value of outcomes—show up in the
influence diagram as differently-shaped nodes. These nodes are then linked with
arrows in specific ways to show the relationships among them. Influence dia-
gram is now adopted widely and becoming an alternative to a decision tree
which typically suffers from exponential growth in number of branches with
each variable modeled, as one can gather from even the simple problem above.
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Let us illustrate with a simple influence diagram for making decision
about business activities. Consider the simple influence diagram in Figure 3.12,
representing a situation where a business is planning its transactions. There is
one decision node (Business Activity), two uncertainty nodes (International
Economy, Economic Forecast), and one value node (Corporate Profit).

There are two functional arcs that end in the “Corporate Profit” node,
one conditional arc that ends in the “Economic Forecast” node, and one infor-
mational arc that ends in the “Business Activity” node. The functional arcs end-
ing in Corporate Profit indicate that Corporate Profit is a function of the
International Economy and Business Activity. In other words, Corporate Profit
can be estimated if the business knows what the International Economy is like
and what its choice of activity is. (Notice that in this strict relationship it does not
value Economic Forecast directly in estimating Corporate Profit.) 

The conditional arc ending in Economic Forecast indicates the business's
 belief that Economic Forecast and the International Economy can be dependent. The
 informational arc ending in Business Activity indicates, however, that the business
will only have knowledge of the Economic Forecast, not the actual International
Economy, when making its choice. Stated differently, the actual  economic condition
will be known after it makes its choice (not before). Only the forecast is all it can
count on at this stage. It also follows, semantically, that Business Activity is inde-
pendent of (or irrelevant to) International Economy, given the Economic Forecast is
all that is available for decision-making. 

The above example further illustrates the power of an influence diagram in
representing an extremely important concept in decision analysis known as value of
information. Consider the following three scenarios: 

▫ SCENARIO 1: The business could make its Business Activity decision
while knowing what International Economy will be like. This corre-
sponds to adding an extra informational arc from International
Economy to Business Activity in the above influence diagram. 

Figure 3.12  AN EXAMPLE INFLUENCE DIAGRAM

International
Economy

Economic
Forecast

Business ActivityCorporate Profit
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▫ SCENARIO 2: This is represented by the original influence diagram as
shown in Figure 3.12. 

▫ SCENARIO 3: The business makes its decision without even know-
ing the Economic Forecast. This corresponds to removing the in-
formational arc from Economic Forecast to Business Activity
in Figure 3.12. 

Scenario 1 is the best possible scenario for this decision situation since
there is no longer any uncertainty on what the business wants to know (about
the International Economy) when making its decision. Scenario 3, on the other
hand, is the worst possible decision situation since the business needs to
make its decision without any knowledge (not even an Economic Forecast) on
the  actual International Economy. The decision-maker is usually better off
 (definitely no worse off) to move from scenario 3 to scenario 2 through the
 acquisition of new information. The most it should be willing to pay for such a
move is called value of information on Economic Forecast, which is essentially
the value of imperfect information on the International Economy. 

Likewise, it is the best for the business to move from scenario 3 to
 scenario 1. The most it should be  willing to pay for such a move is called value
of perfect information on the International Economy.

E. Bayesian Classifier 
The reader may be so convinced by the nuclear power plant example above that
it is possible to formalize a rule to classify go versus no-go decisions. But what
about situations where there are more than two decisions—for instance, “go,” 
“no-go,” and “wait”—and is there a more compact way to characterize the
 decision in such situations? Here we have a general classi fication problem, decid-
ing which logical decision among K decisions (where K > 2) we should commit
 ourselves to given certain payoffs and probabilities of outcomes. A classification
exists that is optimal in terms of expected payoffs, and also yields the lowest
 expected probability of committing classification errors (Gonzalez and
Woods 1992).

Instead of a single attribute (such as dollars in the above siting example),
let a decision be made based on a vector of attributes x � (x1, x2, . . .) where x1
may be cost, x2 may be risk, and so on. The probability that a particular vector of
 attributes x logically belong to class Gi is denoted by P(Gi|x). If a classifier de-
cides that x logically belonged to Gj when it actually belonged to Gi , it incurs a
classification error, which is manifested in terms of a loss measure Lij (Rue 1995).
As  attribute vector x may belong to any of K classes under consideration, the
 average loss incurred in assigning x to class Gj is

Lj(X) �
K

�
k � 1

LkjP(Gk|x)

Using Bayes’ rule, or P(A|B) � [P(A)P(B|A)]/P(B), the above equation can be
re-written as

Lj(x) � 
K

�
k�1

LkjP(x|Gk)P(Gk) (3.12)1
�
P(x)



where P(x|Gk) is the probability that the attribute or feature vector really
comes from class Gk and P(Gk) is the probability of occurrence of class Gk. Since
1/P(x) is common to all the loss measures Lj(x), j = 1, 2, . . . , K; it can be
dropped from Equation 3.12 without affecting the relative order of these func-
tions from the smallest to the largest value. The expression for the average loss
then reduces to 

Lj(x) �  
K

�
k�1

LkjP(x|Gk)P(Gk) (3.13)

The classifier has K possible classes to choose from for any given feature
vector x. It computes L1(x), L2(x), . . . , LK(x) and assigns the feature vector to the
class with the smallest loss. In many decision problems, the loss for a correct
 decision is zero, and it has the same non-zero value (for example, 1) for any
 incorrect decision. Under these conditions, the loss function becomes 

Lij � 1 � zij (3.14)

where the indicator variable zij � 1 if the vector has been properly classified (i = j).
On the other hand zij � 0 if it is improperly classified (i  j). Equation 3.14 indicates
a loss of unity for incorrect decisions and zero loss for correct decisions (as indicated
by the indicator zii � 1 or in vector notation Zi � (zii, zij)

T � (1, 0)T). Substituting
this equation into Equation 3.13 yields the following expressions. Please note that for
the first term of the summation expansion, it simply suggests that P(A|B)P(B) +
P(A|~B)P(~B) = P(A), where ~B is the complement of event B. For the second term
of the summation expansion, all zkj = 0 except when k = j (or zij = l).

Lj (x) �
K

�
k�1

(1�zkj)P(x|zk)P(zk)

� 
K

�
k�1

�P(x|zk)P(zk) � zkj P(x|zk)P(zk)� (3.15)

= P(x) � P(x|zj)P(zj).

The Bayes’ classifier then assigns a feature vector x to class Gi if Li(x) < Lj(x), or 

P(x) � P(x|zi)P(zi) � P(x) � P(x|zj P(zj) (3.16)

This is equivalent to

P(x|zi)P(zi) � P(x|zj)P(zj)    j � 1, 2, . . . , K; j  i (3.17)

Thus we can see that the Bayesian classifier for 0-1 loss functions is nothing more
than implementation of decision function of the form

L′j(x) � P(x|zj)P(zj)    j � 1, 2, . . . , K (3.18)

where a feature vector x is assigned to class Gi if Li′(x) > Lj′(x) for all j  i.
As an example, consider a scalar attribute x involving two classifica-

tions (K � 2) governed by Gaussian probability-density functions (PDFs), with
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means �1 and  �2 and standard deviations �1 and �2 respectively. From Equation
3.18, the decision function has the form 

L′j(x) � P(x|zj)P(zj)

� exp�� �
(x

2
�

�

�
2
j

j)2

��P(zj) j � 1, 2 (3.19)

Figure 3.13 shows a plot of the PDF for the two classes. The boundary between
the two classes is a single point, x0, such that L1′(x0) = L2′(x0). If the two classes are
equally likely to occur, P(z1) � P(z2) � 1/2, and the decision boundary is the
value of x0 for which P(x0|z1) � P(x0|z2). This point is the intersection of the two
PDFs, as shown in Figure 3.13. When �1 � 0, �2 � 1, and �1 � �2 � �, for exam-
ple, x0 � 1/2. Any feature attribute to the right of x0 � 1/2 is classified as
 belonging to class G1. Similarly, any feature attribute to the left of x0 � 1/2 is
 classified as belonging to class G2. For computational ease, logarithm is often
 applied toward the decision function:

L″j � log L′j
� log [P(x|zj)P(Zj)] (3.20)
� log P(x|zj) � log P(zj)

In the case of the scalar Gaussian PDF above, this simplifies to

log P(zj) � log �j � �
(x �

�2
j

�j)2

� (3.21)

after leaving out the common constant term such as �1/2(log 2	).

1
�
�2	�	�	j

Figure 3.13  DEFINING A DECISION BOUNDARY
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SOURCE: Gonzalez and Woods (1992). Reprinted with permission.
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Now let us compare and contrast two classification possibilities by taking
the ratio 

log � �.
For known parameters �1, �2, and �2, we have from Bayes’ theorem:

P(A|BC) � P(ABC)/P(BC) � P(ABC)/[P(B|C)P(C)] � 

P(A|C)P(C)P(B|AC)/[P(BC)P(C)] � P(A|C)/[P(B|C)/P(B|AC)] 

that

log � � � lοg � �
� log � � � 

1
2� �� � � (3.22)

= � + β(T1j �T2j).

Notice that 

�

� � �
(3.23)

considering

P(x|zij = 1, zj) = P(x|zj) = exp � �.
This shows that when xj = ½, we have P(x|zj) in both the numerator and denomi-
nator, corresponding to the joint probability of being in either group j � 1 or j � 2.
On the other hand, when xj > ½, the probability of being in group j � 2 is enhanced,
and when xj < ½, the probability of being in group j � 1 is enhanced. For those
 interested in a numerical illustration beyond the power plant example, please refer
to the “Spectral versus Spatial Pattern Recognition” section in Chapter 6.

VIII. ECONOMETRIC APPROACH
The above described model building philosophy can be visualized as an
 approach wherein the casual sequence of events are chained together in a
 manner reflecting the process in real life, hence the terms decision analysis,

P(z1j � 1|x, zj)
��
P(z2j � 1|x, zj)

P(z1j � 1|zj)/(P(x|zj)/P(x|z1j � 1, zj))
�����
P(z2j � 1|zj)/(P(x|zj)/P(x|z2j � 1, zj))

P(z1j � 1|x, zj)
��
P(z2j � 1|x, zj)

(xj�1)2

�
�2

(xj�0)2

�
�2

exp(βT1j)
��
exp(βT2j)


xj � �
1
2��

�
�2

P(x|zj)P(x|z2j � 1, zj)
���
P(x|zj)P(x|z1j � 1, zj)

P(x|zj)/P(x|z1j � 1, zj)
���
P(x|zj)/P(x|z2j � 1, zj)

(exp [�(xj � 0)2/2�2])
����
(exp [�(xj � 1)2/2�2])

(x � �j)
2

�
�2�2

1
����
√⎯
2��
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 simulation, and probabilistic models. Thus in decision analysis, we update a
prior probability using sample information and based on the updated informa-
tion define a  decision boundary to classify a multi-attribute observation. In a
 stochastic model, one schedules service vehicles in response to time varying
 demands. Finally in simulation, we replicate the sequence of events in which a
previous event leads toward a subsequent event. A parallel approach, to be dis-
cussed here, does not claim to have an explicit understanding of the causal
chain. Rather, it examines a set of historic data and tries to postulate a structural
relationship that explains the observed data. If history repeats itself, or if the
structural relationship prevails, one can forecast the future. Such an approach, as
applied in facility location and land use, is termed the econometric method. Its
components are explained below.

A. Arrow Diagram and Path Analysis
The first step in an econometric approach is the construction of arrow dia-
grams. An arrow diagram is a graphic aid to postulate the relationships
 between a number of factors. These may be a primary, secondary, or tertiary
order correlation. Note that an arrow diagram shows structural relationships
and unlike its analogue, the logic flow chart, no casual pattern is implied. Thus
in Figure 3.14, a relationship is postulated between the population in the base-
year and the forecast-year (with an arrow pointing from base- to forecast-year),
which  expresses correlation and not causation. The distinction is really appar-
ent if one compares it to the logic flow diagram that traces service activities to
basic  employment. While one may suspect that the population in the forecast
period would continue to be large if population in the base period is large
(a correlation), it is not the same as the more close ties between basic and
 nonbasic activities (a causation). Primary, secondary, and tertiary ordering (or
relationship) between two factors is defined to reflect a decreasing degree of
correlation. In the example shown in Figure 3.14, the most important correla-
tion, according to the postulation of the model builder, exists between the base-
year and the  future-year population. The least dominant correlation, on the
other hand, is that between base-year population and forecast employment.

Path analysis is a refinement of the arrow diagram technique. While the
arrow diagram quantifies the correlation between two factors such as employment
and population, path analysis defines the relationship more precisely by confirming
the arrow from employment to population is in fact correct or vice versa, as shown

Forecast time period Base time period

PopulationPopulation

EmploymentEmployment

Primary order

Secondary order
Tertiary order

Legend

Figure 3.14  ARROW DIAGRAM FOR ECONOMIC-BASE EXAMPLE
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in Figure 3.15. Putting the discussion in more familiar experiences, path analysis
 addresses the chicken-and-egg phenomenon, where the initiating factor is to be
identified. Citing a popular example, we may have found a high correlation
 between the number of medical doctors and the number of sick people in an
 infected community. A distinction is to be made between the sequence of events as
to whether the infirm triggered the arrival of the doctors or the doctors caused the
epidemic. The answer is quite obvious in this example. It is, however, less so in
many other circumstances. Back to the economic base example we have been using,
it is not entirely clear which is the initiating event: employment or population. As
illustrated above in the economic base example, employment and population serve
as the initiator alternatively. Path analysis can be used to resolve these nebulous
 situations because it is a means to check internal consistency—thus pointing out
contradictory structural ordering. We will come back to this a bit later.

B. Econometric Models
Thus far, only the qualitative relationship between factors has been discussed. To
quantify this relationship, we need to place a numerical value between each pair
of factors. This is termed the correlation coefficient, which assumes a value from
zero through unity5 (Figure 3.16). A value close to unity would denote a high

Figure 3.15  PATH ANALYSIS FOR THE ECONOMIC-BASE EXAMPLE

PopulationEmployment

PopulationEmployment Both have the same
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Figure 3.16  CORRELATION COEFFICIENTS
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 degree of association, while a value close to zero would indicate a lack of associ-
ation between two factors. Once the correlation coefficient between population
and employment (rPE) is defined, mathematical expressions can be written for the
arrow model we examine above: employment is proportional to population, or
population is proportional to employment; where rEP � 1/rPE. 

Once the correlation coefficients are defined, it is rather straightforward
to recognize that the arrow diagram shown in Figure 3.14 can be quantified as the
following set of equations:

(forecast pop) � a(forecast emp) � b(base-yr pop)
(forecast emp) � c(forecast pop) � d(base-yr emp) (3.24)

Here a, b, c and d are calibration coefficients, showing that future-year popu-
lation is correlated both to base-year population and future-year employment.
Now we are at a position to come back to the use of path analysis to validate a
postulated set of relationships, which so far has been nothing but a hypothesis
in the mind of the modeler. Application of path analysis to the 2-arrow models
as shown in Table 3.4 results in the necessary conditions shown in Table 3.5.
These tables illustrate two points. First, there are subsets of models where
 predicted relationships are mutually contradictory. Second, several models
should, if valid, satisfy the same necessary conditions on the correlation
 coefficients.

Table 3.4  TYPOLOGY OF 2-ARROW MODELS

Model type

Both X and Z independently 
affect Y.

X, partially caused by Z, 
causes Y.

The primary variable X causes 
both Z and Y.

The secondary variable Z
intervenes between X and Y.

The primary variable X and the
supposedly dependently variable
Y are correlated but not casually
connected.

Arrow diagram

X Z

Y

Z

X

Y

X

Z               Y

X

Z

Y

Z

X               Y

X
a21 X  Y a23

X a13
a21 X  Y

X
a21 X  Y
a31 X

X
Y a23 Z

a31 X

X a13
Y a23

b1
Z b2
Z b3

Z b1
b2

Z b3

b1
b2

Z b3

b1
b2

Z b3

Z b1
Z b2
Z b3

Econometric equations

SOURCE: De Neufville and Stafford (1971). Reprinted with permission.
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The two tables constructed for 2-arrow models demonstrate that path
analysis can be a useful means to discriminate between some models and can
help the analyst reject some models that are obviously false. For example, in
order for the “X-in-the-middle” (and the corresponding econometric models)
to be valid, the correlation coefficients rXY and rXZ must be non-zero. If any one
of these two  correlation coefficients happens to be zero, the “X-in-the-middle”
model is proven to be invalid and some of the corresponding pointing
 directions of the arrows may need to be reversed (as in the “Z-in-the-middle”
models). The results also show that correlation coefficients are not a useful
guide for the positive identification of the best model. Many models with
 contradictory implications may satisfy the same correlation requirements.
Table 3.5 shows, for example, that one cannot  distinguish statistically between
the “Z-in-the-middle” models: X ← Z → Y, X → Z ← Y, X → Z → Y and X ←
Z ← Y. To distinguish between these possibilities, the modeler must rely upon
his understanding of the situation being modeled.

IX. CALIBRATION
In the above discussions, we have presented two parallel methodologies to
 construct a descriptive model, one based on casual relationships while the other
is founded upon correlation inferences. We call them, for convenience, simula-
tion and econometric models respectively. In order to make either one of these

Table 3.5  RESULTS OF PATH ANALYSIS

Grouping

of models

Y in the middle

X in the middle

Z in the middle

Arrow diagram

X                Z

Y

Z

X

Y
X

Z                Y

X

Z

Y
Z

X                Y

rXZ 0 rXY 0
rYZ 0

rXY 0
rXZ 0

rXZ 0
rYZ 0

Path analysis

prediction Condition

rXY rXZrYZ  

rYZ
rXZ

rXY

SOURCE: De Neufville and Stafford (1971). Reprinted with permission.
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 models operational, a calibration process has to be carried out. This is to estimate
the  parameters of the model, such as the average number of dependents per
 employee (or the reciprocal of labor force participation rate)—an economic-base
example we are familiar with—or the coefficients a and f in Table 3.1.

A. Ordinary Least Squares
The calibration procedure is expedited if one deals with a linear relationship,
since there are more software packages available for linear than nonlinear rela-
tionships. Nonlinear relationships can often be converted to linear ones as shown
in the example below—as we have demonstrated in Equations 3.20 and 3.21.

Nonlinear form: W � aXbYcZd

Log-linear form: log W � log a � b log X � c log Y � d log Z

Once a log-linear equation is obtained, the linear statistical techniques can be 
applied when one treats the logarithm of a variable as the observations. When
carrying out such a procedure, however, care must be exercised in observing the
normal distribution assumptions on error terms in linear-regression calibration
techniques, as explained in Appendix 2.

There are about five categories of goodness of fit statistical techniques,
ranging from the less sophisticated to the more involved. The first to be dis-
cussed is the manual procedure. Here, the ratio between the two variables may
be used to estimate the parameter. For example, to estimate the average size of
the household, the total population in the study area is divided by the number
of households. To estimate the labor force participation rate, the number of 
employees is divided by the total population and so on. The next technique is 
ordinary least squares (OLS), where a graphical plot of the pair of variables of
interest is used to determine an equation, from which the values of parameters
can be obtained. For example, industrial development may be directly related to
accessibility in a linear equation: development � a(access) � b. A plot such as
Figure 3.16 will have development as the Y axis and accessibility as the X axis.
Linear regression will yield the numerical values of a and b, as explained in
Appendix 2.

Where there is more than one equation to be fitted, indirect least squares
and two-stage least squares are the appropriate methods. For illustration pur-
poses, let us examine the following simultaneous equation set, where a, b, and c
are to be calibrated:

( forecast pop) � a( forecast emp) � b(base-yr pop)
( forecast emp) � � c(base-yr pop).

It is to be noted that the equation set is a realization of the second block of arrow
diagrams in Table 3.4 and Figure 3.14. The special property of such a set of
 equations allows simplification to be made on the structural form. The second
equation can be readily substituted into the first one, resulting in a reduced form:
forecast pop � d(base-yr pop) � e, where the coefficients d and e can be calibrated
using ordinary least squares techniques. The substitution in effect removes the
coupling between the forecast employment variable that appears on the left-
hand side of the second equation and the right-hand side of the first equation.
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The name indirect least squares refers to the fact that through the reduced form
straightforward regression can be performed on a single equation instead of the
simultaneous set. In general, an exactly identified set of structural equations can
be reduced to a number of uncoupled equations, which can then be calibrated
 independent of one another.

B.  Two-Stage Least Squares 
If an arrow diagram results in the following equations:

( forecast pop) � a( forecast emp) � b(base-yr pop)
( forecast emp) � c( forecast pop) � d(base-yr pop) (3.25)

then a less straightforward procedure called two-stage least squares (2SLS) needs
to be employed. The basic idea of 2SLS is to replace the endogenous explanatory
variables Y in each equation with an estimated matrix Ŷ based on the regression
of the variables in the Y-vector on all of the predetermined (exogenous) vari-
ables, the X matrix in the model. This is referred to as stage 1 of the calibration.
The second stage then involves ordinary least squares estimation of each Yi
based on Ŷ and X.6 For example, in the set of equations labeled 3.25 above, one
can  define the forecast pop and forecast emp as endogenous variables Y and base-yr
pop as exogenous variable X. Then stage one of 2SLS estimates a matrix of the two
forecast variables [Ŷpop, Ŷemp] based on the regression of these forecast variables
on the base-year population. In the second stage, forecast variables, Ypop and Yemp
are regressed against the estimated forecast-variables [Ŷpop, Ŷemp] and the (base-yr
pop) variable X.

Mathematically, this process is shown by first moving all Y’s to the left-
hand side of the equation so that D′y′′ � B′x′ � A, where D′ is the calibration-
 coefficient matrix, B′ is the calibration-coefficient matrix and A is the disturbance or 

error vector. In this case D′ is 2 � 2 matrix � �, y is 2 � 1 vector (forecastpop,

forecast emp)T, B′ is the 2 � 2 matrix � �, x′ is a 2 � 1 vector (base-yr pop,

base-yr pop)T, andA is a 2 � 1 vector (A1 A2)
T. Solving this equation results in 

y′′ � D′�1B′x′ � D′�1A, or what is commonly referred to as the reduced form of
the original structure y′′ � Cx � D′�1A where C � D′�1B′. Then using ordinary
least squares, estimates of the coefficients ′Ĉ, or C, can be determined for each of the
reduced form equations such that Ŷ � ĈTX where Ŷ is the estimated values of
the endogenous variables. Here C is 2 � 2, x is 2 � 1, and Ŷ is 2 � 1. 
In the second stage, ordinary least squares is applied to the model 

Yi � aT Ŷ � bTx′ � Ai (3.26)

to find asymptotically unbiased estimates of the parameters a and b. Here  Ŷ � (Ypop,
Ŷemp)

T and a = (a1, a2) and b � b. In evaluating the significance of the model, similar
 measures to those employed in OLS can be used, viz, the Student-t test, 
the F-test, and the coefficient of multiple determination R2. However, a word of
 caution is in order: Since both  Ŷ and y″ are used to compute R2 in Equation 3.26,
 negative values can result. Therefore R2 should not be used directly as a measure of

1  �a
�c 1

b 0
0  d
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the variation explained by the model. In addition, it follows from OLS that when
there is high correlation between the explanatory variable, such as Ŷ and x′ in
Equation 3.26, the structural parameters a and b will be imprecise and have a high
standard error.

C. Example of Two-Stage Least Squares
A linear urban model based on a set of simultaneous equations was developed
for a twenty-three zone study area in central Berkshire, England. The calibration
process involves running the regression model a number of times, testing for the
significance of the variables, checking that the regression assumptions have not
been violated, and interpreting the regression coefficients. The following equa-
tions set were postulated initially

�N � c1 � a1�ER � b1�EB � b2�N � b3N � b4E
R � b5E

B � b6t′
�ER � c2 � a2�N � b1�EB � b8N � b9E

R � b10u
(3.27)

Here N is zonal population, EB is zonal basic employment, ER is zonal service
 employment, t′ is accessibility-to-employment, and u is accessibility-to-popula-
tion. The Δ increments refer to changes over a five-year period. Using off-
the-shelf econometric computer programs, the first stage of the calibration is to
calculate the reduced form estimates for population and service employment
changes from multiple regression equations expressing each as a function of all
the exogenous variables. The second stage entails using these reduced form
 estimates as the  explanatory variables on the right-hand sides of the simultane-
ous equations and performing multiple regression on each of the equations
 individually. This determines the coefficients c1 to c2, a1 to a2, and b1 to b10. At
 prediction, the coefficients of the reduced form equations and the coefficients of
the simultaneous equations will be used in the same two-stage procedure to pre-
dict population and service  employment changes over some future time  period
(Foot 1981).

Trial 1 of the calibration process produces the following result:

�N � 2514.51 � 27.702�ÊR � 15.415�EB � 0.129N � 5.830ER � 2.822EB � 0.073t'
�ER � 80.611 � 0.037�N̂ � 0.555�EB � 0.0003N � 0.153ER � 0.0045u

(3.28)

where the reduced form estimates of population and service employment
changes are denoted by �N and �ER respectively. The R2 for the first equation is
0.733, and the R2 for the second is 0.998. The t-values for the coefficients associ-
ated with each explanatory variable in the first equation are respectively 0.973,
0.952, 1.344, 1.109, 1.529, and 0.503. Those for the second equation are 3.663,
12.614, 0.083, 38.25, and 2.647. To test the level of significance of the variables, the
theoretical t-value at the 5 percent level for the first equation is t = 2.114, and for
the second equation, t = 2.106.

It can be seen that many of the variables in both equations are not signif-
icant (particularly in the first equation), and this can largely be explained by the
interrelationships between some of the variables which show up in the correla-
tion matrix (Table 3.6). By inspection of this matrix and the level of  significance
of the coefficients, accessibility to employment was removed from the first
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 equation and base-year population from the second equation, because of their
high correlation with other variables in the equation. When the models were 
re-computed, service employment at the calibration year in the first equation
was still not significant and, therefore, removed. The removal of these three
variables lead to an increased level of significance of the other variables and, on
re-computation, produced a simultaneous equation set containing only signifi-
cant variables:

�N � 44.745 � 3.844�ÊR � 2.372�EB � 0.144N � 0.924EB

�ER � �80.099 � 0.037�N̂ � 0.555EB � 0.152ER � 0.0044u
(3.29)

The first equation commands an R2 of 0.700, while the second equation 0.998. The
t-values in the first equation are 5.547, 2.174, 2.571, and 2.897; and for the second
equation 4.625, 12.907, 50.667, and 3.508. It can be seen that service-employment
change is almost perfectly reproduced by the model, and population change,
 significantly. The overall R2 values have been reduced only slightly by removing
the non-significant variables from the model. This latter, more parsimonious
model satisfies the regression assumptions relating to the independence of the
 exogenous variables far better.7

The main problem with the final model is the negative coefficients,
which in the first equation suggest that as service employment increases in a
zone, population decreases. Similarly in the second equation, as population
 increases service employment decreases. This is due to the data used for calibra-
tion. With just the  exogenous variables available in producing the reduced form
estimates, the two-stage regression model cannot cope with extensive re-devel-
opment that took place downtown in which shops and office buildings replaced
substandard housing. Because of the large number of shops and offices down-
town, the effects of this downtown re-development dominate over other zones in
the entire study area. Exogenous variables relating to re-development must be
 included in the first stage of the regression to improve the explanation and
 provide more reasonable coefficients. In spite of this common problem among
two-stage least squares, the calibrated model is statistically significant enough

ER

EB

N

ER

EB

u

t

N

0.6722

0.7284

0.1892

0.7042

0.5747

0.8455

0.8063

ER

0.9028

0.3478

0.9885

0.4634

0.5413

0.5342

EB

0.0167

0.9113

0.6423

0.5331

0.4937

N

0.3026

0.2719

0.1559

0.0859

ER

0.5801

0.5697

0.5609

EB

0.3929

0.3613

u

0.9821

SOURCE: Foot (1981). Reprinted with permission.

Table 3.6  CORRELATION MATRIX BETWEEN VARIABLES IN THE CENTRAL
BERKSHIRE MODEL
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to be used for prediction in five-year increments, as long as the forecast is not
 over-extended into the future. For an example of this forecasting procedure, see
the “Econometric Model”  chapter in Chan (2005).

D. Maximum Likelihood
Another econometric technique to be discussed here is the maximum likeli-
hood  estimation procedure. It is a calibration procedure that estimates the
 unknown  parameters by maximizing the probability, that the sample drawn is
a true representation of the population, given the population distribution and
sampling frame. An example of the gravity model is the best way to illustrate
this model fitting  technique. Suppose a consumer is choosing between two
shopping malls (k � 1 or 2) to go to on Saturday morning. A sample of three
shoppers (n � 1, 2, 3) has been included in a survey. Each shopper was asked
about his individual travel time to a shopping mall k (k = 1, 2), �nk, and the final
choice of the mall. The individual  survey results are tabulated in Table 3.7. An
examination of the table shows that the  individuals surveyed chose a location
mainly based on proximity.

Consider a model such as the following for an individual’s discrete
 location decision as derived by consumers’ surplus maximization in Chapter 2:

P(n, k) � k � 1, 2; n � 1, 2, 3
(3.30)

A likelihood function L is defined as the probability that in a sample of three
 persons, one person chooses location 2 and two persons location 1. Thus the
 likelihood that the first two persons choose location 1 while the third location 2
is P(1,1)P(2,1)P(3,2). There are three possible ways that the sample can have the
one-person/location 2, two persons/location 1 split:

▫ the first person goes to shopping mall 2 while the second and third
go to mall 1,

▫ the first and third go to mall 2 while the second goes to mall 1,
▫ the first and second go to mall 2 while the third goes to mall 1.

exp(
k�nk)��

�
2

i�1
exp(
i�ni)

Table 3.7  DISAGGREGATE CALIBRATION OF A MAXIMUM LIKELIHOOD
MODEL
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The likelihood function L now looks like

�
2
3
!1
!
!

�P(1, 1)P(2, 1)P(3, 2). (3.31)

It is computationally convenient to take the logarithm of the likelihood
function 

ln L � ln 3 � ln P(1, 1) � ln P(2, 1) � ln P(3, 2). (3.32)

which can be written as 

K � ln � ln � ln (3.33)

where K is a constant. After collapsing of some terms

ln L � K � (4
2 � 9
1) � {ln[exp(5
1) � exp(7
2)] �
ln[exp(4
1) � exp(6
2)] � (3.34)
ln[exp(6
1) � exp(4
2)]}

The values of 
’s are simply determined by solving these two simultaneous 
equations.

�
∂(

∂
ln

1

L)
� � 0;   �

∂(
∂
ln

2

L)
� � 0 (3.35)

These equations seek the values of 
’s that maximize the value function. The
estimation typically involves the hill-climbing numerical technique, which is
tangential to the development here and will be covered in Chapter 4, which sum-
marizes prescriptive techniques.

Skipping over the computational details and getting at the results, the
above two equations boil down to

9 � � � � 0      (3.36)

and

4 � � � � 0     (3.37)

Numerical solution of these two equations and two unknowns is performed,
yielding 
1 � �14.434 and 
2 � �14.211. The reader should note the negative
value of the 
 parameters. Compared with the OLS procedure discussed above,

exp(4
1)���
exp(6
1) + exp(4
2)

exp(4
1)���
exp(4
1) + exp(6
2)

exp(5
1)���
exp(5
1) + exp(7
2)

6 exp(6
1)���
exp(6
1) + exp(4
2)

4 exp(4
1)���
exp(4
1) + exp(6
2)

5 exp(5
1)���
exp(5
1) + exp(7
2)

4 exp(4
1)���
exp(6
1) + exp(4
2)

6 exp(6
2)���
exp(4
1) + exp(6
2)

7 exp(7
2)���
exp(5
1) + exp(7
2)
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the maximum likelihood procedure typically is more efficient with data, but it
 requires knowledge of the underlying distribution of the basic random variable.
It provides an unbiased estimator, rather than an asymptotically unbiased one.
While the calibration procedure appears straightforward in this example, solu-
tions to Equation 3.35 may be very difficult to find. When the errors are normally
distributed, the maximum likelihood estimators of the regression coefficients are
the least squares estimators.

X. AGGREGATE VERSUS DISAGGREGATE
MODELING

The same shopping location example can be modeled using an aggregate format,
which is simpler in many regards. Instead of addressing each individual’s
 decision, the shoppers of the entire study area are modeled. Consider the case of
three shopping centers from which the shoppers can choose. Table 3.8 shows the
average travel cost and time to each of these centers, as well as the number of
 patrons that end up there. The objective is to calibrate an aggregate, instead of
 disaggregate, location choice model. The model specification will look like

Pk � �
�

e

i

x
e
p
xp

(a
(
�

a
k

�i

�

�

b
b
ck

c
)

i)
� (3.38)

where �k and ck are the travel time and cost via mode k, and a, b are calibration
constants. Notice that instead of location-specific calibration parameters 
1 and

2, a single set is used across all centers, indicating a homogeneous behavior
among the shoppers. The above is often referred to as a multinomial logit model.
The maximum likelihood function looks like

L � �
50!

1
4
0
0
0
!
!
10!

�P1
50P2

40P3
10.

Let X be the denominator for P1, P2, and P3 (see Equation 3.38). Then ln L �
50(15a � 3b) � 40(10a � 4b) � 10(20a � 7b) � 100 ln X in which values for �k and
ck are obtained from Table 3.8. 

Shopping center
k

Average time
k

1

2

3

15

10

20

Average cost
ck

3

4

7

No of patrons at center
k

50

40

10

Table 3.8  DATABASE FOR CALIBRATING AN AGGREGATE LOCATION
CHOICE MODEL
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�
∂(

∂
ln

a
L)

� � 1350 � (100/X) [15exp(15a � 3b)
� 10exp(10a � 4b) � 20exp(20a � 7b)] � 0 (3.39)

and

�
∂(

∂
ln
a
L)

� � 380 � (100/X)[3exp(15a � 3b � 4exp(10a � 4b)
� 7exp(20a � 7b)] � 0 (3.40)

Solution of these simultaneous equations yields a � �0.02868 and b � �0.36640.
Again, the readers should note the negative signs for the parameters a and b.

There are several implications from aggregate, rather than disaggre-
gate, modeling. The straightforward one is that the calibration procedure is
more simple. The more noteworthy one is that aggregate and disaggregate
modeling have very different behavioral assumptions. This point is best
shown by the following replication test, where the calibrated model is used to
reproduce the observed data, as a descriptive model should. To show the
replication test, one should be aware of the fact that a logit choice model
 discussed above can be represented as

P1 � and   P2 � (3.41)

for the two shopping center cases, where � � � �c � � �� � 
 in which 
�� � �2��1 and �c � c2 � c1. Suppose a disaggregate model is calibrated with
 � �293.2 � � �71.3 and 
 = 1.93 based on time-unit of hours and cost in $ �
10�2. This means that for the data shown in Table 3.9, an entry of 17 minutes
should be translated to 0.293 hours and $2.16 should be translated to 0.0216
 before they are substituted into the model formulas. Using the model consis-
tently in disaggregate prediction will yield �1 � �293.2(.02) � 71.3(.0833) �
1.93 � �9.87, �2 ��4.01 and �3 � 2.09. These values, when substituted into
Equation 3.41, yield P2 of 0, 0, and 1.000 for shoppers 1, 2, and 3 respectively
(or locational decisions of 2, 2, 1). The average of these three P2s is 0.333, which
agrees with the observed data in Table 3.9: 

exp�
��1 � exp�

1
��1 � exp�

Table 3.9  REPLICATION TEST DATA FOR LOGIT MODEL
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P2 � � 0.333

On the other hand, misuse of the model by using average travel time and cost
will lead toward totally erroneous predictions. Thus substituting aggregate data
� � �293.2(0.02) � 71.3(0) � 1.93 � � 3.93 into Equation 3.41 will result in P1 �
0.02 and P2 � 0.98, which is far from reality. Thus, care must be exercised in the
calibration and consistent use of aggregate versus disaggregate models. As long
as aggregation across individuals is handled with care, it need not be a major
source of error in the forecasting process.

XI. THE GRAVITY MODEL REVISITED
We have described above the calibration of a location choice model as repre-
sented in Equations 3.30 and 3.38. It will be shown here that the aggregate
 version of the two models can be developed from first principles other than
 consumers’ surplus maximization (as discussed in Chapter 2), and they can be
calibrated with a method other than maximum likelihood. We start with
the functional form Vij � V(Sij, Aj) where Sij is the vector of level-of-service
 variables between i and j as measured in accessibility. (Recall that accessibility is
an inverse function of travel cost, travel time, and other spatial-separation
 metrics.) Aj is a vector of  socioeconomic variables representing such activities as
population and  employment. 

A. Singly Constrained Gravity Model
Let us use Fij to denote an accessibility factor, defined as an inverse function of
travel cost in a form such as exp(�bCij) and C�b

ij . Let us also use Vj to denote the
 attraction at destination j, where the attraction may be employment opportuni-
ties, or in this case simply the trips terminating at the destination zone V.
A model can now be constructed bearing the form Vij � MViFijVj where M is a
calibration constant. Since the sum of the originating trips have to add up to the
production, or �jVij � Vi , we can write �j MViFijVj � Vi . Canceling the Vi term
from both sides of the equation and extracting the calibration constant M from
the summation sign, we have M�jFijVj � 1 or M � 1/(�jFijVj). Substituting this
calibration  constant M back to the original equation, we have

Vij � 

which is the familiar singly constrained gravity model.
Consider a region consisting of four zones 1, 2, 3, and 4. Residents in

zones 1 and 2 are considering shopping at zones 2, 3 and 4. The existing travel
pattern is represented in Table 3.10. As can be seen, there are 1000 potential
trip productions emanating from zone 1 and 1400 from zone 2. The trip

(2 shopper at 2)
���
(a total of 3 shoppers)

Vi FijVj�
�jFijVj
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 attractions at zones 2, 3, and 4 are 1300, 300, and 800 respectively. The travel
costs (as represented in minutes of travel times) between the zones, Cij , are
shown in Table 3.11. A travel accessibility function of Fij � C�2

ij is assumed, or
the  calibration parameter b is set to 2 initially. This means a set of F(Cij)s that
 appears as follows:

Cij 3 5 8 10

F(Cij) 0.111 0.0400 0.0156 0.0100

Now the interzonal trips can be estimated by

V12 � 1000� � � 503 (3.42)

Similarly, V13 � 298, V14 � 199, V22 � 1127, V23 � 23, and V24 � 250. Since V12 �
V22 � 1630 � 1300, calibration of the model is necessary in order to replicate the
existing data more closely. The need for calibration is best shown by a trip distri-
bution plot such as Figure 3.17, where trips of a certain duration, say 3, 5, 8, and
10 minutes are plotted. It can be seen that the observed curve is significantly dif-
ferent from the estimated. To bring the estimated and observed trip distribution
curves together, the accessibility factors F(Cij) can be adjusted by scaling the

(1300)(0.0156)
������
(1300)(0.0156) � (300)(0.0400) � (800)(0.0100)

Table 3.10  EXISTING INTERZONAL TRAVEL

From/to

Zone 1

Zone 2

Zone 3

Zone 4

Vj

Zone 1 Zone 2

500

800

1300

Zone 3

200

100

300

Zone 4

300

500

800

Vi

1000

1400

2400

SOURCE: Dickey (1983). Reprinted with permission.

Table 3.11  INTERZONAL TRAVEL TIMES (IN MINUTES)

From/to

Zone 1

Zone 2

Zone 3

Zone 4

Zone 1 Zone 2

8

3

10

5

3

8

5

10

Zone 3

5

10

3

20

Zone 4

10

5

20

3

SOURCE: Dickey (1983). Reprinted with permission.
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points on the curve  according to the observed data. For example, 

F′(3) � F22′ � F22(800/1127) � (0.1111)(800/1127) � 0.0789
F′(5) � F13′ � F24′ � (0.04)(700/548) � 0.0511
etc.

This also yields F′(8) � F′12 � 0.0155 and F′(10 ) � F′14 � F′23 � 0.0180. From these
accessibility factors, new estimates can be made on interzonal travel. For example,

V12′ � 1000� � � 404 (3.43)

Similarly, it can be shown that V13′ � 307, V14′ � 289, V22′ � 965, V23 � 51, and
V24′ = 385. Based on these estimated trips, the trip distribution plot is shown
again in Figure 3.17.

(1300)(0.0155)
������
(1300)(0.0155) � (300)(0.0511) � (800)(0.0180)

Figure 3.17  TRIP DISTRIBUTION PLOTS
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The process is repeated until the third iteration, when the two distribution
curves seem to agree with one another, as shown in Figure 3.17. At this iteration,
V12′′′ � 457, V13′′′ � 245, V14′′′ � 298, V22′′′ � 857, V23′′ � 79, and V24′′′ � 463. The good-
ness of fit between the two curves can be shown formally by the chi-square test. To
 explain this test, the step-by-step computation is organized around Table 3.12. The
degree of freedom is n � 1 � 4 � 1 � 3. From a chi-square table of any statistics
text, �2 to a 0.95 significance level with 3 degrees of freedom is �2(0.05,3) � 7.815.
The fact that chi-square statistic of 9.29 from Table 3.12 is  bigger than 7.815 means
that the fit between the trip distribution curves is not statistically significant.

Recall that we hypothesized a coefficient of b � 2 in the accessibility
 factor F(Cij) � C�b

ij initially for the model, but found that it was not giving the
best fit to the data in the trip distribution curve initially. Over the three itera-
tions, we have modified sufficiently the calibration parameter b by adjusting
the F values. At the termination of the algorithm, we have a set of F values,
from which the final calibrated parameter b can be recovered. To do this, we
first take the logarithm of F(Cij) � C�b

ij : ln F � �b ln C. ln F is then regressed
against ln C using the following set of data, with the stipulation that the
 regression line will go through the origin.8 The slope of the regression line is
then simply the b value we are looking for.

ln F ln C
F(3) � 0.0583 �2.8422 1.0986
F(5) � 0.0512 �2.9720 1.6094
F(8) � 0.0221 �3.8122 2.0794
F(10) � 0.0234 �3.7550 2.3026.

Result of the regression shows that b � 1.874 at an R2 of 0.9958. In other words,
the slope of the trip distribution curve should be gentler than first hypothesized,
as illustrated in Figure 3.17.

B. Doubly Constrained Model
It is quite obvious that the above model is not easy to calibrate since a number of
ad hoc procedures need to be strapped together to achieve the desired goodness of
fit. A simpler alternative is to formulate a doubly constrained model that  explicitly
takes into account the constraints placed on the number of trip attractions in

Table 3.12  CHI-SQUARE TEST
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 addition to the number of productions (Oppenheim 1980). Consider the following
model for a study area consisting of n′ zones Vij � kiljViVjF(Cij) such that

�
i�1

n′
Vij � Vj j � 1, . . . , n′

�
j�1

n′
Vij � Vi i � 1, . . . , n′

(3.44)

Notice that instead of one calibration constant M, two constants ki and lj are
 introduced. By substitution of these constraints into the initial equation for the
model, we have

�
i�1

n′
kiljVi VjF(Cij) � Vj j � 1, . . . , n′

�
j�1

n′
kiljVi VjF(Cij) � Vi i � 1, . . . , n′

(3.45)

These reduce to 

lj �
i�1

n′
kiVi F(Cij) � 1 j � 1, . . . , n′

ki �
j�1

n′
ljVj F(Cij) � 1 i � 1, . . . , n′

(3.46)

after canceling Vj on both sides of the first equation, and likewise for Vi of the
second. The calibration constants can now be determined:

lj � � 1 j � 1, . . . , n′

ki � � 1 i � 1, . . . , n′
(3.47)

Notice the two equation sets are coupled together, in that k appears on the right-
hand side of the first equation set, and l appears on the right-hand side of the
 second. An iterative solution strategy is anticipated. A numerical example will
make this clear.

Example
Given these interzonal travel times  

[Cij] � � �

1
��

�
n′

i�1
kiVi F(Cij)

1
��

�
n′

j�1
ljVj F(Cij)

8
7
3

4
1
6

2
5
7
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the following accessibility factors can be derived for a particular functional 
form and an assumed value of the calibration constant b:

[F(Cij)] � �           �
The observed values of interzonal travels are shown in Table 3.13.

We wish to solve the six equations and six unknowns for k1, k2, k3, l1, l2,
and l3 as represented by Equation 3.47 where n' � 3 in this case. Suppose we start
with the arbitrary values of 1 for the k's.  Substituting 1's in the formulas will
yield l1 � 0.1187 � 10�4, l2 � 0.1058 � 10�4, l3 � 0.0965 � 10�4. Now substitute
these l  values into the formulas for the k's in Equation 3.47, one will find that
these new  values for the k's are no longer l's. We continue this process until a
consistent set of ks and ls are obtained, as shown in Table 3.14. It can be seen that
we obtain  convergence within four iterations.

Table 3.14  CALIBRATION OF A DOUBLY CONSTRAINED MODEL

k1

k2

k3

l1

l2

l3

1

Iteration Number

1

1

1

0.1187a

0.1058

0.0965

2

0.9148

1.3312

0.9833

0.1164

0.1073

0.0961

3

0.9125

1.3437

0.9824

0.1164

0.1073

0.0961

4

0.9125

1.3437

0.9824

 a All these nine l values are to be multiplied by 10 4. For example, 0.1187 is actually 0.1187  10 4 .

SOURCE: Oppenheim (1980). Reprinted with permission.

From/to

i  1

i  2

i  3

Vj

j  1 j  2

3,100

1,500

25,400

30,000

1,800

3,100

15,100

20,000

j  3

100

400

4,500

5,000

Vi

5,000

5,000

45,000

55,000

SOURCE: Oppenheim (1980). Reprinted with permission.

Table 3.13  OBSERVED INTERZONAL TRAVEL OF A DOUBLY CONSTRAINED
MODEL

1.472 2.165 1.172
2.052 0.607 1.480
1.480 1.792 2.008
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Based on these values of k and l, V̂ijs can be estimated as shown in 
Table 3.15. Also shown in the same table is the percentage error between esti-
mated (V̂ij) and observed interzonal travel (Vij*): (V̂ij � V̂ij)/V̂ij. To reduce the error
further,  another functional form for the accessibility factor may be in order, either
by changing from a power function C�b

ij to exponential function exp(�bCij) or vice
versa (among other possible functional forms), or changing the initial value of b.
Such a decision can be assisted by examining the plots of the trip distribution
curves, as illustrated in the singly constrained gravity model example. ■

XII. SPATIAL INTERACTION
As can be seen from the gravity model calibration, one of the major steps in
 spatial-temporal analysis is to enrich our information about the study area
based on partially observable data. We have seen from the numerical examples
above that an n′ � n′ matrix of trip movements is to be constructed from given
row and column sums, often referred to as the trip productions and attractions
(or more properly the origin trips and destination trips). In this case, we wish
to estimate n′2 pieces of information from 2n′ pieces of data when certain
 statements can be made about travel behavior, as manifested in the trip distrib-
ution function showing the relative trip lengths in the area. In short, we wish to
 provide more complete activity distribution information from scanty observa-
tions. There are two formal methods to do this: minimum information theory
and entropy maximization.

A. Information Theory
Here, let us concentrate on a facility location example. Suppose a firm is about to
locate in one of the n′ zones of a region. A land developer has studied the firm and
its needs, and concludes that the probability of the firm locating in zone 1 is Q1, in

From/to

i  1

i  2

i  3

Vj

j  1 j  2

  1,563
( 15.2)a

  3,209
( 3.4)

15,238
( 1.0)

20,010

  3,178
( 2.5)

  1,313
( 14.3)

25,498
( 0.4)

29,989

   257
( 61.1)

   478
( 16.3)

4,265
( 5.51)

5,000

4,998
 

5,000
 

45,001

54,999

j  3 Vi

a Numbers in parentheses indicate the percentage errors between observed and estimated interzonal travel.

SOURCE: Oppenheim (1980). Reprinted with permission.

Table 3.15  ESTIMATED INTERZONAL TRAVELS IN A DOUBLY
CONSTRAINED MODEL
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zone 2 is Q2 , . . . , and more generally, of locating in zone i is Qi. The number Qi is
the developer’s guess about the likelihood of the firm locating in zone i.
Alternatively expressed, the ratio Qi/(1 � Qi) is the odds on the firm choosing
zone i. Clearly, probabilities cannot be negative (so the non-negativity require-
ment  applies: Qi � 0) and the firm must locate somewhere (so the sum of the sub-
areal shares must be unity: �iQi � 1). Perhaps the developer then receives inside
information that one member of the board favors a particular zone, say j. The de-
veloper is therefore forced to revise his/her estimates so that the  estimated prob-
ability of the firm locating in zone i is now Pi. The insider message has evidently
caused the developer to change his or her mind about the likely outcome of the
event and has therefore imparted improved information (Webber 1984; Gonzales
and Woods 1992). The question is: How much more  information than before?

The developer starts with the probability distribution Q � (Q1, Q2, . . . , Qn′),
and changes this opinion to P � (P1, P2, . . . , Pn′). Let the extra information con-
tained in the insider message which updates the probabilities Q to P be denoted by 
I(P; Q). Five desiderata are now associated with the measure I(P; Q) and we need to
address these five specifications for I(P; Q). First, the two probability distributions
may in fact be one and the same (P � Q). In this case, the message does not change
the developer’s mind. This means the information is worthless or I(P; Q) � 0. 

Second, it is reasonable to require that the information conveyed by the
message does not depend on the order in which zones are listed or labeled, say
from zone 1 to zone n’. In other words, it does not matter whether, for instance,
the downtown zone is labeled as zone 1, zone 2, or zone 3 and so on.

Third, it is required that the metric I(P; Q) be continuous. Thus, if the
message has only a small effect in updating the probabilities (or P is very similar
to Q), only a little information is gained in the process of updating P to Q. In
other words, I(P; Q) is very small or nearly zero, slight differences in probability
distributions are associated with marginal information.

Fourth, suppose that the developer has only the knowledge on the zones
in which the firm will not locate. Lacking further information, the developer
 believes that each of the remaining zones is equally likely to be chosen. Three
special cases can be defined for this situation:

(a) One initially believed the n’ zones were feasible, but reduced this to
(K � 1) when given a message, where 0 < K < n′. This means that Q
� (1/n′� 1/n′, . . . , 1/n′), and P = (1/(K � 1), 1/(K � 1), . . . , 
1/(K � 1)) where Pi � Qi.

(b) One believed that n′ zones were feasible, but reduced them to K
upon receipt of insider information: Q � (1/n′, 1/n′, . . . , 1/n′), 
P � (1/K, 1/K, . . . , 1/K). Here Pi > Qi.

(c) One initially believed that (n′� 1) zones were feasible, but reduced 
that number to K when given insider information (remembering 
K < n′): Q � (1/(n′ � 1), 1/(n′ � 1), . . . , 1/(n′ � 1)), P � (1/K, 1/
K, . . . , 1/K). Here Pi >> Qi.

In terms of the number of zones taken out of contention by the insider’s
message, (a) has received the least information and (c) the most, and I(P; Q) is
 required to satisfy this ordering of information contents. In other words, as one
progresses from (a) to (c), Pi becomes larger (or the location of the firm becomes
more definite) as more information is available.
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Fifth and last, the zones may be classified into two groups: 1, 2, . . . , K,
and K � 1, K � 2, . . . , n′. The location question then becomes: what are the
 probabilities that the firm will locate in group 1 or group 2, and given that any
one group is chosen, what is the probability that the firm will choose a particu-
lar zone in that group? Let (Q1*, Q2*) and (P1*, P2*) be the prior and posterior
 probabilities of choosing each group, and let Q1 and Q2 (or P1 and P2) be the prior
(or posterior) probabilities of choosing a zone within each group. Then an
 insider’s message provides information about group membership (or changes Q*
to P*) and about specific zone location given the group has been identified
(or changes Q1 and Q2 to P1 and P2 respectively). In this case, the expected total
amount of information is I(P1*, P2*; Q1*, Q2*) + P1*I(P1; Q1) + P2*I(P2, Q2), or the
 combined information of group identification and zone location.

These five desiderata are posed on the measure of information. Together
the five uniquely specify the mathematical measure of the information provided
by the insider message that changes probabilities from Q to P:

I(P; Q) � �
n′

i�1
Pi ln�

Q
Pi

i
� (3.48)

The fundamental premise of information theory is that the generation of informa-
tion can be modeled as a probabilistic process that can be measured in a manner
that agrees with intuition. In accordance with this supposition, a random event
A that  occurs with probability P(A) is said to contain I(A) � ln(1/P(A)) � � ln P(A)
units of information. The quantity I(A) is often called the self-information of A.
Generally speaking, the amount of information attributed to event A is inversely
 related to the probability of A. If P(A) � 1 (that is, the event occurs with certainty),
I(A) � 0 and no information is attributed to it. In other words, because no uncer-
tainty is associated with the event, no information would be imparted by commu-
nicating that the event has occurred. However, if P(A) � 0.99, communicating that
A has occurred conveys some small amount of information. Communicating that A
has not occurred  onveys much more information, because this outcome is much less
likely, P(~A) � 0.01. Thus in Equation 3.48, ln(Pi/Qi) � �(lnPi � lnQi) is the infor-
mation gained from the insider message about locating the firm in zone i. Weighing
each zone by the current probability Pi and summing the zonal information gain
over n′ zones provides the mathematical expression for minimum discrimination
information over the entire study area. Most importantly, it can be shown that this
expression possesses all the five desired properties outlined above.

A common way to operationalize the metric in Equation 3.48 is the
 entropy measure9. If Q is a uniform distribution in Equation 3.48 (i.e., if Qi � 1/n′
for every i = 1, 2, . . . , n′) then 

I (P, Q) � �i
Pi ln�

1/
P

n
i

′
� = �i

Pi ln(Pin′) � �i
Pi lnPi �

�i
Pi ln n′ = �i

Pi lnPi � ln n′ (3.49)

Consider a firm choosing a location among n′ zones to open business. A priori, it
is believed that the probability that a firm should be located in zone i is Qi, for
each i = 1, 2, . . . , n′. Some structural or aggregate data are now obtained that
 describe the locational decision at hand; call these data D’. The problem is to
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 describe the spatial distribution of firms (or the probability that any one firm
 locates at each zone), given that D' alone are insufficient to provide such detailed
information. The logical inferential method of solving this problem is called min-
imum information principle. As beliefs are changed from Q to P, it reflects that
an amount of extra information is gained to effect the change; different P’s corre-
spond to  different amounts of information. The minimum information principle
requires that a value of P is chosen that minimizes the apparent information given
by the data D', but subject to the requirement that P is consistent with D'. Thus
the method asserts that the phenomena should be described in the way which de-
viates least from the original beliefs, apart from the modifications dictated by D'.

B. Entropy
Now let the journey-to-work trip distribution be P � V � [Vij] be chosen with
minimum information from a priori distribution Q � [Qij ] (Putman 1978;
Cesario 1975). Notice here, that without violating any of the arguments above, Vij
and Qij are no longer probabilities. In terms of information theory, this can be rep-
resented as choosing V to minimize 

I(V; Q) � �
n'

i=1
�
|J|

j=1
Vij ln (3.50)

subject to given data D′. Here n′ stands for the number of origin zones and |J|
the number of destination zones. To the extent that Q � [Qij] is given, the above
expression is equivalent to 

Min �i �jVij lnVij � ln Qij or    Min �i �j Vij lnVij (3.51)

To interpret this, let us examine a simple example due to Senior (1973). Imagine
six employed persons living in one residential zone i � 1, and commutes to three
work zones j � 1, 2, 3. Suppose that the six workers are named A, B, C, D, E, and
F. We may now specify the origins and destinations of the work trips for each
worker. Each possible, fully described, system of (a) one origin, (b) three desti-
nations, and (c) six total work trips with their specified origins and destinations
may be called a microstate of the system. Six of these possible microstates are
shown in Figure 3.18. There are obviously many more since there are very many
such microstates of even this simple system.

Let us now consider microstate 1 where the number of trips between i
and j � 1 is 3; the number between i and j � 2 is 2; and the number between i
and j � 3 is 1. Microstate 6 may also be seen to have this same distribution of
trips: from i to j � 1 there are 3 trips, from i to j � 2 there are 2, and from i to j �
3, there is 1. Clearly there are many microstates that could be drawn that would
have this same arrangement of total trips. This particular arrangement of zone
to zone trips, if described independently of which worker is making which trip,
may be called the mesostate of the system. Four mesostates of the system are
shown in Figure 3.19. Comparing Figures 3.18 and 3.19, it can be seen that
the microstates 1 and 6 are two possible manifestations of mesostate A.
Microstate 2 is a possible manifestation of mesostate B, but microstate 5 is not a

Vij
�
Qij
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possible manifestation of mesostate D. Thus each mesostate describes a specific
set of  possible microstates.

If we now consider that there might be several residential zones in addi-
tion to the one which has been used in this example, then a more aggregate
 description of the system would be the total trips leaving each origin and the
total trips arriving at each destination. Let us assume that two workers live in zone
i � 2, and four workers live in zone i � 3 in addition to the six already defined as
 living in i = 1 (and we equate one worker with one work trip as we have been
doing). Further  assume that these additional workers are named G, H, I, J, K′, and
M. A  microstate of this newly expanded system would be a list of the origins and
destinations of the work trips for each of the 12 workers, Vij(k); k � A, B, . . . , M.
A mesostate of this  system would be a list of the total number of work trips from
each origin zone to each destination zone Qij or Vij. Finally, a macrostate of this
 expand system is a list of the total trips leaving each origin and the total trips

Figure 3.18  SYSTEM MICROSTATES
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SOURCE: Putman (1978). Reprinted with permission.
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 arriving at each destination, Vi. Figure 3.20 shows four macrostates of the
 expanded system.

Referring to Figure 3.20, macrostates 1 and 2 with 6 trips leaving i � 1
contain all the previous examples of microstates and mesostates. Macrostates 2
and 3, with the trips leaving i � 1 not equal to six, correspond to other system
states which do not include the microstates and mesostates given as examples.
We should also note in passing that one could have defined a macrostate for the
 example of a single origin used at the start of this discussion. This would have
been, in a sense, a degenerate case, as the trips leaving the single origin would
 lways have been equal to six. The microstates as defined here in this discussion
correspond to a disaggregate model as referred to in Section V; mesostates corre-
spond to aggregate modeling; and macrostates are the given conditions for
 calibrating a gravity model. The entropy formulation deals with the meso- and
macrostates and requires two key assumptions. First, all microstates are assumed
to be equally probable. Second, the most likely mesostate or macrostate
is assumed to be the one with the greatest number of possible microstates. We
refer to this second assumption as entropy maximization.

We may now develop a spatial interaction model for the mesostate level
using entropy, rather than gravity model formulation. The given information
could consist of the origin trips Vi and the destination trips Vj where �jVij � Vi
and �iVij � Vj, or the total number of trips Q = �i Vi � �jVj � �i,jVij. Let us  examine
the microstates Vij(k) for a given Q. For the example in Figure 3.17, i � 1, j �1, 
2, 3 and V � 6, the microstates consist of V11(k), V12(k) and V13(k). Stripping the
traveler  designation k, V11 � V12 � V13 � Q. V11 trip makers can be selected from Q

Figure 3.19  SYSTEM MESOSTATES
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in Q!/[V11!(Q � V11)!] ways, according to the familiar combinatorial formula of
 statistics. Now if we ask in how many ways it is possible to select V12 out of the
 remaining (Q � V11) travelers in each case, it is given by (Q � V11)!/[V12!(Q � V11 �
V12)!]. The total number of ways of selecting V11 out of Q and V12 out of (Q � V11)
is given by the product of the two combinatorial  formulas, or Q!/[V11!V12![(Q � V11
� V12)!]. Continuing on in this way, we see that the total number of ways in which
we can select a particular distribution V � [Vij] distribution from Q is

or (3.52)

The combinatorial formula above results regardless of the order in which the
 entries in V are considered. In other words, it is independent of the way we label
the zones.

Applying this formula, the number of microstates of mesostate A in
Figure 3.18 is 6!/[(V11!)(V12!)(V13!)] or 6!/[(3!)(2!)(1!)] � 60. The number of
 microstates of mesostate B is 6!/{(2!)(2!)(2!)] � 90. By trial and error, one may sub-
stitute values for V11, V12 and V13 in the denominator of the equation and discover

Q!
�
�ijVij!

Q!
��
V11!V12!V13!

Figure 3.20  SYSTEM MACROSTATES
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that the  minimum value of the denominator (subject to the constraint that the sum
of all the trips equal six) is at 2!2!2!. This corresponds to the maximum number of
 microstates 90, which suggests that in the absence of any further information
about our example (such as the number of trips originating at a zone and termi-
nating at a zone), the most probable mesostate is when the six trips are evenly
 distributed to the three destinations. In general, the most probable mesostate is
when the number of microstates is to be maximized or Max [Q!/�ijVij]. Stirling’s
approximation for large values of x yields ln(x!) � x ln(x) � x. Applying such
 approximation to the logarithm of the above maximization expression results in
Equation 3.51, remembering that Q � �ijQij in this case. Thus entropy maximiza-
tion is shown to be equivalent to the minimum information principle.

XIII. QUALITY OF A MODEL 
CALIBRATION

In this chapter, we have discussed the various ways to describe the scenario
under analysis. We call this descriptive modeling. After all the above work has
been performed, the final question arises as to how good the model is in repli-
cating the real world. Obviously, the answers vary depending on whom you ask,
and most importantly, the end use of the model. However, here are some scien-
tific measures of merit, which form part of the information on the quality of the
model calibration.

A. Chi-Square Test
The chi-square test, for example, can be used to determine how well theoretical
probability distributions (such as an assumed normal distribution) fit empirical
distributions (in other words, those obtained from sampled data). In general, the
chi statistic measures the discrepancy between the estimated and observed fre-
quencies. It is used to test whether a set of estimated frequencies differ from a set
of observed frequencies sufficiently to reject the hypothesis under which the ex-
pected frequencies were obtained. The formula generally used for the chi-square
statistic is,

�2 � �
n

i=1
�
(yi �

ŷi

ŷi)
2

�

where yi is the observed data and ŷi is the estimated. If there is a close agreement
between the estimated and observed frequencies, �2 will be small. If the agree-
ment is poor, �2 will be large. A numerical example has been worked out in
Section XI-A in connection with the singly constrained gravity model.

Using the chi-square idea, it can be shown that the maximum entropy
 explanation of spatial distribution can be used to calibrate the parameters such as

’s in Equation 3.30. This can be accomplished by the minimum discrimination
information statistic 2V�i�j Vijln(Vij/Qij), which has an asymptotic chi-square
distribution with (n′J � L′) degrees of freedom. Here, L′ is the total number of
control totals placed on the number of trips made plus the number of parameters
to be calibrated (Oppenheim 1995). For example, when the given data D′ consist



142 CHAPTER 3 Descriptive Tools for Analysis

of the number of origin trips Vi, the number of destination trips Vj , (or the equiv-
alent statement about the total number of trips in the study area V), and the total
travel cost in trip minutes or trip miles, L′ � n′ � |J| � 1 corresponding to the
number of origin zones, the number of destination zones and the b coefficient for
the trip distribution curve exp(�bCij), as shown in Section XI-B. The statistic
takes on a value of zero when the model is perfect, in other words, when all
 predictions Vij are equal to the corresponding observations Qij, and a positive
value for less than perfect model fit. The statistical significance of the model
 performance may then be tested by comparing the value of the statistic with the
threshold value from the chi-square table with appropriate number of degrees-
of-freedom at the chosen level of confidence. If the former is greater than the lat-
ter, the hypothesis that the distribution of predicted values is not significantly
 different from that of the observed values must then be rejected. In other words,
the calibration needs to be further refined to effect closer agreement between the
predicted and  observed trips.

B. Variance Reduction
Irrespective of the calibration techniques used, a common measure to compare
an estimated model with the observed model is the sum of squared errors:

�
n

i�1
(yi � ŷi)

2 (3.53)

This measure can be normalized by the number of observations n (where n is a
large number), turning it to what is often referred to as the residual variance:

�
n
1

�  �
n

i�1
(yi � ŷi)

2

Similarly, the square root can be taken to further normalize the measure 

��
n
1

� ��
n

i�1 (yi �ŷi)
2

which is sometimes called the standard error of estimate. 
All the above are absolute measures. Depending on the units used in the

variables Y, the figures obtained from these formulas will be different. To truly
normalize to a relative scale, we first define the worst case as the variance about
the mean: 

��
n
1

� �i
(yi ��Y)2

The ratio of Equation 5.53 and the above variance is then a more workable
measure of the relative size of the actual variance. We call this ratio �. In other words 
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�̂2 �

The variance reduction due to the model is simply 1 � �̂2 The more variance the
model can account for, the better. For this reason, it is preferable to have the
above equation approaching unity.

The reader will detect the parallel concepts in linear regression, although
the above development is, in our opinion, more general and goes well beyond
 linear models. Thus the model can be calibrated by any calibration technique,
particularly when a combination of techniques are used, the measure of merit
still readily applies to the combined model, while more specialized measures are
only good for each individual model.

Example
As an example, consider the nonlinear doubly constrained gravity model in
Section XI-B discussed previously. Here, the �̂2 is

Based on the data contained in Table 3.14 and Table 3.15, we have the relative size
of the estimation variance �̂2 � 3.843 � 10�4. The variance reduced by the model
is thus 1 � �̂2 � 0.9996, which is quite impressive. ■

XIV.  CONCLUDING REMARKS
We have provided in this chapter a summary of pertinent analysis tools that are use-
ful in describing the context of a facility location/land use decision. The methods
are diverse, but they are all spatial extensions of simulation, probabilistic models,
and statistical analysis. We also introduce specialized techniques used to analyze
spatial interactions, as exemplified by the gravity model, information, and entropy
theories. To the extent that warehouses are built to store the appropriate amount in
anticipation of deliveries to potential demand points, we review the marginal analy-
sis that governs inventory control over a network. This will help to locate facilities
and to make timely delivery of goods and services. Together with the basic build-
ing blocks reviewed in appendices to this book, we will have a self-contained set of
background tools for the reader. The discussions in these methodological chapters
differ from that in the appendices in terms of context. While the appendices are
purely applied mathematics, the treatment here is applications-oriented model
building. Thus  examples are drawn from the  subject matter of this book, even
though they have to be simplified to achieve the transparency desired. In later chap-
ters, in the CD/DVD software, and in Chan (2005), case studies will be presented
wherein we show how the more fully developed models are used to come up with
real world decisions.
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XV.  EXERCISES

Self-Instructional Module: PROBABILITY 
DISTRIBUTION AND QUEUING
(to be found on the attached CD/DVD)10

One of the fundamental insights of the physical and social sciences in the 20th
 century is the applicability of probability theory. For example, the probabilism of
quantum mechanics has replaced the determinism of Newtonian mechanics.
Present day analysts speak of deterministic models versus probabilistic models.
This  module, entitled “Probability Distribution and Queuing,” is a continuation of
the module on probability. After working through this module, the reader should 

(a) understand the concepts of probability distributions 
(b) see the applicability of probability distributions in a system of queues. 
(c) gain some insights on using queuing theory as a decision-making tool. 

This module is fundamental in understanding the topics in Chapter 3,
 entitled “Descriptive Analysis.” In this chapter, the author presents analysis tools
such as simulation, subjective probability, econometrics, curve fitting, and
 information theory. All of these are shown as analytics of spatial information
technology. The “Probability Distribution” module also serves as an excellent
 introduction to the Appendices entitled “Review of Statistical Tools” and
“Review of Markovian Processes.” 

Problem 1: Decision Tree 
There are some very helpful software packages to perform Bayesian decision analy-
sis. Aside from commercially developed ones, there is free software such as GeNle
at http://genie.sis.pitt.edu/. GeNle has extensive graphic features and it is suitable
for large problems. As espoused by the software on the attached CD/DVD, the 
author likes to adopt a “down to earth” philosophy; he prefers a very basic 
approach, instead of a more elaborate procedure. Please be mindful that we have
mainly pedagogy in mind. Admittedly, the resulting software is not as “high tech”
as others. This  exercise introduces the users to such a computational approach in
solving decision-analytic problems. More importantly, it shows how simple 
decisions can be combined in a complex decision tree. 

Refer to the Bayesian decision tree in Figure 3.11. The readers will
agree that it is a rather elaborate tree. We wish to break down the tree into
its components, and see how we can combine these components together to
form the complete tree. We will analyze the decisions represented in this tree
with the aid of a software called TreePlan, which is a very popular software
for educational use. TreePlan is an Excel add-in available at nominal cost
from DigiBuy (http://www.digibuy.com). The advantage of TreePlan is its
simplicity. It works on every desktop or laptop computer that uses Microsoft
Office Excel. TreePlan automates the standard Bayesian decision-tree calcu-
lations, and display the final results graphically as a tree. Should the reader
decide against acquiring this software, s/he can still solve this problem by
using straight spreadsheet. The only thing missing is the graphics to display
the tree. 
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Figure 3.21  NO SAMPLING
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Using TreePlan or simply Excel, please reproduce the complete decision
tree for the “nuclear power-plant” problem as shown in Figure 3.11. Let us carry
this out in four steps, as illustrated by the accompanying Figures below. The basic
steps will ease you into TreePlan or Excel, and allow you to be familiarized with
the software. The real challenge, or the real thought process for this exercise, is to
combine all the stepwise decisions into an overall decision, as shown in the final
tree in Figure 3.11. 

(a) Decision 1. Refer to the decision tree in Figure 3.21, should a power
plant be built (without additional sample data)? 

(b) Decision 2. Refer to the decision tree in Figure 3.22, decide on “build”
or “no-build” if the sample test is positive.

(c) Decision 3. Refer to the decision tree in Figure 3.23, decide on a
“build” or “no-build” decision if the sample test is negative?

(d) Decision 4. Refer to the final decision tree in Figure 3.24, combine all
the above decisions and decide on whether the sample test should be
conducted to begin with?

Figure 3.22  DECISION UPON POSITIVE TEST
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Figure 3.24  DECISION TREE FOR TEST (INCLUDING COSTS)

Ideal

Build

This Figure mimics the output from TreePlan. In this Figure, the negative numbers on an arc
denotes costs. The number by the chance or event node denotes the corresponding expected payoff. 
The number by the decision node shows the payoff of the preferred alternative. 
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Figure 3.23  DECISION UPON NEGATIVE TEST
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Problem 2: Simulation 
The Community Land Use Game (CLUG) is discussed in book Chapter 3,
Section IV. The game brings out some of the non-quantifiable elements of
urban and regional development—an element not addressed adequately by
the analytical models. Parallel to the concept of Economic Base Theory,
three economic sectors are represented. The basic sector consists of Full
Industry and Partial Industry. The residential sector is made up of Partial
Industry. The residential sector is made up of single-unit, double-unit,
triple-unit, and quadruple-unit housing: R1, R2, R3, plus R4; and the ser-
vice sector is exemplified by Local Store plus Central Store. Among the
many factors that shape the community development is transportation (as
evident from the results of our CLUG discussion)–a fact that can be veri-
fied by the following example (reference the CLUG Playing Board
Diagram, Figure 3.25). 

An entrepreneur is deciding between two sites for his Partial Industry
(PI), as marked by PI-1 (6-72) and PI-2 (10-70) on the playing Board. The resi-
dential quarters of his labor force are located at R2 (12-8). With the primary
road system, transportation terminal and the required utility line already in
place and paid for, you may wish to answer the trailing questions by sketch-
ing in any remaining  infrastructure to be built. An example utility line has 
already been drawn for you above in the CLUG playing board. (For further 
explanation of these calculations, please consult book Section 4-ll-A, where a
similar example has been worked out.) 

Figure 3.25  SAMPLE CLUG PLAYING BOARD

SOURCE: Feldt (1972). Reprinted with permission.

PI-1

Utility line

Primary road

Lake

Secondary road

Utility plantTerminal
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(a) Based on the resulting built infrastructure, which is the preferred site location?
Please document in the Table below the calculations you need to arrive at this
conclusion. Remember that secondary roads carry a cost of two units, while
 primary roads carry a cost of one unit. 

Site PI-1 Site PI-2

Transportation cost from R2 to PI-1: Transportation cost from R2 to PI-2:
Transpo cost to export goods via the Transpo cost to export goods via the 
Port: Port:
Total transpo cost: Total transpo cost: 

(b) Now explain in words the reasons behind your choice of the Partial Industry
location.

From the point of view of the community, who has to pay for the
 construction of the utility lines, a different financial analysis is necessary.
For our purposes, we can assume that a land parcel for R2 and another for
PI are  committed and purchased in Round 1 of the game, with the corre-
sponding  utility line  constructed in the same Round (please draw in the
utility lines in the CLUG board shown as book Figure 3.25 above). All
buildings are constructed and fully operational in Round 2. 

(c) Now execute the 11-step development sequence as described in book Section
3-IV. Please organize your calculations using the attached Financial Status
Table (Figure 3. 26, which has to be completed in full). Notice that a parcel has
to be serviced by a utility line on at least one of its four faces before  construction
can take place. The construction and land costs are given in a table below.
Notice that assessed value is 50 percent of construction and land costs, and tax
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Figure 3.26  CLUG COMMUNITY FINANCIAL STATUS
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is five percent of assessed value of property. (For the purpose of this problem,
you can assume no  deterioration on buildings.) 

Unit characteristics (in $1000’s) Construction Land cost 
F1 $96 10 
P1 $48 10 
LS $24 10 
CS $24 10 
O $36 10 
R1 $12 5 
R2 $30 5 
R3 $48 5 
R4 $72 5 

(d) Please decide, from the calculations up to the Second Round, which Partial
Industry is preferred. Why?

ENDNOTES

1 A numerical example is worked out in Chapter 4 for illustration.
2 A methodological review of stochastic process may be found in Appendix 3.
3 For an explanation of the t-statistic, see Appendix 2. Paired t-tests are used here, which test the 

hypothesis that there is no significance between two sample means, m1 and m2, or the difference 
between the sample means is zero. md � m1 � m2 � 0. Traditional statistical tests are character-
ized by significance levels, or the confidence one would place on the test results. 

4 A better term is the “News vendor” problem.
5 The correlation coefficient is defined in Appendix 2.
6 The matrix notation is adopted here for ease of explanation only, it is not essential for development. 

For a formal introduction to the matrix representation of linear regression, refer to Appendix 2.
7 For a discussion of the statistical and practical considerations in selecting a regression equation, 

see Appendix 2. A parsimonious model has the proper balance between practicality and statistical 
significance.

8 This is referred to as constrained regression.
9 Entropy originates from the Greek and roughly means change or transformation.

10 The answer to this Module is attached at the end of this textbook.
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This chapter will follow our discussion on the two methods of analysis identified
in our taxonomy, focusing now on prescriptive instead of descriptive techniques.
By way of a definition, prescriptive technique is generally used in  system design,
where a stated goal or objective is to be achieved. In the context of this book, the
function of a prescriptive model then, is to configure a facility location or land use
plan to achieve this goal or objective. For example, if one is to stimulate residen-
tial development in an area, the model, after it has been set up, will prescribe a
land use plan that will provide all the utilities, transportation, and zoning that will
best facilitate such a development. To the extent that we often wish to  provide the
best design, optimization procedures are an  integral part of the  prescriptive tool
kit. Here in this chapter, we will introduce the basic building blocks of prescrip-
tive analysis (including optimization  concepts), deferring most of the implemen-
tation and computational details to subject focused chapters throughout this book
and the appropriate book  appendices. Included in the  latter category are such
 appendices as “Optimization Schemes” (Appendix 4) and “Control, Dynamics,
and System Stability” (Appendix 1). 

I. A TYPICAL PRESCRIPTIVE MODEL
As always, examples are the best way to introduce a new concept. We will build
upon the three-sector urban economy example from Chapter 3, namely, an econ-
omy made up of the residential, basic, and service employment sectors. Three fun-
damental steps are involved in effecting a prescriptive model: defining goals and
objectives, representing the system, and then putting them together in a  single
model. Inasmuch as step two calls for system representation, clearly  prescriptive
techniques are not mutually exclusive of descriptive techniques. A prescriptive

4
Prescriptive Tools 
for Analysis
“The mathematical sciences particularly exhibit order, symmetry
and limitation, and these are the greatest forms of the beautiful.”

Aristotle

Y. Chan, Location Theory and Decision Analysis, 2nd ed., DOI 10.1007/978-3-642-15663-2_4, 
© Springer-Verlag Berlin Heidelberg 2011
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model can be thought of as an extension of a descriptive model, in which goals
and objectives are added on top.

A. Goals and Objectives
First, let us discuss the goal or the objective one tries to optimize, which is an
 important part of a prescriptive model. Two examples of the objective function
may be cited from Chapter 2: efficiency and equity. Efficiency may mean the least
costly way to provide quality housing, while equity may be concerned with con-
structing housing in such a manner that it is equally accessible to all the popula-
tion. Oftentimes, the objective function is also referred to as the figure of merit.
Thus the efficiency figure of merit in the example is the total cost, which is to be
minimized. Accessibility may become the equity measure for the example, which
is to be maximized. One way to do this may be to formulate a land use/trans-
portation plan that would guarantee accessibility to housing within 15 minutes of
travel time from work for all the urban population. The question now becomes:
Can we configure a land use plan that will achieve both efficiency and equity?

Another feature of a prescriptive model can be cited. Suppose one has a
parcel of land on which he or she wishes to build housing or offices in order to
maximize the utility of the land but there are a number of encumbrances, one of
which may be the development density allowable by zoning codes. Thus in an area
zoned for single family units, the parcel cannot be developed into a multiple
dwelling apartment building no matter how much the developer wants it to be.
Thus a prescriptive model has to include the representation of the scenario under
which one operates, including the many constraints such as zoning density. We
have already seen in Chapter 3 how these constraints can be modeled. To the  extent
that descriptive techniques are adept in system representation, it is relatively
straightforward to build a prescriptive model on top of a descriptive model by sim-
ply adding objective functions. We will illustrate how this is performed.

B. Representation of the System
The scenario under study and the interrelationship between all the components
are first represented in a flow chart or a set of simultaneous equations. These
equations are formulated in a manner similar to those introduced in the
 descriptive modeling discussion. The simulation approach, for example,  requires
a flow chart to  represent the system. The econometric approach, on the other
hand, is formulated in a set of simultaneous equations. Again, some  examples
may be useful. A flow chart of a basic economy may include the relationship be-
tween manufacturing,  retail, and household sectors in an algorithmic set of steps,
as shown in the  economic-base example in previous chapters. A correlative
model, on the other hand, may start with an arrow diagram showing primary,
 secondary, and tertiary relationships among all the variables. The relationships
are then  formalized into a set of simultaneous equations, with the coefficients a,
b, c, and d to be calibrated by econometric techniques. We review an example ini-
tiated in Chapter 3 below:

(forecast pop) � a (forecast emp) � b (base-yr pop)
(forecast emp) � c (forecast pop) � d (base-yr emp)

(4.1)
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Here the coupling effects between population and employment are explicitly
 recognized, in that employment needs to be supported by a labor force, and at the
same time, dependent population often follows employment.

C. A Prescriptive Formulation of the Economic-Base
Concept

Now we can show how the familiar descriptive formulation of the economic-base
theory can be converted to a prescriptive format by the introduction of  objective
functions. The economic-base model deals with four types of land use: retail, res-
idential, manufacturing, and undeveloped, all of which are to be placed within
the available land. In accordance with economic-base theory, basic manufacturing
land is exogenously determined and hence a constant. Undevelopable land is the
same way. This leaves us with two decision variables, retail land use and residen-
tial land use. All the development has to be contained within the available land.
Our example problem then can be represented by the first of  several constraint
equations, where, once again, the retail and residential land use are decision vari-
ables, while manufacturing and undevelopable land are treated as constants.

(retail land use) � (residential land use) � (developable land)

Another constraint deals with density and zoning, that the maximum develop-
ment density as permitted by zoning cannot be exceeded:

(no. of dwelling units)/(res. land use) � (Max allowable density) (4.2)

The last constraint is worthy of mention. It models the often observed fact that in
order to establish any retail activity in a zone, one shall have a minimum thresh-
old of viable activities, often referred to as the critical mass, or the smallest
amount of activities that can sustain the business:

(retail emp density)(retail land use) ≥ (threshold) (4.3)

Now if one adds an objective function on top of the set of equations,
which represent the system, a prescriptive model is obtained. Instead of the
 efficiency and equity objectives, a plausible objective may be to maximize the
 development of the land, which may be measured in terms of the total 
emp loyment and population in the area:

Max[(retail emp density)(retail land) � (res density)(res land)] (4.4)

As can be seen, a distinguishing feature of the example model is that it consists of
a set of simultaneous equations. In real life, it may not be possible to model the
system as analytically as shown here. It is entirely conceivable that simulations is
the only means to represent the complex operations of the system under discus-
sion. Still, objective functions can be imposed on top to effect a prescriptive model
in this situation.
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II. HEURISTIC SOLUTION TECHNIQUES
Having fixed some fundamental ideas about a prescriptive model, let us
 proceed to survey some of the tools for solving such a model. We have catego-
rized  prescriptive tools into two classes. One is heuristic and the other
 analytical. Heuristic techniques refer to a set of methodologies that are not
strictly mathematical. They may consist merely of a number of clever or
 intuitive computational procedures. Analytical techniques, on the other hand,
are more mathematically rigorous and have a transparent or traceable relation-
ship between the constituent components. Heuristic techniques  consist basi-
cally of a set of carefully specified computational schemes that are usually
 programmed into the computer to yield good solutions. These techniques
are devoid of the nice, transparent properties that characterize analytical
 procedures, and an optimal solution is not often guaranteed. Three types of
heuristic techniques will be  discussed here: the manual approach, the
 enumerative, and the direct search.

A. Manual Approach
The manual approach is a very simple approach. It involves formulating alter -
native plans that represent the various zoning and transportation policies, for
 instance, then performing the forecast as a second step, and finally picking the
plan that yields the best figure of merit. Another example would be to pick
two candidate  locations for a facility, evaluate the merits of both, and pick the
better of the two. Take the Community Land Use Game (CLUG) discussed in
Chapter 3. Three  economic sectors parallel to economic-base theory are repre-
sented: the basic sector consisting of full industries and partial plants, the resi-
dential sector consisting of R1, R2, R3, and R4 housing (in order of higher
 development-density), and the service sector as exemplified by Central Store
(CS) and Local Store (LS).

Referring to Figure 4.1, among the many factors that shape the commu-
nity development is accessibility to the export market through the harbor termi-
nal. Let us say an entrepreneur is deciding between two sites for his partial
 industry (PI), as marked by PI-1 (grid point 6-72) and PI-2 (grid point 12-72) on
the playing board shown in Figure 4.1. The residential quarters of his labor force
is located at R2 (12-58). With the given road system, transportation terminal, and
the required utility line already in place and paid for, which is the preferred site
location judging purely on transportation cost?

Site PI-1:  accessibility to population � (6)(1) � (2)(2) � 10
accessibility to export market � (6)(1) � 6
total transportation cost � 16;

Site PI-2:  access to population � (6)(2) � 12
access to market � (6)(1) � (2)(2) � 10
total transport cost � 22

Based on the above manual analysis, PI-1 is the best choice because it has a lower
transportation cost altogether.
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B. Enumerative Method
The enumerative method is often used when the options can be represented in
discrete integer variables. For example, four divisions of a company A, B, C,
and D have a choice among four sites, 1, 2, 3, and 4, to locate a plant. A
 prescriptive model is used to assign each division to a site according to some
figure of merit such as overall cost to the company. The integer variable xij

 assumes the value of 1 when industrial plant i is located at site j. Consider the
costs associated with  locating four plants in four sites as shown in Table 4.1.
The assignment of a plant to a site would be made according to the lowest total
cost, where each site can take only one plant and no more. Such an  assignment
can be computed after a combinatorial programming model, such as the
 following, has been formulated:

Lake
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Primary road 
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Figure 4.1  LOCATIONAL CHOICE USING A MANUAL PRESCRIPTIVE
TECHNIQUE
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Min �
4

i�1 
�

4

j�1
cijxij

s.t. �
4

j � 1  
xij � 1 i � A, B, C, D

�
4

i � 1   
xij � 1 j � 1, 2, 3, 4

(4.5)

xij � {0, 1}

where the cij’s are defined in the cost table.
In long hand, the model can be spelled out. The objective function now

becomes:
9xA1 + 5xA2 + 4xA3 + 5xA4 + 4xBl + 3xB2 + . . .

The constraints become:
xA1 + xA2 + xA3 + x A4 = 1

xB1 + xB2 + xB3 + xB4 = 1
. . .

xA1 + xB1 + xC1 + xD1 = 1

xA2 + xB2 + xC2 + xD2 = 1
. . .

While there are more efficient solution methods, such a problem can be
solved by an enumerative scheme such as branch and bound (B&B). Here we
 describe a general B&B procedure (Hillier and Lieberman 1990). The algorithm is
described for both maximization and minimization problems, with the former
 described in the general text and the latter in parenthesis: 

Step 0: Initialization. zL(zU) � value of best known feasible solution. 
(If none, zL[zU] � �� [��].) Go to Step 2.

Step 1: Branch. Based on some rule, select unfathomed node and parti-
tion it into two or more subsets (subproblems/nodes).

Step 2: Bound. For each new subset (subproblem/node), find an upper
(lower) bound zU

i (zL
i ), for example, by solving a relaxed sub-

problem for the objective function value of feasible solutions in
the subset.

Step 3: Fathom. For each new subset i, exclude i from further explicit enu-
meration if
a) zU

i (zL
i ) � (�)zL(zU);

b) Subset i cannot have any feasible solutions; and
c) Subset i has a feasible solution. If zU

i (zL
i ) � (	)zL(zU), set zL(zU)

� zU
i (zL

i ) and store as the incumbent solution.

Table 4.1  SITE LOCATION COST OF INDUSTRIAL PLANTS

Sites

1 2 3 4

Plants A 9 5 4 5
B 4 3 5 6
C 3 1 3 2
D 2 4 2 6
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Step 4: Stopping rule. Reapply test (a) to all live (unfathomed) nodes.
If no unfathomed nodes remain, stop. Incumbent solution is
 optimal. Else, return to step 1.

Alternatively, let zL* (zU* ) � Maxi zL
i (Mini zU

i ). Stop when zL(zU) is within � percent
of optimal solution. 

There are two problem specific rules that need to be supplied to the
 general algorithm (Hillier and Lieberman 1986):

Branch. Look at all possible ways of assigning next plant to unassigned
site. Use best bound.

Bound. At any node, add lowest cost assignment to current solution whether
feasible or not, in other words, for all unassigned industries,  assign the lowest
cost site. The only exception is where assignments have already been made,
then the plant cannot be assigned a second (additional) site.

The B&B tree is shown in Figure  4.2. At each node of the tree, lower and upper
bounds zL and zU need to be computed. In the initial node 0, for example, the
lower bound is simply to assign plants to sites irrespective of the rule that says
“one plant, one site.” Thus the popular plants have the choice of more than one
site: for example, plant D can locate in both sites 1 and 3, C in both 2 and 4. On the

Figure 4.2  BRANCH AND BOUND TREE
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other hand, if the one-plant-one-site rule is followed, an easy way to assign is to
have plant A assigned to site 1, B to 2, C to 3, and D to 4. While the former way of
 assigning will achieve an overall cost lower than reality, the latter will certainly be
more costly than necessary; hence the former and latter constitute the lower and
upper bounds respectively. The upper and lower bounds define the range within
which the final solution will reside.

At node A of iteration 1, the lower bound can be evaluated by working with
the cost table by striking out the row and column denoting the commitment of a
plant to a site. In Table 4.2, for example, row A and column 1 are struck out. With the
remaining cells in the table, a lowest cost assignment is again obtained, irrespective
of whether it is a feasible assignment or not; in other words, whether or not the “one
plant, one site” rule has been violated. Hence the lower bound is to assign plant C to
site 2, D to 3, and again C to 4 (inasmuch as C is popular). We call this solving the
 relaxed subproblem. Node B in iteration 1 is evaluated similarly.

At node C, a feasible solution is obtained. According to Step 3(c) of the
B&B algorithm, the node has been fathomed in the sense that an incumbent
 solution has been obtained. Also, a new upper bound is obtained by setting zU �
zL � 13. Intuitively, it says that we will not accept solutions that are worse  (bigger)
than 13 in the objective function value from this point on, inasmuch as we already
have an incumbent solution with this overall cost. Hence node A is now eliminated
from further consideration by way of fathoming rule 3(a), which says, “Prune the
branch that has a overall cost bigger than the current upper bound.”

The algorithm proceeds until all possible assignment combinations have
been implicitly enumerated through the fathoming rules. The iterations can be
summarized by the following table, which documents the steady improvement of
the incumbent solution in terms of a lower total cost:

Iteration zU zL Assignment

0 21 7 ABCD
1 13 8 CBDA
2 12 10 BCDA
3 11 11 DBAC

This table can be referenced against Figure 4.2. The iterations refer to figure
columns for zU amd branching sequence for zL. The optimal solution, shown at
node DBA in iteration 3, is xA3 � xB2 � xC4 � xD1 � 1 with the rest of the decision
variables equal to zero. This means plant A is to be located in site 3, plant B in 2, C
in 4, and D in 1.

Table 4.2  MODIFIED SITE LOCATION COST DURING BRANCH AND BOUND

Sites

1 2 3 4

Plant A (9/) 5/ 4/ 5/
B 4/ 3 5 6
C 3/ (1) 3 (2)
D 2/ 4 (2) 6
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C. Direct Search Technique
When the decision variable is continuous rather than discrete, a direct search
technique is very common in optimization. For example, we wish to build the
 optimal mileage of highways to obtain the most accessibility for the entire region
as a whole. Given the relationship between accessibility and highway miles as
shown in Figure 4.3, a direct search procedure can be used to identify the high-
way miles which provide the best accessibility for a fixed budget. The direct
search technique simply explores the shape of the objective function (which is
 accessibility in this case) experimentally. We have shown two possible shapes of
the function in Figure 4.3 depending on whether the problem is constrained by the
budget or when congestion sets in at some point. In the latter case, Figure 4.3(a)
shows that any additional highway miles built beyond the congestion point will
decrease accessibility rather than increase it. 

The shape of the function as shown in Figure 4.3(a) is a concave function
between 150 and 475 miles of constructed highway. Maximizing a concave func-
tion over a convex region such that the mileage ranging from 150 to 475 will yield
the unique optimum of 400. This is shown in Part (a) of the figure. On the other
hand, if the new addition in highway mileage is limited by the budget to 300 as
suggested above, it becomes a constrained optimization problem (figure 4.3(b)).
The optimum in this case will be at 300 instead. Maximizing a concave objective
function over a convex region—such as the continuous line segment from 150 to
300 or 475—is termed a convex programming problem. Barring special circum-
stances, uniqueness of the optimum may be guaranteed. Should the range be
 expanded now to 0–475 in Part (a) of the figure and 0–300 in Part (b) of the  figure,
the objective function for accessibility is no longer concave, since the function over
the range 0 to 150 is convex. The change from a convex to concave function occurs
at the inflection point of 150 as shown.

Figure 4.3  A DIRECT SEARCH TECHNIQUE
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Oftentimes, the shape of the objective function is unknown, although
we have a good assurance that it has only one mode. In other words, there is
only one maximum point rather than several optimal points, consisting of a
global  optimum. By global or local optima we mean the “mountain top” and
other “hilltops” respectively. In this case, the Fibonacci search technique will
 locate the  optimum quite efficiently. Fibonacci search is one of the most efficient
ways to  allocate m allotted search points for this function. The method consists of
com puting the value of g(x), the objective function to be optimized, in m points.
Each of the m points is chosen in such a way that having obtained the  result for
each new point, we can eliminate a subinterval—as large as possible—of the cur-
rent interval. This process ensures that the optimum will not be located within the
subinterval.

A special Fibonacci procedure called the method of golden section will
serve to introduce this technique, where m is variable, instead of fixed. We wish to
locate the optimum in as few trial points as possible. The logic behind the method
of Golden Section is based on elimination of the range of search based on the  results
of existing search points covered. Suppose g(x) is defined between a and d:

c

————
————- x ——-

a b d

If searches have been conducted in b and c, due to unimodality and another
 provision, and g(b) 	 g(c), one can discard ab. The points to search are based on a
fixed ratio:

�
l
w
ar
h
g
o
e
le
r

� � �
s
l
m
ar

a
g
l
e
le
r
r

� � constant � 1.618

For example, for the interval ad shown above, the search points b and c are
 determined by

�
b
ad
d
� � �

b
a
d
b
� � 1.618

This ratio and its reciprocal 0.618 have a long history of use in design, particularly
in architecture.

D. The Golden Section Algorithm
An example will illustrate the Golden Section algorithm. Suppose a retailer
is to locate a shop to capture as large a market as possible among the competi-
tors. The retailer  is considering a stretch of highway 60 miles (96 km) in length,
within which the shop is to be located. Such a problem can be solved by the
Golden Section method, a special application of Fibonacci search. Throughout
the algorithm, we will refer to Figure 4.4, showing an unknown unimodal func-
tion representing the market potential along the highway.
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Initialization:
We define the search range to be [a, b] = [0, 60], with the end points 0 and 60
 included in the search. We decide on the first search point by applying the golden
section ratio 1/1.618:

b1 � a � r(b � a) � 0 � 1/1.618(60 � 0) � 37.08.

Iteration 1:
Evaluation at the search point b1 and another search point a1 yields the following
 result: g(a1) � g(b1), which means the optimal point has to be left of b1, i.e.,
x* 	 b1. We discard the segment bb1 from further consideration. The search point a1
is defined as the proximal point to the left of b1 generated from a golden  section ratio
distance from b, a1 � b � 0.618(b � a), where 0.618 � 1/1.618. Notice the evaluation
at the search point can be determined in a number of ways, including relatively sub-
jective comparison between the two proximal search points, b1 and a1, regarding the
preference between them, or a more formal market survey  conducted for the two
hypothetical locations. (See the airport location example in Section IV of Chapter 5.)
But locating a1 according to the Golden Section ratio would yield best results.

Our convention is to name the left point of the search interval a and the
right point b. Here we switch our attention to the next poke point a2 from our
 current position b1: b1 → a2, where the subscripts 1 and 2 denote the iteration

Figure 4.4  UNIMODAL FUNCTION WHOSE PRECISE SHAPE IS UNKNOWN
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 number. Since our interval has been reduced from 60 to 37.08, we label b1, the right
end point of the search interval as b: b � b1 � 37.08 and

a2 � b � r(b � a) � 37.08 � 0.618(37.08 � 0) � 14.16.

Now we repeat this set of procedures iteratively.

Iteration 2:
g(b2) � g(a2) means x* � a2, where b2 is the proximal point to the right
of a2. The next poke point is a2 → b3. The left end point is a � a2 �
14.16, and b3 � a � r(b � a) � 14.16 � 0.618(37.08 � 14.16) � 28.33.

Iteration 3:
g(a3) � g(b3) means x* 	 b3, where a� is the proximal point. The
next poke point is b3 → a4. The right end point is b � b3 � 28.33,
and a4 � b � r(b � a) � 28.33 � 0.6318(28.33 � 14.16) � …

Notice the interval of uncertainty regarding the location of the optimum retail
 location reduces steadily from 60: 60 → 37.08 → 23 → 14.16 → …

Stopping Rule:
When the interval of uncertainty gets down to a certain point, the algorithms stops.
If we set the tolerance limit (or the error) to be �, b � a � 2� since the optimum is likely
to be in the middle of the interval, everything else being equal. As an example: if � is
set at 0.04, stop when b � a � 0.08. When the interval of  uncertainty gets down to this
level, we terminate the algorithm. In this example, the retail shop location needs only
be identified within 0.08 of a mile or 141 yards (127 m) along the highway.

E. Fibonacci Search Procedure
As mentioned previously, a more general procedure where the number of searches
is limited is called Fibonacci search. Instead of positioning the search at a golden
section ratio, we have a sequence of ratios for the first search point, the second
search point, the third, and so on. Consider the following recursive relationship that
generates an infinite series of numbers Cn which in turn determines such ratios:

Cn � Cn�1 � Cn�2 n � 2, 3, . . .

Define C0 � 1 and C1 � 1. The above equation generates a series of numbers that
are known as Fibonacci numbers:

Sequence k Identifier Fibonacci No. Fk

0 C0 1
1 C1 1
2 C2 2
3 C3 3
4 C4 5
5 C5 8
6 C6 13
7 C7 21
. . .
. . .
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It can be shown that the Fibonacci search is an optimal search technique in the
minimax sense. In other words, in a sequence of m functional evaluations, it will
yield the minimum maximum interval of uncertainty. 

Let �k be the interval of uncertainty after k functional evaluations, and xn
be the decision variable x for which we seek an optimal value after k functional
evaluations (k � 1, 2, . . . , m). Unlike the Golden Section method, � represents the
given minimum separation allowed between any two points over the interval,
 instead of half the interval of uncertainty. In other words, � represents the resolu-
tion that can be obtained experimentally between xk and xk�1. The initial interval
is �0 � b � a. The evaluations at a and b, f(a) and f(b), yield no knowledge of where
the optimal solution lies, preventing us from eliminating any region from the
search interval. This means that the interval of uncertainty remains the same at
the second iteration, or �1 � b � a. (In some ways, this is reflected through the
first two Fibonacci numbers of 1.)

One can prove that the length of the interval of uncertainty after the first
two functional evaluations is given by the following relationship:

�2 � �
C
1

m
� [�0 Cm�1 � �(�1)m] (4.6)

The length of the final interval of uncertainty (which may not be less than �) can
also be shown to be given by the following equation:

�k � �
C
�

m

0� � ��
F
C

k�

m

2�

Notice the final interval of uncertainty is a function of the number of experimen-
tal evaluations (m), the allowable resolution (�), and the initial search interval (�0).
The final interval will converge to zero as the number of functional evaluations
 increases to infinity, provided that � is allowed to be infinitely small.

Finally, one can prove that the following evaluation is valid throughout
the search procedure:

�k � �k�2 � �k�1    k � 3, 4, . . . , m (4.7)

Example
The Golden Section example was a good illustration, but it represents a rather sym-
metrical objective function g(x) about the optimal location (x*). Here we show an-
other function which is a bit more skewed, just to demonstrate that the search tech-
nique can handle both situations, including the one illustrated in Figure 4.3(b). Let
us get back to the example in which the accessibility measure is a function of
mileage. We wish to maximize the calibrated accessibility function f(x) � �3x2 �
21.6x � 1.0 between the interval [0, 25], with a minimum resolution of 0.50 and a
search budget of six functional evaluations (Ravindran et al. 1987). In other words,
the best  accessibility is obtained somewhere between 0 and 2500 miles (4000 km)
of  additional highway built in the study area. Notice that such functions are not
 generally obtainable explicitly. It is given here for illustration purposes only.

From equation 4.6,

�2 � �1
1
3� [25(8) � 0.50] � 15.4231
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The first two functional evaluations will be conducted over the range [0, 25] sym-
metrical within this interval, where b1 � a � �2 � 0 � 15.4231 � 15.4231 and a2 �
b � �2 � 25 � 15.4231 � 9.5769. This results in f(b1) � � 379.477 and f(a2) � � 67.233.
Since the figure of merit is smaller at b1 than at a2, Figure 4.5 shows that the region
to the right of b1 � 15.42 can be eliminated. Note that �0 � �1 � 25. Hence �3 �
�2 � �2 � 25 � 15.4231 � 9.5769 using Equation 4.7.

Symmetrical within the present interval of uncertainty, the two new
points will be b3 � 9.5769 and a4 � 5.8462, and f(b3) � �67.233, f(a4) � 24.744.
Notice that one of the new functional evaluations corresponds to one of the old
functional evaluations. The current evaluation allows for the elimination of the
 region to the right of b3 � 9.5769. The current interval of uncertainty is 
�4 � �2 � �3 � 15.4231 � 9.5769 � 5.8462. If we continue the process, conver-
gence is obtained at the 6th iteration when the interval of uncertainty �6 � 2.115,
and the resolution is � � b7 � a6 � 4.2304 � 3.731 � 4994, which is less than the
specified minimum resolution of 0.5. In other words, the search now terminates

Figure 4.5  INTERVAL OF UNCERTAINTY IN FIBONACCI SEARCH
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since an  answer within 50 miles (80 km) is tolerable. Thus the best accessibility
was  obtained when 373 to 423 miles (597 � 677 km) of new highway are built. ■

From Equation 4.6

Lim(�2) � �0[Fm�1/Fm]
m → �
� → �

One can show that in the limit the ratio Fm�1/Fm goes to 0.618, which is the golden
section ratio 1/1.618. It is important to reemphasize once more that we do not need
to know the precise form of the objective function in Fibonacci search. It is equally
worthwhile to point out again that the evaluation of the figure of merit is often-
times very difficult, even though we have assumed away the problem by having
an analytical expression for the figure of merit f(x). This is where a search technique
such as this comes in. In the two examples used, for instance, all that is necessary
to evaluate the objective function is to compare it at two proximal points, and the
only answer required is which is the better figure of merit, not by how much is it
better. In the accessibility example, we simply perform traffic flow simulations at
two proximal points to see which provides better area-wide accessibility. In the
 retail store location example, expert opinions can be used to compare the compet-
itiveness of a store at one location vis-a-vis another, without explicitly quantifying
the market share. Few optimization techniques would have this level of robustness
and simplicity regarding the knowledge on the objective function.

III. ANALYTICAL SOLUTION TECHNIQUES
Analytical techniques, unlike the heuristic procedures, are subject to more rigorous
mathematical treatment. They are usually solvable in closed form, rather than a
process of trial and error (as was used in heuristic and direct search procedures). We
have included here examples ranging from calculus to nonlinear programming.

A. Calculus
A familiar example of the analytical techniques is calculus. In this case, the objec-
tive function is expressible in a differentiable function, and the problem is subject
to solutions by a well-defined set of theorems and procedures. It is required that
there should be a peak or valley within the defined range of the variables. The
reader might have already figured out that the accessibility maximization
 example above can easily be determined by setting the first derivative to zero:
ḟ � (x) � 6x � 21.6 � 0, or x* � 3.6, which checks out with the previous solution

using the Fibonacci search. 
Instead of such an explicit functional form, an implicit function can be

 defined after the constraints are merged into the objective function, as is typically
done in the Lagrangian procedure. Again the best way to illustrate this is through
an example (Au and Stelson 1969). Suppose one is given a rope of 2s feet (meters)
and is to tie each end to a tree and to rope off an area as large as possible by
 locating a pole somewhere in the clearing, as illustrated in Figure 4.6. Where
should the pole be placed? According to geometry, the area of a triangle A is
 defined in terms of its three sides—a, b, c—and the perimeter 2s according to the
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following expression, which we maximize: Max f(b, c) � A2 � s(s�a)(s�b)(s�c).
The only limitation is the length of the rope:

g(b, c) � a � b � c � 2s � 0 (4.8)

The Lagrange procedure calls for the formation of a Lagrangian function, which
is the linear combination of the objective and constraint, to be maximized:

Max L(b, c, �) � f(b, c) � �g(b, c) � s(s�a)(s�b)(s�c) � �(a � b � c � 2s)

where � is called the Lagrange multiplier or the dual variable.
Taking the first derivative of the Lagrangian function with respect to the

three variables b, c and �, we have

L̇(b) � 0 yields � s(s�a)(s�c) � � � 0
L̇(c) � 0 yields � s(s�a)(s�b) � � � 0
L̇(�) � 0 yields a � b � c � 2s � 0.

Solving these three equations for three unknowns b, c, �: b � s�a/2, c � s�a/2, and
� � �as(s�a)/2. Thus if the rope is 200 feet (60 m) in length, and the two trees are
60 ft (18 m) apart, an equilateral triangle should be formed as shown in Figure 4.6,
where the two sides b and c each measures (100) � (60/2) = 70 ft (21 m). The area so

Figure 4.6  ROPING OFF AN AREA
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enclosed is 1897 sq ft (171 m2). As indicated by the Lagrange multiplier or (dual
 variable), � � �z/�c � �z/�b. A movement of the pole to the left or the right of the
existing position by one foot (0.3 m) of rope length will decrease the enclosed area
by [(60)(100)(100 � 60)/2]1/2 � 346 sq ft (10.4 m2).

In the section below and also in Appendix 4, we will discuss another
 analytical solution technique, linear programming. It will be shown that � has the
same interpretation as the dual variable in LP, meaning the effect of changing the
resources on the right-hand sides (RHS) of the constraint equations (in this case 0)
by �� or �� (where � is nonnegative in value). If ��, the rope is lengthened
 according to Equation 4.8, and the area of the triangle will increase. On the other
hand, if ��, the rope is shortened, and the area will decrease instead. The
 interesting point is that � � ��z/�s is always nonnegative. The amount of
 increase or decrease is ��. Similar interpretation can be made for the distance
 between the trees a. In this case � would be unrestricted in sign.

B. Linear Programming
There are other types of analytical techniques, including linear and nonlinear
 programming. First, let us discuss linear programming (LP), an optimization
method involving a set of linear simultaneous equations. A classic LP model in the
early development of urban modeling is the Herbert-Stevens residential model
(Herbert and Stevens 1960). The model structures a  market clearing mechanism
(Devish et al. 2006) to allocate residential bundles among the wealthy and the poor
(for example, i � 1, 2) over the zones k in an urban area (for example, k � 1, 2). We
will use this model to illustrate the LP optimization technique. The first index in
identifying variables and input parameters in the model is a household group i,
distinguishing residents with different budgets and tastes (i � 1, 2 for the rich
and poor as mentioned). Instead of recognizing specific families, certain groups
(containing more than one family) with the same budget and tastes are considered.
Next to be considered are certain types of amenities h associated with the housing,
which may refer to the amount of green space or public services such as schools
and hospitals (h � 1, 2). For a family type i, they are interested in the residential
bundle with amenity level h in a specific zone k of the city, with an associated cost cih

k .
Included in the aggregate cost cih

k are transportation expe nditures considering the
number of trips and the associated length of each trip, but excluding the site rent
paid to the landlord. 

Now let us discuss the land rent paid by group i for residence h. There are
two types of rents, total site rent and unit site rent. Total site rent is the amount paid
for the total housing while the unit site rent is just the amount of rent per unit acre
(0.4 ha), where sih′ stands for the acreage for housing type h considered by house-
hold type i. The former will be used in the primal version of the model while the
latter will be used in the dual (the terms primal and dual will be explained below).
Both of these costs are exclusive of the house and the travel cost; they refer to the
land alone. Finally, the distinction between residential bundle and the  market
 basket needs to be made. A residential bundle is simply an aggregate of the qual-
ity of the house, how nice the surroundings are, and the transportation cost. The
market basket, on the other hand, is the residential bundle plus other  commodities
that can be fit into the residential budget, including land rent.

The LP model decides who is going to obtain a particular piece of land.
In the allocation process, it recognizes that people try to economize and obtain the
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best for their residential budget bih, in other words, maximizing their savings 
(bih � cih

k ). The savings can be applied toward paying site rent to the landlord, or
it could be a net savings if land is free in an economic context (as in zones where
a surplus of land is available). Thus we have made savings synonymous with rent
paying  ability—a household can afford to pay the landlord site rent only if it has
savings. The objective function of the LP seeks to maximize aggregate rent paying
ability over the entire study area. The final allocation is based on a tradeoff
 between how much one can afford and what one is looking for. These concepts
can be formalized in the set of equations below.

Decision variables: (←xih
k →)T � transpose vector containing the number

of households of group i using residential bundle h located in zone 
k � (x11

1 x12
1 x21

1 x22
1 ) and (x11

2 x12
2 x21

2 x22
2 ); it goes without saying that these 

variables in the two vectors should ideally be integers.

Input Coefficients: (←bih→)T � transpose vector of the residential 
budget (in 10,000 dollars) allocated by group i to bundle h � (b11b12b21b22) = 
(5 4 3 2); (←cih

k→)T � transpose vector of annual cost (in 10,000 dollars) 
to group i who chooses bundle h in area k, exclusive of site cost (land rent) =
(c11

1 c12
1 c21

1 c22
1 ) and (c11

2 c12
2 c21

2 c22
2 ) = (4 3 2 1) and (3 2 1 0.5) respectively;

(←s′ih→)T � transpose vector of the number of acres (ha) in the site used by
a household of group i if it uses residential bundle h � (s′11 s′12s′21s′22) = (0.9
0.8 0.6 0.5).

Right-Hand Sides: (←Lk→)T � transpose vector of acres (ha) of land
available for residential use in zone k � (L1 L2) � (20 15); (←Ni→) � 
transpose vector of the number of households of group i that are to be
 located in the study area � (N1 N2) � (15 10).

Now we can write out the set of constraint equations. For land availability,
we have:

0.9x11
1 � 0.8x12

1 � 0.6x21
1 � 0.5x22

1 � 20    in zone 1

0.9x11
2 � 0.8x12

2 � 0.6x21
2 � 0.5x22

2 � 15    in zone 2;

Demand for housing can be written as:

x11
1 � x12

1 � x11
2 � x12

2 � 15    for household group 1

x21
1 � x22

1 � x21
2 � x22

2 � 10    for household group 2.

Finally we write the objective function:

Max (savings in rent) � (5�4)x11
1 � (4�3)x12

1 � (3�2)x21
1 � (2�1)x22

1

� (5�3)x11
2 � (4�2)x12

2 � (3�1)x21
2 � (2�0.5)x22

2

While this “toy example” is constructed for illustration purposes, its
 generalization to m residential bundles, n household groups and U′ zones can be
readily inferred. For the specific example above, the solution assigns 3.75 and
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11.25 households in group 1 to residential bundle 1 in zone 1 and bundle 2 in zone 2
respectively, and 10 in group 2 to bundle 1 in zone 2. In other words, x11

1 � 3.75,
x12

2 � 11.25, and x21
2 � 10 and all other decision variables are zero.1 Thus housing

type 1 is popular among residents in this area, and so is zone 2 as a place to live
(Vernon et al. 1992). The latter appears reasonable since the cost coefficients for
zone 2 are smaller than those in zone 1, resulting in the greatest increase in
 savings, defined, once again, as (bih�cih

k ). Thus the model allocates as many house-
holds as possible in zone 2 and meets the remaining demand through the use of
zone 1. An area-wide rent savings of $462,500 is achieved. 

The above is called the primal formulation of the LP. The dual formula-
tion is the mirror image of the primal and can be written after defining two dual
variables written for the land-availability constraint and the demand-for-housing
constraint respectively:

rk = rent per unit-of-land in zone k (k � 1, 2)

v'i = subsidy per household in group i (i � 1, 2)

Now the dual LP looks like:

0.9r1 � v1′ � (5 � 4)
0.8r1 � v1′ � (4 � 3)
0.6r1 � v2′ � (3 � 2)
0.5r1 � v2′ � (2 � 1)
0.9r2 � v1′ � (5 � 3)
0.8r2 � v1′ � (4 � 2)
0.6r2 � v2′ � (3 � 1)
0.5r2 � v2′ � (2 � 0.5)

Min 20r1 � 15r2 � 15v1′ � 10v2′

While the rs are positive, the sign for the vs can be both positive or negative, since
these dual variables are associated with the equality constraints defined for the
demand for housing (as contrasted with the inequality constraints for land avail-
ability)—a point which will be elaborated shortly below.

The dual LP determines the rent in each zone k and the subsidy paid to each
household group i. Let us explain more in detail. Landlords at each zone k can
 receive at least as much site rent per residential bundle h as the highest bidder of
household group i is willing to pay. Please note the actual cost to a household is the
rent a household i pays after accounting for the subsidy received by the household
or a taxation on the household group (when vi′ is negative). The dual program min-
imizes total land rent paid to landlords in all the zones k, minus the subsidy to all
household groups i�i.e., the net rent paid. Notice this may mean a certain amount
of subsidy has to be paid to household group i in order to guarantee a location at a
particular bid-rent. The availability of subsidy to household group i enables that
household to locate a residential bundle h in neighborhood k—a location which
would be impossible without the subsidy. A poorer household can in fact be the
highest bidder per unit of land as long as the household bids on small lots.
Likewise, subsidy may be assigned to a wealthy household to ensure a residential
bundle location also. The use of subsidy variable v′ sometimes presents a problem
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as one goes back and forth between the dual and the primal formulations. Take the
primal formulation first: There may be situations where all of one household group
i cannot be located in zone k due to the capacity constraint on the land Lk—under
the primal objective function of maximizing total savings in location rents. The
 remaining households of group i have to be located elsewhere (in zone k′ for
 instance). Relocating these group i households in k′ zone, however, would involve
a subsidy (viewing from the dual formulation). Because of the LP formulation, this
subsidy vi' must be assigned to all households in group i. This may lead to exces-
sive high rents in the favorite zones, when the actual cost to a household is the net
of  actual rent minus the subsidy.

Solution to the dual LP yields r1 � 0, r2 � 1.25, v1′ � �1.00 and
v2′ � �1.25. This says that surplus land is available in zone 1, resulting in rent per
unit-of-land being zero in this zone.2 The taxation for household group 1 is
$10,000 while that for household group 2 is $12,500, being the wealthier of the two
groups. It can be seen that the wealthy residents, similar to their less affluent
counterparts, both want their desired housing type and location and are willing
to pay for it. But the consumers’ surplus, or the difference between the maximum
amount that the consumer would pay and the amount the consumer actually
pays, is distinctly different among the two. As expected in an LP, the dual solution
of net rent paid over the study area is identical to the primal solution of total sav-
ings in land rent. Both are valuated at $462,500.

C. Primal and Dual Linear Programs
The LP discussion highlights the most interesting relationship between the primal
formulation of an optimization problem and its dual. For the same housing
 example, one can review the key features of this relationship by constructing the
LP tableau contained in Table 4.3. In the tableau, it is clear that the dual formula-
tion is simply the transposed primal tableau. The cost coefficients in the primal
 objective function become the right-hand side of the dual LP, and the right-hand
side of the primal becomes the cost coefficients of the dual objective function.
While we used to maximize in the primal, now we minimize in the dual. Each
constraint of the primal has a dual variable assigned to it. Dual variables assigned
to an inequality are positive in sign, while those assigned to equality constraints
are unrestricted in sign as mentioned.

Table 4.3  PRIMAL AND DUAL TABLEAU EXAMPLE

Primal x11
1 x12

1 x21
1 x22

1 x11
2 x12

2 x21
2 x22

2 Min
→ ↓

r1 0.9 0.8 0.6 0.5 20

r2 0.9 0.8 0.6 0.5 15

v1′ 1 1 1 1 15

v2′ 1 1 1 1 10

Max ↑
→ (5 4) (4 3) (3 2) (2 1) (5 3) (4 2) (3 1) (2 .5) Dual
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Certain duality theorems govern the solutions of the primal and dual LPs:

(a) If both the primal and dual problems have feasible solutions, the
 primal problem has an optimal solution with a figure of merit equal
to the dual problem.

(b) Whenever a constraint in either one of the problems holds as a strict
 inequality so that there is slack (or surplus) in the constraint, the  cor -
responding variable in the other problem equals zero. Otherwise a
strict equality is obtained, together with the corresponding unre-
stricted variables in the other problem. This is usually referred to as
primal and dual complementary slackness.

Based on statement (b) above, the dual variable, nonnegative in value,
can be interpreted as the opportunity cost associated with the limited resource. In
other words, r ′ corresponds to the additional contribution to the savings or rent
figure of merit should land in zone 1 be increased by one unit. Thus both r1 and
r2 can be interpreted as the additional net rent from an additional unit-
of-land in zone 1. Parallel interpretation can be made regarding the dual variables
associated with equality constraints, such as vi′. In this case, the dual  variable can
be either positive, negative, or zero. In the Herbert-Stevens model above, for
 example, vi′ is negative and is interpreted as the taxation paid by household group
i. Should vi′ be positive, it corresponds to subsidy, as mentioned previously. Both
taxation and subsidy point toward the inherent valuation of group i toward their
housing demand. Notice the dual variables are similar to the Lagrange multiplier
in the discussion of calculus as an optimization technique. In fact, the Lagrange
multipliers are the names given to dual variables in nonlinear differentiable func-
tions through historical practice. The dual variable vi′ has a similar interpretation
as the Lagrange multiplier � in the example on roping off an area, as discussed
under Section III-A. Both reflect the increase or decrease in objective function
value should the strict equality constraint be relaxed.

D. Solution of Linear Programs
There are a number of ways to solve LP on the computer, ranging from traditional
simplex procedures to newer techniques such as the interior-point (projective)
method, from general procedures for regular tableaux to specialized techniques
that exploit special structures of the tableau (See Appendix 4 or Bazaraa, Jarvis,
and Sherali 1990). While the simplex algorithm is illustrated in Appendix 4,  it is
not the intent of this chapter to summarize all possible solution algorithms, nor
are we in fact capable of doing so in such a limited space. Rather, we would like
to highlight the salient points that will hopefully guide the location/land use an-
alyst  toward formulating a problem in an LP, selecting the appropriate computer
 package for the problem at hand, understanding the implications of the 
computer outputs, and perhaps most important of all, discerning abnormalities in
the modeling process, if any, in a timely fashion. Let us use the same example we
used in Chapter 1—the airport-location problem. Instead of the New York City
area, let us move to the Midwest of the United States. Suppose an airport is to 
be built between Dayton, Ohio (population one million) and Cincinnati (popula-
tion two million)—with a time separation of 60 minutes (Min) on Interstate
Highway 75. We wish to locate the airport solely in such a way that the
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travel(measured in person-minutes) for all residents of the two cities is to be min-
imized. Where should we build the airport?

Let the airport be located x1 Min away from Cincinnati (C) and x2 Min
from Dayton (D). The following LP can be constructed to model this problem: Min
{2x1 � x2|x1 � x2 � 60}, where the � sign is used in the constraint to include the
construction of an airport away from the Interstate Highway 75 that directly con-
nects the two cities. The solution to this LP, in spite of its somewhat counter intu-
itive nature, is at either one of the extreme points C or D, in accordance with basic
theorems in LP. This is shown below and in Figure 4.7, where the feasible region
and objective function are plotted out in full. In this case, the airport is to be
 located at Cincinnati, x* � (0, 60)T, resulting in a minimum of 60 million total
 person-minutes of travel, z* � 60.

Should the Dayton population grow to two million and the Cincinnati pop-
ulation remain at existing level, the LP now looks like: Min {2x1 � 2x2|x1 � x2 � 60}.
The multiple solution is shown in Figure 4.7. In this case, the airport can be any-
where between Dayton and Cincinnati on Interstate 75. Except for degeneracy, an
LP solution algorithm amounts to an efficient way of implicitly (instead of exhaus-
tively) evaluating the objective function at all possible extreme points and picking
the very best. As mentioned, the simplex algorithm is described in Appendix 4 .

Such an analysis can be carried over to the case of three cities (Cincinnati,
Columbus, and Dayton) and four cities (Cincinnati, Columbus, Dayton, and

|←⎯x1⎯→|←⎯x2⎯→|
C D

60 Min

Figure 4.7  GRAPHICAL SOLUTION OF AN AIRPORT LOCATION PROBLEM
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Indianapolis). With Columbus’ population at three million, Indianapolis at 3.5
million and the door-to-door times (after transportation improvement) as shown
in Figure 4.8, these LPs were solved with the decision variables x1, x2, x3, and x4,
corresponding to the time from Cincinnati, Columbus, Dayton, and Indianapolis
respectively (Bartholomew, Brown, and Chan 1990; Cameron, O’Brien, and Chan
1990; McEachin, Taylor, and Chan 1992; Harry, Farmer, and Chan 1995).

For the three-city case:

Min (2x1 � 3x2 � x3)
s.t. x1 � x2 � 70

x1 � x3 � 60 (4.9)
x2 � x3 � 90
x1 � x2 � x3 � 125

where the last constraint shows minimum total time from each of the vertices of
a triangle to a common point, as determined by the intersection of three angle
 bisectors (Claunch, Goehring, and Chan 1992). For the four-city case:

Min (2x1 � 3x2 � x3 � 3.5x4)
s.t. x1 � x2 � 70

x1 � x3 � 60
x2 � x3 � 90
x3 � x4 � 120 (4.10)

x1 � x4 � 150
x2 � x4 � 206.62
x1 � x2 � x3 � x4 � 266.62

Figure 4.8  THREE- AND FOUR-CITY EXTENSION OF THE AIRPORT
LOCATION PROBLEM
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where the last constraint represents the minimum total travel time from the four
vertices to a common point, as determined by the bisectors from
Cincinnati–Dayton, Columbus, and Indianapolis.

It was found that multiple solutions are again obtained in the three-city
case, inasmuch as the combined Dayton and Cincinnati population exactly
amounts to the Columbus population. Should one additional baby be born in
Columbus, making Columbus the most populous city by just a shade, the airport
would now be located in Columbus! In the case of four cities with the populations
shown, the airport location changes to Cincinnati. Again the multiple solution is
obtained when the population at all three or four of the cities are the same, where
the multiple solutions occur at the inside of the convex hull formed by the cities
as marked by the wedges.

Population (in millions) at
Cincin Columb Dayton Indianap Airport location Obj function value

2 3 1 x1 = 35, x2 = 35, x3 = 55 230 person-Min
or
wedge LD in Figure 4.9
or
x1 = 20, x2 = 0, x3 = 90

2 3 1 3.5 x1 = 6.69, x2 = 63.31, 758.21 person-Min
x3 = 53.31, x4 = 143.31
or
wedge LD in Figure 4.10

In Figures 4.9 and 4.10, the figure legends suggest that each solution is
qualified by a solution method and a model, each of which is denoted by a capi-
tal letter. Among the solution methods are LP, nonlinear program (NLP), direct
search, and NLP version of the direct search. Among the models are the baseline

Figure 4.9  SOLUTIONS TO THE THREE-CITY CONFIGURATION
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solution with the given metropolitan population and both the multiple solutions
when the combinations of populations are equal and when noise considerations
are taken into account. Solutions to these LPs are very sensitive to the precise
 formulation and numerical errors, illustrating two key concerns in LP solution
 algorithms. Overall, these results are consistent with findings by Hurter and
Martinich (1989), who reported studies in this Fermat or Steiner-Weber problem in
the general context of industrial plant location.

Sensitivity analysis was performed by Leonard, McDaniel, and Nelson
(1991), who changed the travel times between the cites slightly in the three-city
problem. The travel times between Cincinnati–Columbus and Columbus–
Dayton were reversed. The general result regarding extreme point and interior
point  solutions does not change. It appears that the driving force seems to be the
populations rather than the travel times. Sensitivity analysis of the population
coefficients of the three-city problem reinforces the observation that a city with a
 population larger than that of the remaining cities will host the airport. As men-
tioned, any increase in the Columbus population, which equals the combined
populations of Cincinnati and Dayton, will make Columbus the optimal airport
location. As another example, as soon as the Cincinnati population slightly
 dominates over Columbus and Dayton combined, the airport is located at 5 miles
(8 km) outside the city. Sensitivity analysis on the four-city problem yields
 similar results. Finally, sensitivity experiments with the set of constraints yield
interesting results. By deleting the last constraint of the three-city problem, a
 different and larger wedge of alternate solutions results. On the other hand,
when the last constraint was removed in the four-city problem, the solution
space did not change. Further examination shows that the last constraint is
 redundant and, hence, is not needed.

Figure 4.10  SOLUTIONS TO THE FOUR-CITY CONFIGURATION
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Before we conclude our discussion on linear programming, let us com-
ment further on the computational aspects. Suffice to say that LP software has
been perfected over the years. Numerical round-off errors involved in solving the
linear set of equations has been an active area of investigation, resulting in steady
improvements. Receiving equal attention is the storage requirement for interme-
diate data in large-scale problems, particularly regarding the basic feasible solu-
tions corresponding to the various extreme points. Most recent advances have
concentrated on input-output convenience (sometimes referred to as user friend-
liness). It is clear that the future generation of LP software (as well as nonlinear
program software) will be those with symbolic-processing capabilities, including
inputs expressed in algebraic forms such as equations and vector/matrix mathe-
matical symbols (Brooke, Kendrick, and Meeraus 1995). In Chapter 6, we include
an elementary example of such an input stream expressed in a set of equations.
Equally viable is a parallel effort to link algorithmic procedures to data storage, as
evidenced in spread sheet based procedures (Winston 1994).

E. Nonlinear Programming
When the objective function and/or the constraints are no longer linear functions,
we have a nonlinear program. An example of a nonlinear objective function is the
example used in Fibonacci search, where accessibility is given as a quadratic func-
tion of the highway mileage. Another example is the calculus optimization prob-
lem where the area enclosed by a rope is a nonlinear function of the rope length.
These two examples can be considered special cases of nonlinear programming.
Here we will examine the more general case and discuss a robust way of solving
the general class of nonlinear programming problems. Again, we will use an
 example to introduce these concepts. Continuing the three-city airport study
 mentioned in the sensitivity analysis above, we introduce noise abatement as an
additional concern (Leonard, McDaniel, and Nelson 1991). Here a simple repre-
sentation of noise pollution is taken: pollution = (constant)(population)(distance)�2.
Following this assumption, the noise pollution at each city i is Kxi

�2, where K is
the calibration constant, same for all three cities. This term is added to the LP ob-
jectives of Equations 4.9 and 4.10, resulting in Equation 4.11. Different values of K
were experimented with and at K � 2,150, the nonlinear objective function is
equal to the linear at the halfway point between Dayton and Cincinnati in the
two-city case. The constant K controls the effect of noise on the objective function.
For very large K, the noise persists for a very long distance away from the airport.
Conversely, as K approaches zero, the noise effect on the objective function
 becomes nonexistent. For values of K larger than 2150, two optimum locations
were found, each located between the cities, symmetrically left and right of the
center line (Interstate Highway 75). As K is reduced below 2,150, McEachin et al.
(1992) found multiple optimal solutions. As a result of these experiments, the
 constant 2150 is used throughout the three- and four-city cases.

The three-city case now has the objective function

Pollution � 2(x1 � Kx�2
1) + 3(x2 + Kx�2

2) + (x3 + Kx�2
3) (4.11)

Notice the objective function is a nonlinear function of the travel time decision
variables. The airport location is now in the interior of the triangle defined by the
three cities, at a point away from the three populations. When the populations at
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the three cities are equal, the airport location is at a point equally far away from
each of the three cities. This interior point result is again consistent with Hurter
and Martinich’s general finding. Extensive computational results were obtained
by McEachin et al. (1992) for the three- and four-city cases, as summarized in
Figure 4.9 and Figure 4.10. Aside from an LP and NLP, a gradient search, or hill
climbing algorithm was directly used to verify the results. A gradient search pro-
cedure is a general numerical way of solving nonlinear programs based on
“climbing up the hill” in the steepest ascent direction in each step. The search
was conducted directly on the triangle as defined in the x-y Euclidean space. The
region within which the search is conducted is delineated by the three cities, or
the four cities. An example of the gradient search solution for the three-city case
is shown in Figure 4.11, complete with the combined noise and travel cost con-
tours. Here one can see the optimum occurs at the “bottom of the valley” as
 defined by the contour 392 in this minimization example. Notice once again that
the x-y space defines the feasible region for the search to be conducted, rather than
the x1, x2 and x3 decision-variable space used in both the LP and NLP models.

Similar to the linear case, the “legs” x1, x2, and x3, as defined by the
 constraints shown in Equation 4.9 are not long enough to meet at a point in the
three-city baseline configuration. The solution is somewhere within the triangular
wedge as indicated by the symbol GBn in Figure 4.9. The multiple solution where
combinations of cities have the same population, is also shown as a similar wedge,
labeled as GDn. These solutions are obtained via two different solution methods.
The first is an off-the-shelf, NLP solver GINO (Lasdon and Warren 1986). The

Figure 4.11  GRADIENT SEARCH SOLUTION TO THREE-CITY
CONFIGURATION WITH NOISE

SOURCE: McEachin et al.(1992). Reprinted with permission.
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 second is the direct method of gradient search (Russell, Wang, and Berkhin 1992).
The optimal NLP and direct search solutions of the baseline case diverge slightly.
Their objective function values are close, at 239.47 and 248.12 respectively. The
 direct search solution is about six minutes away from the wedge defined by the
NLP solution. Similar discrepancies are found between the multiple solutions. In
our judgment, this reflects the numerical round-off errors by different algorithms,
caused mainly by the difference between the feasible region defined by the x-y
Euclidean space and the x1, x2, and x3 space. To verify this point the analytical
 models were solved again using the NLP technique on the x-y space, rather than
the  x1, x2, and x3 space. Both the direct search and NLP yield identical solutions.
For completeness, we also include here the solutions for a four-city case in Figure
4.10, which exhibit many of the same phenomena.

F. Solution of a Nonlinear Program
We will illustrate two general types of solution algorithms. The first is a noncon-
vex programming solver based on the method of steepest ascent. This is intended
for unconstrained optimization problems. Then we introduce the more general
method to solve constrained problems.

1. Method of Steepest Ascent. As illustrated in Figure 4.12, the ideas
 behind the method of steepest ascent is quite simple. Starting with any initial
point x0, one hikes up the mountain in the direction of steepest ascent. One keeps
moving forward to the top of the ridge, at which time one reassesses the steep-
est ascent direction, which involves a 90-degree turn as shown at x1. Having 
re-established the steepest ascent direction, one again moves up to the top of the
ridge at x2, takes another 90-degree turn and proceeds to move forward. If this
procedure is repeated, one would eventually arrive at the top of the hill at x*.
Notice we are on top of the hill instead of the mountain mainly because of the
starting point x0. Should we start at x0′ instead of x0, one would have hiked up
the top of the mountain at x**. We call x* a local optimum and x** a global opti-
mum. Notice what we have performed is an unconstrained  optimization. If one
places a constraint such as x1 � x2 on this problem, the  optimization result would
have been different, the global maximum would have to be at x* instead of x**
along the line x1 = x2.

The general algorithm proceeds as follows:

1.  Select a starting point xk � x0 � (x1
0, x2

0, . . . , xn
0) and set k � 0.

2.  Find a direction to move dk � f(xk) which will improve (increase/ 
decrease) the function at iteration k, where dk � (d1

k, d2
k, . . . , dn

k)T

3.  Move a distance tk in the direction dk to a new point xk�1 � xk � tkdk

where tk is the nonnegative step size at iteration k, to be determined
by (a) a line search (Golden Section for example), or (b) analytic tech-
nique (parametric in tk).

4.  Check for local optimality, for instance

	 �     j � 1, 2, . . . , n (4.12)

If stopping criteria are not met, k → k � 1, go to step 2, otherwise, stop.

�f
�
�xj�

x�xk
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Example
Suppose we wish to maximize the function f(x) � 2x1x2 � 2x2 � x1

2 � 2x2
2. The two

components of the gradient are: d1 � ḟ(x1) � 2x2 � 2x1 and d2 � ḟ(x2) � 2x1 � 2 �
4x2, or d0 � (d1

0, d2
0) � f(x0) � f(0, 0) � [ ḟ(x1 � 0, x2 � 0), ḟx2(x1) � 0, x2 � 0)] � (0, 2).

For k � 1, set x1
1 � 0 � t(0) � 0, x2

1 � 0 � t(2) � 2t. Then f(x1) � t[x0 � tf(x0)] � 
f(0, 2t) � 2(0)(2t) � 2(2t) � (0)2 � 2(2t)2 � 4t � 8t2. Maximization of f(x1) over t
yields t* � 1/4, and correspondingly x1 � (0, 0) � 1/4(0, 2) � (0, 1/2). Since d1 �
2(1/2) � 2(0) � 1, it is clear that more iterations are necessary. Thus the iteration
continues when we repeat what was applied toward x0 previously. ■

2. Karash-Kuhn-Tucker Conditions. Solution of a constrained nonlinear
program is governed by the Karash-Kuhn-Tucker (KKT) conditions, which can
be thought of as a generalization of the Lagrangian method discussed earlier.
Consider the following optimization problem expressed in decision variable vec-
tor of n dimension in cartesian space:

Max/Min f(x)
gi(x) � b1’         i � I′ � {1, 2, . . . , m}

The Lagrangian method, as applied to equality constraints, can be represented in
matrix algebra as

�f(x*) �/� �
i�I′

�i �gi(x*) � 0 (4.13)

Figure 4.12  EXAMPLE SEARCH
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Note: Gradient is perpendicular to objective function contour at xk and tangent at xk11 (k = 0, 1, 2).
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with the negative sign corresponding to the maximization problem and the
 positive sign minimization problem. This is sometimes referred to as the dual
 feasibility condition. Here (x*, �) is an optimal solution with unrestricted signs,
in other words, both x and � can assume either a positive or negative value.
A complementary slackness relationship can also be written, similar to the rela-
tionship between a primal and dual LP:

�i[b’1 � gi (x*)] � 0      for all i � I (4.14)

These form the essence of the KKT conditions. Variants of these two equations can
be written for nonnegative requirements on the variable x and �.

Consider the mathematical program P′

Max/Min f(x)
gi(x) � bi′ i � I′ � {1, 2, . . . , m}

If f(x), gi(x)s are differentiable functions satisfying certain local regularity condi-
tions such as non-singularity and convexity, then x* can be an optimal solution to
problem P′ only if there exist nonnegative �i (i � I′) such that the same conditions
as the case with equality constraints apply. If x* is to be nonnegative also, 

�f(x*) �/� �
i�I′

�i �gi(x*) �/� 0 (4.15)

These necessary KKT conditions can be interpreted as a saddle point, as illustrated
in Figure 4.13. Note Equations 4.13 and 4.14 hold for strict equality constraint ir-
respective of the sign of x and � as in the Lagrangian, and according to Figure 4.13,
partial derivatives with respect to x and � are zero. On the other hand, for trun-
cated xs and �s due to nonnegativity, we may fall short of the saddle point or the
saddle point may not be reached.

The equivalent dual complementary slackness condition can be written in
long hand as:

xj � � 
i�1
�
m

�i �� 0    j � 1, 2, . . . , n (4.16)

In the case of equality constraints, the dual feasibility condition (Equation 4.15),
when expressed in long hand, becomes

� 0    j � 1, 2, . . . , n (4.17)

for maximization problems. The dual complementary slackness condition
(Equation 4.16) above, in the case of equality constraints, would simply be 

xj
� 0    j � 1, 2, . . . , n (4.18)

For illustration, one can check these KKT conditions against a two-
variable LP.

∂f
�∂xj

∂gi
�∂xj

∂f(x)
�
∂xj

∂f(x)
�
∂xj
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Figure 4.13  MAX IN x AND MIN IN �

L(x, )

x 0 x 0

x*

Optimal

Suboptimal

*

Linear program

Nonlinear program

Legend

Max f(x) � c1x1 � c2x2
gi(x) � ai1x1 � ai2x2 � bi′ � 0       (i � 1, 2)
x, � � 0.

The first KKT equation (Equation 4.13) becomes the dual feasibility condition:

� � � �1 � � � �2 � � � A�T� (4.19)

Pre-multiplying by x, we obtain the weak duality xTc � xT �T� � b′T� and the
strong duality. In the former case, the primal objective function value is not less
than the dual. In the latter case, the primal solution (zx*) is the same as dual solu-
tion (z�*) at optimality. The complementary slackness Equation 4.14 simply reads

�1 (b1′ � a11x1 � a12x2) � 0
�2 (b2′ � a21x1 � a22x2) � 0

3. Frank-Wolfe Method. Now that the KKT conditions have been briefly
 reviewed, let us go to NLP solution methods that build upon this primal dual
 relationship. Obviously, there are quite a few solution algorithms for an NLP. Some
of them have been reviewed in the discussions on enumeration and calculus  already.

c1c2

a11a12
a21a22
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A classic and rather robust method is that of Frank-Wolfe (F-W). For a continuously
differentiable function f(x), suppose we want to solve the NLP with linear con-
straints: Max/Min {f(x) � A�x � b, x � 0}. Here, A is an m � n tableau of coefficients,
x is a vector of n decision variables and b′ is the right-hand-side  vector m long. The
F-W algorithm linearizes the nonlinear objective function and turns it into an LP at
each linearization. The algorithm converges to a solution after solving a series of LPs.

In detail, an iterative, primal method generates a sequence of points 
xo, . . . , xk� X � {x� A�x � b′, x � 0} where xk�1 is found from xk as follows: Set k �
0, start by solving the LP

Max/Min f T(xk).x
s.t. A�x � b' PL(xk)

x � 0

where fT(xk) is nothing more than the tangent at xk. It can be shown that the KKT
dual complementary-slackness conditions—the mirror image of the primal ones
outlined above in Equation 4.14—are included in the above LP: [fT(xo) �/� 
�
i�I'

�igi(x
o)]xo � 0 which, when x is non-zero, is equivalent to fT(xo)xo � b′T�

and cTx � b′T� at optimality. Let xk
LP be a vertex of X, an optimal solution of

PL(xk). Then xk�1 is chosen so as to maximize or minimize f in the interval [xk,
xLP]. Figure 4.14 below will illustrate the algorithm, including the steps to con-
vergence. It will be clear that the solution may be suboptimal—rather than glob-
ally optimal—depending on the starting point at which the algorithm is initiated.

In Figure 4.14, illustration of the generalized Frank-Wolfe algorithm is pro-
vided for a one-dimensional case, mainly for illustration clarity. We wish to maxi-
mize the accessibility function f(x) over the interval of K miles (km) of  additional
highway. The starting point is x0, where a tangent f(x0)x is constructed. It inter-
sects the upper limit of our search interval K at xLP

0 —an extreme point of the LP.
Our search interval now reduces from K to [x0, xLP

0 ]. Moving on to the first  iteration
of the algorithm, call this extremal point x1. Again a tangent is  constructed f(x1)x,
which intersects the tangent from the previous iteration f(x0)x at xLP

1 (k � 1).
Again, the interval reduces to [xLP

1 , x1]. A tangent is constructed once more at this
point, which we now rename x2. The process simply continues until the peak at
xLP

k /xk�1 is reached. It is not hard to see that the peak so reached is a global maxi-
mum. On the other hand, an alternate starting point, say at x0′, might end up at a
local optimum such as xk′/xk'�1, with a tangent f(xk′)x that is horizontal. Simple as
it may be, this example illustrates how one can covert an NLP into a series of LP’s
and iteratively arrive at an optimum. Most  important, this is a rather general pro-
cedure for a large number of situations, so long as f(x) is differentiable. We will il-
lustrate this procedure once more using the airport location problem in Chapter 5,
where the one-dimensional example will be generalized.

IV. INTEGER OR MIXED-INTEGER 
PROGRAMMING

The next type of prescriptive technique to be discussed is integer programming (IP)
or mixed-integer programming (MIP), where all integer solutions are re quired in
IP while only some of the variables are required to be integer-valued in MIP. With
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this type of optimization, everything looks the same as an LP or NLP except a  subset
of the decision variables need to be discrete in the final answer. Examples of these
have been given already in terms of housing location and industrial plant location.
One recalls that in the Herbert-Stevens model, we ended up with integer value for
only some of the households assigned to a particular housing type and a neighbor-
hood. Should the answers be required in strict  integers, it may be necessary to inte-
gerize them by a B&B procedure, where the branching rule is simply ⎡x⎤ and ⎣x⎦,
 corresponding to rounding a fractional  variable to the next higher integer and next
lower integer respectively. We will not discuss the details of the integerization
 outines inasmuch as they are all  automated in IP or MIP codes. The logic is very

f(x)

x0

Local optimal from
alternate starting point

Alternate
starting point

Toward
global
optimal

x 0xk xk' 1 xk /xk 1 x0 /x1
LPLP

x

LP[x0, x0 ]

[x2
LP, x1]

K

f(x0)x

f(x1)x

f(xk )x

Figure 4.14  ONE-DIMENSIONAL ILLUSTRATION OF GENERALIZED FRANK-
WOLFE ALGORITHM
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much similar to the B&B procedure discussed previously in Section II-B when
 binary branches are constructed, wherein one branch fixes the fractional variable to
the next higher integer and another branch the next lower integer as mentioned. A
subproblem is defined as an LP corresponding to a relaxed version of the original
IP or MIP, dropping its integrality requirements. Each of these subproblems is eval-
uated at each node of the B&B tree. In a nutshell, we solve the LP first and then fix
the fractional  variables, if they exist, by rounding the variable up or down. For this
reason, the procedure is sometimes referred to as LP relaxation, to the extent that
we relax the integrality requirement in the beginning. While this works reasonably
well with small linear IPs or MIPs, the procedure is usually not advisable for large
size problems, anywhere beyond several hundred integer variables at the time of
 writing. Neither does it work for NLPs where integer values are required, since the
bounding rules become very nondiscriminating in such NLPs, thus resulting in a
huge combinatorial space to be enumerated. 

A. Total Unimodularity
Let us now turn to the IP example corresponding to the location of industrial
plants and look for ways other than B&B to generate integer solutions. We are
 required to have 0-1 variables xij in that example, corresponding to plant i being
assigned to location j. The solution is guaranteed to be integer if one should solve
the model simply as an LP since there are some inherent properties of this type of
IP that are of interest: A matrix A

� is said to be totally unimodular (TU) if and only
if every subdeterminant of A

� equals 1, � 1, or 0. A maximization (minimization)
linear program with the constraint A

�
x � (�)b′ and x � 0 has an integer optimum

solution for any arbitrary integer vector b′ provided that the matrix A
� is totally

unimodular. It turns out that the tableau of the industrial plant location problem
has the very exact TU property to make the solution integer, as one can see from
the corresponding simplex tableau (A� matrix) for the industrial plant location
problem in Table 4.4. This problem is related to the general class of transporta-
tion/allocation problems and the linear assignment problems.

In fact, we can characterize the problem as a network problem as well,
since the problem can be represented as a bipartite network shown in Figure 4.15,
with plants appearing in the left group of nodes and potential sites appearing on
the right-hand side group (hence the term bipartite). A network tableau is by

Node

A
B
C
D
1
2
3
4

(A, 1)

1

1

(A, 2)

1

1

(A, 3)

1

1

(A, 4)

1

1

(B, 1)

1

1

(B, 2)

1

1

(B, 3)

1

1

. . . (B, 4)

1

1

(D, 4)

1

RHS

1
1
1
1
1
1
1
1
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Figure 4.15  MATCHING NETWORK FOR INDUSTRIAL PLANT LOCATION
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 definition a TU matrix. Being able to cast a problem into a network model has
 additional computational advantages. Efficient codes exist for the solution of net-
work models, particularly ones such as this, which are classified as  pure Min-cost
flow problems. Here one seeks the minimum cost flow from source s to sink t,
 directing four units of flow from left to right of the figure. Execution of these codes,
including SAS/OR (1985, 1991) and CPLEX, will yield a solution such as the one
shown in Figure 4.15. In the figure, unitary flows are found in the paths leading
from s to tn , valuating, among others, xA3, xB2, xC4, and xD1 at unity. This assignment
is identical to the one arrived at by B&B earlier in the chapter (in Section II-B).

Likewise, it can be shown that the Herbert-Stevens model can be cast into
a network formulation. Raulerson, Bowyer, Zornick, and Chan (1994) have
demonstrated that the problem can be structured as a bipartite graph as shown in
Figure 4.15 by assigning the left group of nodes as the rich and poor resident
groups and the right group of nodes as the housing types in each residential zone.
The arc costs will simply be (c1

11, c
1
12, c

2
11, c

2
12) emanating from the first left node and

(c1
21, c

1
22, c

2
21, c

2
22) emanating from the second node. In this case, there are two nodes

on the left column and four on the right. In other words, the two columns no
longer have the same number of nodes as in the plant location problem. A much
faster execution time was observed in a sample problem for the Dayton, Ohio
using the SAS/OR and CPLEX network software, rather than LP software. 

B. Network Software
Many location problems can be formulated as flow and matching models, as
 alluded to above. These flow and matching models can in turn be solved efficiently
when represented in terms of graphs and networks. We have already seen the
 efficacy of Min-cost-flow and assignment models in solving the industrial plant
 location problem above. By way of a definition, a graph is defined as a set of
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 vertices or nodes V′ connected by edges. A network is simply a graph with flow(s)
on it. A directed graph has directionality placed on the edges, which are now
 referred to as arcs A. When flow is placed on a directed graph (hence turning it into
a network), the arcs are also called links. If a problem can be represented as a
 network, it can be solved readily by off-the-shelf network software, much like an
LP can be solved by a variety of ready-made codes. Network problems also have
physical analogues that one can relate to, such as the interpretation of dual vari-
ables vi’ as nodal potentials or odometer readings at node i (see Appendix 4).

Experiences with network software will show that the input is quite 
user-friendly. It follows a convention separate from regular LP. The arcs in the
 network, for example, are input in a head-to-tail format rather than the equivalent
tableau format as shown in Table 4.4. An example for our industrial plant network
in Figure 4.15 is given below.

From to Cost Capacity

s A 0 1
s B 0 1
. . . .
. . . .
A 1 9 1
A 2 5 1
. . . .
. . . .
3 tN 0 1
4 tN 0 1

It can be shown that such a representation is equivalent to a specialized LP
tableau A called node-arc incidence matrix. Such a matrix has been illustrated in
Table 4.4 without the links from the source and without the links leading toward
the sink. When represented in terms of a network, it is not surprising that a node-
arc incidence matrix is TU. Most network codes use a set of terms that need to be
explained. Several of these appear in Figure 4.15:

[x] � fixed external flow, a positive number means the injection 
of flow into the network while a negative number depletion; 
(xx, xxx) � (arc capacity, arc cost).

These network terms have close parallels to the equivalent LP. For example, fixed
external flows correspond to the RHS vector of an LP tableau. In Table 4.4, for
 example, an equivalent representation of the network similar to Figure 4.15, with-
out the arc emanating from source s and incident upon sink tN, have fixed external
flow of �1 and �1 at the individual sources A, B, C, D and sinks 1, 2, 3, 4 shown
as the RHS. A master source and sink, while not necessary, are generally con-
structed for convenience—to make the problem solvable by generic, off-the-shelf
network codes—as shown in Figure 4.15. 

The arc costs in a network model correspond to the cost vector in
the LP objective function. Thus a minimum cost flow will effectively represent the
 optimal solution to the equivalent minimization LP, with arc flow replacing the
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decision variables in the computation process. Arc capacity u�ij, on the other hand,
is the upper bound of a decision variable. Since the decision variables are 0-1
 valued, it is not hard to see why a capacity of 1 is placed at each arc in the network
model. Other equivalences can be established as well, but we will not have the
space to go into them here. Interested readers may wish to consult Appendix 4
and excellent treatments of the subject in such texts as Ahuja et al. (1993) and
Bertsekas (1991).

Aside from a network tableau, it is often not clear whether a large
problem is TU, since the definition given above is far from an operational test.
Experience has shown, however, that many sparse tableaux of mainly 0-1
 entries often yield integer solutions as long as the right-hand side is integer.
This is an  important observation for the practitioners inasmuch as many facil-
ity location problems have exactly such a type of tableaux. Notice this means
that a problem can be entered into a regular LP code with a good chance of
 obtaining an integer solution3. Modern codes such as CPLEX has the  advanced
feature to discern any network structure within a tableau and  exploit it by
 employing network algorithms. The result is then combined with the non-
network part of the tableau to provide the overall solution to the original
problem. We have a detailed explanation of a network with side  constraints
 algorithm in Appendix 4, where the side constraints refer to the non-network
part of the tableau.

C. Network with Gains
Pure network flow models, functional as they may be, have only limited appli-
cations. Take the example of a material handling plant in which four products
A, B, C, D are manufactured. These products can be made at any one of five
work-stations 1, 2, 3, 4, and 5. Each work-station has a limited number of hours
 available for production and a specific unit cost of production. A minimum pro-
duction quota is set for each product, a unit of which is valued at a certain
amount. A  network with gain flow model is used to solve the problem, with the
intent of obtaining a most effective operation, in which the cost of manufactur-
ing is minimized and the value of products is maximized. In Figure 4.16, the
 parameters at the supply nodes on the left column represent the maximum hours
available at a work-station and the unit cost of production, while those at the
 demand nodes in the right column represent the maximum output potentials
and the value of a product. The manufacturing plant operates for 20 eight-hour
days each month (160 hours total) at the maximum. The arcs connecting the left
column to the right column in this bipartite graph convert the flow in hours of
production into units of product. This is accomplished by the gain parameter,
which converts the hours of each work-station i to products at node j. The value
of a product is expressed as a negative cost and the maximum number of
 production is expressed as a slack external flow.

This allocation model assigns work-stations to products so as to maxi-
mize value of production and minimize cost:

Min (�i wi xi � �j wj xj)
s.t. �j xij � xi � 160 for all i

�j aij xij� xj � bj for all j
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where wi is the cost/hr of work-station i, wj is the value of product j (expressed in
negative values), and bj′ � 100, 150, 125, 20 corresponding to production require-
ment for product type j � A, B, C, D. Notice �i xi � �j xj, hence the term network
flow with the aij gain parameters (in this case it is actually loss). The total flow
 terminating at the sink tN is less than the total flow emanating from the source s, in
other words, conservation-of-flow no longer applies. The linear programming
model above can be cast into a Min-cost-network-flow problem:

Min   �
(i, j)�A

wij xij

s.t. �
j�	�(i)  

xij � �
j�	�(i)  

aji cji � bi′ for all i � V′

0 � xij � �uij for all (i, j) � A

Figure 4.16  NETWORK WITH GAIN MODEL OF PRODUCT ALLOCATION
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where w replaces c as the symbol for costs, V′ is the set of nodes and A a set of links,
	�(i) is the set of nodes reachable from i, 	�(i) is the set incident upon i, and �uij is
the capacity on arc (i, j). This is a more general network flow model than pure 
Min-cost-flow. For aji � 1, it reduces to the traditional pure Min-cost-flow model as
discussed in the above section. On the other hand, when aji � 1, it represents a
 network with gain, as illustrated by the manufacturing example being discussed.

Let A be the matrix of constraint coefficients, the matrix formulation for
this problem becomes Min{wTx �Ax � b', 0 � x � u�}. Notice that A � [AB, AN],
where the node-arc incidence matrix written in terms of the basic and nonbasic
parts, is no longer TU. As shown in Appendix 4, AB is the basis matrix of m � 1
linearly independent columns, and AN is the remaining nonbasic columns. xB is a
vector of basic flow variables in the same order as columns of AB, while xN is the
vector of nonbasic variables in the same order as columns of AN:

Ax � �AB, AN�� � � b′

ABxB � ANxN � b′

and xB � A�1
B [b′ � ANxN] through the network simplex procedure, which is

 explained in Appendix 4 in terms of the pure network flow version. In essence,
the basis is represented via a tree consisting of m 
 1 arcs. Instead of performing
an algebraic basis inversion, we accomplish this through the tree graph. The fact
that rank A � rank (AB) � m � 1 means xB is unique.

Procedurally, the network with gain network algorithm will start with
adding a node, called the slack node, and a number of additional arcs that enter
or leave the slack node, called slack or artificial arcs. The slack node, usually
numbered one greater than the number of nodes in the original  network, can
serve the dual function of a super source/sink. The flows  associated with the
slack node may not obey flow conservation (as amply  illustrated by the current
manufacturing example). The artificial arcs perform the function of the artificial
variables of linear programming, and the slack arcs represent the slack  external
flows provided in the original model. As part of the network-simplex procedure,
we already mentioned that the basis of the network flow LP is represented as the
spanning tree of m � 1 nonzero arc flows, shown equivalently as m � 1 linearly
independent columns of the node-arc incidence tableau. Here the basis of the LP
is m � 1 in rank. 

Let us now review the basic terms in a network with gains model. These
definitions are best referenced against the manufacturing example illustrated in
Figure 4.16: External flow enters or leaves a network, where fixed external flow
bi′ at node i enters the network at (supply) node i if positive, and leaves the net-
work (as a demand node) if negative. Slack external flow—a  variable to be de-
termined as part of the optimization procedure—is, once again, similar to slack
variables in LP. A negative slack variable means extra supply available at node
i to satisfy excess demands (as represented by the sum of flows incident upon
i, ( �

j�	�(i)
xji), while a positive slack variable means extra demand available at

node i to draw off excess supply  ( �
j�	�(i)

xij). For a positive (negative) slack flow
xs″i (xis″) {or the external flow representations [�xs″i] ([�xis″])}, an arc is con-
structed from (to) the slack node s″ to (from) node i. The capacity of the arc is the
absolute value of the slack flow capacity �bs″i �, and the cost on the arc is ws″i. The
bs″i s and ws″i s are given (complete with positive and negative signs such as the
 network with gain example in Figure 4.16). If bs″i is positive (negative) 

xB
xN
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xs″i  enters (leaves) the network as external flows. We will further illustrate the
 usefulness of this  convention in Appendix 4. Case studies are documented in the
“Facility Location” chapter of Chan (2005).

The generalized network flow problem is significantly more difficult to
solve than the pure Min-cost-flow problem. The generalized network simplex
algorithm is the fastest available algorithm for solving the generalized network
flow problem in practice (Ahuja et al. 1993). The generalized network simplex
 algorithm is an adaptation of the LP simplex. This adaptation is possible because
of the special topological structure of the basis. The basis of the generalized
 network flow problem is a good augmented forest, to be defined as follows: In
the spanning tree with an extra arc called the root arc4, an  augmented forest is a
collection of node disjoint augmented trees that span all the nodes of the graph.
We define a good augmented tree as one whose cycle is formed by a gainy extra
arc (in other words, an arc with aij associated with it) to the tree. A good
 augmented forest is consisted of nothing but good  augmented trees. It can be
shown that the basis of the generalized network flow problem is a good
 augmented forest. Good augmented forests play the same role in the generalized
network simplex algorithm. Instead of one tree representing the basis, we have
now more than one tree to span the nodes,  depending on the number of gainy
arcs involved. While the nodal potential equations are similar, the optimality
 conditions for a good augmented forest has a slightly different definition of the
reduced cost, as defined by wij � vi � aijvj (which is equivalent to cj � zj in a reg-
ular simplex, with cj � wij and  zj � vj′ � aijvj in this case). Notice the equivalent
pure-network-flow reduced cost is wij � vi′ � vj′, where vi′, vj′ are the dual
 variables at rows i and j of the node-arc incidence matrix. vi′ can be interpreted
as nodal potentials at node i, or  alternatively as “odometer readings” in the con-
text of measuring spatial  separations. In the latter interpretation, a reduced cost
of wij � vi′ � vj′ � 0 or wij � vi′ � vj′ indicates a faster way to go from i to j via
link (i,j), and hence the link should be used.

V. DECOMPOSITION METHODS IN 
FACILITY LOCATION

Consider this special MIP

Min (cTx � gTy)

Subject to

n
�

j�1  
xij � 1    i � 1, . . . , m (4.20)

xij � yj i � 1, . . . , m;  j � 1, . . . , n (4.21)

n
�

j�1  
yj � p

xij � 0    i � 1, . . . , m;  j � 1, . . . , n (4.22)
yj � {0, 1}    j � 1, . . . , n
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In this model, the continuous variable xij denotes the fraction of customer demand
at node i that receives service from a facility at node j, while the 0-1 discrete
 variable yj signifies whether or not a facility is built (Magnanti and Wong 1990).
In network flow terminology, the forcing constraints Equation 4.21 restricts the
flow to only those nodes j that have been chosen as facility sites. Finally, constraint
Equation 4.22 restricts the number of facilities to a prescribed number p. This
model is often referred to as the p-median problem, where cij denotes the cost of
serving demand from node i by a facility at node j. It is conventional to set g � 0,
since oftentimes only the number of facilities, rather than their explicit facility
costs, are of importance. The reader will recognize this as a special case of
Benders’ decomposition as discussed in Appendix 4, in which the decision vari-
ables can be decomposed into two groups: continuous and discrete. For reasons
that will become clear, Benders’ decomposition is also referred to as resource
 directive decomposition since it starts with a set of initial dual variables and
 adjust the common resource availability by fixing certain decision variables.

A. Resource Directive Decomposition
Consider the five-node, two-median example where the costs are defined  as 

0  5  9  11  12
5 0 4 6 7

�cij� �� 9 4 0 2 3�11 6 2 0 1
12 7 3 1 0

where the entries specify the costs of serving the demand at node i from a facil-
ity located at node j. Suppose we have a current configuration with facilities
 located at nodes 2 and 5 (in other words, y2 � y5 � 1), the minimum cost objec-
tive function for this configuration is obtained by examining the minimum unit
costs in columns 2 and 5. It is evaluated in this case at (5 � 0) � (3 � 1 � 0) � 9,
suggesting that facility 2 serves demands at nodes 1 and 2 and facility 5 serves
demands at 3, 4, and 5. Relative to the current solution, let us evaluate the
 reduction in the objective function cost if facility 1 is opened and all other facili-
ties retain their  current open-close status. This new facility would reduce the cost
of servicing the demand at node 1 from c12 � 5 to c11 � 0. In other words, demand
1 will be served by facility 1 instead of facility 2, resulting in a cost reduction.
Therefore the saving for opening facility 1 is 5 units. Similarly, by opening facil-
ity 3 we would reduce, relative to the current solution, cost of serving node 3
from c35 � 3 to c33 � 0. The saving is 3 units. Finally, opening facility 4 would
 reduce node 3 cost from 3 to 2 and node 4 cost from 1 to 0, for a total saving of
1 � 1 � 2. Since facilities 2 and 5 are already open in the current solution, there
is no saving for opening any of them.

Note that when these savings are combined, the individual assignments
as computed above might overestimate possible total savings since the computa-
tion often double counts the cost reductions for any particular demand node. For
example, our previous computations predict that opening both facilities 3 and 4
would reduce the cost of serving node 3 and give a total reduction of 3 � 1 � 4
units, even though the maximum possible reduction is clearly 3 units, which is the
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cost of servicing node 3 in the current solution. (A demand can only be served by
one facility, not both facilities.) With this savings information, we can bound the
cost z of any feasible configuration y from below by 

z � 9 � 5y1 � 3y3 � 2y4 (4.23)

Notice that specifying a different current configuration would change our savings
computations and permit us to obtain a different lower bound function. For ex-
ample, the readers can verify that configuration y1 � y3 � 1 would produce a
lower bound inequality

z � 9 � 4y2 � 4y4 � 4y5 (4.24)

Each of these two bounding functions is always valid. By combining
them we obtain an improved lower bound for the optimal two-median cost.
Solving the following mixed integer program would determine the best location
of the facilities that uses the combined lower bounding information:

Min z
s.t. z � 9 � 5y1 � 3y3 � 2y4

(4.25)z � 9 � 4y2 � 4y4 � 4y5

y1 �   y2�   y3 �   y4 �   y5 � 2
yj � {0, 1}    j � 1, . . ., 5

This yields a lower bound of z′ � 5, obtained by setting y1′ � y2′ � 1 and y3′ � y4′ �
y5′ � 0. Alternatively, one can set y1′ � y4′ � 1, or y1′ � y5′ � 1, or y3′ � y4′ � 1, and all
other yj′ � 0 in each case. This bounding procedure is the essence of Benders’
 decomposition. In this context Equation 4.25 is referred to as a Benders’ master
problem and Equation 4.23 and Equation 4.24 are called Benders’ cuts. When
 applied to an MIP with integer variables y and continuous variables x, Benders’
decomposition repeatedly solves a master problem like Equation 4.25 in the 
integer variables y. At each step, the algorithm uses a simple savings computation
to refine the lower bound information by adding a new Benders’ cut to the  master
problem. Each solution (z′, y′) to the master problem yields a new lower bound z′
and a new configuration y′. For p-median problems, with the facility locations
fixed at y′, the resulting allocation problem becomes a trivial LP, viz, to assign all
demand at node i to the closest open facility, or minimize cij over all j with yj′� 1.
It is in this resource allocation context that we refer to Benders’ procedure as
 resource-directive decomposition. The optimal solution x′ to this LP generates a
new bound on the optimal objective function value of the p-median problem. As
one will see in Appendix 4, the savings from any current configuration y′ can be
viewed as dual variables of this LP. Therefore, in general, the solution of an LP
would replace the simple savings computation. The method terminates when the
current lower bound z* equals the cost of the best (least-cost) configuration y*
found so far. This equality implies that the best upper bound z equals the best
lower bound z* and so y* must be an optimal configuration, with the associated
optimal allocation x*. Again, the full Benders’ decomposition algorithm is
 explained in Appendix 4.
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B. Price Directive Decomposition
As contrasted with resource directive procedures, the dual variables of a price
 directive decomposition (or Lagrangian relaxation) are priced out in a
Lagrangian, which decides on the next set of decision variables to be engaged.
Lagrangian relaxation offers another type of decomposition technique that
 produces lower bounds. Consider the above p-median problem once again. As an
algorithmic strategy for simplifying the problem, suppose we remove the
 constraints Equation 4.20, weighting them by Lagrange multipliers (dual
 variables) �i , and placing them in the objective function. We obtain the
Lagrangian relaxation problem, namely

zLR(�) � Min � 5
�
i�1

5
�
j�1 

cij xij � 
5
�
i�1 

�i (1 � 
5
�
j�1

xij)� (4.26)

subject to the remaining constraints. Each penalty term �i (1 �
5
�
j�1

xij) will be posi-

tive if �i has the appropriate sign and the ith constraint Equation 4.26 is violated.
Therefore, by adjusting the penalty values �i , we can discourage Equation 4.26
from having an optimal solution that violates the constraints Equation 4.20.

Note that since the penalty term is always zero for all �i whenever x
 satisfies Equation 4.20, the optimal relaxation problem cost zLR(�) is always a valid
lower bound for the optimal p-median cost. The primary motivation for adopting
this algorithmic strategy is that Equation 4.26 is very easy to solve. Let us set xij �
1 only when yj � 1 or maintain feasibility of Equation 4.21. The modified cost
 coefficient (cij � �i ) of xij is nonpositive in Equation 4.26. Thus summing over all
nodes i, the optimal benefit of setting yj � 1 is zj � �i�1

5 [Min (0, cij � �i )] and we
can rewrite Equation 4.26 as

zLR(�) � Min � 5
�
j�1

zj yj � 
5
�
i�1 

�i � (4.27)

subject to Equation 4.22, including the integrality and nonnegativity require-
ments. This problem is solved simply by finding the two smallest zj values and
setting the corresponding variables yj � 1. For example, letting �� � (3, 3, 3, 3, 3)T

for the time being, Equation 4.27 becomes

zLR(��) � Min (�3y1� 3y2 � 4y3� 6y4� 5y5 � 15) (4.28)

The corresponding optimal solution for Equation 4.26 has a Lagrangian  objective
function value zLR(��) � 15 � 6 � 5 � 4; the solution has y4 � y5 � 1, x34 � x44 �
x45 � x54 � x55 � 1, and all the other variables set to zero. Notice that this solu-
tion for the Lagrangian problem is not feasible for the p-median problem. Indeed,
for any i � 1, 2, . . . , 5, it does not satisfy the demand constraint Equation 4.20—
hence the term relaxation in that certain constraints are ignored.

For another dual variable vector �* � (5, 5, 3, 2, 3)T, Equation 4.27
 becomes zLR(��) � Min (�5x1 � 5x2 � 4x3 � 5x4 � 4x5 � 18). Its optimal objective-
function value zLR(��) � 8 is a tight lower bound since the optimal p-median cost
is also eight. This example illustrates the importance of using good values for the
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dual variables �i in order to obtain strong lower bounds for the Lagrangian relax-
ation problem. In fact, to find the sharpest possible Lagrangian lower bound, we
need to solve the optimization problem Max� zLR(��). This optimization problem in
the variables � has become known as the Lagrangian dual problem to the original
facility location model. (See Appendix 4 for a step-by-step algorithm to solve the
Lagrangian relaxation problem.)

VI. SPATIAL INTERACTIONS: THE 
QUADRATIC ASSIGNMENT PROBLEM

In many locational problems the cost associated with placing a facility at a cer-
tain site depends not only on the distances from other facilities and the demands,
but also on the interaction with other facilities (Burkard 1990; Francis, McGillis,
Jr., and White 1992). In this section we examine a class of discrete location  models
that  permit us to address certain interaction between facilities. The basic
 concepts can best be illustrated by an example: A manufacturing cell is being
 designed with manual material handling between work-stations. Figure 4.17
 presents a schematic of the possible locations of the work-stations along the aisle.
The objective is to minimize the total distance that  material moves. The follow-
ing distance matrix shows the separation between station locations a, b, c, d
(in inches for example): 

0 340 320 400
340 0 360 200�dij� ��320 360 0 180�
400 200 180 0

and material flow between the stations A, B, C, D themselves (in pounds for
 example) is represented by 

Figure 4.17  LOCATION CONFIGURATION FOR WORK-STATIONS

dc

a
d12 d21

d24  d42d13  d31

d34 d43

b

d14  d41

d23  d32
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0 80 40 30
80 0 30 20�ckl� ��40 30 0 10�
30 20 10 0

What is the best assignment of work-stations to locations?

A. Nonlinear Formation
Define the discrete variable xki � 1 or 0, depending on whether work-station k is
assigned to location i. Similarly, xlj denotes whether work-station l is assigned to
location j. Consider a piece of material moves from work-station k to work-station
l, the total material movement (in, for instance, lb-ft or kg-m) per unit-time 
is to be minimized: 

Min  
3
�

k�1

3
�

l�1

3
�

i�1

3
�

j�1  
ckl dij xki xlj

Notice that the material flow between two locations i and j would depend on
what work-stations are placed there. Since every work-station must be assigned
to a location and every location must have a work-station, these constraints must
be imposed:

3
�

i�1  
xki � 1    k � 1, 2, 3

3
�

k�1  
xki � 1    i � 1, 2, 3 (4.29)

xki � {1, 0}    k � 1, 2, 3;  i � 1, 2, 3

If we assume that station A is placed at location a, station B on location b, C on c,
and D on d, then the objective function will assume the value

(2)[(340)(80) � (320)(40) � (400)(30) � (360)(30) � (200)(20) � (180)(10)] � 137,200

corresponding to the upper or lower triangle of the matrices [dij] or [ckl]. On the
other hand, if we assume A is placed at d, B at b, C at c, and D at a, then we have

(2)[(340)(20) � (320)(10) � (400)(30) � (360)(30) � (200)(80) � (180)(40)] � 112,000

This comparison drives home the point that the cost of placing a work-station
 depends on the interaction with the other work-stations. In this case, the second
configuration is better than the first since the amount of material movement is less.

B. Linear Formulation
This nonlinear program is computationally demanding. It has been shown that
the model can be simplified to a linear integer program

Min  
n
�

k�1

n
�

l�1

n
�
i�1

n
�

j�1
rklij yklij (4.30)
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where rklij � ckldij and yklij � xkixlj. Notice the quadratic term xkixlj has now been
 replaced by a new binary variable yklij. The constraints are the same as before
 except for two additional ones that govern the relationship between the x and y
variables:

xki � xlj � 2yklij � 0 k, l, i, j � 1, . . . , n (4.31)
yklij � {0, 1} k, l, i, j � 1, . . . , n

Although the linear binary program was easy to implement, it has some worri-
some properties. Along with the optimal solution for xki , we obtain the solution at
the optimum for yklij � 0. The objective function for the model, in turn, is zero. We
are then required to take the optimal values of xki , x14 � x25 � x32 � x41 � 1 and
 substitute them into the original nonlinear objective function to obtain the final
 solution of 110,000 lb-ft (15,208 kg-m). This means that A is placed at d, B is at c, C
on b and D on a.

For non-negative coefficients rklij , the model can be recast into an MIP: 

Min
n
�

k�1

n
�

l�1
ukl,

where 

ukl � xki ( n
�

i�1

n
�

j�1
rklij xlj).

The constraints are the same as the original quadratic assignment problem, with
these two additional ones that govern the relationship between x and u:

skl xki �
n
�

i�1

n
�

i�1
rklijxlj � ukl � skl k, l � 1, . . . , n (4.32)

ukl � 0 k, l � 1, . . . , n

where 

skl �
n
�

i�1

n
�

j�1
rklij.

Note that we can assume rklij � 0 without loss of generality, since adding a con-
stant to all cost coefficients does not change the optimal solution.

C. Comments
Many well-known combinatorial optimization problems can be formulated as
quadratic assignment problems (QAP), including the linear assignment problem
and traveling salesman problem (TSP). If a linear assignment problem with cost
matrix [cij] is given, let us define 

rklij ←�cij for (i, j) � (k, l) (4.33)
0 otherwise
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or that the work-stations are permanently fixed at a unique location. Then the
 objective function of the given linear assignment problem is equivalent to the QAP
objective (Equation 4.30). Because of space limitations presently, the readers are
 referred to Chan (2005) for the latter relationship between QAP and TSP. Suffice to
say here that the TSP is defined as the least costly tour among n cities starting and
ending in the same city, which on the surface bears little resemblance to the QAP,
inasmuch as TSP is a routing problem and QAP is a location problem. The formal
relationship between them and an extended explanation of TSP is offered in Chan
(2005) under the chapters on “Routing” and “Location-and-Routing.”

The QAP is discussed here for several reasons. It illustrates how a
 seemingly complex nonlinear formulation can be simplified by linearization.
Indirectly, it also shows the importance of proper formulation to the solution
 algorithm, to the extent that a linear integer program or mixed integer program is
much easier to solve than a nonlinear one. Thus while we laid out the various
 prescriptive techniques such as linear and nonlinear programming in this  chapter,
the distinction becomes blurred when we start solving problems in earnest. This
does not mean the taxonomy proposed here is superficial, it simply argues for a
deeper understanding of spatial temporal problems than the level exposed in
 general operations research textbooks. On the side, we suggested that different
types of location and routing problems can be equivalenced also through
 transformation. Thus the linear assignment problem, the QAP and TSP all belong
the same family. It will not be the first time we will see this type of discussion. In
fact, a major focus of this book and Chan (2005) is to point out the mathematical
equivalence between seemingly diverse physical spatial problems, including the
land use model discussed in Section VIII.

VII. PRESCRIPTIVE ANALYSIS IN 
FACILITY LOCATION: DATA 
ENVELOPMENT ANALYSIS

Data Envelopment Analysis (DEA) is a linear programming technique to mea-
sure efficiency of a decision-making unit (DMU), interpreted here as alternative
facility location (Thomas et al. 2002; Winston 1994). One of the major drawbacks
of the traditional DEA formulation is that there is a separate formulation for each
individual DMU. In other words, each site is separately modeled, and the results
are then compared. Here we formulate a combined model that can assess the effi-
ciency of several alternatives all at once. To complete the re-formulation of the tra-
ditional DEA model, additional variables must be introduced. One new variable
xi (i � 1, 2, 3) is the efficiency score of each facility. It carries a value between zero
and one. A value close to one indicates an efficient DMU, or that a site is a viable
alternative. The binary variable yi (i � 1, 2, 3) indicates the selection of an alterna-
tive in the output. If an alternative i will not be included into the output, yi � 0;
otherwise it is unitary valued. Let bki denote the weights placed on the kth benefit
of the ith alternative, and the weights cli the lth cost for the ith alternative. The key
is to note that bki and cli will have a nonzero value only if yi � 1. In the following
facility-siting example, we will have three alternatives corresponding to three
sites, three output benefit measures and two input cost measures. DEA simply
picks the most efficient facility based on the benefit cost ratio.
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The objective function now looks like

Maximize

x1 �x2 � x3 � 0b11 � 0b21 � 0b31 � 0b12 � 0b22 � 0b32 � 0b13 � 0b23 � 0b33
�0c11 � 0c21 � 0c12 � 0c22 � 0c13 � 0c23 � 0y1 � 0y2 � 0y3

which seeks the highest, combined efficiency score among all three facilities, or 
x1 � x2 � x3. The second step is to bound the efficiency scores by some large
 number M. In this example, M is set equal to 100. The number acts as a ceiling on
each efficiency scores and prevents an unbounded answer.

x1 � 100        x2 � 100        x3 � 100

This problem has only three solutions. Thus y1 � 0, y2 � 0, and y3 � 1 is one of
three solutions.

There needs to be some indication of the number of facilities to be included
in the analysis. In this particular case, only one facility (the most efficient one) will
be chosen:

y1 � y2 � y3 � 1

The next set of constraints is used to compute the efficiency score of the facility in
consideration. Here the benefits of each facility are evaluated. For example, facil-
ity 1 has 9 units of benefit 1, 4 units of benefit 2, and 16 units of benefit 3, and so
on. Notice that the efficiency scores xi s are bounded above and below through the
0–1 ranged weights bkl s and cli s.

x1 � 9b11 � 4b21 � 16b31 � 0 x1 � 9b11 � 4b21 � 16b31 � 100y1 � 100#

x2 � 5b12 � 7b22 � 10b32 � 0 x2 � 5b12 � 7b22 � 10b32 � 100y2 � 100
x3 � 4b13 � 9b23 � 13b33 � 0 x3 � 4b13 � 9b23 � 13b33 � 100y3 � 100&

Inasmuch as the costs are bigger than benefits, the following set of constraints
 assures that the efficiency score for any efficient facility cannot exceed a value of
1. Notice that each facility has its own unique weighting system through the bki s
and cli s:

For facility 1

�9b11 � 4b21 � 16b31 � 5c11 � 14c21 � 0@

�5b1 � 7b21 � 10b31� 8c11 � 15c21 � 0
�4b11 � 9b21 � 13b31� 7c11 � 12c21 � 0%

For facility 2

�9b12 � 4b22 � 16b32 � 5c12 � 14c22 � 0
�5b12 � 7b22 � 10b32 � 8c12 � 15c22 � 0
�4b12 � 9b22 � 13b32 � 7c12 � 12c22 � 0
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For facility 3

�9b13 � 4b23 � 16b33 � 5c13 � 14c23 � 0
�5b13 � 7b23 � 10b33 � 8c13 � 15c23 � 0
�4b13 � 9b23 � 13b33 � 7c13 � 12c23 � 0

The next three constraints act as the scaling equations, which ensure that
the weights are 0–1 ranged. The scaling is dependent upon whether or not the
 binary variable yi is turned on or not. Thus if y1 is unitary valued, the weights
c11 and c21 are adjusted to convert the sum of the two costs associated with  facility
1 (5 and 14) to be unity.

5c11 � 14c21 � y1 � 0
8c12 � 15c22 � y2 � 0
7c13 � 12c23 � y3 � 0*

Finally, the constraints which make this whole apparatus work are the
weight forcing constraints. The constraints are either-or in nature and assure that
the weights for a facility cannot be greater than zero unless the facility is turned
on (yi � 1). In addition, if the facility is turned on, it assures that each weight will
be greater than a very small number. In the example, the number is assumed to
be 0.0001.

Weight forcing constraints for facility 1

b11 � 100y1 � 0 �b11 � 100y1 � 99.9999
b21 � 100y1 � 0 �b21 � 100y1 � 99.9999
b31 � 100y1 � 0 �b31 � 100y1 � 99.9999
c11 � 100y1 � 0 �c11 � 100y1 � 99.9999
c21 � 100y1 � 0 �c21 � 100y1 � 99.9999

Weight forcing constraints for facility 2

b12 � 100y2 � 0 �b12 � 100y2 � 99.9999
b22 � 100y2 � 0 �b22 � 100y2 � 99.9999
b32 � 100y2 � 0 �b32 � 100y2 � 99.9999
c12 � 100y2 � 0 �c12 � 100y2 � 99.9999
c22 � 100y2 � 0 �c22 � 100y2 � 99.9999

Weight-forcing constraints for facility 3

b13 � 100y3 � 0 �b13 � 100y3 � 99.9999
b22 � 100y3 � 0 �b23 � 100y3 � 99.9999
b33 � 100y3 � 0 �b33 � 100y3 � 99.9999
c13 � 100y3 � 0 �c13 � 100y3 � 99.9999
c23 � 100y3 � 0 �c23 � 100y3 � 99.9999



202 CHAPTER 4 Prescriptive Tools for Analysis

For purpose of explanation, consider the weight forcing constraints for
facility 1. The first five constraints in the set assure that the input and output
weights will not be greater than zero unless y1 � 1. If y1 does indeed equal one,
then the first five constraints also act as an acceptable upper bound on the
 expected values of the weights. Once again, an M value of 100 has been  assumed.
The second five constraints in the set for facility 1 assures that if the cost and
 benefit weights are turned on (y1 � 1), they will be greater than or equal to
0.0001. The model output is very straightforward. Recall that the cap of 100 has
been placed on all of the efficiency scores. Based on the number of  facilities that
are to be included in the analysis, the program will pick the  facility or facilities
that  maximize the sum of the efficiency scores. For example, if only one facility
is to be chosen, then only the most efficient facility will have its  efficiency score
 calculated. The other efficiencies will be set  to 100 (the upper bound), thereby
 indicating that the facility is not as efficient as the facility that was picked. 

The linear programming solver confirmed the following results. The
maximum objective function value is 201 (by definition). The problem has multi-
ple optima. y1 � y2 � 0 and y3 � 1 is one of the two optimal solutions. The weight-
forcing constraints imply that b11 � b21 � b31 � c11 � c21 � 0, and b12 � b22 � b32 �
c12 � c22 � 0. Efficiency-score-computation constraints and upper bounds on xis
imply that x1 � x2 � 0. The scaling equation (marked by *) implies that 7c13 �
12c23 � 1. Constraints marked by # and & imply that 4b13 � 9b23 � 13b33 � x3.
Hence the original problem with 55 constraints and 21 variables is reduced to the
following problem:

Max 4b13 � 9b23 � 13b33

s.t. 5c13 � 14c23 � 9b13 � 4b23 � 16b33

8c13 � 15c23 � 5b13 � 7b23 � 10b33

7c13 � 12c23 � 4b13 � 9b23 � 13b33

7c13 � 12c23 � 1

Now the question is: “Can we find weights for benefits and costs so that benefits
are less-than-or-equal-to costs for all three facilities, and the benefits of facility 1
are equal to its costs (� 1)?” If the answer is affirmative, then the solution is called
efficient. Here, the optimal objective-function-value is equal to 1, and thus the
 solution (locate at site 3) is efficient. In order to identify all efficient solutions, one
must be able to identify all multiple optima to this LP. Notice DEA is a good
 illustration of a prescriptive model. The weights b and c are not determined
through a consensus building process, but by prescription to push the efficiency
envelope as far as possible. Further discussion of DEA in Facility Location is
found in Chan (2005) under the “Spatial Separation” chapter.

Example
Solution of the above MIP suggests that facility 2 is inefficient and facilities 1 and
3 are efficient. Both x1 and x3 are unitary-valued. When one examines the optimal
relaxed LP, the dual prices give us great insight into facility 2's inefficiency.
Consider all facilities whose efficiency constraints have non-zero dual-prices.
(In our example, facilities 1 and 3 have non-zero dual prices.) If we form the
weighted average of the output vectors and input vectors for these facilities (using
the absolute value of the dual price from each facility as the weight), we obtain the
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following. Taking the dual variables from the weighting equations for each facil-
ity, namely Equations marked by @ and % above:

Averaged output-vector � 0.26094 (9 4 16)T + 0.66003 (4 9 13)T

� (4.98858 6.98403 12.75543)T

Averaged input-vector � 0.26094 (5 14)T � 0.66003 (7 12)T � (5.92491 11.57352)T

Suppose we create a composite facility by combining 0.26094 of facility 1 with
0.66003 of facility 3. The averaged output-vector tells us that the composite facil-
ity produces close to the same amount of outputs 1 and 2 as facility 2 (5 and 7),
but the composite facility produces (12.75543 � 10) � 2.75543 more of output 3.
From the averaged input-vector for the composite facility, we find that the com-
posite facility uses less of each input than does facility 2. We now see exactly
where facility 2 is inefficient. ■

As explained in Chan (2005), DEA is a normative model to define a
 constant-return-to-scale efficient frontier, consisting of a set of non-dominated
 solutions—a term that is defined in the glossary of Technical Concepts (Appendix 5)
as the “win–win” solutions. We arrive at these non-dominated solutions by com-
bining the factor inputs in the correct proportions to achieve the best efficiency.
Let us think of a set of isoquant lines as a measure of the efficiency deviation
from an ideal, defined as a site that has the best of all attributes. DEA does not
 require the isoquant and its associated weights to be identified a priori. DEA
 determines the efficient frontier and optimal weighting scheme during the
 execution of the linear program. When DEA inputs and outputs are interpreted
as costs and benefits, it can be used for finding the “best” facility location. In our
presentations so far in this book, location and DEA models have been solved
 separately. A closer examination of the above DEA model used to site facilities
also reveals that it does not really have a spatial dimension, since all spatial
 attributes are exogenously found and input to the model. No network represen-
tation is present. Similarly, classical facility-location models have only spatial
 attributes and typically lack the broad range of figures-of-merit typical of a siting
decision. Take an obnoxious-facility model, for example, it is highly desirable to
have the classic max-min objective as one of the  several benefits of the DEA
model, and have the cost-benefit analysis of DEA include explicitly the spatial di-
mension (Thomas et al. 2002). In so doing, the  deviation measure is now truly a
composite of both physical distance-separation and economic benefit measures.
Again, a full development of this concept can be found in Chan (2005).

VIII. PRESCRIPTIVE TECHNIQUES IN
LAND USE

Thus far, we have concentrated on discrete facility-location models, which lend
themselves readily to prescriptive modeling. While the development is not as
 natural, it can be shown that prescriptive models can be constructed for land use
planning as well. To show this, we will point out the linkage between the site
 location model of Equation 4.5 and a basic building block of land use  models:
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the gravity model. It will be shown that when the spatial cost function of the
gravity model assumes a particular form, it becomes the site location model
 mentioned above. The relationship is obvious and not-so-obvious. It is quite
 apparent once one recognizes that the decision process to site a facility is the
same as that involved in making travel plans. It is not so obvious so far as his-
torical development is concerned, since the two models come from very  different
professional groups who are not familiar with each other’s work until recently.

A. Entropy Maximization Model
Take the doubly constrained gravity model discussed in Chapter 3 for allocating
economic activities among available land (Wilson, Coelho, MacGill, and Williams
1981). Such a model can be derived from a mathematical program of the follow-
ing form:

Max � �i �j vij ln Vij (4.34)

subject to

�i Vij � Vi

(4.35)�j Vij � Vj

�i �j Vij Cij � C
Vij � 0.

As pointed out in Section XII-B of Chapter 3, this is the well-publicized Stirling
approximation of the entropy maximization model in which C is the total
 observed travel cost expended in the trip travel pattern {Vij}. The optimal solution
results in a most probable distribution of activities consistent with all known
 information. Such information is associated with the cost and constraints placed
on the interactions generated from origin i and attracted to destination j.

The Lagrangian associated with this mathematical program is 

L (V, �, �, �) � � �i �j Vij ln Vij � �i �i (Vi � �j Vij) (4.36)
� �j �j (Vi � �j Vij) � � (C � �i �j Vij Cij)

and L is to be maximized over non-negative values of the trip interactions Vij. The
maximization problem results in non-zero values for each Vij for finite values of
�. The optimal solutions 

V*ij � exp [� �*i � �*i � �*Cij]

result, where the optimal Lagrange multipliers �, �, and � are shown with an
 asterisk (*). By defining

ki � �
exp [

V

�

i

�*i ]
�, where lj � �

exp [

V

�

j

�*j ]
�,
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the doubly constrained gravity model

Vij � ki lj Vi Vj Fij � ki lj Vi Vj exp (� �Cij) (4.37)

is obtained, as defined in Section XI-B in Chapter 3.

B. Relationship to the Allocation Model
As the parameter � tends to infinity, the model Equation 4.37 tends to the solution
of the allocation model Equation 4.5 when the interactions xij are generalized from
{0,1} all-or-nothing assignment to any number instead. Correspondingly, the
number of assignments at i is generalized to Vi and at j to Vj (Wilson et al. 1981).
Introducing the non-negativity constraint Vij � 0, the appropriate first order KKT
conditions for the Lagrangian Equation 4.36 are given by the dual complementary
slackness [Equation 4.18], dual feasibility [Equation 4.17], and non-negativity
 conditions below:

Vij �
�
�
V
L

ij
� � 0,    �

�
�
V
L

ij
� � 0,    Vij � 0 (4.38)

and it is necessary to consider the possibility of boundary solutions. Because
�L/�Vij is not defined at the boundary Vij � 0, an appropriate limiting process
must be invoked to solve Equation 4.38. 

To show this, consider the following Lagrangian variant of the model
 defined by Equations 4.34 and 4.35:

MaxVij{� �
�
1
*� �i �j Vij lnVij � �i �j Vij Cij} (4.39)

subject to

�j Vij � Vi

�i Vij � Vj (4.40)
Vij � 0

for the value of �* which satisfies the travel cost constraint in the set of con-
straints Equation 4.35. The optimal Lagrange multipliers �̂*i �̂*i of the resulting
Equation 4.36, Vij � exp [��* (�̂*i � �̂*j � Cij)]' are related to those associated with
the entropy maximizing model by �* �̂* � �* and �* �̂* � �*. The model as
 defined by Equations 4.39 and 4.40 is now seen as a member of a family, para-
meterized by �*. Variation in �* in the entropy maximizing model corresponds
to the variation of the total travel cost C. As �* becomes very large the relative
contribution  of the dispersion term ��

1
*� �i�j Vij lnVijl becomes small compared

with that from interacting costs. In the limit as �* tends to infinity, the nonlinear
program becomes the linear allocation model associated with facility location.
Thus it can be seen that a basic building block of land use model, the gravity
model, is just a generalization of a basic building block of facility location, the
 linear allocation model.
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C. Optimal Control Models of Spatial Interaction
All the prescriptive models discussed so far in this chapter are static models,
in which the time element is explicitly absent. Spatial dynamics has become an
issue of great interest in recent decades, mostly for its capacity to model the
evolution of land use over time (Nijkamp and Reggiani 1992). More specifi-
cally, an optimal  control model5 based on a cumulative entropy-function is
used to establish  correspondence between macro/aggregate dynamic models
for spatial interaction and micro/disaggregate choice models. All trips Vij
are time dependent in this case. In such a control problem, state variables can
be defined as the number of trips  generated from zone i; Vi . A control variable
may be Vij, suggesting the possibility of influencing spatial movements
through such means as physical restraints or  user-charge incentives. It can
be seen also that a spatial interaction model corresponds to a logit model.
This is explained in the “Activity Allocation and Derivation” chapter of
Chan (2005).

A distinct advantage of the dynamic extension is its capability in
 examining order and chaos. A stochastic-control formulation further suggests
that under the conditions of a catastrophe behavior, the stochastic disturbances
do not affect evolution of the dramatic changes—an interesting result indeed.
An important corollary question is whether there exist types of models capable
of generating complexity in dynamic phenomena while retaining extreme
 simplicity in their structure. Another corollary question is whether it is possi-
ble to  empirically verify the evolution through empirical time-series data. We
will tackle these cogent questions in the “Chaos” and “Spatial-Temporal
Information” chapters in Chan (2005).

IX. CONCLUDING REMARKS
We have reviewed in this chapter the pertinent prescriptive techniques used in
facility location/land use models. To the extent possible, we try to illustrate
with examples rather than formal theoretical development, leaving much of
the algorithmic procedures to Appendix 4. Classic examples include the
Herbert-Stevens model, the Steiner-Weber location problem, the p-median
problem, and the gravity model. Within the limited space available, hopefully
we have outlined the main ideas behind a variety of heuristic and analytical
methods of optimization. Included in the survey is the central notion of con-
vergence and duality that governs many of the algorithms we use and provide
much of the insights we can gain from applying prescriptive models. We also
begin to show the relationship between location/allocation models, loca-
tion/routing models, and spatial interaction models through such formula-
tions as the quadratic assignment problem and entropy maximization. We
conclude with some of the newest techniques available. These include
the DEA evaluation model, which rank orders alternative facility locations,
 assuming the most efficient use of each site. An optimal control formulation
extends the static spatial-interaction model to yield the evolution pattern over
time. Best of all, it shows the implications of judicious intervention policies. In
short, this chapter paves the way for many of the topics that build upon these
elementary tools.



Prescriptive Tools for Analysis CHAPTER 4 207

X. EXERCISES

Self-Instructional Module: GRAPH OPTIMIZATION 
(to be found on the attached CD/DVD)6

Graph theory has many applications in analysis. Aside from being analogous to
physical networks, its elegant form can be adapted to analyze many different
problems. A physical application is the analysis of flow patterns of fluids through
a network of pipes. But there are many less than obvious applications. In the area
of project management, for example, the Program Evaluation and Review
Technique and Critical Path Method (PERT/CPM) uses graph theory to best allo-
cate monetary and resources to meet project deadlines. Other applications include
laying power or communication lines in the best way, and constructing an “opti-
mal” computer data-base organization. This module will lead you through some
basic definitions and some applications of graph theory.

After working through this module, the reader should

(a) Have a hands-on feel of how graphs can be manipulated for best
 performance;

(b) See some practical applications of graphs;
(c) Understand the concept of optimization.

The Graph-Optimization module serves as an excellent introduction to
more formal optimization methods. Using an intuitive approach, the concept of
an algorithm is explained. This paves the way for more formalism. In the Integer
Programming section of this chapter, for example, network optimization is formally
discussed. Most important is explaining the concept of optimality. Supplemented
with the Linear Programming module, the Graph-Optimization module will open
the avenue for more in-depth discussion of “Optimization Schemes” in Appendix
4, which includes computational complexity analysis of algorithms.

Problem 1: Properties of a Facility-Location Model

An urban network is shown in Figure 4.18, with arc distances encoded in miles. Also
shown in the table below are the demand population figures in thousands,
 labeled as “demand weights.” Find the optimal site for locating a hospital, on
the basis that the hospital should be most accessible to the entire population.

This problem is translated to finding the absolute median in a network, which
is to locate the node with the smallest weighted sum of demands and shortest dis-
tances between the site and each demand. Let us recap the median discussion in
book Section 2-VII-B. Suppose the arc travel distances between a node pair i – j
is dij. The demand weight at node i is fi. As a first step, we like to normalize each
nodal demand fi by the sum of all nodal demands �i fi. It follows that the nor-
malized demand weights, when summed over all the nodes, add up to unity. As
discussed in book Sections 2-VII-A and 2-VII-B, the nodal demand weights fi are
also converted to their complements, defined as the difference between the largest
demand weight and the specific nodal weight under examination. Similar to
nodal demands, the complements of nodal  demands are also normalized as 
conditional probabilities, where conditional probability is the nodal demand-
complement expressed as a percentage of the total demand over all nodes.
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(a) Please fill in the entries of the Table below. Based on the completed
Table, please use enumeration to arrive at the absolute median.

(b) Then go through a similar discussion as in book Sections 2-VII-A and 
2-VII-B for  locating the median and the center.

Destination node A B D E H I

Demand weights 5 2 1 0 1 3
Normalized demand weight7 Weighted Sum
Complement of demand wt.8

Conditional probability

Shortest distance from node A to
Shortest distance from node B to
Shortest distance from node D to
Shortest distance from node E to
Shortest distance from node H to
Shortest distance from node I to

Problem 2: Maximal-Coverage Facility-Location Model

A regional airport is being contemplated. There are two demand locations
 (labeled as nodes 4 and 5), representing the two cities the airport is anticipated to
serve. They have a population of one million and eight hundred thousand people
respectively. Planners figure that passengers are willing to drive up to two hours
to access an airport. Figure 4.19 has a two-hour travel-time distance drawn
around each of them. Three candidate locations—labeled as nodes 1, 2, 3—are also
displayed. The objective of this problem is to determine which of the three sites
would best cover the demands of 10 and 8.

Figure 4.18  URBAN NETWORK
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1.1

0.8
1.47

1.2

1.4

1.10.8

0.8

SOURCE: Adapted from Handler and Mirchandani (1979)
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(a) Please formulate this problem as an integer program and solve it with
the aid of a mathematical programming software such as LINGO. Trial
versions of the LINGO products are available at the LINDO Systems
website. While such formalism may not seem necessary for this “toy
problem,” solution software is  absolutely necessary for larger size
problems.

Using LINGO, the following solution is obtained. It can be
shown by  inspection that the solution makes sense.

MAXIMAL COVERAGE LOCATION PROBLEM 
OBJECTIVE FUNCTION = 18.0 
BASIC STRUCTURAL VARIABLES 

X22 1.0
X44 1.0
X55 1.0

MARGINAL VALUE ANALYSIS
SHADOW PRICES FOR CONSTRAINTS

1 −10.0
2 −8.0
3 18.0

REDUCED COSTS FOR NON-BASIC STRUCTURAL 
VARIABLES

X22 0.0
X33 �8.0
X41 0.0
X42 0.0
X43 0.0
X51 0.0
X52 0.0

Figure 4.19  EXAMPLE MAXIMUM COVERAGE PROBLEM
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(b) Instead of re-running the LINGO software, can you use this output
to answer the  following questions? Please tell us why you can or you
cannot.

▫ What happens if the demands change from 10, 8 to 5, 10 for nodes
4 and 5  respectively?

▫ What happens if the travel time radius is increased from 2 to 3
hours?

▫ What happens if we select two instead of one airport to build?
▫ Does LINGO find discrete, binary solutions automatically?

ENDNOTES

1 Solution algorithms are explained in Section III-D below and in Appendix 4.
2 This is in accordance with the complementary slackness conditions in LP, where a non-zero dual vari-

able value is associated with a tight primal constraint (that is a constraint satisfied strictly at equality or
land is developed 100 percent). Reversely, a dual variable is zero-valued at constraints that are strict
inequalities, which is the case in point when there is surplus land. The following section will elaborate
on this point.

3 See the satellite tracking station placement examples within the last sections of the “Facility Location”
chapter in Chan (2005).

4 A root arc corresponds to an artificial variable in regular LP, making up a full rank of m in a node-arc
 incidence matrix of rank m � 1. (See Appendix 4 for more details.)

5 For an introduction to optimal control theory, please see Appendix 1. Also consult the dynamic
 programming example in Appendix 3.

6 The answer to this Module is attached at the end of this textbook.
7 Normalized demand weight at node i is the nodal demand fi expressed as a percentage of the total de-

mand over all nodes.
8 If the maximum demand at node fi is M, the complement at all other nodes becomes M – fi, where fi is

the demand at node i.
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While most of us have practiced multicriteria decision making (MCDM) in our
 business and personal life, it is relatively recent that the knowledge base for such a
procedure has been organized and quantified into a formal set of methodologies. In
some ways, it represents the amalgamation of descriptive and prescriptive  models in
the context of behavioral sciences. Descriptive models were defined in Chapter 3 to
include such techniques as the conventional use of simulation and  statistics that
 replicate the real world scenario. Prescriptive models, on the other hand, refer to
 procedures, such as optimization, which go one step further to arrive at a desirable
course of action. We will show in this chapter that through the integration of both
 descriptive and prescriptive procedures, the role of quantitative analysis becomes
clear in a pluralistic society with many interests and aspirations.

First, we try to capture the fundamental ideas behind MCDM, particularly
as it is applied toward location decisions (Massam 1988). Because of page limitations,
this chapter may not be as comprehensive a treatment as the excellent methodolog-
ical texts such as Chankong and Haimes (1983), Goichoechea, Hansen, and
Duckstein (1982), Seo and Sakawa (1988), Yu (1985), and Zelany (1982). The main
ideas behind these comprehensive treatments, however, are hopefully  reported in a
summarized format, with liberal examples drawn from location  decisions to bring
alive the concepts. This document also differs from others in  introducing MCDM
from a prescriptive framework, rather than a descriptive framework. Unlike most
books on this subject, we approach the subject from multicriteria optimization,
while most texts start with decision analysis. An advantage of this approach is that
a deterministic view of the world is adopted in the beginning. Only at a later stage
do we assume knowledge of probabilistic concepts. This is judged to be more
 intuitive in our opinion. A second advantage is that we tend to view the MCDM
process as a whole very early in the discussion. Thus the basic  concepts are put
 immediately at the front end. While this may violate the scientific tradition of

5
Multicriteria Decision
Making
“I have hardly ever known a mathematician who was capable of 
reasoning.”

Plato
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 axiomatic development, we hope the style is more compatible with the application
oriented standpoint, in which the question of “what MCDM does for me?” is
 answered in the first few pages. Such a way of thinking appears to be  endorsed by
Goichoechea et al. (1982) and Kirkwood (1997).

I. PREFERENCE STRUCTURE
We like to introduce MCDM in terms of the X, Y', and Z' space. X is often referred
to as the alternative set or the decision space. Y’ is the criterion set or the  outcome
space, and Z' is the preference structure. For example, sites A and B are military
bases that are candidates for closure. A decision is to be made to close one of
the two. Thus in the X-space, we defined a vector of two binary variables 
x = (x1, x2), where the binary variables take on the unitary value when base A and
B are closed, and zero otherwise. The impact of a base closure may be measured in
terms of a peace dividend and the defense posture in case of war, as represented
by the two entries of the vector f(x) = (f1(x), f2(x)) respectively. This criteria set can
be written compactly as f = (y'1, y'2), where y1' may be quantified in terms of dollar
cost savings in peace time, and y'2 is readiness in case of war, measured, for
 instance, by the number of emergencies reachable within a travel radius (i.e.,
 geographic coverage in hours of flight time). The vector y � (y'1, y'2) in this case is
defined in the Y' space. Out of the y1s, the alternative with the best figure of merit
y'* is picked by the decision maker(s) according to some preference structure Z'.
Let us say that it corresponds to alternative x*, which is the vector (1, 0) when y'* is
mapped back to the X space via the inverse function x* = f�1(y'*), indicating that base
A, rather than B, should be closed. All MCDM problems evolve around such map-
ping between X, Y' and Z' space. We hasten to add that while the mapping  between
X and Y' is  relatively straightforward, the mapping  between Y' and Z' (or the pref-
erence  structure), tends to tax the limitation of the state of the art.

A. The Importance of Preference Structure
Quantifying the preference structure is the most taxing part of MCDM. It is in fact
the heart and soul of the modeling procedure. To illustrate the Z space, let us elab-
orate on the above example and further suggest that of the two bases slated for clo-
sure, A is a scientific base while B is a tactical base, meaning that B is closely linked
to combat while A is somewhat removed from it. Let us  further consider the de-
cisions in the context of two different philosophical  outlooks: pessimistic and op-
timistic. Here we show the payoffs of the two  alternative  decisions—or utility
measures by which we have put cost savings and geographic coverage in the
same scale. The common scale ranges in this case from 0 (worst) to 100 (best):

Criteria set f :
Utility if there is

peace war Min payoff Max payoff       
f1(x) f2(x) y'

Alternative Set X
base A closure (x1 = 1) 50 90 (50) (90)
base B closure (x2 = 1) 100 30 (30) (100)

↑

Y'

214 CHAPTER 5 Multicriteria Decision Making
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The data show that if base A is closed, it will look ill-advised (50 points in a 100) if
peace is maintained. The reason is that the scientific know-how generated from base
A, aside from being a long-term defense investment, could have spinoffs in the
civilian economy. In conducting a war on a real-time basis, however, it is much
more astute to keep the tactical base B while scientific base A appears to have little
bearing upon the day-to-day fighting. Considering these tradeoffs, the question is
again: Should A or B be closed—assuming only one of the two bases is to be closed?

A pessimistic decision maker will plan for the worst and will look at the
worst possible outcome corresponding to each of the two decisions. This is
 between closing A or B, with a minimum payoff of 50 and 30 respectively. In
other words, should A be closed, the decision maker wants to anticipate the
worst  result or the minimum payoffs that correspond to a peace outcome. Should
B be closed, on the other hand, the decision maker would like to plan for the war
 outcome. On the other hand, an optimistic decision maker will plan for the best
possible outcomes or maximum payoffs, war if A is closed and peace if B is
closed, corresponding to scores of 90 and 100 respectively. Both decision makers
are trying to make the best of the situation, or maximizing the respective payoffs.
The pessimist (who is going to maximize the minimum payoffs) will close A
while the optimist (who is going to maximize the maximum payoffs) will close
B. In other words, based on the same set of data, different preference structures
will lead toward an entirely different decision.

Suppose now we have three locations to consider—A, B, and C—instead
of two. Let us rank them in order of preference. In a general case, the ranking can
be compiled for base closing, for warehouse location, or for siting of a manufac-
turing plant. Let us say PQR Corporation is considering three states for building
a new manufacturing plant. The candidate sites in States 1, 2, or 3 are evaluated
by three criteria (Yu 1985):

Scores

Criteria y1 y2 y3

Labor force 6 7 8
Transport 7 8 6
Tax breaks 8 6 7

where each score yij is between 0 and 10, with 10 being the most desirable.
Each score is specified for candidate site j on criterion i. For example, on labor-
force availability, State 3 ranks the highest, State 2 ranks second, and State 1 is
last. Here Y' = {y1, y2, y3}, with the score for each State y1      (6, 7, 8)T, y2 = (7, 8, 6)T and
y3 = (8, 6, 7)T.

Now suppose PQR Corporation adopts the following preference structure
 arbitrarily. It decides that a State is preferred to another if at least in one out of three
criteria, the State is leading by 2 or more points, and in the remaining two criteria,
the State is not inferior to the others by more than 1 point. Put it in another way, State
1 is preferred to State 2, or y1  � y2, if and only if State 1 offers at least one criterion i
in which y1

i � y2
i � 2 and y2

k � y1
k  � 2 for the remaining criteria {k � i}. One can now

picture the resulting ranking as a cyclic relationship: y1  � y2, y2  � y3 and y3 � y1

 (instead of y1 � y3 as one would expect from transitivity)1. Aside from non-transitivity,
this example  emphasizes the important role preference structure plays in ranking
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SOURCE: Zelany (1982). Reprinted with permission.

Figure 5.1  IDEAL SITE AND RANKING AMONG LOCATIONS

 alternatives. It is conceivable that if another preference structure be adopted, tran -
sitivity may result.

B. Paired versus Simultaneous Comparison
Instead of a pairwise comparison between alternatives, another way is to simultane-
ously compare the alternatives against an ideal, where an ideal point has the best
components in the outcome space. For example, one wishes to rank the four alter-
natives pictured in Figure 5.1, where the two-criteria measurements of an
 alternative—labor availability and transport—are displayed. Thus site A has a labor
force availability rating of 42 out of a best of 100 and a transportation index of 49. The
ideal score is 91 for both labor availability and transport defining an ideal  alternative
X* of (91, 91). If preferences are measured in terms of the Euclidean  beeline distance
displacement from the ideal, then the order of preference is A � B � D � C as one can
visually inspect from Figure 5.1. Here ranking is obtained by a  simultaneous com-
parison among all alternatives (Zelany 1982).

Assume that an increase in shipping rates has caused a shift from D:
(14, 91) to D':(14, 56), or transportation is now no longer as convenient as before.
This shifts the ideal point X* to (91, 56), as shown in Figure 5.2. The new ranking
now—again based on Euclidean-distance displacement—is B � A � C � D'.
Notice the preference ranking between A and B has been reversed as a result, as
has C and D'. Suppose another site with the same characteristics as the original
site D is now being considered. Call this site E. Introducing site E:(14, 91) into the
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SOURCE: Zelany (1982). Reprinted with permission.

Figure 5.2  DISPLACEMENT OF THE IDEAL

candidate set changes the ranking to A � B � E � D' � C. A nonoptimal alter-
native A has been made optimal by adding E, the replacement for D, back to the
feasible set X. This is somewhat contradictory to traditional decision analysis,
which assumes a  definite utility associated with each alternative, and the alter-
native with a higher utility is always  preferred.

Instead of continuing with a simultaneous comparison among the
 alternatives, we will now return to paired comparisons, just to show another
point. In comparing A with B, the decision maker uses X* as a point of reference.
A is  compared with X* and B is compared with X*, each separately. The
 comparison  between A and B is an indirect consequence of this process. Now
consider the very first case once more. We shall explore a particular triad of
 options, say {A, B, D}, shown in Figure 5.3. After comparing between B and D,
one concludes that D � B. Next, observe that between A and D, A � D. Now that
D has been exhaustively compared with A and B, it can be discarded from con-
sideration (“out of sight, out of mind”). This leads to the pairwise comparison
between A and B, resulting in B � A because the removal of D has induced the
displacement of X* to X**. The net result is: A � D, D � B, and B � A, which—
similar to the plant-location example—is again not transitive. If we start the
process with the paired comparison between A-D, it will result in A � D. We
then establish that A � B by comparing A and B, and finally D � B, resulting in
a fully transitive relationship A � D � B. This shows the order we ask questions
in a survey can bias the results.
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Figure 5.3  SEQUENTIAL CHOICE AMONG THREE ALTERNATIVES

It can be seen that, depending on the sequential process assessing pre -
ference among alternatives, the resulting ordering is different. In situations
 involving sequential displacements of the ideal, the order of preference can be
changed significantly. There is also a possibility of intransitivity, when a sequence
of pairwise comparisons are performed. Thus the preference structure, which is
often represented by the utility or value function v(y'), is in fact the most difficult
procedure in MCDM. Depending on the way one valuates the outcomes, such as
comparing them against a current ideal or viewing them in an optimistic or
 pessimistic light, the ranking of alternatives can be very different.

II. SIMPLE ORDERING
Given the difficulties with preference structures, are there any guidelines and
 procedures ready for making decisions? The answer is a resounding yes, and
that is where a discussion such as the current one may become useful to the
readers, not only in giving warnings about the danger of performing analyses
incorrectly, but also in providing guidelines for the correct procedures.

The most straightforward case of MCDM is simple ordering among
 alternatives, where no preference structure is required. In other words, we work
strictly in the X and Y' space, requiring no resolution among incompatible  criteria
in the Z space. In other words, we dispense with the “apples versus  oranges”
tradeoff. It also avoids the pitfalls associated with many surveys based on paired



Multicriteria Decision Making CHAPTER 5 219
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v (y1*,  y2*)

N  y *

Y
v(y1*,  y2*)

Figure 5.4  CONFLICT-FREE SOLUTION

comparisons in which the order in which questions are asked results in very
 different rankings among alternatives, as we pointed out earlier. It turns out that
using simple ordering, one can readily rule out a large percentage of the alterna-
tives, leaving only very few to consider. As such, this is a very useful analysis
technique on many occasions.

Assuming that we all agree upon “the more the merrier” philosophy, the
concept of dominance then comes in naturally as a simple ordering tool. In the above
example, if site A is better than site B in all the criteria: labor  availability, transporta-
tion and tax breaks, few would disagree with the choice of A over B. Such a domi-
nance relationship among alternatives is often referred to as Pareto preference. An
outcome y' is said to be Pareto optimal if and only if it is a non-dominated solution
(or it is an N-point). A Pareto optimal solution is also called an efficient, noninferior,
non-dominated, or admissible solution. For example, the ideal solutions illustrated
in Figure 5.3 and Figure 5.1 are  nondominated solutions because they are equal or
better than all the other  alternatives in the two criteria considered: labor availability
and transportation. Straightforward as it may  appear, the concept of dominance is
a rather robust tool. The set of N-points  offers preference  determination under
conditions of  ignorance (about how to compare incommensurate attributes
such as y'1 and y'2). Thus there is no  requirement to make difficult tradeoffs. In
Figure 5.1, Figure 5.2, and Figure 5.3, for example, regardless of the exact value
of utility/value function definition, v(y'1, y'2), its maximum will be the N-point
X*: v*(y'1*, y'2*) � vi(y1

i , y2
i), where y'1* � y1

i and y'2* � y2
i .

It makes sense to explore Y' and characterize its set of N-points before
 engaging in the assessment of v. It is possible an alternative will emerge such as shown
in Figure 5.4, which is often known as the conflict-free solution. Put it in the context of
Figure 5.3, Figure 5.2, and Figure 5.1, such a “win-win” solution represents the “ideal.”
Even though such situations seldom arise, it is well-advised to recognize them when
they appear, since it saves a good deal of negotiation and hard work.
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III. EXPLORING THE EFFICIENT
FRONTIER

Perhaps one of the best ways to explore the efficient frontier and to illustrate the X, Y’
and Z’ space of MCDM is still through a multicriteria linear program MCLP.
Consider this example (Yu 1985): A corporation is deciding how much company
housing to provide the employees (x1) and the amount of ‘commercial housing’ from
the free market (x2)—with the amount of housing measured in square footage. The
corporation in this case has to balance between welfare to the employees f1 and the
corporate goal f2—both of which the company wants to –maximize: Max f1(x1, x2) =
4x1 � x2 and Max f2(x1, x2) = 2x1 � 5x2. Here, the first criterion is the employee
 welfare, which is enhanced by the availability of company housing, since it is
cheaper to the employees than commercial housing. The second is the corporate
goal, which refers to the bottom line, wherein commercial housing is less expen-
sive on the company’s pocketbook. Obviously the two criteria are not necessarily
congruous and hard decisions have to be made regarding the tradeoffs between
these  incompatible objectives.

Now only a certain amount of housing subsidy is obligated by the
 company to each employee for use in both company and commercial housing. A
company and commercial dwelling unit has different costs associated with them,
with commercial housing one and a half times more expensive for the family pock-
etbook: 2x1 � 3x2  � 12. Only a certain amount of commercial housing is available
within commuting  distance from the company: x2  � 3. It is corporate policy to at
least provide an amount of company housing somewhat commensurate with the
commercial housing available—at one third of the footage: 3x1 � x2 � 0. Finally,
nonnegativity applies to the decision variables since they represent footage of
housing: x1, x2 � 0.

In order to solve this multicriteria LP, a proven method is to convert one of
the two criterion functions, say f2(x) into a constraint, which is added to the  existing
constraint set x � X:

Max f1(x1, x2) � 4x1 � x2
s.t. x � X,

f2(x1, x2) = �2x1 � 5x2 � r2

where r2 is a satisficing level for f2, say the acceptable company profit. By graphi-
cally minimizing and maximizing f2 over X, the feasible region defined by the orig-
inal constraint set, we find �12 � f2(x) � 13. Solving the above LP with r2 varying
from �12 to 13, we can find all N-points:

r2 (x1, x2) (f1, f2)

�12 A (6, 0) A' (24, �12)
�7 B (5.06, 0.63) B' (19.63, �7)
�2 C (4.13, 1.25) C' (15.25, �2)

3 D (3.19, 1.88) D' (10.88, 3)
8 E (2.25, 2.50) E' (6.50, 8)
12 G (1.50, 3) G' (3, 12)
13 F’ (1, 3) F' (1, 13)
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Figure 5.5  THE DECISION AND OUTCOME SPACE

as illustrated in the X-space (Figure 5.5) and the Y'-space. Notice by virtue
of the computation shown in tabular form above, the (f1, f2) column and the
 corresponding points in the figure, A–F in the X-space and A'– F' in the Y-space
 constitutes an efficient frontier which dominates over all points y' � Y'. Such an



N-set is generated by the constraint reduced feasible region method, where one
of the two criterion functions has been eliminated by converting it into a  constraint
(Steuer 1986).

A logical question to ask at this point is: What (�'1, �'2) would make A’, B’, . . . , or
F' a maximum point of v(f) � �'1 f’1 � �'2 f’2 over Y’? Now entries in the first row
of the LP tableau is �(4�’1 � 2�2’) under x1 and �(��’1 � 5�’2) under x2 . Consider 
the  existing maximum G' for instance. All �'s satisfying �'(y' � G') � 0,

y' � Y', or (�1, �2) �	y
y

2

1

�

�

1
3
2

	� � 0, can—among other conditions—shift the maximum 

point of �’f, or (�'1, �'2) � }
f
f
1

2
	� to other N-points. Here, the slope of the objective func-

tion �.f is ��1/�2 and the gradient is �2/�l. The inequality �(y�G) � 0 places a
stipulation on both the slope and the gradient. Specifically, the weights in �' must
satisfy (y'2 � 12)/(y'1 � 3) � ��'1/�'2 , to cause a shift, where the y's are the points
within the feasible region Y', or the set of feasible outcomes. Take F'(1, 13) in Y. We
have (13�12)/(1�3) � ��'1/�2' . This means the slope ��'1/�2', must be less than or
equal to �1/2, or at the minimum �'1/�'2 = l/2 . One can see the similarity  between
this and the optimality test used in regular LP.

Let us denote these conditions as the weight cone �(G'). The table below
illustrates examples of �(G) and �(F), given �'1 � �'2 � 1 by convention. Take
 another example point A'(24 �12). We write (�12 � 12)/(24 � 3) � ��'1/�'2, or
�'1/�'2 � 8/7, for exploring the right of G'. This means �'1 = 8/15 and �'2 = 7/15.

�'1 �'2 y'* f1* f2*
. . . . . . . . . . . . . . .

0.5 0.5 G' 3 12

0.333 0.667 F' – G' 1–3 12–13

0 1 F' 1 13___________________________________

Another way of thinking about this concept is to examine a linear,
 additive value-function v(f) � �'1 f1 � �'2 f2, which is rotated with a pivot at G',
the table above simply records the “break points” at which an extreme point
such as G' is no longer the “optimal” with regard to the value function under
 consideration, as the weights in the value function change.  One can think of this
tradeoff—or some kind of  sensitivity analysis—between �'1 and �'2 taking place in
the Z'-space.

In the context of this housing example, the multicriteria LP (or MCLP)
sketches out the entire efficient frontier consisting of the illustrative points A’
through G', which are members of the N-set. Irrespective of the valuation placed
upon employee welfare vis-a-vis company profit, the non-dominated  solutions
are the only ones worthy of further examination. When more weight is placed
upon the employee’s welfare, a solution such as A' will make sense, which when
translated back to the decision space X, means that the company would provide
all  employee housing. On the other hand, when company profit is  valued over
 employee welfare, F' and F will become the viable solution, and commercial
housing will provide the bulk of the living quarters for the  employees. A solution
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such as F, for instance, shows 3 units of commercial housing and one unit of com-
pany housing. The criteria f1(x) and f2(x), which are   as outcomes y'1 and y'2, are
shown as A' and F' which are (24, �12) and (1, 13)  respectively. Thus the com-
pany suffers a loss if it places too much emphasis on employee welfare. On the
other hand, it makes a large profit if the bottom line is closely guarded.

IV. MULTICRITERIA SIMPLEX 
(MC-SIMPLEX)

While the above example illustrates the basic concepts behind MCLP, formaliza-
tion  of the above problem is necessary for solving realistic size problems. Before
we provide a solution algorithm, some terms need to be defined: X � {x
� Rn|−A x � b, x � 0}, where  −A is a matrix of order m 
 n. In other words, x vec-
tors are n-dimensional nonnegative real numbers within the region defined by
the constraints � x � b. Let C be a q by n matrix with its kth row denoted by ck so
that ckx, k � 1, . . . , q, is the kth  criterion function. The criteria space is thus given
by Y' � {Cx |x � X}. The objective function of the mathematical program now
looks like Max z � �TCx, which is sometimes  referred to as vector optimization.

Thus in the  previous example, A� � � 2  3
0  1

�3 1 �, b = (12, 3, 0)T, C � �	
4

�2
�3

5
	 � and z = �'1

(4x1 � x2) � �'2(�2x1 � 5x2). Indeed, many MCLP’s have been solved using such a
combined objective function z, which in effect assumes an additive-linear-value
function v(f) = �'1 f1 � �'2. By changing the weights �', the efficient frontier is
sketched out, as already  alluded to above. Such a weighted-sum method has its
intuitive appeal, and can be made operational quite readily in many analysis
 offices inasmuch as it needs only a regular LP computer code. Its generality, how-
ever, is more  questionable, since it may miss  efficient solutions in integer-pro-
gramming problems where  decision variables are required to be discrete—a
point we will come back to in sequel.

A. The MC-Simplex Algorithm
To formally solve an MCLP, we need an MC-simplex algorithm. For the purpose
of this discussion, the best is to illustrate the basic concepts of this algorithm
through a numerical example, and then refer the reader to some software that can
take care of the computation on a day-to-day level. Consider the following MCLP
(Zelany 1982):

Max f1(x) � 5x1 � 20x2
Max f2(x) � 23x1 � 32x2
s.t. 10x1 � 6x2 � 2500

5x1 � 10x2 � 2000.
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Figure 5.6  GRAPHICAL SOLUTION OF A MULTICRITERIA LINEAR PROGRAM IN X AND Y' SPACE

with the normal nonnegativity constraints on the decision variables. For compari-
son and illustration purposes, graphical solution to the problem is given in
Figure 5.6 which will be explained via the following algebraic procedures.

As a readily operational procedure, we can form a tableau correspond-
ing to z = �'Tf, or that we solve the LP starting out with the combined  objective
function for a particular value of �', with 0 � �i � 1. By working with the fol-
lowing tableau:

current
basis Jk x1 x2 x3 x4 RHS

�5�'1 � 23�'2 � 20�'1 � 32�'2 0 0 0

x3 10 6 1 0 2500
x4 5 10 0 1 2000

It can be seen from the combined (zj � cj)s in the first row why this is called the
weighted-sum approach.

Now instead of solving this as a single objective LP, the MC-simplex
calls for writing the first line as two lines and carrying out the simplex
 procedure, say the primal simplex. Thus the first line of the tableau now
looks like:

criterion �5 �20 0 0 0
rows �23 �32 0 0 0
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To be really organized, we should organize the tableau as follows:

y1 y2 x1 x2 x3 x4 RHS 

0 0 10 6 1 0 2,500
0 0 5 10 0 1 2,000
1 0 �5 �20 0 0 0
0 1 �23 �32 0 0 0

We are at a position to carry out the pivoting procedures.2 Since the  second
variable x2 will benefit both of the criterion functions more so than x1, it is introduced
into the basis. Notice this is an example of dominance: x2 dominates over x1. The
 result of this pivot is shown below:

criterion 5 0 0 2 4000
rows �7 0 0 31/5 6400

x3 7 0 1 �3/5 1300
x2

1/2 1 0 1/10 200

It can be seen that the entry rules of a regular simplex are modified to
 include dominance. As another example, if the criterion rows look like

criterion 0 0 0 2 4,000
rows �7 0 0 31/5 6,400

instead of the above, introducing x1 into the basis—thus effecting an alternate
 solution—would not hurt the first criterion function, but will improve the second
by 7 per unit of increase in x1. This implies that the existing solution with respect to
the first criterion function is a dominated solution—that it is inferior to the  alternate
solution with x1 in the basis. We call this alternate solution an efficient  solution 
N-point, or Pareto optimum. In fact, the definition of a Pareto optimum is that it
gains at the expense of nobody else.

Now back to the original problem, the solution after the first pivot is an 
N-point J1, in that one of the criteria rows, the (zj � cj)s for f1(x), are all nonnegative;
meaning that on the first criterion, the solution J1 dominates.  Continuing the
 simplex, the other N-point obtained is:

criterion 0 0 �5/7 17/7 21500/7
rows 0 0 1 13/5 7700
—————————————————————–
x1 1 0 1/7 �3/35 1300/7
x2 0 1 �1/14 1/7 750/7
—————————————————————–

where the second criterion function, f2(x), is optimized, at the expense of the first.
This example contrasts nicely with the made-up criteria rows as shown above
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where both criteria can be improved by another pivot—or at least not degraded by
the pivot. It can be shown that any additional pivot performed on the tableau cor-
responding to the second N-point will revert back to the tableau corres ponding to
the first N-point. Thus we have established all N-points, defined once again as the
extreme points where at least one of the criteria is optimized, for a given minimum
value of the other criterion, rk. The collection of N-points have the property of dom-
inating over all other points in Y.

If there are two possible pivot columns to choose from, then the concept of
dominance again comes into play—the column that will improve fk(x) the most and
degrade fk’(x) the least (k � k’) is the one to use.  For example, consider the follow-
ing criteria rows:

criterion 5 0 0 6 4000

rows �7 0 0 �31–
5 6400

It is clear that x1, rather than x4, should be pivoted in, since the introduction
of x1 will degrade f1(x) the least, but will improve f2(x) the most. On the other hand,
the following criteria rows show a ‘tie’ between x'1 and x4 as the pivoting column,
inasmuch as x1 will benefit f2(x) at the expense of f1(x) while x4 will  upgrade f1(x) at
the expense of f2(x):

criterion 5 0 0 �2 4000

rows �7 0 0 31–
5 6400

This latter example is similar to finding the J1–J2, Pareto optimum in the original
 example.

Referring back to the first pivot tableau containing the combined objective-
function, it can be seen that solution J1 or x1 will stay optimal if the zj-cj entries 
remain nonnegative—the typical optimality condition for simplex tableaux:

z1(�') � 5�'1 � 7�'2 � 0
z2(�') � 2�'1 � (3�1/5)�'2 � 0

Alternatively, 

�(J1) � {�'⏐�'T �		
�

5
7

0
0

0
0

2
31–

5

	�� 0}.

Similarly, we can write 

�(J2) � {�'⏐�'T�	00
0
0

�  5

1
–7

13

1

–

7–

5

7	� � 0}.

It is often convenient to display these two conditions graphically.
Figure 5.7 shows the plot of the �-space (or what we have been referred to as
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Figure 5.7  THE Z'-SPACE CONTAINING THE WEIGHT CONES
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the Z’-space). This figure illustrates a few cogent points. For example, it clearly
shows that there is at least one point �’ = (7/12, 5/12)T common to both �(J1)
and �(J2), where z reaches its maximum at both x1 and x2. With this �’, 

z(x1) � (5�'1 � 23�'2)x1 � (20�'1 � 32�'2)x2
� [5(7/12) � 23(5/12)]0 � [20(7/12) � 32(5/12)]200 � 5000. 

Similarly, z(x2) � 5000 as expected. In the same figure is shown the values of � that
will make the basis J1 optimal and the range that will make J2 optimal, as defined
by the nonnegativity requirements outlined above. We call �(J1) and �(J2) the
weight-cones. This two-dimensional case is quite graphic, introducing the concepts
that can easily be carried over to higher dimensional cases.

The numerical and graphical explanation of the solution procedure has
one advantage. It shows quite clearly that such a multiplex algorithm for multi-
criteria LP is nothing but an extension of the single objective simplex algorithm.
Theoretically, one can solve multiplex models that are just as large as the largest
single objective models that may be solved (Ignizio and Cavalier 1994).
Obviously, the computation associated with higher dimensional cases is best
performed by specialized computer software. To date, such software is still in
the developmental stage. An example software is distributed under the name
of ADBASE (Steuer 1986), which has been extended by Shields and Chan
(1991). Interactive visualization programs have also been implemented, such as
one by Korhonen and Laakso (1986), marketed under the trade name VIG,
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Figure 5.8  A MORE GENERAL MULTICRITERIA OPTIMIZATION PROBLEM
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which solves nonlinear programming problems in addition to LP.  Such interac-
tive techniques represent an exciting area of research for these types of
 multicriteria optimization problems (Buchanan and Daellenbach 1987).

B. Nonlinear and Integer Programming
The ideas introduced in MCLP can be carried over to nonlinear programming
(NLP) and integer programming (IP) as well. Consider the illustration in Figure 5.8,
where a nonlinear multicriteria optimization problem is shown. Although some-
what transparent from the figure, it needs to be reemphasized that not all  convex
combinations of the extreme points in the efficient solutions Nex � {A, B, C} can be
non-dominated, and that the optimal solution can be any N-point, not just the
 extreme points Nex. It is not necessarily an Nex-point.  An example of the latter case
is shown in point D in the nonlinear programming illustration in Figure 5.8. These
two facts are further driven home by an integer program, where discrete points,
rather than the feasible Y' region as shown, are the candidates for the  optimum. In
the case of IP, the efficient points may be unsupported in that they are not on the
 efficient frontier A-B-C in general. Another complication is that to locate these effi-
cient N-points, the constraint reduced feasible region method as  described in the
 introductory section on MCLP is mandatory. The weighted-sum approach, which
combines the criterion functions into one, will end up missing N-points on the fron-
tier, as illustrated by the point E.

At D, the value function v represents the tradeoff of criterion y’1 with another 

y’2. The correct weights would cause the composite-z gradient ∇v
T � �	

∂
∂
y
v
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	 , 	
∂
∂
y
v
’2

	�
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to point in a direction normal to BC. This concept is akin to linear programming
(LP), in which the gradient of the objective-function z is indicated by the 

vector c, in other words, ∇Tz � �	
∂
∂
x
z

1
	 , 	

∂
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x
z

2
	 , . . . , 	

∂
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z

n
	�� (c1 , c2, . . . , cn). Take the tangent

at point D: v � �'1y'1 � �'2y'2 � constant. The slope of the tangent bears resem-
blance to the relationship derived for the linear additive value function, where
the  gradient of the value function is perpendicular to the tangent:
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In multicriteria nonlinear optimization, solution procedures are by and large built
upon this gradient concept when the criterion functions and/or value functions are
no longer linear. This concept can be further extended to the case when the
 constraints are nonlinear in addition (Li and Wang 1994).

In general, the state of the art in multicriteria nonlinear and integer
 programming is not at all as developed as MCLP, which in and of itself is  already
complex. In an MCLP problem of any size, the N-set is often huge, so much so
that wading through the set is no trivial task (Karasakal and Köksalan 2009).
Imagine now that we proceed to the integer and nonlinear cases, which further
introduce complexity of their own to the problem (Karaivanova et al. 1992; White
1990). However, real world problems of facility location, however, often belong
to the  integer and nonlinear cases. We will illustrate each of these subsequently.

C. An Interactive Frank-Wolfe Example
A prominent way of performing multicriteria nonlinear programming is the
 interactive Frank-Wolfe approach. Building upon the piecewise linear concept
 outlined in Chapter 4, this approach assumes the existence of an underlying
 preference function, but never actually requires this preference function to be iden-
tified  explicitly (Hokkanen et al. 1999). The basic idea is that even if the  decision
maker cannot specify an overall preference function, he or she can provide local
 information regarding a preference at a particular situation. The iterative  approach
moves from an initial feasible solution toward optimal  solution by finding the
 direction of steepest ascent and the optimal step size in that direction. Again,
 explicit knowledge of the overall preference function is not essential. Only local
 information  concerning the preference of the decision maker is required, and this,
in turn, is sufficient to determine the direction and step size.

Refer to the airport location problem discussed in Chapter 4. The airport
 location problem calls for the selection of a site between the two cities of Cincinnati
and Dayton, Ohio—with populations of two and one million respectively—so that
both travel time and noise impact are minimized. To apply the F-W method to

(5.1)

(5.2)
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this problem, two criterion functions, travel cost f1(x) and noise  impact f2(x), are
known. The following condition must exist: all fi(x), i = 1, 2, . . . , q, are convex and
continuously differentiable in their respective domains, and the  constraints form a
convex and compact set (i.e., a contained region to prevent  unboundedness). Here,
q = 2, and f1(x) is the travel time and f2(x) is the noise. By  formulating the airport
 location problem as minimizing travel and noise, we rewrite the two-city case as

Min v( f1(x), f2(x)) � v(2x1 � x2, 2x�2
1 � x�2

2)
s.t. x1 � x2 � 60
xi � 0   (i � 1, 2)

where x1 is the distance from Cincinnati and x2 is the distance from Dayton.
Taking the gradient of value function v(f) � �'1f1(x) � �'2f2(x) yields

�xv(f) � 	∂
∂
f
v
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∂
f
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2
	 � �

which is evaluated at the sequence of locations x0, x1, x2, . . . and so forth. The initial
gradient at the halfway point between Cincinnati and Dayton x0 � (30, 30)T, for
 example, is
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and the LP to be solved is simply

Min �T
x v ( f(x0)) x � Min (2�'1 � 0.00015�'2, �'1 � 0.00007�'2) �	

x
x

1

2
	�

x � X x � X

where x � X is a shorthand notation for x1 � x2 � 60 and xi � 0. Suppose the decision
maker decides that the marginal rate of substitution is fifty-fifty, or �'/�' � �1,
through local linearized indifference curves such as the one shown in Figure 5.9. In
this figure, the decision maker is asked about the increment of travel cost f1(x) for
which he or she is willing to trade against a decrement of aircraft noise f2(x). The
slope of this indifference curve is precisely ��'1/�'2, which in the case of equal weights
assumes the value of �1. Without loss of generality, let us set �1' � 1, which means
�2' � 1 in this example. (Here �'1 + �'2  � 1.) Now by the following LP, the optimal
 solution x* � (0, 60)T is determined: Min {2x1 � x2| x1 � x2 � 60; xi � 0}. Thus at this
initial iteration of the algorithm we are moving the airport toward Cincinnati from the
halfway point between the two cities according to the steepest ascent  direction d0 �
x* � x0, where x0 � (30, 30)T and x* � (0, 60)T or d0 � (�30, 30)T.

The decision maker now determines the step size � to move along this
 direction x0 � �0d0. The decision maker, assisted by tabular or graphic displays of
the function f(x0 � �0d0) � (f1(x

0 � �0d0), f2(x
0 � �0d0)), determines the step size �0

 between 0 and 1. One possible way to obtain the best step size � is to display the

	∂
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(5.3)

(5.4)

(5.5)
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Figure 5.9  DETERMINATION OF MARGINAL RATE OF SUBSTITUTION
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values for the two criterion functions fi(x
0 � �0d0) for i � 1 and 2 as a function of �

over the selected values of � in a tabular or graphic way. Example of the curves are
shown in Figure 5.10. For example, the graph for travel is a linear function of �, as
shown by the equation f1(x

0 � �d0) = 2(30 � [�30]) � (30 � �[30]) = 90 � 30�. The
 decision maker then determines a value of  � for the most preferred values of the cor-
responding criterion functions. In short, the following optimization problem is
solved: Min 0 � � � 1 v(f(x0 � �d0)). Let the stakeholder(s) read off the f1(x) and f2(x)
values on Figure 5.10. From these fis, the �1' and �2' values can be determined in

Figure 5.10  GRAPHIC DISPLAY TO DETERMINE STEP SIZE
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Figure 5.9 by reading off the slope �1'/�2' at (f1(x0), f1(x0)). The �s facilitate the next 
iteration. Suppose �0 � 0.5. We are now at x1 � x0 � �0d0 � (30, 30)T � 0.5(�30, 30)T

� (15, 45)T and the iterations continue until the incremental ascent of the preference
function v is  minuscule, as with most hill-climbing algorithms as explained in
Chapter 4.

Assuming equal weights among the two criterion functions and a constant
step size of 0.5, a series of iterations were performed, with the following results
(Staats and Chan 1994):

Iteration k airport location xk

0 (30, 30)T

1 (15, 45)T

2 (7.5, 52.5)T

3 (3.75, 56.25)T

4 (1.875, 58.125)T

5 (0.9375, 59.0625)T

6 (30.46875, 29.53125)T

. .

. .

It can be seen that while the airport steadily moves toward Cincinnati in the first
five iterations, starting at iteration 6, there is a direction reversal toward Dayton.
If we make subsequent iterations, it will begin moving toward Cincinnati again.
However, there is a limit to this westward movement—namely at a point east of
the previous reversal point (0.9375, 59.0625)T. This point is  further from
Cincinnati and closer to Dayton, or  x1 � 0.9375 and x2 � 59.0625. As this point
subsequently moves east toward Dayton again, there is once again a limit to its
movement. In this case, it falls short of (30.46875, 29.53125). Thus the airport
 location bounces back and forth within a shrinking interval, eventually
 converging toward a final equilibrium point. This point can be determined by a
shortcut method for this case of equal weights (�1' � �2' � 1). This is the point
where the objective function of the LP as shown in Equation 5.5 is minimized for
both x1 and x2, which occurs when the  gradient �xv is (1, � 1)T, or when the
 coefficient for x1 is the same as x2 in the objective function: 2�'1 � �'2 (�4/x1

2) �
�'1 � �'2 (�2/x2

3). Thus for �'1 � �'2 � 1, we solve the equation set  consisting of 
2 � 4/x1

3 � 1 � 2/x2
3 and x1 � x2 � 60, where x1 � x2 � 60 has to be satisfied at

strict equality. This equation set yields x1 � 1.5873 and x2 � 58.4127. This says
that for equal weights placed on the two criteria, the decision maker is  indifferent
about noise and travel at an airport located at (1.5873, 58.4127), or about 1.6 miles
(2.56 km) outside Cincinnati.

It can be shown that the above iterative procedure is a special case of a more
unified interactive multiple objective programming procedure (Gardiner and
Steuer 1993). This airport example has been solved previously in Chapter 4. The
 solution obtained here is consistent with and close to the previous solution. Because
of the peculiarity of the criterion functions f1(x) and f2(x), the gradient of 

f2(x), ��

�

0
0
.
.
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0
0
0
0
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	�, is small for the x0 chosen in comparison with f1(x), �	
2
1

	�. For this rea-

son, the example does not fully illustrate the importance of properly determining �'1
vis-a-vis �'2 well. Perhaps a better example is to solve the equivalent problem
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Max v( f1(x), f2(x)) � v( �2x1 � x2, 2x1
2 � x2

2)
s.t.         x1 � x2 = 60
xi � 0   (i � 1, 2)

where f1(x) and f2(x) are concave and a maximization objective replaces a
 minimization. This will illustrate the interactive F-W procedure better, when the
 decision maker participates—in a more significant way—in determining the
 direction of climb and the step size. Most interestingly, the solution to this new
problem is diametrically opposite to the previous minimization formulation, given
the same �’ and � values, and given that  the noise function f2(x) so formulated is
different from the one used in the previous f2(x). In this case, the airport is located
at (59.50,0.5)T or half a mile (0.8 km) outside Dayton.

Readers interested in more detailed discussions of interactive multi-
 objective programming can consult Seo and Sakawa (1988) and Gardiner and
Steuer (1993). It is apparent from the above example that interactive program-
ming of this sort is highly numerical in nature. Aside from convergence issues,
different functional forms may give rise to drastically different solutions, as one
can see clearly from the airport-location problem above. In practice, however,
such an extreme result is unlikely to occur.  Remember that the above results are
built upon the rather indefensible assumption of � � 0.5 and �'1 � �'2 � 1
throughout the iterations. This simplifying assumption is made mainly for our
computational convenience. In fact, the entire foundation of interactive proce-
dures of this sort is to explore the decision maker’s revealed preferences, guided
by charts and tables, at various situations. Correspondingly, his or her reactions,
as reflected by values of � and �′s—are expected to be different at each iteration.
Convergence in this case is obtained not so much from numerical properties as it
is from the decision-maker’s behavioral changes. The behavioral change from
one iteration to another, reflecting sharpening of the decision maker’s focus,
should more than compensate for the dilemma that apparently arose from
 different functional forms for the travel and noise criterion functions f1(x) and
f2(x), leading toward a consistent location for the common airport between
Cincinnati and Dayton.

D. Comments
The most challenging (and interesting) part of MCDM is still the Z'-space, where
the criteria are to be traded against one another. Generally, there have to be at least
two criteria for decision making to occur, since a single criterion means  simply
“take it from the top” on a uni-dimensional scale–a laborious  exercise at best. In
spite of the seemingly elaborate effort made above, let us conclude this section by
reiterating an important point. It is necessary to have good measurement units for
the metric used. Advanced computational algorithms are also  necessary for effi-
cient search, but they are not sufficient for  decision making in the presence of
 multiple criteria. The crux of MCDM lies in the Z'-space, making participatory,
 interactive techniques so much more attractive as a solution tool.

We have illustrated the interactive procedure for NLP above using the F-W
method. A body of knowledge exists for evaluating a finite set of discrete
 alternatives. One such procedure is ELECTRE (Roy 1977), which is a robust
 technique that does not necessarily assume transitivity of preferences. Of the



 variants to the method, Chankong and Haimes (1983) recommended the seq uential
(interactive) elimination procedure inasmuch as it furnishes opportunities to gain
greater understanding and appreciation of what is being done, and more impor-
tantly, what levels of risk are involved when eliminating certain alternatives. Chan
(2005) discusses this method in the “Facility Location” chapter, but he uses a deter-
ministic, outranking elimination procedure.

V. GOAL SETTING
The type of problems we have been solving above are often referred to as goal
seeking, where “the more the merrier” is the modus operandi. Goal setting, on
the other hand, refers to an environment in which there is a standard against
which alternatives can be compared. For example, in locating a satellite tracking
station, there are minimum standards one sets for observational opportunity and
coverage of the various orbits. A station location either satisfies this minimum
standard or it does not. Thus goal setting is defined as the procedure of identify-
ing a satisficing set S such that, whenever the decision outcome is an  element of
S, the decision maker will be happy and satisfied and is assumed to have reached
the optimal solution.

A. Compromise Programming
We now refer to the example in Figure 5.8 again.  Assuming the decision maker
defines his satisficing set by S � {(y'1, y'2)⏐y'1 � 20, y'2 � 10}, meaning that the
 minimal standard for observational opportunity is 20 (in say a maximum of 100)
and the station needs to track at least 10 orbits. The graphical  depiction clearly
shows that no satisficing solutions exist, since the region Y' and S do not  intersect.
The logical solution is to look for the second best,  similar to the  examples shown
in Figures 5.1, 5.2 and 5.3, where deviation from the threshold standard ys � (20,
10)T is to be minimized here. The goal-setting (GS)  program now looks like

v � Min (d1 � d2)
f1(x) � d1 � 20
f2(x) � d2 � 10

with the feasible region x � X as defined previously for this example. Notice here v
assumes a particular goal setting value function, in which the two criteria, f1(x) and
f2(x) (and hence the deviational variables, d1 and d2) are in different units. The total
displacement from S, defined here as the simple sum (rather than say the weighted
sum) of the two deviations, is minimized (Lai et al. 1994).

There is no station locations that can satisfy the minimal standard, or 
S � Y' � � and v � 0. To find a satisficing solution, we must restructure the feasi-
ble region X in the decision space, change the criterion vector f and/or alter the
 standards that define S. In other words, we must either examine more locations for
the tracking station, or improve the tracking capabilities for an existing site, or our
expectation for observational opportunities and orbit coverage must be lowered.
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If X and f are fairly fixed, we may need to change S. For example, the goals of y'1 �
20 and y'2 � 10 must come down. This is another example of an interactive process
between the decision maker and the analyst.

Thus far, we have ignored the precise way used to measure deviation. We
simply stated that it is the sum of two different scales, one measured in the
 horizontal and the other in the vertical dimension of the outcome space. This
Manhattan metric is distinctly different from the Euclidian metric used in Figures
5.1, 5.2, and 5.3 (Saber and Ravindran 1996). The natural question then is: what is
the proper measure?

B. Deviational Measures
Different problems dictate the use of different deviational measures, since the way
the compromise is measured defines the value function. It so turns out that both of
these deviation metrics—Manhattan and Euclidean—can be accommodated within
the lp-metric, which also includes the weights placed on y'1 and y'2. The  metric

 assumes the functional form of

r' (y'; p, w') � || y' � y'* ||p, w' � ��iw'p
i⏐y'1 � y'i⏐p�1/p  

� ��iw'p
i d

p
i�1/p

(1 � p � ∞)

In the above expression, it can be seen that it reduces to the Manhattan and Euclidean
metrics when p � 1 and 2 respectively. In the case of l∞-metric, the above

expression is simply Maxi�w'i d1� When w' is not specified, the usual convention is 

to assume wi' � 1 for all i’s.
In general, as p is increased from 1 to 2, the emphasis shifts toward the more

prominent of the Ith y' component. In the extreme case when p � ∞, only the more
prominent component counts, with the less prominent, albeit just a shade less promi-
nent, totally overwhelmed. We refer to this case as the totally noncompensatory sit-
uation. Using the example above about satellite tracking stations, it may turn out that
f2(x), the number of orbits covered, may be the criterion that the decision maker re-
ally cares about whenever there is a site that has an f2(x) advantage over f1(x) (the
number of observational opportunities). This phenomenon should then be modeled
as a compromise program with an l∞-metric.

In location models, the l∞-metric is of particular interest. If y'1 and y'2  epresent
distances demands 1 and 2 are from a facility, it can be shown that it can be modeled
as a special case of a compromise program with the l∞-metric. In this case r'(y'; ∞, 1)
boils down to the further of the two distances. In emergency facility location, such as
the siting of a fire station, for example, it is common to minimize the furthest distance
away, so that the worst situation can be covered—in case a fire breaks out at the
 furthest house from the station. Again, such a way of fighting fire reflects a philo-
sophical viewpoint of caring for the most geographically disadvantaged household in
the community. An equally valid figure of merit may be to minimize the average
 response time to all the households in the area. If this is the case, the Manhattan  metric
is definitely a viable measure in a city with a square grid street system.  It can further
be argued that the weights should not be equal among all parts of town, that highly
populated areas should receive more attention than the wilderness. Thus the weights
w come in besides the parameter p. The geometric interpretation of l∞-metric is found
in Chan (2005) under the “Facility Location” chapter.
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Figure 5.11  GOAL-SETTING EXAMPLE
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C. Goal-Setting Example
To close out the discussion on goal setting, a numerical example may be in order.
Consider the compromise program:

Goal 1:   f1(x) � x1 � 8
Goal 2:   f2(x) � x2 � 9
s.t. 3x1 � x2 � 24

2x1 � 7x2 � 35
all xs  positive.

(a) Graph the X space, Y' space and the satisficing set S.

The identical X and Y' spaces are sketched in Figure 5.11, complete with the satisfic-
ing set S and the extreme points of X and Y: J1 � (0, 5), J2 � (7, 3), and J3 � (8, 0)T.

(b) Assuming both goals at the same priority level, specify the point in
both X and Y' that minimizes the maximum deviation.

This corresponds to minimizing the l∞-metric or more specifically Min [r'(y'; ∞, 1)
� Max {(8 � y'1), (9 � y'2)} = Max (d1, d2)]. It can be verified that this amounts to point
N = (28/9, 37/9), which is obtained by drawing a square box centered at (8, 9) that
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barely touches (J1, J2). The square box is the contour of the l∞-norm, whose horizon-
tal edge is the locus of d1 � d2 and the vertical d2 � d1. The watershed is the 450

 diagonal.

(c) Specify the point in both X and Y' space that solves the preemptive
model with the goals ranked in the order in which they are listed.
What is the solution point if we reverse the priorities?

The lexicographic ordering between the first and second goal, or f1(x) and
f2(x) respectively, can be thought of as placing a very large weight M on f1(x) in
 comparison to f2(x). This amounts to Min [r'(y'; ∞, (M, 0) � Max{M(8 � y'1), 0(9 �
y'2)} � Max (8 � y'1)]. This yields the non-dominated point J3. By reversing the order,
we write Min [r'(y', ∞, (0, M) � Max{0(8 � y'1),  M(9 � y'2)} � Max (9 � y'2)],
 resulting in another non-dominated point J1. Again, these two points can be located
 geometrically by drawing two boxes, with the first one greatly elongated vertically,
while the second elongated horizontally, touching X or Y' at J3 and J1 respectively.

Now imagine gradually shifting the weight between the two extreme
 values of 0 and M. A series of boxes can be drawn between J1 and J3 that sketch out
the entire efficient frontier (or N-set) of X and Y', with the intermediate point N cor-
responding to equal weights among f1 and f2. In other words, minimizing the 
l∞-metric as a quasi-convex function can generate any non-dominated solution
point between J1 and J3, including J2. Notice applying the l∞-metric to the example
shown in Figure 5.8 will similarly sketch out the N-set along A-B-C.

VI. VALUE FUNCTIONS
Thus far, we have been alluding to value functions through our discussion of the
Z′-space and the deviational measures such as the lp-norm. We also have been
 promulgating the fact that the heart of MCDM lies in dealing with the value func-
tion. We certainly have arrayed some useful tidbits about MCDM without facing
the hard problem! Maybe it is time for us to face the central issue by giving a
 formal definition: A value function v(y') on Y' is a metric that alternative 1 is
 preferred to 2, or y1 � y2, if and only if v(y1) � v(y2). Utility function is a special
case when  uncertainty in the outcomes yi’s is involved, through which the risk
perception of a decision maker is elicited. While value functions can be used as an
 ordinal scale to rank order alternatives, utility function is a cardinal scale to com-
pare the merit of one alternative to another. For the purpose of this book, we use
the generic term value function to  include both ordinal and cardinal measure-
ments. More will be said about this later.

A. Additive versus Multiplicative Form
A value function represents revealed preference information. A multi-attribute
value function v(y'1, . . . , yq') assumes some kind of attribute independence among
yi’s. If the random variables yi’s (i � 1, . . . , q) are statistically independent, the joint
density function

P(y'1, . . . , y'n) � P(y'1) . . . P(y'q) (5.6)



238 CHAPTER 5 Multicriteria Decision Making

where P(yi) is the marginal (univariate) density function of y’i. Hence the assess-
ment of a q-dimensional function is simplified to that of q one-dimensional
 functions: v(y'1, . . . , y'q) � g[v1(y'1), . . . , vq(y'q)]. Notice the cross terms v(y'1, y'2), v(y'1,
y'3), and so forth, are absent in the g(.) function. Thus the independence prop -
erty greatly simplifies the determination of multi-attribute value functions. As
will be shown, additive value functions look like w1v1(y'1) � w2v2(y'2) � w3v3(y'3),
while multiplicative value  functions look like w1v1(y'1) � w2v2(y'2) � w3v3(y'3) �
k w 1 w 2 v 1 ( y '1 ) v 2 ( y '2 ) � k w 1 w 3 v 1 ( y '1 ) v 3 ( y '3 ) � k w 2 w 3 v 2 ( y '2 ) v 3 ( y '3 ) �
k2w1w2w3v1(y'1)v2(y'2)v3(y'3), where ws are generalized weights, and ks are scaling
constants (Sainfort and Deichtman 1996). In  previous examples of the value func-
tion, we have  assumed vi(y'i) � y'i, which greatly simplifies the expressions for both
additive and multiplicative value functions.

Value functions vi s are scaled from 0 to 1, and the role of k in a multiplica-
tive value function is to assure that this compound value function v will also  assume
value in the interval 0 to 1. If wi � �'i, or �iwi � 1, then k � 0, and the  multiplicative
form reduces to the additive form. Only when wi � �'i does k � 0, hence the need
for a multiplicative value function. Notice wi is nonnegative and k can be negative
in value. While there are a whole host of equations to represent a value function, the
advantage of the additive and multiplicative forms is that most conceivable shapes
of the function can be accommodated within the order of q  calibration constants ws
and ks.

Again, we like to emphasize that the ranking among alternatives will be the
same whether an additive or multiplicative function is used, as long as they are strate-
gically equivalent. The units of a value function—to be differentiated now from a util-
ity function—have no intrinsic meaning inasmuch as we are dealing with ordinal
ranking. Any value function can be transformed by a monotonic function, and the
 result will represent exactly the same preferences as before. An example is v(y'1, y'2) =
y'1y'2. Taking a logarithm of the value function will yield another value function v'(y'1,
y'2) � (ln y'1) � (ln y'2). Both v and v' will give the same preference ranking among
 alternatives since a logarithmic function is a monotonic transformation. The time we
worry about the exact functional form is when cardinal measurements, sometimes
 referred to as the preference intensity, are required. It also follows from this discussion
that the establishment of a value function implies transitivity of preference. Value
functions, where only ordinality is involved, are not measured directly. This is a
 consequence of the observation that quite different functions may be strategically
equivalent and that units of value have no intrinsic meaning as mentioned. For the
purpose of evaluation, the information contained in a value function can be obtained
indirectly, and this is done by estimating the decision maker’s  revealed preferences at
sampled situations. An example is in the interactive Frank-Wolfe method discussed
earlier, where the exact form of the value function is not known, only attribute and cri-
terion tradeoffs at local situations are assessed.

B. Univariate Utility Function Construction
Measurement of utility for an alternative is based on the axiom 

E(v(y')) � �j P
jv(y1)

This says that the utility of an alternative is the sum of the utility of each of the
 possible outcomes yj weighted by the probability of occurrence Pj. Consider a

(5.7)
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Figure 5.12  DECISION TREE FOR UNIVARIATE UTILITY FUNCTION
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 decision maker (DM) playing a lottery. The DM’s choices in this lottery can be
 illustrated in a decision tree, which is shown in Figure 5.12. If the probability of
 losing the lottery is P, winning is 1 � P, the amount he or she loses in the lottery is
y1, and the amount he or she wins is y2, the decision maker has either option II of
taking the lump sum Py1 � (1 � P)y2, or option I of playing the lottery, with an
 expected return of Pv(y1) � (1 � P)v(y2).

The classic illustration of this concept is to consider the situation when there
is only a single attribute yi' for three probabilistic scenarios: risk-averse, risk-prone and
risk-neutral. To measure a multi-attribute value function, whether  additive or multi-
plicative, involves defining these unidimensional or univariate utility functions v(y'i)
as a first step. The independence property among yis facilitates straightforward ag-
gregation of these univariate utility functions into the multi-attribute form. To
 simplify the notation, we write y in lieu of y'i in the  discussions here.

1. Risk-aversion example. To start out, we illustrate construction of a
 univariate utility function for a DM who is risk-averse. Being a conservative, the
DM prefers the expected monetary value of a nondegenerate3 lottery y(II) to the
lottery itself y(I). In other words, he or she is not willing to take a chance and
prefers option II to I or y(II) � y(I), which when translated into utility, means
v[y(II)] � v[y(I)]: v[Py1 � (1 � P)y2] � Pv(y1) � (1 � P)v(y2). This results in a strictly
concave utility function as illustrated in Figure 5.13. Here, the utility of the
 expected sum of money v(Py1 � (1 � P)y2) is greater than the expected value of the
utility of winning and losing, Pv(y1) � (1 � P)v(y2).

2. Risk-prone example. Conversely, suppose the DM prefers the lottery
y(I) to the expected monetary value of a nondegenerate lottery y(II), or y(I) �
y(II), v[y(I)] � v[y(II)]. This results in Pv(y1) � (1 � P)v(y2) � v[Py1 � (1 � P)y2].
The  optimistic DM is then characterized by a strictly convex utility function, as
shown in Figure 5.14. It follows without saying that a risk-neutral DM will
have a utility function that is simply a straight line. Notice that all these uni-
variate functions can be represented by the function v(y) � a � be�cy, where a,
b, and c are calibration constants, and c represents the degree of risk aversion.
For v(0) � 0 and v(1) � 1, v(y) � (1 � e�cy)/(1 � e�c). As the positive parame-
ter c increases, the utility function  becomes more convex, indicating higher risk
aversion.
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3. Certainty equivalent. A certainty equivalent of a lottery is an amount
such that the DM is indifferent between the lottery and the amount  ŷ for
 certain. Therefore, ŷ is defined by v(ŷ) � E[v(y�)], or  ŷ � v�1{E[v(y�)]}, where y� is
the uncertain  outcome of a lottery. Notice that the certainty equivalent is not
the same as the  expected return Py1 � (1 � P)y2 except for a risk-neutral DM.
By way of notation, it is common to write the certainty equivalent  in terms of
the loss and win in a lottery, y1 and y2 respectively: P(y1) ⊗ (1 � P)(y2) � ŷ. The
certainty equivalent of the convex utility function is overlaid in Figure 5.14, so
is the 0–1 normalization for v common among utility functions.

Suppose we set v(y1) � 0 and v(y2) � 1, where y1 � yMin � 0 and y2 �
yMax in Figure 5.15. Keeping the same probability of win and loss, the point ŷ is
now placed between the loss and win amounts of the lottery and another cer-
tainty equivalent defined as: P(y1) ⊗ (1 � P)( ŷ ) � ŷ'. Then we find yet another
certainty equivalent by examining the interval between ŷand y2, resulting in ŷ''.
P(ŷ)) ⊗ (1�P)(y2) � ŷ''. The result is v(ŷ') = Pv(y1) � (1 � P)v(ŷ) � (1 � P)2 and
v(ŷ'') � Pv(ŷ) � (1 � P)v(y2) � P(1 � P) � (1 � P) � (1 � P)(1 � P). Subsequent
points are obtained by substituting ŷ' and ŷ'' in the binary lottery for [y1,  ŷ]  and
[ ŷ, y2] in turn. The process can be repeated as often as desirable or practical to
sketch out the full function v(y). We illustrate this process in Figure 5.15. It can
be seen that the process is particularly simple for P � 0.5—a probability most
people can associate with the common experience of coin flipping. The certainty
equivalents so obtained also divide the utility range into halves, quarters, and
so on. For this reason, this method is often called the fractile method. We will
 illustrate this method step by step later on in this chapter.

Figure 5.13  A STRICTLY CONCAVE UTILITY FUNCTION
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Figure 5.14  A STRICTLY CONVEX UTILITY-FUNCTION

v (y)

Pv(y1) (I P)v(y2)

v(Py1 (I P)y2)

v(y1)

v(y2)

1

yPy1 (I P)y 2y1 ŷ y 2 yMax

Figure 5.15  THE FRACTILE METHOD OF MEASURING UTILITY FUNCTION
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Figure 5.16  TEST OF STATISTICAL INDEPENDENCE AMONG ATTRIBUTES
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C. Independence Among Criterion Functions
To conclude this section, let us see when a multi-attribute value function can be
 aggregated from a constituent set of univariate value functions constructed above,
and when it is invalid to do so. Take a residential location problem. A family
 selects a house on the basis of purchase cost y'1, floor space y'2, maintenance cost
 (utilities and upkeep) y'3, appreciation (%) y'4, and appeal y ′5. The family
 constructs a value function for each candidate housing alternative assuming an
additive value function:

v(y') � w1v1(y'1) � w2v2(y'2) � . . . � w5v5(y'5)

where vi(y'i)s are uni-dimensional value functions.
We check the independence of attributes by asking the following math-

ematical question for a $150,000 home: Is v1($150,000) � constant (say 0.6) for
both a maintenance cost of y'3 � $3000 or 2000/year? Given that both purchase
cost and maintenance expenses relate to overall residential expenses, they may
not be  independent. The answer to the above question is “no.” Equation 5.6 is
violated. Hence the overall value function cannot be formed from the
 constituent univariate value-functions as suggested. Including both y'1 and y'3 in
a multi-attribute value function as shown in Equation 5.8 appears not justified.
(See Figure 5.16.)

(5.8)



Multicriteria Decision Making CHAPTER 5 243

What happens if two criteria fi(x) and fj(x) used in an analysis are cor -
related? Obviously, the above two-step process of (a) measuring a univariate
 function and (b) aggregating univariate functions into a multivariate one will
no longer be valid. More complicated analysis will have to go into forming a
multi-attribute value function.

In multicriteria optimization, where we have derived the individual
criterion functions fi(x)’s, not all fi(x)’s in the objective function v(f1(x), . . . ,
fq(x)) can be independent. Independence in this context would mean that the
fi(x)s are  orthogonal. Consider two criteria fi(x) and fj(x). A measure for the cor-
relation  between the Ith and jth criterion is similar to its statistical  analogue.
The angle  between the two criterion vectors is defined between the gradients
ci and cj

cos�1�	⎢⎢c i

(

⎢

c

⎢

i

2

) T
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c

⎢c

j

j ⎢⎢2
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An ideal angle, as mentioned, is 90 degrees when the two criteria are totally inde-
pendent. The more the criteria are correlated, the smaller the angle.

Take the MC-simplex example from Section IV-A in this chapter, where
c1 � (5, 20)T and c2 � (23, 32)T and the angle between them is computed by
Equation 5.9 as 21.67 degrees. This angle agrees with the graphical plot of Figure 5.6.
The angle here is too small in comparison with an ideal orthogonality of 90 degrees,
indicating there is a fair amount of correlation between the two criterion-functions.
For high correlations, seemingly good weighting among the criteria—�' weights
in  accordance with the decision maker’s priority—produce non-optimal points.
On the other hand bad weights may produce an optimal point. This  
result is completely analogous to the statistical discussion above where the lack
of  independence (or  spurious correlations) will result in a highly complex
 modeling task.

D. Summary
To put all the concepts together regarding value functions, we would like to con-
clude this section with a numerical example. You are using multi-attribute utility
theory to analyze a two-alternative, three-attribute decision-making problem
 involving uncertainty. The alternatives (possible outcomes and probability distrib-
utions) are described below:

Alternative Possible outcomes (y'1, y'2, y'3)/probabilities p

Site A (20, 60, 100)/0.6 (10, 80, 40)/0.4
Site B (30, 50, 80)/0.3 (40, 40, 60)/0.2 (20, 70, 50)/0.5

Individual single-attribute utility functions, and the overall multiple-attribute
 utility function are represented by: v(y'1, y'2, y'3) � 0.3v1(y'1) � 0.5v2(y'2) � 0.2v3(y'3)
and the graphical sketches as shown in Figure 5.17.

(5.9)



(a) What site should the DM select and why?

v(A) � 0.3[0.6v1(20) � 0.4v1(10)] � 0.5[0.6v2(60) � 0.4v2(80)] � 0.2[0.6v3(100) � 0.4v4(40)]
� 0.3[0.6(0.23) � 0.4(0)] � 0.5[0.6(0.6) � 0.4(1)] � 0.2[0.6(1) � 0.4(0)]
� 0.54
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Figure 5.17  EXAMPLE UNIVARIATE UTILITY FUNCTIONS
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v(B) � 0.3[0.3v1(30) � 0.2v1(40) � 0.5v1(20)] � 0.5[0.3v2(50) � 0.2v2(40) � 0.5v2(70)]
� 0.2[0.3v3(80) � 0.2v3(60) � 0.5v3(50)]

� 0.3[0.3(0.5) � 0.2(1) � 0.5(0.25)] � 0.5[0.3(0.1) � 0.2(0) � 0.5(0.95)] 
� 0.2[3(0.7) � 0.2(0.35) � 0.5(0.2)]

� 0.48

Hence A � B, or Site A is preferred to Site B.

(b) What properties about the preferences of the DM did the decision
 analyst need to demonstrate in order to show that the form of the total
 utility-function is theoretically correct?

Following the discussion in Section VI-C directly above, one needs to show
 independence among all combinations of yi’s.

It can be seen that value functions can be used to rank order alternatives
according to Equation 5.7. In the case where univariate utility functions are
available and the exact form of the value function is known, as shown in the
 numerical example directly above, the ranking is cardinal. Thus alternative A is
exactly 0.54/0.48 � 1.13 times more preferable to alternative B. A premise of
such a statement is that the constituent attributes are independent. In the  section
immediately below, we will further discuss independence among yi’s in some
detail.

VII. VALUE-FUNCTION MEASUREMENT 
STEPS

Should preference intensity be required, the precise form of the univariate utility
functions and their aggregation into a value function are required, as already
 alluded to above. This involves the calibration coefficients, ks and ws. It also brings
us face to face with the core of MCDM. A five-step process is prescribed to carry out
this task (Zelany 1982):

1. Familiarize DM with the concepts and techniques of value function
measurement.

2. Identify the appropriate value decomposition form, v(y').
3. Measure component value functions vi(y'i ).
4. Determine the ks and ws.
5. Validate the consistency of v(y') against DM’s observed rankings.

First and foremost, the DM and the stakeholders must be involved with
the definition of value function, or what we have been referred to as the Z’-space.
After all, the value function is supposed to reflect the DM’s way of looking at the
world. The simplest of all value functions has only linear terms, v � w1y'1 � w2y'2,
where the vi(y'i) � y'i. However, this simple form is the exception rather than the
rule in real world applications. Should we be forced to decide between an additive
versus multiplicative function, the discriminant is the type of independence
 between the attributes y'is. An additive value function requires that the attributes be
preferentially independent, while mutual utility independence is necessary in
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 addition for multiplicative utility models. Limiting the value function to these two
decomposition forms has the computational advantage of calibrating only in the
order of q coefficients as mentioned.

A. Preferential, Utility and Additive Independence
The pair of attributes y'1 and y'2 is preferentially independent of attribute y'3 if the
value tradeoff between y'1 and y'2 is not affected by a given level of y'3.  Formally
stated, if [(y1

I, y2
I)⏐y3'] � [(y1

II, y2
II)⏐y3'], then [(y1

I, y2
I)⏐y3''] � [(y1

II, y2
II)⏐y3''], where

y''3 � y'3. Following the example on locating a plant among candidate states, labor
availability, transportation, and tax advantages are considered. The value tradeoff
 between labor availability and transportation at two locations I and II may not
 depend on the tax advantage. In this case, we say that labor availability and trans-
portation is preferentially independent of tax advantage, and location I is  preferred
to II in terms of labor-transportation considerations irrespective of tax differences.
Preferential independence concerns ordinal preferences among  attributes. Should
all pairwise attributes pass this preferential independence test, it is conceivable
then that the plant location problem could be modeled using a linear, additive
value function. Simply stated, preferential independence means the tradeoffs
 between any two attributes are governed by the unique indifference curve between
these two attributes regardless of the values of other attributes (Ang and Tang
1984). If attribute 1 is preferentially independent of attribute 2, and attribute 2 is
preferentially independent of attribute 1, then attribute 1 is mutually preferentially
independent of attribute 2. If a set of attributes y'1, . . . , y'n is mutually preferential
independent, the decision maker’s preferences can be represented by an additive
value function. However, preferential independence is a necessary but not suffi-
cient condition for an additive value function.

Utility independence, on the other hand, says the relative utility of y'i
remains the same regardless of other y'j s. In other words, the utility of each of the
yi's can be separately determined. Attribute y’1 is utility independent of attribute y'i
when conditional preferences for lotteries on y'1, given y'2, do not depend on the par-
ticular  level of y'2. As an example let y'1 be the anticipated percentage imp rovement
owing to investments on sites 1 and 2 (with y1

1 � 35% and y1
2 � 10%), also the prob-

abilities of success are P1 � P2 � 0.5. Let y'2 be the initial capital needed, with y2
1 �

y2
2 � $100 million; the certainty equivalent in this case is 15%. Now let the initial

 investment be y1'2 � y2'2 � $200 million. If the certainty equivalent remains the same
(in other words, it depends solely on the percentage improvements y1

1 and y1
2 and

not on any fixed investment value y'2) then attribute y'1 would be utility
 independent of y'2. This example is illustrated in Figure 5.18.

Utility independence is directional: y'1 is utility-independent of y'2 does
not mean that y'2 is utility independent of y’1. Attributes y'1, y'2, . . . , y'q are said to be
 mutually utility independent, if every subset of the attribute set is utility inde-
pendent of its complement. As an example, let us consider this decomposable
value function v(y'1, y'2) � g[v1(y'1), v2(y'2)]. Mutual utility independence is estab-
lished among the attribute set {y'1, y'2} if and only if y'1 is utility independent of y'2
and y'2 utility-independent-of y'1. To establish mutual utility independence is
therefore complex, it requires formal lottery surveys to be conducted on uncertain
outcomes in order to address the cardinal scale required of utility functions.
Through these surveys, it is possible to measure the way utility changes over one
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Figure 5.18  ILLUSTRATING UTILITY INDEPENDENCE
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dimension,  independent of all other attributes. These independent measurements
can then be combined to give the multi-attribute utility function. An  informal way
of exp laining mutual utility independence is to say that the shape of the utility
function vi(y'i) over y'—whether risk-averse, risk-prone or risk-neutral—is the
same irrespective of the level of all other attributes. An example of univariate
functions of the same shape is shown in Figure 5.18. Notice here the two
utility functions at y'2 � 100 million dollars and y'2 � 200 million look  dissimilar,
but they have the same indifference statement: 0.5(0.10) ⊗ 0.5(0.35) ~ 0.15. In
other words, both curves indicate that the decision maker is indifferent between
the  certainty  equivalent of 15 percent improvement and “achieving 
35-percent-improvement with 50 percent chance” and getting only “10 percent
improvement 50 percent of the time.” (Notice that  stating that two functions have
the same shape is different from saying that two functions are strategically equiv-
alent.) If we reverse y'1 and y'2 and are able to show utility independence  between
y'2 and y'1, then, y'1 and y'2 are mutually utility independent.
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The extra amount of work associated with establishing mutual utility
 independence yields a much more useful metric. Instead of the mere rank order
guarantee obtained from preferential independence, mutual utility independence
quantifies the intensity of preference. To sum up the discussion on preferential
and utility independence, let us review the basic concepts once again (Ang and
Tang 1984). Effectiveness of an alternative is measured by several attributes via
multi-attribute value functions. It is obvious that each of these attributes will
 require its respective unit of measurement, such as dollar costs, minutes of time,
and parts-per-million of pollutants. Similar to Equation 5.7 the expected utility of
an  alternative E(v(y')) and the associated probability density function P(y') will,
therefore, be multidimensional:

E(v(y')) � �y1' . . .�yq' v(y'1, . . . , y'q) P(y'1, . . . , y'q) dy'1 . . . dy'q

where y'1 to y'q are random variables of the q respective attributes associated with
each alternative. Determining these joint utility and density functions requires the
evaluation of the conditional utility and probability functions. Moreover, these
functions may have to be developed entirely or largely on the basis of subjective
judgments and interviews, and they have to be performed for all the alternatives.
This would generally be impractical if not impossible. Appropriate assumptions
have been proposed in the above sections to exploit statistical independence among
attributes, particularly preferential and utility independence. The ass umptions of
mutual preferential independence and mutual utility independence together imply
that the joint utility function may be expressed as a function of the marginal (uni-
variate) utility functions, namely the form v(y1', . . . , yq') � g[v1(y1'), . . . , vq(yq')] where
the v(.) is decomposable into function g(.) as defined by the  following multiplicative
expression (Keeney and Raiffa 1976)

kv(y') � 1 � Π
q

i�1
[1 � kwivi(y'i)]

Notice this follows Equation 5.6 in which a joint probability density function (PDF)
is broken into univariate PDFs. Here v(y') and vi(y'i) are 0–1 ranged univariate
 utility functions (of the exponential form v(y) � a � be�cy for instance) as defined
previously. The reader can check that v(y') boils down to the familiar two- and
three-dimensional multiplicative, decomposed form by setting y' � (y'1, y'2) and
y � (y'1, y'2, y'3):

kv(y') � 1 � [1 � kw1v1(y'1)][1 � kw2v2(y'2)][1 � kw3v3(y'3)]
kv(y') � 1 � 1 � kw1v1(y'1) � kw2v2(y'2) � kw3v3(y'3) � k2w1w2v1(y'1)v2(y'2) � k2w2w3v2(y'2)v3(y'3)
� k2w1w3v1(y'1)v3(y'3) � k3w1w2w3v1(y'1)v2(y'2)v3(y'3)v(y') � w1v1(y'1) � w2v2(y'2) � w3v3(y'3)
� kw1w2v1(y'1)v2(y'2) � kw2w3v2(y'2)v3(y'3) � kw1w3v1(y'1)v3(y'3) � k2w1w2w3v1(y'1)v2(y'2)v3(y'3)

After the univariate utility functions have been obtained, the function g
may be determined by scaling vi(y'i) with respect to other utility functions such that
they are consistent with one another and that 0 � v(y) � 1. Consider the two-
dimensional case (Ang and Tang 1984). It is obvious the outcomes (y1

Min, y2
Min) and

(y1
Max, y2

Max) are the least and most desirable ones for the two-attribute utility func-
tion. In accordance with normal practice, we set v(y1

Min, y2
Min) � 0 and v(y1

Max, y2
Max) � 1.

Then from Equation 5.11, the utility function with y1' set at the least desirable state
and y2' at the most desirable state is given by

(5.11)

(5.10)
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1 � kv(y1
Min, y2

Max) � [1 � kw1v1(y1
Min)][1 � kw2v2(y2

Max)] � 1 � kw2

or

w2 � v(y1
Min, y2

Max)

and by symmetry, it can be shown that w1 � v(y1
Max, y2

Min). Moreover, by substitut-
ing v(y1

Max, y2
Max) into Equation 5.11, we obtain

1 � kv(y1
Max, y2

Max) � [1 � kw1v1(y1
Max)] [1 � kw2v2(y2

Max)]

or

1 � k � (1 � kw1)(1 � kw2)

Now the value of v(y1
Max, y2

Min) can be determined from a pair of indiffer-
ent lotteries as shown in Figure 5.12, where the payoff y1 is now (y1

Max, y2
Max), y2 is

(y1
Min, y2

Min), and Pv(y1) � (1 � P)v(y2) is set at (y1
Max, y2

Min). Suppose the decision
maker is  indifferent between alternatives I and II at probability P1 � v(ŷ1) � v(y1

Max,
y2

Min); then from Equation 5.12  w1 � P1, and w2 � v(ŷ 2) � v(y1
Min, y2

Max) � P2 (by
symmetry). From Equation 5.13

k � (1 � w1 � w2)/w1w2 � (1 � P1 � P2)/P1P2

Hence the two-attribute utility function is calibrated to be

v(y'1, y'2) � w1v1(y'1) � w2v2(y'2) � kw1w2v1(y'1)v2(y'2)
� P1v1(y'2) � P2v2(y'2) � (1 � P1 � P2)v1(y'1)v2(y'2) 

The multiplicative utility function above is the most general representation
of a multi-attribute utility function in consideration for the efficiency with which
such functions can be calibrated. We recall that when k � 0, the multiplicative func-
tion reduces to the simple additive form, with w1 � w2

. . . � wq � 1. We say that the
yis exhibit additive independence in this case.

Suppose attributes 1 and 2 are mutually utility independent, a DM’s  utility
function exhibits additive  independence if the DM is indifferent between the
 following alternatives I and II. 

Alternative I:  (y1
Max, y2

Max) with probability 0.5 vs. 
(y1

Min, y2
Min) with probability 0.5 

Alternative II:  (y1
Max, y2

Min) with probability 0.5 vs. 
(y1

Min, y2
Max) with probability 0.5 

Consistent with our notation, y1
Max means the best of attribute 1, and y1

Min means
the worst of attribute 1. This is similar for attribute 2. 

Let us illustrate this property with our familiar example of siting a
 manufacturing plant. Suppose attribute 1 is labor availability and attribute 2 is

(5.12)

(5.13)
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 accessibility. One does not know precisely about the degree of labor availability and
accessibility at sites I vs. II, inasmuch as we are projecting 10 years into the  future
when the plant is actually built and ready for operation. To some extent, the two
 uncertain attributes are substitutes of one another as illustrated below. 

Site I:  (Excellent labor availability, excellent accessability) with probability
0.5 vs. (Poor labor availability, poor accessability) with probability 0.5 

Site II:  (Excellent labor availability, poor accessability) with probability
0.5 vs. (Poor labor availability, excellent accessability) with
 probability 0.5 

When the DM is equally inclined toward locations I vs. II, each with  uncertain
 levels of attributes 1 and 2, then one can say that labor availability is  additively
 independent of accessibility. On the other hand, if the DM has a clear preference
for one site or the other, then additive independence cannot hold. In the former
case, preferences over lotteries depend only on the marginal distribution of
labor  availability (or  accessibility), and do not depend on the joint  distribution
of the  possible values of the two attributes. The intuition behind additive ind e -
pendence is that, in assessing uncertain outcomes over both  attributes, we only
have to look at one  attribute at a time. It does not matter what the other attribute
values are in the  uncertain outcomes.

If attributes 1 and 2 are mutually utility independent and the DM’s utility
function exhibits additive independence, only the additive terms of the univariate
utility functions apply, with the cross term v1v2 dropped. Mathematically, it is easy
to show that k = 0 in a two-attribute utility function, eliminating the cross/multi-
plicative term. Suppose the component univariate utility function have been prop-
erly scaled between 0 and 1, or v(y1

Min) = v(y2
Min) = 0 and v(y1

Max) = v(y2
Max) = l. Then 

v(y1
Max, y2

Max) = w1v1(y1
Max) + w2 v2(y2

Max) + k w1w2 v1(y1
Max) v2(y2

Max) = wl + w2 + k w1w2
v(y1

Min, y2
Min) = w1v1(y1

Min) + w2 v2(y2
Min) + k w1w2 v1(y1

Min) v2(y2
Min) = 0 

v(y1
Max, y2

Min) = w1v1(y1
Max) + w2 v2(y2

Min) + k w1w2 v1 (y1
Max) v2(y2

Min) = w1
v(y1

Min, y2
Max) = w1v1(y1

Min) + w2 v2(y2
Max) +  k w1w2 v1(y1

Min) v2(y2
Max) = w2

Additive independence implies that 
0.5(w1 + w2 + k w1w2) + 0.5 (0) = 0.5 (w1) + 0.5 (w2), or k w1w2 = 0 

To the extent that w1w2 � 0, k must then be zero valued. 
We will now illustrate the procedure of calibration in the following

 numerical examples, namely steps 2 through 4 of the five-step value function mea-
surement process.

B. Examples of Utility Function Calibration
We will illustrate the calibration of a multi-attribute utility function via two
 examples. The first will show an additive function where the weights wi are to be
determined. The second will show a multiplicative function where both the weights
wi and the scaling constant k are to be determined.

Example 1: Determination of Weights
Suppose for the time being, the component univariate utility functions have
been  determined as v1(y'1) � 3/2 y'1 � 1/2 y'1

2, v2(y'2) � 3/4 y'2 � 1/8 y'2
2, and 

v3(y'3) � y'3 � 1/4 y'3
2. Also the value function is determined to be additive,
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Figure 5.19  TWO-ATTRIBUTE UTILITY-FUNCTION CALIBRATION EXAMPLE
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 meaning that k � 0, and �iwi � 1. An interview with the decision maker yields
the indifference relationships when the multivariate value function assumes dif-
ferent  attribute levels for y'1, y'2 and y'3: (0, 1, 1) ~ (1, 0, 1) and (1, 1, 1) ~ (0, 2, 2).
Now substitute the indifference results from the interview into the composite
value function, or v[(0, 1, 1)] � v[(1, 0, 1)] We solve for the wis: 5/8 w2 � 3/4 
w3 � w1 � 3/4 w3 or w1 � 5/8 w2. Similarly, setting v[(1, 1, 1)] � v[(0, 2, 2)] yields
w1 + 5/8 w2 � 3/4 w3  � w2 � w3. Solving these two  equations together with w1
� w2 � w3  � 1, we yield (w1, w2, w3) � (5/21, 8/21, 8/21) (Yu (1985)]. ■

Example 2: Two-Attribute Utility Function Calibration 
For a large urban area, landfill (L) and incinerators (I) are alternatives for solid-waste
disposal. The univariate utility functions for each option are shown in Figure 5.19,
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where up to eight landfills or incinerators are considered (de Neufville 1990).
Lotteries unveil these indifference relationships:

0.7(L � 8, I � 8) ⊗ 0.3(L � 0, I � 0) � (L � 8, I � 0)
0.4(L � 8, I � 8) ⊗ 0.6(L � 0, I � 0) � (L � 0, I � 8).

The first line says the following: The population is indifferent between a
 lottery at “70-percent probability of having all the 8 landfills and 8 incinerators
built, and 30-percent none at all,” vis-a-vis “building all 8 landfills and zero
 incinerator.” The second line shows the indifference between “40-percent having
all facilities built” vis-a-vis 60-percent “all incinerators only.” From these lotteries,
one can conclude

v(L � 8, I � 0) � 0.7 v(L � 8, I � 8)�0.3 v(L � 0, I � 0) � (0.7)(1) � (0.3)(0) � 0.7
v(L � 0, I � 8) � 0.4 v(L � 8, I � 8) � 0.6 v(L � 0, I � 0) � (0.4)(1) � (0.6)(0) � 0.4.

Thus w1 � 0.7 and w2 � 0.4. k � (1 � 0.7 � 0.4)/(0.7)(0.4) � �0.1/(0.7)
(0.4) = 0.357 according to Equations 5.12 and 5.13 respectively. The two-attribute
utility function now looks like

v(L, I) � 0.7 vL(L) � 0.4 vI(I) � 0.1 vL(L) vI(I). ■

Example 3:  Determination of 3-Attribute Utility Function
A client has asked you to help him compare three commercial land development
projects and choose the best one. Each project is to develop a shopping center. The
client can fund only one of these efforts and must begin development as soon as
possible. Each project has been evaluated by the client in terms of cost, time to
completion, and effectiveness for each of two possible growth scenarios.
However, the type of growth profile is not known. The growth profile will be one
of two types—high or low—and each is equally likely.

The performance of the three projects for a high and low growth profile is
determined in Table 5.1. You decide to construct a multi-attribute utility function v
to help evaluate the three projects after obtaining the following information from
the client. The three attributes—cost, time to completion, and effectiveness—have
the following ranges:

Table 5.1  PERFORMANCE OF PROJECTS FOR HIGH- AND LOW-GROWTH
PROFILES4

A

B

C

HighProject
Time y2

30

10

20

Effect y3

40

50

60

20

30

25

Cost y1

Low
Time y2

20

15

20

Effect y3

40

45

50

25

30

30

Cost y1
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cost 20–40 (less is preferred)
time to completion 10–30 (less is preferred)
effectiveness 40–60 (more is preferred)

Armed with this information, you solicit the following indifference and lottery data
from the client, where the three entries in parenthesis refer to cost (C), time to com-
pletion (T), and effectiveness (E) respectively.

Indifference set 1: (30, 20, 60) ~ (35, 17, 60) ~ (20, 25, 60)
(30, 20, 40) ~ (35, 17, 40) ~ (20, 25, 40)

Indifference set 2: (40, 20, 50) ~ (40, 25, 60) ~ (40, 17, 45)
(20, 20, 50) ~ (20, 25, 60) ~ (20, 17, 45)

Indifference set 3: (30, 30, 50) ~ (25, 30, 45) ~ (35, 30, 55)
(30, 10, 50) ~ (25, 10, 45) ~ (35, 10, 55)

Indifference set 4: (40, 30, 60) ~ (20, 30, 40)
Indifference set 5: (40, 20, 40) ~ (20, 30, 40)

(40, 20, 40) ~ (40, 30, 60)
Lottery set 6: 0.8(40, 30, 40) ⊗ 0.2(20, 10, 60) ~ (20, 30, 40)

Here, yi � yj means project i is indifferent from project j, and P ⊗ Q stands for a
 lottery between the outcomes P and Q. We have also assumed that the utility
 function of the DM is multiplicative with constant parameters w1, w2, w3, and k.
Obviously, such an assumption needs to be justified as will be shown later. It is pru-
dent to start with a multiplicative form since the additive form can be thought of as
a special case when k � 0.

Then the following information is used to specify single-attribute utility
functions using the quartile method. For example, 0.5(20) ⊗ 0.5(40) means a lottery
in which there is a 50–50 chance of obtaining a score of 20 or 40.

Set 7:  Lotteries over C, given T � 10, E � 60 and T � 30, E � 40,
0.5(20) ⊗ 0.5(40) � 30
0.5(30) ⊗ 0.5(40) � 35
0.5(30) ⊗ 0.5(20) � 25.

Set 8:  Lotteries over T, given C � 40, E � 40 and C � 20, E � 60,
0.5(10) ⊗ 0.5(30) � 20
0.5(20) ⊗ 0.5(30) � 25
0.5(20) ⊗ 0.5(10) � 15

Set 9:  Lotteries over E, given C � 40, T � 30 and C � 20, T � 10,
0.5(40) ⊗ 0.5(60) � 50
0.5(50) ⊗ 0.5(40) � 45
0.5(50) ⊗ 0.5(60) � 55.

Notice the above lotteries show utility independence. In other words, prefer-
ences for lotteries involving different levels of costs do not depend on the
 levels of time and effectiveness. Preferences for lotteries involving different



levels of time do not depend on the levels of cost and effectiveness. Finally,
preferences for lotteries  involving different levels of effectiveness do not
 depend on the levels of cost and time.

Now what should the client do regarding project selection? Specifically,

(a) Which data set establishes that preferences in T-C space are preferen-
tially independent of E?

Set 1 establishes that {C, T} is preferentially independent of {E}, inasmuch
as effectiveness level is held constant in this set.

(b) Which set establishes that preference in T-E space are preferentially
 independent of C?

Set 2 establishes that {T, E} is preferentially independent of {C}.

(c) Which set establishes that E is utility independent of C and T?

Set 9 establishes that {E} is utility independent of {C, T}.

(d) Draw and label the single-attribute utility functions for C, T and E.
Specify the set that was used in constructing each of the three util-
ity functions.

The single-attribute utility functions are shown to be all risk-neutral in Figure 5.20.
To summarize, mutual preferential and mutual utility independence are established
for these attributes:

Set 1 establishes that {C, T} is preferentially independent of {E} and {T, C}
preferentially independent of {E};
Set 2 establishes that {T, E} is preferentially independent of {C} and {E, T}
preferentially independent of {C};
Set 3 establishes that {C, E} is preferentially independent of {T} and {E, C}
preferentially independent of {T};
Set 7 establishes that {C} is utility independent of {E, T};

254 CHAPTER 5 Multicriteria Decision Making

Figure 5.20  UNIVARIATE UTILITY FUNCTIONS FOR COST, TIME, AND EFFECTIVENESS
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Set 8 establishes that {T} is utility independent of {C, E};
Set 9 establishes that {E} is utility independent of {C, T}.

Since cost, time to completion, and effectiveness are mutually utility independent,
this means that the multi-attribute utility function is in fact multiplicative.
Remember that mutual utility independence is a necessary and sufficient condition
for a multiplicative functional form.

(e) Calculate the weights and scaling constant for the multiplicative
 utility-function. Show and explain your work.

According to set 4, v(40, 30, 60) � v(20, 30, 40) or v(y1
Min, y2

Min, y3
Max) � v(y1

Max, y2
Min,

y3
Min), which means w3 � w1 according to the three-attribute expansion of Equation

5.11. From set 5, v(40, 20, 40) � v(20, 30, 40) or v(y1
Min, y2

between, y3
Min) � v(y1

Max, y2
Min,

y3
Min). Hence w1 � w2v2(20), or w1 � 0.5w2. From set 5 again, v(40, 20, 40) � v(40, 30,

60) or v(y1
Min, y2

between, y3
Min) � v(y1

Min, y2
Min, y3

Max). Therefore w2v2(20) � w3, or w3 �
0.5w2. From set 6,

—–/ 0.8    (40, 30, 40)
(20, 30, 40) � ●●  

\0.2    (20, 10, 60)—–

or

—–/ 0.8    (y1
Min, y2

Min, y3
Min)

(y1
Max, y2

Min, y3
Min) �●●

\ 0.2    (y1
Max, y2

Max, y3
Max)—–

Hence v(y1
Max, y2

Min, y3
Min) � w1 � 0.8(0) � (0.2)(1) � 0.2. This leads to w2 � 0.4 and w3

� 0.2. Substituting these values of w into the three-attribute expansion of Equation
5.11 when v(yMax) � 1 and vi(yi

Max) � 1, 1 � w1 � w2 � w3 � k(w1w2 � w1w3 � w2w3)
� k2(w1w2w3) yields 0.016k2 � 0.20k � 0.2 � 0 or k � 0.9307. The multivariate function
now assumes the form v(y'1, y'2, y'3) � 0.2v1(y'1) � 0.4v2(y'2) � 0.2v3(y'3) �
0.0745v1(y'1)v2(y'2) � 0.0372v1(y'1)v3(y'3) � 0.0745v2(y'2)v3(y'3) � 0.0139v1(y'1)v2(y'2)v3(y'3).

It should be noted that there is a numerical relationship between the scaling
factor k and the weights wis. �iwi � 1 implies k � 0, �iwi � 1 implies �1 � k � 0, and
as already mentioned, when �iwi � 1, k � 0.  The weights wi represent the multi-
 attribute utility of y'i when y'i is at its best level and all other yjs (j � i) at their worst.
In order to calibrate a multi-attribute utility function, a survey needs to include
enough questions to assess the indifference relationships between utilities of  special
combinations of the criteria levels (y'1, . . . , y'q), whereby sufficient equations are
 obtained for the determination of wi.

(f) Calculate the expected utility of each development project.

Given the high- and low-growth profiles are equally likely, the expected utilities of
the three projects A, B, and C can be readily calculated:

E(v(yA)) � 0.5v(20, 30, 40) � 0.5v(25, 20, 40) � (0.5)(0.2) � (0.5)(0.3779) � 0.2890.
E(v(yB)) � 0.5v(30, 10, 50) � 0.5v(30, 15, 45) � (0.5)(0.6873) � (0.5)(0.4979) � 0.5926.
E(v(yC)) � 0.5(v(25, 20, 60) � 0.5v(30, 20, 50) � (0.5)(0.6483) � (0.5)(0.4482) � 0.5482.
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(5.14)

(5.15)



256 CHAPTER 5 Multicriteria Decision Making

(g) Which project should the client choose if your utility function does in
fact represent his/her preferences? Explain.

To maximize expected utility, the client should choose project B. ■

Readers interested in details of multi-attribute utility theory can find
 further reading in Keeney and Raiffa (1976), Zelany (1982), and Seo and Sakawa
(1988). Empirical calibration procedures are outlined in de Neufville (1990) and
Bana e Costá (1990).

C. Validation
To illustrate the rest of the five-step value function measurement process, suppose
the value function has a simple additive form v(y) � w1v1(y1) � . . . � wqvq(yq) and
a DM has determined a weight ratio to show the importance for every possible pair
of criteria:

criteria 1 2 3______________________________
1 w1/w1 w1/w2 w1/w3
2 w2/w1 w2/w2 w2/w3
3 w3/w1 w3/w2 w3/w3______________________________

Thus w12 � w1/w2 shows the relative importance of criterion 1 against criterion
2. In general wij � wi/wj in the matrix W = [wij]qxq. An interview matrix W is
consistent if wij � wji

�1 and wij � wikwkj, or criterion i is preferred to j the
same way as j is preferred to i. This consistency in part validates a value
 function as specified in step 5 of the five-step process. Now given the pair-
wise-comparison ratios wij, the weights wi should satisfy the following set of
equations:

w11w1 � w12w2 � w13w3 � q’w1
w21w1 � w22w2 � w23w3 � q’w2
w31w1 � w32w2 � w33w3 � q’w3

q’ is the eigenvalue and w is the eigenvector in the above equation set Ww � q'w
or (W � q'I)w � 0. 

Notice q' can be uniquely determined, considering we have a fourth
equation w1 � w2 � w3  � 1. In the above example, for instance, q' � 3 if every-
thing is consistent. If an interview with the DM yields a matrix W' (instead of
W), and the eigenvalue is 3.5, the weights by the DM are inconsistent. The
 bigger the eigenvalue is, the larger the inconsistency. The same set of simulta-
neous equations can be defined for analyzing the univariate value functions
vi(y'i), where the weight eigenvector w � (w1, . . . , wq)

T is now replaced by the
scores of alternatives j on criterion i vi � (vi

1, . . . , vi
⏐J⏐)T, where ⏐J⏐ is the num-

ber of alternatives (in lieu of q, the number of criteria), and 0 � vij � 1 (just like
0 � wi � 1). An example is shown later in which a three alternatives, A, B, and
C, are evaluated in terms of risk, performance, and schedule compliance.
Figure 5.21 illustrates this point graphically, particularly where the univariate
risk-criterion utility function vR is expressed in terms of the utilities of the three
alternatives A, B, and C: vR � wR

AvR
A � wR

BvR
B � wR

CvR
C.  Here (vR

A, vR
B, vR

C)T is
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the eigenvector to be determined, and wR
A, wR

B and wR
C have been obtained from

the interview. We will step through these  calculations subsequently. Suffice to
say here that when  contrasting this  approach with the lottery method  described
previously, one can see that the current approach tends to assume additive
 decomposition all the way, not only in the multi-attribute value function
 between risk (R), per formance (P), and schedule compliance (S), v � wRvR �
wPvP � wSvS, but also in determining the univariate functions vR, vP and vS of
these criteria. Instead of  estimating a full univariate utility function, a point
 estimate is made. Saaty’s (1980) widely disseminated The Analytic Hierarchy
Process is based on the above concepts.

In general, for a system of equations such as (W � q'I)w � 0, if wii � 1,
then �a

k�1 q'
k � q for all eigenvalues q'k that satisfy the equations. The eigenvalues

q'k constitute a measure of consistency of the AHP. If the answers of DM are  totally
consistent, the principal eigenvalue q'Max � q and q'k � 0 for all other ks. Should one
perturb the perfect entries wijs by a small amount (which often occurs in actual
 interviews with decision makers), the eigenvalues q'(�∞ � q � ∞) change by small
amounts also. Small variations in wij keep the q'Max close to q and the rest close to
0, some of which may be slightly less than 0. The result q'Max � q always holds.
A consistency index (CI), (q'Max� q)/(q � 1), will measure the  closeness to consis-
tency. In general, a CI less than 0.1 is considered acceptable. Notice again that the
process consists of normalizing w′s, or setting the equation �iwi � 1, perturbations
on the W matrix will yield q' � q even for a perfectly  symmetrical W matrix.

Example
The analytic hierarchy process (AHP) is used to assess hazardous facility
 siting. The best site is evaluated with respect to the risk (R), performance
(P), and  schedule-of-completion (S), resulting in the following tradeoff
weights [wij]:

Best site: risk perf sched_______________________________
risk 1 1/3 2
perf 3 1 3
sched 1/2 1/3 1_______________________________

Figure 5.21  ANALYTIC HIERARCHY PROCESS EXAMPLE
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Similarly, the three candidate sites A, B and C are compared among themselves with
respect to the three criteria: risk, performance, and schedule, resulting in the
weights [wij]:

risk A B C perf A B C sched A B C____________ ____________ ____________
A 1 1 2 A 1  3   9     A 1  3  1/9

B 1  1  2 B 1/3 1  1/7 B 1/3 1  1/7

C 1/2 1/2 1 C 1/9 7   1     C 9  7   1
____________ _____________ _____________

The graphical representation of this problem is shown in Figure 5.21, which has a
two-level hierarchy, with w to be determined in the first level, and vi the  second
level.

(a) Compute the weight eigenvector w � (wR, wP, wS)T and eigenvalue
q′Max for the best site.

1 wR � 1/3 wP � 2 wS �  q’wR
3 wR � 1 wP �  3 wS �  q’wP

1/2wR � 1/3 wP � 1 wS �  q’wS
wR �    wP �     wS �  1

Here  w � (0.249, 0.593, 0.158), q'Max � q' = 3.053 and CI � 0.026.

(b)  Now write a composite value-function of additive form to include all the
component univariate value functions of risk (R), performance, (P) and
schedule (S).

v � 0.249vR � 0.593vP � 0.158vS

(c)  Compute the eigenvector vi � (vi
A, vi

B, vi
C) and eigenvalue for each of

the criteria i � R, P, and S.

1 vR
A �     1 vR

B � 2 vR
C � q’RvR

A

1 vR
A �     1 vR

A � 2 vR
C � q’RvR

A

1/2vR
A � 1/2 vR

A � 1 vR
C � q’RvR

A

vR
A �        vR

B � vR
C � 1

Hence vR � (vR
A, vR

B, vR
C)T � (0.4, 0.4, 0.2)T, q'Rmax � 3, and CI � 0.

1 vP
A � 3 vP

B �   9 vP
C �  q'PvP

A

1/3 vP
A � 1 vP

B � 1/7 vP
C �  q'PvP

B

1/9 vP
A � 7 vP

B �    1 vP
C �  q'PvP

C

vP
A �    vP

B �       vP
C �  1

It follows that vP � (vP
A, vP

B, vP
C)T � (0.701, 0.084, 0.215)T, q'Pmax � 4.12, and  CI � 0.56.

1vS
A � 3vS

B � 1/9 vS
C = q'SvS

A

1/3vS
A � 1vS

B � 1/7 vS
C = q'SvS

B

9vS
A � 7vS

B � 1 vS
C = q'SvS

C

vS
A � vS

B � vS
C = 1
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Therefore vS = (vS
A , vS

B , vS
C)T � (0.138, 0.072, 0.79)T, q'S Max � 3.205, and CI �0.103.

(d) Based on the composite value-function defined in (b) and the eigenvec-
tors vi � (vi

A, vi
B, vi

C)T computed in (c), rank order the preference among
sites A, B, and C.

vA � 0.249vR
A� 0.593vP

A � 0.158vS
A � 0.537

vB � 0.249vR
B � 0.593vP

B � 0.158vS
B � 0.161

vC � 0.249vR
C � 0.593vP

C � 0.158vS
C � 0.302.

Therefore site A is preferred to C, which is in turn preferred to B. Notice here that
we need not determine the precise form of the univariate utility functions vR, vP, and
vS. Only point estimate vi’s are necessary.

(e) Based on the eigenvalues in (c) above—qR, qP, and qS—comment on
the consistency of the DM and hence the validity of the rank order
 derived in (d).

With the exception of the risk criterion, the interviews yield rather inconsistent
 result, with the performance inconsistence and schedule inconsistency exceed-
ing the CI maximum of 0.1 set by Saaty (1980). One can also argue that
the schedule con sistency is marginally acceptable. A poor consistency index
 reflects a number of problems. Here it may reflect the validity of the DM’s
 responses during the  interview. The consistency index also measures the
 independence among criteria, a concept somewhat parallel to that of preferential in-
dependence in multi-attribute utility theory. In this case, an overall CI of 0.026 sug-
gests that the three criteria—risk, performance, and schedule—appear to be indepen-
dent of each other. Too high a set of CIs can put into question the reliability of the rank-
ing among alternatives. If the CIs are deemed  unacceptable, the analyst needs rede-
fine the criterion and to conduct the performance interview again to obtain a more
 reliable ranking.

The final step in the five-step process also calls for field validation of
the rank order obtained above, which is a normal conclusion to value function
modeling. Unless the ranking obtained from this set of value functions agrees
with the  observed ones, the process is not complete and more iterations
through the five steps is required. Even though this is understood, one can be
amazed at the  number of applications where this last validation step is not
 carried out. ■

In general, multi-attribute utility analysis is a useful tool for decision
 making. However, the key lies in the conduct of the interviews with DM’s.
Pairwise comparisons and lottery questions typically are cumbersome to
adm inister, which discounts to a large extent the usefulness of these
 techniques (Islam 1996). While there are constant debates over the correct
 theoretical underpinnings, it appears that the ultimate test is the ability of the
procedure to reproduce and predict the DM’s ranking simply and consis-
tently. For example, the concept of strategic equivalence allows an additive
value-function to replace a more  complex one for ranking alternatives
(see Section IV-A of the current chapter). If an ordinal ranking is sufficient,
the procedure is certainly attractive in a  problem-solving environment. In our
strive toward perfection, this point should not be  forgotten (Luce and von
Winterfeldt 1994; Tiley 1994).
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VIII. MULTICRITERIA DECISION 
MAKING AND FACILITY LOCATION

Facility locations are typically evaluated on the basis of multiple criteria. For
 example, Hegde and Tadikamalla (1990) report on the use of AHP in solving a
 facility location problem faced by a large multinational corporation. The problem is
that of deciding where to locate service terminals for the spare parts  division. The
AHP was introduced and successfully used to solve the problem. The managers in
this case developed a sense of ownership in the findings of the study because the
AHP facilitates their involvement at every level. This results in the implementation
of the findings from the study. As another example the placement of a landfill has
to take into consideration all these factors among others: capital cost, operating cost,
environmental impact, and the not-in-my-backyard syndrome (Erkut and Moran
1991). The question is how these  criteria can be incorporated into an objective
 function, if such an exercise is deemed  desirable. Here we will demonstrate a way
this can be carried out using the MCDM procedures introduced in this chapter.

A. The X, Y', and Z' Spaces in Facility Location
In general, three types of objective functions have been used most in the literature
concerning location decisions. Covering models locate facilities such that the
 demands are covered within a pre-specified critical time or distance. Thus express
package carriers locate their hubs in such a way in order to capture as much of the
market share as possible, while at the same time guaranteeing a specific delivery
time. Median or mini-sum models locate facilities in such a way that the average
distance between the facilities and the demands served is minimized. An example
is the placement of regional distribution warehouses, whereby all the retail outlets
are supplied from these warehouses in the most expeditious manner. Center or
mini-max models locate facilities to minimize the weighted maximum distance
from the facilities to the demands. For example, in locating fire stations, a mean-
ingful criterion is to be able to take care of the fire furthest away from the station
as rapidly as possible. Chan (2005) discussed these objectives in detail in his
“Facility Location” chapter.

A number of MCDM techniques have been reviewed in this chapter to
 locate facilities, including MCO, interactive programming, compromise program-
ming, multi-attribute utility theory (MAUT), and AHP. Many of these modeling
 approaches will again be discussed more substantively in sequel. For the time
being, we illustrate the usefulness of AHP, MAUT, and MCO in viewing the role of
MCDM in location modeling. The MCDM location model can be structured as
shown in the typical AHP tree of Figure 5.22, which is seen to be totally consistent
with the X, Y' and Z' spaces advocated by the author for viewing MCDM. MCO
requires first of all an explicit definition of the alternative space (X) and the
 outcome space (Y'), in order to define the efficient frontier. Where desirable, it may
further require the objective function (Z') to be identified before an optimal
 solution can be found. Interactive programming relaxes the last requirement in
that the decision maker can progressively articulate preferences as he or she
 explores the efficient frontier. MAUT, on the other hand, requires a two-step
process of first quantifying the utility function, from which alternatives can then be
rank-ordered according to the “common currency of exchange,” utiles. Finally,
AHP is a self-contained procedure to rank-order alternatives.
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We have shown that an MCDM problem can be decomposed into the X,
Y' and Z' levels. The relationship between the alternative space (X) and the
 outcome space (Y') or the objective space (Z') is relatively straightforward, in as
much as it amounts to a bookkeeping process once data become available.
However, it is much more challenging to provide the relationship between
 levels Y' and Z' (Beroggi and Wallace 1995). We would like to illustrate this
 interaction via a multi-criteria optimization case study of locating fire stations
(Mirchandani and Reilly 1987). We will show how MAUT can reduce a MCDM
problem into a single objective optimization problem by way of utiles. From
there on, the  problem can be solved as a median (or center) problem, defined
 between the X space and the Z' space. To obtain a direct relationship between
the response time of fire units (the Y' space) and the property or casualty
 damage (the Z' space) is quite difficult for several reasons, most of which have
to do with data availability.  Problems also exist owing to uncertainty about
when and where a fire might occur, and how DMs value the levels of achieve-
ment of various performance measures. Even if it were known how location de-
cisions influence the level of achievement of these performance measures,
 subjective assessment of the relative values of the attributes  associated with
these measures would have to be made. An alternative to obtaining an empiri-
cally derived cost benefit function is to use utility analysis. This method uses the
experience of fire fighting professionals to make the tradeoffs of the various
 attributes, incorporating uncertainties in the exact future location, number of
fires, and response times.

B. Multi-Attribute Utility and Optimization
Let us temporarily assume that the arrival time of the fire trucks fully determines
all adverse consequences of fires. Thus a fire truck arriving promptly on the
scene results in the least property damage and casualties, and a late arrival
 results in the worst damage and casualties. Each siting plan yields a probability
density function (PDF) for the fire unit’s response time, where the PDF takes into

Level 1:
(Z' -Space)

Best site

Level 2:
(Y' -Space)

Min
cost

Max
coverage

Min
weighted
avg dist.

Max
Min
dist

…

Level 3:
(X' -Space)

1     2     3     4     5     6     7     8     …
sites

SOURCE: Haghani (1991). Reprinted with permission.

Figure 5.22  LEVELS OF HIERARCHY FOR THE LOCATION PROBLEM
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account the uncertainties regarding where a fire might occur. Rather than mini-
mizing the expected value of its response time, utility theory suggests that the
DM maximizes some function of the distribution of response time, called the
 expected utility, which is defined as E[v(�)] ��∞

0
Pi(�)v(�) d� according to Equation

5.10 where P(�) is the PDF of the response time to a random fire, and v(�) is the
utility of response time �. Notice the utility of response time needs not be a uni-
variate linear  function. For example, a fire chief might prefer a 3-minute expected
response time with a low variance to a to 2-minute response time with a high
variance.

If we partition the study area into n’ zones, the expected utility can be
represented as  

E[v(�)] � 	
n'

i=1
fi ��

∞

0
Pi(�)v(�) d��

where fi is the proportion of fires in zone i, and P(�) is the PDF response time �
to the random fire in zone i. Note that Pi(�) depends on the location of the clos-
est fire truck unit to zone i. Thus suitable location criterion for the scenario is
to maximize the expected utility, E[v(�)], by optimally placing the required p
units among the available n’ sites.5 The practice of a typical fire department
calls for dispatching a pre-assigned number of units from pre-specified loca-
tions to a fire. The philosophy is that more than one fire truck is often required
to put out a fire. In this case, we assume that the first two fire trucks dispatched
are the most critical to the  outcome of a fire. It is likely that the response time
of the second arriving unit will have some effect as the first on the damage
caused by a fire. We need a multi-dimensional utility function v(�1, �2), where
�1 is the first unit response time and �2 is the second unit response time. The
 utility resulting from a given set of fire station locations can now be repre-
sented as

E[v(�1, �2)] � 	
n'

i=1
fi ��

∞

0

�∞
0

Pi(�i ,�2) v(�i,�2) d�1 d�2�

where Pi(�1, �2) is the joint PDF of the first- and second-unit response times to a
 random fire in zone i, and v(�1, �2) is the bivariate utility function of the first and
 second unit response times.

The Taylor series expansion of v(�1, �2) around (��1, ��2), the mean values of
respective response times, is

v(�1, �2) � v(��1, ��2) � v10(��1, ��2)(�1 � ��1) � v01(��1, ��2)(�2 � ��2) � 

	
1
2

	 v20(��1, ��2)(�1 � ��1)
2 � 	

1
2

	 v02(��1, ��2)(�2 � ��2)
2 v11 (��1, ��2)(�1 � ��1)(�2 ���2) � . . . 

where vij(�1, �2) are the partial derivatives corresponding to the ith and jth order:  

vij(�1, �2) � �	
∂
∂
�1
	�i�	

∂
∂
�2
	�j

v(�1, �2)

(5.16)

(5.17)
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Since ��1, ��2 are the mean values of �1, �2 respectively, then E(�1 � ��1) � 0 and 
E(�2 � ���2) � 0, and the expected value of v(�1, �2) can be approximated by 

v(��1, ��2) � 	
1
2

	 E[v20(��1, ��2)(�1 � ��1)
2] � 	

1
2

	 E[v02(��1, ��2)(�2 � ��2)
2]

� E[v11(��1, ��2)(�1 � ��1)(�2 ���2)]

or equivalently

v(��1, ��2) � 	
1
2

	 v20(��1, ��2)	
2
1 � 	

1
2

	 v02(��1, ��2)	
2
2 + v11(��1, ��2) cov (�1, �2)

The above expression gives the expected utility of a siting plan as a function of the
means, variances (	), and the covariances (cov) of the response times of the two
first arriving units.

Through a series of structured interviews with an official of the Albany,
New York Fire Department, Mirchandani and Reilly (1987) developed a utility
function of the response times for the first two engines arriving at a fire. To start
out, single-attribute utility functions were assessed. The multi-attribute utility
functions were then constructed from these univariate functions. To illustrate,
 consider the utility function for the first engine response time to low-risk fires. The
fire department official revealed that he was constantly risk averse. A generic form
to represent risk-averse univariate function is v(�) � a � bec�, where a, b and c are
 positive calibration constants. During the interview, the official indicated that he
would be indifferent between a 50-50 lottery of “1-minute and 5-minute response
times” and a “response time of 3.75 minutes with certainty.” The utility functions
were assessed by conducting such lotteries over a range of 0–10 Min. By assigning
the following arbitrary utility values to the two extreme outcomes, v(0) � 1 and
v(10) � 0, the following utility function results for the first and second engines that
arrive,  respectively, 

v1(�) � 1.016 � 0.016e0.415�

and

v2(�) � 1.079 � 0.079e0.262�

By assuming mutual preferential and utility independence, the multi-attribute util-
ity-function v(�1, �2) can be shown as 

0.971v1(�1) � 0.763v2(�2) � 0.734v1(�1)v2(�2)

Details of the study are documented in Reilly (1983). The discussion
above simply illustrates that MAUT can be used in a practical scenario to 
formulate a single objective function, with which a conventional integer
 program between the X and Z' space can then be formulated and possibly
solved, using a median formulation in this case. Thus the two seemingly
 disparate bodies of knowledge of MCDM, MAUT and MCO, can in fact be

(5.18)

(5.19)
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 integrated productively into a single package for real world applications. This
simple case study amply illustrates emergency facility location problems that
are found not only in providing urban services, but also in such sectors as the
defense community, where tactical operations are often judged on the basis of
timeliness in response.

IX. A TAXONOMY OF METHODS
In the above brief review of MCDM, we regard the DM’s underlying problem
as one of selecting an alternative y' from the set of alternatives Y' in criteria
space so as to best achieve his/her objectives as reflected by the value function,
v(y'): Max{v(y')⏐y � Y'}. To the extent that information is decentralized and
not  immediately available, an educational process is required on both the part
of the DM and the analyst in order to gain insights into the problem. Examples
abound in both interactive mathematical programming and multi-attribute
value function definition. Table 5.2 shows such an educational process
(Bogetoft and Pruzan 1991).

In this table, it is clear that considerable interaction between the DM and
the analyst is a prerequisite for a successful MCDM process. Both the DM and the
 analyst will have to be willing to assume part of the responsibility in either
 initiating or responding to a particular MCDM procedure. Thus a procedure can
be directed by either one of the two parties. The type of interaction can be either
one-way or two-way, as shown by the arrows in the table. Obviously, a two-way
interaction is by definition more involved than one-way, resulting in an iterative
process.

A. Prior Articulation of Alternatives
The analyst can undertake an extensive investigation of the set of feasible  alternatives,
Y', and submit them as a set of proposals to the DM. The DM inspects the set of
 proposals, clarifies his own preferences and makes a choice. Throughout this  chapter,
we have pointed out simple ordering as a key concept in organizing the  alternative
set, particularly in defining the efficient frontier. This value free Pareto concept allows
some powerful computational procedures to be followed in MCO. While the

detcerid tsylanAdetcerid MDnoitagitsevni fo epyT

Phased Prior articulation of alternatives Prior articulation of preferences

(DM ←  MD()tsylanA → Analyst)

Iterative Progressive articulation of Progressive articulation of 
secnereferpsevitanretla

(DM –q→ analyst) (DM←q– analyst)
←a– –a→

Table 5.2  TAXONOMY OF INTERACTIVE MCDM PROCEDURES
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weighted sum procedure is readily operational with many off-the-shelf LP software,
its application is mainly limited to problems amenable to LP model  formulations. The
constraint reduced feasible region method is likely to be more  versatile in solving
 integer  programming and nonlinear programming models. To the extent facility
 location  decisions are discrete, integer programming is a key technique in the tool box
of the analyst and so is the constraint reduced feasible-region method.

B. Prior Articulation of Preferences
In this model, the DM’s preferences v(y') is constructed by the analyst based on
studying the DM’s behavior through surveys (for example). In this process, the
 objectives, criteria and attributes of the stakeholders need to be first defined, say,
in a multi-attribute value function. The preference structure of the DM is then
 subsequently established in terms of such verifiable properties as transitivity of
preferences and preferential and utility independence among attributes. These
properties will point toward a particular way that alternatives can be rank  ordered,
including ordinal, cardinal, and lexicographic ranking. If transitivity is  established,
for example, value/utility functions can possibly be calibrated to  operationalize
the repertoire of techniques under MCO or multi-attribute  decision analysis
(MADA), with the latter defined here as the generalization of single-attribute
Bayesian decision with the latter theory.

C. Progressive Articulation of Alternatives
Instead of a one-way interaction, either directed by the DM or the analyst, this
process is now iterative. In each iteration, the DM asks the analyst about the set of
alternatives, the analyst answers and the DM evaluates the answer. The DM then
decides either to continue the search by posing new questions or to stop the search
and choose one of the alternatives identified so far. Compromise programming is
one of the ways that such iteration can take place. If no satisficing solutions exist,
the goal setting process can compromise between the goals and the set of feasible
alternatives. The set of alternatives, as reflected through the criterion space, or
the Y'-space, can be greatly expanded—for example—upon the availability of
 additional resources, including monetary, technological, or managerial. This will
allow satisficing solutions to be generated to meet the expectations of the goals set
forth by the DM.

D. Progressive Articulation of Preferences  
In each iteration, the analyst poses questions to the DM about his preferences and
the DM answers. If the analyst now knows sufficiently about the DM’s prefer-
ences to make a choice from the concrete set of alternatives, he/she proposes a
choice. Otherwise, the questioning continues. In MCLP, for example, the analyst
can assist the DM to “travel along” the efficient frontier, wherein the DM goes
back and forth between the relevant adjacent efficient extreme points (See Section
IV-C on the  interactive Frank-Wolfe algorithm.) Through this process, the analyst
and the DM both sharpen their insights into the problem, allowing for a coordi-
nated effort in decision making (Huang and Li 1994). As part of the progressive
articulation of preferences, it is entirely possible that the domination structure of
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the DM falls outside the paradigm of Pareto preference and value function. Both
of these concepts are indeed very restrictive, and a large gap  exists between the
two (as will be  explained immediately below). While this will nullify a fair
amount of the formal methodology presented above, it nevertheless  allows
the DM to obtain the most  important product of the process: insights into the
problem at hand.

X. DOMINATION STRUCTURES
Pareto preference is the simplest kind of preference, which allows MCO to be
 operationalized. On the other hand, the assumptions of a value function representa-
tion or the existence of preference relationship { � } certainly are very restrictive. The
gap between the assumption of Pareto preference and that of the preference having
a value function representation is very large (Li and Sinha 2004). Let us give an
 example (Yu 1985). A landowner is willing to sell the land adjacent to his or her home
for at least $50,000/acre (125,000/ha). Let f1 be the extra leisure time in hours he or
she would spend in his homestead should he or she retain the adjacent land and f2
be the additional income in dollars generated from the land sale. In terms of the
weight cone, he or she requires df2/df1 � ��'1 /�'2 � 50 in v(�) � �'1 f1 � �'2 f2 for a
sale to occur. Figure 5.23 shows his or her domination structure. Observe that unless
Y' is convex, the non-dominated set cannot be obtained using maximization of the
value function v(�'). In other words, the final solution may not be obtainable by max-
imizing additive or multiplicative value functions.

Can we somehow make transformations to the criteria f1 and f2 that will
allow us to derive a value function that we can maximize? The landowner reveals
that he or she is happy to sell for at least $50,000 per acre. The question here is that
for $50,000 an acre; is the landowner willing to give up one, two, three, or more
acres? What about $60,000 per acre? In this problem, the landowner has only a pref-
erence, while a value function attempts to create cardinality among these one-, 
two-, or three-acre land sales. In this case, he or she is willing to sell for more than
50,000 an acre, but is not sure how much land to sell. For example, at $50,000 per
acre, he or she might be willing to sell one acre. At that point the $50,000 might no
longer be worth missing any additional acres. However, at $100,000 per acre, he or
she might be willing to sell more, because now he or she would be earning enough
 additional money to further improve and expand on the existing home (even
though there is less surrounding land to enjoy.) Questions such as these offer
 insights into the marginal rate of substitution between leisure hours and extra
 income. We typically plot a marginal rate of substitution curve as convex function
with which a convex Y' region can be applied, and an optimal solution can be iden-
tified (See illustration in Figure 5.23.) With the information given, however, it is not
clear whether the marginal rate of substitution curve is concave or convex, and as
a result, no optimal solution can be obtained.

In summary, the information available from the DM is only sufficient to
give a rank order, in other words, $51,000 per acre is preferred to x hours of 
additional leisure hours at the homestead. Even this is dubious, since we cannot val-
uate x. We cannot derive a value function because we cannot derive the univariate
utility function for leisure time and extra income. In other words, the model fails
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 because the revealed preference does not predict the DM’s answer if we ask a ques-
tion such as: “Would you sell five acres for $50,000 an acre?,” which by the way is a
legitimate question for the buyer to ask.

XI. COLLECTIVE DECISION MAKING
Following the same line of reasoning, the design that is best overall for a group of
 individuals with different interests often cannot be found analytically either. There
cannot be any universally acceptable analytic solution because people place
 enormously different values on products. The utility/value function for a group is
known formally as a group utility/value-function (GUF), which is an aggregation
of individual values GUF � f(v1, . . . , vn). How does the aggregation of individual
value functions into GUF take place? Should it be simply the weighted sum, GUF �
�i w

ivi? But how about equity among the individuals that make up the group—that
every one should achieve some minimal level of satisfaction, and we should dis-
count a disproportionately excessive individual level of utility? Perhaps GUF �
�i w

iexp(�[vi � E(v)]) may be more appropriate? This function is maximized when 
vi = −v.6 Keeney and Kirkwood (1975) define a group utility function (GUF) as an

Figure 5.23  WEIGHT CONE FOR ALTERNATIVE DOMINATION STRUCTURE
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 extension of the multi-attribute utility function specified in Equation 5.11. The
 additional weights wi represent value tradeoffs of the decision makers. According
to the authors, the GUF can be specified by a dictator who picks weights impartially
to incorporate the preferences of all group members into the decision, or by using
the collective response of the group to define the weights. In the first case, the
process is similar to the technique used to determine parameters for a single DM.
The second case involves a combination of the individual’s utility functions and
evaluation of the individual group utility function (IGUF) for each member of the
group. The GUF is then constructed as a weighted aggregation of the IGUFs. This
process  includes interpersonal comparison of preferences and requires the
 measurement of the strength of individual preferences. Given complexities associ-
ate with the above method, it can be difficult to determine the overall GUF.

A. Arrow’s Paradox
The difficulty of group decision making is well-publicized by the Arrow’s paradox
(Arrow 1963), which highlights these salient points:

1. The choices a group makes depend on its internal rules of decision-
making; for example, its voting rules.

2. No one voting rule or decision-making process is intrinsically best.
3. The choices made by a group are therefore necessarily an ambiguous

reflection of its preferences, so that we cannot rely on a group’s choices
to construct its GUF.

A voting procedure illustrates ambiguity of choice. Consider a family of three
 persons evaluating three different houses to buy, with their individual assessments
looking like the following (de Neufville 1990).

Following our discussion in Section I in the current chapter, suppose the
family agrees to select its home by successively comparing pairs of options until it
has ranked them all. Thus comparing A against B, home A is preferred to home B
(A � B) by a 2:1 majority according to the tabulation above. If home A is then
 retained as a preferred option and compared to home C, we find C � A also by a
2:1 majority. Having compared all three options, can we conclude C � A � B?

To answer this question, we can check the results by comparing B and C,
wherein B � C by a 2:1 majority. Thus one can conclude that C � A � B � C, which
is an intransitive result! This example shows that we cannot rely on the choices
 expressed by a group to reflect its GUF. The actual choice may depend  critically on
the precise way a voting or consensus building procedure is applied. This again
 einforces the conclusion reached from another location decision example docu-
mented in Section I-A of the current chapter. Research into this difficult problem is
continuing, as evidenced by Leitmann (1976).

Ranking of housing Family member
locations Husband Wife Dependent

First A C B

Second B A C

Third C B A
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B. Game Theory 
A group decision-making process is sometimes modeled by game theory, which
tries to capture the pluralistic decision-making process (Silberberg 1990). A historic
game-theoretic model of interaction between market participants is Cournot’s
analysis of a duopoly, or a market in which exactly two suppliers produce identi-
cal goods or services. Let Vi

s be the output of firm i (i � 1, 2), let Ci(Vi
s) be that

firm’s cost function, and let D(Vd) represent the industry inverse-demand curve, or
the price-schedule expressed as a function of the firms’ total output Vd, where Vd �
V1

s � V2
s. A downward sloping demand function is assumed. If the firms were able

to collude perfectly, that is, act as monopolist, they could achieve maximum profit
since between the two of them they have cornered the market. Cournot considered
the case where such collusion was impossible. He postulated that, at any moment,
each firm would maximize its profits assuming the other firm’s output as given. In
other words, a firm’s decision is based on the other firm’s output decision from
(yesterday), fully convinced that this other firm will behave the same manner
 (tomorrow). Each firm maximizes its profits based on this somewhat naive
 assumption. In this way, the firms continually adjust their outputs until each firm
has no further incentive to do so.

Take the example of the demand curve D(Vd) � 30 � Vd � 30 � V1
s � V2

s

and the constant-cost curves  
.
C1(V1

s) �  
�C2(V2

s) � 6. For firm 1 therefore, the profit-
maximization objective function would look like maxV1

s I1 � [D(V1
s � V2

s)V1
s � C1V1

s]
with a similar expression for firm 2. In our example, the profit to be maximized is
I1 � (24 � V1

s � V2
s)V1

s. When the other firm’s output is taken as parametric, the
first-order conditions for optimization are obtained simply by the partial
 derivatives 

V1
s D

.  
(V1

s � V2
s) � D � C

. 
1(V1

s) � 0 and V2
s D

. 
(V1

s � V2
s) � D � C

. 
2(V2

s) � 0 respectively

In this example, we are taking the partials as the following: 

	
∂
∂
V
I1

1
s	 � 24 � 2V1

s � V2
s � 0 and 	

∂
∂
V
I2

2
s	 � 24 � 2V2

s � V1
s � 0

Solving each equation in terms of the other firm’s output yields the reaction functions

V1
s � V1

*(V2
s)  V2

s � V2
*(V1

s)

For this example, the reaction functions are Vi
s � 12 � Vj

s/2 (i � 1, 2), as
 illustrated in Figure 5.24. For the general case where the demand function is
 nonlinear, the reaction functions are shown in Figure 5.25 as curvilinear curves. Both
of these reaction curves, whether linear or curvilinear, indicate the profit maximizing
output of each firm, for parametric values of the other firm’s output. The  intersection
of the firm-1 and firm-2 curves, point C, is the Cournot solution to the duopoly
 market. In our example, V1

s � V2
s � 8, or the firms will provide 8 units of output each,

at a market price of 14 units, and yielding a net profit of 64 units.
This solution is also called a Nash equilibrium, defined as the more

 general equilibrium condition in which neither firm will change its decision

(5.20)
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Figure 5.24  NASH EQUILIBRIUM IN A COURNOT DUOPOLY

24

8

8

C

24 VS
1

VS
1 V*1(VS

2)

VS
2 V*2(VS

1 )

VS
2

under the assumed behavior. However, it is not a Pareto solution, since further
gains from trade could exist with a lower price. For that reason, each firm has a
wealth-maximizing incentive to cheat on this arrangement. It can be seen from
the  demand and profit functions of this numerical example that firm 1 can raise
its profit I1 by lowering it price D(Vd) and increasing its production. Thus by
lowering its price (from 14) to 13, for example, firm 1 can capture the entire
 market and now increase its profit from 64 to (24 – 17) 17 = (7)(17) � 119 units.
For this reason, there are variants to this model. Bertrand and Edgeworth, for
example, constructed a similar model in which price, instead of output, is
 assumed fixed in the duopolistic competition. Stackelberg proposes that one
firm, say firm 2, assumes that firm 1 will react in a Cournot manner to firm 2’s
output decision, according to the  reaction function (Eqation 5.20). Firm 2 then
chooses output assuming the above relation for V1

s. In other words, it does not
assume, as in the Cournot model, that firm-1’s output will be fixed. Rather,
firm-2 anticipates firm-1’s Cournot  behavior. Firm 2 in this case is the
Stackelberg leader; firm 1 is the follower. Depending on the cost functions, dif-
ferent solutions emerge. Both firms could choose to be  leaders, in which case
Stackelberg warfare results.

In general, game theory describes the complex behavior of these DMs
in a pluralistic setting. It can be shown that game theory, a complicated body
of knowledge in and of itself, can become overwhelmingly complex by the
 introduction of multiple criteria. Building on the work of Cook (1976),
Hannan (1982), and Zelany (1976), Patterson, Horton, and Chan (1994) and
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Payne (1995) experimented with the simple case of a two-person zero-sum
game, the solution of which corresponds to the primal and dual solutions
of an LP assuming  maximum gain for one team and minimum loss for the
other. The term zero sum here refers to the condition that one team’s gain is
exactly equal to the other team’s loss. As soon as two criteria or two payoff
metrics are involved there  appeared to be more than one equilibrium,
 considering both local and global optima. Finding these equilibria is often a
trial-and-error process. By now, one should be totally convinced that the
analysis of  pluralistic decision making is in fact beyond the state-of-the-art
in modeling.

C. Recommended Procedure
Since there is no analytic way for a group to choose among options, we can
only recommend a procedure for dealing with the problem (de Neufville
1990). The purpose of the procedure then would assist in the meeting of the
minds:

1. Model the physical alternatives
2. Define the noninferior options, or sometimes referred to as the pro-

duction possibility frontier, or trace out the reaction functions
3.  Determine individual preferences
4. Explore the possible tradeoffs
5. Negotiate toward a collectively satisfactory solution.

Figure 5.25  UTILITY PRODUCTION FRONTIER AND THE GUF
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Step 4 unveils the differences between individual’s tradeoffs among attributes,
thus offering the possibility of mutually beneficial exchanges. In Step 5, the nego-
tiation takes place in the consequences of the alternatives and their cost benefit
 distribution among the stakeholders.

A compromise alternative in the production possibility frontier may
then be identified. A mutually beneficial distribution may result in sharing,
 instead of  monopolizing, the cost-benefits. Figure 5.25 illustrates such a pos-
sibility, where the best alternative for a group involves finding both the best
alternative and the best way to allocate its cost-benefits. Thus a production
possibility frontier is  constructed as an envelope of maximum utility curves
among all pairs of individuals i and j. The best alternative is then defined as
the one that satisfies both the GUF and the  production possibility frontier—if
a GUF can be defined of course.  In lieu of a  production possibility frontier,
one can think of a triopoly  instead of a duopoly and progressively toward an
oligopoly market, which collectively define a utility possibility frontier based
on individual maximum utility reaction functions vi � v i*(v j ).

Lewis and Butler (1993) described and evaluated an iterative technique to
facilitate multi-objective decision making by multiple DMs. The proposed method
augments an interactive MCO procedure with preference ranking tool and a
 consensus-ranking heuristic. Computational experience suggests that the proposed
framework is an effective decision-making tool. The procedure quickly located 
excellent compromise solutions in a series of test problems with hypothetical DMs.
In addition, a real-world resource allocation study yielded positive feedback from
the participants.

XII. CONCLUDING REMARKS
The relative newness of multiple-criteria decision making (MCDM) brings
with it a host of competing approaches. The purpose of this chapter is to
 expose the reader to a wide variety of techniques. The discussion is organized
around the paradigm of the X, Y' and Z' space, which allows us to introduce
the concepts of decisions, criteria, and value functions systematically, and
cover both multple-attribute decision analysis and multiple-criteria optimiza-
tion (MCO). It has been shown that Pareto preference is the simplest kind of
option ranking  requiring little articulation of the decision-makers’ preference
structure. There is a large gap between this and ranking based on a value func-
tion, where the DM’s articulation of preference has to be clearly understood.
Understanding the DM’s value function has to be the most interesting and
challenging aspect of the field of MCDM. Once the X, Y' and Z' spaces have
been defined, the process of MCDM can be carried out. Recent research points
toward an interactive procedure to do this, which represents a prominent
 direction the field is moving.

What are the challenges facing MCDM in the foreseeable future?
Zionts (1992) suggests viewing MCDM to be made up of four different subar-
eas: multi-criteria mathematical programming, multi-criteria discrete alterna-
tives (including integer MCO), multi-attribute utility theory, and negotiation
theory. On the macro level, he sees negotiation as a fruitful area of research,
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since there is but a dearth of understanding in this important subject
presently. Before and even after rigorous theories are established, approxima-
tions to the theory, possibly along the line of an expert system, may be very
useful. He cited the example of MAUT, where additive utility functions are
often calibrated in practice even though preferential ind ependence cannot be
rigorously proven. An expert system is helpful in helping  negotiators under-
stand and structure their own positions, even though a theory of negotiation
is far from complete. On a micro level, Zionts suggests examining these top-
ics: A Tshebycheff-, or l∞-norm, is a good proxy utility function since it can
generate all non-dominated solution points. More precisely, minimizing the
norm as a quasi-convex function can generate any non-dominated solution
points (Gardiner and Steuer 1995). Cone dominance can also be exploited by
using nonexistent or dummy solutions, such as an ideal, for comparison pur-
poses. The advantage is to increase the information learned as a result of ask-
ing preference questions of DMs. A visual display, possibly through computer
graphics, will greatly assist the DMs in performing MCDM analysis. We have
seen such an  example in Figure 5.10.

Dyer et al. (1992) also provide some collective thoughts on the future of
MCDM. Utility functions that go beyond the additive format as explained in this
chapter are judged to be worthy of further investigation (Fishburn; 1988; Wakker
1989). Abbas (2009) advanced a multi-attribute utility copula that expresses any
continuous, bounded multi-attribute utility function that is nondecreasing with
each of its arguments. In terms of single-attribute utility assessments, the
 function is supposed to be strictly increasing with each argument for at least one
reference value of the complement attributes. Under these conditions, the
 formulation  provides a wealth of new functional forms that can be used to model
preferences over utility-dependent attributes. It also enables sensitivity analyses to
some of the widely used functional forms of utility independence. On a parallel
vein, there is a need for eclectic approaches that synthesize the meritorious
among  existing theories and practices to improve MCDM procedures. Interactive
MCO, an  important area of research identified previously, needs consolidation so
that procedure switching can take place as the decision process progresses
(Buchanan 1994). To this list we would like to add integer MCO, which is an
 important  application area not supported by adequate computational algorithms
(Narula and Vassilev 1994).

Korhonen (1992) outlines his observation regarding recent developmental
trends. Recent techniques tend to have these features in common:

1. They do not cramp the DM’s style and involvement;
2. They have interactive feedback mechanisms including graphics  

(El-Mahgary and Lahdelma 1995; Antunes and Climaco 1994);
3. They have a built-in evolutionary process, allowing modification of the

model as the analysis progresses;
4. DMs are provided with fast turnaround analysis techniques.

Based on this prognosis, it is clear that MCDM (or sometimes called multi-criteria
decision aid [Vincke 1992]) is a most needed analysis technique. Because of its
 developmental nature, however, it also represents an active area of further
 research.



XIII. EXERCISES

Self-Instructional Module: RISK ASSESSMENT 
(to be found on the attached CD/DVD)7

In this text, we are interested in project evaluation, particularly in the assessment
of a technology-based option, whether it be airport location or infrastructure
 improvement. We call it technology assessment for short. Depending on whom
you ask, technology assessment and its associated techniques have characteristics
ranging from the mystiques of an art to the exact calculations of esoteric mathe-
matical techniques. This activity module will help the reader to develop an
 assessment method that will complement the concepts introduced in Chapters 2
and 5 of the textbook, entitled “Economic methods of analysis” and “Multicriteria
Decision Making” respectively. In Chapter 2, we first discussed Cost-Benefit
Analysis. In Chapter 5, we formally discuss evaluation methods based on multi-
ple criteria, going beyond a single, aggregate metric such as cost or benefit.

Technology or project assessment is basically a two-step procedure. The
first step involves the determination of the short-term effects such as costs and
 benefits (costs as measured by implementation and design efforts, and benefits as
measured by efficiency, productivity, etc.) The second step involves the determina-
tion of the long-term effects, sometimes called secondary or higher-order effects, on
the socioeconomic system. 

It is this second step that presents the exceedingly difficult tasks of pre -
diction and anticipation. For example, consider the case of the aerosol-spray-paint
cans. When first introduced, their cleanliness and ease-of-use were immediately
 recognized as benefits. But who would have predicted these same spray cans would
in the long run responsible for an increase in cost—witness defaced pro perties such
as New York City's subway trains and stations. 

Do not be misled by the already stated two-step procedure of project or tech-
nology assessment. It is more gray than black-and-white, more nascent than mature,
and sometimes more ad hoc than codified. At the end, however, a decision has to be
made regarding the most desirable option or options to follow. This  module will
begin exploring some of the analytical techniques in such decision-making. This
 module is divided into two sections. The first section deals with the “nuts and bolts.”
The second section allows the reader to apply these “nuts and bolts” in several
 illustrative exercises, ending with an interesting risk-assessment case study. 

By the end of this exercise, the reader will have been exposed to: 

(a) Examples of rare events with high-value consequences 
(b) Risk analysis using event or decision trees 
(c) Examples of real-world decision-making. 

This module serves as an excellent introduction to the current
“Multicriteria Decision Making” chapter, in which risk assessment is an important
component. Risk was first introduced in Chapter 3, where Bayesian analysis built
upon subjective probability was discussed. The single-metric decision tree is
 expanded later to include multiple metrics in the current chapter. As with other
modules, the reader is motivated by hands-on  engagements in the present module,
including real-world case studies that the reader can relate to in their daily lives. For
the interested readers, more practical  examples can be found in Koller (2005).
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Problem 1: Multicriteria Optimization 
To model realistically, one often has to combine facility location with routing.
Furthermore, one has to address the stochastic nature of demand. 

(a) Referring to Figure 5.26 as an example, please write out the mathe-
matical-  programming formulation for the bicriteria of 

▫ Maximizing demand coverage in the routing from starting node 1 to
terminus node 4, with different nodal demand for each state k; and 

▫ Minimizing the travel time on this routing. 

In your formulation, please use the binary variable xijk, to denote whether
the demand at node i assigned to a facility at node j in system state k. Also, let the
 binary variable yi denote whether a facility is located at node l. 

(b) Consider using solution software such as “LINGO” or linear pro-
gramming software such as ADBASE. Generate the nondominated so-
lutions to this mathematical  program. (Notice the ADBASE multiple
objective linear programming package,  obtainable free of charge from
Professor Ralph Steuer, at rsteuer@uga.edu.) 

(c) Can you guess at the solution of this mathematical program by inspec tion?

Problem 2: Multi-attribute Decision Analysis 
The Metropolitan Planning Organization (MPO) evaluated five conceptual plans for
their 2,100 city. All five plans have basically the same cost. Therefore, MPO wants to
select the most effective plan 

1 4

2

3

3'

f31 = 1

f21 = 1

d131 = 2

d121 = 3.5

d321 = 1

d241 = 4

d341 = 5.5

Legend
flk = demand at node l in state k
dijk = travel time from node i to node j in state k
Qk = probability of being in state k

Figure 5.26  STOCHASTIC FACILITY LOCATION AND ROUTING



MPO believes there are only three attributes that will determine the 
effectiveness of the conceptual plans: (1) Noise foot print (N) of the airport, (2)
sustainability index (S), and (3) economic growth (E) potential. Each has the
following ranges: 

▫ 50 � N � 100 Square miles (less is preferred) 
▫ 0 � S � 10 10-point scale (more is preferred) 
▫ 400 � E � 500 New jobs/month (more is preferred). 

Hired as an expert from Par Excellence University, Dr. Bake decides to
 construct a utility function, v(N, S, E), using a typical citizen as his decisionmaker.
Mr. Doe seems rational (sort-of) and is chosen for the experiment. From Mr. Doe, 
Dr. Bake solicits the following information.

Set 1: Lotteries over N
0.5(100) ⊗ 0.5(50) ~ 70 Given:
0.5(70) ⊗ 0.5(50) ~ 55 S = 0, E = 400
0.5(100) ⊗ 0.5(70) ~ 80 S = 10, E = 500

Set 2: Lotteries over S
0.5(0) ⊗ 0.5(10) ~ 4 Given:
0.5(4) ⊗ 0.5(10) ~ 6 N = 100, E = 400
0.5(0) ⊗ 0.5(4) ~ 2 N = 50, E = 500

Set 3: Lotteries over E
0.5(400) ⊗ 0.5(500) ~ 460 Given:
0.5(400) ⊗ 0.5(460) ~ 440 N = 0, S = 100
0.5(460) ⊗ 0.5(500) ~ 480 N = 10, S = 50

Set 4: (50, 0, 400) � (100, 10, 400) ~ (100, 0, 500)

Set 5: (75, 0, 400) ~ (100, 10, 400)

Set 6: (50, 0, 400) ~ (0.6(50, 10, 500) ⊗ 0.4(100, 0, 400))

Assume that it has been determined that Mr. Doe has a multiplicative
 utility function. Follow Example 3 of book Section 5-VII-B and answer the follow-
ing questions:

(a)  Draw each of the single attribute utility functions on graph paper.
(b) Determine the total utility function.
(c) Evaluate the expected utility of each of the following proposed 

conceptual.plans:
(d) What is the best plan? What is the worst plan?

Alternative plans State 
1 State 
2

A (55, 2, 480) (70, 4, 420)
B (70, 4, 440) (90, 6, 410)
C (80, 6, 400) (100, 10, 400)
Prob(State) P(
1) = 0.4 P(
2) = 0.6
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ENDNOTES

1 A ranking among alternatives is transitive A � B, B � C means A � C.
2 For a review of the simplex procedure, see Appendix 4.
3 A nondegenerate lottery means that the lottery will have two distinct outcomes, thus discounting the
special case where the two outcomes are identical.

4 Cost is in millions of dollars, time to complete is in years, and effectiveness is the number of shoppers
attracted per month (in thousands).

5 While the p-median problem was introduced in Chapter 4, the “Facility Location” chapter in Chan (2005)
discusses the conventional p-median problem in detail.

6 Notice the exponential form for v i is simply written for conceptual clarity, the real function should be 
1 – exp(– |v i – −v |), which means GUF = �i wi [l – exp(– [vi – -v])] = �i wi – �i wi exp(l – [vi – -v]) = 1 – �i
wi exp(l – [vi – -v]). This new function is maximized when |vi – --v|→ �. 

7 The answer to this Module is attached at the end of this textbook.
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Locational and land use studies rely heavily on the availability of data. While one can
argue that data are never complete enough to perform analyses, there is also a
 tendency to collect too much information (or at least collect irrelevant information).
Data collection has been facilitated greatly by remote sensing devices such as satel-
lites and computer-based data organization tools such as geographic information
systems. With the technological advances in remote sensing and  geographic infor-
mation systems, the data collection effort can theoretically be streamlined. But they
also  underline a more urgent need to match data against information requirements,
such that the relevant data are collected and that they are in the correct format and
in sufficient quantity. In this chapter, we wish to review the data base that is required
in facility location and land use, mainly from the angle of matching data with
 analysis requirements. Also included is the processing of such data to bring out the
information in as useful a form as pos-sible for application-oriented purposes.

I. DATA IN SPATIAL-TEMPORAL ANALYSIS
Depending on the type of application, the data to be collected would vary.
Table 6.1 shows sample data requirements for performing land use modeling
in an urban setting. As one can see, a lot of data need to be gathered. Moreover,
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“Give me to learn each secret cause;
Let number’s, figures, motion’s laws
Reveal before me stand;
These to great Nature’s scene apply
and round the Globe, and through the sky
Disclose her working hand.” 

Mark Akenside
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such data often need to be collected consistently over more than one period of
time to observe a trend. Generally, obtaining this amount of data is costly. The
advances in collection and data processing devices do not diminish this
 resource req uirement, even though the cost per unit of information may be
lowered. This apparent contradiction is traceable to the fact that a lot of infor-
mation is often collected superfluously, either due to the ease with which the
collection and  processing devices work or the lack of care taken in the conduct
of such procedures. Invariably, only a tiny fraction of the information gathered
is useful, and the information that is really needed is left out. It is essential
therefore to be  selective in accordance with what data is really required, as
suggested above.

Table 6.1  TYPICAL DATA REQUIRED IN URBAN PLANNING APPLICATIONS

Data Items

� total population by place of residence
� population by age-sex groups by place of residence
� population by family size groups by place of residence
� population by annual family income groups by place of residence
� population by industry groups by place of residence
� population by occupational groups by place of residence
� total labor force by place of residence
� total employment by place of work
� employment by industry groups by place of work
� employment by occupational groups by place of work
� employment by income groups by place of work
� total annual retail sales by place of sale
� annual retail sales by retailing groups by place of sale
� total value of manufactured products by place of manufacture
� value of manufactured products by industry groups by place of manufacture
� total government expenditures by place of agency
� capital and operating government expenditures
� government expenditures, capital and operating, by agency
� total person trips by place of destination
� total person trips by land-use groups by place of destination
� total market value of land by small area
� market value of land by land-use groups by small area
� total market value of land and buildings by small area
� market value of land and buildings by structural-type groups by small area
� total housing units by small area
� housing units by type of structure by small area
� housing units by density class by small area
� housing units by condition of structure by small area
� housing units by age of structure by small area
� total floor area by small area
� floor area by land-use groups by small area
� land area by land-use groups by small area
� accessibility to region by small area
� distance (time or cost) to all parts of the region or to the center of the region by 

small area
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A. Resource Requirement
There were reported price tags associated with collecting each piece of info r -
mation listed in Table 6.1, and many of them signify much time and effort. It is
necessary before data collection to assess the resource at hand and to perform
a careful tradeoff analysis between the worth of a piece of information and its
cost. There are three general categories of costs in facility location and land use
 modeling: data assembly, model calibration, and analysis and forecasting. In
urban applications, for example, data assembly is the most costly, taking up to
30–50 percent of the study budget. This figure can perhaps be generalized
to other applications as well. Much of the data assembly cost is attributable to
manpower. Taking all requirements into consideration, the time required
to collect data is about 4 to 6 person-months in each urban application. This
assumes the  availability of public domain data sources such as the census and
remote sensing data such as that from LANDSAT. The cost of collecting data
will become  prohibitive, if such data need to be collected from original
sources.

When new technology such as geographic information system (GIS) and
remote sensing are introduced, the data collection resource requirement picture
can become much more complex. Oftentimes, there is an enormous overhead
 involved in such an introduction. More often than not, the problem boils down
to the need to properly match technology against the problem at hand, and the
institution has to have the correct environment to foster change. Even though
this appears obvious, case after case can be cited where well-intentioned people
got burned in the automation process.

B. Assembly of Data Sources
In the context of this book, there are essentially five different categories of data
required. The first is labeled activity, which includes population and employ-
ment in urban applications for example. The second is land use, which is a
physical description of the site(s). The third is transportation, which addresses
the accessibility issue that  governs the way population and employment
 distribute  themselves in the study area. Transportation goes well beyond
 facilities such as roads, rail, and terminals to include travel time, distance, and
costs in general. The fourth is infrastructure, which includes public utilities
and other supporting elements. A final category includes information on the
environment, which pertains to water quality, air quality, noise, and so forth.
The source of the first category of information—population and employment,
is typically the census, which is conducted by the Bureau of Census in the
Department of Commerce every 10 years in the United States and updated
every five years. The employment statistics are tabulated by the Standard
Industrial Classification (SIC) code. Population is compiled by census tract,
while education information may be collected by school districts, although
there are recent trends to put them on a more consistent geographic sub-units,
as afforded by the advent of GIS.

The second category information, land use, is traditionally survey
data, supplemented by aerial photos. In the United States, the information is
often coded according to the Standard Land Use Coding Manual published
by the Department of Housing and Urban Development. Part of the land use
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 information is the permissible development densities, which deal with (among
other items) the height of buildings that are in certain zones. In urban applica-
tions, such information is often encoded in zoning maps available from metro-
politan planning agencies. In recent years, we have seen the introduction of
 satellite  imagery that greatly expands the type of land use information that is
available. In rural applications, land use refers to anything from landform and
soils to  ecological and vegetative classifications.

The third category information, transportation, is traditionally encoded
in highway networks for urban applications. Standard computer programs are
available to extract the necessary travel time information between two points in
a study area. Trip frequency is needed, that is, information on what percentage
of trips taken are of a particular duration. For example, 30 percent of the trips
may be under 10 minutes in duration, 50 percent between 10 and 20 minutes,
with the remaining over 20 minutes. Transportation or highway agencies are the
best source of such information. In rural applications, interregional commodity
flows are often required, representing trading that takes place via air, highway,
or waterways.

Fourth, the infrastructure information—sewers, water supply, and
power—is usually dispersed among the various political jurisdictions and
utility companies. Individual communities, states, and countries are often the
custodians of these records. Inasmuch as utility companies are highly regu-
lated in the United States, these public agencies often need to be consulted
 before utility  companies are willing to release information beyond basic
 factual data.

Finally, environmental information of interest lies in a variety of stake-
holders: for instance, industries that pollute and those that do not, governmental
agencies that oversee public health and safety, and advocacy citizen groups who
are watchdogs for conservation. While site-specific and interest-group-specific
data gathering is indispensable, remote sensing has increasingly played a more
important role in environmental monitoring in recent years. It provides accessi-
ble information irrespective of political jurisdiction.

C. Use and Display of Information
In view of the cost of data collection, a cogent question to ask is: “What is the
 minimum information set, or the absolutely necessary amount of information
out of the comprehensive set, that will allow us to do the analyses?” The main
idea is to identify substitutes in case a particular piece of information is not avail-
able. For example, work trips can be substitutes for employment, and housing
can serve as a proxy for population. A desirable strategy is to have information
that is readily observable, such as from satellites, instead of from secondary
sources. Remote sensing technology has developed to such an extent now that
this strategy has become quite feasible.

It is widely agreed that a key element of a GIS is graphical display. There
are specifications as to the way that a display should be presented and used. For
example, it should be problem-oriented, and it should provide just the appropri-
ate amount of information for the occasion—no more and no less.  Figure 6.1 and
Figure 6.2 show some rather interesting three dimensional plots of population
 information in York, Pennsylvania—a focal case study area in the “Exercises and
Problems” appendix and the accompanying CD/DVD. Two graphs are
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Figure 6.1  PROXIMAL MAP OF DEVELOPABLE RESIDENTIAL LAND IN
YORK, PENNSYLVANIA

Figure 6.2  CONTOUR MAP OF POPULATION IN YORK, PENNSYLVANIA
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 displayed—the proximal graph by zone (Figure 6.1) and the contour graph by
continuous distribution (Figure 6.2). Proximal maps are usually graphed for land
use information, while contour maps are used for activities such as population
and employment. For example, residential land use in thousands of square
feet (m2) can be plotted, delineated by the boundaries of tesselations that
 approximate  traffic zones, as shown in Figure 6.1. Population, on the other hand,
is considered to be ubiquitous among developable land and hence represented
here as continuous distribution.

Information over time can also be displayed as well (Langran 1992).
Zonal population or employment over the base-year and forecast-year can be
 displayed side-by-side as bar charts in Figure 6.3. Such a plot shows the spatial
variation of population or employment activities temporally; it is effective in
 displaying the regional impacts of a policy over a planning horizon. Obviously,
many other variations are possible, including overlays, and there are quite a few
graphics packages today that have extensive display capabilities such as virtual
reality in which realistic images are constituted by the user for experimentation.
Thus existing capabilities in data retrieval and imagery enhancement allow a
great deal of flexibility in information display. Perhaps an area for further
 improvement and exploitation may be a concerted effort to bring the user and
the analysis communities together through these graphical displays, so that the
 analyst can provide the user with what is really needed rather than what the
 analyst thinks is needed.

Figure 6.3  BASE-YEAR ZONAL EMPLOYMENT, YORK, PENNSYLVANIA

Left-most bar   –

Middle bar        –

Right-most bar –

Total employment

Basic employment

Nonbasic employment

Key
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II. GEOGRAPHIC CODING SYSTEMS
According to Werner (1974), the two major structural elements of all geographic
coding systems are a concept of areal division, classification, or definition; and
some form of coding logic. In recent years, overt emphasis has been given to the
automated aspects of geocoding logic and data storage, retrieval and display in
large, geographically referenced information systems. This has resulted in a pop-
ular tendency to assume that a legitimate geocoding system must be computer-
based and requires a fairly sophisticated coding structure. Broadly conceived,
systematic geographic coding has had a long and diverse history that includes
many classifications other than coding-oriented systems of geographic reference.

A. Central Place Theory
Historically, there exists a well-publicized scheme regarding a natural geographic
classification hierarchy. It was believed that central places were developed from
distribution points for goods and services in order to serve a surrounding
 hinterland (for instance,  an agricultural region). The central place evolves later
on as a political and social center for the region, serving a diverse number of in-
terest groups and concerns beyond farmers. A central place may be developed
from a transport focus or break bulk point. For example, Chicago, besides being
a central place for the distribution of agricultural goods, is also a natural water-
ways center and a rail hub for manufacturing industries. It is a distribution and
collection center for all commodities passing through the Great Lakes and the
Midwest of the United States in general. Specialized function settlements
 constitute yet another type of central places: for example, coal mining in
Scranton/Wilkes-Barre, Pennsylvania. There are many parallel cases of this kind,
including resorts, spas, and other natural resource centers.

One can identify a hierarchy of central places. A hamlet is a local center,
a village is a neighborhood center; town is a community center; a city is a regional
center; and a metropolis and a megopolis may be described as cosmopolitan
gathering places. Industrialized nations seem to become more and more urban-
ized. For this reason, this hierarchical geographic classification scheme may be
applicable to a number of industrialized nations. It forms a logical scheme for
storing geographic information. Thus one can look up the population and em-
ployment in a hamlet versus a village versus a town and all the way up to a
megalopolis. Recent analysis techniques organize spatial data around tile-like
tessellations that approximate these natural settlement patterns.1

B. Concentric Zone, Sector, and Multi-Nuclei City
Structures

Aside from these broad classifications of central places, there are some observed
regularities in the internal structure of an urban area, upon which finer geo-
graphic subdivisions can be discerned. As far back as 1923, Burgess postulated a
structure of concentric rings around the central business district corresponding to
belts of different activities (see Figure 6.4(a)). The central business district, which
forms the core of the onion-ring structure, is the focus of commercial,  social, and
civic activities as well as the transportation system. Outside the central business
district is a transition zone where residential and light manufacturing activities
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are found. Further out, there is the zone for blue-collar workers’ homes. Then
comes the ring of higher income residences, including the better apartments and
single-family dwellings. Finally, on the outer fringe is the commuters’ zone in
which suburbs and satellite towns are found.

The sector city structure, suggested by Hoyt as far back as 1939, is a
 modified version of the above in that it incorporates transportation factors more
explicitly. The influence of transportation routes in guiding urban growth is
 modeled along corridors (or sectors) in addition to the ring structure (see Figure
6.4(b)). This structure recognizes that growth occurs along transportation routes
since they facilitate the movement of people and freight. Also incorporated is the
fact that high-income residential activities tend to move out from the city center
as a result of better transportation to and from the central business district.

Finally, the multi-nuclei structure recognizes that a disparate group of
centers grow to merge into a multi-nucleated urban area. Certain heavy
 industries may have located themselves in certain parts of town. At the same
time mutually exclusive facilities are likely to separate one from the other. Thus
quality residences tend to locate themselves away from the industries for envi-
ronmental reasons. As a result, several central places evolve within the same
urban area. An illustration of this concept is again shown in Figure 6.4(c).

There are other postulated geographic structures of a city, but those
 described above represent the classic ways to classify a city into subregions for
geographic reference. It would seem that a GIS should be able to take into
 consideration such a classification scheme. In reality, however, most GIS tend to
organize their classification scheme along arbitrary geographic boundaries of
census tracts, school districts, voting precincts, and traffic zones. They bear little
resemblance to the logical scheme as outlined above. In recent years, districting
models have been proposed to divide a community into logical subdivisions
(Benabdallah and Wright 1992; Bennion and O’Neill 1994; Ahituv and Berman
1988). This represents a revived interest in the structure of human settlements.
More will be said on district clustering in Section XII of this chapter.

C. Dual Independent Map Encoding System
The fundamental urban data classification used in practice goes to a level of de-
tail way beyond the internal city structure schemes above. In a way, it also goes
beyond the census tracts, school districts, voting precincts, and traffic zones. In

Figure 6.4  CONCENTRIC ZONE, SECTOR, AND MULTI-NUCLEI STRUCTURES OF A CITY

(a) Concentric zone structure (b) Sector-structure (c) Multi-nuclei structure
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the United States, the requirement for a continuing metropolitan planning
process in the 1960s created an increased demand upon the Bureau of the Census
to provide a small area data and expanded data-user services. This, in turn, led
to the initiation of the Census-Use Study, which was to improve methods for
 relating census data to local agency data at a fine geographic scale. By the 1970s,
a fairly standardized universe of urban geographic base files utilizing the Dual
Independent Map Encoding (DIME) system, based on block-face coding, had
been implemented in almost all standard metropolitan statistical areas. 

The 1970 census instituted a computerized procedure that incorporated
many of the advances developed in the studies in the 1960s. As mentioned, the
major geocoding innovation was DIME. A DIME geographic base file is essen-
tially a description of block boundaries defined by its nodes (or vertices). Figure
6.5 illustrates this technique through a series of illustrations. Many of the steps in
the traditional geocoding process are eliminated by the use of specially prepared

Figure 6.5  ILLUSTRATING THE DIME FILES

(b) Form of segment records in a DIME file.

(a) Alternative ways of coding data at city block level.
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master-coding-maps and the keying of census files to coding maps through the
geographic identifiers. The construction of noded map, map-resources lists, block
numbering-schemes, field work and Address Coding Guide (ACG) preparation
may now be unnecessary. Use of standard DIME/ACG files entails the construc-
tion of the arterial network in the DIME system, the reconstruction of census data
to fit traffic zones, and the addition of local transportation and land use files to the
modified DIME Census-file. The arterial network can be reconstituted from
DIME. To do this, however, a DIME file must be adjusted for transportation-
system applications. That task will include creating a new network file, adding
data on traffic direction, capacity, pavement width, etc. (See Figure 6.5(b)). To
 reconstruct census data by traffic zones,  it is necessary to provide a table of equiv-
alents between census areas and traffic zones. Similarly, the addition of local
codes allows use of the DIME file in the analysis of local and census data as they
relate to local areas.

The use of DIME files is based on the fact that the city block is one of the
smallest, most standard and relatively permanent urban areal units. Block face is
the lowest common-denominator unit for urban geographic base files because, in
general, cities are made up of blocks. With data gathered and recorded by blocks,
data sets can be aggregated or disaggregated to conform to any number of
 special area boundaries, for instance, school districts, traffic zones, or police
precincts. Thus, only one geographic coding system is required to meet the
 varied demands of many users.

D. Topologically Integrated Geographic Encoding 
and Referencing

Unlike the urban environment, there is no analogous common-denominator unit
for national geographic base files. A nation’s geography encompasses a far more
heterogeneous mix of land use patterns, natural areas, governmental entities,
and other spatial orderings than that which characterizes metropolitan geomor-
phology. While many national geocoding systems are based on county units or
units compatible with county boundaries, there are important exceptions, such
as zip code zones and congressional districts. These do not necessarily aggregate
to the county level. There is a lack of definition, both semantic and geographic,
of sub-county units. There is the problem of variation between urban and rural
land use, settlement patterns, and population densities which create great dis-
parities in the size of the spatial units coded both within a single system and
among the various systems (Schweiger 1992; Gryder 1992).

As part of the 1990 census, the U.S. Department of Commerce, Bureau of
the Census, developed an automated geographic database, known as the
Topologically Integrated Geographic Encoding and Referencing (TIGER) system.
TIGER provides coordinate-based digital-map information for the entire United
States, Puerto Rico, the U.S. Virgin Islands, and the Pacific Territories over which
the United States has jurisdiction. The TIGER system has significantly improved
the accuracy of the 1990 census maps and geographic reference products. Extract
files from the TIGER system permit users with appropriate software to perform
such tasks as linking the statistical data in the 1990 Census of Population and
Housing: displaying selected characteristics on maps or a video display screen at
different scales and with whatever boundaries they select for any geographic
areas of the country. For example, a map for a particular county may be displayed
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showing the distribution of the voting age population by city block. The Bureau
makes the information, called TIGER/Line™ files, available to the public on
CD-ROM. A program, available from some of the most widely circulated GIS
 software, allows the users to display the information in a graphic form.

TIGER data is the most widely used spatial data used to geographically
define a local area or region available today. They replace the 1980 GBF/DIME
(Geographic Base File/Dual Independent Map Encoding) files, and contain these
data elements:

1. Census map features such as road, railroad and rivers
2. Feature names and classification codes
3.  Alternate feature names
4. Associated 1980 and 1990 census geographic area codes
5. Federal Information Processing Standard (FIPS) codes
6. Latitude and longitude coordinates
7. For areas formerly covered by DIME files: address ranges and zip

codes

Other TIGER-related products that may be helpful for specific applications
 include:

1. TIGER/DataBase™—containing point, line, and area information
from TIGER’s internal data base, including additional information
not available in the TIGER/Line™ files;

2. TIGER/Boundary™—containing coordinate data for specific 1990
census tabulation area boundary sets; for instance, a file containing
all state and county boundaries, and another containing all census
tract and block-numbering area boundaries;

3. TIGER/Tract comparability™—providing information for 1980 and
1990 census tracts.

Klosterman (1991) gives an excellent introduction to the TIGER system, empha-
sizing applicational considerations. Also included are a glossary of terms and
contacts for further information.

E. Other Data Sources 
In the United States, data from National Aeronautics and Space Administration
(NASA), National Oceanic and Atmospheric Administration (NOAA), and
Department of Interior through the U.S. Geological Survey (USGS) have been
particularly important supplements to data from the Bureau of Census. Specific
examples of data here included remotely sensed, land use, land cover, and
 digital elevation data (Star and Estes 1990; Schweiger 1992). Table 6.2 presents
examples of digital data sets, produced on a routine basis, that are available (or
are being made available) from the U.S. government. Data from USGS can be
used to define street networks. USGS offers Digital Line Graphs (DLGs) through
the National Digital Cartographic Data-Base (NDCDB). DLGs are files of carto-
graphic data primarily made by digitizing point locations and line and polygon
outlines from map separation materials. (See example in Figure 6.11.) The spa-
tial data are topologically structured. Spatial relationships, such as adjacency
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and connectivity among data elements, are explicitly encoded. In addition, DLG
data elements may have coded attributes. An improved data model, called
Digital Line Graph-Enhanced (DLG-E), will be available soon. DLG-E provides
for the explicit representation of individual cartographic features, such as roads,
counties, buildings and streams, in addition to the topologically structured spa-
tial data provided in the current DLG. This enhancement also provides a more
extensive set of attributes and relationships for these features than exists in a
DLG. Other data which are available from USGS include digital elevation model
data, land use and land cover data, and geographic names data, as suggested
earlier and shown in Table 6.2. Remote-sensing data will be discussed in a later
section of this chapter.

There is a long-range effort in the U.S. Government to create a NDCDB.
This is based on the work of an interagency coordinating committee, to set
 standards for the format and content of digital spatial data throughout the
 government. The layers to be included in this database include hypsography
(topographical relief), hydrography (surface water for navigation), land surface
cover, surface features including vegetation, boundaries, positional control, trans-
portation, other man-made structures, and the Public Land Survey System. One
commercially available source of spatial data is EtaMaps®, available through Etak,
Inc. They contain centerline street data, address ranges, political and statistical
boundaries, and zip codes. They come in two formats: as ASCII format which can

Table 6.2  DIGITAL DATA AVAILABLE FROM THE UNITED STATES
GOVERNMENT

ecruoSataDepyTataD

Topography:

Digital elevation model
Digital terrain data

Land use and land cover:

Ownership and political boundaries
Transportation
Hydrography

Socioeconomic and demographic data:

Census tract boundaries
 Demographic data
Socioeconomic data

Soils

Wetlands

Remotely sensed data

 U.S. Geological Survey

 U.S. Geological Survey

U.S. Department of Commerce

U.S. Department of Agriculture

U.S. Fish and Wildlife Service

National Aeronautics and Space

National Oceanic and Atmospheric

(National Mapping Division)
Defense Mapping Agency

(National Mapping Division)
Note: Department of Energy
also has transportation data

Administration

Administration

(Census Bureau)

(Soil Conservation Service)

SOURCE: Star and Estes (1990). Reprinted with permission.
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be read by the leading GIS software products such as ARC/INFO, AutoCAD,
IGDS, INFORMAP and others and a compressed format, making EtakMaps®

 usable with other Etak software products. Many of the GIS software vendors
 provide data sources as well. We will survey these GIS software in a later section.

The United Nations Environment Programme (UNEP) is a spatial data
user as well as a producer. Through the newly established Global Resources
Information Database, with existing centers at the UNEP offices in Geneva,
Switzerland, and Nairobi, Kenya, efforts are under way to collect and disseminate
important spatial data sets for the globe, as well as provide certain kinds of assis-
tance in spatial data collection and processing to less-developed countries. Sample
data sets in the archives now include range and endangered species  distribution
for parts of the world, as well as small scale global data sets of soils and vegetation. 

Shaw, Maidment, and Arimes (1993) reported a computer-based regula-
tory information system for site planning. The concept of jurisdiction is used to
separate the regulations and permit requirements applicable to a particular
 development from those that are not. It is a useful tool for providing early feed-
back to prospective permit applicants. In sites with rapidly changing regulations,
updating and maintaining current information may require substantial effort. To
use GIS in concert with regulatory information is a feasible solution, although this
has its cost implications as well. Finally, this concept can be carried over to
 hazardous waste regulations, environmental permitting, and appropriative
water-right laws.

III. GEOGRAPHIC INFORMATION
SYSTEMS (GIS)

Computer-based GIS is characterized by its ability to integrate layers of spatially
oriented data through a variety of analytical approaches. The end result, if
 carefully executed, is productive sharing of information for multiple problem
solving. Among the general advantages of GIS are (Lee and Zhang 1989):

(a) The ease of data retrieval;
(b) The discovery and display of information gained by observing

 interaction between location and land use attributes;
(c) The capacity to process a large amount of data for spatial evalua-

tion;
(d) The ability to make scale and projection changes, remove distor-

tions, and perform coordinate rotation and translation; and
(e) The analysis of spatial relationships through the application of

 empirical and quantitative models.

A. Data Organization and Structure 
The choice of a particular spatial data structure is one of the important deci-
sions in designing a GIS (Star and Estes 1990). Each type of spatial data or theme
in a GIS is referred to as a data layer or data plane. In each of these data layers,
there are three primitive geometrical entities to encode: points, lines, and
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 polygons or planes. Points, such as the locations of oil and water wells, and
lines, such as the centerlines of roadways or streams, are key elements of this
breakdown. When we consider bounded regions, such as the borders of a subdi-
vision or the edges of a lake, we often focus on the boundary lines called the
 enclosed region polygons. We use the term to include curved boundaries in
 addition to straight line boundaries. Not all GISs can work directly with curves
as such. More often than not, they permit a curved line to have interior digitized
points in addition to the end points. Thus a curve is approximated by straight
line segments. Besides geometric information, equally important is the non-
 spatial or attribute data. For a  simple spatial object such as a well, the essential
spatial information is the  geodetic or geographic location of the well. Ancillary
information may include its depth, date of drilling, production volume, owner-
ship, and so forth. (See  examples in Figure 6.11 and Figure 6.12.)

1. Raster Data Structure. The data structure of a GIS can be broadly classified into
two types: raster and vector. In a raster structure, a value for the parameter of inter-
est, for example, elevation above datum, land use class, and plant biomass density,
is developed for every cell in a grid over space. In Figure 6.6, elevation in meters has

Figure 6.6  RASTER DATA STRUCTURE EXAMPLE
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been recorded from a contour map on a regular grid, where each cell is referenced
by the row and column numbers. Thus at the position represented by the first 
cell (1, 1), the land is 87 meters (290 feet) above sea level, and so forth.

One consequence of this grid system is that a cell has either four or
eight adjoining neighbors, depending on one’s preference, as shown in 
Figure 6.7. Notice that the 4-connected neighbors are closer than the 8-con-
nected neighbors inasmuch as the diagonal elements are 1.41 times further
away than the immediate 4-connected ones. The former is called first-order
neighbors and the latter second-order neighbors. (See the “Spatial Time
Series” chapter in Chan [2005] to see how the order of neighbors affects spatial
analysis.)

Consider a development as shown in Figure 6.8(a). A map from a local
planning agency shows the legal property boundaries, streets, and restrictions on
construction and development due to easements of public utilities. Figure 6.8(b)
shows a raster converted representation of the map. The numbers in each cell

Figure 6.7  DEFINITION OF SPATIAL NEIGHBORHOOD
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SOURCE: Star and Estes (1990). Reprinted with permission.

Figure 6.8  A SUBDIVISION MAP AND ITS RASTER REPRESENTATION
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 indicate the permitted land use for each cell, using a majority rule in case of
 ambiguity due to the coarseness of the grid overlay on the subdivision map. By
adding up the number of cells in each category, we can determine the percentage
area coverage of each land use category:

Land use category Class Total cells Percent of total

Roads 1 33 41
Easement-
restriction 2 8 10
Unrestricted-
development 3 40 49

Raster data sets in practice can be very large. When dealing with such
large data sets, there are several algorithms used to compress the data. Aside
from the obvious method of increasing the coarseness of the grid, one way of
 compressing the data uses chain codes. Chain codes consider a map as a set of
spatially referenced objects placed on top of a background. The coordinates of a
starting point on the border of an object (for example, a lake) are recorded, and
then the sequence of cardinal directions of the cells that make up the boundary
are stored. As shown in Figure 6.9, the shaded area is represented, beginning
from the starting point (1, 1), by 3 units north, 1 east, 1 south, 2 east, 1 south, 1
west, 1 south, and 2 west. This may be an efficient way to store areas, particularly
since each spatial object is kept as a separate entity in the data base. However,
some kinds of processing will be required so that the entire raster array can be
 reconstituted, a complex task that may amount to an unacceptable cost.

2. Vector Data Structures. The second major type of data structure in a GIS is the
vector format. In a description of spatial data based on vectors, we make the
 assumption that an element may be located at any location, without the positional
constraints of a raster array. Vector data structures are based on elemental points
whose locations are known to arbitrary precision, in contrast to the approximate
raster data structures described above. As a simple example, to store a circle in

Figure 6.9  A CHAIN CODE REPRESENTATION
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SOURCE: Star and Estes (1990). Reprinted with permission.
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one of the raster data structures, we might find and encode all the raster cells
whose locations correspond to the boundary of the circle. This is often called a
low-level description of the circle. A high-level description, on the other hand,
might efficiently store the circle by recording a point location for the center of the
circle, and specifying the radius. In this example, the high-level description based
on a vector representation is more efficient in terms of the amount of data
 required, as well as more precise.

Several forms of vector data structures are in common use. In a whole
polygon structure, each layer in the data base is divided into a set of polygons
such as the one shown in Figure 6.10. Each polygon is encoded in the data base
as a sequence of locations that define the boundaries of each closed area in a
specified coordinate system (sometimes called a boundary loop). Each polygon
is then stored as an independent feature. There is no explicit means in this
 system to reference areas that are adjacent. This is, to some extent, comparable
to the chain-coded raster discussed above, in that for both a whole polygon
structure and a chain-coded raster, the emphasis is on the individual polygonal
areas, where each discrete area is stored separately. Thus the three regions in
Figure 6.10 appear as

Polygon I Polygon II Polygon III

1, 4 2, 2 6, 4
4, 3 4, 2 7, 2
4, 2 4, 0 6, 1
2, 2 1, 0 4, 0

4, 2
4, 3

Figure 6.10  EXAMPLE OF A WHOLE POLYGON STRUCTURE
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Attributes of the polygons, such as land cover or ownership, may be
stored with the coordinate list. Please note that by maintaining each polygon as
a separate entity this way, the topological organization of the polygons is not
 maintained. By topology is meant the relationships between different spatial
 objects: which polygons share a common boundary, which points fall along the
edge of a particular polygon, and so on. In a whole polygon structure, line
 segments that define the common edges of polygons are recorded twice, once for
the polygon on each side of the line. Similarly, points that are shared by several
polygons, such as location (4, 2) in the example, will also be represented several
times in the data base. With this organization, editing and updating the database
without corrupting the data structure can be difficult. 

One of the best known standard vector file formats is the previously
 mentioned DLG of the USGS. The agency is producing these vector files based on
the source materials used to compile the USGS 7.5-Minute and 15-Minute
Topographic Maps Series. A separate set of DLG data files is based on 1:2,000,000-
scale map products. The data contents of the DLG files are subdivided into
 different thematic layers. One layer consists of boundary information, including
both political and administrative boundaries in the region. A second layer is for
hydrographic features. A third layer is for the transportation network in the area.
Finally, the fourth layer is based on the Public Land Survey System, which has as
its focus a survey system administered by the U.S. Bureau of Land Management.

The essential data elements of the DLG level-3 structure are similar to the
other vector data structures discussed in connection with DIME files. Nodes
 represent either end points of lines or line intersections, while additional points are
used where required to indicate significant features along lines. Lines have start-
ing and ending nodes, and as such, they permit us to specify a direction along the
line as well as the areas on the left and right sides of the line. A special degenerate
line is defined as a line of zero length and is used to define features that are indi-
cated on the map as a point. Degenerate lines are recognizable because they have
the same starting and ending node. Areas in the DLG format are completely
bounded by line segments. Each area may have an associated point that represents
the  characteristics of the area; the point location is arbitrary and may not even be
within the area. The point, line, and area elements provide information about
topology and location. In addition, there is an extensive system for coding attribute
information for the elements. The attribute codes are based on those  features
 represented on USGS topographic maps. Attribute codes are structured in a speci-
fied way, with both major and minor code components, where a major code may
signify surface cover for example and a minor code may contain more specific
 descriptors.

3. Relational Vector Structure Graphical approaches utilize cartographic princi-
ples—for example, symbols, line weights, and color—for characterizing spatial
 features and their type and magnitude. Relational databases contain an ordered set
of information grouped together in two-dimensional tables known as relations.
Users define the relation that is appropriate to the query whether the tables are
 already available or need to be constructed by the controlling program. Relational
databases have the advantage that their structure is very flexible and can meet the
demands of all typical queries that can be formulated. Figures 6.11 and 6.12 present
examples of such a data structure. Illustrated in these examples are representations
of areas, lines, and points, as well as their attributes, stored as alphameric mirror
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 images of the graphical counterpart. The example in Figure 6.12 shows the  related
highway network attributes, including travel times and traffic volumes. In sum-
mary, these are the advantages of a relational organization:

(a) All data structures can be normalized (such as a unit-square repre-
sentation of a rectangular map)2;

(b) Spatial consistency is insured across entities (as key points are
geocoded in x-y coordinates);
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Figure 6.11  CHAIN AND POLYGON DATA RECORDS FOR GIS
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(c) Spatial relations are compact (see, for example, the district spe -
cification in Figure 6.11) and isolated from non-spatial relationships
(in Figure 6.12);

(d) Features can be attached to multiple spatial entities inasmuch as
these entities are referenced against one another; and

(e) Multiple geobases can be attached to the same application database.

B. Location Reference System and Data Structure
As seen from Figures 6.11 and 6.12, GIS queries can be spatial, non-spatial
 (attribute), or a combination of the two through the establishment of suitable 
linkages. When spatial information is desired, data must be established within a
coordinate system that can serve as a spatial reference system. In addition to the

Figure 6.12  LOCATIONAL DATA LINKED TO ATTRIBUTE DATA
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reference control scheme, data are generally related to a map base that maintains
good horizontal and vertical control. USGS 1:24,000- and 1:62,500-scale quadran-
gles have been employed in a number of GIS studies. The USGS 1:100,000-scale
maps are gaining popularity and utility because of the useful scale for a variety of
small-scale GIS investigations and because of the current U.S. Census TIGER files
that utilize data from that map series. USGS map series provide, in general, good
topographic, transportation, hydrographic, political boundary, and spatial control
on each base map to serve as the locational reference for GIS analyses. Global
Positioning Systems, afforded through satellite technology, are gradually provid-
ing a mechanism to secure accurate survey coordinate information with time and
cost savings.

As mentioned, closely related to location referencing is topological
 information. Topological information allows one to describe not only an object’s
position, but also its spatial relationships with respect to neighboring objects.
Some kind of topological information is implicit in spatial data. In a simple raster
structured data file, for example, there is a specified spatial organization for the
data. The regularity in the array provides an implicit addressing system. This
permits rapid random access to specified locations in the database. Thus we
know immediately those cells that are adjacent to any target location, and we can
easily find and examine those regions that bound a specified group of cells.
Topological information in vector structures is often coded explicitly in the
 database. Line  segments with DIME files, for example, have identifiers and
codes for the  polygon on either side. When topological relationships are not
 explicitly coded in vector data structures, it can be relatively expensive and time-
consuming to  constitute them.

The advantages and disadvantages of raster versus vector spatial data
structures hinge on data volume (or storage efficiency), retrieval efficiency,
 robustness to perturbation, data manipulation efficiency, data accuracy, and data
display. While some of these have been discussed in the previous section, there
are fundamental differences between the two systems that make comparison
 irrelevant: raster is quasi-continuous, while vector is clearly discrete; raster
 representation may be considered more dense than vector because more unique
values are stored. On this basis, the two systems are geared toward different
 applications, and they have their respective roles to play. To illustrate how diffi-
cult the comparison job really is, consider comparison of processing efficiency in
modern GIS systems. Traditionally, overlay operations are thought to be more
 efficient in raster systems. In current data processing technology, however, there
may be an efficient means to determine the approximate locations of polygons by
maintaining a separate index database. Using such an index to structure a search
through the spatial data, a comparison of raster and vector data structures based
on processing speed may be more sensitive to the spatial data itself than to the
choice between the two data structures. If forms of both raster and vector
 structures are found in a GIS, as well as structure conversion routines and
 appropriate analysis tools for each data type, then the data could be stored in
their natural form to both optimize geographic specificity and minimize conver-
sion costs and attendant bias. This also permits analytic procedures to operate on
a data structure where efficiency or accuracy is highest. While this strategy is
more complex than one in which all data are stored and manipulated in a single
data structure, efficient software and hardware for vector/raster conversion can
significantly reduce the size of the problem.
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Because of today’s prevailing philosophy of data sharing between
 various organizations, federal agencies have begun distributing spatial data
using Topological Vector Profile (TVP) as part of the Spatial Data Transfer
Standard (SDTS). The most notable of these applications is USGS’s conversion of
all 1:100 000-scale and 1:2 000 000-scale DLG-3 data to TVP and making TVP
available free of charge on the Internet. Lazar (1996) provided a primer on
using the TVP. SDTS will eventually cover all aspects of spatial-data transfer,
including the conceptual modeling of spatial data itself. These encompass the
definition of 32 vector and raster spatial objects. SDTS would have specifica-
tions for data  quality reports, logical specifications for transferring data (what
items can be transferred and how they are organized), and the physical field
format of the data transfer. Currently, TVP requires several spatial objects to
exist in every data set. One feature of TVP is that it provides a common dictio-
nary to unify hitherto diverse spatial object  terminologies. For example, the
 following spatial objects are defined: 

(a) planar node: a zero-dimensional object that is a topological inter-
section or endpoint of one-dimensional objects, 

(b) complete chain: a one-dimensional object that references starting
and ending nodes and left and right two-dimensional objects, 

(c) GT-polygon: a two-dimensional object, where the GT stands for
geometry and topology, and

(d) universe polygon: the special GT-polygon that covers the rest of
the universe outside of other GT-polygons; there is always exactly
one universe polygon.

An SDTS data set is referred to as a transfer. A transfer consists of a group of files
encoded. In the TVP, all files for a particular transfer will be in a single, separate
directory for any medium with a directory structure. There is also an ASCII text
README file associated with it. Part of the file name refers to a logical grouping of
related information. For example, it may facilitate the transfer of one-dimensional
spatial objects such as complete chains. It should be noted the system is still
evolving and additional features are being implemented, often at the suggestion
of the users.

C. Geospatial Metadata
To further facilitate transferability, metadata is adopted in GIS. Metadata 
is  defined as structured information that enables a dataset to be identified,
used, manipulated, and cataloged (Galati 2006). Metadata is often referred
to as “data about data.” The datasets to be identified include not only GIS,
but also images, documents, maps, library records, and anything else
 searchable. Metadata is sometimes embedded within the dataset, or it could be
a separate document. Either way, metadata makes the dataset “visible” to
searches.

Metadata helps GIS users understand the numerous parameters
 surrounding the datasets. Users can quickly discern the dataset’s level of preci-
sion and usefulness in tandem with other datasets and objects. Well-detailed
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geospatial metadata directs users on how best to use the data and to what lengths
the dataset creator went to construct the resource. Through metadata review, an
astute GIS user could identify which dataset resources are of high quality, which
are beneficial for his/her application, and which are irrelevant.

Geospatial metadata has proven to be particularly valuable in the tech-
nical and scientific community. New, refined definitions of geospatial metadata
are concurrently being constructed to better define and catalog the available
technical data bases. Many worldwide organizations feel that geospatial data
should be standardized for swift interoperability and exchange. Standards
 provide universal terms for the various datasets they describe. Universal termi-
nology presents the capability of automatic searches for specific terms. Thus
 standards enable simpler information interchange.

Certain standards are mandated by governments and are required by
local agencies. For example, the U.S. government requires all agencies to use the
Federal Geographic Data Committee (FGDC) content-standard, while the
Australian Government requires the Australian government Locator Service
standard. Irrespective, geospatial metadata standards offer the GIS user an
 efficient way to organize and catalog available datasets.

In the 1990s, the U.S. government became very interested in the reten-
tion, organization, and dissemination of geospatial data. By this time, GIS, Global
Positioning System (GPS), and satellite imagery were being used in full force.
The FGDC took the first steps toward a comprehensive National Spatial data
Infrastructure (NSDI). In 1994, NSDI was officially formed and a mandate for the
FGDC to create geospatial data standards was enacted. FGDC’s Content-
Standard for Digital Geospatial Metadata was essentially born.

In 2003, another mandate would have the NSDI provide an infrastruc-
ture through which data producers and users could share geospatial data.
Partnerships were formed with public and private data producers to increase
data availability to geospatial data users. A metadata clearinghouse was formed,
 serving as an online or offline reservoir of published data that is being offered to
the public. Oftentimes, these geospatial metadata clearinghouses also offer
geospatial datasets.

IV. REMOTE SENSING SYSTEMS
GISs are demonstrably powerful tools for the management and analysis of
 spatial data. Remote sensing systems are equally powerful tools for the
 collection and classification of spatial data. However, nearly all of the
 currently  operational GISs utilize maps as their primary source of spatial data.
These complex documents, designed for visual search and retrieval by human
operators, are digitized (usually manually) and then entered into the master
spatial database of the GIS. Although many of the maps used as input are
 derived from aerial photography or occasionally other remote sensing devices,
there is little use of digital remote platforms as a direct data input. The last few
years have seen an increased interest in the direct use of remote sensing data
as inputs to GIS, but much of this interest has been centered in the remote
 sensing community rather than among the potential primary users, those who
make operational use of GIS.
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A. Interface between Remote Sensing Data and GIS
Perhaps the best way to explain how remote sensing data can serve as input to
GIS and vice versa is through a case study. Computer image processing at
Caltech’s Jet Propulsion Laboratory (JPL) resulted in the development of an Image
Based Information System (IBIS) (Marble and Peuquet 1988). Most data entered
into IBIS are in raster (image-based) format. However, the system is  configured in
such a manner that other data types, such as graphical and tabular, may be used
in analysis as well. Data input is a three-stage process. The first stage, called data
capture, includes all operations up to the point where a data file is computer read-
able. Data capture costs are enormous for many basic kinds of data, such as the
demographic and economic data gathered by the U.S. Bureau of the Census.
Another common method of data capture is to develop a coordinate digitization
of boundaries or linear features from a map. The map is not  computer compatible
but the digitizer output is and can be used in subsequent processing steps. In order
to maintain geometric consistency between all data planes included in the data-
base, an image plane exhibiting good radiometric and planimetric qualities is
 designed to be the data plane. All other data planes are geometrically corrected to
register to the planimetric base. One can integrate  various data types to form an
IBIS database (see Figure 6.13). Since the primary data structure is a raster format,
image data planes are directly entered into the system. Graphical forms of data,
usually obtained in Cartesian reference form, must be transformed into image
space, but are linked to the image database through a local interface, as shown in
Figure 6.13. Graphical or vector data may also be entered into the IBIS database.
Graphical data are either produced locally on a coordinate digitizer or are obtained
from a data tape. Regardless of the data origin, graphical data are transformed
into image space prior to inclusion in the IBIS database.

All tabular files (interface files) are linked to at least one of the geo-reference
planes included in the IBIS database. The specific link is obtained by storing the
numerical value (gray tone) representing each region of the geo-reference plane
with tabular data describing attributes of that region (Figure 6.13). Attribute data
may be statistical in origin, an identification code, or may be the result of an
image plane comparison routine such as polygon overlay or cross-tabulation. As
distinguished from the GIS discussion, remote sensing information is coded in
digitized, or pixel (picture element) format. This avoids the referencing scheme
of Figures 6.11 and 6.12 in storing lines and districts, but it usually increases the
data storage and processing costs since more information is being processed.

In previous discussions, we make a distinction between raster versus
 vector data structures, or cellular versus organizational referencing systems. The
traditional advantages and disadvantages of raster versus vector spatial data struc-
tures hinge around storage efficiency, retrieval efficiency, robustness to
 perturbation, data processing efficiency, data accuracy, and data display as
 mentioned previously. In spite of its raster format, relational data structure such as
the one outlined in IBIS has the potential for efficient search among raster and
 vector data structures, at the expense of data file management complexity. As we
have seen, such a system design permits search through either the geometrical
 entities or the attribute data, without the other getting in the way, since these two
kinds of information are stored separately. Thus, one expects better data-retrieval
performance for simple kinds of search, which should result in more efficient
 operations. In any event, such a system can minimize the computer’s input/ output
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operations that are required to use the output of one search operation as the input
for another. This may be particularly important when working on multi-user
 systems and is typically done at the expense of more complex file management.

B. An Assessment
An image-based information system is important for the full utilization of satellite
imagery data. The future availability of frequent updates of land resource
 inventory statistics, with a known and acceptable sampling accuracy, should
 permit the incorporation of these data with the annual updates published by other

Figure 6.13  FORMATION OF AN IBIS DATABASE
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governmental bureaus. The increasing sophistication of the use of GIS and remote
sensing information can be represented by Figure 6.14. At the outset,  concerns
ranged over geometric fidelity and classification accuracy of satellite imagery.
Since those early days, significant progress has been made. We are able to remove
noise from images efficiently and delineate boundaries of lakes, forests,
 constructed facilities, and other land features with confidence. The  capacity to per-
form radiometric enhancement and pattern recognition will be amply illustrated in
Section VI of this chapter. The field is now embarking upon database integration
and modeling activities that utilize the extended capabilities of remote sensing.

The projected demands to be placed upon GISs will put a strong  emphasis
on the capability to store and retrieve large amounts of data and to  manipulate data
sets for portions of the files efficiently. A major drawback facing most geocoding pro-
cedures is that they rely on sequential computations applied to  tabular data strings
and, as such, require a large investment in formatting or  processing data that are in-
herently two-dimensional. Raster scan data-bases  avoid many of these problems and
possess additional advantages. The video communications field has been addressing
and continues to address both the problems of mass storage and application of rapid
interactive processing that place a minimal reliance upon computer software routines.
The specialized  requirements of GIS should derive considerable benefit from the
image processing field in the future. The outlook is bright in the continuing emphasis
on direct image communication. At present, the interface between GIS and remote
sensing systems is weaker than it should be, and each side suffers from a lack of crit-
ical support of a type that could be provided by the other. The GIS has a continuing
need for timely, accurate update of the various spatial data elements held in its sys-
tem and remote sensing systems could, in many cases, benefit from access to highly
 precise, ancillary ground data that could  significantly improve classification
 accuracies. In addition, there are a number of significant technical problems that
would benefit from a joint, well-planned attack rather than the present dis aggregated

Figure 6.14  IMAGE PROCESSING DEVELOPMENT
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and disorganized approach. A prime example is data management, since no opera-
tional database management system exists that will handle, in a cost-effective and ef-
ficient manner, the large volume of  spatial data involved in both systems.

C. Remote Sensing Technology
“Photos from space” (Zimmerman 1988), a popularized term for remote sensing
from satellites, represents the latest technology for collecting spatial-temporal
data. Perhaps the most familiar remote sensing device is a weather satellite, which
gives a resolution of one kilometer (0.59 miles) or less. The instruments normally
cover areas the size of a continent in a single shot. The National Weather Service
(NWS) has defined requirements for the next generation of  geostationary opera-
tional environmental satellites (GOES), which NOAA has  labeled GOES-Next.
The emphasis in the NWS during the 1990s has been on  improving short-term
(0–12 hour) forecasts of severe weather events such as  tornadoes, severe thun -
derstorms, hail, and flash floods. GOES-Next is expected to provide strong sup-
port to improving forecasts of these phenomena and will offer improvements in
both imagery and vertical-temperature/moisture-sounding capabilities. Imaging
 capabilities of GOES-Next will be practical to an  accuracy of 4 km (2.5 mi) or less.

Another major satellite is the earth-resource monitoring LANDSAT,
which has a finer resolution (80 � 80 meters or 87.4 yards � 87.4 yards) on its
multispectral scanner (MSS).  Similar to (one km) � (one km), the 80 � 80 resolu-
tion detail is usually referred to as a pixel. Tremendous progress has been made
since LANDSAT’s early stages. Pixels of LANDSAT “photos” can be as detailed
as 30 � 30 meters (32.8 yards � 32.8 yards) today on its thematic mapper (TM).
Satellites with pixels smaller than one meter (1.09 yards) on the side are usually
used for military reconnaissance. But the line between military and civilian satel-
lites blurred when the French remote sensing satellite SPOT was able to offer
commercially 10-meter (10.9 yard) resolutions in black and white and 20 meters
(21.8 yards) in color. In July 1987, the then Soviets offered a 6-meter (6.54 yard)
resolution satellite and are in the process of marketing 2-meter (2.22-yard)
 resolution (Foley 1994). Sweden is now considering a satellite offering one-meter
resolution, with the purpose of arms verification in mind.

Some of these satellites can measure infrared radiation, inasmuch as 
most satellites have several sensors responding to a variety of spectral ranges.
LANDSAT and certain Russian satellites can detect the long wavelength
 radiation produced by heat sources. Both LANDSAT and SPOT can detect short
wavelength infrared radiation, which is produced by very hot sources such as
the sun. (This includes reflection of the sun’s rays by shiny objects.) SPOTs 5, 6,
and 7 are planned for the decade from late 1990s through early 2000s. The latest
Russian satellite with 6-meter resolution is also capable of detecting these
short infrared wavelengths. The Canadian RADARSAT satellite does not
have the  detailed resolution of the optical image spacecraft. However, it will be
able to take pictures at night and through clouds. The Japanese planned to
launch a  series of Advanced Earth Observing Satellites starting in the late 1990s,
continuing earlier attempts at marine sensing and radar satellites. Meanwhile,
the U.S. launched LANDSAT 7 successfully on April 15, 1999.

Another factor in remote sensing is the frequency of surveillance.
Satellites cannot orbit the Earth faster than once every 90 minutes, since drag
would otherwise draw them inside the atmosphere. A camera can photograph
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only a limited swath of the Earth during each revolution.  Hence the best satel-
lite would require a full day to photograph the entire Earth, considering the
number of revolutions required to piece the swaths together. This means an
 average lag time of a half day is required to acquire a specific picture, unless
 geosynchronized satellites are used, concomitant with their high cost.

The most sophisticated technology has been developed for military
 applications. Given a two-dimensional data set, such as a satellite picture, if we
have the necessary elevation information, which can be derived from a series
of satellite pictures at different viewing angles, a geometric model can be
 constructed in the computer. The output image will be a three-dimensional
 representation of what started as a two-dimensional scene. This type of image
manipulation has many possible intelligence and defense uses. American
bomber pilots could rehearse in simulators for low-level bombing missions,
 becoming familiar with enemy terrain without ever going near it. In February
2000, NASA launched the Endeavour space shuttle, whose crew intended to scan
80 percent of the earth’s surface. The all-weather radar image produced a three-
dimensional map more accurate and comprehensive than ever before.

So far an average remote sensing satellite has typically cost $300 million
(Zimmerman 1988). But with today’s off-the-shelf equipment, a five-meter reso-
lution satellite could be built and launched for less than $10 million. Total sales
from satellite photography range from hundreds of millions of dollars to $7.4 bil-
lion or more, according to KRS Remote Sensing, a Kodak Company. The large
range is a reflection of the uncertainty associated with the U.S. Government’s
 national security regulation of commercial use of satellites. This regulation
 happens in an increasingly international and competitive market, where remote
sensing service can be made readily available outside the U.S. at a reasonable cost.

In March 1994, the U.S. Administration removed restrictions on the
 quality of satellite photos, approving the sale of images able to reveal objects one-
meter (1.11 yard) in resolution or possibly smaller (Foley 1994). Liberalizing the
policy even further, manufacturers are allowed to sell foreign buyers spacecraft
that are roughly equivalent to older U.S. spy satellites. However, companies
 selling imagery will be subject to conditions that apply to operating licenses
granted by the government, conditions designed to maintain government control
over the dissemination of such technology. While there are clamors about lost
 opportunities, license applications mount as major U.S. companies seek a share
of the vast potential market. At least three U.S. organizations have 1-meter sys-
tems under development with launch dates from late 1997 to 2000 (Amato 1999;
Corbey 1996). In October 1999, Space Imaging released the first commercial 1-m
black and white image. Developers of the proposed systems expect the availabil-
ity of high-resolution imagery to touch off a rapid increase in the size of the
 satellite data user market. They predict that higher resolution is exactly what is
needed to convert GIS users who have not yet tried satellite or aerial imagery.

QuickBird is a high-resolution commercial earth observation satellite. It was
launched in 2001 as the first satellite in a constellation of three. The companion space-
craft, WorldView-1 and WorldView-2, completed the constellation in 2009. QuickBird
collects the second highest resolution commercial imagery of Earth after WorldView-1,
and boasts the largest image size and the greatest on-board storage capacity of any satel-
lite. The satellite collects panchromatic imagery at 60–70 centimeter (2 feet) resolution
and multispectral imagery at 2.4- and 2.8-meter (8.53 feet) resolutions. At this resolution,
details such as buildings are easily visible. The imagery can be imported as a backdrop
for mapping applications, including Google Earth and Google Maps. Its acquired 
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images can cover more than three times the area of North America in the course of a
year, while its spacecraft weighs less than half as much as Landsat 7. The latest addition
to the constellation, WorldView-2, is the high resolution 8-band multispectral commer-
cial satellite. The satellite collects images at nadir with 0.45 meter (17.72 inches) resolu-
tion panchromatic and 1.84 (6.037 feet) multispectral resolution. QuickBird, WorldView-1
and WorldView-2 form a constellation offering very high revisit and large area collec-
tion capacity.

GeoEye set geospatial industry standards with the launch of IKONOS®, the
world’s first sub-meter commercial satellite. With the successful launch of GeoEye-1
satellite sensor in September 2008, successful completion of testing and calibration
GeoEye released the satellite for commercial orders in February 2009. GIS and
Computer Aided Design professionals are now able to work with satellite imagery at
0.5-meter (1.64 feet) resolution, two-meter digital raster Digital Elevation Models, one-
meter (3.28 feet) elevation contours and Triangulated Irregular Networks models. This
facilitates a three-dimensional computer work environment, supporting the planning
and construction of roads, facilities, pipelines and many other project applications.

V. DIGITAL IMAGE PROCESSING 
Digital image processing involves the manipulation and interpretation of digital im-
ages with the aid of a computer (Lillesand and Kiefer 1987). Digital image  processing
is an extremely broad subject and often involves procedures that can be mathemati-
cally complex, but the central idea behind digital image processing is quite simple.
The digital image is fed into a computer one pixel at a time. The computer is pro-
grammed to insert these data into an equation, or series of equations, and then store
the results of the computation for each pixel. These results form a new digital image
that may be displayed or recorded in pictorial format or may itself be further manip-
ulated by additional programs. The possible forms of digital image manipulation are
literally infinite. However, virtually all these procedures may be categorized into one
(or more) of the following four broad types of computer-assisted operations.

A. Image Rectification and Restoration
These operations aim to correct distorted or degraded image data to create a
more faithful representation of the original scene. This typically involves the
initial processing of raw image data to correct for geometric distortions, to
 calibrate the data radiometrically, and to eliminate noise present in the data.
Geometric distortion can be induced into the image by sensor operation, orbital
geometry, and earth geometry. Examples include the altitude, latitude, and
 velocity of the platform, earth curvature, atmospheric refraction, and non-
 linearities in the sensor field of view. All these contribute to distortion. These
 distortions can be systematic or random. Several techniques exist to correct for
geometric distortions. Radiometric correction can be used to address problems
caused by scene illumination, atmospheric conditions, viewing geometry,
and instrument response. Sun elevation correction can account for seasonal
 position of the sun relative to the earth. Noise removal can be used to correct
striping, boundary,  and non-systematic variations that cause the images to be
snowy. These can be removed by using a 3 � 3 or 5 � 5 median or averaging
 filter. Thus the nature of any particular image restoration process is highly
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 dependent upon the characteristics of the sensor used to acquire the image
data. Image rectification and restoration procedures are often termed prepro-
cessing operations, because they normally precede further manipulation and
analysis of the image data to extract specific information.

Fourier Transform Example
This example illustrates how noise can be removed spectrally from an image
 signal. First, one must remember that any signal can be represented as a combi-
nation of sine and cosine waves with different frequency5, amplitude6, and

Figure 6.15  FILTERING A NOISY SIGNAL WITH FOURIER TRANSFORM
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phase7. One common noise removing technique is the Fourier transform, which
converts the signal into its frequency domain or into harmonics when one thinks
of the voice signal (Gonzalez and Woods 1992). Inasmuch as noise has a very
distinctly different harmonic compared with the regular signal (again think of
the voice analogy), it can be recognized and easily removed in the harmonic or
the frequency domain. An example would drive this point home. Shown in
Figure 6.15 is a made-up signal, to which noise has been added. A Fourier trans-
form has been taken of the signal (with its noise.) It can be seen that the noise
has a  harmonic quite a bit different from the signal, most of which are at the
lower part of the  frequency plot in the third frame of the figure. A frequency
threshold of 2.5 in this case would form a very clear watershed between the
 signal and noise. Now we can remove, or “filter” out, any “signal” associated
with the frequency below the threshold. This is commonly known as a high-pass
noise-filter. An  inverse transform is then taken, which reconstitutes the original
signal with the noise removed. ■

1. Discrete Fourier Transform. More formally, let f(x) be a continuous  function of
a real variable x. The Fourier transform of f(x), denoted by F(f(x)), is defined as
F(f(x)) � F(u') � � ∞

�∞ f(x) exp (�j2�u'x) dx where j � ���1�, remembering that
sine and cosine curves can be represented by a complex exponential  function of
 frequency u'. Amplitude, or the Fourier spectrum, in this case is |F(u')|. Given
F(u'), f(x) can be recovered by using the inverse Fourier transform
F�1(u′) � f(x) � � ∞�∞  F(u′) exp (j2�u'x) du'. Suppose a continuous function f(x) is
now discretized into a sequence {f(x0), f(x0��x), f(x0 + 2�x), . . . ,
f(x0 � (n � 1)�x)} by taking n samples �x apart, as shown in Figure 6.16. The
 sequence {f(0), f(1), f(2), . . . , f(n�1)} now  denotes any n uniformly spaced sam-
ples from the corresponding continuous function. The discrete Fourier transform
(DFT) pair that  applies to the sample functions is then given by 

F(u') � �
n �1

x � 0
f(x) exp (�j2�u′x/n)

(6.1)
f(x) � F�1(u′) � �

n �1

u'� 0
F(u′) exp ( j 2 u′ x/n)

for x � 0, 1, 2, . . . , n � 1.

1
�
n

Figure 6.16  DISCRETE FOURIER TRANSFORM EXAMPLE
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Application of this equation pair to the signal in Figure 6.17 yields F(0) � 

1/4 �
n�1

x�0
f(x)exp(0) � 1/4 [ f(0) � f(1) � f(2) � f(3)] � 1/4(2 � 3 � 4 � 4) � 3.25 and

F(1) � 1/4 �
3

x�0
f (x) exp(�j2�x/4) � 1/4 (2e0 � 3e�j�/2 � 4e�j� � 4e�j3�/2) �

1/4(�2 � j), remembering Euler’s formula ej	 � cos	 � jsin	 in the last part of
the calculation. Continuing with this procedure gives F(2) � �1/4(1 � j0) and
F(3) � �1/4(2 � j). All values of f(x) contribute to each of the four terms of the
discrete Fourier transform (DFT). Conversely, all terms of the transform con-
tribute in forming the  inverse transform via Equation 6.1. The Fourier spectrum
is obtained from the magnitude of each of the transform terms: �F(0)� � 3.25,
�F(1)� � [(2/4)2 � (1/4)2]1/2 � �5�/4 � 0.56, �F(2)� � [(1/4)2 � (0/4)2]1/2 � 1/4 �
0.25, and �F(3)� � [(2/4)2 � (1/4)2]1/2 � �5�/4 � 0.56. The spectrum is illustrated
in frame (b) of Figure 6.7.

2. Fast Fourier Transform. The number of complex multiplications and additions
required to implement Equation 6.1 is proportional to n2, square of the number
of discrete intervals. That is, for each of the n values of u', expansion of the sum-
mation requires n complex multiplications of f(x) by exp(�j2�u'x/n) and n � 1
 additions of the results. Proper decomposition of Equation 6.1 can make the
 number of multiplication and addition operations proportional to n log2n. The
 decomposition procedure is called the fast Fourier transform (FFT) algorithm.
The reduction in proportionality from n2  to n log2n operations represents a sig-
nificant savings in computational effort. The FFT approach offers a considerable
computational advantage over direct implementation of the Fourier transform,
particularly when n is relatively large. For that reason, many real-world applica-
tions use FFT rather than conventional discrete transform, including the example
shown in Figure 6.16.

The above noise-removal procedures, both regular transforms and FFT,
were illustrated for a single dimensional case. It can be shown that the same idea
can be generalized to a two-dimensional image. The transform now has two
 arguments instead of one F(u1′, u2′), corresponding to the frequencies in both
 dimensions u1′ and u2′. Page limitation prevents further development of the two-
dimensional transform here. Readers are referred to Gonzalez and Woods (1992)
for an in-depth treatment of the methodology. In accordance with the applica-
tion flavor of this book, however, we implemented the FFT for image process-
ing in the TS-IP (Training System/Image Processing): a software distributed
with this book. The readers are invited to experiment the FFT routine with the
image files supplied with the program.

3. Spatial Filter. Rather than developing the two-dimensional Fourier transform,
we choose to introduce the concept of the spatial filter. It accomplishes a similar
noise removal function, but it is based on an entirely different principle. No
longer do we need to work in the frequency domain. Considering that noise
shows up as outliers in their signal intensity—i.e., either too weak or too
strong—spatial filters do their work directly in the signal domain. The average
filter or the median filter are two examples of a spatial filter. Both simply
smooth out the outliers, replacing each outlier with a streamlined pixel. While
both accomplish the mainstreaming task, they yield different results, as we will
demonstrate. Again, the reader is invited to experiment with the average and
median filters implemented in TS-IP and verify the results from the following
 example.
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Example
The following example deals with possible outliers in satellite spatial imagery
as the result of noise, where several methods could be used to remove the
 offending point(s). Among these are 3 � 3 averaging, which compares first- and
 second-order neighbors, and 3 � 3 and 5 � 5 median filtering. Both work on the
principle of replacing bad outlier data points with good ones. We use the 5 � 5
data cell below to answer the following questions with regard to the center
point outlier. 

31    33    41    44    48
32    39    44    42    45
43    40    92    40    40
46    43    41    42    42
43    44    43    41    42

(a) Using the averaging method, calculate the first- and second-order averages.
Describe how you might set threshold in this case and which value you
would use as a replacement.

The center-pixel gray value, v(0), is given as 92. The average of first-order
neighbors is v(1) � (44 � 40 � 41 � 40)/4 � 41.25. The average of second-
order neighbors is v(2) � (42 � 42 � 43 � 39)/4 � 41.50. One would next
want to calculate the  absolute differences �v(0) � v(1)�, �v(0) � v(2)�, �v(1) � v(2)�
and if some threshold is overcome, substitute either v(1) or v(2) for v(0). In
this case

�v(0) � v(1)� � �92 � 41.25� � 50.75
�v(0) � v(2)� � �92 � 41.50� � 50.50
�v(1) � v(2)� � �41.25 � 41.50� � 0.25

One can select any value for the threshold. It depends on how much one wants
to smooth the data. One way is to say that if �v(0) � v(1)� or �v(0) � v(2)� is greater
than 50 percent of the center outlier 92, then we replace v(0) with v(1) or v(2). In
this case (0.5)(92) � 46.00. Since 50.75 is larger than the threshold, a replacement
is in order, or v(0)' � v(1) � 41.25.

(b) Now calculate the 3 � 3 and 5 � 5 median estimates of the center 
point. Describe how you might set the threshold in this case and whether or
not you would replace the point.

The 3 � 3 median, m(3), is 42 from the 9 entries of the 3 � 3 neighborhood:

39    40    40    41    (42)    42    43    44    92

The absolute difference is �v(0) � m(3)� � �92 � 42� � 50. Using the same 50 per-
cent threshold criterion as in (a), the new value for the center point is v(0)′ � 42.
The 5 � 5 median m(5) is 42 again from the 25 entries of the 5 � 5 neighborhood:

31   32   33   39   40   40   40   41   41   41   42   42
(42)   42   43   43   43   43   44   44   44   45   46   92

�v(0) � m(5)� � �92 � 42� � 50. Again using the same 50-percent threshold crite-
rion as in (a), v(0)′ � 42.
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(c) What advantage does the median approach have over the averaging 
approach?

A median approach usually produces better results than an average approach
 because the average approach usually has a much higher replacement value than
the median when dealing with noise. The median minimizes the effect of
 outliers, since they are not weighted more heavily. As a result, the median
method does not cause blurring associated with averaging. This works better for
noise that consists of spikes, and consequently, it is better in preserving edge
sharpness. ■

Another way of smoothing spatial data is interpolation. Aside from sim-
ple interpolation, a family of techniques called kriging has been developed,
which is designed to minimize the errors in the estimated values (Star and Estes
1990; Cressie 1991). The method is based on estimating the strength of the corre-
lations between known data points, as a function of the distance between the
points. This information is then used to select an optimal set of weights for the
interpolation. Variations have been developed to include a trend surface model
component, which permits estimating values outside the area of known points;
this is not possible with simple distance weighted models.8 Examples of this
 concept can be found in the “Ratio and correlation method” subsection of
Chapter 2 when the time dimension is interpreted as the spatial dimension.

B. Image Enhancement
Enhancement procedures are applied to image data in order to more effectively
display or record the data for subsequent visual interpretation. Normally, image
enhancement involves techniques for increasing the visual distinction between
features in a scene. The objective is to create new images from the original image
data in order to increase the amount of information that can be visually inter-
preted from the data. The enhanced images can be displayed interactively on a
monitor or they can be recorded in a hard copy format, either in black and white
or in color. There are no simple rules for producing the single best image for a
particular application. Often several enhancements made from the same raw
image are necessary. Image enhancement can be accomplished by adjusting the
contrast or doing spatial feature manipulation and multi-image manipulation.
One can also zoom or enhance the resolution of this image. Enhancements
 involving multiple spectral bands of imagery can be made as well.

Convolution filters can be used for many purposes in image processing.
Among them is edge detection, which again can be thought of as an image
 enhancement technique since it makes an image more crisp. Perhaps the best  filters
for this purpose come from the family known as Sobel operators, which are a kind
of gradient operator to detect discontinuities (Gonzalez and Woods 1992). The gra-
dient of an image f(x, y) at location (x, y) is the vector 
f(x, y) � (Gx, Gy)

T � (∂f/∂x,
∂f/∂y)T. The simple gradient �f is the scalar �f � �
f(x, y)� � (Gx

2, � Gy
2)1/2. A com-

mon practice is to approximate the gradient with absolute values �f � � Gx � � � Gy �.
The direction of the gradient vector is an important quantity; it shows whether we
are moving from the left to the right or from the right to the left on the x-axis.
Likewise, it shows whether we are moving up or down on the y-axis.

At this point, we need to formally define a mask, or its alternate names
filter, window, or template. A mask is a “window” overlaid on top of an image
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with a set of specific mathematical operations performed on the pixels under-
neath this window. The idea behind mask operations is to let the value assigned
to a subject pixel be a function of its gray level and the gray level of its neighbors.
We have already seen this in the average filter in the last section, where an out-
lier is replaced by the average of its four first-order neighbors. The first-order
neighbors in this case form the 4-element mask for the subject pixel, consisting of
a weight of 1/4 each. In other words, the mask looks like 

� �
Another example can be found in the median filter example, where the outlier
is replaced by the median of the 3 � 3 window (nine pixels) centering
around the subject outlier pixel. Instead of a weighted average, the operator is
now  median computation. In image processing, a mask is normally applied
like a moving window across an image, centering around each and every pixel
in the image until all pixels have been visited. The result is a processed image
with  either noise removal or image enhancement accomplished. The Sobel
mask can be thought of as a combination of a differencing mask of the weights
(�1 0 1) (or its vertical counterpart) followed by a smoothing mask of the
weights (1 2 1) (or its vertical counterpart), as we will show immediately
below. The differencing mask accentuates the gray-value differences among
first-order neighbors, while the smoothing mask averages the subject pixel
and its first-order neighbors. Because derivatives enhance noise, the smooth-
ing effect is a particularly attractive feature. Given the 3 � 3 Sobel operators
Gx↑, Gy→, Gx↓, and Gy←

Gx↓ � � � Gy→ � � � (6.2)

Gx↑ � � � Gy← � � � (6.3)

and the data cell

� �
derivatives based on the Sobel operator masks are 

�Gx � � �(z7 � 2z8 � z9) � (z1 � 2z2 � z3)�
�Gy � � �(z3 � 2z6 � z9) � (z1 � 2z4 � z7)� (6.4)

1 0 �1
2 0 �2
1 0 �1

�1 �2 �1
0 0 0
1 2 1

0 1/4 0
1/4 0 1/4

0 1/4 0

�1 0 1
�2 0 0
�1 0 1

1 2 �1
0 0 0

�1 �2 �1

z1 z2 z3

z4 z5 z6

z7 z8 z9
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Computation of the gradient at the location of the center of the masks can be per-
formed with these equations, giving one value of the gradient �f. To get the next
value, the masks are moved to the next pixel location and the procedure is repeated.

Example
Using the sample 3 � 3 data-cell 

� �
which of the four Sobel filters, Gx↑, Gy→, Gx↓, and Gy←, do you think would
most likely detect the edge as part of a change in the data pattern? What is the
 resulting convolved value, or the gradient, for the center pixel using this filter? 
Visual inspection of the data indicates the brightest line is the third column (150
115 127)T. The x-axis in Gx is defined in the vertical direction so the strongest
 response produced by �Gx� is an edge parallel to the x-axis. This data set seems
to have an edge perpendicular to the x-axis. So we should use a Gy operator.
One can use either the Gy→ or Gy← since oftentimes, only absolute values are of
interest, as shown in Equation 6.4. Using Gy→ of Equation 6.3, it produces a
value of 150 � (2)(115) � 127 � 85 � (2)(82) � 84 � 174 for the center point.
The fact that this value is much greater than the values from the �Gx� operators
(88) shows that the gradient is working best in the horizontal direction in
 detecting the edge (150 115 127)T. ■

C. Image Classification
The objective of classification operations is to replace visual analysis of the
image data with quantitative techniques for automating the identification of fea-
tures in a scene. This normally involves the analysis of multispectral image data
and the application of statistically based decision rules for determining the land
cover identity of each pixel in an image. One can perform image classification
that will categorize all pixels in an image into land cover classes like grass,
water, sand, and so forth. When these decision rules are based solely on the
spectral radiances observed in the data, we refer to the classification process as
spectral pattern recognition. In contrast, the decision rules may be based on the
geometrical shapes, sizes, and patterns present in the image data. These proce-
dures fall into the domain of spatial pattern recognition. In either case, the in-
tent of the classification process is to categorize all pixels in a digital image into
one of several land cover classes or themes. These categorized data may then be
used to produce thematic maps of the land cover present in an image, and/or to
produce summary statistics on the areas covered by each land cover type.

In both spectral and spatial image classification, the problem can be
viewed as grouping similar gray values together in two or more dimensional
space. Consider the two-dimensional illustration in Figure 6.17, which can
 represent both a spectral or spatial image. In the latter case, the entries will
 simply be gray values in regular raster grid. In the former case, each cell repre-
sents a pair of coordinates (x, y), where x is a reading on one spectral band and
y is the reading on the second band. Classification amounts to grouping pixels
of similar gray values together in the former case or pixels with similar spectral

85 112 150
82 63 115
84 80 127
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band readings in the latter case. In both cases, we classify image into the logical
land cover types.

To illustrate the concept of classification, the region-oriented segmen-
tation algorithm of Gonzalez and Woods (1992) may be of interest. First, a
 decision criterion describing the image is specified, such as the gray value
range that describes, for example, a cornfield, a lake, or a beach. The digital
image is then taken as a single region that is partitioned by repeated splitting.
One method of dividing the image is by bisection. If the image does not meet
the decision criteria, the image is divided into quadrants. If a quadrant does not
meet the decision criteria, we divide it into subquadrants and so on. As the
image is split into various sized regions, adjacent regions that meet the decision
criteria can be merged. This splitting and merging continues until no further

Figure 6.17  DISAGGREGATION AND AGGREGATION OF DIGITAL IMAGE
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merging or splitting is possible. The end result is the objects of interest identi-
fied in the image.

In more formal terms, let R″ represent the entire image region. We may
view segmentation as a process that spatially partitions R″ into n′ subregions, R1, 
R2, . . . , Rn′ such that (a) �

n′

i � 1
Ri � R″; (b) Ri is a connected region, i � 1, 2, . . . , n′; 

(c) Ri �Rj = � for all i and j, i � j; (d) �(Ri) � TRUE for i � 1, 2, . . . , n′; and 
(e) �(Ri � Rj) � FALSE for i � j where �(Ri) is a logical predicate over the points
in set Ri such as the range of gray values. Specification regarding no overlaps
 between two subregions (Condition (c)) may be relaxed for multispectral classi-
fication, where the x-axis corresponds to one spectral band and the y-axis
 another. Notice this algorithm, while conceptually simple, is computationally
 explosive for any practical image. For this reason, it is good for fixing ideas only.

Example
Use the image cell in Figure 6.18 to demonstrate the concept of classification using
the region splitting (disaggregation) technique. Do not split any cell smaller than
2 � 2 pixels. Show and briefly explain each step of the process. Re-aggregate cells,
as necessary, at the end. Your predicate for each region is that the range of pixel
gray values must be no greater than five. Be sure your final classification shows
each separate region clearly and mark any region that fails to satisfy the predicate.
(Note that this should not normally occur in practice).

First, we check the given region. Since �(R″) � FALSE (or the range of
pixel gray values exceeds 5), we subdivide the region into four areas, labeled
I, II, III and IV. This procedure was repeated for the second time, resulting in
16 areas, labeled IA, IB, IC, ID, IIA, IIB . . . and so forth (see steps 1 and 2 in
Figure 6.18). At this point, we have the minimum 2 � 2 areas, which appear to
satisfy the predicate, except for subregions IB, IIA, ID, IIIB, and IIID. Now
 aggregate the cells, checking to see that all cells assigned to a similar region
have values that do not range more than 5 (as shown in step 3 of Figure 6.17).
Subregions IA and IC can be recombined with IIIA and IIIC since they together
satisfy the  predicate. Subregions IIC and IID, together with IVA, IVC, and IVD
can be combined, leaving IIB and IVB alone since their inclusion would vio-
late the predicate (step 4). Notice the two subregions IIB and IVB which satisfy
the predicate in the final partitions are not contiguous, but it is an acceptable
answer as far as illustrating this algorithm is concerned. It is clear that this
 algorithm leads toward one particular classification and that other com -
binations are possible should a different partitioning algorithm be used. The
classification of the same land cover can also be different should we shift the
image by one pixel column to the right. ■

D. Data Merging
The next set of procedures in image processing is data merging. This procedure
is used to combine image data for a given geographic area with other geograph-
ically referenced data sets for the same area. These other data sets might simply
consist of image data generated on other dates by the same sensor, by other
 remote sensing systems, or an independently assembled data set. Frequently, the
intent of data merging is to combine remotely sensed data with other resources
of information into a GIS. For example, in urban applications image data are
often combined with soil, topographic, ownership, zoning, and assessment
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 information. This forms the basis for a GIS. A simple application of data merging
is found in weather forecasts. A weather satellite such as ones launched by
NOAA can provide a convenient image of cloud cover and other geographic
 information. But such information is often of little use unless it is referenced
against jurisdictional boundaries such as nations, states, counties, and the like.
Figure 6.18 shows the overlay of national, state boundaries, coastlines, and the
Great Lakes on a NOAA satellite image of the northeastern United States and
east Canada. Such a picture represents the merging of two data layers, one from
the satellite and another from an archive storage. It is generated from the TS-IP
software that comes with this book.

Example
Another application will show the potential of the data merge function much
 better (Star and Estes 1990). It is a trafficability problem that addresses the ques-
tion: “Can a vehicle travel across a terrain with a certain slope and type of soil?”

SOURCE: Courtesy of T.S. Kelso. Reprinted with permission.

Figure 6.18  OVERLAY OF JURISDICTIONAL AND NATURAL BOUNDARIES ON WEATHER
INFORMATION
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Figure 6.19 shows the slope and soil data layers which form the information base
for merging. Table 6.3 represents supplementary information regarding how easy
it is for the vehicle in question to navigate a particular combination of slope and
surface soil type. For example, when the slope is moderate, the vehicle cannot
travel over sandy soil, but can travel on a gravel surface. This logical table forms
a third data layer, consisting of the translation of nominal information (such as the
rock/sand/clay categories) and ordinal information (such as level/moderate/
steep as well as easy/fair/hard) distinctions into trafficability. It contrasts with
scaled, or interval information typically found in raster files. This layer is input to
the data merging process on top of the two data layers on soil and slope. The
 resulting derived suitability map for traversal, or the output of the entire exercise,
is obtained at the bottom of Figure 6.19.

In a raster-based system, each cell in the input data provides a
soil/slope data-tuples input to the trafficability table, which in turn deter-
mines the class of trafficability in the output data. We read the value of the first
element in the soil array and the first element in the slope array, send these

Figure 6.19  A TRAFFICABILITY EXAMPLE OF DATA MERGING
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SOURCE: Star and Estes (1990). Reprinted with permission.

Table 6.3  INPUT DATA LAYER REGARDING TRAFFICABILITY

Slope Level
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SOURCE: Star and Estes (1990). Reprinted with permission.
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values to a routine that derives the resulting trafficability class, and send this
derived value to the first element in the output array. This process continues
through all the elements in the raster arrays. While the data merging algo-
rithm is fairly straightforward with raster files, the process is much more
 involved in vector based files, although the data storage requirement is much
more compact in comparison. ■

Although the above treats the four procedures of digital image process-
ing—rectification, enhancement, classification, and merge—as distinct operations,
they all interrelate. For example, the restoration process of noise removal can often
be considered an enhancement procedure. Likewise, certain enhancement 
procedures can be used not only to enhance the data, but also to improve the effi-
ciency of classification operations. In a similar vein, data merging can be used in
image classification in order to improve classification accuracy as in the combina-
tion of multispectral bands. In this regard, we will conduct a case study of merg-
ing multispectral bands later on in Section XI. Hence the boundaries  between the
various operations we discuss separately here are not well-defined in practice.

VI. DIGITAL IMAGE PROCESSING 
SOFTWARE AND HARDWARE

Image processing is, in general, a special form of two-dimensional, and some-
times three-dimensional, signal processing of scenes collected by sensors. Digital
data of these scenes are stored on computers in bits. One bit of information is
 either on (1) or off (0). If an image had 1 bit of information on it, there will be two
gray levels in it: white and black. As more bits of data are added, the number of
gray levels in the picture increases. With 6 bits of data, there are 26 or 64 gray  levels,
ranging in value from 0 (black) up to 63 (white). The number of bits in a given
pixel determines the number of unique gray values (or colors) available. Eight-
bit pixels, for example, provide 256 different gray values in white to black shades
or 256 unique colors in a pseudocolor mode.

Computer systems for image processing range from microcomputers to
mainframe. Dedicated image processing systems include display memory, a video
processor, a parallel interface to a computer, a human-machine interface, digital-
analog converters, and a comprehensive software subroutine library. The basic
 subroutine library should contain all the necessary software for manipulating the
internal parts of the image processor. A frame buffer is the key to any image
 processing system. This bank of memory stores the image data. Most  medium size
systems are several banks of 512 � 512 elements. The rows of the frame buffer
 matrix are the lines of the image, and the columns along each line are the samples.
A digital-analog (D-A) converter transforms the contents of the image memory into
a form compatible with the monitor. The number of different intensity-levels that a
D-A converter can output is related to the number of bits it is designed to handle;
the more bits, the more distinct colors or gray levels it can produce. An important
part of an image  processing system is a look-up table, which is a table of stored data
for reference purposes. The look-up table performs a transformation or mapping
between each unique input data value and some predefined output values.
Table 6.3 represents a more sophisticated example of such a look-up table.
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An instructional image processing software is included on the CD/DVD
at the back of this book. The TS-IP software (Kelso et al. 1995) runs under
Microsoft Windows or MS-DOS on an appropriate Personal Computer (PC)
under a 256 VGA graphics card and a VGA monitor. Several resolution options
are available depending on the specific PC, including 640 � 400 and 640 � 480.
Among the features  offered by TS-IP are:

(a) adding an image to the image in the current window, resulting in an
overlay (an example is shown in Figure 6.19);

(b) examining an image by viewing a pixel located at an x-y coordinate
and displaying its gray value, or viewing a line of pixels and 
displaying the gray values along the line; when combined with the
operation described in (c) below, this allows for image restoration
and enhancement;

(c) displaying a histogram of the number of pixels in an image by gray
values, which allows for the truncation of the low and/or high gray 
value range such as that associated with high-level clouds (allowing 
one to “see through the clouds”);

(d)  restoring or enhancing an image via such filters as Sobel convolu-
tion9,fast Fourier transform10, and median filter11;

(e) performing contour plots of an image where the contours correspond 
to a specified gray value;

(f)  highlighting the image with desired color scheme, including colors
of the rainbow or simply a 256 gray value scale.

Real-life satellite images can be handled within TS-IP. The size of the
image is limited mainly by the secondary storage device available for filing these
images and the display memory. A bank of public domain satellite images is
 included on the CD/DVD that accompanies this text. Instead of being a produc-
tion line software, TS-IP is mainly intended to demonstrate the power of image pro-
cessing as described in Section VI, including image rectification and restoration,
image  enhancement, image classification, and data merging. Through these image
processing functions, one can show such interesting features as the capacity to see
through clouds. This is achievable through a combination of feature (c) and stretch-
ing the remaining gray values to fill in the upper range vacated by the removal of
high-level clouds. While the restoration and enhancement functions are accom-
plished well, the classification feature is yet to be implemented at this time.

VII. APPLICATIONS OF REMOTE SENSING
It is clear that remote sensing devices have facilitated a fair amount of
 planning applications. For example, there are documented evidences of its
usefulness in environmental, land use, and hazard mitigation studies (Sabins
1987). NOAA satellites, for example, use the advanced very high resolution
 radiometer (AVHRR), a cross-track multispectral scanner that acquires images
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with an image swath width of 2700 km (1768 mi) and a ground resolution cell
of 1.1 by 1.1 km (0.634 mi). Table 6.4 shows the spectral bands of AVHRR.
Spectral ranges of AVHRR bands 1 and 2 were positioned to record significant
vegetation properties. As shown by the vegetation reflectance curve in
Figure 6.20, the readings in band 1 (B1) records the chlorophyll absorption of
red wavelengths. Band 2 (B2) records the strong reflection of infrared (IR)
wavelengths by the cell structure of leaves. The ratio B2/B1 is one index of
 vegetation. Another is the spectral or normalized vegetation index (NVI), a
 relationship defined as

NVI � (6.5)

This ratio is more useful than individual bands because it brings out the contrast
and largely eliminates reflectance variation due to differences in solar elevation.
The values for B1 and B2 are the average values for the reflectance curves at those
wavelength intervals. For the vegetation spectrum in Figure 6.20, the spectral
vegetation index is calculated as 0.41. For the dry soil spectrum, the index is only
0.30. Various proportions of soil and vegetation in a ground resolution cell of an
AVHRR image will result in intermediate values. Also, different types of vegeta-
tion and soil may have different index values from those in Figure 6.20.
Individual NVI maps can be used to prepare a vegetation classification map in
color codes.

AVHRR images are well suited for studying vegetation distribution and
seasonal changes in a continent-wide scale for the following reasons:

(a) The 2700-km (1768 mi) image swath of AVHRR covers a continent 
such as Africa with a few images, while 1100 LANDSAT MSS (mul-
tispectral scanner) or TM (thematic mapper) images are required.
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SOURCE: Sabins (1987). Reprinted with permission.

Table 6.4  REMOTE SENSING CHARACTERISTICS OF THE ADVANCED VERY
HIGH RESOLUTION RADIOMETER

B2 � B1�
B2 � B1
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(b) The daily repetition of AVHRR provides a wide selection of images 
for seasonal changes and for cloud-free coverage. By contrast, 
LANDSAT TM operates on a 16-day repetition cycle.

(c)  The 4-km (2.49 mi) pixels of AVHRR are adequate for regional stud-
ies, while the 79-m (259 ft) or 30-m (98.36 ft) pixels of MSS or TM 
result in far too much data for economical processing.

Another application of remote sensing information is in urban land use.
Utilizing the six TM bands of visible and reflected infrared (IR) data, classification
of land use can be performed, in much the same manner as the NOAA satellite
 discussed above. For example, classification may be color coded as follows: violet
(residential), orange (commercial), black (streets and parking lots), gray (construc-
tion sites), blue (open land), dark green (irrigated vegetation), medium green
(mixed rangeland), light green (shrub and brushland), yellow (sand and gravel).

Urban areas are so diverse in their land use that even the higher resolu-
tion of LANDSAT TM may not be able to represent these diversities adequately.
A typical suburban residential lot is approximately the size of one TM 30-by-30-m
(98.36-by-98.36 ft) ground resolution cell. The lot will include some or all of the
following materials: trees and shrubs, lawns, paving and sidewalks, roofs, and
water for a swimming pool. For such a cell, the digital numbers of the TM bands
for that pixel are a composite of the spectral reflectance of the various materials.
Despite these problems, the LANDSAT classification map portrays quite well the

Figure 6.20  REFLECTANCE SPECTRA OF VEGETATION AND DRY SOIL
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major categories of land use and land cover. Obviously, a multilevel imaging
scheme is preferred, ranging from LANDSAT MSS images to low-altitude aerial
photographs. Table 6.5 tabulates the spectrum of scale resolutions obtainable
from each remote sensing device.

LANDSAT MSS images are excellent for recognizing the continuity and
regional relationships of faults. The higher spatial resolution of LANDSAT RBV
(return beam vidicon) and TM images records many of the topographic features
indicative of active faulting. Stereo viewing of aircraft and large format camera
(LFC) photographs provides detailed information on geomorphic features
formed by faulting. Thermal IR images of arid and semi-arid areas may record
the presence of active faults with little or no surface expression, such as the San
Andreas and Superstition Hills faults. The highlighting and shadowing effects on
low sun angle aerial photographs can emphasize topographic scarps associated
with active faults, such as in the Carson Range, Nevada. Radar images also
 emphasize subtle features along active fault zones, such as shown in the
Spaceborne Imaging Radar, SIR-A, image of the Superstition fault in Iranian Jaya,
Indonesia. After a hiatus of nearly 10 years, the most sophisticated imaging radar
ever flown in space was launched in 1994 (Shen 1995). Both the Spaceborne
Imaging Radar (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) operate
in the microwave regime and are able to generate high-resolution images
 immune to blockage or perturbation from micro particles such as clouds and
rain. Like most radar systems, both systems provide their own illumination,
 enabling 24-hour operation.

Analysis of remote sensing information is directly tied to GIS tech -
nology. Infrared images when included in a GIS analysis can reveal consider-
able information about land use, vegetation growth, and environmental
 problems. Digitized remotely sensed images can easily become a layer against
which other database can be compared, as suggested previously. Given the
 potential for high-resolution satellite imagery to supplement traditional
ground-based data, McCord et al. (1996) estimated the daily highway coverage
that could be obtained from a sensor carried on an orbiting satellite. It was
found that if a satellite orbit were designed to maximize traffic monitoring
 coverage, approximately 0.4 percent of the continental U.S. could be imaged
daily at 1-meter  resolution, a resolution that should be sufficient to distinguish
trucks from  passenger cars. For orbital inclination angles more typical of earth

Table 6.5  MULTILEVEL CLASSIFICATION OF IMAGES
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observation satellites, the coverage drops to approximately 0.2 percent.
Coverage could be increased markedly with improved image processing and
interpretation and data compression algorithms.

Global navigation satellite systems (GNSS) employ 24 satellites to deter-
mine three-dimensioned geocentric positions by distance measurements. They
 include both the U.S. Global Positioning System (GPS) and the GLONASS of the
Commonwealth of Independent States. The accuracy of positions determined by
GNSS is highly variable depending on the mode employed. A single receiver only
provides geodetic positions with an accuracy of about 100 meters (333 ft). With
two receivers, one can make use of the differential mode, which yields  accuracies
of about 1–5 meters (3.3 to 16.7 ft). Most importantly, real time location information
of GNSS can be relayed back to a central GIS from a service vehicle in the field,
 allowing for optimal routing of the vehicle, as is being practiced in Intelligent
Transportation Systems (electronic highways). Artificial intelligence programs are
being used to assist in data entry, map interpretation, and information retrieval. A
spatial data infrastructure can eventually be accessible from the Internet or infor-
mation superhighway. This would serve as an electronic index of the available
 geographic databases to anyone with a personal computer. The results is to avoid
duplication of effort by knowing what data has already been compiled.

VIII. SPECTRAL VERSUS SPATIAL 
PATTERN RECOGNITION

As mentioned previously, the overall objective of image classification is to
 categorize all pixels in an image into land cover classes or themes. Normally,
multispectral data are used to perform the classification and, indeed, the spec-
tral pattern present within the data for each pixel is used as the numerical basis
for categorization. That is, different feature types manifest different combina-
tions of digital numbers (DNs) based on their inherent spectral reflectance and
emittance properties. In this light, a spectral pattern is not at all geometric in
character. Rather, the term pattern refers to the set of radiance measurements
obtained in the various wavelength bands for each pixel. As previously defined,
spectral  pattern recognition refers to the family of classification procedures that
utilizes the pixel-by-pixel spectral information as the basis for automated land
cover classification. Spatial pattern recognition, on the other hand, involves the
categorization of image pixels on the basis of their spatial relationship with
 pixels surrounding them. Spatial classifiers might consider such aspects as
image  texture, pixel proximity, feature size, shape, directionality, repetition, and
context. These types of classifiers attempt to replicate the kind of spatial
 synthesis done by the human analyst during the visual interpretation process.
Accordingly, they tend to be much more complex and computationally intensive
than spectral pattern recognition.

A. Spectral Pattern Recognition
Spectral pattern recognition forms the backbone of land cover mapping.
Supervised classification refers to the process in which numerical description of
the various land cover types present in a scene serves as an interpretation key
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that describes the spectral attributes for each feature type of interest. Each pixel
in the data set is then compared numerically to each category in the interpreta-
tion key and labeled with the name of the category it most resembles. An
 example is taken from Lillesand and Kiefer (1987) to illustrate supervised classi-
fication. Figure 6.21 shows a single line of an airborne MSS data collected over a
landscape composed of several cover types. For each of the pixels shown along
this line, the MSS has measured scene radiance in terms of DNs recorded in each
of the five spectral bands of sensing: blue, green, red, near-infrared, and thermal
infrared. Below the scan line, typical DNs measured over six different land
cover types are shown. The vertical bars indicate the relative gray values in each
spectral band. These five outputs represent a coarse description of the spectral
 response patterns of the various terrain features along the scan line. If these
 spectral patterns are sufficiently distinct for each feature type, they may form the
basis for image classification.

Figure 6.22 summarizes the three basic steps involved in a typical
 supervised classification procedure. In the training stage, the analyst identifies
representative training areas and develops a numerical description of the
 spectral attributes of each land cover type of interest in the scene. Next, in the
classification stage, each pixel in the image data set is categorized into the land-
cover class it most closely resembles. If the pixel is insufficiently similar to any
training data set, it is usually labeled unknown. The category label assigned to
each pixel in this process is then recorded in the corresponding cell of an inter-
preted data set (an output image). Thus the multidimensional image matrix is
used to  develop a corresponding matrix of interpreted land-cover category

Figure 6.21  MEASUREMENTS MADE ALONG ONE SCAN LINE
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SOURCE: Lillesand and Kiefer (1987). Reprinted with permission.
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types. After the entire data set has been categorized, the results are presented in
the output stage. Figure 6.22 illustrates the classification of an image into its land-
cover types, including water, sand, forest, cornfield, and so forth and where the
training stage fails, unclassified. Because of the presence of unclassified pixels,
this methodology often requires a subjective allocation of these pixels into either
their corn field neighbor or forest neighbor. To assist the analyst in making this
 subjective allocation, systematic procedures have been devised that will be
 described next.

B. Contextual Allocation of Pixels
The error in classification can come from different sources. It is reported, for
 example, that 50 percent of the light received by the scanner when pointing at one
nominal pixel comes from nearby pixels (McLachlan 1992). Thus, much of the
noise that corrupts the signal is spatially correlated. Since the whole observation
process has a spatial component, there is a need to use contextual rules in allocat-
ing the pixels to the specified spatial groups. Contextual allocation rule means
using a model that incorporates the a priori knowledge that spatially neighboring
pixels tend to belong to the same group. With a contextual rule, a pixel is allocated
not only on the basis of its observed feature vector, but also on the feature data of
neighboring pixels. The use of a non-contextual rule that allocates a pixel j solely on
the basis of its gray values, or its feature vector xj representing its multispectral
readings, and thereby ignores the information on neighboring pixels, leads to
a patchwork quilt of colors representing the different disjoint groups (see
Figure 6.24(b)). Oftentimes, contiguity of land use categories such as a lake or
farmland, for example, is destroyed in the process.

One way of providing a contextual method of segmentation is to consider
the allocation of each pixel individually on the basis of its posterior probabilities12

of group membership given the recorded feature vectors x on all the n′ pixels in
the scene. Let z~j be the group-indicator vector defining the color of the jth-color

Figure 6.22  BASIC STEPS IN SUPERVISED CLASSIFICATION
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pixel with feature vector , where zij � 1 if the jth-color pixel belongs to group i,
Gi (i.e., i � j). Group i may represent a lake, farmland, and so on—the subregions
of colors. The jth-color pixel is allocated then on the basis of the maximum of the
posterior probability P(z~j � zj �x) with respect to zj, where zj defines the group of
origin color of the pixel. A common assumption is to form this posterior proba-
bility under the assumption of white noise, that is, the feature vectors x are 
conditionally independent given their group of origin color zj. Contextual rules
that assume white noise offer less improvement in terms of error rate over 
non-contextual rules in situations where the feature data are spatially correlated.
Overall, contextual rules still perform better than non-contextual rules even
under this assumption.

We consider a binary example taken from Ripley (as reported
by McLachlan [1992]). There are 2 groups representing two colors: white (G1)
and black (G2). In the ith group Gi, each feature observation xj is univariate
 normal with mean �i and variance �2 (i � 1, 2), where �1 � 0 and �2 � 1. 
An assumption on the prior distribution of the image is the Ising model, for
which

P (z1j � 1 � zj) � (6.6)

except at the edges, where T1j is the number of white neighbors of the jth-color
pixel, and T2j � 8 � T1j is the number of black neighbors. In other words, the
number of black and white neighbor pixels adds up to 8, considering both first-
order and second-order neighbors. For known parameters �1, �2, �

2, and �, we
have from Bayes’ Theorem13 that

log [ ] � � � � (T1j � T2j ) (6.7)

Here the probabilities are conditioned upon a vector of feature pixel
readings x from a sample band and the two-entry group indicator vector for the
jth-color pixel, zj. An Iterative Conditional Mode (ICM) algorithm is devised
whereby the jth-color pixel is allocated on the basis of Equation 6.7 where Tij is
replaced by its current estimate T̂1j (i � 1, 2). Assuming equal posterior probabil-
ities, the left hand side of Equation (6.7) is zero. Hence the jth-color pixel is
 allocated to white, or z1j � 1, if 

xj  � ��2 (T̂1j � T̂2j ) (6.8)

which is both simple and intuitive. The non-contextual version of this rule, 
corresponding to � � 0, would take z1j � 1 if xj  1/2, thereby ignoring the
 information T̂1j and T̂2j on the color of neighboring pixels. The algorithm can be
extended to multivariate features (corresponding to multispectral bands) and
multiple groups (colors) as will be illustrated below. (See McLachlan [1992] for
further details beyond these two examples).

exp (�T1j)���
exp (�T1j) � exp (�T2j )

(xj ��12�)
�

�2

P(z1j � 1�x, zi)
��
P(z2j � 1�x, zi)

1
�
2
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Two-Class Example 
Consider a single-channel 42-pixel image with individual gray values as shown
below (Brigantic and Chan 1994; Wright and Chan 1994): 

11 5 6 8 13 2 8
2 5 1 1 3 2 3
8 4 6 5 6 6 6
1 4 2 2 6 3 3
4 5 6 5 5 4 5
3 2 2 1 5 2 3

We wish to classify each of these pixels as belonging to either a lake or forest. We
will assume each class of pixels, whether lake or forest, are normally distributed
with mean �i and standard deviation �i (i � 1, 2). Notice that instead of an over-
all, common standard deviation � that applies to both groups, distinction is made
between the two groups of pixels, �1 versus �2. The conditional probability-
density function (PDF) of gray value x for the ith class (i � 1, 2) given the pixel is
in the ith class zi is therefore

P(x	zi) � exp �� �    i � 1, 2 (6.9)

Unless one class is more likely to occur, the point where the two PDFs
are equal constitutes the decision boundary. We show an example of such
PDFs in Figure 6.23, where we arbitrarily assume that the lake class has a
mean gray value of �1 � 1 and a standard deviation of �1 � 0.25. We also
 assume that the pixels with a gray value of other than 1 represent the forest
class. Correspondingly, we compute a mean forest gray value of �2 � 4.74 and
a standard deviation of �2 � 2.50. From this plot we identify the decision
boundary x0 as 1.65. This means that any pixel with a gray value less than 1.65
is classified as lake and pixels with a gray value greater than 1.65 are classified
as  forest. The corresponding classified image is shown below, where F stands
for forest and L for lake:

F    F    F    F    F    F    F
F    F    L    L   F    F    F
F    F    F    F    F    F    F
L   F    F    F    F    F    F
F    F    F    F    F    F    F
F    F    F    L    F    F   F

Notice this Bayesian classifier here simply computes the probability that
a pixel belongs to a class, or it essentially performs a spectral classification
(rather than a spatial classification). Contextual classification techniques are
now  applied to include the relation a pixel has to its neighbors. For example, if
a lone pixel had a low gray value that indicates that it belongs to a lake, yet all
of its first- and second-order neighbors had a high gray value suggestive of a
forest, the contextual classification scheme may well assign the pixel to the

(x � �i)
2

�
2�2

i

1
�
�2����i
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 forest class despite its low gray value. For our simple problem, we let first- and
second-order neighbors have equal weights so that for interior pixels the num-
ber of first- and second-order neighbors total 8, or T1j � T2j � 8; for corner  pixels
T1j � T2j � 3; and for border pixels T1j � T2j � 5. According to Equation 6.8, the
decision rule now assumes the form xj  1.65 � �(0.25)2(T̂1j � T̂2j). So if pixel j
had a gray value less than the resulting value as computed, it will be classified
as a lake, otherwise it will be classified as forest. It is clear that the parameter �
determines the watershed for classification. When � � 0, the gray values of a
pixel’s neighbors (and the choice of � between the two groups) becomes unim-
portant, non-contextual classification results, as shown in the forest (F) and lake
(L) image classification above.

Carrying out the ICM algorithm with values of � greater than zero, a
 number of classifications were obtained. At 0.25 increments, increasing the value
from 0 through 1.5 did not cause a change in the classification. Starting at � � 1.75,

1.0

0.8

0.6

0.4

0.2

1.2

1.4

P(x zlake)

x1 2
x0  1.65

3 4 5 6 7 8 9

PDF

10

P(x zforest)

Figure 6.23  GAUSSIAN PROBABILITY-DENSITY FUNCTION USED IN
BAYESIAN CLASSIFIER



332 CHAPTER 6 Remote Sensing and Geographic Information Systems

however, the following image was obtained where two of the four lake pixels
started to disappear:

F    F    F    F    F    F    F
F    F    F    F    F    F    F
F    F    F    F    F    F    F
L   F    F    F    F    F    F
F    F    F    F    F    F    F
F    F    F    L    F    F   F

Eventually, at � � 2.25 the predominance of forest pixels causes the lake pixels to
disappear altogether:

F    F    F    F    F    F    F
F    F    F    F    F    F    F
F    F    F    F    F    F    F
F   F    F    F    F    F    F
F    F    F    F    F    F    F
F    F    F    F    F    F   F

Notice that in terms of final result, the difference between a single � vis-a-vis two
�’s is really not that important since it gets to be combined with � in Equation 6.8.

Implementing the contextual classification scheme in conjunction with 
the Bayesian technique is relatively simple, at least for a single sensor (or one-
dimensional problem) and in the case of partitioning pixels into two classes.
Extension into several classes and multiple sensors is still straightforward,
 although computational requirements do go up noticeably, but not dramatically. ■

Multi-Class Example
In this example, we consider more than two classes in image classification. Take the
example of four classes, the decision rule in Equation 6.8 is now based on three
 watershed points x0, x0′, and x0″, where x0  x′0  x″0. A pixel of color j will  belong to
group 1 if xj  x0 � ��1

2(T̂1j �  T̂2j �  T̂3j �  T̂4j ), to group 2 if xj  x0′ � ��2
2(T̂2j �

T̂1j �  T̂3j �  T̂4j ), and to group 3 if xj  x0″ � ��3
2(T̂3j �  T̂1j �  T̂2j �  T̂4j ). While

there are  numerous ways to classify an image, one way is that the classified pixels
are  sequentially removed from the image according to this decision rule. Thus after
pixels are classified into group 1, they are removed and T̂1j � 0 in the decision rule
for classifying group 2 pixels. If one does not want to remove pixels from an image
after they are classified, an alternate decision rule can be devised. The rule for
group 1 remains the same, while that for group 2 becomes xj  x0 � ��2

2(T̂1j �

T̂2j � T̂3j �  T̂4j ) and that for group 3 becomes xj  x″0 � ��3
2(T̂1j � T̂2j � T̂3j �  T̂4j ).

The  decision rules can easily be generalized to six groups in the following example.
We give an artificial example taken from Besag as cited in McLachlan (1992). The
true scene contains 6 colors, on a 120 � 120 array. It was originally hand-drawn
and chosen to display a wide variety of characteristics. The univariate feature
 observations were generated from the color labels by  superimposing Gaussian
noise with �2 � 0.36. The first 64 rows and the first 64 columns are displayed in
Figure 6.24(a) in which the adjacencies are less  contrived than in the scene as a
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whole. A color key, which is part of the pattern, is shown, where the sign
“minus” � � 1, “cross” � � 2, and so on. The initial reconstruction using the
non-contextual  classification, i.e., � � 0, produced an overall misallocation rate of
32 percent, as shown in the patchwork of colors in Figure 6.24(b). With the correct
value of �2 and with � � 1.5 throughout, the ICM algorithm gave an overall error
rate of 2.1 percent on the eighth cycle. The ICM algorithm, applied with �
 increased by equal increments from 0.5 to 1.5 over the first six cycles, reduced the
overall error rate to 1.2 percent on the eighth cycle, as shown in Figure 6.24(c). ■

IX. A DISTRICT CLUSTERING MODEL
Following the same philosophy, we present here a more general spatial pattern
recognition model—sometimes called a districting model—which selects, from 
a set of candidate pixels, parcels, or cells, the collection that best achieves a 
pre-specified set of goals or objectives. This is accomplished within specific 
constraints. The main purpose of most districting models is the design of a
 predetermined number of territories or districts with contiguous and compact
shapes. This compares well with image classification, where we group like  pixels
together to identify land cover or manmade facilities of interest.

A. A Single Subregion Model
Benabdallah and Wright (1992) present a multi-criteria integer-programming model
for selecting a set of cells or parcels from a large set, and identify the  complete set
of non-inferior or non-dominated14 solutions on a regular grid  configuration. A

Figure 6.24  CONTEXTUAL VERSUS NON-CONTEXTUAL IMAGE CLASSIFICATION

SOURCE: Besag as cited in McLachlan (1992). Reprinted with permission.

(a) True color scene

(b) Non-contextual classification

(c) Contextual classification

Legend

(a) (b) (c)
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 binary variable xi takes on a value of 1 if cell i is acquired and 0 otherwise. If we
 assume that the cost ci for any particular cell being considered is known, then a
 criterion function that seeks to minimize overall cost may be  written: Minimize 
y′2 � � n′

i�1
ci xj. Here costs are broadly defined to include such measures as the gray

value of a pixel or subareal population exposed to pollution and so forth. For the
 example shown in Figure 6.23, application of this criterion function will most likely
result in the identification of the previously unclassified pixels as forest. A maxi-
mization criterion, on the other hand, will probably identify the pixels as corn.

Similarly, if a′i —the area of cell i—is also known for all candidate cells, a
second criterion function that seeks to maximize total area may be written;
Maximize y′2 � � n′

i�1
a′i xi. The application of this criterion function will support

our conjecture that the unclassified pixels in Figure 6.23 will either be identified
as forest or corn and not be split between the two, since this criterion fosters as
large an acquisition as possible for a land cover type.

A third criterion function may be to induce compactness of the area by tight-
ening the total length of the border surrounding the cells acquired. This premise was
based on the observation that, for any given area, the most compact configuration
possible is one in which the border surrounding that area is a circle, the border with
the shortest length. Define sij as the length of the border separating cell i from cell j,
and variables Pij and Nij to be mutually exclusive binary decision variables that sum
to 1 if the border separating cells i and j in the final solution is an external border (a
border separating a cell that is acquired from one that is not) and 0 otherwise. The
compactness criterion may be written as: Minimize y3' � �n′

i�1
�n′

j�Ti
s

ij(Pij + Nij
), where

Ti is the set of cells adjacent to cell i, in other words, if cell 11 is  adjacent to first-order
neighbor cells 7, 10, 12, and 15, then the set T11 is {7, 10, 12, 15}.

The combined weighted objective function for the three criterion
 districting problem is 

Minimize z � �′c �
n′

i � 1
ci xi � �′a �

n′

i � 1
ai xi � �′s �

n′

i�1
�

j�Ti

sij (Pij Nij )
(6.10)

where �'c , �'a , �'s are weights on the cost, area, and compactness objectives,
 respectively. By varying the weights, the three criterion functions are empha-
sized or de-emphasized relative to one another. Thus emphasizing the gray value
of the unclassified pixels in Figure 6.23, balanced with maximal acquisition, may
result in only part (rather than all) of the pixels being allocated to forest.

A single set of constraints is required to define Pij and Nij

xi � xj � Pij � Nij � 0    � i, j � Ti (6.11)

For any adjacent cells i and j, if only one of the cells is selected (xi � 1, xj � 0; or
xi � 0, xj � 1), then either Pij and Nij must equal 0. For example, if cell i is
 acquired (xi � 1) and cell j is not (xj � 0), then the above equation would be sat-
isfied if Pij � 1 and Nij � 0. If both cells i and j are acquired (xi � xj � 1) or nei-
ther is  acquired (xi � xj � 0), then Pij and Nij must both equal 1 or both equal 0.
Because the external border function is being minimized, the smallest values
 assigned to Pij and Nij that would satisfy the equation would be 0 (Pij � Nij � 0)
for all i, j within the same grouping. (Example: If only cell 11 is acquired, or x11 � 1,
such a non-inferior solution will have P11 7 � P11 10 � P11 12 � P11 15 � 1, and 
N7 11 � N10 11 � N12 11 � N15 11 � 1.)
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While the formulation presented above is a general model, it is compu-
tationally difficult due to integrality requirements on the decision variables.
Including the second and third criteria as constraints15, a more compact formula-
tion is obtained:

Minimize y ′1 � �
n′

i�1
ci xi (6.12)

subject to

�
n′

i�1
xi � M (6.13)

xi � xj � Pij � Nij � 0    � i, j � Ti (6.14)

�
n′

i�1
�
j �Ti

sij (Pij � Nij ) � L (6.15)

xi , Pij, Nij � {0, 1} (6.16)

Here, M stands for the number of pixels to be included in the district, and L is
twice the boundary of the district16—both of which are to be parametrically var-
ied within a range to reflect the change in weights �′a and �′s. All ai’s are set to unity
since pixels are equal in size. The advantage of this formulation is that a non-
 inferior solution set (or efficient frontier) can be traced out for the allowable range
of Equations 6.13 and 6.15. (Again, see Section III in Chapter 5 for details of such
a procedure.)

We will illustrate this transformed model through a numerical example.
Figure 6.25 shows a 4 � 4 grid of 16 unit squares of the same size. The costs are
shown as lower right-hand-side entries of the grid. The cell (or pixel) number is
at the left-hand upper corner of each cell. In this example, M � 2, indicating an
area of 2 units. Also, L � 12 represents a boundary line of 6 units in length. The
entire formulation is shown in Figure 6.26, prepared in an ASCII input format

Figure 6.25  A NONINFERIOR SOLUTION SHOWING A SINGLE SUBREGION
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Figure 6.26  EXAMPLE MODEL FORMATION

. . OBJECTIVE MINIMIZE
1 ( 33 [ [ x1] ]  15 [ [ x2] ]  18 [ [ x3] ]  24 [ [ x4] ]  
39 [ [ x5] ]  6 [ [ x6] ]  24 [ [ x7] ]  6 [ [ x8] ]  
15 [ [ x9] ]  3 [ [ x10] ]  3 [ [ x11] ]  9 [ [ x12] ]  
6 [ [ x13] ]  9 [ [ x14] ]  24 [ [ x15] ]  12 [ [ x16] ] )

CONSTRAINTS
∗constraint for sum (Xi)  M
x1  x2  x3  x4  x5  x6  x7  x8  x9  x10  x11  x12  
x13  x14  x15  x16  2

∗constraint for Xi  Xj  Pij  Nij  0

x1  x2  p12  n12  0
x1  x5  p15  n15  0
x2  x1  p21  n21  0
x2  x3  p23  n23  0
x2  x6  p26  n26  0
x3  x2  p32  n32  0
x3  x4  p34  n34  0
x3  x7  p37  n37  0
x4  x3  p43  n43  0
x4  x8  p48  n48  0
x5  x1  p51  n51  0
x5  x6  p56  n56  0
x5  x9  p59  n59  0
x6  x2  p62  n62  0
x6  x5  p65  n65  0
x6  x7  p67  n67  0
x6  x10  p610  n610  0
x7  x3  p73  n73  0
x7  x6  p76  n76  0
x7  x8  p78  n78  0
x7  x11  p711  n711  0
x8  x4  p84  n84  0
x8  x7  p87  n87  0
x8  x12  p812  n812  0
x9  x5  p95  n95  0
x9  x10  p910  n910  0
x9  x13  p913  n913  0
x10  x6  p106  n106  0
x10  x9  p109  n109  0
x10  x11  p1011  n1011  0
x10  x14  p1014  n1014  0
x11  x7  p117  n117  0
x11  x10  p1110  n1110  0
x11  x12  p1112  n1112  0
x11  x15  p1115  n1115  0
x12  x8  p128  n128  0
x12  x11  p1211  n1211  0
x12  x16  p1216  n1216  0
x13  x9  p139  n139  0
x13  x14  p1314  n1314  0
x14  x10  p1410  n1410  0
x14  x13  p1413  n1413  0
x14  x15  p1415  n1415  0
x15  x11  p1511  n1511  0
x15  x14  p1514  n1514  0
x15  x16  p1516  n1516  0
x16  x12  p1612  n1612  0
x16  x15  p1615  n1615  0
∗constraint for sum (Pi  Ni)   L
p12  n12  p15  n15 
p21  n21  p23  n23 p26   n26 
p32  n32  p34  n34 p37   n37 
p43  n43  p48  n48 
p51  n51  p56  n56 p59   n59 
p62  n62  p65  n65 p67   n67 p610   n610 
p73  n73  p76  n76 p78   n78 p711   n711 
p84  n84  p87  n87 p812   n812 
p95  n95  p910  n910 p913   n913 
p106  n106  p109  n109 p1011   n1011 p1014   n1014 
p117  n117  p1110  n1110 p1112   n1112 p1115   n1115 
p128  n128  p1211  n1211 p1216   n1216 
p139  n139  p1314  n1314 
p1410  n1410  p1413  n1413 p1415   n1415 
p1511  n1511  p1514  n1514 p1516   n1516 
p1612  n1612  p1615  n1615 12
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that will be accepted by many mixed integer programming codes on the market
today. The solution, x10 � x11 � 1 and the rest of the variables at zero value, il-
lustrates only one non-inferior solution for the criterion function Equation 6.12
when M and L in Equations 6.13 and 6.15 assume specific values of 2 and 6
 respectively. In the general case, there are quite a few number of partitioning
 possible within permissible range of M and L.

To determine the range of L and M to vary in this constrained feasible 
region, Benabdallah and Wright (1992) offered a formula and subsequently
 modified by Wright (1994) for determining the minimum value of the L range as
a function of M: B M

Min � 4
�M�� � 2t″ with

0 if M � 
�M��2 � 0
t″(M) � 1 if M � 
�M��2 � 
�M�� (6.17)

2 if M � 
�M��2 � 
�M��

where •� is the integer part of • The parameter t″(M) monitors the shape of the
region, when t″(M) � 0, the region is square in shape. When t″(M) � 1, the shape
becomes a rectangle. For example, an irregular shape will result for M � 3, 

t″ � 2, and B M
Min � 8: . Similar result is obtained for M � 8, t″(M) � 2, and

B M
Min � 12: . When t″(M) � 2, the shape will be made up of squares and/or

rectangles. Experimentation with small problems will show that the above equa-
tions make sense and that for values of L near this lower bound, contiguity of the
region will result. When the strict lower bound is used for L, a rectangular or
square shape subregion will be formed.

Example
Refer to the numerical example of Figure 6.26 and Figure 6.27. For M � 2, and
t’″(M) � B M

Max � 6, and the familiar rectangle consisting of cells 10 and 11 results.
The maximum of the range is B M

Max � 4M, where the region is fragmented and no 

acquired cell is adjacent to any other acquired cell . In general, the region

may be fragmented before reaching B M
Max � 4M. ■

B. Multiple Subregion Model
A multiple subregion model can be obtained by introducing another index k,
which stands for the subregion number. Thus xik stands for the binary variable
that determines whether the ith cell or pixel is acquired in subregion k.
Correspondingly, the mutually exclusive binary-variables associated with the
boundary can be extended to include the index k: Pijk and Nijk. Introducing the
weight wk for each subregion, the model now looks like

Minimize   z � �
K

k�1
wk �

n′

i�1
ci xik (6.18)

{ 



subject to

�
n′

i�1
xik � Mk  �k (6.19)

xik � xjk � Pijk � Nijk � 0    � i, j � Ti, k (6.20)
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Figure 6.27  MULTIPLE SUBREGION NONINFERIOR SOLUTIONS
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9
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1
1
1
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1
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1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
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3
3
3
3
3
3
3
3

4
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4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
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6
6
6
6
6
6
6
6
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8
8
8
8
8
8
8
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8
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1
1
5
5
5
5
5
5
6
5
6
2
1
1
2
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3
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2
2
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7
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7
9

22
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2
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6
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1
2
3
4
4
5
5
6
6
6
7
7
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4
4
5
5
6
6
6
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5
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8
8
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14
12

8
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Cost

1
3
4
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9
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6
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9
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26
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34
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26

15
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41
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9
6, 9

6, 8, 9
5, 6, 8, 9
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2, 5, 6, 8, 9
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2, 5, 6, 7, 8, 9
3, 4, 6, 7, 8, 9

2, 4, 5, 6, 7, 8, 9
2, 3, 4, 5, 7, 8, 9
1, 2, 3, 4, 6, 7, 9

1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4, 5, 7, 8, 9
1, 2, 3, 4, 6, 7, 8, 9

7, 8
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5, 6, 8, 9
6, 7, 8, 9

5, 6, 7, 8, 9
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2, 3, 5, 6, 8, 9
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4, 7, 8, 9
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1, 2, 4, 7, 8

4, 5, 6, 7, 8, 9
1, 2, 3, 4, 5, 7
1, 2, 3, 6, 8, 9

4, 7, 8, 9
1, 2, 3, 4, 7

1Take the first entry under this column, S2 stands for 2 subregions, 1 stands for an area of 1 pixel for subregion 1 and the last 1,
stands for an area of 1 pixel for subregion 2 also. The a and b entries specify two different variations on the boundary of the sub-
region in generating noninferior solutions.



�
K

k�1
xik � 1 �k (6.21)

�
n′

i�1
�
j�Ti

sij
(Pijk � Nijk) � Lk �k (6.22)

The number of zero-one variables and constraints used in the multiple
subregion models can be estimated a priori before one runs the model. Let R�
be the number of cell rows in the overall region, �C the number of cell columns in
the overall region, and K the number of subregions being acquired. An estimate
of the number of zero-one variables, the number of equality constraints, and less-
than-equal-to constraints as a function of �R, �C, and K can be given.

Number of zero-one variables � 9KR
_
C
_

Number of equality constraints � 2K(1 � R� � C� � 2 R
_ 

C
_ 

)
Number of less-than-or-equal-to constraints � R�C�
An example calculation when R

_
� 3, C

_
� 3, and K � 2 yields 162, 100, and 90

 respectively. It can be seen that the size of the problem can grow exponentially
large. Either a faster solution algorithm or an alternate model formulation would
be necessary to make this an operational procedure.

An example run involving two subregions is shown in Figure 6.27.
This table is organized into four groups, corresponding to the size of the first
 subregion fixed at 1, 2, 3, and 4 pixels respectively, while varying the size of the
second subregion. Also included in this table is the various non-inferior solutions
when the boundary L is tightened or loosened. This illustrates the usefulness of
a model like this in presenting the analyst with various possible cell classifica-
tions schemes. The decision maker can then pick and choose among the non-
 inferior solutions. Figure 6.28 illustrates graphically the non-inferior solutions for
the first group in the table. Take the line marked S2_1_2 as an example. The line
records a single non-inferior solution to a two-subregion model. The first subre-
gion has one pixel while the second subregion has two pixels. The partitioning is
based on the assumption that the first subregion is weighted twice more than the
second subregion. Instead of allocating pixel 6 to subregion 1 and pixels 8 and 9
to subregion 2, it can be shown that the better solution is to have pixel 8 assigned
to subregion 1 and pixels 6 and 9 to subregion 2. To see this, let us say w1 � 1 and
w2 � 2, the solution as shown yields an objective function of 2(1) � (2 � 1) � 5,
which is better than 2(2) � (1 � 1) � 6.

The model can be further extended to account for shape of a subregion.
Let w'k be the width and hk be the height of a subregion k. One can specify the
shape of each subregion by rewriting Equation 6.22 as two equations:

�
i� nr

xik � W ′k yrk � 0 � r, k (6.23)

�
R�

r�1
yrk � hk    �k (6.24)

where yrk is a binary variable equal to 1 if any cell in row r is assigned to 
subregion k and zero otherwise. The parameter nr is the set of cells in row r and 
R� is the number of rows in the grid. An example of this model is illustrated in
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Figure 6.29, in which the first subregion is specified to have a width of 2 and a
height of 2, while the second subregion measures 3 by 1. Notice this fundamen-
tal formulation is good for subregions of rectangular and square shapes only,
where the solution yields the exact specified shape.

For computational efficiency, this model has been transformed to several
more compact formulations. For example, a nonlinear function can be used as a
compactness function for a districting model (Benabdallah and Wright 1992).
The resulting model is multi-criteria, nonlinear, and discrete. The objective of 
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Figure 6.28  MULTIPLE SUBREGION ALLOCATION RESULTS
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the model is to maximize the weighted sum of the compactness function of all
subregions, subject to the cost limits constraint on each subregion. A heuristic
 algorithm is developed to generate a solution to the problem. Based on limited
experiments, the algorithm converges to a very good solution. However, the 
solution may not be optimal.

C. Demand Equity
In providing service to a region, the concept of equity is important. This is
 particularly true in districting for public service provision. The concept of equity as-
serts that the entire population of potential clients is treated as equally as  possible
in terms of the quality of service it receives. Applying the equity criterion will imply
that the performance measures by which the quality of service is evaluated will be
more or less equal in each subregion. Let us examine the  sample region G exhibited
in Figure 6.30. Instead of ci , the region consists of nine cells. The  numbers at the
lower right-hand corner of each cell indicate the  demand at each cell. These are
 denoted by fi (i � 1, . . . , 9). Suppose we want to partition G into two subregions, G1
and G2 , where the only guiding criterion is  equity. We will certainly not recommend

Figure 6.29  MULTIPLE SUBREGION MODEL WITH SHAPE SPECIFICATIONS
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Figure 6.30  DISTRICTING FOR DEMAND EQUITY
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that cells 2 and 3 constitute G1 while all the rest of the cells are assigned to G2, since
such partitioning will load 81 percent of the total demand on G2. Rather we will try
to divide the cells such that their cumulated demand will be close to 50 percent. For
example, G1 � {1, 2, 4, 5} and G2 � {3, 6, 7, 8, 9}; this partitioning will split the
 demand between the two subregions in a ratio of 48.5:51.5.

The principle of equity can be quantitatively formulated as follows: Let K
be the desired number of subregions. Perfect equity is obtained if each subregion
 incurs 1/K fraction of the total demand. An additional criterion function to be
 applied, in addition to compactness, cost, and area, may well be the widely
 publicized entropy function17 and Max Q!/�k

k = 1 Vk where Vk � � n′
i�1

fixi , �k
i = 1 Vk �

Q and fi ’s are integer valued. Obviously, such a criterion function is  nonlinear, even
when it is simplified into its Stirling’s approximation: Max [��

k

i�1
(Vk log Vk � Vk)].

The set of constraints are very much similar to Equations 6.19 through 6.22. The
model will then partition the study area into service regions of more or less equal
demand. Unfortunately, the resulting model is nonlinear, discrete, and huge in size.
For this reason, it may further complicate the already computationally demanding
Benabdallah/Wright (BW) model. Simpler districting models without the area and
border length considerations have been around. They are typically used for effect-
ing equitable redistricting of political subdivisions. Mehrotra and Johnson (1995)
provides one of the more recent descriptions of a solution algorithm. A numerical
example is included in the “Exercise and Problems” section as Problem III-A.

D. Extensions
The BW model can be further extended in several ways. First, there is an inherent
weakness in handling subregions at the border of the grid. The accounting system
of the model breaks down at the border. For instance, the border length of a sub-
region made up of cells 13 and 14 in Figure 6.25 is 3 rather than 6, since the edges
at the border do not count. Also a subregion can be broken down into two at the
border. The example shown in Figure 6.31 illustrates this fact, where the shaded
cells 9, 10, and 16 form one (rather than two) subregion(s) of area 3 and border
length 8 (M � 3, L � 16). This weakness of the model can be  overcome by rewrit-
ing the equations governing the subregion length L, distinguishing between the
regular interior cells, the corner cells and cells on the  border that are not corner
cells. A simpler way is to build an artificial border around the  region, with values
ci set at a high value. This way, each real cell can be treated the same way without
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Figure 6.31  A SPLIT SUBREGION AT THE BORDER

M3L16

11 5 6

2 5 1

8 4 6

8

1

5

13

3

6

1 4 2 2 6

4 5 6 5 5



Remote Sensing and Geographic Information Systems CHAPTER 6 343

having to distinguish between interior cells, border cells and corner cells. This
practice also parallels remote sensing applications, where the pixels at the border
are distorted and are of little relevance to the rest of the image.

If there is a single criticism leveled against the BW model, it is about the
computational time involved. The current state of the art only allows such a
model to be a research tool, rather than an operational one. It is conceivable that
better solution algorithms can be devised over time to address this problem.
Finally, the shape constraint can possibly be made more elaborate by inclusion of
more sophisticated constraints. Research is currently underway to address some
of these concerns (Green and Chan 1994; Warrender et al. 1992). Modern GIS tech-
nology has developed to the point where exhaustive enumeration algorithms
 imposed on raster or cell data can solve problems that are much more practical,
and in reasonable time, even though these exhaustive algorithms are by definition
inefficient. However, for problems that involve clustering of all cells in a field into
distinct subregions and the identification of multiple subregions having certain
shape or configuration requirements enumeration methods are infeasible.

X. CASE STUDY OF IMAGE 
CLASSIFICATION 

For this study, a SPOT image of the Washington D.C. area was used as the source
of multi spectral data. Land cover types are to be discerned in the image. Rather
than attempting to analyze the whole image, this study will be limited to a 48 �
18 pixel sub-image. The area selected is a portion of the Washington D.C. Mall
 located between the Lincoln Memorial and the Washington Monument (see
Figure 6.32). Our objective is to classify the bodies of water found in the
Reflecting Pool, Tidal Basin, and  Constitution Gardens. The area is chosen
 because the ground truth regarding the bodies of water is well-known from
maps, serving to validate any of our classifications. All three multispectral
 channels of this sub-image will be used in the analysis. In each channel, the
 individual pixels are allowed to take on one of 256 shades of gray (Amrine 1992).

A. Digital Image Data
Two assumptions were made regarding this image: (a) No rectification was needed
among each of the multispectral images. (b) The processing effects on the image
are minimal and do not affect the analysis. The software TS-IP18 unveils several in-
teresting observations in the images of Figure 6.33 regarding the spectral values. In
channel 1, the values ranged from 0 to 227, while in channel 2, the range was 0 to
216, and in channel 3, from 0 to 212. From the processed sub-image based on spec-
tral filters, it is obvious that the spectral range used by these filters identifies water,
but not uniquely. For example, the filter uses a spectral range of 0–22 to identify
water in channel 1. Table 6.6 documents the overall accuracy in identifying the
water contained in the four water subregions of the channel-1 image as 94 percent.
In channel 2, the water subregions are not as spectrally distinct. The  visual inspection
method used in channel 1 could not be used for channel 2. It is first necessary to
locate the water subregions from the ground truth so the gray values could be
recorded. It is found that the spectral range of water is 5–166. This wide range for
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Figure 6.32  PORTION OF WASHINGTON D.C. MALL UNDER ANALYSIS

Note: represents an area for further analysis in the “Spatial-Temporal Information” chapter
in Chan (2005).  

SOURCE: U.S. Geological Survey (1983). Reprinted with permission.

Figure 6.33  SPOT SUB-IMAGE GRAY VALUES
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water shows why the water is not as spectrally distinct as in channel 1. There is a
marked decrease in the overall accuracy when compared to channel 1. In channel 3,
the water regions are again spectrally non-distinct. In fact, the problem in locating
the water is similar to channel 2 but worse. Any  pixels within the 5–200 gray range
are labeled as water. Classification accuracy of the water subregions with channel 3
spectral data alone is very low. In fact,  channels 2 and 3 are better equipped to
pick up land cover types other than water, particularly pavement, when one lays
Figure 6.32 and Figure 6.33 side-by-side.

B. Image Classification
Once the gray value ranges are located, we proceed to identify the bodies of water in
the image. The BW classification model was extensively modified for this application.
An objective function that will work to combine channels p and q is

Max �
K

k�1
�′p �

n′

i�1
cip xik � �′q �

n′

i�1
ciq xik� (6.25)

The size and border-length constraints as specified by the multiple subregion BW
model were used (Equations 6.19 to 6.24). However, major improvements can be
made to the model. These improvements include the pixel bounds constraint and
the multi-criteria functions. The constraint that sets the spectral bound for each
channel also sets the value of xik to zero if the pixel gray-value is out of this range.
With these constraints, only the water-type pixels are considered for selection into
a water subregion. For channel 1, these pixel-bound constraints look like:

ci1 xik � 22    i � 1, . . . , K
(6.26)

xjk � 0     j � i, k � 1, . . . , K

Pixel count

Water areas

57

2

3

4

2

3

2

3

Gray value

0

3

6

9

13

16

19

22

58

2

4

4

2

5

2

6

Total

98

100

75

100

100

60

100

50

Classification accuracy

(%)

SOURCE: Amrine (1992). Reprinted with permission.

Table 6.6  CLASSIFICATION OF WATER IN CHANNEL 1
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A/B Weight on channel-1 pixels/weight on channel-3 pixels

Subregion I  Reflecting Pool

Subregion II  Tidal Basin

Legend

1/9  2/8  4/6
0/015/57/31/92/83/74/6

For channel 2:

ci2 xik � 5    i � 1, . . . , n′; k � 1, . . . , K

ci3 xjk � 166    i � 1, . . . , n′; k � 1, . . . , K (6.27)

xjk � 0    j � i; K � 1, . . . , K

For channel 3:

c3 xik � 5    i � 1, . . . , n′; k � 1, . . . , K

c3 xjk � 200  i � 1, . . . , n′; k � 1, . . . , K (6.28)

xjk � 0    j � i; k � 1, . . . , K
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Figure 6.34 RESULTS OF RUNS FOR AREA � 24 AND BORDER LENGTH � 64
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The area and border length constraints are also simplified. Instead of specifying
an individual area and border length for each subregion, a total area and
 border length for all the subregions are specified:

�
K

k � 1
�

n′

i � 1
xik � M

(6.29)
�

K

k � 1
�

n′

i � 1
�
j�Ti

sij (Pijk � Nijk) � L

Multicriteria optimization is performed using the constraint-reduced 
feasible-region method19. The area is set parametrically at greater than or equal to 24
and the border length restricted to less than or equal to 64. Given these parameters,
the modified BW model was run based on the tradeoff of information  between
channels 1 and 3. In this set of runs, the pixels selected are from the Reflection Pool
and the Tidal Basin. The only exception to this statement is the run corresponding
to the weights (10/0), where channel-1 is weighted by 10 and  channel-3 weighted
by 0 (in a scale of 10). In this run the selected pixels also come from the Constitution
Gardens Lake and the noise-type pixels. Notice in all the  solutions, the model uses
the full border length limit of 64. However, the number of pixels selected varies
from 24 to 31. Figure 6.34 depicts the results of the  complete set of runs.

In a second set of runs, the area has been changed to be greater than or
equal to 26 and the border length remains at less than or equal to 64. The model
maximizes the objective function by selecting pixels from the Reflection Pool,

Figure 6.35  RESULTS OF RUNS FOR AREA � 26 AND BORDER LENGTH � 64

A/B               Weight on channel-1 pixels/weight on channel-3 pixels

Subregion I   Reflecting Pool

Subregion II  Tidal Basin

Legend

1/9  4/6
6/4

I

II

I

II

I

II

I

II

I

II

I

II

10/09/18/27/35/5



noise-type pixels, and the Tidal Basin. It is interesting to note that the size of the
area selected varied from 26 to 32 pixels, but the border length of 64 is main-
tained. Most of the solutions are the same, except for runs corresponding to
weight combinations 7/3, 8/2, and 9/1. For the 10/0 run, the model only identi-
fies the Reflection Pool and a number of noise pixels. These results are very
 similar to the previous set of runs, including the weight setting 10/0. All these
 results are plotted in Figure 6.35 for easy reference. Even though only the chan-
nel-1/channel-3 combination is discussed here, the same type of classification
can be performed between channels 1 and 2.

C. Lessons Learned
The results are very clear. A combination of two channels has been shown to yield
 better classification than one single channel. In the two sets of runs above, the 0/10
weight setting corresponds to using only channel-3 while the 10/0 setting corre-
sponds to using only channel-1. In the former setting, the runs never converge.
The latter setting also yields unsatisfactory results in that the Tidal Basin is missed
 altogether, and noise is picked up. Granted that channel 1 is the most suitable of all
three channels for identifying water. But the extra information afforded by channel 3
(and for that matter channel 2) will help in the classification, even though we tend
to rely more on channel 1 as reflected by the weights. In fact the best classifications
came from weighing channel 1 much more heavily than channel 3 as verified by both
sets of runs.

An alternative way of classifying the digital image would be to combine
two channels into a composite index such as the normalized vegetation index
(NVI). Then the BW classification model would operate on a single set of pixels
representing the NVI. Such an attempt was followed but to no avail, and the
process stops after a futile calculation of the vegetation indices. There are plausi-
ble explanations for this shortfall. Recall that the vegetation indices (VI) were
 defined as the difference between near infra red and red reflectances: VI � 
(near-IR) � (red), and the NVI was defined as NVI � VI/[(near � IR) � (red)].
The variables in these equations represent the gray value of a pixel in the red and
near-IR imaging bands. With SPOT imagery, the red band corresponds to chan-
nel 2 and the near-IR band corresponds to channel 3. In general both indices
 result in high values for vegetation areas due to their relatively high near-IR
 reflectance and low red reflectance. In contrast, clouds, water, and snow have
negative  values due to their larger visible reflectance than near-IR reflectance.

Computation of VI and NVI, however, failed to show any negative pixel
values in the four major water subregions. Two individual noise-type water 
pixels did have a negative value. It is suspected that the preprocessing of data in
SPOT may have caused this problem. A second explanation is that the vegetation
indices were specifically developed for the NOAA AVHRR system and are not
applicable to SPOT images. A third explanation for the gray values to be out of
the normal range is the imaging conditions. This is a catch-all factor that considers
illumination angle/time-of-day, moisture content of gravel and soil, and water.
All of these factors can affect the gray values that are recorded for a scene. Thus
our initial assumptions about the inherent quality of processed satellite-image
data are not supported. This points to the importance of understanding digital
image processing as a prerequisite for proper use of remote sensing and GIS.

Computational time for the BW model amounts to hours per run on
 extreme cases, although most were accomplished around 45 minutes using the
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Generalized-Algebraic-Modeling-System/Zero-One-Optimization-Model
(GAMS/ZOOM) on a VAX 8550 mainframe computer. Research is under way to
find a more efficient solver for the BW model, including the use of network- with-
side-constraints routines20 (Reed 1991; Earl et al. 1992). Simpler model formula-
tions were also attempted (Warrender, Sovaiko, and Chan 1992). Preliminary
 results look promising.

XI. REMOTE SENSING, GIS, AND 
SPATIAL ANALYSIS

To the extent that the earth’s surface is constantly reflecting and emitting elec-
tromagnetic radiation, remote sensing devices such as satellites are capable of
measuring this radiation rather accurately and in a timely fashion. The intensi-
ties of emissions vary for the different wavelengths of the electromagnetic
 spectrum. The spectral distribution, or spectral signature, depends upon several
factors, of which the most important are surface conditions, type of land cover,
temperature, biological activity, and the angle of incoming radiation. Satellites
(or equivalent remote sensors) equipped with multispectral scanners are able to
measure the intensity in several bands of the spectrum. Since the bands span
from infrared to red, such scanners can see beyond the naked eye for a number
of geological, urban planning, agricultural, forestry, cartographic, and environ-
mental management applications.

Unfortunately, remote sensing is a new technology that has yet to be
fully integrated into GISs. SPOT represents one of the commercial efforts in inte-
grating remote sensing with GIS. An attempt is made to use SPOT images to
 update GISs, which are typically organized into vector databases. These vector
databases consist of digital line graphs (DLGs), TIGER, and DIME files, which
are often outdated. Through digital or photographic images, framed in standard
USGS map sizes, the company claims that the remote sensing information can be
ingested into any major vector/raster GIS or AutoCAD®system. 

Among other uses, GIS has been viewed as an integrated information base
for analysis. The way in which analysis is linked to the database can be  performed
in three different ways (Anselin and Getis 1992). One can: (a) fully  integrate all
 spatial analysis within the GIS software; (b) construct models of  spatial analysis
that efficiently link with the GIS and effectively exploit the spatial information in
the database; or (c) leave the GIS and spatial analysis as two separate entities and
simply import and export data in a common format between the two.

The third approach ignores the distinctive characteristics of a spatial
database for use in spatial analysis. Nevertheless, it seems to be the approach
most common in practice, mainly due to the problems with proprietary data
 formats in commercial GIS and the limited facilities of often awkward 
macro  languages. Examples of this strategy are the joint use of GRASS and 
S for  exploratory data analysis, the combination of SPANS and SYSTAT to carry
out stepwise  regression, and the use of ARC/INFO and BMDP for logistic
 regression.

The second approach is similar to the so-called modular design in
 integrated regional modeling and consists of developing self-contained modules
for various types of spatial analyses. These modules are then linked to the specific
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data structures used in a commercial GIS. They are thus not “generic,” but limited
to a particular combination of GIS and analysis technique. Most of these modules
are written and compiled separately and access the data structure of the GIS by
means of proprietary library functions. In general, the use of the GIS macro facil-
ities is avoided, given its poor performance in terms of speed. Even though this
second approach links a statistical package to a GIS, it is generally limited to
 simple descriptive measures, such as univariate measures of spatial association.
This has been referred to as Applications Programming Interface (API).

Finally, the first strategy is basically non-existent, due to the lack of an-
alytical capabilities in most commercial GIS, with partial exceptions in SPANS 
and TRANSCAD. It is most closely approximated by the idea behind a spatial
analysis toolkit. To the extent that spatial analysis includes all of the traditional
techniques, the determination of an unambiguous set of generic spatial
 analysis functions in a GIS is an important, yet still largely unresolved ques-
tion. This philosophy of designing GIS is sometimes referred to as client-server
architecture.

Looking toward the future, the first strategy can become very useful
when eventually implemented. Densham and Rushton (1992) demonstrated that
processing cost for the most accurate, heuristic, location-allocation algorithms
can be drastically reduced by exploiting the spatial structure of location-alloca-
tion problems. The strategy used—preprocessing inter-point distance data as
both candidate and demand strings and using them to update an allocation
table—allows the solution of large problems (3000 nodes) in a microcomputer-
based, interactive decision-making environment. More importantly, these
 strategies yield solution times that increase approximately linearly (rather than
exponentially) with problem size.

Along the same line, Ding, Baveja, and Batta (1994) implemented a 
facility-location model in GIS. The model locates facilities in a Manhattan metric 
(l1-metric)21 where travel can only take place in the east-west and north-south
 direction. Furthermore, travel has to avoid such barriers as lakes or other 
geographic obstacles. Its principal result is that the search for candidate facility-
locations can be restricted to a finite, easily identifiable set of points. An example
can be found in the “Facility Location” chapter of Chan (2005). Most importantly,
the authors found the implementation greatly streamlined by a GIS such as
ARC/INFO, assisted by the availability of TIGER files. The Densham and
Rushton algorithm described above was employed to perform the location-
allocation steps once the candidate facility locations are identified.

According to Bennion and O’Neill (1994), GIS is a very useful tool for
defining transportation analysis zones (TAZ). Somewhat parallel to the BW
 districting model discussed above, they outlined an approach to address
 homogeneity and shape criteria for developing TAZs. By homogeneity is meant
population density, employment density, average income, and so forth. In other
words, we wish to group areas of similar population, employment density, and
income together. By the same token, we wish to avoid irregular and elongated
shapes, and only aggregate adjacent (rather than noncontiguous) geographic
units together to form a zone. A fuzzy c-varieties algorithm is offered as a
 substitute for thematic mapping to model the homogeneity criterion, while
analysis of fractal dimensions is used to address shape and compactness criteria.
The fuzzy approach explicitly subjects the delineation of zonal boundary to
human judgement and hence the boundary is not rigidly mandated by a priori
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rules. Fractal dimensions are used here to quantify the relationship between the
area and perimeter of a polygon—a feature readily compatible with the data
structure of most GISs. Bennion and O’Neill discussed future implementation of
these procedures for ARC/INFO and ATLAS GIS.

Tomlin (1991) summarizes the cartographic modeling principles that may
underpin eventual implementation of an integrated GIS on a digital computer,
combining data and problem solving under one roof. He outlines the major
 conventions, capabilities, and techniques associated with this particular approach.
His proposal differs from the competing techniques of relational database and
 feature- or object-oriented programming. In the widely disseminated relational
idiom,  geographic entities (such as lines or areas) are explicitly characterized in
terms of attributes (such as names or numbers) and are related to one another by
way of  relations (such as adjacency or inclusion).22 These relations can also be
 characterized in terms of their own attributes, and they too can be associated with
one  another by way of additional relations. The same is true in the now popular
 feature- or object-oriented idiom. Here, however, primitive entities can be associ-
ated with one another not only in terms of relations but in terms of more complex
entities as well.

To be distinguished from these approaches, the fundamental spatial entity
in cartographic modeling is the location. Unlike the units of data in most relational
and object-oriented systems, locations are not units of “what” but of “where.”
Although locations can be aggregated into set of lines, areas, and surface features,
they remain the elemental units for which attributes are recorded. The cartographic
modeling approach associates locations with one another not with declarative
statements specifying selected relations but with new entities that are generated by
applying selected functions. To interrelated entities that are comprised of multiple
locations, each is first disaggregated into a set of individual locations. A function
is then applied to these locations to generate new attributes that will ultimately be
re-aggregated to characterize the original entities or to form entirely new ones.

From this perspective, a question such as “How far is this area from that
area?” would be expressed as “What is the minimum distance between any
 location within this area and any location within that area?” or “What is the
 distance between the centroid of this area and the centroid of that area?” The fact
that there are two interpretations of that initial question reflects the utility of this
point of view. It is a view that becomes particularly useful in dealing with more
complex spatial relationships such as narrowness, enclosure, spottiness, inter-
spersion, striation23, and so on. The near future of cartographic modeling will
likely be one of both refinement and extension. This is not only true in terms of
new software (e.g., the MapBox system) but also in terms of new techniques in
areas such as three-dimensional modeling, spatial statistics, interpolation, error
tracking, feature extraction, temporal dynamics, flow simulation, and so on.
Interoperability standards will make it easier to view, pan, and query geographic
images and maps on the web. Efforts are ongoing to merge spatial data with non-
spatial data in a single database. Such standardization brings all the advantages
of a relational database management system to spatial data.

In general, spatial analysis contributes toward an understanding of
 locations and feature attributes (Galati 2006). Spatial analysis harnesses this
duplicity through the study of geographic-feature locations and shapes.
Spatial analysis relies heavily on the first and most fundamental law of geog-
raphy. Attributed to Tobler (1965), this law states that everything is related to
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everything else, but near things are more related than distant things. We have
seen in “Chapter 2—Descriptive Tools” how the gravity model represents this
concept. Meanwhile, spatial statistics suggests spatial autocorrelation as a
formal way to measure the degree to which near and distant objects are
 related. Positive spatial autocorrelation occurs when features that are close in
location are also similar in attributes. Negative spatial autocorrelation occurs
when  features that are close together in space are dissimilar in attributes. Zero
 autocorrelation occurs when attributes are independent of location. In more
advanced applications, the time axis can be included in a similar way as
 distance. When the time axis is used in conjunction with the space axis, they
exhibit both spatial and temporal properties (Chan 2005). In short, spatial 
 statistics provide analytic methods for describing the spatial relationships
 between geographic features. Spatial analysis—be it the gravity model, auto-
correlation, overlay, or surface analysis—is an advanced and flexible form of
data analysis. In a broader context, remote-sensing imaging and GIS offer a
platform for specific applications of location and feature attributes, not only in
geographic data, but also in imagery as well.

XII. CONCLUDING REMARKS
Over the past decades, GIS, automated cartography, and computer-aided design
(CAD) have frequently been confused, both in the relative applicability of each
technology in various fields and in the direction of basic research. The respective
data structures have little in common: the literature of GIS has made little refer-
ence to automated cartography or to CAD, and the whole topic has had little
 relevance to automatic cartography or to CAD, let alone remote sensing. Today
the development of technology for digitizing and display has clearly benefited
from the influence of a much larger market for CAD. The industry is slowly
 moving toward this confluence. Similarly, remote sensing developments have
been divorced from GIS, with the former being worked on by those involved in
space technology and the latter by people involved with databases. However,
the  connection between the two is quite obvious, and they can greatly benefit
from one another. Adams, Vonderobe, and Russell (1992) proposed a scheme to
integrate GIS, CAD, facility management, and project management into a facility
 delivery system centered around spatial data.

Tomlinson and Associates (1987) stated that GIS is a unique field with its
own set of research problems, although the entire GIS community would proba-
bly not agree with this view. A GIS is a tool for manipulation and analysis of
 spatial data; it therefore stands in the same relationship to spatial analysis as
standard statistical packages such as SAS and SPSS stand to statistical analysis.
Perhaps the most useful way of looking at GIS is to treat it as the data merging
phase of image rectification, enhancement, classification, and merging. This view
integrates remote sensing and information organization efforts very nicely.

Once data are properly organized, it follows that the set of potential
 applications of GIS is enormous, and is not currently satisfied by any other type
of software. Future developments in GIS will depend on better algorithms and
data structures, and continuing improvements in hardware. But they also need



Remote Sensing and Geographic Information Systems CHAPTER 6 353

 research in spatial analysis, in the development of better methods of manipula-
tion and analyzing spatial data, and toward a better understanding of the nature
of spatial data themselves through such issues as generalization, accuracy, and
error and the integration with remote-sensing technology. Thus the future
 development in GIS needs to be concentrated in three areas: data structures and
algorithms, spatial analysis, and spatial statistics. Development of hardware
will probably continue to be motivated by larger markets in computer graphics
and CAD.

In general, successful data collection, storage and retrieval depend
upon (a) clear definition of the problem at hand; (b) evaluation of various data
collection procedures; (c) identification of the collection procedures appropri-
ate to the task; and (d) determination of the data interpretation procedure to
be employed. In any approach to applying remote sensing, not only must the
right mix of data acquisition and data interpretation techniques be chosen, but
the right mix of conventional data collection techniques and remote sensing
must also be identified. GIS and remote sensing are tools best applied in
 concert with one another. Their integration permits the synthesis and display
of virtually unlimited sources of types of physical and socioeconomic data—
as long as they can be  computer coded with reference to a common geo-
graphic base.

Remote sensing affords us the capability to literally see the invisible.
From remote sensing’s aerial or space vantage point, we can also begin to see
components of the environment on an ecosystems basis, in that remote sensing
data can transcend the cultural and political boundaries within which much of
our current resource data are collected. Continuing facility location and land use
studies require an efficient information system for storing the relevant data. To
be effective, information systems must be carefully designed in conjunction with
the tasks to be performed by a particular study team. The most important phase
of the design of information systems is the identification of the end use of each
item of information planned for collection.

Recent development goes one step further to make GIS mobile. Users
can transfer GIS databases from a desktop PC to a field unit. In the field, data can
be added and edited directly in the GIS. Users can then upload the current data-
base file to their office PC by way of an Internet site. The software also provides
support for an optional GPS. Employing encryption technology, the PC can
 receive open database-compliant formats by way of wireless links from mobile
units, and then combine that data into a single database on the office server.
Through hand-held mobile devices such as palmtop computers, software exists
for users to indentify starting points or destinations to obtain maps and direc-
tions. Unlike an existing Internet search engine, it can use proximity to deliver
search results, thus automatically providing data relative to the user’s current
 location. This capability lends itself directly to E-commerce (or most recently,
mobile-commerce: M-commerce), defined as selling goods and services on the
Web through the exploitation of information technology (Ngai and Gunasekaran
2007). Thus a nearby restaurant can interest this user in a meal should he feel
hungry. Conversely, this user can have a keen awareness of what is around his
current geographic location.
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XIII. EXERCISES

Self-Instructional Module: LINEAR PROGRAMMING
PART 1: MODEL FORMULATION 
(to be found on the attached CD/DVD)24

In general, a mathematical model is either deterministic or probabilistic. For
 example, the models and algorithms shown in the Graph-Optimization
module are deterministic. On the other hand, the queuing model in the
Probability Distribution module is probabilistic. A linear program in its
basic form is a  deterministic model, although probabilistic versions have
evolved.

Linear programming is the simplest and most elegant of optimization
procedures. There are some very convenient features that result from dealing
with linear equations. Notice the word "programming" in linear programming
does not necessarily mean an electronic computer program, but rather a set of
procedures to arrive at a solution: an algorithm. The algorithm is tedious enough
that computer programming is invariably required for other than the smallest
“textbook” problems.

The development of linear programming proceeded quickly during
World War II when large scale economic and military planning were
needed. Linear programming typically deals with allocating limited 
resources (such as labor, time, machines etc.) between competing activities
(such as deployment of a particular type of aircraft) and results in the best
possible mix (say using an equal number of long range and medium range
aircraft for the mission). George Dantzig was the person most responsible
for developing the simplex algorithm in 1947 for solving linear-program-
ming models.

Using linear programs for decision-making typically involves two steps:

1. the mathematical modeling of the process, and
2. the application of an algorithm to solve the mathematical model,

 arriving at a desirable solution or a set of feasible solutions.

This modeling module and the accompanying solution-algorithm mod-
ule are constructed to serve as an introduction to linear programming. After com-
pleting this and the accompanying module the reader should be able to:

(a) use linear programming to model a real-world problem, where
 appropriate;

(b) use the simplex algorithm to solve a specific type of linear pro-
gramming problem.

The first part of the two-part module introduces the modeling pro-
cedure, while the second part shows the simplex algorithm as a way to
solve the model. The simplex algorithm is a very systematic numerical pro-
cedure. This is one of the reasons we introduce it last, after the less mathe-
matically prepared reader has a chance to get acclimated to analytics
through five other modules and other exercises in working through this
textbook.
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In this first part of the LP module, we will studiy various LP models.
It can be seen that LPs are used frequently to configure processes, programs,
and plans. These examples are used for the sole purpose of learning the basic
techniques. In the current chapter, entitled “Remote Sensing and Geographic
Information System,” some illustrative spatial applications of analytics are
presented. The best example is political districting, in which residents are
grouped into districts for voting purposes. In the formulation and solution of
the political districting model, multicriteria linear integer programming
(MCLIP) is required. MCLIP is a linear program in which the variables are in-
teger valued (including binary  values), and there is more than one objective
function. Thus one may wish to form districts that are contiguous, compact
and share common characteristics. Based on these criteria, a residential neigh-
borhood is assigned to a district if its binary variable is unitary valued, and
not assigned otherwise.

Problem 1: Bayesian and Contextual Classification
A computer input file has been provided in book Figure 6.27 to execute the
Benabdallah-and-Wright (B&W) model. It is reproduced in processable form for
your convenience under this folder “CDtoBeBurned\Software&Data\Book”.

Please perform the following tasks:

(a) Run the B&W Model on the sample data provided, using an avail-
able  software such as LINGO. Depending on the optimization soft-
ware, the given file may need to be edited.

(b) Discuss the results in terms of the non-inferior solution-set of a
multi-criteria optimization model. (Please refer to book Figures 6.28
and 6.29 of the “Remote  sensing & GIS” book chapter.)

While item 1 above is the prerequisite, item 2 is really the interesting part
of this exercise, as you may agree.

Problem 2: TS-IP Image-Processing Software
Included in the book CD/DVD is the TS-IP image-processing software. This
software is described in book Sections 6-V and 6-VI, and further explained in
a User’s Manual included in the CD/DVD. Figure 6.36 shows the screen cap-
ture of the software as it displays a hurricane approaching Cuba in the form of
an unprocessed image. Also shown is a histogram of the gray values of the
raw image.

Figure 6.37 shows the screen capture of a processed image, as well as the
menu of the software.

(a) Familiarize yourself with the TS-IP software. Then try to reproduce
the processed image as shown. In this regard, you might wish to
consult book Exercise F in the “Exercises and Problems” book
Chapter

(b) Can you replicate the histogram shown in Figure 6.38?
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Figure 6.36 ORIGINAL CUBAN IMAGE

Figure 6.37 PROCESSED CUBAN IMAGE
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ENDNOTES

1 See, for example, the “Spatial-Temporal Information” chapter of Chan (2005) under Veronoi 
diagrams.

2 For an example, see the “Space Filling Curve” discussion in Chan (2005).
3 The gravity model was discussed in Chapters 2 and 3.
4 For a discussion of MAUT, refer to Chapter 5.
5 Frequency, or how many times a sine wave “wiggles” in a period, is formally defined as the num-

ber of waves completed in 360-degree (2� radians) rotation of 	 in sin 	 Thus the sine wave sin 2�

has a frequency of one, and the sine wave of sin 4� has a frequency of two and so forth.
6 Amplitude is the maximum and minimum absolute height of a sine wave. Thus the sine wave sin 	

has an amplitude of 1 and the sine wave 2 sin 	 has an aplitude of 2.
7 Phase is the horizontal displacement of the sine or cosine wave. For the sine wave sin 	, for ex-

ample, the phase is measured in the displacement quantity �	.
8 For the relationship between Kriging and Spatial Time Series, see Chan (2005) under the latter.
9 For an explanation of the Sobel operator, see section VI-B of this chapter. The Sobel filter is a way

to detect edges or lines in an image.
10 For an explanation of the fast Fourier transform, consult Section VI-A of this chapter. The Fourier

transform examines the data in its frequency (spectral) domain in order to detect noise. A filter is
then applied to remove the noise.

11 As explained the section VI-A of this chapter, the median filter is used to correct striping and snowy
images. 

12 For an explanation of posterior probabilities and the Bayesian classifier, see the “Bayesian
Decision Making” section of Chapter 3.

13 For a review of Bayes’ theorem, please refer to Chapter 3 under the “Bayesian Decision Making”
 section.

14 For a formal definition of a non-inferior solution (or the analogous terms of a non-dominated solu-
tion or efficient frontier), see Chapter 5. 

15 As explained in Chapter 5 under “Exploring the Efficient Frontier” section, this is refered to as the
constraint-reduced feasible-region procedure.

16 Between the two sets of binary decision variables Pij and Nij, each segment sij is counted twice,
and the resulting border length is recorded as twice the actual value.

17 The entropy function was introduced in Chapter 3.
18 The TS-IP imaging software was explained in Section VII of this chapter and is included on a 

CD-ROM at the back of this book.

Figure 6.38 HISTOGRAM OF PROCESSED IMAGE
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19 For an explaination of the constraint-reduced feasible-region method, see Chapter 5 under the
“Exploring the Efficient Frontier” section.

20 For an introduction to network-with-side-constraints, see Appendix 4
21 For further explanation of l1-metric, see Chapter 5 under “Goal setting.”
22 For an example of relational database, see Section III-A of this chapter.
23 Marking with stripes.
24 The answer to this Module is attached at the end of this text book.
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Decision makers increasingly rely upon extracting relevant information from large
repositories of data in order to make strategic decisions. The information is often
used to test hypotheses or discover insights or intelligence (Chan et al. 2009).
The support for strategic decisions is usually based upon data collected from inter-
nal operations, supplemented by relevant external information, and insights
gained from a model of the real world. We logically associate all the tools, tech-
niques, and processes associated with deriving intelligence from the core data as
“Analytics.” We include many diverse techniques within the broad term analytics,
including statistics, predictive models, visualization systems, etc. The important
point is that all these techniques may play a role in knowledge discovery and deci-
sion-making (Davenport and Harris 2007). Simply put, analytics is “the science of
analysis.” A more practical definition would be how an individual or enterprise
arrives at sound decisions based on existing data. For the purpose of this book, the
field of analytics includes the use of mathematical models, building upon statistics,
probability, simulation, optimization, decision analysis, and most notably, spatial
analysis. Analytics closely resembles data mining, but tends to be based on model-
ing, sometime involving extensive computation.

In this volume, we have presented a range of decision-making tech-
nologies to support facility location and land use. By no means are we offering
a  comprehensive treatise on analytics. Rather, we have geospatial applications
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in mind. To further this goal, we focus on spatial association, spatial clustering,
geographic information system, and image processing among the above topics
for analytics. Geospatial analysis is one of twelve fastest growing knowledge-
based professional fields. According to the University of Pennsylvania, “Spatial
analysts are helping retailers and service providers find store and facility loca-
tions, working with transit providers to provide real-time vehicle information,
developing strategies for community policing, helping city planners promote
infill development and combat urban sprawl, and working with professionals
in many disciplines to explore the likely impacts of global climate change.”
For that reason, universities have offered programs of study in this area. We
hope that this book serves both the professionals as well as the classroom in
 disseminating and discover knowledge in this field.

I. ANALYTICS
Spatial analytics builds upon regular analytics, but goes well beyond, in that it han-
dles the special, often complicated, features of spatial data. We can call this 
“ . . . the third segment of analytics consist[ing] of a set of more advanced analyti-
cal skills and methodologies  . . . ” according to Bell (2008). The inclusion of  spatial-
data handling in mainstream database software has grown consistently and the
emergence of a healthy open-source geospatial software community has meant
that the mainstream and spatial database worlds have been converging. As spatial
analytics receives increased attention, the distinction between basic  analytics and
spatial analytics becomes blurred. As a first step, let us review the fundamentals of
analytics as a foundation for the more special field of spatial  analytics.

As stated in the outset, a distinguishing feature of this book is to point
out how various participating disciplines rely on the same pool of fundamental
techniques to solve their respective problems. We already suggested “main-
stream” analytics and spatial analytics are converging. We go further by examin-
ing the diverse disciplines that perform work in this area, ranging from engineers
to planners, from geographers to political scientists, from economists to man-
agement scientists. We wish to show how different terminologies in these varied
 disciplines can be unified, since—unknown to even the experts in the respective
fields—many have the same meaning. More important, they are built upon the
same mathematical technique. We wish to review analytics with this goal in
mind, and here are some examples.

A. Statistical Modeling
Take the very simple case where we want to establish a relationship between, say,
employment and population. We want to show that an area with larger employ-
ment also has higher supporting population. In classical linear regression, we
may wish to define population as the dependent variable, and employment as
the independent variable. The dependent variable appears on the left-hand-side
and the independent variables on the right-hand-side of the equation. While
these are commonly adopted terminologies, some readers would know that in
some quarters, independent variables are also called explanatory variables or
regressors. At the same time, some would also know that the dependent variable
is sometimes called response variable.
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Let us go further in this example. In canonical correlation, one ascertains
if a set of criterion variables is possibly affected by a set of predictor (input) variables.
In econometrics, simultaneous equations are used to pose the relationship
between a number of endogenous variables and exogenous variables. Endogenous
variables appear on both the left-hand-side and right-hand-side of the equations,
while exogenous variables only appear on the right-hand-side. Apparently, these
two techniques—canonical correlation and econometrics—use the two sets of
terms to accomplish a similar function. However, the author does not see too
many occasions in which these parallels are pointed out. It was one of the moti-
vations for the current volume to be compiled, to see that this area of analytics
may have a common mathematical denominator.

B. Optimization
Let us take another example. In optimization problems, a figure-of-merit is
usually maximized or minimized. For example, profit is to be maximized
while cost is to be minimized. This figure-of-merit is expressed in terms of an
 objective function. Again, in some quarters, the objective function is referred
to as a functional (See Appendix 1). In the management-science community,
 profit or cost is expressed in terms of a set of decision variables. In the
 engineering community, they like to think that the functional is driven by a
number of  control variables.

In short, the two terms—objective function and functional—are tradition-
ally used in the respective disciplines when they perform optimization, but are
somewhat equivalent. Both define a domain whose elements are functions, sets
and the like, and a figure-of-merit is to be maximized or minimized. In the
process, management scientists typically deal with cross-sectional data, while
engineers often worry about the behavior of a system over time. Accordingly,
the term objective functional refers to the integration of a functional over time,
while objective functions are generally static or steady-state expressions referring
to an average performance of a system.

An objective function satisfies its optimality conditions when it is opti-
mized at a point (or points) within the feasible region as defined by the context
of the problem. A continuously differentiable function is optimized when it has
a relative maximum or minimum at a point assuming a “zero slope or gradient.”
This value lies at an interior point of the feasible region, including its boundary
on special occasions. In the engineering community, the function is said to be
 stationary at the optimum. A stationary point is obtained by setting the gradient
of the functional to zero. However, stationarity also includes an inflexion point of
the function, which is not a local (or global) optimum.

C. Multicriteria Decision-Making
Utility theory is a key foundation of economics and operations research. The
basic premise is that a number of disparate metrics can be translated into a com-
mon unit called utiles. Once this is done, cross comparison can then be made
among alternatives with seemingly incommensurate attributes or criteria. This is
generally accomplished by a multi-attribute utility-function, which—after valu-
ation—combines the incommensurate attributes or criteria through weights and
scaling constants. Once these incommensurate attributes are converted into a
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“common currency of exchange,” the utiles, the preferred alternative(s) can then
be picked among competing alternatives.

In Chapter 5, we pointed out that cross comparison among alternatives
can still be possible without a multi-attribute utility function, although in a more
limited sense. For example, a shirt that is cheaper and better quality is always
 preferred to one that is more expensive and inferior in quality. Here, no utility
function needs to be constructed to combine price and quality—the two incom-
mensurate attributes—into utiles before a decision can be made between them.
And more importantly, there are occasions where multi-attribute utility theory
may not apply, when one is required to use techniques other than utility function
to rank order alternatives.

Before we go into spatial analytics, let us repeat our premise on general
analytics. Depending on the occasion and the participating discipline, different
technical terms are often used to convey similar ideas. While there are truly
 disciplinary differences in focus and concerns, there are similar analytical tools
to solve seemingly diverse problems. When we found that there were very few
places where such analytical parallels are established, we decided that this
book—and a companion volume, Chan (2005)—may just fill part of that niche in
the literature. Aside from the texts, we wish to draw the reader’s attention to the
Glossary of Technical Concepts in Appendix 5, in which we try to cut across the
jargons used in different disciplines one at a time.

D. Location-Based Analysis
Another distinguishing feature of this book is that it explicitly considers
 geographic attributes, network effects, and interaction between economic and non-
economic activities between different subareas within a vicinity. We call it spatial
analytics. Spatial analytics analyzes problems with full recognition of more than
one dimension. For example, aspatial analysis deals only with aggregate attribut-
es such as the total population and employment in the entire region, the total
amount of retail floor space, the total acreage of parks and recreation areas, the
total number of hospitals, and perhaps the aggregate economic growth over time.
It does not disaggregate by zones or other subareal units, neither does it exp licitly
deal with interzonal interactions such as commuting between employment centers
and population centers. Having to include this interaction, spatial analysis is mul-
tidimensional and generally more complex than aspatial analysis.

Let us illustrate with more examples. Entering a new community, an
individual often worries about such decisions as where to find a home. 
A  business would like to know where to locate a shop. These are often called
facility-location problems. Urban planners are typically concerned with the for-
mer decision, while industrial engineers are usually concerned with the latter
decision. A moment of reflection shows that these two seemingly disparate deci-
sions are related. People like to live reasonably close to work, and business like
to be proximal to the clients they wish to serve, not to say within acceptable
 commuting distance for their work force. Considering all the residents and all
the businesses in the community, their cumulative locational decisions result in
a land-use pattern, which determines the resultant economic growth and non-
economic impacts. This is now the concern of not only the urban planner or the
industrial engineer, but also the rest of the community, including businesses,
community leaders and politicians.
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As with other enterprises, the ultimate goal of facility location and land
use is to serve the client demands or the constituents. Thus a fire station is located
for the sole purpose to put out people’s fires quickly, while a city master plan aims
to provide all the services to the local population with distinction. The way the
clients are ultimately served reflects the merit or demerits of a spatial decision. This
service pattern is often referred to as the demand allocation or activity distribution,
depending on—once again—whether one is an industrial engineer or an urban
planner. An industrial engineer allocates demands or workloads efficiently among
workstations in a manufacturing plant by minimizing movements between relat-
ed workstations. For the urban planner, a compact city form cuts down on the com-
muting. This way, the planner can cut down on the activity distribution around
town, resulting in less traffic congestion and environment pollution.

Municipal service may be provided by a single facility or a combination
of facilities. Thus, the population may depend only on one fire station in a small
town, while it depends on many fire stations in a large city. Sometimes, special-
ized services may only be provided by a particular facility capable of delivering
such services. A good example is a medical clinic for neural disorders. However,
there may be interaction among facilities that provide specialized services. Thus
medical specialists (including neurologists) like to practice in the proximity of a
larger hospital, since there is a complementary function performed at both facili-
ties. At the same time, hospitals or businesses may compete for a market share of
the patients or the customers. Retail stores constitute a prime example, offering
substitutional or complementary goods to lure a customer base.

The way such location-based services are delivered has a direct bearing
upon how happy customers are. For example, a vehicle (such as a bookmobile) may
make “round robin” deliveries among the customers, or a dedicated vehicle (such as
an ambulance) will make an out-and-back delivery, going directly from the hospital
to pick up the patient. These two delivery patterns have very different efficiencies
and customer expectations, with the former being more efficient and the latter being
more satisfactory for both the patient and the attending medical personnel.

The above examples show the disciplinary biases in examining one aspect
of a problem vs. another. Thus an urban planner worries about residential location
while an industrial engineer worries about factory siting. A clinic worries about
both complementary medical facilities as well as substitutional competition among
similar clinics, while a shopping mall mostly cares about the competition. On
many occasions, the diverse disciplines rarely communicate with one another,
even though they are solving related problems. From the analyst’s vantage point,
however, s/he can see the similarity between the spatial problems they are solving.
In this volume [and the companion Chan (2005) volume], we aim to point out these
related problems, framing them in the context of common “building blocks.” Most
importantly, we also try to unify the basic building blocks behind aspatial analytics
and spatial analytics.

II. SPATIAL ANALYTICS
As explained, the complexity of spatial analytics is related to the nature of spa-
tial data, which is multi-dimensional, compared with aspatial data, which is
often unidimensional. As explained, the ultimate function of analytics is to
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extract  useful information from data to make the right decisions. It is logical,
therefore, to examine the basic process of extracting information and intelligence
from a database, whether it be spatial or aspatial. This procedure is often called
data mining. As applied toward spatial and aspatial data, we present spatial data-
mining and attribute-oriented data-mining techniques respectively (Yeung and Hall
2007). It will be seen that spatial data-mining is a functional extension of con-
ventional data-mining techniques, constructed on the same first principles but
using algorithms designed specifically to handle the characteristics and require-
ment of spatial data. Here are some examples extracted from various parts of this
book. As such, it serves as an excellent review of many concepts that we have
covered in this volume.

A. Spatial Association
One common data-mining tool is a set of association rules. Thus a marketer would
like to associate a shopper’s preferences to his or her income and educational level,
so that the right advertisements can be targeted. When carried over to  spatial data,
co-location is a special type of spatial association. It is defined as the occurrence of
two or more spatial objects at the same location or at significantly close proximity
to another. Thus a real estate investor might like to know what other buildings will
be located next to his or her investment in an apartment building.

Co-location differs from ordinary spatial associations in that there is no
natural notion of a transaction between the antecedent and consequent spatial
objects. In the above example, there is no implication that there is any interaction
between the subject apartment building and the adjacent buildings. By interac-
tion between two building, one may refer to the traffic that goes between these
buildings. User-defined neighborhood information is an important factor in
 constructing co-location rules (Yeung and Hall 2007). In a financial city center, for
example, one wants to know how many banks are immediate to one another. We
call these adjacent banks first-order neighbors. In addition, one may wish to find
the neighboring banks that are a bit further away, which are referred to as second-
order neighbors.

Spatial association goes beyond co-location. In urban planning, one is
often interested in how residential development is related to employment. It is
conventional wisdom to believe that there is spatial association between where
one lives and where one works. Such association is manifested in the commuting
traffic between the home location and the work location. The home location may
not be adjacent to the work location, but it is probably not far enough to exert an
inordinate amount of commuting time.

Spatial association information is often sought for each location in a study
area. In locating a home, one may ask this logical question: Is this a desirable
 residential neighborhood? In answering the question, one may consider not only
commuting to work, but also accessibility to schools, parks, shopping and enter-
tainment. The concept of spatial association is carried over to regional  science. A
classic question a regional scientist asks is: how did urban settlements occur
 historically? In other words, how did Chicago become a trading hub, and devel-
oped to be such a big city over time? In this case, trading may range  anything
from agricultural products to industrial products. Is it the Great Lakes that make
such trading possible? Or is it the railroads? Having answered this  question, it
begs another question: what constitutes the hinterland for Chicago, or how should
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one define the “watershed” area for Chicago? The answer to this question may be
 different, depending on whether the Great Lakes and/or railroads lead to the
development of Chicago. If it is the Great Lakes, then a study area (hinterland) may
be defined to include the immediate borders of the Great Lakes region. Suffice to
say that there are quite a few ways to define a study area depending on the
 problem context.

Carrying the idea of a hinterland, a home shopper may be interested in
school districts or political jurisdictions—beyond other factors. The problem
invariably boils down to drawing boundaries on a map, or to divide a region
into subregions. We prefer to use the word “subareas” to refer to all these sub-
divisions, rather than the word subregion. Accordingly, we use the term sub-
areal population and employment rather than (say) sub-regional population
and employment. Irrespective of the terminology, robust mathematical models
should apply equally well to the different ways to subdivide a region into study
areas. A natural way to divide a region into subareas is to use tile-like tessella-
tions such as the Voronoi diagram. In this representation, each activity center is
defined as the generator, for which a “zone of influence” (or a hinterland) is
defined, representing the activities which are naturally attracted to this activity
center. The activity center may be a place where farmers would bring their
 produce to market. It has been shown that such a tessellation is consistent with
the Central Place Theory, which hypothesizes that interregional trade lead toward
natural market-place settlements, such as Chicago.

When a spatial unit influences or is being influenced by its neighbors,
the subject unit is said to be spatially dependent on its neighbors and vice versa.
On the other hand, if activities (such as population and employment) in all the
spatial units are truly randomly distributed, they are said to be independent of one
another. In this case, the assumed value of a spatial unit i has no relationship to
the value of unit j. Thus, one may expect the heights of the residents in zone 1 are
usually unrelated to the heights of those living in a neighboring zone 2. Zones 1
and 2 may be related economically, but seldom do tall people or short people
chose to live next to one another for company.

Let us carry the concept of association a bit further. Most readers have
heard about the idea of a trend, which is one form of association. For example, if
regional population is observed to be growing over a number of years, it is like-
ly to continue the growth trend. Technically, we say that there is a positive auto-
correlation between population over the years. Instead of an association over
time, spatial autocorrelation measures the correlation of a variable with itself in
two locations. Spatial autocorrelation is present when occurrences of similar
values cluster together spatially. For example, auto manufacturing activities
used to be intense around the industrial belt at the Great Lakes region in the U.S.
In other words, there is a relationship among multiple occurrences of values on
the same variable (auto manufacturing employment) over a particular region.
Given the recent decline in the U.S. auto industry, this relationship might be
observed spatially in the past, but may not sustain itself over time.

B. Spatial Clustering
Spatial autocorrelation is used to measure the strength of the relationship among
spatial objects of the same type (the clustering of auto manufacturing employment
in our example). In general, it helps to uncover the extent to which the occurrence
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of an event or feature at a certain point in space will constrain, or make more prob-
able, the occurrence of another event or feature in its neighborhood. Thus, the
intense auto manufacturing activities in lakeside Detroit might have spawned
auto-part manufacturing or auto-assembly plants around the Great Lakes region.
As an analogy to the Pearson correlation, spatial autocorrelation statistics such as
Moran’s I and Geary’s C are used to measure this correlation.

To introduce spatial autocorrelation, we discuss in this book the impor-
tance of spatial costs in organizing the economic activities in a study area. Spatial
costs are defined in many different terms. For example, spatial separation is
 measured in both time and cost. When we wish to convert these diverse mea-
sures into a single unit such as utiles, we face some challenges. Aside from the
conventional “apples vs. oranges” conversion problem, utiles are usually con-
strued as “the more the merrier,” while travel time and cost—or impedance in gen-
eral—is exactly the opposite: “small is beautiful.” While accessibility to employ-
ment is to be maximized, commuting time is to be minimized.

To resolve this dichotomy, we often take an inverse function of imped-
ance (travel time) to convert it from disutility (commuting time) to utility (accessi-
bility). This conversion function is sometimes called the propensity function. The
function can take on the form of a negative power function, (impedance)�b, or an
exponential function, exp[�� (impedance)]. Here both b and � are positive cali-
bration  coefficients. Irrespective of the form of the propensity function, it is usu-
ally  calibrated by a trip-distribution curve, defined as the frequency with which a
trip of certain duration is being executed in the study area. Thus in a city, 50 per-
cent of the commuting trips may be below 25 minutes, 35 percent may be between
25 and 50 minutes, and another 15 percent over 50 minutes. While devised sepa-
rately by different disciplines, propensity functions and trip-distribution curves
have  similar shapes, differing by only scaling constants. Both are used to distrib-
ute  population and employment around subareas in the region.

By now one can see how spatial association leads toward spatial cluster-
ing, such as an urban center where population and employment congregate.
Most readers are familiar with the concept of a cluster in general, where a clus-
ter is defined as a group of similar objects. For example, one may wish to sort out
the random books stored in the basement into fictions, non-fictions, magazines,
and textbooks—in this case four clusters. The objective of spatial clustering is to
find the optimal number of clusters that share common spatial attributes. For
example, urban planners have observed that there tend to be high-density devel-
opments clusters around subway stations. Many of the algorithms developed for
conventional attribute-oriented data mining can be applied or adapted for spa-
tial clustering. For example, traditional partitioning methods such as k-means or 
k-medoids are able to capture simple distance relationships and are therefore
 useful for spatial data mining (Chan 2005). These two methods can be used to
 discern, for example, urban settlements in the Great Plains, which is a kind of
 spatial clustering. Similarly, density-based methods, which define clusters as
regions of homogeneous characteristics, can be used to detect clusters of arbi-
trary shapes (Yeung and Hall 2007). Thus, one may wish to discern “wealthy
neighborhoods” by virtue of per capita income.

There are also clustering techniques that are especially useful for spa-
tial data-mining applications. These include grid-based methods for raster
spatial data and constraint-based methods that allow the inclusion of spatial
restrictions on the clustering process. The former was illustrated by image
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processing applications, where a grid tessellation of gray values is discerned
into patterns. The constraint-based method is illustrated by the Benabdallah-
and-Wright (B&W) model, as discussed in Chapter 6, in which an area of cer-
tain shape or border length is to be discerned. In identifying spatial patterns,
whether in land use or satellite images, one can obtain a fair amount of infor-
mation by observing the “neighborhood” of what one is examining. Thus, a
noise pixel can be detected quite clearly as an outlier in an otherwise group
of similar gray values in an image. This way, the noise pixel can be removed
when context is taken into account. On the other hand, districting models
have been proposed to divide a community into logical subdivisions as in
gerrymandering applications (Benabdallah and Wright 1992; Bennion and
O’Neill 1994; Ahituv and Berman 1988). Aside from political districting, the
B&W model can group grid cells into clusters to form rectangular-based
shapes for image processing.

By these varied examples above, one can see that spatial analytics has its
own chemistry that is distinctly different from regular analytics. Yet it is built
upon regular analytic tools. Again, this is one of the motivations for composing
the present volume. We wish to delineate similarities and differences between
regular analytics and spatial analytics. Let us continue this trend of thought
below.

C. Facility or Site Location
Two paradigms are used throughout facility location: a geographic representa-
tion can be continuous or discrete. The former spreads population and employ-
ment via a probability density function over the landscape. The latter distribute
them via a probability mass function. One way to compromise such a discrete vs.
 continuous (or planar) model is through the use of centroids. In reality, popula-
tion and employment distribute continuously over a map. However, there is
advantage in modeling the zonal or subareal population or employment as a
mass at a single node, which is called the centroid. A centroid is an imaginary
node/vertex amid a plane through which activities (e.g., trips) originate from or
destine for the subarea. In this case, the centroid is the geographic center or cen-
ter-of-gravity for the economic activities in this subarea. The use of centroids can
also be thought of as a more aggregate representation than its continuous coun-
terpart. The  question really boils down to how big one can define a subarea to
lighten the computational load, and at the same time, maintain the desired level
of accuracy. In this text, centroids and generators are used interchangeably. As
the reader recalls, the word generator comes from the concept of a Voronoi dia-
gram, representing the natural gathering places, as discussed above.

There are two traditional criteria in locating facilities. One is the min-max
criterion and the other is the min-sum criterion. For locating a service facility, the
farthest demand is to be brought as close to the service facility as possible follow-
ing the min-max criterion. Applying the min-max criterion results in locating a cen-
ter, whether it be a medical service center or a recreational center. Applying the
min-sum criterion, on the other hand, results in a median, or a facility that is as close
to the demands as possible on the average. Within these two general criteria, quite
a few variations are possible, giving rise to a rich array of facility-location models.

We just mentioned that a median is a location that is the closest to the
demands on the average. Thus, a retail chain may wish to open a store closest to
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the population. An antimedian is just the opposite. It puts the facility away from
the demands. An example is to locate a landfill away from the population for
environmental considerations. In short, the median problem minimizes the
 distance to the total regional demand, while the antimedian problem maximizes
the distance to the demand. Medianoid refers to a median on a tree (which is a
network without any “closed loops” or cycles).

A medicenter, also known as centian (standing for center and median),
is a ‘hybrid’ between a median and a center. It takes care of both the proximity to
demands as well as the reduction of the most adverse exposure. One can argue
this is the best criterion for locating an incinerator—close in general to rid of
garbage, yet not too close for environmental considerations. Anti-medicenter is
just the opposite of medicenter. It maximizes the sum of the weighted distance
where the demands serve as weights. Yet at the same time, we minimize the
 maximum weighted distance. It may be the best for locating an airport, which
should be a reasonable distance away from the regional population, yet within
reach for the most remote residents.

In discrete facility-location models, a condorcet point is any point in the
network that is closest to most of the demands. A Simpson point, on the other
hand, is illustrated by an example by Bhadury and Tovey (2010). Two competing
firms vie for a common market by locating their own facilities to sell an identical
product. Of the two competing firms, one is designated as the leader that decides
to locate one of its own facilities first. The leader is aware of the fact that after it
has entered the market, the rival firm, denoted as the follower, will locate one of
its own facilities in such a manner as to take away as much a market share from
the leader as possible. Given this, the decision problem facing the leader is to find
an optimal location, the Simpson Point, such that the maximum market share
that is lost to the follower is as small as possible. Both Condorcet and Simpson
points are relative, rather than absolute, concepts.

A well-known fact in linear programming is that the optimal solution
has to occur at an extreme point of the feasible region. This property is carried
over to network facility-location models. For example, the optimal siting is often
found at a node/vertex. Thus a fire station is to be sited at an intersection of a
street  network. This is not an intuitive result by any means, since there is no rea-
son a priori why the optimal location cannot be on an arc or at any other place.
This nodal-optimality property, where identified, does allow us to design some
computationally-efficient solution-algorithms. Available evidence suggests that
certain extremal conditions also exist in planar location models, in which the
facility can be sited theoretically at any point in the Euclidean space. For exam-
ple, the optimal airport between three cities is often located at one of the cities.
In other words, the optimal site is at a vertex of the triangle formed by the three
cities as vertices, rather than somewhere inside the triangle.

D. Routing
As discussed above, a location is picked considering accessibility to economic,
social, and recreational opportunities. To reach these opportunities, trips may
have to be executed either by the client population or the provider. In this case,
the population follows a route to the goods and services, or the goods or services
have to be delivered by the provider to the population. When a special delivery
is made by the provider, the vehicle used for the delivery may be productive only
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in one direction, namely on the way to deliver the goods. The return trip is often
empty and not productive, unless another load is backhauled to the provider. On
the other hand, if an individual combines several ‘errands’ on a trip, s/he com-
pletes a “round robin” visit to several service providers one after another. We call
this a tour, which can likewise be executed by the provider to deliver the goods
or services. Node routing is to assign and sequence discrete stops, and arc rout-
ing is to assign and sequence street segments. Arc routing is more specialized
and occurs when vehicles visit every (or most) address on block segments, as in
meter reading, mail delivery and garbage pickups.

The algorithms underlying routing products typically involve a combination of
integer programming methods and heuristics. Other algorithms are based on heuristics,
artificial intelligence and expert system approaches, rather than traditional mathematical
programming. For example, a space-filling curve transforms a two-dimensional map
into a single dimension. By observing the clusters in the single-dimension line instead of
proximity in two dimensions, vehicle tours can be constructed much more conveniently
for each cluster of demand points. (Please see an example in Section 3.3 of Chan (2005)).

In Chapter 3, the hypercube model dispatches a fleet of service vehicles in
response to calls. A vehicle at a depot is either free or busy, as represented by the
binary 0-1 variable. For two depots with a vehicle at each, (0, 0) denotes both
vehicles are free and available for service; (0, 1) means only the vehicle from the
first depot is free; (1, 0) means only the vehicle at the second depot is available;
and (1, 1) says both are busy. The four states of the system—(0, 0), (0, 1), (1, 0),
and (1, 1)—can be plotted as four nodes/vertices in a graph. Arcs between the
nodes describe the possible transitions between these states. Such a state-transi-
tion graph resembles a rectangle, characterized by the four nodes/vertices and
arcs representing the possible transitions between the states. When there are
three depots, the graph resembles a cube. In the general case when there are any
number of depots, the graph is a ‘hypercube,’ and hence the name hypercube
model. Technically speaking, it is a spatial queuing-model that caters for random
calls or demands that arrive at a fixed arrival rate. It is a location-routing model
that dispatches vehicles from the closest depot when a vehicle is available.

III. SOFTWARE
Let us now assemble some information technology (IT) tools to support the
above analytics, whether it be general analytics or spatial analytics. If one adopts
the broader definition of analytics to mean analyses to support decisions, there
would literally be no limit to the number of software available. One would need
to go from basic mathematical software to modeling software. It is not our inten-
tion, nor are we prepared, to cover this broad subject. We have to limit ourselves
to software that directly support the subjects covered by this book.

To facilitate analysis, many books on analytics package software with the
book. We decided to take a different approach. In view of the huge number of
both commercial and public-domain software and the pace they are changing,
we decided to provide an objective evaluation of existing and emerging software
instead, guiding the reader to make his/her own decision on the software most
suitable for him/her application. The reader can then go to the vendors. Many of
them offer trial versions of their software, with which the user can check out the
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most current software in detail. Alternatively, the reader can seek “freeware,”
which are increasingly available. Here, we like to guide the readers in two ways.
In the present chapter, we provide a top-down analysis of software, spelling out
the salient features that a user is advised to look for. This will include both com-
mercial software and “freeware.” In Chapter 8, we document in more detail
selected software packages, including open source software, which make available
the source code for further development.

The software discussion will proceed in two steps. We start with the gen-
eral-purpose analytics software, and progress toward those that support  spatial
analytics directly. As it turns out, a general purpose software is by-and-large
commercial software, since the bottom line would dictate that the vendors devel-
op software that has a wide audience. On the other hand, research and
 educational institutions have more luxury to look out on the horizon, venturing
into developmental software that cater for specialized applications such as spa-
tial analytics. In the following sections, the general features of a software pack-
age is outlined, together with guidelines for selecting an appropriate software. A
judgmental screening and details of the screened software are documented in
Chapter 8, entitled “A Software Survey of Analytics and Spatial Information
Technology.” To the extent that developmental spatial information technology,
including educational software, reflect the trend the field of is heading, they are
mostly discussed in the current chapter. Judgmental screening is performed for
more general analytics software in Chapter 8, a majority of which is commercial
software. Chapter 8 is therefore mainly intended for those who are considering
acquiring software for day-to-day use.

A. Commercial/Licensed Software
Software for both regular analytics and spatial analytics will be discussed in
terms of commercial software and public-domain (free) software respectively.
We break down commercial software in several categories, including simula-
tion  software, statistical software, optimization software, decision-analytic
software, Geographic information system (GIS), and image precessing 
software. The sequence parallels the order in which these techniques were 
discussed in the book. Chapter 8 goes further by introducing some guidelines
for spreadsheet modeling, which is increasingly popular. We also include a
survey of software for general mathematical modeling, such as MATLAB and
MATHEMATICA. In the absence of commercial packages, we review the
prevalent  public-domain software for spatial analytics. Those include 
educational software. We end up the review with the specialized software we
developed for this book. In short, we start with a broad base and build the
“pyramid” one layer at a time. The strong broad base of general analytics soft-
ware is in the foundation, with the tip of the pyramid represents more fragile
research and development efforts.

1. Regular Analytics Software. Starting with regular analytics software, the fol-
lowing sections provide more than just a set of criteria for choosing a  software
package. The criteria or salient features serve as a review of the state-of-the-art
in both regular and spatial analytics tools, whether we are talking about statis-
tics, simulation, optimization, decision analysis, GIS, image processing, facility
location, or routing.
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Statistical Software
At the foundation of analytics is statistical analysis, which provides the inference
from and fidelity of the measurements taken from samples. Similar to other soft-
ware, statistical software transitioned from mainframe computers to desktop
personal computers in the early 1980’s. In a survey, Woodward and Elliott (1983)
found out that while many computers were supported, there was a wide varia-
tion in the price of the software and in its capabilities. Most of the  packages do
not include box plots, confidence intervals, survival analysis, categorical-data
analyses other than chi-square contingency-table analysis, multiple comparisons,
or nonlinear regression. Many will not read a rectangular data file created exter-
nally to the program. Woodward and Elliott’s experience with several of the
packages had revealed some glaring calculation errors in the coding.

Three decades later, desktop statistical packages have seen dramatic
improvement. The statistical software available in the market today range from
general tools that cover the standard techniques of inference and estimation to
specialized activities such as nonlinear regression, forecasting and design of
experiments (Swain 2007a). As with other analytic software, products that pro-
vide statistical add-ins to spreadsheets remain common. The spreadsheet is the
primary computational tool in a wide variety of business settings, familiar and
accessible to all. Many procedures of data summarization, estimation, inference,
basic graphics and even regression modeling can be added to spreadsheets.

By and large, dedicated general and special-purpose statistical software
has a wider variety and greater depth of analysis than add-in software. For many
specialized techniques such as forecasting, design of experiments, special-purpose
statistical packages are appropriate. Moreover, new procedures are likely to
become available first in these (specialized) statistical software and only later be
developed into the add-in software. In general, these statistical software plays a
distinct role on the analyst’s desktop. Assuming data can be freely exchanged
among  statistical-software applications, each part of an analysis can be made with
the most appropriate (or convenient) software tool.

An important feature of statistical programs was the importation of data
from as many sources as possible. This will eliminate the need for data entry
when data is already available from another source. Most programs have the
ability to read from spreadsheets and selected data-storage formats. Also highly
visible is the growth of data warehousing and “data mining” capabilities, pro-
grams and training. Data-mining tools analyze data from a variety of sources to
look for relations that would not be possible from the individual datasets.

Graphics provide a powerful way of presenting data, and the dynamic explo-
ration of various graphics can be a powerful method of uncovering underlying relations
within the data (Swain 2009). Since plotting is limited to two- and three-dimensional
projections of data, several methods have evolved to form a coherent view of the com-
plete picture. In the matrix plot, for instance, variables are listed by row and column and
the pairwise scatter plots occur in each position (sometimes with the univariate his-
tograms in the diagonal positions). Hence, the scatter plots in each row represent the
joint distribution of that variable with the variables in the respective columns.

Of course, these marginal views cannot provide the entire story. For exam-
ple, correlations may exist within a group of variables that are not obs ervable by
the pairwise scatter plots. In these cases, additional insight can be obtained
through transformation of coordinates based upon principal  components or factor
analysis. Such techniques are often used when the underlying variation consists of
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groups of related variables, and these underlying factors are often fewer in num-
ber than the number of variables that are directly observed.

Interactive graphical methods can also be used to explore relations within data.
“Brushing” is a method in which a point or a group of points on a given plot can be
highlighted in linked displays or simply used to provide access to their location within
the data for detailed examination. Another form of interactive graphics is obtained
through ‘slicing.’ In this case a variable is designated for slicing, and the data is divided
into sets above and below the slice value of the variable. As the slice point is varied one
is able to highlight the characteristics of the linked displays. The value of the set of resid-
uals can reveal that the positive residuals come from a limited set of data, such as a par-
ticular industrial sector. Similar inferences can be made for negative residuals.

Forecasting software can fall into one of three categories according to
Yurkiewicz (2010). Automatic forecasting software will quickly do an analysis of the
data and then make the forecasts using a methodology that it deemed the most
appropriate. The chosen technique may come from the software, minimizing some
statistics such as the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC), RMSE, etc. The software will give the  calibrated parameters of the
model, confidence intervals for the forecasts, plots and various statistical summaries.
The user always has the option of bypassing the chosen methodology and specify-
ing some other technique. Semiautomatic forecasting software asks the user to spec-
ify a methodology from a list of available techniques. Finally, manual software
requires the user to specify both the technique and the parameters for the model. In
an application, the user must decide whether to use a dedicated forecasting program
or a general statistical product that has the desired forecasting capabilities. Dedicated
products are more likely to be automatic programs. They may also offer more sophis-
ticated forecasting techniques than general statistical programs.

When looking for a time-series software, it is advisable to see whether it
 provides a fully automatic expert system for univariate and multivariate time
series, following the Box-Jenkins modeling framework (Flores-Cerrillo 2010).
Equally des irable is to see whether it incorporates intervention detection.
Top performing  packages will automatically identify the best subset of seasonal
autoregressive-integrated-moving-average (ARIMA) models for a given 
problem. For example, dedicated forecasting software often cover ARIMA inter-
vention, multivariate ARIMA transfer functions, etc. They may even have auto-
matic outlier-detection capabilities.

In summary, here are some factors for consideration when selecting a gener-
al statistical software (Swain 2009). They are compiled as a checklist in Table 7.1.

Simulation Software
Assisted by statistical inference, simulation is a very robust tool that tackles a wide
variety of problems. We will concentrate on products that run on personal comput-
ers to perform discrete-event simulations. Hlupic (1999) discusses the users’ require-
ments of simulation software. Their surveys, conducted in 1990’s, show that simu-
lation software used by participants in these surveys is predominantly easy to use,
with good visual facilities, but too limited for complex and nonstandard problems.
It is also too expensive, and at the same time incapable of providing adequate guid-
ance in experimentation. Areas for improvement dominantly refer to more assis-
tance in experimental design. There is a need for easier-to-learn-and-use packages
and improved software compatibility. The survey, conducted twice, once in 1992
and another time in 1997, indicate the trend of using several simulation packages
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rather than only one package. The apparent reason is that a single package proba-
bly is not adequate for all applications.

The range and variety of simulation products continue to grow since the
now dated surveys in the 1990s, reflecting the robustness of the products and the
increasing sophistication of the users (Swain 2009). Software ranges from special-
ized applications such as health care and logistics to general purpose simulation.
They include information about experimental run control (e.g., batch run or exper-
imental design capabilities) and special viewing features, such as confidence inter-
vals and risk measures. Many packages can produce animations or demonstrations
that run independent of the simulation software itself. Of equal importance is the
classic input PDF or probability mass function  required of any discrete-event sim-
ulation. These input distributions can be generated from resident programs or
linked programs from an independent source such as the Stat::Fit software.
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▫ Operating systems: Consider the suggested minimum random access mem-
ory (RAM) for PC/Windows (XP, Vista), PC/LINUX, UNIX, and others.

▫ What are the import formats and export formats?
▫ Are the following tools available?

•  Online help/tutorials,
•  Exploratory data analysis,
•  Data edit/transformation,
•  Graphics, dynamic graphics (plot linking, data brushing),
•  Tabular outputs,
•  Descriptive statistics,
•  Distribution fitting,
•  Non-parametric statistics,
•  Power/sample size computation,
•  Quality and process capability,
•  Six-sigma analysis,
•  Analysis of variance/generalized linear model,
•  Design of experiments,
•  Response surface methods,
•  Regression fitting,
•  Regression selection,
•  Logistic regression,
•  Nonlinear regression,
•  Time series/forecasting,
•  Multivariate statistics,
•  Clustering/classification,
•  Reliability/survival analysis,
•  Data/database management,
•  Data mining,
•  Classification and regression trees,
•  Re-sampling/Monte Carlo.

▫ Pricing Information for these options: Commercial—Single machine and
site? Educational—Single machine and site? Demo/Student—Single
machine and site?

Table 7.1  FACTORS IN SELECTING A STATISTICAL SOFTWARE



Newer simulation products are beginning to provide autonomous agents
that can act on their own and interact among themselves (Swain 2007b). These agent-
based simulations have evolved from earlier studies of complex systems whose
behavior has defied easy explanation. Models of biological systems involving inter-
acting members have been built, for example, to understand how these complex
behaviors have led to social behaviors in foraging. Generalizing what has been
learned from these studies has led to simulation agents with the ability to sense their
surroundings, interact with other agents, reason and choose a course of action.

It has been a continuing trend to include optimization features as part of
simulation. This is accomplished either by a built-in optimizer or by a configurable
module such as OptQuest (as developed by OpTek Systems Inc.). A majority of the
more “substantive” software has some kind of optimization capability, and the 
number is increasing. Care is also taken by many software vendors to make the sim-
ulation output compatible with common office suites such as MS Office. Output sta-
tistics can typically be exported in MS Excel or Access formats for further analysis.

Commercial simulation products in entertainment (such as video games)
have created lucrative markets that have spurred an increasingly rapid pace of
innovations. Up to this point, training simulators have been rather specialized
and expensive. It is largely the domain of large commercial enterprises. As it
becomes easier to build realistic virtual reality simulations, these can now be used
in the classroom to make more realistic (and compelling) case studies. It provides
some of the background that only industrial experience could provide before.

When shopping for a software, here are some factors for consideration
(Swain 2009). They are compiled as a checklist in Table 7.2.

Optimization Software
Under the optimization label, a majority of software has the format of minimizing or
maximizing linear functions subject to linear equalities and inequalities in numerical
decision variables (Fourer 2009). All products provide for continuous variables that
may take any values between their bounds, and many also accommodate integer
variables that are limited to whole-number values. The continuous and discrete prob-
lems that are described by these variables are the linear programs (LPs) and integer
programs (IPs) respectively. In between LPs and IPs is mixed- integer programs, or
MIPs. Some of the products handle other kinds of discrete variables (such as binary
variables) and constraints, as well as varied non-linearities. Indeed a trend toward
greater generality in recent years continues to be seen. Combinations of MIP and non-
linear programming have been a recent focus of intensive solver development. 

Solver software takes an instance of a model as input, applies one or more
solution methods and returns the results. Modeling software, on the other hand, does
not incorporate solution methods. It is typically designed around a computer modeling
language for expressing a mathematical model and offers features for reporting, model
management and application development. Many have a translator for the language on
top. Numerous solver and modeling products have been developed as independent
applications. Thus, solvers typically support links to several modeling systems, and
modeling systems offer links to several solvers. In some cases the two may be acquired
as separate products and linked by the purchaser, but more commonly they are bought
in bundles of various kinds. Most modeling-system developers arrange to offer a vari-
ety of bundled solvers, providing modelers with an easy way to benchmark competing
solvers before committing to purchase one. Some solver developers also offer bundles
with modeling systems. A number of the latter developers also offer integrated systems
that provide a modeling environment specifically for their own solvers.

378 CHAPTER 7 Analytics and Spatial Information Technology



Since optimization models are usually developed in the context of some
larger algorithmic scheme or application (or both), the ability of the software to
be embedded in an application is often a key consideration. Thus, although vir-
tually any of the listed products in Chapter 8 can be run as in independent appli-
cation in a stand-alone mode, many are available in callable library form, often
accessible as class libraries in an object-oriented framework. Solver systems have
long been available in these ways, with an application-specific calling program
taking the place of a general-purpose modeling environment. Modeling systems
have increasingly also become available for embedding, so that the considerable
advantages of developing and maintaining a modeling language formulation
can be carried over into application software that solves instances of a model. It
is possible to embed an entire modeling system, or a particular model, or an
instance of a model. Not all systems provide all possibilities, so some study is
necessary to determine which products are right for a given project.
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▫ Typical applications of the software
▫ System requirements such as RAM and operating systems
▫ Model building features:

•  Graphical model construction ability (utilizing icon or drag-and-
drop),

•  Model building via user programming or through access to pro-
grammed modules,

•  Runtime debug capabilities,
•  Types of input-distribution fitting,
•  Types of output-analysis support,
•  Batch run or experimental design,
•  Distribution fitting,
•  Optimization capabilities,
•  Provision for code reuse through objects, templates etc.,
•  Can a completed model be shared with others who might lack the

software to develop their own model?
•  Mixed discrete/continuous modeling capabilities (particularly the

levels, the flows, etc.)?
▫ Animation:

•  Animation capability,
•  Real-time viewing?
•  For presentation purposes, can the MPEG1 version (with com-

pressed audio and visual digital data) be run independent of the
simulation?

•  What are some compatible animation software?
•  Three-dimensional animation capability?
•  Can the software import CAD drawings?

▫ Support/Training: User support/hotline available? User group or discus-
sion area exists? Are there training courses? How about on-site training?
Is consulting available?

▫ Price: For standard vs. student version.

Table 7.2  FACTORS IN SELECTING A SIMULATION SOFTWARE



The application development environments provided by spreadsheet
and database programs have proved to be particularly attractive for embedding
optimization software. At the least, most modeling environments can read and
write common spreadsheet and database file formats. Spreadsheet packages can
also accept solver add-ins, whose appeal to users and convenience for develop-
ment are widely appreciated. The solver add-ins that come packaged with
spreadsheet products are effective only for small and easy problems, but inde-
pendent developers offer much more powerful spreadsheet options in recent
years. Some can work with a variety of spreadsheet functions that go beyond the
smooth arithmetic functions assumed by classical optimization software. Setting
aside spreadsheets, several scientific and statistical packages also offer LP soft-
ware add-ins specifically for their products. MATLAB appears to be the most
popular in this respect. Another example is SAS.

Virtually all modeling systems and solvers can also handle model
instances expressed in simple text formats. These include the “MPS” format dating
back many decades and various “LP” formats that resemble textbook examples
complete with �, � and � signs. These formats mainly serve to submit bug reports
and for communicating benchmark problems. Modeling systems use much more
general and efficient formats for communicating problem instances to solvers and
for retrieving results. Each uses its own  format, unfortunately, so that every mod-
eler-solver link requires a different translation. There is continuing interest in a
superior standard form that could express problem instances of various kinds, in
ways that would help to integrate optimization software with Web communication
standards like XML. Progress has been gradual, however, and no definitive stan-
dard form has been adopted as yet.

Solution methods have continued to be refined for speed and reliability. For
LPs a choice between primal simplex, dual simplex and interior-point methods is
standard. The “bag of tricks” that make up the typical MIP branch-and-bound
solver continues to grow even after decades of attention, with increasingly sophis-
ticated features such as branch-and-cut, branch-and-price and feasibility-seeking
heuristics becoming available to a broader range of users. These refinements make
more integer programs tractable but also place more responsibility on the user to
study and select wisely among available options. Although MIP solvers attempt to
choose options according to characteristics of the problem at hand, these default
choices cannot be relied upon to work well for all hard MIPs. Users may find it nec-
essary to “tune” algorithmic options through experimentation; some solvers pro-
vide suggestions for making good choices, but explicitly automated tuning is still at
an early stage.

Many packages seek to address their users’ needs by supporting varied
specializations and generalizations of LPs and MIPs. In the area of discrete opti-
mization, the ideas underlying branch-and-bound searches are sufficiently pow-
erful to handle broader classes of constraint types. Special Ordered Sets (SOS)
exploit special structures in MIP models during the solution phase. Indeed, MIP
solvers have long accommodated variables that take values from an arbitrary list
(via special ordered sets of type 1 or SOS1 search rules) and objectives or con-
straints that incorporate non-convex piecewise-linear terms (via SOS2 rules).
Here the SOS1 (or SI in brief) rule suggests that at most one variable within a set
can have a non-zero value. They most frequently apply where a set of variables
are actually 0-1 variables: in other words, we have to choose one from a set of
possibilities. For example, only one out of N options can be selected.
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The SOS2 (or S2 in brief) rule suggests that at most two variables within a
set can have non-zero values. And if two are non-zero these must be consecutive
in their ordering, or the two non-zero values have to be adjacent. They are the nat-
ural extension of the concepts of Separable Programming.2 Separable program-
ming basically replaces all separable functions, in objectives and constraints, by
piecewise linear functions. When embedded in a Branch-and-Bound code, SOS2
enables truly global optima to be found, and not just local optima. For example, a
non-convex separable function can be linearized using SOS2.

Aside from LP, IP and MIP, many packages have solution capabilities for
stochastic programming and nonlinear programming in general. Stochastic
 programming is receiving increasing attention, echoing the preference for
embedding optimization routines within discrete-event simulation software, as
discussed in the section under Simulation. A major complication of nonlinear
programming, however, is that it requires computing derivatives (Nash 1998).
Modeling languages provide assistance here, either by computing approxima-
tions to the required derivatives, or by deriving and programming the derivative
formulas as the model is processed. If a modeling language is not being used,
the tedium of derivative calculations can be alleviated through the use of soft-
ware for “automatic differentiation” (such as ADIFOR). Such software analyzes
the formulas for the nonlinear functions and generates software that will 
evaluate the derivatives. This is not the same as “symbolic differentiation” — the
technique used in packages such as MATHEMATICA. Unlike symbolic differen-
tiation, automatic differentiation can be applied even in cases where the nonlin-
ear functions are only defined in terms of other software. The model functions
need not be expressed in “closed form.” These two resources (modeling lan-
guages and automatic differentiation) remove much of the tedium associated
with specifying a nonlinear model. They can greatly simplify the task of prepar-
ing a model for the optimization software.

Conic optimization problems are a class of convex nonlinear optimiza-
tion problems, lying between LP problems and general convex nonlinear prob-
lems. Among others, convex quadratic programming and quadratically
 constrained programming problems can be formulated as conic optimization
problems. A conic optimization problem can be written as an LP—with a linear
objective and linear constraints—plus one or more cone constraints. A cone
 constraint specifies that the vector formed by a set of decision variables is
 constrained to lie within a closed convex pointed cone. In linear algebra, a con-
vex cone is a subset of a vector space that is closed under linear combinations
with positive coefficients.3 If the origin belongs to a cone, then the cone is said to
be pointed. Otherwise, the cone is blunt.

LP further extends to semi-definite programming (SDP). SDP is a sub-
field of convex optimization concerned with the optimization of a linear objec-
tive function over the intersection of the cone of positive semi-definite matrices
with an affine space. In linear algebra, a positive-definite matrix is a matrix
which in many ways is analogous to a positive real number.4 An affine space is a
vector space that has forgotten its origin. Imagine a linear combinations of two
vectors in which the sum of the coefficients is 1. Such an affine structure
describes the same point with the same linear combination in their respective
frames of reference, wherever the origin may be. An underlying set with an affine
structure is an affine space. Once again, an affine space is what is left of a vector
space after one has forgotten which point is the origin.
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Problems of these types find varied applications in engineering and
design, and provide strong approximations to some hard combinatorial prob-
lems. A search of the Web readily yields several collections of test problems.
Interior-point methods extend to solve these problems, though not so easily as in
the case of LPs. Problems of these kinds are becoming more familiar as modeling
languages and problem formats catch up with them.

The range of supported platforms continues to be stable (Fourer 2009).
Windows remains universal, and Linux has become nearly so for products other
than spreadsheet add-ins. Among other Unix variants, Solaris, HP-UX and AIX
are still quite common. Support for Apple computers has increased substantial-
ly, though primarily through ports to the Unix shell of MacOS System X, rather
than through the creation of new versions that conform to a more standard
Macintosh look and feel.

Multiprocessor versions for shared memory have become widely avail-
able, as multi-core processor architectures have become the standard and two
quad-core processors have become a readily obtained configuration on high-end
PCs. Support for distributed memory remains relatively rare, despite continued
general interest in “grid computing” and networks of workstations. Distributed
processing seems a natural fit for branch-and-bound methods in integer
 programming, which solve independent subproblems at nodes of a huge search
tree. However, promising experiments with this approach do not seem to have
led yet to much commercial support.

Over the past years, we have witnessed the steady improvement of
 general-purpose solvers. According to Yunes, Aron and Hooker (2010), the next
software development is to combine mixed-integer linear programming, con-
straint programming,5 and global optimization6 in a single system. Recent
research in the area of integrated problem solving suggests that the right com-
bination of different technologies can simplify modeling and speed up compu-
tation substantially. Many traditional optimization techniques can be seen as
special cases of a more general method, one that iterates a three-step procedure:
(1) solving relaxations, (2) performing logical inferences, and (3) intelligently
enumerating problem restrictions. A major advantage of an integrated solver is
precisely that it can exploit structure while remaining a general-purpose solver
and providing the convenience of current commercial systems. Future devel-
opment of related systems will presuppose less knowledge on the part of the
average user to solve less difficult problems. At the same time, it will give
experts the power to solve harder problems within the same modeling frame-
work. One way is to increase the library of meta-constraints, solver types, con-
straint relaxations, and search strategies, with the goal of accommodating the
full spectrum of problems to be solved.

When shopping for a software, here are some factors for consideration
(Fourer 2009, Nash 1998). They are compiled as a checklist in Table 7.3.

Decision Analysis Software
The information provided here is intended to help analysts select a tool set that fits
the specific problem they face or maybe even a general-purpose package for the
long run (Buckshaw 2010; Maxwell 2008). While this is the motto for this entire
chapter, we wish to highlight it for decision analysis software. When shopping for
decision analysis software, it is particularly advisable to focus on the potential tool’s
 ability to fit the specific problem or class of problems. The potential user is
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▫ Software description:
•  TYPE: Solver, modeling environment, integrated solver and modeling

environment;
•  FORMS: Independent application, procedure/callable library,

object/class library, source code, add-in to MS Excel.
▫ Platforms supported include 32-bit and 64-bit configurations on:

PC/Windows, PC/Linux, other Unix-based, other OS
▫ Microprocessor support can be either shared memory or distributed memory
▫ Size of Problems solvable by this system:

•  Is the largest size limited by internal restrictions, maximum number of con-
straints, available memory, available disk space, or processor architecture?

▫ Demo/student version:
•  What is the maximum allowable number of constraints, variables,

integer variables, non-zeroes?
▫ Is it a free or open-source software?
▫ Access to the NEOS server?

•  NEOS provides an XML-RPC server that communicates with clients
for submitting and retrieving jobs. Users only need a definition of the
optimization problem; all additional information required by the opti-
mization solver is determined automatically.

▫ Pricing information for commercial, educational, and demo/student versions on a
•  Single machine,
•  Floating licenses where available,
•  Site license where available.

▫ Data compatibility:
•  Capacity to read spreadsheets, write spreadsheets, read database,

write databases, read and write text?
▫ Solvers or modeling environments:

•  Are the solvers/modeling environments that link to the product bun-
dled as single package, or available separately?

▫ What are the model formulations that are supported?Variable Types:
•  Integer, binary; semi-continuous;
•  Arbitrary discrete (special ordered sets SOS1);
•  Piecewise linear (special ordered sets SOS2);

▫ Other Constraint and Objective Types:
•  Convex quadratic objective, 2nd-order cone, general convex,  general

nonlinear, other.
▫ Available Algorithms:

•  Linear programming: primal simplex, dual simplex, interior point?
•  Integer programming: branch-and-cut, branch-and-price, heuristics

for seeking feasible solutions?
•   Other algorithms, such as derivative calculation requirements for

nonlinear programs and the corresponding derivative  calculation
tools? How about stochastic programs?

▫ Available Utilities:
•  The presolve pre-processor to simplify an optimization model before

solving it; infeasibility diagnosis; other?
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advised to carefully evaluate the software in relation to the situational factors that
are relevant. If the goal is to add a package or two to the general toolkit, then a pack-
age or combination of packages that provide balanced support across the spectrum
of situations and the entire decision-analysis process is the best investment. If the
problem calls for involving multiple stakeholders and multiple  competing attribut-
es, then tools that emphasize group support and value elicitation are worth explor-
ing. Problems involving large uncertainties, diagnosis,  complex interdependencies
or risk analysis would benefit most from tools such as influence diagrams, Bayesian
networks or one of the Monte Carlo modeling tools.

Due diligence in selecting a decision-analysis package should include
thinking about the following critical questions (Maxwell 2008):

1.  Are there a single stakeholder or multiple decision-makers?
2.  Will the stakeholders participate in the decision conference, or will

they be periodically presented results only?
3.  Will there be a choice of a single alternative or a portfolio of

 alternatives?
4.  Do stakeholders have multiple, conflicting objectives that must be

 reconciled?
5.  Is there significant uncertainty in the decision outcomes?
6.  Is it a single, one-time decision or a sequence of decisions over time?

Most hard decision situations require decision-maker(s) to make trades among
a complicated set of competing objectives. There is a number of multicriteria decision-
making techniques implemented in the available software. Multi-Attribute Utility
Theory (MAUT) and the Analytic Hierarchy Process (AHP) are the most prevalent. Most
of the packages indicate that they implement MAUT. In addition to these approaches,
ordinal ranking techniques are available in some of the software packages and can be
quickly implemented to develop a first-order set of weights for a decision model. The
quick technique just might be good enough to meet some of the analysis goals.

More important than the software, it is critical that analysts understand
that different techniques have different underlying axioms and different philoso-
phies about how decision models should be formulated. The best example is
MAUT vs. AHP, two very different techniques with different theoretical under-
pinnings. Various approaches have strengths, weaknesses and limitations that
deserve some research before they are applied. Whichever technique is applied,
it is important that analysts ensure that both the relative importance of attribut-
es and the range within which each attribute varies are clearly presented to the
stakeholder for consideration as an integral part of the elicitation process.
Considering only importance increases the risk that the model will produce
unreliable results. This point has been discussed in Chapter 5.

Uncertainty is also almost always a factor when making hard decisions.
How it is addressed varies among the packages. How it is best addressed
depends on the nature of the uncertainty, how the model is being developed, the
data that is available and the resources that are available for model development.
Tools are available for eliciting probability judgments from experts. Often, these
judgments are placed in a decision analytic model called an influence diagram.
These diagrams are designed to combine an intuitive, visual presentation of
the relationships among the variables with a sound underlying mathematical
representation of their joint probability distribution.
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Let us go back to the early days of influence diagrams and other decision
analytic models that considered uncertainty explicitly. In that era, solution time
and computer memory for models were very important considerations. As an
example, one influence diagram model developed in the very early 1990s pos-
sesses almost two million solution paths. It took approximately two hours to
solve. Today, the same model—using newer versions of the influence diagram
software and a current notebook computer—solves in less than three minutes.
This power allows us to represent and solve increasingly complicated problems.
It also allows analysts to exercise the models we develop more rigorously.

In some cases the analytic team might have large quantities of data that can
be used to formulate the probability model. Some of these packages (as well as some
statistical packages) have learning algorithms that will build the joint probability dis-
tribution from the available data. If this option is available, the analysis team should
be certain to supplement the automated effort and involve subject matter experts in
the review of the resulting model. The experts can help find errors in the data and, just
as importantly, they can supplement the model with knowledge they possess.
Combining what is learned from data and what is learned from experts usually yields
a better model and results in a higher likelihood that the effort will be successful.

A final consideration should focus on whether the model is addressing a
single decision in time or a sequence of decisions over time. Virtually all of the pack-
ages will consider a single decision. The influence diagram packages and some of
the Monte Carlo packages will also consider multiple decisions that might unfold
over time. In influence diagrams, this situation is represented as a sequence of 
decisions, likely with uncertainties that will resolve over time spaced in between
decisions. Sometimes a hard decision actually consists of a set of smaller decisions
that either occur over time or can be thought of as a package. A technique for 
representing this type of situation is to use a sequence of decisions or an alternative-
generation table. This technic is virtually supported by all of the software packages.

Looking toward the future, here is an observation according to Buede
(undated). Future improvements that will be least likely to make substantial
advances involve embedding the analyst’s wisdom and knowledge in the soft-
ware for the users who are less-skilled analysts. These improvements should
include problem structuring and elicitation features. Buede believed these capa-
bilities might exist in the distant future, but are not very likely in the near future.
Important as it may be, market for this software will always be a small, special-
ty market until the less skilled analysts are better prepared. Buckshaw (2010)
echoes this sentiment by suggesting that software vendors should embed some
form of coaching into their products so that even a novice can be confident that
their models are producing sensible results.

When shopping for a software, here are some factors for consideration
(Maxwell 2008). They are compiled as a checklist in Table 7.4.

2. Spatial Analytics Software. As mentioned, there is an increasing interest in ana-
lytics that support spatial analysis. Here we discuss the salient  features of spatial
analytic software, including GIS, image processing, and vehicle routing. Karimi
(2009) has taken this idea a step further and proposed the term geoinformatics. In
his terms, geoinformatics is the science and technology of gathering, analyzing,
interpreting, distributing, and using geospatial information. It includes the topics of
spatial databases,  mapping and visualization, analysis, ontologies, distributed geo-
processing, location-based services, and management.
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GIS Software
While its functionality is much broader, GIS is often thought of as computer systems
for managing a spatial data structure (Lee and Zhang 1989). In selecting a proper GIS
software, therefore, one needs to consider both hardware and software configura-
tions that handle large map and image databases, often in a distributed computer
network. The main hardware factors that influence the performance and capacity of
a GIS, perhaps more than other computer systems, are word length, main memory
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▫ Operating Systems:
•  Is the user’s operating system Windows, Mac OS, Unix, or other?

▫ Applications:
•  What is the best software if multiple objectives are considered?
•  How does the software represent and analyzes uncertainty for a prob-

abilistic application?
•  How does it represent and analyze probabilistic dependencies?
•  Where applicable, how does it model sequential decision

making, portfolio decision making, and/or multiple-stakeholder
 collaboration?

▫ Software Features:
•  Can the software import a database or spreadsheet?
•  Does it export presentation graphics?
•  Does it interface with the EXtensible Markup Language (XML) that

facilitates transport and storage of data?
•  Does it accept Application Program Interface (API), such as embed-

ding a decision support system?
•  Can model segments be copied or moved easily?
•  Can model structure be displayed on screen or printed?
•  Can a user protect his/her data from other users?
•  Does the software support explicitly group elicitation? How?
•  Does it support simultaneous viewing?
•  Is a record of model evolution kept?

▫ Does the software support: Multi-objective decision analysis? Multi-
attribute utility theory? Analytic hierarchy process? Or other algorithms?

▫ Is pricing information available for commercial, education, enhanced/high
performance licenses?

▫ Are there size limitations in the following: Number of alternatives?
Number of levels in value or decision tree? Number of states of a node in
a tree?

▫ Is graphical elicitation techniques available for the following:
•  Model structure/brainstorming?
•  Value functions/scores?
•  Value weights, probabilities, risk preference?
•  Can probabilities or weights be defined as variables that can be 

operated on?
•  Are graphical sensitivity analyses possible on either weights or 

probabilities?
•  Can analytical results be portrayed graphically?
•  Can the user document structure or judgments with text?

Table 7.4  FACTORS IN SELECTING A DECISION ANALYTIC SOFTWARE



size, processing speed, size of external storage, and data transfer rate between exter-
nal and main memories. Current GIS software packages include  management
 systems, logic programming, object-oriented programming, and object-oriented
databases. The complexity lies in the need to integrate geometric and non-geometric
data and the need for a distributed system. Given its complexity, the cost of GIS soft-
ware development is generally high, and this reflects in its market price.

There are five essential elements in a GIS according to Star and Estes
(1990): data acquisition, preprocessing, data management, manipulation and
analysis, and product generation. These elements need to be properly con -
sidered in acquiring a GIS. We have addressed data acquisition already in
Chapter 6. The remaining four elements are intimately related to the way hard-
ware and software are configured. Preprocessing involves manipulating the data
in several ways so that they may be entered into the GIS. Two of the principal
tasks of preprocessing include data format conversion and identifying the
 locations of objects in the original data in a systematic way. The first involves
 converting paper maps and transparent overlays to computerized data sets.
Modern-day scanners and digitizers greatly assist in the process, but much of the
work, as is usually the case, still rests with the human. The second task is to
determine the characteristics of any specified location in constructing the data
layers in the GIS system. It is clearly a labor-intensive and skill-intensive effort to
ensure that the resulting database can be of maximum value to the user.

Data management functions govern the creation of, and access to, the
database itself. These functions provide consistent methods for data entry,
update, deletion, and retrieval. Modern database management systems isolate
the users from the technical details of data storage, such as the particular data
organization on a mass storage medium. When the operations of data manage-
ment are executed well, the users usually do not notice, nor do they care, about
the intricacies of the information processing technology. When they are done
poorly, however, everyone notices the slowness of the system, the cumber with
which the system operates, and the frequent disruption. Finally, data manage-
ment concerns include issues of security. Procedures must be in place to provide
different users with different kinds of access to the system and its database.

Setting aside data management, manipulation and analysis are often the
focus of a system user’s attention. Many users believe, incorrectly, that this
 module is all that constitutes a GIS. In this portion of the system are the analytic
operators that work with the database contents to derive new information. For
example, one may need to move data from his/her GIS to an external system
where a particular numerical model is available, and then transport the derived
results back into the spatial database inside the GIS. This kind of modularity is
useful, and at the same time challenging, for the designer of a GIS. It is of partic-
ular interest here so far as this book is mainly concerned with analysis.

Product generation is the phase where final outputs from the GIS are cre-
ated. The output products might include statistical reports, maps, or graphics of
various kinds. Some of these products are soft copy images, or transient images
on television-like computer displays. Others, which are durable since they are
printed on paper and film, are the hard copies. Increasingly, output products
include computer compatible material: disks and tapes in standard formats for
storage in an archive or for transmission to another system.

Let us emphasize the functionality and configuration of today’s GIS (Steiniger
and Weibel 2010). According to Steiniger and Weibel, desktop GIS usually serves all
GIS tasks which are classified into three categories: GIS Viewer, GIS Editor, and GIS
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Analyst, which is another way to reference the five GIS elements discussed above in
today's IT environment. Meanwhile, a Spatial Database Management Systems (DBMS)
is mainly used to store data, with limited analysis and data manipulation functionali-
ty. Increasingly, WebMap Servers are used to distribute maps and data over the
Internet. And WebGIS Clients are used for data display and to access analysis and
query functionality from Server GIS. Libraries and Extensions provide additional
(analysis) capabilities. Examples include network and terrain analysis and to process
specific data formats. Finally, Mobile GIS is often used for field data  collection.

Several trends of GIS-technology development have been observed:

1.  The obvious trend is the continued downsizing of computers. Computers
are getting more compact and at the same time more  powerful. Despite
this trend, the speed of input and output on smaller computers remains
a concern for data intensive applications such as digital mapping. The
refinement of data-compaction techniques will help to reduce the
amount of data to be transmitted and thus increase the throughput.

2.  Another obvious trend is that hardware prices will continue to drop,
but programming staff salaries will continue to rise. As systems
become more complex, more programmers are required to maintain
the system. Many of the digital mapping-software products will
probably never become consumer goods. The limited market means
that the price for these products will continue to remain high.

3.  In spite of increasing diversity among computer systems used,
there is a pressing need to exchange information among users.
This will require standardization of data structure among the dif-
ferent  systems—a formidable task until there is a period of stabil-
ity in GIS developments.

4.  Many software functions will be integrated into the computer as
firmware. One reason for this is to increase speed of processing. It is
likely that workstations dedicated to GIS applications will appear in
the future given there is increasing demand for GISs.

5.  Over the last couple of years, the number of Web-based GISs have
doubled. This trend will likely continue.

When shopping for a software, here are some factors for consideration
(Point of Beginning Magazine 2005). They are compiled as a checklist in Table 7.5.

Image Processing Software
Today’s GIS typically processes files in both the vector and raster formats, as
 surfaced during our discussions above. The latter usually come from earth-
monitoring satellites or aerial photography. Such images are processed and
integrated with  vector files by the GIS for a desired functionality. Explicitly
coded spatial information can be extracted from such remotely-sensed data
through the use of image processing (IP) software (Vanderzee and Singh 1995).
The data can then be combined and compared with other spatially referenced
data using a GIS. Since we have already provided a fairly detailed review of
GIS software, this section simply contains some supplemental information
 specific to raster images. It is not meant to be as com prehensive as other sur-
veys reported above. For one, we do not plan to repeat the software selection
criteria, as it has been laid out in full under the GIS section.
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▫ Does the software have these operating systems or network support:
Network client-server support? Server operating system? Client operating
system? Internet server enabled?

▫ Does it offer total solution packages or support these compatible applica-
tions: Third party applications designed to run on the software?

▫ Does it have these GIS data administration functions: Multi-user edit lock-
ing? Versioning for managing data access by users? Metadata mainte-
nance?

▫ How about these database management supports: Vendor-proprietary
DBMS? Relational database management system (RDBMS)? RDBMS spa-
tial data warehouse?

▫ Which of the following native graphic data structure and format does the
 system employ: Vector-spaghetti? Vector-topologic? Parametric? Three-
dimensional? Triangulated irregular network? Grid? Raster image?

▫ Does the software support direct import formats and direct export for-
mats, specifically:

•  What readable import and export formats that do not require 
translation?

•  Are utility programs bundled with the GIS package for translation of
GIS or CAD data to or from another format, including common indus-
try- standard formats like DXF, SIF, DLG or SDTS?

▫ Which of the following utilities does it have for GIS data entry and
editing:

•  Board digitizing?
•  Coordinate geometry/precision entry?
•  Electronic survey data import?
•  Heads-up digitizing or on-screen digitizing, where a digitizing station

provides a graphical user interface on the screen of a workstation,
facilitating the process of tracing outlines from a raster image 
on-screen?

•  Vectorization (including editing GIS data)?
•  Map rectification (including transformation of coordinate systems

and map projections)?
•  Graphic error check/correction?
•  Field data entry?

▫ Does it support these map design and composition functions:
•  Interactive map composition?
•  Modifying map annotation from attributes for custom map displays?
•  Global map symbol change?
•  Automatic creation of thematic maps and legends?

▫ How about these geographic query and analysis functions:
•  Attribute query and selection?
•  Map measurements such as basic distance and area?
•  Address matching?
•  Buffer generation?
•  Point/line-in-polygon analysis?
•  Polygon overlay?

Table 7.5  FACTORS IN SELECTING A GIS SOFTWARE



While the Vanderzee and Singh reference is dated 1995, it represents a
dearth of scientific information on the subject. Most important, much of what
was covered remains valid today. The IP systems covered were designed pri -
marily to manipulate and analyze image data derived from earth-looking
 satellites or  airborne sensors. In this context, IP system capabilities include inter-
active  display, image enhancement, geometric rectification, spatial filtering,
image mosaicing, Fourier analysis, radiometric corrections, multivariate analy-
sis, multi-spectral classification, raster-GIS modeling, radar geocoding/analysis,
image annotation, and hard-copy output. In the following paragraphs, we will
provide more information about the general characteristics, operating environ-
ments, supported peripherals, and other capabilities of these software systems.

There has been a dramatic increase in the number of new IP products in
the field starting in the late 1980s. The software systems varied widely in their
functional capabilities as well as in their price. More than 80 percent of the
 products included GIS functionality, about a third are considered IP systems, and
about 20 percent fell under the categories of automated mapping and facilities
management (AM/FM) or computer-aided design.

Technical sophistication of the software products varied widely. About
10 percent of the systems had expert system capabilities; 25 percent had an 
object-oriented software architecture; 30 percent a spatial index to improve compu-
tational efficiencies; 60 percent had an integrated DBMS; and 60 percent also had the
capability to link to an external DBMS. In addition to the built-in functions of the
systems, 60 percent supported extensions to the system through  vendor-supplied
macro languages; 40 percent offered linkable libraries for  data-structure access; and
source code was obtainable for about 20 percent of the systems. Regarding source
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•  Network analysis, such as designing network models based on attrib-
utes of network segments?

•  Raster document query and access?
•  Direct access to other GIS formats?

▫ How about these terrain data processing and analysis features:
•  Digital-elevation-model generation?
•  Contour map generation?
•  Three-dimensional display/profile generation?
•  Map draping, or to produce an aerial view of a land form, with tex-

tured or colored features “draped” over it?
•  Slope/aspect analysis? Here “aspect” means the direction in which

the land is facing: north, south, east, or west.
▫ How about these raster image capabilities: Geometric rectification? Ortho-

image generation?
•  Image enhancement? Spectral classification?

▫ The programming languages that are available for application develop-
ment:

•  Proprietary application development language that is included with
the GIS software package?

•  Industry standard programming environment (e.g., C++, Visual
Basic, Delphi)?

Table 7.5  (CONTINUED)



codes and linkable libraries, C was the language of choice for developing GIS and
IP systems. FORTRAN still had a foothold in the 1990s, but C outnumbered it by a
wide margin.

About two-thirds of the vendors were able to provide turnkey solutions,
including bundled hardware and software, for their clients. Some offered stan-
dard packages; others preferred to tailor the configuration to a specific user’s
needs. More than two-thirds of the software developers offered worldwide soft-
ware support for their products. Almost all of the remainders offered support for
a limited portion of the world. Only a couple indicated that no support was
available. About 85 percent of the vendors offered training courses for their
clients, about half offered training assistance in the form of tutorials, and about
10 percent offered training videos for their products.

Nearly all the software products offered on-line help. Approximately
half of the products had basic on-line help, and about half had a more sophisti-
cated context-sensitive help facility. About a fourth of the products had a full
hypertext help facility incorporated into the software system. Some included
more than one type of help facility. Documentation was available in electronic
form for about half of the software products. Both hard copy and electronic
 versions were available for many of the products. An English version of the
 documentation was available for virtually all of the products. A French version
was available for less than 10 percent. Even fewer products were offered with
documentation in Chinese, Italian, Dutch, Japanese, Spanish, Danish, Greek, and
Russian.

The survey showed that the most common operating systems for the
various products were UNIX and DOS. Many of the products were offered for
more than one operating system. The proportion of systems offered for UNIX
and DOS remained pretty much constant. The trend toward windows-based
products and graphical user interfaces throughout the software industry was
also occurring with GIS and IP products.

More than two-thirds of the products had full graphical user interfaces,
about a third had windows-based interfaces; and about a third of the products
had simple command-line interfaces. Some products had more than one type of
user interface. The most common graphics environments supported by the soft-
ware products were X-windows for UNIX systems and Microsoft’s Windows for
PC’s. Motif was the most common window manager for UNIX systems. Sun’s
OpenLook window manager was a distant second, with about half as many
products that supported it also supported Motif. A few vendors continued to
offer products that supported Sunview and other less common graphics envi-
ronments, such as Apple Macintosh and Intergraph’s Microstation.

The number of installations of GIS, IP, and products increased dramati-
cally over the last couple of decades, mostly in North America and Europe.
Developing countries continued to lag behind in the use of these technologies.
Many new products were introduced in the last two decades, and the pace of
new product introductions appeared to have slowed over the last ten years,
reflecting a maturation process. At the same time, the technical sophistication of
existing products and new products has increased. The current phase in the GIS
and IP software industry is characterized by competition and increased attention
to users’ requirements.

When shopping for an IP software, here are some factors for considera-
tion in summary:

Analytics and Spatial Information Technology CHAPTER 7 391



▫ Function and price: The software systems in the Vanderzee and
Singh survey varied widely in their functional capabilities as well as
in their price. There was not a direct relationship between functional
capability and price.

▫ Technical features
▫ Turnkey systems
▫ Software support
▫ Training assistance
▫ Operating systems
▫ User interfaces
▫ Graphics environments
▫ On-line Help
▫ Documentation

Facility or Site Location Software
In accordance with the facility-location taxonomy identified in this volume, and
the review at the beginning of this chapter, it is desirable that a facility-location
software be reviewed according to such a taxonomy. A facility-location problem
can therefore be identified by a classification scheme consists of five labels, as
 borrowed from Bender et al. (2002). Accordingly, a software can be located that
will satisfy these parameters and render the corresponding solution. Under this
scheme, a facility-location problem will carry an identification consisting of five
labels:

#  facilities/type/assumptions/distance function/objective function

Each of these labels is defined in detail in Table 7.6. As an example, an identifi-
cation of 3/G/wm = 1/d(V, V)/� would suggest that the software will solve a
three- facility (3) median-location (�) problem on an undirected network graph
(G) with inter-nodal distances (d(V, V)), where each demand node carry the same
weight (wm = 1). For each of the five labels, the label is indicated by a * if no spe-
cial specification is given.

Some of the desirable features of a facility-location software are listed
below:

▫ graphical user interface
▫ linking with professional graph-editing and graph-drawing programs
▫ linking with professional data-management programs
▫ A suite of callable libraries
▫ User manual
▫ Interface with GIS
▫ Interface with mathematical-programming software (such as CPLEX)
▫ Interface with supply-chain management software (such as the SAP

Enterprise Resource Planning software)

For data management, C++ Standard Template Library (STL) is a powerful
library containing basic data structures and algorithms. With respect to GIS inte-
gration, it is desirable to have a completely memory-resident data exchange in
order to increase execution speed.

392 CHAPTER 7 Analytics and Spatial Information Technology



To date, facility location is a relatively narrow field that has yet to
attract commercial software vendors to enter the market. For this reason, most
available software is developed by universities and research organizations. We
will survey some of these software packages later in this chapter when we
 discuss public-domain software (or “freeware”). For the time being, the above
discussion can be thought of as a prescription for future software vendors
when they decide to enter the market. Meanwhile, the related application in
facility layout and supply-chain management commands a much larger market
than simply facility location. Google offers the SketchUp software for facility
layout, including three dimensional displays. The SAP Advanced Planner and
Optimizer (SAP APO) is an integrated software application for supply-chain
planning that “backs” into facility location. Obviously, the SAP APO is not
designed to solve facility-location per se.

Routi ng Software
Another spatial analytic tool is vehicle routing, which is a component of
 supply chain and location-based services. Here, we are more concerned with
 supply-chain applications than providing an individual commuter with
mobile navigation. With supply-chain application in mind, routing software
companies are offering creative ways to integrate computer, communication
and location technologies with algorithms and software (Partyka and Hall
2010). New data sources have recently become available, including a more 
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complete commercial-road database, and true historical  traffic data based on real
travel times. There is an explosion of map-data attributes and capabilities. In the
next year or two, we will have predictive travel speeds for road segments down
to 15-minute intervals. We are now seeing stronger connectivity between routing
software’s traditional functions—that of assigning stops to drivers and placing
them in an optimal sequence—with on-the-road navigation. A printout listing
turn-by-turn directions is being replaced by voice commands and dynamic map
displays from a driver's phone or navigation device. Mobile phones are chang-
ing the industry in a big way because they allow real-time data capture, which in
turn enables  real-time re-optimization of the operation. This is of particular inter-
est because dynamic scheduling algorithms can make use of these data to
increase operational efficiency.

Desktop-based routing is going away. Instead, people want Web-based
solutions, so all parts of the organization can have visibility. This is now often
accomplished through the Software as a Service (SaaS) model, whereby the
 software vendor generates solutions and manages data from their own servers.
The routing software surveyed by Partyka and Hall in 2010 provide a common
set of basic capabilities:

1.  geocoding addresses, i.e., locating the latitude and longitude by mat -
ching the address against data contained in a digital map database;

2.  determining the best paths through street networks between pairs of
geocoded points;

3.  solving vehicle routing problems, entailing an assignment of stops to
routes and terminals, sequencing stops and routing vehicles
between pairs of stops; and

4.  displaying the results in both graphical and tabular forms in such a
way that dispatchers can guide the solution process and communi-
cate results to drivers, loaders and other personnel.

More than half of the products offer some capability for real-time routing, which
could come in the form of real-time vehicle re-routing or real-time stop scheduling.
Six vendors—Appian, Descartes, FreshStart Logistics, MJC2, SAITECH and UPS
Logistics—have the ability to incorporate real-time traffic, which is now more wide-
ly available in major cities. The collective capabilities enable a fleet to reschedule in
response to customer requirements, vehicle delays or traffic conditions.

Whereas vendors generally claim that their products are designed to serve a
broad range of applications, most specialize in an industry sector. Specialization is
largely driven by interface requirements—both in terms of presenting information in
a manner that is useful to the target user and in terms of interfacing with business soft-
ware systems and hardware devices. Police, taxi and emergency vehicle dispatch, for
instance, each demand special requirements that differ from those  of private fleets.
They fall in the realm of niche markets, even though in theory they are just variations
of vehicle routing. Nevertheless, here are the other factors that should be considered
in choosing a software package. They are compiled as a checklist in Table 7.7.

B. Developmental Geospatial Software in the Public Domain
Supplementing commercial software are those that are available in the public
domain, free for users to access. However, one should distinguish between
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Open-Source Software vs. “No Cost” Software. Open-Source Software allows the
user to make functional changes. It allows the user community the freedom to
maintain and enhance the software when the original developers are no longer
available. Other “no cost” software often does not distribute source codes and
thus has “locked functionality.” These “no cost” software can be withdrawn by
the developer at any time, leaving the software in a “frozen state.” Where infor-
mation is available, we note this distinction in the detailed software survey in
Chapter 8.
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▫ Platforms supported: Windows, Linux, Unix, Mac OS, Application as
Service (system utility to run applications as Windows services);

▫ Maximum size of problem solvable by the system: Number of stops, num-
ber of vehicles, number of terminals;

▫ Recommended hardware, processor speed, memory, hard disk space;
▫ Performance: Computation time? What types of algorithms are

employed (open ended)? Are approximations used to reduce computa-
tion time?

▫ Routing functions: Node Routing, arc routing, real-time re-routing, real-
time stop scheduling, daily routing, route planning and analysis?
Incorporate real-time traffic information?

▫ Price information: Quotation for, say, a single site license for 50 routes?
Does license fee include map for one region? What brand of map is pro-
vided? Installation support cost, say, in $/hour? Typical support hours
needed for installation, assuming a 50-routes system?

▫ GIS capabilities: Displays routes and stops on maps? Can edit routes with
drag and drop? Geocodes stops from addresses?

▫ Solution algorithm: Does system accept soft time windows? If so, how are
soft time windows specified?

▫ Product is available as part of a suite that provides these services: 
On-board electronic display? Wireless messaging to driver? Real-time
vehicle tracking? Barcode scanner? Supply-chain-management software
(e.g., inventory management)? Custom order process?

▫ Features: Individual driver assignment? Turn-by-turn route instructions?
Automatic forecasts of delivery? Load manifests? Loading plan for truck-
load? Weather forecast information display?

▫ Types of fleets that currently use this product: Local pick-up and delivery?
Longhaul less than truckload? Long-haul truckload? Courier? Buses?
Taxis? Service fleets? Emergency service (police, fire, etc.)?

▫ Other special features
•  Recent innovations in system?
•  Has your routing software been integrated with either cell phone or

PDA technology?
•  Have you developed other software innovations, such as use of social

 networking for information sharing?
▫ New features that address sustainability/green requirements?
▫ Number of Companies Using Software?
▫ Most Significant Installations?

Table 7.7  FACTORS IN SELECTING A VEHICLE ROUTING SOFTWARE



1. Open Source Software. Here are the stipulations under an Open Source (OS)
software. Users can freely use the software at home or at the office and use it on
whatever computers they want to. Users can give the software to whoever they
want to. Users can make programming changes to the software, adding features
that may be missing or even change the way some features work. Usually the
licenses for this software prevent the first party user from restricting the freedom
of the second party user who may receive the software from the first. There are a
large number of different open-source licenses. The most popular is the GNU
Public License (GPL), where the operating system GNU stands for “GNU’s Not
Unix!”. The Lesser GNU Public License (LGPL) allows mixing of proprietary and
open-source components without having to release the source of the proprietary
components. The pertinent components under the LGPL must still be “source
available,” including changes or improvements. There are organizations promot-
ing OS software. The Open Source Geospatial Foundation (OSGeo) began in 2006
with nine projects forming the foundation for promoting OS geospatial software.
Their project sponsors must be granted an Open-Source-Initiative-compliant
license in order to be an OSGeo member. They are encouraged to use an LGPL
or similar license so that libraries can be reused by non-GPL projects. OSGeo
 provides resources (such as funding and infrastructure) to member projects. 
It  provides support for the use of OSGeo software in education. It operates
the annual OSGeo conference, and it promotes the use of all OS software in the
geospatial industry. In parallel, there is a recent movement toward open-source
optimization software (among others). A prominent example is the
Computational INfrastructure for Operations Research, or COIN-OR for short.
The project is also managed by a non-profit foundation.

2. Freeware. FreeGIS.org is a comprehensive source of information about free
geospatial software, geo-data and documents. This is an excellent location to
 consult when searching for free geospatial software. However, please be aware
that there is a wide range of software maturity. There are two primary sources of
such “freeware” packages. The first is the U.S. government (and other interna-
tional governments that have the same policy). The second are the research and
educational institutions, developed mainly for pedagogy. While the commercial
market tends to be driven by demand, the government and research organiza-
tions are generally at the periphery of the marketplace, rendering them to be
more experimental in software development.

In recognition of its importance, an increasing pool of public-domain, state-
of-the-art, spatial-information software has become available from research and
 educational institutions. Obviously, there are commercial vendors who  venture into
the development of state-of-the-art software. Likewise, the government may  develop
software that has been available in the commercial sector. For example, a better-
known government-sponsored software is GRASS, a GIS that has been available for
quite some time. Standing for Geographical Resources Analysis Support System,
GRASS is a public-domain raster GIS, a vector GIS, an image-processing system, and
a graphics-production system. It is extensively used at government offices, universi-
ties, and commercial organizations. It is written mostly in C for UNIX.

There is a rich repository of developmental freeware from university
campuses. These range from comprehensive packages to more specialized tools.
The University of Tennessee at Knoxville, for example, has assembled tools from
environmental assessment fields into an effective problem-solving environment.
These tools include integrated modules for visualization, geospatial analysis,

396 CHAPTER 7 Analytics and Spatial Information Technology



 statistical analysis, human-health risk assessment, ecological risk assessment,
cost/benefit analysis, sampling design, and decision analysis. It is clear that there
are similar packages available elsewhere.

Spatial Statistics
Rey and Anselin (2006) reported some software development efforts on univer-
sity campuses and research institutions. Many of them provide a tight coupling
of spatial and nonspatial data representation and queries. This coupling relies on
quadtree-style indexing strategies and originally focused on two-dimensional
spatial objects, such as county boundaries and river systems. A third dimension
can be incorporated through a new object type, the isosurface, a three-dimension-
al surface that represents points of a constant value. This results in a powerful
technique for performing clustering and windowing. Ideally, the software will
allow dynamic exploration of areal data measured over multiple time periods,
such as analyzing data on sudden infant death syndrome (SIDS) in North
Carolina [as cited in Rey and Anselin (2006)]. Systems can include mapping and
geo-visualization to spatial autocorrelation analysis, multivariate exploratory
data analysis, and finally confirmatory spatial regression analysis. Here, the
word confirmatory is used to distinguish it from exploratory analysis.

Some systems include two classes of transportation network data,
those that occur on a network (e.g., traffic accidents) and those that occur in
prox imity to, but not on, a network (e.g., restaurants in an urban area which
may have entrances on multiple streets). Analyses include hot-spot detection,
spatial interpolation, and journey-to-crime computation. The systems allow the
creation of a wide range of spatial weights from various input formats, the
 computation of higher order weights and the construction of spatially lagged
variables. It also implements the numerical procedures needed for spatial data
analysis. These include exploration (such as rate smoothing and outlier detec-
tion), description of global spatial autocorrelation (such as Moran and Geary
 statistics), and spatial regression (using maximum likelihood and method of
moments estimation).

Location Theory
As far as facility location, Bender et al. (2002) developed LoLA - Library of
Location Algorithms, following the taxonomy as outlined under the “Facility or
Site Location Software” subsection. They tied LoLA to the ArcView GIS, the SAP
software as well as CPLEX. Ottensmann (2000) used spreadsheet optimization to
teach facility location and spatial interaction, with accompanying Website show-
ing the Excel spreadsheets implementing these models. In a more dated, yet
more comprehensive fashion, Ottensmann (1985) presented educational BASIC
programs to perform many of the functions documented in this book:

1.  Trend projection models
2.  Population cohort-survival model
3.  Economic base model
4.  Shift-and-share model
5.  Input-output model
6.  Single-constrained gravity model
7.  Double-constrained gravity model
8.  Facility-location-on-a-plane model
9.  Facility-location-on-a-network model
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Meanwhile, Daskin disseminates the following software to accompany his book
(Daskin 1995).

1.  SITATION: Facility Location Software
2.  Spreadsheet for the Traveling Salesman Problem
3.  Spreadsheet for Facility Location Problems
4.  Time Dependent Queueing Analyzer

While the SITATION software is amply documented in Daskin’s book, the fol-
lowing enhancements have been made to the original version of the program.
The programs are entirely menu-driven and run under Windows 95 and later
versions of Windows. SITATION now solves five classes of location problems,
including p-median, p-center, set covering, maximal covering, and un-capacitated
fixed-charge. SITATION includes branch-and-bound capabilities to allow the
user to obtain very tight solutions. Additional mapping capabilities have been
added. SITATION allows the user to zoom in on portions of the tradeoff curves
and maps. The software now allows the user to specify alphanumeric (text-
based) node names. SITATION solves the covering-median tradeoff problem
using the weighting method. As posted on the Daskin webpage, the newest ver-
sion of the software will solve problems with up to 300 nodes.

3. Software Accompanying This Book. Some developmental software is included
in the CD/DVD that accompanies this book. This set of software was developed
specifically in support of this volume and the companion Chan (2005)  volume. The
spatial analytic applications range from location theory to image processing. These
philosophies are followed in the preparation of software on this disk:

1. In order to provide the widest dissemination possible over time, all
files are ASCII-text files, PDF files, input file for a generic mixed-inte-
ger program (MIP) or MATLAB code--representing some commonly
available media in the community. Other than the generic MIP or
MATLAB code, all software executes under the DOS operating sys-
tem. For most of the codes, both source codes and executable codes are
given—mainly for the ease of execution and modification by the users.

2. We strive to provide standalone programs that do not require sup -
porting software, including language compilers. All programs are
self-contained and they have been developed or refined by the
author and his associates. For extended use of some of the programs,
references are made to optional supporting software, such as using
the freeware OCTAVE as a replacement for MATLAB.

3. Sample datasets are provided to allow demonstration of the soft-
ware. While “toy” problems are often used for introduction, most of
these data are drawn from real-world case studies which are dis-
cussed in the main body of this book and Chan (2005).

Our spatial-analytics software is organized into seven folders:

▫ STATEPRK—A folder that contains a location model based on activ-
ity derivation-allocation.

▫ SPANFRST—A folder that houses a heuristic location-routing pro-
gram for small-package deliveries.

▫ RISE—A folder that includes a heuristic location-routing model for
scheduled passenger-transportation service.
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▫ SPACEFIL—A folder that presents a heuristic multiple traveling-
salesmen program.

▫ LOWRY—A folder that has the traditional Lowry land-use model,
based on economic-base activity derivation and gravitational alloca-
tion.

▫ YICHAN—Bearing the names of the developers, this is a folder that
debuts a disaggregate/bifurcation implementation of the Garin-
Lowry model, a successor to the Lowry model.

▫ PATTERN—This folder contains the K-MEDOID algorithm, which is
a classification software for a grid of gray values (such an image). It
also contains a input text file for an MIP code in long-hand equation
format.

▫ SPACE—This folder contains the TS-IP program, which is an image-pro-
cessing program that loads and manipulates digitized satellite images.

A complete User’s Manual accompanies these software files on the CD/DVD.
While datasets are provided for each model, a number of satellite images of the
U.S. are also included in the IMAGEFILES folder for experimentation through
the image processing programs K-MEDOID and TS-IP.

C. Selecting a Software: The Case of GIS
Having reported available software on the market, how does one select the soft-
ware that is most appropriate for his or her applications. Let us run through this
exercise using GIS as an example. Many organizations are faced with the deci-
sion to acquire or to upgrade a GIS (McCrary et al. 1996). This is to be performed
in an environment where the technology is rapidly changing. Following our dis-
cussion of GIS software earlier in this chapter, a comprehensive set of criteria was
listed. From the list, let us say the potential user decided that selecting a GIS in
his/her organization typically involves answering these questions:

▫ Do you want the ability to access database and graphics from the same
package?

▫ Do you want the ability to integrate between software packages,
including between GIS and packages which perform analysis?

▫ Are you willing to pay the price for integration?
▫ Do you have the expertise to use GIS software?
▫ Do you want the ability to conduct spatial analysis such as facility

location and land use?
▫ Is the acquisition or upgrade an efficient use of GIS in your organization?
▫ Will your system be networked in the future?
▫ Is a topological database needed?

The potential user agreed that the ultimate driving force behind a GIS
selection has to be the problems to which the software is applied. Some of the
basic  applications in his/her organization can be enumerated below:

1.  Geographic data collection and production: This refers to the fun-
damental GIS function of collecting geographic data for the purpose
of building both spatial and non-spatial databases, as described in
Chapter 6 and in the current chapter.
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2.  Facility and asset management: This means locating, counting, ana-
lyzing, and/or reporting on the distribution of facilities and assets
that are on, below, or above the earth, for the purpose of inventory-
ing them for usage.

3.  Map and chart publishing: This includes producing and publishing
maps and charts for the purpose of direct distribution or documenta-
tion.

4.  Resource allocation: This means the fundamental task of analyzing,
allocating, and reporting on a resource’s location, quantity, quality,
and/or movement, for meeting certain economic, financial, political,
and social criteria of specific interest to her organization.

5.  Network analysis: This refers to analyzing, scheduling, routing,
and/or reporting the flow of people, goods, or services through the
organization’s network for best usage.

6.  Site selection: This is the core function of selecting and reporting on
the desirable site based on a set of imposed criteria for optimizing
location.

7.  Surface and sub-surface assessment: This is concerned with model-
ing, analyzing, and reporting on the natural geophysical phenome-
na occurring on or below the surface, for understanding, preserving,
or exploiting such phenomena.

8.  Tracking and monitoring: As a bottom line, the potential user wor-
ries about recording, analyzing, and reporting activities over time
for understanding the occurrences, and/or for developing comple-
mentary or corrective responses.

It is obvious that depending on the function the GIS is required to 
perform, a very different package(s) may be selected. Among other techniques,
multi-attribute utility-theory (MAUT) can be the scientific method for evalu-
ating and selecting GIS software. In MAUT, the elements of a decision-making
problem are broken down into a hierarchy of objectives, criteria, and attribut-
es. An example of such a hierarchy is shown in Figure 7.1. For a particular
application and a GIS under consideration, the following multi-attribute 
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utility-function may yield the necessary metric v for evaluation: v = v (f�, t��, s�, c)
where f� is the functional-attribute score, t�� is the technical-attributes score, s�
is the vendor score, and c is the price—all normalized between a scale from 0
to 1, where a larger value is more desirable. Examples of technical attributes
may be user-friendliness, performance and expandability; while examples of
vendor attributes may include experience, reputation, quality of documenta-
tion, quality of support etc. Having defined these attributes, a simple addtive
value- function may be justified, consisting of v = wff� � wt t" + ws s� where
wf , wt and ws are weights assigned to the respective attributes by the stake-
holders. Obviously, there are other forms of value functions, depending on
whether one wants an ordinal ranking or a cardinal ranking of GIS packages.
The key point is that the calibration and implementation of such value func-
tions for GIS selection are situation- specific. Another important point is the
MAUT allows for explicit tradeoffs between various criteria and attributes.
This is often more important than the single metric v that may fall out of such
a procedure. 

In Chapter 8, entitled “A Software Survey of Analytics and Spatial
Information Technology,” we have provided a screened list of commercial and
public-domain software. As documented in Chapter 8, the list represents some
“popular” software based on the criteria that have been set up for each appli-
cation, whether it be simulation software, statistical software and so on.
Notice the screened list does not represent endorsement on the part of the
author. Where necessary, the reader is encouraged to go beyond the list
depending on his/her particular needs, which is the reason for the discussions
in this section to begin with.

IV. SPATIAL INFORMATION 
TECHNOLOGY: LOOKING AHEAD

Recent events have deepened our conviction that many human endeavors are
best described in a geospatial context. This is evidenced in the prevalence of
location-based services, as afforded by the ubiquitous cell-phone usage. It is
also manifested by the popularity of such Internet geospatial IT tools such as
Google Earth and GPS vehicle navigation. As we commute to work, travel on
business or pleasure, we make decisions based on the geospatial information
provided by such location-based services. When corporations devise their
business plans, they also rely heavily on such geospatial data. By definition,
local, state and federal governments provide  services according to their
respective geographic boundaries. With geospatial information at one’s
 fingertips, governing bodies wish to see how one can use it to ensure public
 safety and security, which is a most stringent requirement, in as much as the
relevant information has to be available to make split second  decisions. One
estimate suggests that 85 percent of data contain spatial attributes. This is not
even counting the interpretation that Internet domain names are the “real
estate addresses” of the 21st century. Nor does it include the virtual reality
world, in which one immerses herself in a “second world” without really
being there.
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A. Spatial Information Technology
Scientifically speaking, decision-making is based on information and intelligence
extracted from data. Manipulating spatial database systems has been perceived as a dis-
tinct and specialized field of information technology (Yeung and Hall 2007). There are
simply quite a few unique characteristics of spatial data that are distinct from conven-
tional databases. These include the distinct nature of spatial data representation, the use
of map projection and coordinate systems, the nature of spatial statistics, and the per-
vasive need to respect cartographic presentation. Acquisition of a working knowledge
and mastery of these topics requires years of education and practical training, as wit-
nessed by the extensive discussions in this text. There are always professional spatial-
data users in government, business, and academic research who call for spatial analy -
tical functions that conventional commercial database systems cannot fulfill.

Recently, the inclusion of spatial-data handling in mainstream-database
software has grown consistently and the emergence of a healthy open-source
geospatial software community has meant that the mainstream and spatial data-
base worlds have been converging. The integration was driven by several subtle
but interrelated factors:

1.  Advances in computer hardware, software and standards, have
helped to overcome the longstanding incompatibility between spa-
tial and non-spatial data representation and processing.

2.  The advent of the Internet and networked computing has stressed
standardization, interoperability and usability, which have effective-
ly removed the boundaries and barriers between spatial and other
branches of IT.

3.  There is a growing demand for novel and sophisticated spatial
applications, as witnessed by location-based services. This has
forced  spatial-database  software vendors to look for methods and
tools outside the traditional realms of GIS technology.

4.  The growing recognition of the importance of spatial information as
a commodity with value for modern society and the resulting busi-
ness opportunities have motivated mainstream IT companies to enter
the spatial database  marketplace.

We mentioned that there are three types of software: commercial, open
source, and general public-domain codes. A common belief is that brains, ideas
and algorithms originating in academic spatial analysis and migrate to the private
sector when the market develops. This is an overly simplified view. The two
 communities sometimes come together when this type of migration is mirrored in
the infusion of support to academic research projects from the private sector. In
fact, there are numerous examples of companies engaging with open source
 projects to their benefit.

Let us now turn to the open source software. Considering that the open
source movement is only a decade old, its footprint on the world of spatial IT 
is impressive (Rey 2009). At the same time, a closer examination suggests that 
the contributions have been most heavily concentrated on spatial data and  traditional
GIS functionality, while open source projects in the areas of advanced spatial analysis,
statistics, spatial econometrics and spatial modeling tend to be much less prevalent.
These areas sit at the top of the spatial analysis research pyramid and reside mostly in
the academic and research community. We have seen examples of this in our discus-
sion of “freeware” in the Software section in the current chapter.
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While the potential for cross-fertilization between the open source move-
ment and academic research on spatial analysis is promising, it is by no means
inevitable. There are a number of factors that prevent such cross fertilization. In the
academic and research community, the value of a software manual is preempted by
that of a refereed journal article. This often results in codes that are poorly docu-
mented, preventing them from broader dissemination. Also, there is a disconnect
between an open source academician’s contribution and the attribution s/he is enti-
tled to. The researcher risks a loss of attribution if the original source code were
shared openly with the broader scientific community.

Open source can play a vital role in today’s new research era. Relying on
open standards and programing frameworks facilitates the integration of spe-
cialized application programs into scientific middleware. Open source code as a
way to implement integrated models provides a transparency that can facilitate
communication between scholars from different domains. This new research era
is also characterized by the growing complexity of the research questions being
posed. Increasingly researchers are relying on numerical simulation for results,
as closed-form solutions are not available for emerging research questions. This,
in turn, is blurring the roles of  software developer and  scientist, as success of the
latter will increasingly require competence in programming.

A GeoPortal is a type of web portal used to find and access geospatial infor-
mation and associated services (such as display, editing, analysis) via the Internet.
Following this philosophy, Ferreira et al. (2010) outlined the framework and imple-
mentation of a flexible, loosely coupled information infrastructure to facilitate collabo-
rative research on spatial analytics. The framework combines off-the-shelf open source
applications such as Apache, PostgreSQL, Mapserver, OpenSSL, and MediaWiki, with
proprietary tools such as ArcGIS Server and Flex, and uses minimal custom code to
provide web services for distributed modeling and realistic evolution of data sharing.
Here is the hierarchy of such an architecture, going from the basics at the top of the list
to the more ambitious at the bottom of the list:

▫ File transfer
▫ File transfer with search
▫ Dynamic geospatial infrastructure
▫ Distributed dynamic infrastructure
▫ Geospatial compute cloud

Four layers are envisaged in this proposed architecture: analytic layer,
presentation layer, middleware layer, and data layer. It is clear that such an archi-
tecture represents merely a first step of such an effort. These critical issues need
further exploration (Ferreira et al. 2010): 

1.  decomposing work flows into modules that are meaningful and
“thin” enough for one group's focus while having stable and well
defined inputs and outputs, 

2.  balancing the benefits of automation and process management tools
with the labor and maintenance cost of customized code, 

3.  training researchers and workgroups to utilize the information 
infrastructure effectively, and 

4.  addressing “version skew” issues as components of the GeoPortal
mature.
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According to Rey (2009), the most successful open-source projects are
those not only with excellent code bases but thriving communities of users and
developers. Cross-fertilization will come only when the number of producers of
open source code grows along side the consumers of such projects. However, the
magic of the open source movement lays not in its fascinating social dynamics,
but in the promise of new ways to organize science and heighten the pace of
knowledge discovery.

B. Going Beyond
Recent advances in wireless communication technologies are now adding a new
dimension to technology integration that plays a pivotal role in spatial and main-
stream IT integration. Wireless communication devices such as mobile phones,
pagers and computers have decreased in size, weight and cost, and have
increased in functionality, portability, security and reliability. The advent of
Tablet PCs is particularly noteworthy. Tablet PCs differ from the other mobile
computers in these important ways:

1.  Full-feature operating system such as Windows XPTablet PC Edition
allows Tablet PCs to run any existing Windows applications.

2.  Because of their compact size, light weight, high capacity memory,
pen-based input and most importantly, long battery life, Tablet PCs
are more mobile than other types of mobile computers.

3.  Tablet PCs use a pen device that replaces the traditional mouse. A
user would tap and press on the screen with this device to interact
with applications. The interface allows a user to write on the screen
using digital ink. Each ink stroke and its color, width and attributes
can be edited and stored just like traditional graphics and text.

Tablet PCs have overcome most of the limitations of display
screen size, storage capacity and processing power imposed by laptops,
PDAs and hand-held computers. Digital ink allows Tablet PCs to be used
not only for the retrieval, processing and display of spatial information,
but also for real-time capture and editing of file data through the use of
GPS devices, electronic field survey equipment and handwriting. The
processing power and data storage capacity of a Tablet PC are compara-
ble to a desktop computer, hence it can be used as a “thick” client in a
typical client/server computing environment. As such, it is able to mini-
mize the amount of data traffic that would otherwise be required in a thin
client architecture.

The Global Positioning System (GPS) has made available accurate
locational information, where the two second-generation global satellite-
 navigation systems in operation today are GPS II and GLONASS. The abilities
of a mobile computer to determine its own position and make use of this
 locational information in spatial data processing has allowed a large number
of spatially-enabled applications to be developed. Looking toward the future,
GPS III is probably best characterized as a third-generation system where the
focus is on improvement and modernization. These will result in real-time
supply of driving directions, emergency response locations, traveler informa-
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tion, advertising and marketing and real-time environmental data collection.
The advent of the devices that streamline such location-based services rep -
resents one other major innovation of spatial database development in the
last decade.

Google, Microsoft, and Yahoo are racing to transform online maps
into full-blown browsers, organizing a diversity of information (Chan 2009).
Google Earth combines satellite imagery, maps and the power of Google
Search to put the world’s geographic information at one’s fingertips. Since
its debut in summer 2005, Google Earth has received attention of an unex-
pected sort. Officials of several nations have expressed alarm over its
detailed display of government buildings, military installations and other
sensitive sites within their borders. Beyond Google, Globalsecurity.org has
images of nuclear test sites and military bases in much sharper focus than
can be found on Google Earth. The company was asked by the National
Geospatial-Intelligence Agency, an arm of the U.S. Defense Department, to
remove from their site some of the maps of cities in Iraq, which was at war
during that time. Without implications of endorsement or dis-endorsement,
however, the incident—among others—was a classic example of the futility
of trying to control information.

Very briefly, let us continue to provide some food for thought in the
exciting subject of mining geospatial data. The potential application in safe-
ty and security is endless (Rouch 2007). A systems-biology graduate student
Andrew Hill and colleagues at the University of Colorado published a KML
file in April 2007, with a grim animated time line showing how the most vir-
ulent strains of avian flu jumped from species to species and country to
country between 1996 and 2006. What if you could model a Europe where
the sea level is 10 feet higher than it is today, or walk around the Alaskan
north and see the  glaciers and the Bering Strait the way they were 10 years
ago or in the prehistoric past when the earth went through dramatic climate
changes? Then  perceptions around global warming might change one way
or another. While we are laying out a future agenda in this chapter, much of
the technology is here already. Digital globes are gaining in fidelity, as cities
are filled out with three-dimensional models and old satellite imagery is
gradually replaced by newer high  resolution shots. Moreover, today’s
island virtual worlds will only get better, with more-realistic avatars and
settings and stronger connections to outside reality. Map algebra for carto-
graphic modeling was introduced by Tomlin (1990). In parallel, Ritter et al.
(1990) introduced image algebra for image processing. Perry, Sheth,
Arpinar, and Hakimpour (2009) proposed geospatial and temporal seman-
tic analytics. In this context, semantic refers to the meaning of data rather
than its syntax or structure. If one can understand and process data on
using map algebra, image algebra, or semantic analytics, s/he can achieve a
higher level of automation, integration, and inter-operability. It is a fasci-
nating world for experimentation, with potential applications to data inte-
gration and information-quality assurance. While data integration remains
a main focus, the latter is becoming a topic for increasing attention, inas-
much as pertinent decisions can only be made on quality data.
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V. EXERCISES

Self-Instructional Module: LINEAR PROGRAMMING
PART 2 - SOLUTION ALGORITHM (to be found on the
attached CD/DVD)7

In the current chapter, entitled “Analytics and Spatial Information
Technology,” some solution software packages are presented. An example is
optimization  software, in which linear programming plays a central role. In
the solution of many  optimization problems, such as mixed integer programs,
the algorithm is often based on solving repetitive linear programs (LPs). It
should be obvious to the reader by now that the graphical method for solving
linear  programs—such as shown in Figure 4.7—is for illustration only, and is
limited to models of two variables such as shown in Illustration (1). The mod-
els such as Illustration (3), with three or more variables, are not easily
sketched on two-dimensional graph paper. Thus, an algebraic technique is
needed to solve LPs with numerous variables and equations. Also, such an
algebraic technique is conducive to computer solution. One algebraic
 technique for solving linear programs is called the  simplex algorithm. It was
 proposed by George Dantzig in 1947, and its theoretical foundation was estab-
lished in 1948 by Gale, Kuhn and Tucker in the working paper “Extremum
Problems with Inequalities as Subsidiary Conditions.” For more information,
the interested reader is referred to the classic volume, Linear Programming and
Extensions, by George Dantzig, Princeton University Press, 1963.

The simplex algorithm illustrated in this module is limited to LP models
formulated in a particular format. In real life situations, LP models usually
assume many different forms, and they have hundreds and thousands of vari-
ables and constraint equations. Thus, a more advanced understanding of LP and
computer programs are essential in solving these LP models. Chapter 4 (entitled
“Prescriptive Tools”) and Appendix 4 of this text (entitled “Optimization
Schemes”) will provide more depth in linear programming. Many available soft-
ware packages are quite efficient in handling LP models of large size. For conve-
nience, the author has included a software survey in both the current chapter and
Chapter 8.

ENDNOTES

1 The “Moving Picture Experts Group” (MPEG) is a working group of experts that was formed by
International Organization for Standardization and International Electrotechnical Commission to set
standards for audio and video compression and transmission.

2 An NLP is a separable program if its objective function and all constraints consist of separable func-
tions, i.e., f(x) = �j

n fj (xj) and �j
n gij (xj) = bi for i = 1, . . . , m; and all xj are non-negative variables

bounded above, i.e., 0 � xj � mj for some mj, j = 1, . . . , n.
3 More precisely, let C be a subset in a real (or complex) vector space. If λC ⊂ C for any real λ > 0,

then C is called a cone.
4 For example, the matrix M = � 1

0
0
1 � is positive definite. For a vector z = (z1, z2)

T, the quadratic form is
zT M z = z1

2 + z2
2. When the entries z1, z2 are real and at least one of them nonzero, the quadratic

form is positive.
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5 Constraint programming (CP) is an emergent software technology for effective solution of large, par-
ticularly combinatorial, problems (Barták 1999). Not only it is based on a strong theoretical
 foundation but it is attracting widespread commercial interest as well. CP is a programming paradigm
where relations between variables are stated in the form of constraints (Wikipedia 2011). Constraints
differ from the common primitives of imperative programming languages in that they do not specify
a sequence of steps to execute. Instead, they specify the properties of a solution to be found. This
makes CP a form of declarative programming. The constraints used in CP are of various kinds: those
used in constraint satisfaction problems (e.g., “A or B is true”), those solved by mathematical
 programming solvers (e.g., “x � 5”), and others. The important feature of constraints is their declar-
ative manner, i.e., they specify what relationship must hold without specifying a compu tational pro-
cedure to enforce that relationship. The idea of CP is to solve problems by stating  constraints
(requirements) about the problem and, consequently, finding solutions satisfying all the constraints.
Constraints are usually embedded within a programming language or provided via separate software
libraries. As a computer language, the magic of CP is that the user states the problem, the comput-
er solves it.

6 Global optimization is a branch of applied mathematics that deals with the optimization of a function
or a set of functions to some criteria (Wikipedia 2010). In real-life problems, functions of many vari-
ables have a large number of local minima and maxima. The objective of global optimization is to
find the best solution in the presence of multiple local optima (Pintér 2011). Formally, global opti-
mization seeks global solution(s) of a constrained optimization model. The most common form is the
minimization or maximization of one real-valued function in the parameter-space. There may be sev-
eral constraints on the solution vectors. To formulate the problem of global optimization, assume that
the objective function and the constraints are continuous functions, the component-wise bounds
related to the decision variable vector are finite, and the feasible set is nonempty. These assump-
tions guarantee that the global optimization model is well-posed since the solution set of the global
optimization model is nonempty. Finding an arbitrary local optimum is  relatively straightforward by
using local optimization methods. Finding the global maximum or minimum of a function is much
more challenging and has been practically impossible for many problems to date.

7 The answer to this Module is attached at the end of this textbook.
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This chapter echos the discussion in Chapter 7, in which we laid out the landscape
of analytics and its supporting software, with a special focus on spatial information
technology. While the purpose of Chapter 7 is to provide the general picture, the cur-
rent chapter will review solution methodologies and specific software packages. We
start with a general-purpose applied mathematics software, such as MATLAB, and
progress toward more specialized tools, ending with vehicle-routing software. Many
 commercial software packages are multi-purpose; they perform more than one func-
tion. Oracle Crystal Ball is a good example, being a key spreadsheet-based applica-
tion suite for predictive modeling, forecasting, simulation, and optimization. The
various packages by Vanguard Software are another example. Instead of listing a
general purpose software several times, sometimes we chose to list it only once
under what we judge to be the most appropriate use.

Much of the information is taken from the commercial software surveys 
available in the literature, particularly those published in OR/MS Today. This is supple-
mented with a heavy dose of public-domain software surveys gathered from a variety
of sources. As with most surveys, the information is solicited from the vendors or the
software developers, who may report their own product through “color glasses.” Here,
we try to do some judgmental screening. As a result, only a small subset of the products
available in the market is listed here. Since we are aiming at a general audience, more
“proven” and more robust software are favored over overly specialized software. These
tend to be the more “popular” packages. Exceptions are made in the public-domain soft-
ware, many of which are developed in research and academic environments, which by
its very nature, is developmental and geared toward a particular niche.

While we include much more specifics in this review chapter than
Chapter 7, the evaluation provided here is still quite general in nature, as we stay
away from endorsing a particular software. The readers are strongly encouraged
to visit the references for additional information that would help decide the best

“Get the facts first. You can distort them later.”
Mark Twain
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software for his or her application. Here, the author simply lists what he judges
to be worth reporting. The criteria include the maturity and versatility of the
 commercial product, with attention duly placed on public-domain software as
well. As always, the users should carefully judge for themselves the applicability
of the product to his/her needs. In contrast to its functionality, the details of a
software (such as its technical specifications and costs) are best gathered from the
supplier’s Website. Following our practice in this volume, no Web address is
 provided—inasmuch as a Web address is subject to change. This should not
pose any inconvenience, however, as today’s Internet search engine has greatly
streamlined the location of Web addresses.

I. GENERAL ANALYTIC SOFTWARE
Echoing the layout in Chapter 7, we will divide software packages into two
groups: general analytic software and spatial analytic software.

A. Spreadsheet Modeling
Spreadsheets are gaining popularity not only as a general office tool, but also as
a modeling tool. The flexibility and versatility of a spreadsheet to solve a variety
of problems are the driving force behind its popularity. There are a number of
spreadsheet software available, including MS Excel and Lotus 1-2-3. It is not our
intent to show our readers how to use a spreadsheet. Rather, we provide some
guidelines to build quality spreadsheet models. Hillier and Lieberman (2009)
 suggest a four-step process to do so:

1. Plan the spreadsheet model. Visualize where one wants to finish and
then do some calculations by hand to clarify the needed computa-
tions. Accordingly, a spreadsheet model is designed with the “feel
and look” that one desires. The objective is a clear, logical layout to
the overall model.

2. Build the model. It is advisable to start by building a small, readily
manageable version of the model, mainly for experimentation.

3. Test the model. One is advised to test the small version first to get all
the logic straightened out, before developing the full scale model.

4. Analyze the model and its results. In this final step, one applies the
model to evaluate proposed solutions—to see how it performs. For
more complex models, one may even use an add-in Solver to find the
solution.

By itself, the four-step process is not sufficient. There are additional
guidelines for building “good” spreadsheet models. Here are some salient ones
(Hillier and Lieberman 2009, Winston and Albright 2007):

▫ Enter the data first, inasmuch as data really drives a spreadsheet.
▫ Organize and clearly identify the data.
▫ Enter each piece of data into one cell only.
▫ Separate data from formulas, instead of embedding data directly into

a  formula.
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▫ Keep it simple by avoiding the use of powerful Excel functions when
simpler functions are available that are easier to interpret.

▫ Use range names for easy reference, instead of just leaving the range
in the cell.

▫ Use relative and absolute references to simplify copying formulas.
This will save of re-entering the formula at various places in the
spreadsheet.

▫ For readability, use cell comments liberally, use text boxes for assump-
tions and explanation, and use borders, shading, and colors to distin-
guish between cell types.

▫ Separate different parts of a model, possibly across multiple worksheets.
▫ When a Solver is used, the Solver uses a combination of the spread-

sheet and the Solver dialogue box to specify the model to be solved.
Therefore, it is  possible to include certain elements of the model (such
as the right-hand sides of the constraints in a linear program) in the
Solver dialogue box without displaying them in the spreadsheet. For
effective model dissemination, however, it is advisable to show the
entire model on the spreadsheet.

To debug a spreadsheet model, check whether the output cells are giving
correct results for various values of the changing cells. Also check whether range
names refer to the appropriate cells, and whether formulas have been entered into
output cells correctly. Toggle the worksheet between viewing the results in the
output cells and the formulas entered into those output cells. Finally, other
spreadsheet auditing tools can be used for additional debugging efforts.

Spreadsheets are appealing in part because it allows many models to be
built without requiring computer programming skills on the part of the user.
However, programming skills can be developed “on the job.” The use of macros
is an example. Beyond building a straightforward spreadsheet model, decision
support systems (DSSs) can be developed that builds upon spreadsheets, when
assisted by a bit of programming (Albright 2010). A computer language to facili-
tate this effort is Visual Basic for Applications (VBA). For Microsoft users, VBA
comes with MS Office, which make it accessible to a vast audience of potential
users. To work properly, one needs to enable macros in the front, since VBA is
really a macro to the Excel spreadsheet software. The end result of this effort is a
set of spreadsheet applications with front ends and back ends, where inputs are
enter in the front and where results are posted at the back.

For our discussions here, VBA works with Excel objects. A few typical
Excel objects one would recognize include ranges, worksheets, workbooks,
and charts. The goal is to expose a spreadsheet’s object model and functional-
ity to VBA, so that VBA can manipulate it programmatically. As a result, a DSS
is built, going well beyond what a single spreadsheet can accomplish. In
 general, any application software package, such as Access, Word, or even a
non-Microsoft software package, can similarly expose its object model and
functionality to VBA.

B. Applied Mathematics
Aside from spreadsheets, applied mathematics packages offer a very general
modeling environment for all sorts of problems. After all, the basic building block
of a mathematical model is, well, mathematics.
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1. MATLAB. The MathWorks now offers a very complex array of products to
meet professional and scientific needs in both academia and industry. These
products are organized around two main components, MATLAB and
SIMULINK (Tarrazo 2006). Each of these products can be purchased separate-
ly, and a number of “toolboxes” and “blocksets” complement or extend each of
them. The MATLAB  “family” includes toolboxes in specialized areas and 
clusters of procedures. The former includes distributed computing, finance,
bioinformatics, fuzzy logic,  control, signal processing and communications.
The latter include optimization, symbolic analysis, partial differential 
equations, genetic algorithms and direct search, statistics and data analysis,
neural networks, splines, curve fitting, GARCH, wavelet, filter design, etc.
The MATLAB family also includes a number of utilities, such as links for MS
Excel, image acquisition, data acquisition, instrument control, datafeed, data-
base, compiler, and report generator. Modeling needs are addressed by
SIMULINK and related products.

Mathematical software is equally focused on both numerical and
 symbolic analysis. The symbolic toolboxes accompanying MATLAB provide
access to MAPLE’s analytical kernel, which has the capability to perform
 symbolic calculus, transforms, linear algebra, simplification of symbolic expres-
sions, equation solving, specialized mathematical functions, general symbolic
operations and variable precision arithmetic. The Extended Symbolic Toolbox
also offers C code, Fortran and LaTex representation of symbolic expressions and
full access to the most recent MAPLE kernel (except for graphics). This means
support for programming in MAPLE and access to MAPLE specialized mathe-
matics libraries.

According to Tarrazo (2006), the major difficulties stem from the follow-
ing examples:

(a) Different versions of the program require different syntax, which
 limits the usefulness of the older codes. Also, the program itself is
evolving. For example, current versions emphasize function handles
and anonymous functions and discourage the use of inline functions.

(b) MATLAB syntax is sometimes hard to understand. Some procedures
often seem to work well despite not following the recommended
 syntax, but this is without guarantees. The error messages sometimes
refer to something different from what is going on. Some other items
are hard to accustom to. For example, the anonymous function still
looks like an odd construct after using it for a while. It is hard to explain
the difference between the “abstract” and “symbolic” functions.

(c) The fact that MATLAB can be used in different ways is both an
advantage and a source of perplexing errors. The remedy is to solve
(at least at first) the same problem in different ways, until one knows
what exactly the program will do.

2. OCTAVE. OCTAVE is a nice free alternative to MATLAB that permits users to
process data or to use it as a general purpose (graphic) calculator (Le Reverend
2006). In some cases OCTAVE’s syntax is slightly different from MATLAB’s; but
standard functions such as the creation of matrices, concatenation of matrices,
two-dimensional and three-dimensional plots, data interpolation and numerical
differentiation and integration are exactly the same. OCTAVE can be installed via
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Fink or DarwinPorts, where Fink and DarwinPorts are the two major Unix
 porting alternatives for Mac OS X. Alternatively, the software can also be com-
piled from the available source code.

In OCTAVE, anyone can develop his/her own toolbox should the need
arise. More important, s/he can then share their toolbox with the rest of the
OCTAVE community—a prominent feature of an open-source code. An addi-
tional benefit of OCTAVE is that the community is very active and that it is
very likely that the OCTAVE user group will help if one has problems using the
software, from compilation of the source codes to the development of one’s
own libraries. In fact, the most successful projects are those not only with excel-
lent code bases but thriving communities of users and developers. The social
dynamics may lead toward new ways to organize science and heighten the
pace of knowledge discovery.

Of course MATLAB, being a licensed commercial software, is more fea-
ture complete. The lack of a SIMULINK equivalent in OCTAVE is a problem for
process control engineers. Since MATLAB 6.0, the software is no longer a
“Command Line Interface (CLI)”-only tool. Some functions are accessible using
a graphical user interface (GUI), including graphics and curve fitting. OCTAVE
remains a pure CLI application and many value it as a good feature. Like MAT-
LAB, OCTAVE is interpreted and can therefore be quite slow. If one tries to solve
big problems, s/he can still use C++ routines directly in OCTAVE to help it run
faster, but for small problems, one obtains the solution ten times faster with
OCTAVE than the time spent developing the program in C++. OCTAVE also lacks
a built-in editor but SCINTILLA will do the job.

Most of these limitations are not found in another MATLAB clone:
SCILAB. SCILAB is being developed by a French consortium, but the syntax for
SCILAB is quite different from MATLAB’s. Therefore if one prefers to maintain as
much compatibility as possible with MATLAB, OCTAVE is the more appropriate
choice.

3. Mathematica. Mathematica has been known for its symbolic computation. On
top of enhancements for symbolic computation and numerical computation,
recent versions of Mathematica have gone well beyond these classic capabilities
(Sodhi 2009). Included are advanced numerical analysis and linear programming,
supporting interior point as well as simplex algorithms. Also included are sparse
matrix manipulation with fast algorithms that compete with dedicated numerical
software tools. The GUIKit allows a user to create a GUI running on top of
Mathematica for other users to do specific tasks. Mathematica 5.1 gave access to
Web services offered by other providers (e.g., Amazon) as a Mathematica 
function. It also allowed better access to spreadsheets (such as MS Excel) and
databases.

Mathematica 6 would analyze notebooks files created by older versions to
diagnose which function calls need to be modified. New features or enhancements
include combinatorial optimization, constrained nonlinear optimization,
exploratory data analysis, symbolic statistical computing and extended array oper-
ations. Of particular interest is the “manipulate” function, data visualization, and
most of all, a variety of datasets including financial datasets. Instead of word
processors such as Tex and LaTex, Mathematica features Publicon’s ease-of-use in
new  versions.
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Aside from graphic display and data manipulation extensions, there
are features that take advantage of dual-core desktops that are very 
common today, not to say more specialized desktops (such as Apple) that
have eight processors. Last but not least, the Wolfram Alpha search engine
performs many search functions in Mathematica as other Internet engines.
This shows that Mathematica has every indication and plan to provide
desktop software that serves not only mathematics, but also day-to-day
office applications.

C. Statistics
Following the criteria set up in Chapter 7 and using our best judgment, we
screened the surveyed statistical software (Swain 2009, 2011) and resulted
in the list shown below. What remains are some “substantive” statistical
packages, including both specialized applications and full feature function-
alities. We must admit that there may be bias toward software with full
functionalities since we are looking for robustness and popularity. Each
software is attributed to a vendor and reviewed with a brief commentary.
Since data entry and output portability is a prime concern, we pay particu-
lar attention to the input formats and output  formats of each software 
package. Although we exercise best judgment in the  following screened list,
the reader is advised to consult with the fuller listing by Swain (2009) for
more details.

@RISK—Palisade Corporation
@ RISK performs risk analysis using Monte Carlo simulation to show many pos-
sible outcomes in Excel. Import formats include anything that can be brought into
Excel. The application is an Excel add-in. Export formats include native Excel
graphs and .jpg files. The new version, @RISK 5.5, introduced diverse new 
features and languages.

Autobox 6.0—Automatic Forecasting Systems, Inc.
Autobox will automatically build a customized model for univariate and multi-
variate time-series data—both in the batch mode and interactive mode. Import
and export formats both include ASCII and Excel. The software can detect unusu-
al behaviors such as level shifts, pulses, and seasonal pulses. Local time trends
can be detected and adjusted automatically, accounting for intermittent demands
while maintaining constancy of parameters and variance. The software was
ranked the top Automated Software in the 2008 Daily Time Series Forecasting
Competition.

DTREG—Phillip H. Sherrod
DTREG is a predictive modeling software that includes decision trees, neural
nets, complete with vector machines support and genetic evolution functions.
Import and export formats are in comma-separated values (.csv) files. Twelve pre-
dictive modeling methods are integrated into a unified program. The software is
very easy to use.
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JMP 8—SAS Institute
JMP 8 is an easy-to-use desktop solution, providing dynamic graphing,
data visualization, comprehensive statistics and design of experiments.
Import formats include JMP, Excel, text, Database via ODBC, SAS, html,
First Choice Spreadsheet (FACS file extension), Access and dBASE. Export
formats include JMP, Excel, text, SAS and dBASE. Notable features of JMP
8 are SAS integration, its capacity for choice experiments and modeling,
and improved reliability/distribution fitting. Simulation can be performed
within the design of experiments. JMP Pro Version 9 includes cross 
validation, Bootstrap Forests, Boosted Trees, 2-layer Neural Networks
and more.

MaxDiff—Sawtooth Software, Inc.
MaxDiff provides “maximum difference scaling,” or best/worst scaling of items
such as product attributes, brand features, and position statements. Import and
export formats are in .csv files.

Minitab 15—Minitab Inc.
Minitab is arguably a leading statistical software used for analysis and quality
improvement worldwide, complete with powerful data and graphical analysis
capabilities. Import formats are in Excel, XML, csv, txt, dat, qmd, and .dbf files of
the dBase database management system; (Here, the .qmd file extension is pri-
marily associated with the ‘Quicken’ software by Intuit Inc.). Export formats
include Excel, XML, csv, txt, htm, html, rtf, etc.

Optimal Scientist Software Package—Transpower Corporation
The software helps to design and analyze optimal experiments. Import and
export formats are in ASCII. The package determines the optimal number of 
predictor (input) variables and the resultant optimal regression equation. It also
performs all-ways multiple regression.

SmartForecasts—Smart Software, Inc.
The software is designed for forecasting, sales/demand planning and
inventory optimization. Import and export formats include text, spread-
sheet files and database Star Schema, where the schema is the simplest
style of data warehouse schema, consisting of possibly one “hub” fact
table referencing any number of “peripheral” dimension tables—graphi-
cally depicted as a “star." SmartForecasts provides the Bootstrap 
methodology for intermittent demand, and full-holdout for time-series
forecasting.

Smoothie—Demand Works
Smoothie is a sales and operations planning software for manufacturers and dis-
tributors, featuring Pivot Forecasting®. Import and export formats include Excel,
text or database using ODBC. Smoothie’s Pivot Forecasting enables immediate
propagation of aggregate forecasts and adjustments at any level. Modules are
now available for consensus demand planning, inventory policy simulations and
analysis, and n-tier supply planning.
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Stat::Fit—Geer Mountain Software Corp.
The software is popular among users who wish to statistically fit risk, simulation,
and modeling distributions to user data. Version 2 includes 32 distributions and
enhanced graphics. Import formats include ASCII. The software exports into spe-
cific formats for the simulation software of interest. Distribution viewer allows
interactive display of distributions. Stat::Fit is complete with a derounding func-
tion and diverse data-manipulation options.

STATGRAPHICS—Centurion; STATGRAPHICS Web Services—StatPoint
Technologies, Inc. 
The powerful software is used for statistical data-analysis and modeling, quality
control, design of experiments, forecasting and Six Sigma. Import formats are in
Excel and .csv files, while exporting .csv files. StatAdvisor offers instant, easy-to-
understand interpretations of one’s statistical results. New features include
Monte Carlo simulation, random generation of ARIMA time series, multivariate
visualization, and sample size determination. The Web Services version is
designed to be called from web applications. Web service returns results as html
with imbedded images.

Unistat Statistical Package—Unistat Ltd.
Unistat is a comprehensive standalone package that can also work as an MS Excel
add-in. Import and export formats include xls, wk!, csv, txt, sdf, slk, dif, mdb, dbf,
html. Fully functional demo and/or the PDF manual can be downloaded from
the software website.

XLMiner—statistics.com
XLMiner is a data mining add-in for MS Excel. It features classification, prediction,
affinity analysis, data reduction, exploration and visualization. Import formats are
in.csv files. Exporting data is possible despite the format or location of the data.
Should the user choose to export directly, s/he must be willing to devote more
resources to do so. XLMiner is equipped with a new time-series analysis, on top of
the ability to save models for later review. Subsequently, XLMiner can score saved
models to new data.

D. Simulation
A survey was conducted by Swain (2009) to collect information on both
 specialized and general simulation applications. There were about forty-odd
products listed in the survey, taken from twenty odd vendors. This is one of the
larger surveys on simulation software. The range and variety of these products
continue to grow, reflecting the robustness of the products and the increasing
sophistication of the users. The information elicited in the survey is intended to
provide a general gauge of the product’s capability, special features and usage.
Our brief remarks below are meant to be introductory only, identifying the ven-
dor and providing a brief commentary, based on the evaluation criteria set up in
Chapter 7 of the text. For more details, the reader is referred to Swain (2009) and
the vendor’s Website.
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@RISK—Palisade Corporation
For this software, RISKOptimizer combines genetic algorithm optimization with
Monte Carlo simulation for optimization under uncertainty. @RISK provides a
wide range of graphs, data, and statistics on simulation results. Input distribution
fitting is based on Komogorov-Smirnov and Anderson-Darling goodness-of-fit
tests, including cumulative and discrete distributions. Output analysis supports a
wide range of graphs, data, and statistics on simulation results. @RISK Function
Swap lets users remove @RISK functions from spreadsheet for non-@RISK use.
Major new features include a new interface, new graphs, new functions, and
much faster simulations. The version of @RISK, intended for industrial applica-
tion, provides a fully customizable presentation and quality graphs. Input distri-
bution fitting utilizes over 40 built-in distribution functions. Excel reports on the
models can be shared with others who might lack the software to develop their
own model. @RISK 5.5 has been fully translated into Spanish, German, French,
Portuguese and Japanese.

AnyLogic—XJ Technologies
OptQuest by OpTek Systems Inc. provides optimization functionality to this sim-
ulation software. Input distribution fitting utilizes the Stat::Fit software.
Simulation output provides dataset statistics, distributions, regular and two-
dimensional histograms, various charts, etc. AnyLogic models can be exported as
standalone Java applets or Java applications. Major new features include tem-
plates for agent based and other methods, the rail yard library, pedestrian dynam-
ics modeling, and three-dimensional animation.

DecisionTools Suite—Palisade Corporation
The software features genetic algorithm for optimization under uncertainty,
which is applied toward Monte Carlo simulation. Similar to another Palisade sim-
ulation package @RISK, input distribution fitting is based on Komolgorov-
Smirnov and Anderson-Darling goodness-of-fits tests, including continuous and
discrete distributions. The output includes a wide variety of graphs, data, and
reports from simulation, utilizing decision trees and optimization analyses.
@RISK Function Swap lets users remove @RISK functions from spreadsheet for
non-@RISK use. Recent innovations include new graphs; new interfaces; new
functions; faster simulations; and common interface conventions across Palisade
products.

Emergency Department (ED) Simulator—ProModel Corporation
This medical-application software provides customized ED-specific data-output
charts and graphs such as level-of-service, census by patient status and time-of-
day and more. Input distribution fitting is based on user-defined distributions, or
15 predefined distributions, plus distribution fitting using Stat::Fit and/or Data
Analyzer Software (at additional cost). Trial Version of Simulator can be shared.
Solutions are driven by the ProModel VAO Technology, where VAO stands for
Visualize, Analyze, Optimize. The software developer suggests that VAO can lead to
better decisions faster.
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Enterprise Portfolio—ProModel Corporation
Input distribution fitting is based on 15 predefined distributions.
Distribution fitting can also be performed using Stat::Fit software (at addi-
tional cost). The software output analysis includes reports and charts, and
documents in MS Excel format. A trial version of Portfolio Simulator can be
shared among users. New products include web-browser version of the soft-
ware, which runs on Microsoft (MS) Silverlight. It integrates with MS Project
Server, including automatic updates. Solutions are driven by ProModel VAO
Technology.

ExtendSim AT, ExtendSim OR, and ExtendSim Suite—Imagine That Inc.
An open-source evolutionary optimizer is included in all versions of
ExtendSim. Input distribution fitting uses the Stat::Fit software, which is
included in the package. For output, confidence intervals for output statistics
are calculated at the click of a button. Free download Demo-Player version is
available from the Imagine That! Website. The downloaded version opens, pre-
views and runs the models of interest. Recent innovations include integrated
database, built-in LP solver, revised and updated modeling components, vari-
able connector arrays, and more scalable modeling. ExtendSim AT has broad
functionality that supports modeling across both discrete-event and batch-
process modes.

Flexsim and Flexsim CT—Flexsim Software Products, Inc.
For this simulation software, OptQuest by OpTek Systems Inc. provides the opti-
mization functionality. Input distribution fitting is based on ExpertFit. Output is dis-
played as Flexsim Charts. Industry-specific and application-specific modeling objects
and libraries or model-building objects can be shared. Flexsim Runtime allows com-
pleted models to be shared with others who might lack the software to develop their
own model. Flexsim is easy to learn and it builds true three-dimensional models.
New features include a complete library of model-building objects, consisting of
container- terminal resources. Flexsim CT is the only commercial simulator
designed specifically for managers and engineers to model container terminals.
Meanwhile, Flexsim HC is a completely new simulation software product created
specifically and solely to model healthcare patient-flow processes. Patient Trackú is
the key to making healthcare modeling building both easy to do and extremely real-
istic and accurate.

GoldSim—GoldSim Technology Group
GoldSim includes a feature that provides global optimization of dynamic, uncer-
tain systems, complete with sensitivity and uncertainty analysis. Model sharing
is built into the software. New features include 64-bit support, new dashboard
controls, enhanced reliability engineering and risk analysis, and enhanced dis-
tributed processing. A hybrid version combines system dynamics with aspects of
discrete-event simulation, embedded within a Monte Carlo framework.

Micro Saint Sharp—Alion Science and Technology
The software can be linked with OptQuest optimization. Micro Saint Sharp auto-
matically collects data to better understand the modeling process, in which data
on utilization, queues, resources, and tasks are collected automatically. At the
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same time, users can customize data collection to see whatever results are desired.
For model sharing, users just need to select the Export Model to Runtime option
under the Utilities menu. There s/he would select a folder, and Micro Saint Sharp
will then create runtime version of the model that can be distributed. New fea-
tures include three-dimensional animation, custom object types, communications
module, VISIO import/export, and experiment definition.

Portfolio Simulator and Project Simulator—ProModel Corporation
Mathematical optimization capability is built into this stimulation tool. Input dis-
tribution fitting uses 15 predefined distributions, or the Stat::Fit software at addi-
tional cost. Output analysis includes reports and charts, with option in the MS
Excel format. Trial Version of Portfolio Simulator can be shared among users.
New features include direct imports from MS Project Server and Excel. Solutions
are driven by ProModel’s VAO Technology.

Process Simulator—ProModel Corporation
A notable feature of this simulation software is that output analysis reports and
charts are included, with options in MS Excel and Access format for further analy-
sis. In addition, model information can be modified in MS Excel and imported
back into Process Simulator for additional runs. Model sharing can be accom-
plished through Process Simulator Lite. Recent additions include directly dis-
playing simulated results via data graphics, and Minitab Integration. Solutions
are driven by ProModel’s VAO Technology.

ProModel Optimization Suite, ServiceModel Optimization Suite, MedModel
In this software package, optimization Suite—ProModel Corporation
Optimization is available using OptQuest and/or SimRunner. Input distribution
fitting uses user-defined distributions and 15 predefined distributions, plus
 distribution fitting using Stat::Fit that is included in the package. The software
outputs analysis reports and charts, including documents in MS Excel and Access
for further analysis. Model packaging is available within software view using free
ProModel Play. The suites model separate areas of a broader model independent-
ly. Then it brings them together for overall simulation, complete with Minitab
connectivity. Solutions are driven by ProModel’s VAO Technology. The
MedModel suite is a simulation-based software tool for evaluating, planning or
re-designing healthcare systems.

Risk Solver, Risk Solver Platform, Risk Solver Premium—Frontline Systems Inc.
In this simulation package, input distribution fitting is available, matching against
scores of continuous and discrete distributions. Risk Solver outputs charts, proba-
bility distribution function (PDF), cumulative density function (CDF), tornado and
scatter plots, plus 30 statistics and risk measures. The Risk Solver Engine supports
the sharing and  distribution of models to others. New features include ultra-fast
interactive simulation,  probability management with Statistically Improbable
Phrases (SIPs) or  distributions, and multiple parameterized simulations. (Here, SIP
is a search string likely to generate meaningful results from a search engine.) Notice
the  software is from developers of Excel Solver and Premium Solver, which are
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among the notable products in spreadsheet solvers. Finally, Risk Solver is ungrad-
able to Risk Solver Platform for powerful stochastic optimization. The Platform
provides simulation and optimization, stochastic programming, and robust opti-
mization with up to 12 powerful solvers. New features include everything in Risk
Solver and Premium Solver Platform and more. The Premium software provides
simulation and optimization with GRG Multistart1 and Evolutionary Solvers. New
features include everything in Risk Solver, everything in Premium Solver, plus
Simulation Optimization.

Simcad Pro-Patented Dynamic Process Simulator—CreateASoft, Inc.
The software features built-in Dynamic Optimizer tool, on-the-fly user interac-
tion, integrated work-order/schedule optimization, value stream maps, Gantt
chart, scenario analysis and lean reports. Here, value stream mapping is a lean
manufacturing technique used to analyze the flow of materials and information
currently required to bring a product or service to a consumer. An input distrib-
ution is auto-fit to a database encoded in .csv file, and Excel files, etc. Model shar-
ing can be accomplished through Simcad Viewer or Simcad Online. Recent
advances include Multi-core Processor, Dynamic Optimizer, linkage with Radio
Frequency Identification or Real-Time Locating System, Simcad Online, and Excel
Import/Export Wizards.

SIMUL8 Standard, SIMUL8 Web, SIMUL8 Professional—SIMUL8 Corporation
This simulation software includes OptQuest optimization by OpTek Systems Inc.
It provides automatic confidence interval calculation with no coding required.
Input distribution fitting is accomplished through the Stat::Fit software. Outputs
include results and charts for all simulation objects, dynamic on-screen reporting
as the simulation executes, and export to external applications such as MS Excel,
V.I.S.A, and Minitab. Here, V.I.S.A. is a Web based multi-criteria decision-mak-
ing software. By linking SIMUL8 to V.I.S.A, one can assess the impact of 
weighing the importance of each of these performance measures, and assess
which scenario best meets the analysis goals. SIMUL8 boasts being a pioneer on
the use of trial calculators, which determines the number of simulation runs to
get accurate confidence intervals. According to the software developer, SIMUL8
is easy to use, powerful, and among the fastest in the field. The web version
allows hosting on the vendor’s Website, user’s Website or user’s corporate 
network. There is an option for animation. No end-client install is required. The
Professional version has all the features of the Standard version. On top, it has
the SIMUL8 Results Manager, which provides centralized results database, sce-
nario and run comparison reports, and customizable charting and reporting
capabilities. Model sharing can be achieved through SIMUL8 Viewer. Among
recent advances is a 30%-faster run execution speed, the SIMUL8 Results
Manager, predictive text, multidimensional arrays, customizable runtime charts,
and extended ease-of-use, and power to link to any application or data source
with SQL and Component Object Model (COM).

Tecnomatix Plant Simulation—Siemens PLM Software
Tecnomatix Plant Simulation is a discrete-event simulation tool that creates digital
models of logistic systems, so that one can explore the system’s characteristics and
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optimize its performance. The Integrated Optimizer features layout optimizer plus
neural networks and bottleneck analyzer. Input distribution fitting is accom-
plished through the Data::fit module; Outputs include Sankey chart, html result
report, and Gantt chart. A Sankey chart is a flow diagram, in which the width of
the arrows is shown proportionally to the flow quantity. They are typically used to
visualize material transfers between processes. Tecnomatix has integrated Pay and
Go functionality, and fee-charge viewer for licences. For applications, Tecnomatix
provides Virtual Commissioning, plant design and optimization solution, and
Teamcenter Interface for product-lifecycle-management solution. Virtual commis-
sioning is the use of a virtual model that represents an accurate and realistic three-
dimensional simulation of mechanical, electrical, and control systems in order to
validate the physical functions of a production system prior to actual physical
implementation. In Tecnomatix, the user is provided with real object-orientation,
inheritance2, openness to import SAP, Excel, Oracle data, and ease-of-use through
real Windows standards.

Vanguard Business Analytics Suite, Vanguard Strategic Forecasting Suite,
Vanguard System—Vanguard Software
Features include simulation statistics, sensitivity analysis, and graphical presen-
tations. Input distribution fitting is performed through the Distribution gallery,
Auto-fit wizard, user-defined distributions, and SIP/SLURP search support.
Here, SLURP is a web crawler from Yahoo! that obtains content for the Yahoo!
Search engine. Outputs integrate with Microsoft Office, rendering them available
as Web reports and Interactive Web-based models (without any Web program-
ming). Modelers can take advantage of grid computing, collaborative modeling,
and linkable models. Analytics Suite provides scalable, high performance simu-
lations. Vanguard Strategic Forecasting Suite features a new stochastic optimiz-
er and grid computing for higher performance. The Vanguard System is
designed for large-scale enterprise modeling, including invariant branch opti-
mization in compiler operations.3 It includes Multi-Objective Decision Analysis
(MODA)/MAUT, AHP, and decision tree analysis.

E. Optimization
While the review here is mainly on LP and MIP software, a number of the fol-
lowing products can handle more general nonlinear problems as well (Fourer
2009). Some of the available software packages for nonlinear programming are
described in a survey by Nash (1998). Note that this latter survey was restrict-
ed to “full feature” nonlinear programming packages, meaning packages that
accept a full range of non-linearities (i.e., nonlinear objective function, and non-
linear equality and inequality constraints). This omits many worthwhile pieces
of software that only handle more restricted models.

For more specialized applications, there is a recent movement toward
open-source optimization software. A prominent example is the COmputational
INfrastructure for Operations Research, or COIN-OR for short. The project is
managed by a non-profit foundation. Irrespective, the number of available
 commercial and public-domain optimization products is large. Accordingly, we
have done a judgmental quality screening, resulting in the following short list.
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ADBASE—University of Georgia
ADBASE is an MPS-based PC software that operates under DOS. It is built upon
the revised simplex algorithm, as extended to multiple criteria. It generates all
non-dominated multicriteria-LP solutions. Interval criterion weights can be spec-
ified to find a subset of the non-dominated solutions. Lexicographic ordering of
criterion vectors is included as a feature in the software. An I-file is used to input
the cost vectors for the criteria, the constraint matrix, and the right-hand-side vec-
tor. A G-file is used to specify the problem-specific options. ADBASE is among the
very few software available to solve a multicriteria LP. While not totally user-
friendly, it is a free software for the non-profit academic community. To obtain a
copy of the executable code and a User’s Manual, please contact Dr. Ralph Steuer
at the University of Georgia.

AIMMS, the modeling system—Paragon Decision Technology Inc.
AIMMS is an integrated modeling tool built upon the use of large-scale opti-
mization models. It is an integrated development, complete with end-user GUI,
point-and-click database and XML integration, advanced developer-support
tools, multi-language and unit support, internal data-management facilities,
batch run options; multi-agent technology, API/COM interface and Web posting.
Of particular interest is the outer approximation algorithm, an open source algo-
rithm for generating the set of all efficient extreme points in the outcome set of a
multicriteria LP. AIMMS provides a modeling environment for CPLEX, XPRESS,
XA, CONOPT, KNITRO, LGO, BARON and more through their Open Solver
Interface. New features include parallel solver sessions, stochastic programming
support, new syntax editor, case differencing, web services, GIS support, pivot
table, multi-developer support, non-linear math program inspector, solution
pooling, lazy constraints,4 Benders’ decomposition algorithm, nonlinear pre-
solve, multistart solve, GUROBI,5 MOSEK,6 Dynamic database functions, MS
Virtual Earth link, Yahoo Maps, ESRI Shape files, geocoding functionality, free
viewer license, and free student license.

AMPL—AMPL Optimization LLC
AMPL is a general nonlinear solver that supports second derivatives, detailed
solver-specific directives and results, user-defined functions and MATLAB
interfaces. Noted for its modeling environment, it supports at least 35 solvers,
as listed on the vendor’s Website. Flexible handling of sets and indexing for
handling complex models naturally and large models efficiently. AMPL
includes a scripting language for iterative optimization schemes. Free experi-
mentation is available through the NEOS Server.7 New features include Solver
support for multiple solutions, parameter tuning, local search, mixed-integer
programming with non-linearities.

BendX Stochastic Solver—Maximal Software, Inc.
BendX is a standard C Application-Programming-Interface (C-API) callable-library
stochastic solver. It supports solving both scenario-based and independent-variable
models with Deterministic Equivalent (DEQ) and Benders’ algorithms.8 BendX
solves both DEQ and Benders decomposition problems, using CPLEX, GUROBI and
CoinMP as the underlying LP solvers. In addition to the C-API callable library inter-
face, BendX supports both SMPS9 and XML files. With optimization projects, there
is often a need to store model instances, e.g., for building model libraries, providing
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technical  support, and optimization services over the Internet. OptML facilitates a
new portable, non-solver specific standard, based on XML, which supports multiple
problem types, including linear, mixed-integer, quadratic, nonlinear, and stochastic
programs. At the same time, there is also a need to convert raw data in XML format
into problem instances that conform to the optimization services instance language
(OSiL) standard. BendX can be an add-in to the MPL Modeling System, CPLEX,
GUROBI, and CoinMP. Recently, BendX offers unique object-oriented library sto-
chastic interface for Visual Basic, C#, and Java.

CoinMP—Maximal Software, Inc.
CoinMP is an open source C-API interface library that includes Coin LP (CLP),
Coin Branch-and-Cut (CBC), and Cut Generation Library (CGL) projects. Pre-
compiled ready-to-use CoinMP.dll is available for download. When source is
compiled for Windows it generates a CoinMP.dll library that can be readily used
in projects. When compiled for Unix/Linux it generates a CoinMP.so library.
CoinMP serves as an add-in to MPL Modeling System and others. New release of
the software offers object-oriented library interfaces for Visual Basic, C#, and
Java. Linux/Unix versions are available with automake/configure support.10

IPOPT11 and Storage Management Initiative support are coming soon.

GAMS—GAMS Development Corporation
GAMS is arguably a classic algebraic modeling language. A GAMS system
includes all components with size restrictions removed for those that are pur-
chased. Solvers/modeling environments that link to the product include
ALPHAECP, BARON, CONOPT, CPLEX, DECIS, DICOPT, GUROBI, KNITRO,
LGO, LINOGLOBAL, MINOS, MOSEK, MPSGE, MSNLP, OQNLP, OSL, PATH,
SBB, SNOPT, XA, and XPRESS.

IBM ILOG CPLEX—ILOG, an IBM Company
ILOG CPLEX has been one of the front runners in solving LPs, exploiting the
speed of network algorithms. With call backs and goals, users can customize MIP
branch-and-cut, such as branching strategies and cutting planes. IBM ILOG ODM
is an application and cutting-planes development tool. It builds and deploy cus-
tom planning and scheduling applications based on IBM ILOG CPLEX. OPL
Development Studio has multi-model algorithms, featuring warm-start, external
calls to Java, decision expressions, performance profiler, automatic tuning, con-
straint detection and conflict resolution. Solvers/modeling environments that link
to the product include IBM ILOG OPL-CPLEX Development System, AIMMS,
AMPL, GAMS, MPL, MATLAB, and Microsoft Solver Foundation.12 New features
include dynamic search, MIP solution pools, deterministic parallel MIP, tuning
tool; multiple MIP starts, solution polishing API, multi-model algorithms, warm-
start, external calls to Java, decision expressions, performance profiler, automatic
tuning, constraint detection and conflict resolution.

LINDO API, LINGO—LINDO Systems, Inc.
LINDO API is a popular suite of fast callable solvers for creating customized 
linear, integer, nonlinear, quadratic, stochastic and global optimization applications.
Solvers/modeling environments that link to the product include MATLAB, GAMS,
LINGO and What’sBest. LINGO is a popular suite of fast linear, integer, nonlinear,
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quadratic, stochastic and global solvers. It includes a comprehensive modeling lan-
guage with convenient data options. LINGO’s solvers and interactive modeling envi-
ronment make it a comprehensive tool for operations research professionals. The mod-
eling language and mathematical functions allow quick, concise problem expression.
Data can be stored separately in text. Solvers/modeling environments that link to the
product include LINDO API and Excel. New features include Stochastic programming
capabilities, statistical sampling, and K-best MIP solver.

MPL Modeling System, OptiMax Component Library—Maximal Software, Inc.
With the OptiMax Component Library which is listed separately below, MPL models
can be embedded into end-user applications using Visual Basic, VBA, C#, C/C++,
Java, and Web-scripting languages. OptiMax is an object-oriented component library,
specifically designed to help embedding optimization models into end-user applica-
tions. Solvers/modeling environments that link to the product include CPLEX,
GUROBI, Xpress, OSL, XA, MOPS, LINDO, FORTMP, C-WHIZ, CoinMP, GLPK,
LPSOLVE, CONOPT, KNITRO, LGO, PATH, and EXCEL. Latest releases feature
increased speed and scalability. New solver versions include CPLEX 12, GUROBI 1.1,
Xpress 2008, MOPS, CoinMP, GLPK, LPSOLVE, KNITRO, CONOPT, LGO, PATH, sto-
chastic programming, and new data sources.  New release of OptiMax offers new lan-
guage support, and more than 20 new objects have been added, with new enhanced
methods and properties for advanced solver handling and data management.

Premium Solver Platform, Risk Solver Platform, Solver Platform SDK—
Frontline Systems Inc. 
Features of this software include convex and non-convex smooth nonlinear optimiza-
tion, non-smooth optimization, global optimization and IF/MIN/MAX linearization.
Premium Solver Platform can be an add-in to Microsoft EXCEL. There are five built-
in solvers, eight plug-in solvers including LP/QP, GUROBI, Xpress-MP, MOSEK, KNI-
TRO, LSGRG, LSSQP, and OptQuest. Recent release of the software includes new
modeless user interface, parameterized optimization, charts/graphs, multi-core non-
linear and global solvers, and video demos. Compatible upgrade is obtainable from
developers of Excel Solver and Premium Solver. Premium Solver Platform is upgrad-
able to Risk Solver Platform for simulation and stochastic optimization. This powerful
Excel Solver upgrade integrates conventional optimization, simulation/risk analysis,
stochastic and robust optimization, and decision analysis. On top of the functions in
Premium Solver, the Risk Solver Platform performs Monte Carlo simulation opti-
mization, stochastic programming and robust optimization. The newly released prod-
uct includes parameterized simulations, multi-core simulation, and decision trees.
Working outside Excel, Solver Platform SDK has these additional features: object-ori-
ented and procedural APIs for C/C++, C#, VB.NET, VB6/COM, Java, and MATLAB.
New features include Visual Studio 2008 support, and a large library of examples. It
now reads/writes MPS, LP, OSiL files; IntelliSense and JavaDocs.

SAS—SAS Institute Inc.
The comprehensive software suite includes, among other items, quadratic opti-
mization using an interior point solver, general nonlinear optimization that
includes nonlinear objective and/or nonlinear constraints. There are several 
techniques for general nonlinear optimization with boundary, general linear, and
nonlinear constraints. Two algorithms are designed for quadratic optimization
problems and two other algorithms address nonlinear least-squares problems.
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SAS integrates optimization with data access and handling. Recent upgrade
includes irreducible infeasible set analysis, enhancements to the OPTMODEL
modeling language, and interior-point nonlinear-programming solver. Given its
statistical background, SAS integrates optimization with data access and handling,
statistical analysis and data mining, forecasting, reporting and deployment.

Smart Optimizer (SOPT) 4.2—SAITECH, Inc.
Various heuristic search algorithms are implemented in SOPT to look for integer feasi-
ble solutions quickly. Quadratic or smooth nonlinear problems are solved fast by an inte-
rior-point algorithm. Solvers/modeling environments that link to the product include
AMPL. Extended search capabilities are further developed to find feasible solutions to
large-scale integer programs. Cuts are automatically generated by user parameters.

SYMPHONY—COIN-OR Foundation
SYMPHONY is an open-source solver for mixed-integer linear programs written
in C. It can be used either (1) as a callable library through either a modeling shell,
or (2) as a standalone program. Features include an open-source solver for bi-
objective integer programs, warm starting for integer programs, basic sensitivity
analysis for integer programs, and call backs for customization. These custom
modules are included for specific combinatorial problems: vehicle routing, set
partitioning, multicriteria knapsack, network routing, etc. Solvers/modeling
environments that link to the product include GMPL, AMPL, GAMS. Here,
GMPL  stands for GNU Mathematical Programming Language. GMPL is also
referred to as GNU MathProg--the two terms being interchangeable. Both repre-
sent a high-level language for creating mathematical programming models.

Vanguard System for Web-based Optimization—Vanguard Software
This is a new tool to build and deploy Web-based optimization applications. It sup-
ports access controls, version controls, and systems integration. The recent release
is a development tool for Web-based optimization, stochastic optimization, grid
computing, Web services, and collaborative modeling. Other features include fore-
casting, Monte Carlo simulation, decision tree analysis, statistical analysis, finan-
cial analysis, and sensitivity analysis.

What’sBest—LINDO Systems, Inc.
What’sBest is a large-scale optimization add-in for MS Excel. It allows the user to
build linear, nonlinear and integer models in one’s favorite spreadsheet. It is pow-
erful enough for real world models and ideal for building models for clients.
Other solvers/modeling environments that link to the product include LINDO
API. Recent release includes stochastic programming capabilities, statistical sam-
pling, K-best MIP solver, and expanded function support.

XA—Sunset Software Technology
XA has been around for decades. Recent development experienced a five-times
speedup in solving mixed integer linear programming models. XA can serve as add-in
to EXTEND, EXCEL, PYTHON, and Goldsim. Other solvers/modeling environments
that link to the product include AIMMS, GAMS, MPL, and AMPL. New features
include Conflict Analysis, piecewise linear, and concurrent primal and dual algorithm.
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F. Decision Analysis
Here are some decision analysis and multicriteria decision-making products to
choose from. Most of them cover multi-objective decision analysis (MODA) and
multi-attribute utility theory (MAUT). Again, we have done a judgmental screening,
resulting in a selected list of more full-feature and popular packages. Once again, the
reader is advised to consult additional references, particularly Buckshaw (2010) and
Maxwell (2008). The Buckshaw and Maxwell surveys from the database from which
we provide the following list. Whichever tool(s) are ultimately selected by our read-
er, they should be intuitive to the user, explainable to the client and support easy iter-
ations among the various stages of the decision analytic process.

1000Minds—1000Minds Ltd.
The software includes MODA/MAUT. It also provides a procedure called PAPRI-
KA, which is based on the fundamental principle that any ranking of alternatives
is uniquely defined by all possible pairwise comparisons of the alternatives—
hence the acronym PAPRIKA, which stands for Potentially All Pairwise RanKings
of all possible Alternatives. Another prominent building block is Conjoint
Analysis, which involves surveying stakeholders about the relative importance of
a product’s (or service’s) features. Recent release shows that the software now
manages the entire process for developing a prioritization tool, including admin-
istrative functions for managing participants. The software features value for
money analysis; selection of portfolio of alternatives with budget constraints;
analysis of group elicitation, prioritization of patients for health care, selecting
health technologies, project portfolio selection, and competition judging.

Crystal Ball Standard, Professional & Premium Editions—Oracle
The generalized software package includes, among other analytical  features,
MODA/MAUT. Other algorithms implemented package include Monte Carlo,
linear and nonlinear programming. The 2008 release includes a new version of
OptQuest. The new version features a new Wizard for setting up optimization
procedures; full integration with Excel and Crystal Ball, including the ability to
control optimization through Crystal Ball’s control panel, and an updated version
of OptQuest’s global optimization engine. The new release supports both linear
and nonlinear constraints. It includes a more aggressive algorithm. It caters for
new variable types, including binary, category, and custom. It has the ability to
create reports and extract data. And it includes a Developer’s Kit of API for pro-
gramming optimization functions.

DPL—Syncopation Software
Features in DPL include MODA/MAUT, decision tree roll back, and Monte Carlo.
New features include Developer API, initial decision alternatives tornado, default
states, arrays in the influence diagram, and database INIT links. Marketed under
DPL Professional, DPL Enterprise, and DPL Portfolio, of particular interest is
the capacity to control DPL from another application using OLE Automation,13

ability to build a custom front-end interface and invoke DPL in the background,
and the aggregation of expert assessments. According to the vendor, DPL com-
bines decision trees, influence diagrams and Excel spreadsheets to provide an
intuitive and comprehensive modeling environment. Applications include port-
folio prioritization, strategy, capital budgeting, and valuation.
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ForeTellÆ  —DecisionPath, Inc.
ForeTellÆ provides hybrid synthesis of Monte Carlo, system dynamics,
agents/game theory, process and event models. There are automated RAD game
tools14 to build models from enterprise database and loading simulation outputs
back into repositories. ForeTell enables a user to “test drive” critical organiza-
tional decisions before committing to implement them. Recent features include
bi-directional interfaces to BI Solutions on RDBMs and data warehouses, plus bar
chart analytics.

Hiview3—Catalyze Ltd.
Hiview3 features include MODA/MAUT. Recent release provides model
 templates, the ability to deal with unknown data, improved reporting, and 
analytical and aesthetic improvement. A network version is also available.
Extended features include model sharing. The user can fix the entire model and
allow others to use Hiview3 to explore the model as a live document, or fix the
structure and scores and invite others to update the weights to see how their
judgements influence the results. Applications include evaluating capital projects,
analyzing policy settings, strategy selection, relocation/site selection, and budget
resourcing.

RPM-Decisions—Systems Analysis Laboratory, Helsinki University of Technology
RPM stands for Robust Portfolio Modeling. The software is built upon Multi-
attribute Value Theory, considering incomplete information, non-dominated
portfolios and core indexes. RPM defines a project’s core index as the share
of non-dominated portfolios that include the project. Recent extensions
include project interdependencies, incomplete cost information and variable
budget levels. The problem is formulated as a multi-objective zero-one 
linear programming problem with interval-valued objective function 
coefficients.

SMILE (Structural Modeling, Inference, and Learning Engine)—University of
Pittsburgh
SMILE is a fully portable library of C++ classes implementing decision-theoretic
methods, such as Bayesian networks and influence diagrams. Its Windows user
interface, GeNIe, is a versatile and user-friendly development environment for
graphical implementation. Both modules—Bayesian networks and influence
diagrams—have been made available to the community free-of-charge since
1998 and have now several thousand users worldwide. Contact Dr. Marek
J. Druzdzel at the Decision Systems Laboratory, University of Pittsburgh, if
interested.

II.  SPATIAL ANALYTICS SOFTWARE
In Chapter 7, we discussed the salient features of spatial analytic software, includ-
ing GIS, image processing, and vehicle routing. Here, we will provide a list of
software that subscribe to these features.
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A. GIS
There are many GIS software packages offered, but only a handful is true bench-
marks (Galati 2006). Notable ones on the commercial market include ESRI’s
ArcGIS, Intergraph Corporation’s G/Technology, General Electric’s Smallworld,
Clark Labs’ IDRISI Kilimanjaro, Autodesk’s GIS Design Server, Delorme’s Xmap,
and Pitney Bowes’ MapInfo. Most are developed with full GIS functionality, con-
comitant with a corresponding price tag. Perhaps worth mentioning is Delorme’s
Xmap and IDRISI Kilimanjaro, which are lower cost options among this peer
group, with the latter characterized by user-friendliness and built around raster-
based instead of vector-based files.

Unlike the generalized analytics software listed above, GISs are fewer in number,
as they are specialized packages for spatial application only. There are currently only a
handful of GIS packages, but many more are expected to be published in the next decades
(Prastacos 1992). For the packages listed below, they are constantly being improved.

ARC/GIS—ESRI
This is the most widely-used GIS system available for a variety of computers,
including desktop, laptop, tablets, servers and mobile devices. It is a powerful,
command-driven GIS with extensive capabilities for data storage, editing, dis-
play, and geographic analysis. Users can install plug-in’s, called extensions, to
add functionality. ArcExplorer is a free GIS data viewer that allows basic mapping
and spatial querying. ARC/GIS has been a leader in the GIS software market.

GIS Design Server—Autodesk
This package is from a company that developed AutoCAD, a computer-aided-design
tool familiar to the engineering community. Through AutoCAD, Autodesk has earned
user trust in the community. For GIS, what the developer offers is Autodesk Map,
which designs, maintains and produces maps and geographic data. The program suite
supports desktop, laptop, tablet, and mobile platforms. On top of this, the GIS Design
Server provides an environment that allows flexible data integration, although the
integration is most seamless with AutoCAD files. With the familiar program exchange
through AutoCAD, Autodesk’s GIS product commands a huge following.

G/Technology and GeoMedia Software Suite—Intergraph Corporation
The G/Technology suite of programs offers industry-specific data models for utility,
pipeline, water and communications companies. Its open GIS architecture allows it
to work with many GIS formats. The companion GeoMedia Software Suite facilitates
map design, presentation and sharing. The software allows desktop, laptop and
enterprise wide compatibility. GeoMedia viewer is a free GIS viewer, facilitating
desktop geospatial viewing and the sharing of data among users. The combination
of G/Technology and GeoMedia offers a formidable GIS environment.

IDRISI Kilimanjaro—Clark Labs
With an academic genesis, IDRISI Kilimanjaro is a widely used raster based GIS
and image processing software. It is user friendly and highly accessible. Over the
years, it has become a benchmark in geospatial standard. Its functionality includes
modeling, database querying, spatial data development and geostatistics. Its low
cost and research functionality explain why its object-oriented development tools
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are popular for focused research. IDRISI Kilimanjaro has been particularly popular
for environmental analysis and modeling.

MapInfo—Pitney Bowes Business Insight
MapInfo is a menu-based, user-friendly desktop mapping and GIS systems that
can store and display street networks and zone boundaries. It has sophisticated
routines for geocoding. The proprietary data structure is not topological, hence
paths and routes, for example, cannot be defined. MapInfo is noted for its capac-
ity to allow further development. For example, MapX is an Active X component
that enables active software embedding, allowing embedding mapping applica-
tions within other applications, such as MS Word, Excel, and Lotus 123.

Smallworld Suite—General Electric
A unique feature of the Smallworld Suite is its advanced spatial technology and
seamless existing system integration. Key components include the Core Spatial
Technology, Spatial Intelligence, Enterprise Integration Tools, and Design Manager.
The software offers desktop, laptop and Internet interoperability. Its architecture is
different from ESRI’s all purpose design, and Intergraph’s specialized and all-pur-
pose programs. Unlike these broadly focused programs, the Smallworld Suite cen-
ters upon engineering, scientific and business-oriented applications.

TransCAD—Caliper Corporation
TransCAD is a powerful and easy-to-use GIS-based transportation package. The sys-
tem consists of two parts: a GIS engine and a tool box of transportation models and
procedures. The GIS engine is menu driven and, in addition to the standard GIS
functions, can directly support transportation data structures such as nodes, links,
networks, paths, and tours. TransCAD has a set of dynamic segmentation and linear
referencing tools for managing highway, rail, pipeline, and other networks.
TransCAD also provides a platform for users to develop their own transportation-
related models. The software is developed for the desktop PC MS operating systems,
including Windows 2000, Windows XP,  Windows Vista, and Windows 7.

Xmap—Delorme
Through Xmap, the mapping giant Delorme offers a low-cost GIS and GPS mapping
capability, complete with robust functionality. Xmap’s modular design allows for
expandability and interoperability. XMap is a three-tiered GIS software suite
designed for transfer of information between GIS administrators and field person-
nel. XMap Enterprise provides database management tools and is intended for cor-
porate GIS administration and data deployment. XMap Editor, a full featured GIS,
offers an extensive set of GIS layer importing, creating and editing tools, ideally suit-
ed for small scale GIS operations. XMap Professional is primarily a GIS data view-
ing application. However, when used in conjunction with XMap Enterprise, it
becomes a proficient field data collection and updating tool, ideally suited for field
personnel. Xmap supports open GIS and most GIS data formats.

Prominent among the public domain software is Geographic Resources
Analysis Support System (GRASS), a fully functional GIS environment. Originally
developed by the U.S. Army Construction Engineering Research Laboratories, it has
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been maintained by Baylor University in Waco, Texas since 1995. Other free GIS soft-
ware has been developed by university researchers, programmers, philanthropists,
geospatial organizations, governmental agencies, and private developers since the
1980’s. Listings of these freeware can be found on the Web through FreeGIS.org, GIS
Lounge and the Open Geospatial Consortium. A parallel organization, OpenGIS, is
dedicated to developing and standardizing geospatial and geo-processing specifica-
tions. Open Source programs are applications of which one can access the source
code. Listed here are available open-source GIS-based applications one can down-
load, written for a variety of platforms and in various languages.

GRASS—Baylor University
GRASS is a public-domain raster GIS, a vector GIS, an image-processing system,
and a graphics-production system. It is extensively used at  government offices, 
universities, and commercial organizations. It is written mostly in C for Unix.
GRASS is a powerful but often difficult to use GIS program, being a command-line
software. Quantum GIS is currently implementing an easier interface for GRASS’s
capabilities. Meanwhile, a Java version of GRASS (JGRASS) is being built on top of
uDig, where uDig was built and maintained by HydroloGIS—concentrating on
hydrogeological and geomorphological capabilities. Rather than duplicating the
effort of uDig and GeoTools, the JGrass team chose to focus on the unique parts of
their project, which are tools and algorithms. At the same time, the team gets the
basic infrastructure—consisting of vectors, formats, re-projection, and workbench—
from the uDig framework.

Quantum GIS—QGIS Development Team
Quantum GIS (often abbreviated to QGIS) is a free desktop GIS application that
provides data viewing, editing, and analysis capabilities. QGIS runs on Linux,
Unix, Mac OSX, and Windows. Quantum GIS is written in C++, and its GUI uses
the Qt library. Quantum GIS allows integration of plug-in’s developed using
either C++ or Python. Qt library provides the cross-platform application devel-
opment framework. Supported by other software, QGIS provides integration
with other open-source GIS packages, including PostGIS, GRASS, and MapServer
to give users extensive functionality. QGIS is continually maintained by an active
group of volunteer developers who regularly release updates and bug fixes.

A GIS-component software is a building block that, when added to GIS
software, forms an enhanced, personalized environment for the user. A specific-
function component performs a dedicated task that adds to the GIS-environment
tools. Such components include data format converters, flow-data analyzers, and
image-processing software. User-development software, on the other hand, is a
development toolkit that enables the user to program components to perform
specific functions. For example, one may need to embed maps into a non-GIS
 program, and there is no pre-developed component for a raster-only GIS. User-
development software is the only answer in this case.

A very popular component software is Geotools, an open-source GIS
development toolkit that is freely distributed. The software is Java based and
offers users the ability to develop Open-GIS-compliant products. What makes
Geotools attractive to users is its modular design, which allows easy installation
and removal of components. The software works well with Java fee-based and free
GIS environments (Bruce 2007).
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GeoTools—Open Source Geospatial Foundation (OSGeo)
GeoTools is an open-source Java-code library which provides standards compliant
methods for the manipulation of geospatial data, for example, to implement GIS.
Specifically, it is distributed under the GNU Lesser General Public License (LGPL).
The GeoTools library implements Open Geospatial Consortium (OGC) specifica-
tions as they are developed. Geotools is used by a number of projects including
Web Feature Servers, Web Map Servers, and desktop applications. GeoTools’ mod-
ular architecture allows extra functionality to be easily incorporated. GeoTools
aims to support existing-or-evolving OpenGIS and other relevant standards.

MapServer—OSGeo
MapServer is an open-source development environment for building spatially-
enabled Internet applications. It can run as a Common Gateway Interface (CGI)
program or via Mapscript which supports several programming languages. Here,
CGI is a standard that defines how Webserver software can delegate the generation
of Webpages to a console application. MapServer renders data for spatially-enabled
Internet applications. It has excellent cartographic output. It can be used both as
a WMS and WFS server and client. Here, WMS stands for Web Map Service—a stan-
dard protocol for serving georeferenced map images over the Internet that are gen-
erated by a map server using data from a GIS database. And WFS stands for Web
Feature Service interface standard. WFS provides an interface allowing requests for
geographical features across the Web using platform-independent calls. It can deal
with a large amount of vector and raster data formats. It supports many scripting
languages for developing Internet applications, e.g., PHP, Python, C, C++, C#, Perl,
Ruby, and Java. Other functionalities include on-the-fly map projection.

Finally, previously created databases and bi-product datasets are distrib-
uted primarily through geospatial data clearinghouses, data warehouses, and
data depots. The reader is referred to Data Depot, which is dedicated to free data
and metadata. For a listing of data sites, refer to the University of Edinburgh -
Association of Geographic information’s GIS Resource list for links to several
hundred U.S. and international GIS data sites.

B. Image Processing
In a survey, Vanderzee and Singh (1995) found out that there was not a direct relation-
ship between functional capability and price for commercial image-processing software,
where the products ranged in price from a few hundred to several tens of thousands of
dollars. In the area of full-featured image processing (IP) systems, ERDAS Inc. was the
leader. And for both basic GIS and IP capability at a low price, IDRIST’s product for PC’s
has been the leader. For AM/FM, Accugraph has been the leader.

There were also some capable systems in the public domain, to which we
will devote the bulk of the discussions here. While a few of these programs are
general image analysis/manipulation programs, most are specifically designed to
display and analyze satellite or aerial imagery (Pawlowicz 2009). In the following,
we will group applications alphabetically rather than by function. Notice there
are a number of general purpose GIS programs that also include significant
 satellite/aerial imagery functionality. They have been covered above under the
GIS review section, and will not be repeated here.
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FWTools—Frank Warmerdam
FWTools is a set of open-source GIS binaries for Windows (win32) and Linux (x86
32bit) systems produced by Frank Warmerdam (i.e., FW). The kits are intended to
be easy for end users to install and deploy. There is no need to build from source,
or having to collect lots of interrelated packages. FWTools includes OpenEV,
GDAL, MapServer, PROJ.4 and OGDI as well as some supporting components.
OpenEV is an open source library and reference application for viewing and ana-
lyzing raster and vector geospatial data. GDAL stands for Geospatial Data
Abstraction Library, and is a veritable tool set of GIS data functionality. As
reviewed in the GIS section, MapServer is an Open Source platform for publish-
ing spatial data and interactive mapping applications to the Web. PROJ.4-
Cartographic Projections Library is a GIS package that offers command-line tools
and a library for performing respective forward and inverse transformation of
cartographic data to or from Cartesian data with a wide range of selectable pro-
jection functions. Overall, the FWTools kit aims to include the latest development
versions of the packages as opposed to official releases.

GVAR—Dartcom
GVAR stands for GOES VARiable format image acquisition, display and process-
ing system. Dartcom supports GVAR data from GOES 8, 9, 10, 11, 12 and 13 with
automatic detection during ingest. The system acquires high-resolution digital
data (0.8 km visible, 4 km infrared) with calibrated temperature read-outs from
infrared images. The system comes with fully automatic Windows-based GVAR
Ingester, a data-ingest software. A companion software MacroPro automatically
processes the acquired data to enhance, mask, print, animate, re-project and cre-
ate products. A third software iDAP further displays and processes the data for
image enhancement, product creation, projection transformation, land and sea
masking, printing and exporting. As such, GVAR is among a handful of tools for
aviation weather information, storm warning systems, forecasting, agriculture,
oceanographic studies, and environmental and meteorological programs.

HEG—NASA
Hierarchical Data Format (HDF) is the prescribed format for standard data prod-
ucts that are derived from Earth Observing System (EOS) missions. HDF-EOS is a
self-describing file format for transfer of various types of data between different
machines based upon HDF. HDF-EOS is a standard format to store data collected
from EOS satellites such as TERRA, AQUA and AURA. GeoTIFF is a GIS compati-
ble format under a public-domain metadata standard which allows geo-referencing
information to be embedded within a TIFF file. HEG stands for HDF-EOS to GIS,
and is the acronym of a data converter. The HDF-EOS to GeoTIFF conversion tool
(HEG) is developed to allow a user to reformat, re-project and perform stitch-
ing/mosaicing and subsetting operations on HDF-EOS objects. The output
GeoTIFF file is ingestible into commonly used GIS applications. HEG will also
write to HDF-EOS Grid and SWATH formats (i.e., for subsetting purposes) and
native (or raw) binary. HEG presently works with MODIS (AQUA and TERRA),
ASTER, MISR, AIRS, and AMSR-E HDF-EOS datasets.

HighView—various sources
The free trial version of GUI-based HighView is fully functional for band combi-
nation of 8- or 16-bit satellite imagery. These images include the global orthorectified
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Landsat 7 ETM+ imagery available at USGS GloVis and the Global Land Cover
Facility. Also included is the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), which is a high resolution imaging instrument
that is flying on the TERRA satellite. Other satellites include SPOT, QuickBird and
IKONOS. There is no limitation on image size and output format. Stretched out-
put in 24-bit BMP format and/or un-stretched output in native GeoTIFF format
can be readily used as base maps or backdrops in major GIS software, such as
MapInfo and ArcGIS. Various options of linear and nonlinear stretches are
allowed during the band combination.

NASA HDF-EOS Web GIS Software Suite (NWGISS)—NASA
NWGISS is a suite of web GIS software that makes HDF-EOS data available to GIS
users based on Open GIS Consortium’s (OGC) interoperability protocols. It consists
of the following components: a map server (WMS), a coverage server (WCS), a cat-
alog server, a Multi-Protocol Geoinformation Client (MPGC), and a toolbox. Those
components can work both independently or collaboratively. The toolbox consists of
two-way translators between HDF-EOS and major GIS formats, as well as the
CreateCapabilities tool that automatically creates the XML capabilities descriptions
from the metadata in HDF-EOS files. Both tools are available now. NWGISS map
and coverage servers have been used by NASA and other space agencies. NWGISS
is free to data providers who want to serve HDF-EOS data to GIS clients.

SamplePoint—NASA Goddard Space Flight Center
SamplePoint is a manual image-analysis program designed to facilitate vegeta-
tion cover measurements from nadir digital images of any scale. Here nadir is a
point on the celestial sphere directly below the observer, referring to the down-
ward-facing viewing geometry of an orbiting satellite. Operating essentially as a
digital point frame, the software loads images, places classification points on the
image, and stores classification data to a database as the user classifies each point.
Up to three simultaneous views of each classification point, at varying zoom 
levels, are possible. The software appears to be primarily for close-up vegetation-
cover analysis, but may be useful for other applications as well. Installation file
contains SamplePoint, SPTracker, a Help Manual, a PowerPoint Tutorial and
two sample images. The software is recommended for calibrating the threshold-
detection level of image-analysis software or for making direct measurements of
percent occurrence from digital images.

StarSpan—University of California at Davis
StarSpan is designed to bridge the raster and vector worlds of spatial analysis
using fast algorithms for pixel-level extraction from geometry features such as
points, lines, polygons. StarSpan generates databases of extracted pixel values
from one or a set of raster images, and fuse them with the ancillary database attrib-
utes from the vector files. This allows a user to do statistical analysis of the pixel
and attribute data in many existing packages and can greatly speed up classifica-
tion training and testing. This feature is also found in other “mainstream” GIS soft-
ware, such as ArcGIS and GRASS. However Booth et al. (2006) found that these
two “mainstream” software have their limitations and neither really handles cate-
gorical raster summaries by polygon. They found that StarSpan appeared to be a
more efficient option in terms of speed, scriptability and capabilities.
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TerraLook—U.S. Geological Survey
TerraLook is a collaborative project that provides access to satellite images for users
that lack prior experience with remote-sensing or GIS technology. The TerraLook
Archive contains thousands of satellite images from the TERRA and LANDSAT
satellites. Formerly known as the Protected Area Archive, TerraLook combines col-
lections of geo-referenced JPEG images with a set of simple visualization and analy-
sis tools. This allows users to explore the data and employ it for useful purposes in
a variety of disciplines including conservation, development planning, education,
urban studies, disaster planning and response, and others. It may be of particular
use in developing countries that may have less capacity to purchase or work with
remote sensing data. TerraLook is built on top of OpenEV, where OpenEV is an
open-source software library and application for viewing and analyzing raster and
vector geospatial data. 

C. Routing
Routing software has come a long way since providing simply a route and sched-
ule (Partyka and Hall 2010). Many of the following reviewed packages have more
comprehensive functions for data keeping, analysis and planning. There is a clear
trend to link routing software with tracking functions through GPS devices. The
ability to communicate with mobile computing platforms is gaining prominence
as computers are getting more portable, and as the tracking function becomes
more prominent. Again, the list below represents a selected number of software
that has been screened by the author. The screened packages tend to be software
with broader functionality, and they have been on the market long enough to
attract a clientele. Readers are encouraged to go to the references for more details
when they wish to consider acquiring a particular software.

Accellos One Optimize—Prophesy Transportation Solutions, an Accellos Company 
Integrated with Maptuit, Accellos One Optimize is a two-way-connected routing
technology. Drivers receive real-time, turn-by-turn driving directions. Prophesy
has implemented a new proprietary integration module for quick and common
integration with other related software. Accellos One Optimize can communicate
with cell phones, black boxes, and various Mobile Data Terminals. Currently,
Accellos One Optimize is shaping up to be a full suite of supply-chain execution
software and solutions for the industry. Clients include Boston Beer, Gold Medal
Bakery, and Piggly Wiggly.

Paragon Routing and Scheduling Optimizer—Paragon Software Systems, Inc.
The software provides single/multi-site/integrated fleets planning. It is linked with
truck tracking, resulting in actual movements tracked against the schedule. Paragon
can be fully linked with satellite navigation and proof-of-delivery technology.
Paragon’s multi-tripping function optimizes resource in double dispatch opera-
tions.15 Clients of Paragon include Airgas, McLane Company, CEVA, Exel Logistics,
Toyota Material Handling, National Food Corporation, Red Ball Oxygen, and Ryder.

Roadnet Anywhere, Roadnet Transportation Suite—UPS Logistics Technologies
Roadnet Anywhere is a Web-based, easy-to-use daily routing and GPS tracking
application. Through a Web-enabled application, Roadnet Anywhere captures
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vital historical data that the user can review at any point, including historical traf-
fic of “breadcrumb trails” on completed routes. The software also communicates
with mobile devices. Altogether, the technologies enable a paperless office, GPS
tracking, and pro-active service failure detection. Roadnet Transportation Suite
performs strategic planning and analysis of daily route operations. The software
records historical traffic, commercial road restrictions, and can perform CO2-emis-
sion calculation. It includes multiple Web-based reporting tools for daily and his-
torical analysis. Roadnet clients include Otis Spunkmeyer, Goodness Greeness,
Lion Plumbing, and Oxygen One. Clients of Roadnet Transportation Suite include
Anheuser-Busch, Office Depot, Sysco, Mohawk Industries, and Apria Healthcare.

StreetSync Basic, StreetSync Desktop—RouteSolutions
StreetSync Basic is a Web-based subscription routing-system. It allows integration
with commercial Garmin and TomTom GPS devices. The one-click import and
export function allows import from Excel or Access, and export to Garmin and
TomTom units. Advanced integration with TomTom WORK is also possible, pro-
viding fleet-management and fleet-tracking solution combined with GPS naviga-
tion. Meanwhile, a distinguishing feature of StreetSync Desktop is an integrated
customer database for analysis and planning. Clients of StreetSync Basic include
Walco International Incorporated. Clients of StreetSync Desktop include Navteq,
Coca-Cola Enterprises, Cintas, and Duncan Telecom.

III.  CONCLUDING COMMENTS
The IT community is moving to tools like extensible markup language (XML),
service oriented architectures (SOA), and Web services that facilitate distributed
computing. XML’s design goals emphasize simplicity, generality, and usability
over the Internet. It is a textual data format with strong support via Unicode for
the languages of the world. XML, SOA, and Web services have facilitated the
growing prevalence of software as a service; that is, software residing on a server
that is accessed by numerous client machines over a network, as opposed to soft-
ware residing in multiple copies on its users’ machines.

Sometimes referred to as “cloud computing,” this new movement
requires a set of standards (or protocols) when adopted for a particular applica-
tion. Let us use a classic analytic tool such as optimization as an example. Fourer
et al. (2010) are designing a platform called Optimization Service (OS) to imple-
ment cloud computing for optimization. The OS standards or protocols in this
case include

▫ registration and discovery of optimization-related services in a dis-
tributed environment;

▫ representation of optimization instances, results, and solver options; and
▫ communication between a client on the user’s end and solvers.

LogicBlox (http://www.logicblox.com), developer of online predictive
and optimization software, is currently developing a product based on OS. This
product allows users to develop optimization models through a Web-based graph-
ical user interface. A model instance is sent to a solver on a local or remote
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machine; the underlying result is returned, where it is then converted into a more
user-friendly solution report. A browser is the only required software on the client.

Following the analytics schema laid out in Chapter 7, the current chapter
specifically reviews solution methodologies and software configurations. Once
again, we like to conclude by suggesting that the software listed here are screened
subject to our best judgment. We tend to favor more “popular” packages over the
more obscure ones. For this reason, its inclusion does not imply our endorsement
of the product. What shows up in this exercise is that there appears to be a trend
to consolidate commercial software into comprehensive packages that perform
multiple functions. These packages tend to be more popular and hence command
a larger market share. Examples of these consolidated packages include Crystal
Ball, Vanguard System and more.

In Chapter 7 and here, we make a distinction between general vs. spatial
analytic software. As alluded to earlier, the fine line between general and spatial-
analytic software is not as distinct as it used to be. AIMMS, the modeling system,
is listed under optimization, but it has the following spatial-analytic functions:
GIS, MS Virtual Earth link, Yahoo Maps, ESRI Shape files, and geocoding func-
tionality. Thus the review here highlights a point that we made in Chapter 7: There
is an emerging market for spatial information technology (IT), as evidenced by the
increasing number of commercial routing, GIS and image-processing software. At
the same time, we stipulate that while the demand is growing, the market is not
strong enough to support some rather specialized applications, such as facility-
location models, spatial statistics software and to a lesser degree image processing.
This explains why we reported no commercial facility-location software here in
this chapter. Instead, there are quite a few open-source or free spatial-IT products.
These products may find their niche in the commercial marketplace in the future
as demand grows over time.

ENDNOTES

1 Most optimization software employs the generalized reduced gradient (GRG) methods for global
optimization. However, multistart methods can overcome some of the limitations of the GRG Solving
method alone. The multistart methods will automatically run the GRG method from a number of start-
ing points and will display the best of several locally optimal solutions found. Because the starting
points are selected at random and then “clustered” together, they will provide a reasonable degree
of “coverage” of the space enclosed by the bounds on the variables. As a result, it is highly probable
that the best local optimum is the global optimum.

2 Inheritance is the process by which new classes called derived classes are created from existing
classes called base classes. The derived classes have all the features of the base class and the  -
programmer can choose to add new features specific to the newly created derived class. According
to Wikipedia, inheritance is what separates abstract-data-type (ADT) programming from object-
oriented programming. ADTs are often implemented as modules: the module’s interface declares
procedures that correspond to the ADT operations, sometimes with comments that describe the con-
straints. This information-hiding strategy allows the implementation of the module to be changed
without disturbing the client programs. The notion of ADTs is related to the concept of data abstrac-
tion, which is important in object-oriented programming.

3 Optimization procedures in a traditional compiler are applied sequentially, with each optimization
operation destructively modifying the program to produce a transformed program. The transformed
program is then passed to the next optimization. Incremental computation of this kind takes advan-
tage of repeated computations on inputs that differ slightly from one another, computing each output
efficiently by exploiting the previous output. Since every non-trivial computation proceeds by 
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recursion, the approach can be used for achieving efficient computation in general. The key is to
compute each iteration incrementally using an appropriate program. Tate et al. (2009) presented
such an approach for structuring the optimization phase of a compiler. In their approach, optimiza-
tions take the form of equality analyses that add equality information to a common intermediate rep-
resentation. Iterative program transformation is accomplished by direct tree manipulation. The Tate
et al. optimizer works by repeatedly applying these analyses to infer equivalences between program
fragments, thus saturating the intermediate representation with equalities. Once saturated, the inter-
mediate representation encodes multiple optimized versions of the input program. At this point, a
profitability heuristic describes which of the legal transformations to actually perform. It picks the final
optimized program from the various programs represented in the saturated representation. Here,
program expression graphs (PEGs) are employed, which is an intermediate representation designed
specifically for equality reasoning. As far as compiler optimization is  concerned, several operations
are performed at this juncture. Common sub-expression elimination (CSE) reduces the number of
duplicated computations by reusing previously defined and still available non-trivial expressions. If
the same expression is computed in two different program points, CSE eliminates one of the com-
putations, by replacing the second operation by an access to the register containing the result of the
first evaluation. CSE is similar to constant propagation, in that the transformation is triggered by con-
ditions represented by an equality between a register and an expression. In constant propagation
this expression corresponds to a constant value, whereas in CSE it may be a more complex expres-
sion (involving arithmetic operators). The process of converting to and from PEGs produces opti-
mizations well beyond constant propagation and CSE. It includes loop invariant branch hoisting and
sinking, and several other operations.

4 Lazy constraints are constraints not specified in the constraint matrix of the MIP problem, but must
not be violated in a solution. It is used to speed up the solution algorithm.

5 GUROBI is a set of high-end libraries for math programming, particularly for MIP and LP.
6 MOSEK is a large-scale optimization software that solves linear, quadratic, general convex and

mixed integer optimization problems.
7 The NEOS server is the first network-enabled problem-solving environment for a wide class of appli-

cations in business, science, and engineering. The server is designed as a generic application
 service provider. Users submit a problem and their choice of an optimization solver over the Internet.
The NEOS server computes all information (for example, derivatives and sparsity patterns) required
by the solver, links the optimization problem with the solver, and returns a solution.

8 For stochastic programming, a two-stage planning horizon is one where immediate (Here and Now)
decisions (x1) have to be taken before all the problem elements have become known. Once this hap-
pens there are further, second-stage decisions (x2) to be taken according to the newly discovered
events. So for the expectation we combine the probability-weighted minima of all the second-stage
models, the resulting formulation of the problem is known as the Deterministic Equivalent (DEQ). It
was observed in the resulting model form is precisely the form solvable by Benders' decomposition,
the dual of Dantzig-Wolfe decomposition. In this method a solution x1 allows a subsequent dual-solu-
tions to be calculated and applied to form an aggregated 'cut', which is a constraint added - thus giv-
ing a new solution x1, and so an iterative process is developed. Theory shows that the iterations con-
verge to precisely the solution of the deterministic equivalent (DEQ) model.

9 SMPS is a standard input format for multi-period stochastic programs based on MPS.
10 Automake scans the package’s “configure.in” to determine certain information about the package.

Some autoconf macros are required and some variables must be defined in “configure.in.” Automake
will also use information from “configure.in” to further tailor its output.

11 POPT stands for Interior Point OPTimizer. Pronounced I-P-Opt, it is a software package for large-
scale nonlinear optimization.

12 Microsoft Solver Foundation is a new .NET-based optimization platform that includes a variety
of solvers.

13 In MS Windows applications programming, OLE Automation is an inter-process communication
mechanism based on Component Object Model (COM) that was intended for use by scripting
 languages. It provides an infrastructure whereby applications called automation controllers can
access and manipulate shared automation objects that are exported by other applications. In OLE
Automation the automation controller is the “client” and the application exporting the automation
objects is the “server.”

14 RAD Game Tools is a privately-held company that develops video and computer game software
technologies which are licensed primarily by video game companies.

15 In object-oriented programming and software engineering, double dispatch is a mechanism that dis-
patches a function call to different concrete functions depending on the runtime types of the two
objects involved in the call.
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Synthesis Exercises 
and Problems
These exercises are carefully selected to complement the self-instructional  modules,
homework exercises, examples and case studies documented in the main body of the
book. In many ways, they also supplement these varied illustrations of the concepts
advance in this text; and the answers in the Solution Manual posted on my web site
can be thought of as  extensions to the main body of the book. Rather than a simple 
regurgitation of the basic computations, these synthesis exercises generally require a
bit of thought, and many are open-ended case studies. To provide an integrated view,
all the  synthesis exercises were placed here in this section, rather than at the end of
each chapter. The exercises and problems are categorized under the following topics:

I. Remote Sensing and Geographic Information Systems
II. Facility Location

III. Simultaneous Location and Routing
IV. Activity Derivation, Competition, and Allocation
V. Land Use Models

VI. Spatial-Temporal Information
VII. Term Project

We view this as a way to cut across all chapters in the book, emphasiz-
ing the main themes that run through this entire volume. For those who are more
comfortable with examples (rather than concepts), the Solutions Manual on the
web site will serve as a primer on the topics. (Contact the author at
ychan@alum.MIT.edu for information about his web site. Students and profes-
sionals should enter in the SUBJECT block: “Request for sample solutions.”
Instructors should enter: “Request for Instructor’s Guide.”) The exercises also
provide the opportunity to try out the software that comes with this book.

I.  REMOTE SENSING AND GEOGRAPHIC
INFORMATION SYSTEMS

This first group of problems range from the classic Bayesian classifier to image
processing schemes such as histogram processing on the Training System/Image
Processing (TS-IP) software, which is “Image” on the book’s software CD. Two
exercises on the Iterative Conditional Mode algorithm are included, illustrating
a well-recognized classification technique. A problem is specifically introduced
here to illustrate the prescriptive district clustering model advanced in this text.
We then finish with a combined classification scheme in which the multicriteria

Y. Chan, Location Theory and Decision Analysis, 2nd ed., DOI 10.1007/978-3-642-15663-2, 
© Springer-Verlag Berlin Heidelberg 2011
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decision-making procedure is explicitly incorporated as an integral part of the
 algorithm, showing that judgment is part and parcel of remote sensing and
 geographic information systems.

A.  Bayesian Classifier
The Bayesian classifier is one of the ways to group pixels into different patterns—
thus the classifier decides that pixel j belongs to a lake while pixel i belongs to a
forest. We have illustrated in the “Bayesian Decision-Making” section of Chapter 3
how a decision boundary x0 can be arrived at when there is only one attribute x
such as a pixel’s gray value. The concept can be extended to the case when there
is more than one attribute for classification (say n attributes). The equations used
in this context are as follows the (Gonzalez and Woods 1992). First the Gaussian
distribution is extended to multidimensions by

P(x|zj) � �(2�)n/2

1
|Cj|

1/2� exp [1�1/2(x � � j)
TCj � 1(x � � j)] (E.1)

where � is the mean vector and C is the covariance matrix respectively defined as

�j � �
N
1

j
� �

x � Gj
x Cj � �

N
1

j
� �

x � Gj
xxT � �j�j

T (E.2)

where Nj is the number of pattern vectors from class Gj (i.e., the number of pixel
vectors belonging to class j), and the summation is taken over these vectors. The
multidimensional decision boundary now looks like

dj(x) � ln P(zj ) � �
n
2

� ln 2� � �
1
2

� ln |Cj| � �
1
2

� [(x � �j)
TCj

�1(x � �j)] (E.3)

Of course, the second term is equal for all cases, and may be subsequently dropped.
Now consider a two-dimensional reading for a 3 � 3 set of borings

 monitoring a groundwater pollution plume, with the gray values shown in  italics
(Wright and Chan 1994c),

y-coordinate

1 2 3

x-coordinate

1 2 3 4

2 3 8 7

3 1 7 9

Can you delineate the analytic and precise boundary of the plume based on the
above set of equations?
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B. Iterative Conditional Mode Algorithm
The iterative conditional mode (ICM) algorithm was described in detail in
Chapter 6, under the “Contextual Allocation of Pixels” section. As demonstrated
in the numerical example, a � of 0 produces a non-contextual classification, while
increasing � accentuates the contextual bias. There is a tradeoff between � and
�2, where �2 is the variance of pixels in a certain class. The � should be small
enough to prevent greatly overlapping regions, and at the same time � will need
to be  adjusted for the noise level of the image. A 6 � 6 grid of gray values is given
below, with high values representing polluted groundwater and low values
 representing unpolluted water. Noise is introduced into the data by virtue of the
data gathering procedure. For example, a value which has the same approximate
gray value as the unpolluted groundwater exists in the center of pixels that
are evidently polluted. The second 6 � 6 data set below shows a 3 � 3 area of
 apparently polluted ground water with possible noise on one of the sides of the
3 � 3 area. Also a single pixel (noise) with a pollution range gray value exists
among unpolluted pixels.

3 5 4 3 4 2 3 5 4 3 4 2

3 4 3 2 3 3 3 4 8 6 7 3

4 2 4 8 4 3 4 2 7 8 5 3

5 3 10 9 8 12 5 3 10 9 8 4

3 4 9 4 7 7 3 6 4 4 5 5

2 5 11 12 10 9 2 4 5 4 4 4

Please perform the classification using the ICM on both of these two data sets
(Wright and Chan 1994c).

C. Weighted Iterative Conditional Mode Algorithm
In this exercise (Wright and Chan 1994c), the weighted ICM algorithm (rather
than the unweighted one used above) is to be applied to illustrate a couple of
points. For the second data set above, the noise pixel in the polluted area could
be classified as polluted water should a low enough � value be applied, since
three of the five neighbors of the pixel are first-order neighbors. It can be
shown also that the noise in the unpolluted area would be easier to discern
using a weighted procedure. Notice the implementation is almost identical
in both the weighted and unweighted cases. The only difference lies in the
 calculation of the “compare” value in which the summation must be broken
into a first-order and a second-order summation. Now carry out the weighted
ICM algorithm.

D. District Clustering Model
Shown in Chapter 6 under the district clustering model is a set of noninferior
 solutions for a small image entitled “Multiple subregion noninferior solutions.”
Examine the file labeled S2_4a_4b and S2_4a_5b in Figure 6.28, the first of these
two code names stands for two subregions, the second and third suggest that
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an area of four pixels for subregions 1 and 2. The a and b entries specify two
 different variations on the boundary of the subregion, generating different
non-inferior solutions. The two noninferior images are drawn below sequentially,
where the bolded gray values stand for one subregion and the italicized stand for
another:

11 5 6 11 5 6

8 12 2 8 12 2

5 1 1 5 1 1

Using the “multiple subregion model” outlined in Chapter 6 in the subsection
under the same name (Section X-B),

(a) Show the constraint-reduced feasible region model that generated
these images;

(b) Verify step by step that we have generated the entire non-inferior
solution set;

(c) Show the equivalent weighted objective function model.

E. Combined Classification Scheme
In monitoring groundwater pollution, measurements are made at wells placed
discretely around the study area. Interpolation (such as kriging) has been made
between these readings, forming a pixel map of the pollution level throughout
the study area. Figure E.1 shows a well located at the center of the symmetrical
cluster of readings. At the same time, remotely sensed data are available for the
entire area. The ground truth data are given as well in Figure E.1. 
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Figure E.1  GROUND TRUTH, WELL DATA, AND REMOTELY SENSED DATA
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Can you combine the two sources of information to delineate the pollu-
tion pattern more accurately than you would from a single source? Specifically,
perform the following:

(a) Employ the ICM algorithm of Chapter 6 with due consideration to
proximity as a factor. An inverse relationship is hypothesized be-
tween distance and importance in determining the allocation of
some internal pixels (i.e., pixels not at the border or fringe of the
image). For internal pixels, weights are scaled against eight neigh-
bors. Assuming unitary distance separation between the subject
pixel and its first-order  neighbor, and a distance of �2� � 1.4142
with its second-order neighbors. Thus the weight for first-order
neighbors is 1.1716 and 0.8284 for  second-order neighbors. The
sum over all of its neighbors is (4)(1.1716) � (4)(0.8284) � 8 and the
first-order neighbor is 1.1716/0.8284 � 1.4142 times as important
as the second-order neighbor in  determining allocation of a pixel as
specified initially.

(b) Employ multicriteria-optimization techniques as outlined in
Chapter 5. Define in the decision space a binary variable that
 labels each pixel as being polluted when the variable is unitary
valued. The two criteria in the outcome space—namely the value
of the data and the value of contextuality in the ICM classifica-
tion—are captured by the ground truth and the choice of the �
value in the ICM algorithm respectively. Here, � is a measure of
forced contiguity, applied parametrically for a 0–1 ranged weight
for combining the two sources of information. The two data sets
are shown in Figure E.1. Since the water is  directly sampled there,
one may wish fully to trust the data at the well, thus at the well
the weight is unitary for the well reading and zero for the
 remotely sensed data. Also shown in the same figure is the ground
truth, representing a subjective judgment by the  decision maker.

(c) Determine the noninferior solutions that identify the most viable
image classifications. A preference structure can be adopted
whereby the smaller the deviation from the ground truth the more
it represents a non-dominated solution. Zero deviation is consid-
ered Pareto optimal. Deviation in this case is defined as the  number
of pixels in the ICM-generated solution that are different from the
ground truth. Likewise, the less the need for forced  contiguity (i.e.,
the smaller the � value), the better.

F. Histogram Processing
Refer to the TS-IP software under the SPACE directory, located on the CD/DVD
that accompany this book. The image brightness histogram shows the number of
pixels in the image having each of the 256 possible monochromatic values of
stored brightness (Russ 1998; Gonzalez & Woods 1992). Peaks in the histogram
correspond to the more  common brightness values, which often identify partic-
ular structures that are present. Valleys  between the peaks and the two tails in-
dicate brightness values that are less common in the image. The flat regions at the
two ends of the  histogram show that no pixels have those values, indicating that



446 EXERCISES Synthesis Exercises and Problems

the image brightness range does not necessarily cover the full 0–255 range avail-
able. Similarly, the pixels at the two tails of the gray values tend to contain noise,
rather than the real image. Figure E.2 shows an example of such a histogram.

In order for the available gray levels to be used efficiently on the
 display, some will have to be removed (such as those at the two tails of the
given  histogram). It might be better to spread out the displayed gray levels in
the peak areas selectively, compressing them in the valleys (or the two tails) so
that the same number of pixels in the display shows each of the possible bright-
ness levels. This is called histogram equalization or histogram stretch.
Histogram equalization reassigns the brightness values of pixels. Individual
pixels retain their brightness order (i.e., they remain brighter or darker than
other pixels) but the values are shifted, so that an equal number of pixels have
each possible brightness value. In many cases, this spreads out the values in
 regions where different regions meet, showing details in areas with a high
brightness gradient. The equalization makes it possible to see minor variations
within regions that appear nearly uniform in the original image. In this exam-
ple, we show that the range 60–200 can be stretched out to occupy the entire
spectrum, resulting in a dimmer image, but with better contrast.

The process is quiet simple mathematically. For each brightness level j in
the original image (and its histogram), the newly-assigned relative-value k is
 calculated as k � � j

i � 0 Ni/n	, where the summation counts the number of pixels in
the image (by integrating the histogram) with brightness equal to or less than j. Ni
is the number of pixels in the ith brightness level, and n	 is the total number of
 pixels (or the total area of the histogram). This is graphically represented as the

255
Slope  contrast 
of original image

Both brighter image
and enhanced contrast

Dimmer
(more 
contrast)

Brighter 
(less 
contrast)

600 200 255

Figure E.2  SEVERAL OPTIONS IN HISTOGRAM EQUALIZATION
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dashed straight line plotted from the extreme left gray value to the extreme right
value, representing the gray value range we wish to examine in detail.

In Figure E.2 are shown several ways to perform histogram equal ization,
including controlling brightness and contrast. Using the TS-IP software provided
with the CD, please show on the Pentagon image these various  options:

(a) dimmer with more contrast,
(b) brighter with less contrast, and
(c) both brighter and with contrast enhanced.

II. FACILITY LOCATION
Facility-location modeling is a key component of this book. Here we cover some
less than obvious applications of these models. Following the airport location
 examples used extensively in the book, we further illustrate the nodal optimality
conditions prevalent in not only min-sum location models, but also min-max
models as well. The opposite of min-max problems is the max-min problem,
commonly found in obnoxious facility location, which includes solid waste
 facilities. Another challenging facility location model is the quadratic assignment
problem, in which interaction between facilities take place.

A. Nodal Optimality Conditions
Consider the cities of Cincinnati and Dayton, Ohio connected by Interstate
Highway 75. Cincinnati has a metropolitan population of 2 million and Dayton,
1 million. A regional airport is proposed to serve both cities. It is to be located on
I-75 such that the total person miles (PMT) to travel between the two cities is to
be minimized. We have shown in Chapters 1 and 4 that the optimal location is
Cincinnati. This is an example of nodal optimality conditions.

(a) Per discussions in Chapter 4: if the airport is to be located on I-75 so
that the total person decibels of noise pollution is to be minimized,
where should the airport be built?

(b) Suppose accessibility and noise exposure are of equal concerns,
where should the airport be located? Accessibility is defined as the
total PMT while noise exposure is the total person decibel.

(c) Repeat questions (a) and (b) for the three-city case where Columbus
is included. Columbus has a population of 2.1 million.

(d) Repeat the whole process for a four-city case in which Indianapolis
is included in addition.

B. Solid Waste Facility
In locating a municipal solid waste facility, the analytic hierarchy process (AHP)
has often been used. Junio (1994) proposed a hierarchy of attributes as shown in
Figure E.3. Discuss the completeness and relevance of such a hierarchy defini-
tion. How would you quantify this hierarchy in executing AHP?
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C. Quadratic Assignment Problem
Refer to the quadratic assignment problem as introduced in Chapter 4.

(a) Formulate the linearized version of model for the distance separa-
tion and flow interaction matrices as shown.

(b) Now solve this linear model. 
(c) Is there anything peculiar about the solution to the linear model?

If not, simply give the optimal assignment and the objective
 function. If yes, explain the peculiarity and again give the optimal
assignment and the objective function value.

III. LOCATION-ROUTING
The integration of facility location and service delivery is a key feature of
this book. We use a simple telecommunication network maintenance problem
to lay out the integration. First, we define a region to be served by a mainte-
nance facility using the districting technique. Then we place the facility using
the service facility location model, followed by an evaluation of the entire
maintenance procedure through a user performance model. To solve a real
world problem, the three steps are executed repeatedly in a districting,
 location, and evaluation triplet. Having laid out this background, we break the
problem into the service delivery step and then the combined location routing
step. The basic building block of both steps is the quantification of spatial
sepa ration. This is illustrated in terms of Minkowski’s metric, which is
also known as lp-metric—as defined in Chapter 5 under the “Deviational
Measures” subsection. 

Goal
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Noise and odor

Ecology

Health risks

Air

Ground water

Tip fees

Tax revenues

Out-of-district revenues
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Environment Economics

Figure E.3  HIERARCHY OF A MUNICIPAL SOLID WASTE PROBLEM
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A. Districting 
The next three problems demonstrate a solution algorithm for improving mainte-
nance depot location and service delivery operations (Patterson 1995). Here in
the first problem, we define the districts each depot is supposed to serve. The model
is based upon enumeration and was adapted for network topology by Ahituv and
Berman (1988):

Min �j Cjxj
s. t. �j xj � p (E.4)

�j aijxj � 1 ∀i

where xj � 1 if subnetwork j is selected to form a district and zero otherwise;
aij � 1 if node (zone) i is an element of subnetwork j and zero otherwise; p is
the number of districts or subnetworks desired, and the equity measure 

Cj � �
|�i fi




�

/p
1/p|
�, (E.5)

0 � � � 1; and fi is the fraction of demand at node i.
The algorithm consists of two different phases: Phase I determines all

 easible subnetworks (districts) within the larger network, and Phase II deter-
mines the final subnetworks based upon our equity objective-function in
Equation E.5. Contiguity and compactness will be bounding constraints for the
first phase. One final requirement is that the p subnetworks must be collectively
exhaustive and mutually exclusive. In other words, every node must be within
one and only one subnetwork. This is accounted for in Phase II.

PHASE I: Using a tree search algorithm, we find the feasible set by
picking the smallest number node and connecting contiguous nodes
while enforcing the compactness requirement until the combined
 demand  becomes redundant. Care must be taken to avoid creating
separate  enclaves, which are node(s) that are incapable of being
 separate subnetworks and cannot connect to other subnetworks
 without going through a previously defined subnetwork.  This will
prevent impossible solutions.

PHASE II: The algorithm for node partitioning was developed by
Garfinkel and Nemhauser (1970).  The following notation is needed: 
X is the set of fixed variables; |X| is the number of fixed variables; D� is
the set of nodes in the districts, or zones of X; J is the set of districts in
the current partial solution; Nj are the nodes J; and |·| is the cardinality
of the set · in general.

The computational steps are briefly outlined below:

Step 1: Initialization. Set counter |L| � 0, and set J � X, Nj � D�.
Step 2: Choosing the next list. Pick the smallest number node not in Nj.



450 EXERCISES Synthesis Exercises and Problems

Step 3: Updating set J. Add the node to form subnetworks.
Step 4: Testing for a solution. Test |L| � |J| � |X|. If |L| � 0 stop,

else |L| � |L| � 1.
Step 5: Finding a solution. Pick the largest cost subnetwork in J as the

current solution. Go to Step 2.

Now for the network shown below in Figure E.4, please perform the districting
procedure with � � 0.1 to arrive at two service regions.

B.  Minkowski’s Metric
Consider two points y1 � (14, 13) and y 2 � (4, 4) in a two-dimensional space.
Employing the following general measure of deviation between y1 and y2, r(y; p)
� [�i|yi

1 � yi
2|p]1/p, explore the behavior of numerical values of r for parameter

p changing from 1 to ∞:

(a) Draw a diagram of function r � f(p). What are the general proper-
ties of such a function?

(b) Perform the same analysis for p changing from 0 to 1 and also from
�∞ to 0. Do these cases show any meaningful interpretation?

(c) Perform a more difficult but very rewarding exercise: Do these dis-
tance measures, especially for p between 1 and ∞, correspond to any
particular subfamily of utility (or value) functions? Can you iden-
tify such a subclass?

(d) Perform the following graphic exercise: Define a point y2 � (0, 0) in
a two-dimensional space. Plot all such points y1 whose distance
from y2 is equal to a fixed number r*, that is, r � r*. Choose r* � 1
and draw such loci of points y1 for p ranging from 1 to ∞. (Pay
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 special attention to  p � 1, 2, ∞). Do the resulting “shapes” suggest
any connection with utility functions?

(e) Are there some points in (d) which have the same distance from
point y2 regardless of the value of p? What are the other character-
istics and possible interpretations of such points?

IV. ACTIVITY DERIVATION, ALLOCATION
AND COMPETITION

The transition from facility location to land use models can be marked by
 activity derivation, allocation, and competition. Thus economic activities such
as population and employment are generated at an activity center. Residential
neighborhoods then compete to provide housing for these people, resulting in
a distribution of residents among these neighborhoods. Here in this group of
exercises, we solve a matrix multicriteria game, in which there is more than
one payoff among the competitors. The gravity model is a traditional way to
analyze competition among geographic areas. Using the gravity versus trans-
portation models exercise, one can see that the gravity model is an extension
of the “all or nothing” assignment of activities. Assignment from one single
 supply exclusively to one single demand is performed by the Hitchcock-
Koopman transportation model. This is complemented by the calibration of a
doubly constrained model.

A. Multicriteria Game
Consider the following game decision maker 1 (DM1) maximizes his minimum
gain while decision maker 2 (DM2) minimizes her maximum loss. Gain of DM1
is exactly equal to the loss of DM2 (i.e., a zero-sum game). Instead of the single
metric used in the conventional payoff matrix, there is more than one criterion
in measuring payoffs. These multiple payoffs are therefore expressed in terms of
a vector (rather than a scalar). An example appears below in Table E.1, where the
cells contain the two payoffs for each pair of decisions reached between DM1
and DM2:

Thus if both DMs decide to play their second option, DM1 wins 3 units in
the first criterion and 2 in the second. DM2 loses the same number. The  symbols
p	i and q	j denote the probability DM1 and DM2 will play the ith and jth strategy

DM1

p 1

p 2

p 3

q 1

(3, 2)

(2, 1)

(4, 1)

DM2

(3, 4)

(3, 2)

(1, 3)

q 2

(1, 5)

(2, 2)

(3, 1)

q 3

Table E.1  MULTICRITERIA GAME
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 respectively. When p	 and q	 assume fractional values, the game is a called a
mixed strategy game. A pure strategy is when p	s and q	s are 1 or 0 in value.

Let each vector payoff aij � (aij
1, aij

2)T be replaced by a convex combination
of both components: waij

1 � (1 � w), aij
2, where w is a 0–1 ranged weight. For

 example, a11 � w3 � (1 � w) 2 � w � 2, and so on. It can be shown that, similar
to a conventional zero-sum two-person game an LP can be set up to solve this
 problem, where the primal and dual solutions correspond to the strategy taken by
the two decision makers. If nonnegative variables p and q are defined such that
p	 � pz	 and q	 � qz	, the equivalent LP is:

Max q1 � q2 � q3
s.t.

(w � 2) q1 � (4 � w) q2 � (5 � 4w) q3  1
(w � 1) q1 � (w � 2) q2 �           2 q3  1

(3w � 1) q1 � (3 � 2w) q2 � (2w � 1) q3  1

(a) Solve this LP by varying the weights w from 0 to 1.
(b) Is there an equilibrium—defined here as a pair of decisions with

which both sides are happy? At this equilibrium, z	 is a nonegative
 number representing the gain to DM1 and the loss to DM2.

B. Gravity versus Transportation Model
Refer to the doubly constrained gravity model as discussed in the subsection bear-
ing the same title in Chapter 3. When the value of � becomes 1 in the propensity
function F(Cij), the function becomes a special function of travel cost, F(Cij) � Cij

�


� Cij
�1, and the doubly constrained gravity model can be written as

Vij � (ki ljViVj) F (Cij) � z	ij Cij
�1 or  z	ij � Cij Vij

z � �ij z	ij � �ij Cij Vij

�
n'

i�1
Vij � Vj j � 1, 2, . . . , n	 (E.6)

�
n'

j�1
Vij � Vi i � 1, 2, . . . , n	

z in Equation (E.8) is interpreted as the total travel cost now. By minimizing
total travel cost (for instance, veh-min), we have the classical transportation
model. Notice this model reflects the system optimum rather than user
 optimum as obtained by conventional gravity-model calibration. Now answer
the following questions:

(a) What value would � assume in the propensity function to have
maximum accessibility?

(b) What value would 
 assume to have minimum accessibility?
(c) For a prescriptive model, what is the resulting trip distribution for

case (a)?
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(d) For a prescriptive model, what is the trip distribution for case (b)?
(e) Interpret the result of (c) and (d).

C. Calibration of a Doubly Constrained Model
Given the following data on interzonal trips Vij and the associated costs Cij,
please calibrate a doubly-constrained gravity model:

1 2           1 2
[Vij] � zone 1 �100 200 � and [Cij] � zone 1 � 1 2 �zone 2 300 50 zone 2 2 1

Suppose F(Cij) � cij
�2, carry out the calculations as far as you can, following

the procedure described in the doubly constrained model subsection of
Chapter 3. Give the final four equations for the four unknowns, and solve the
equations.

V. LAND USE MODELS
Analysis of land use models is a center piece of this book. Here, the economic-base
and activity distribution exercise shows how the activity derivation, distribution,
and competition concepts can be used to simulate the housing requirements of a
college town over time. This set of calculations is then formalized in the iterative
Lowry model calculation, which is encoded on the software CD.

A.  Economic-Base and Activity Allocation
In a study of a college town, State College, Pennsylvania, Chan and Rasmussen
(1979) forecasted housing requirements.  Using the basic concepts of the Lowry
model, they derived the subareal housing requirement of the town using the
university enrollment as the basic activity. Their algorithm follows a two-part
procedure: 

Part I. Housing Demand Factor
1.  Define the zoning types of all residentially zoned developable land.
2. Establish the number of students, blue-collar employees, and white-

collar employees from tract i working at employment center c—
labeled here as Eic

S , Eic
B, Eic

W respectively.
3. Determine the separation d between each tract centroid and employ-

ment center.
4. Obtain the percentage of student, blue-collar, and white-collar com-

muters traveling a distance of d miles to the related employment 
center—labeled fi

S (d), and fi
B (d), and fi

W (d) respectively.
5. Determine the percentage of students, blue-collar workers, and

white-collar workers in residential type t—labeled pt
S, pt

B and pt
W,

 respectively
6. Compute the housing demand factor: Vit

d � �k �c �d Eic
k fi

k (d) pt
k.
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Part II. Allocation of Housing Demand
1. Determine the excess housing supply in tact i, �Ni. The excess is equally

distributed among the number of zoning types tMax: �Nit � �Ni/tMax.
2. Determine the maximum holding capacity for developable dwelling

units: Nit
c � (developable average) (average dwelling units per acre).

3. Allocate the total housing demand N to each tract i: Nit �
NVit

d/�i �tVit
d. The housing demand for housing type t in tract i can

 either be accommodated by the excess housing supply �Nit or new
construction. Housing demand exceeding the holding capacity of a
tract would have to be located elsewhere. The additional developable
capacity of a tract for housing type t is �Nit

c � Nit
c � Nit � �Nit.

4. Additional iterations are necessary as long as one or more �Nit
c is

 negative (i.e., there is spill over from a tract), and excess capacity 
still exists in the region to accommodate the excess. Otherwise, the
 algorithm terminates.

Chan and Rasmussen then compared their forecast with the ones by the Centre
Region Planning Commission (CRPC). The housing projection performed by the
CRPC is computed by a two-step procedure: (1) The future population for the region
is  computed; and (2) the number of dwelling units is derived from that figure. The
 derivation process is generally founded on a extrapolation forecasting techniques.
The CRPC population forecast takes into consideration a cohort survival model
and a straight-line proportional model. (These techniques are  discussed in the
“Econometrics Modeling” section of Chapter 2.) The following assumptions are made
among both studies: (a) No substantial in or out migration would take place, which
implies the student enrollment at Penn State University would stabilize at 31,500 by
1985. (b) Existing trends, including birthrates/death rates and other coefficients and
ratios, will remain constant over time for each township of the Centre Region.

Since the study, the dwelling units that were actually observed became
available. These figures are tabulated beside the Chan and Rasmussen and CRPC
forecasts in Table E.2. Can you perform a “before-and-after” analysis as to the
 accuracy of the forecasts by the Chan-Rasmussen model vis-a-vis the CRPC
study?

1985 Figures College

Single
family

Multiple
family

Chan &
Rasmussen

CRPC

Observed

Chan &
Rasmussen

CRPC

Observed

1599

1599

1785

208

351

545

Halfmoon

221

276

303

6

6

19

Ferguson

2105

2505

2209

544

591

964

Harris

960

1145

1124

21

31

176

Patton

1434

1801

1768

790

849

1730

State College

3316

3114

2650

6207

6545

7837

Table E.2  COMPARISON OF FORECASTS AND OBSERVED HOUSING UNITS
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B.  Forecasting Airbase Housing Requirements
Now that you are familiar with the Chan-Rasmussen housing model, can you
use the same model to forecast housing requirements for an Air Force base?
Similar to the college town model, this new model is based on the hypothesis that
the foundation of the local economy is an Air Force base (Bahm et al. 1989).
Whiteman Air Force Base (AFB)—near Knob Noster, Missouri—is chosen for the
study. Whiteman was picked because the base is a major source of employment
for the region and was expected to grow at the time of the study in 1989. The
source of the increase in military- and civilian-employment is the new B-2
bomber wing. 

Three types of economic activities are envisioned to increase: military
and their dependents, civilian Department of Defense (DOD) employees, and
civilian non-DOD employees. There are 25 housing tracts or zones in the region.
There are four employment centers: Warrensburg, Sedalia, Knob Noster, and
Whiteman AFB. Commuting distance is measured in one-mile (1.6-km) incre-
ments, with the longest commuting distance being 46 miles (73.6 km). There are
five residential types: single family, double family, multiple family, dormitories
and non-residential. Additional developable capacities, excess housing, and
 resident profiles are  documented in Table E.3. The information is listed by each
tract/zone i. By resident profile we mean the percentage of military, DOD civil-
ian, and non-DOD civilians in each type of housing—whether it be single family,
double family,  multiple family, or dormitory. Commuting distances from each of
the 25 tracts/zones to the four employment centers are shown in Table E.4.
The trip distribution, or the percentage of workers traveling distance d to an
 employment center, is shown in Table E.5. Included in the table are the increases
in military, DOD civilian and non-DOD civilian jobs in each of the four employ-
ment centers.

Now forecast the housing requirements at the study area based on
these assumptions: (a) insignificant projected increase in employment from
manufacturing in Warrensburg and Sedalia, (b) insignificant projected
 increases in employment or student enrollment at Missouri State University,
and (c) only a small amount of associated cross-commuting from Whiteman
to other points in the study region. All these make Whiteman AFB the
major employer in the projected future, attracting the local population to
the base.

VI. SPATIAL-TEMPORAL INFORMATION
The unifying theme throughout this book is really how one analyzes spatial-
temporal information in general. In this last block of problems, we let the
data guide us in the analysis. The first problem eloquently shows the differ-
ence between spatial and univariate forecasts, particularly regarding their
 respective accuracies. Subsequently we worry about the calibration of a
 spatial forecasting model, an area so demanding that much more research is
still needed.
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Tract/zone

Single

family

Double

family

Multiple

family Dormitory

Resident

profile

Single

family

Double

family

Multiple

family Dormitory

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

% Military

% Civilian/DOD

% Civilian/non-DOD

0.290

0.645

0.616

0.320

0.040

0.031

0.073

0.315

0.353

0.317

0

0

892

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

0

181

0

88

45

39

2490

24

20

35

38

36

30

30

30

20

141

35

2496

25

30

0

50

50

31

(2)

(9)

(9)

(9)

(7)

(4)

(2)

(6)

0

210

0

93

–

–

2495

–

27

–

–

–

–

–

–

–

135

–

2500

–

–

0

–

–

–

(2)

–

562

0

92

–

–

2492

–

932

–

–

–

–

–

–

–

893

–

2500

–

–

0

–

–

–

*Excess housing numbers are in parentheses.

Table E.3  ADDITIONAL DEVELOPABLE CAPACITIES, EXCESS HOUSING*
AND RESIDENT PROFILE
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A. Cohort Survival Method
The cohort survival method is an econometric technique introduced in Chapter 2,
in the “Interregional Growth and Distribution” subsection. Please review the
 discussions in the text and answer these questions (Jha 1972):

(a) Suppose these statistics are gathered for York County, Pennsylvania dur-
ing the 1940–1945 period. The number of births is 2,000 and the number
of deaths is 500. The average population for the period is 210,000. There
were 1,400 people migrating to York and 1,295 migrating out. Define the
following terms for a certain forecast time period: crude birthrate, crude
death rate, and net migration.

Whiteman AFBTract/zone

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

3

3

10

17

9

6

10

12

17

19

17

25

30

26

30

20

15

16

17

26

24

26

26

28

Warrensburg

12

10

8

17

25

13

7

17

1

9

7

8

16

20

14

20

28

22

23

24

38

35

35

35

37

Sedalia

20

18

22

10

10

23

24

23

28

30

27

32

43

45

43

46

1

12

7

17

15

10

8

8

12

Knob Noster

3

1

3

8

15

7

4

12

10

17

17

15

23

30

26

30

18

15

14

15

25

23

25

25

28

aIn integral miles (or multiples of 1.6 km).

Table E.4  COMMUTING DISTANCESa TO EMPLOYMENT CENTERS
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Civilian/non-DODEmployment distribution

Warrensburg
Sedalia

Knob Noster
Whiteman AFB

Civilian/DOD

Civilian/non-DODTrip distribution

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

400
800
100
241

0.55
0.1
0.05
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0
0
0

Military

Military

400
500
100

2045

0.2
0.05
0.2
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.08
0.165
0.01
0.01
0.01
0.0015
0.025
0.05
0.25
0.14
0.005
0.001
0.001
0.001
0.001
0.0005
0.0005
0
0
0.0005
0
0
0
0
0
0
0
0
0

Civilian/DOD

0
0
0

355

0
0
0.08
0.05
0.01
0.05
0.01
0.01
0.01
0.01
0.01
0.25
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.37
0.02
0.01
0.01
0.005
0.005
0.005
0.005
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.005
0.005
0.005
0.005

Table E.5  TRIP DISTRIBUTION AND JOB PROFILES AT THE EMPLOYMENT
CENTERS
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(b) Check the population for females in 1945 in York County,
Pennsylvania by the cohort survival method. Use the population
 statistics shown in the  following table. Note that these numbers are
in hundreds, i.e., 10 means 1000.

Age 0–4 5–9 10–14 15–19 20–24 25–29 Total

1940 10 14 15 18 22 24 103

1945 7 10 12 14 16 21 80

The entries in this table represent the number of people in each age group. The surviving
ratio of the 0–4 year group is 98% and the percentage of female children is 49%. The fertil-
ity rate of the 15–19 year group is 43%; the rate for 20–24 groups and 25–29 groups is 56%.

VII. TERM PROJECT
As a capping stone, the purpose of this term project is to

(a) Show how Multi-criteria Decision Analysis can be used in spatial
 information technology such as image processing.

(b) Demonstrate the practical use of a Bayesian classification model
coded in MATLAB and provided in the book CD/DVD under the
PATTERN directory.

(c) Demonstrate via real-life example that is downloaded from the NOAA
GOES satellite dish using the GVAR image-acquisition software.
Alternatively, a real-life image can be obtained from the default sam-
ple image called TESTG, or other sources, including the collection of
satellite images on the book CD under the folder  IMAGEFILES.

Step 1.

Organize the class into individual teams as follows:

Name 1
Team 1 Name 2

Name 3

Name 4
Team 2 Name 5

Name 6

Name 7
Team 3 Name 8

Name 9

Name 10
Team 4 Name 11

Name 12

Name 13
Team 5 Name 14

Name 15
Etc.

Professional responsibility dictates that each team member participates.
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Step 2.

Please review the following documents:

1. Read Chapter 3, Section VII.E, in our textbook on “Bayesian classi-
fier,” and try to understand these concepts.

(a) Use an observed distribution to estimate the underlying distri-
bution of a set of data.

(b) Review a bimodal distribution of gray-value intensities as a
 precursor to the Forest vs. Lake classification example.

(c) Relate the methodology to the Forest-Lake example in the
 following reading assignment.

2. Read Chapter 6, Section VIII, in our textbook on “Pattern Recognition,”
and try to understand these concepts:

(d) Spectral Classification vs. Spatial/Contextual classification
(e) Spectral Classification example
(f) Spatial Classification example

3. Read Chapter 6, Section IX, in our textbook on “District Clustering
Model,” and try to understand these concepts:

(g) The Benabdallah-and-Wright model
(h) Apply the model to analyze the Washington DC Mall image.

Step 3.

1. Now answer the trailing questions briefly and to the point. The only
exception is Question 4, in which annotated output of the computer
runs are required, both in hard copy and software copy.

2. Write a technical paper to systematically document the theories,
methods, as well as the results based on a satellite imagery pro-
vided as part of the software. In other words, embed answers to the
questions in Part 1 as a complete technical essay. The paper should
be typewritten and submitted in both hard and soft copies.

Part I of the Project

REFER TO FIGURE 6.24, ENTITLED “CONTEXTUAL VS. NON-CONTEXTUAL IMAGE

 CLASSIFICATION.”
Question 1: The above Figure illustrates the difference between spectral vs. contex-
tual classification of an image. Can you explain these two terms in your own lan-
guage?

REFER TO FIGURE 6.23, ENTITLED “PDF IN BAYESIAN CLASSIFIER.”
Question 2: We used a Bayesian classifier to perform a combined spectral and
contextual classification. Explain in your own terms how this is  applied toward
the  example on Lake vs. Forest pixels as shown by the previous and following
 illustrations.
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REFER TO THE TWO-CLASS “42-PIXEL IMAGE” EXAMPLE WORKED OUT IN CHAPTER 6
SECTION VIII.B, ENTITLED “CONTEXTUAL ALLOCATION OF PIXELS,” and also
FIGURE 6.33, ENTITLED “SPOT SUB-IMAGE GRAY VALUES”
Question 3. Aside from Bayesian decision theory, multi-criteria optimization has
been employed to perform image classification, as illustrated in Figure 6.33 on
SPOT image of the Washington DC Mall. Can you explain the results as shown
in the three frames for Channels 1, 2, and 3?

Part II of the Project

REFER TO FIGURE E.4, ENTITLED “K = 2 IMAGE CLUSTERING.”
Question 4. Under the directory PATTERN, a MATLAB program has been 
provided on the CD/DVD to perform the k-medoid classification based on
multi-criteria optimization and Bayesian  decision theory, as illustrated in the
above Figure E.4 example. Based on this demonstration of a k-Medoid
Algorithm, please run the k-Medoid software, IMGKMED, for the GOES satellite
image “TESTG” as provided on the CD/DVD. Assisted by the trailing
 instructions, please

(a) Execute the algorithm for k = 3 until it converges. Explain how you
know it converges. In the MATLAB IMGKMED algorithm, the
placement of your “seed” medoids is random. Correspondingly, you
would expect the number of iterations to reach convergence differ-
ent from one run to  another, even for the same initial image.

(b) Perform three runs corresponding to the following weight sets and
 discuss the differences between your results.

(c) Discuss the possible application of the k-medoid classification
 technique in terms of preventing natural hazards such as storms. 

0

1

0

0

0

2

1

2

2

0

2

4

5

1

0

2
4
3
2
1

1
2
2
1
0

0 0 0 0 0 1

2

2

2

2

2

2

2

2

2

2

2

1

1

2

2

2

1

1

2

2

2

2

2

2

2

2 2 2 2 2 2

2

2

2

2

2

0
0
0
1
0

Figure E.4  k = 2 IMAGE CLUSTERING
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▫ Open the MATLAB software.
▫ Go to the directory/folder in which you have placed the IMGKMED folder.
▫ At the command line, enter IMGKMED.
▫ Press the “Load image” button.
▫ Select the “TESTG.BMP” file.
▫ Set k = 3.
▫ Set the weights for “proximity” or for “Channel 1” (monochromatic

grayscale) by moving the lever of the weight scale.
▫ Determine the number of iterations required to reach convergence.
▫ Execute by pressing the “Cluster” button.

Notice that since the provided image(s) is black and white, channels 2
and 3 are nonfunctional. It is suggested that you leave the setting for “Proximity”
at the half way point when you start out. For simplicity, please leave the 
channels 1, 2 and 3  settings to the middle point (50–50), and only change w1 and
w2 (the “proximity” setting). When you run the IMGKMED software, make sure
you re-load the original “test” image every time. In other words, anytime you
change your input parameters, such as the number of iterations, you need to 
re-load the “test” image. Otherwise, erratic behavior will result from the
IMGKMED software.

Question 5. Pick a downloaded, image-processed satellite image other than the
“testg.bmp” file. Can you speculate how that image is actually constructed?
Please simply pick the IVHRR image in the IMAGEFILES folder on the
CD/DVD and  analyze it. (By the way, the disk that comes with the book has a
lot more images. The disk also contains an image-processing software called 
TS-IP, complete with a User’s Manual.)
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Appendix 1
Control, Dynamics, and System Stability

While the main body of the text concentrates on Location Theory and Decision
Analysis, there are some computational aspects of model solution that the read-
ers may wish to review. Four appendices are provide here for that purpose. The
first appendix follows our self-instructional module on “Empirical Modeling”.
In this appendix, we review the basic theories that govern the evolution of com-
plex systems, wherein systems transition from one state to another over time.
Systems may evolve on their own or external influence may be brought to bear
upon their development. In both cases, there can be smooth transitions as well as
precipitous happenings. We discuss the conditions under which a system may
change between these two types of evolution—namely from smooth to
 precipitous changes and vice versa. Most importantly, we wish to effect these
changes where we can, so as to direct the development toward a desired goal.

Stochastic, nonlinear system is a powerful tool for location theory and
 decision analysis. We have seen an example in Chapter 4 under the topic of
“Optimal Control of Spatial Interaction.” Other examples can be found under
“Economic Base Theory,” “Facility Expansion,” and “Competitive Location and
Games.” These are scattered throughout this book and the accompanying
CD/DVD. For the curious, Chan (2005) applies the methodology in depth while
discussing the “Garin-Lowry Model” and “Spatial Equilibrium”.

I. CONTROL THEORY 
The concept of control theory was introduced in Appendix 3, where an example of
inventory control was worked out in the context of vehicle dispatching. In the
 example, trucks deliver a stock of cargo X(t) at the loading dock over the afternoon
between hours t0 and t1. The cargo is to be airlifted to a destination. We wish to
 construct a schedule to minimize operating cost and schedule delay. The problem
was solved by discrete dynamic programming, wherein the optimal dispatch
schedule as indicated by the control variable U(t) is determined. Here we will
 generalize and  ormalize the results in a more systematic way using control theory
(Silberberg 1990).

The general form of a control theory problem is expressed as a maxi-
mization problem instead of minimization:

Max �t1 f(X(t), U(t), t) dt (A1.1)
U(t) t0

subject to the state equation1

465
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Ẋ(t) � g(X(t), U(t), t) (A1.2)

with end-point conditions X(t0) � X0, X(t1) = X1 (or X(t1) free) and some control
set {U(t)} or the set of decision variables. The time between t0 and t1 is called the
 planning period. In many important problems, t1 tends to infinity, or the planning
horizon is far out into the future. End-point conditions vary depending on the
problem context. Typically the initial stock of the state variable X is fixed, although
the final stock may not be. In addition, there may be restrictions on the variables,
such as non-negativity on the state X, and perhaps inequality bounds on the
 control variable U. An example of such inequality bounds is the 0–1 valued dis-
patch or hold policy 0 � U � 1 at each time the dispatch decision is renewed.

Let us ignore for the moment how the control problem is solved, but
 assume that finite interior solution (U*(t), X*(t)) does exist, in other words, a time
path that leads from X0(t0) to X1 (t1) as defined by the control set {U(t)}. The
value (U*(t), X*(t)) represents the optimal time paths of the control variable U
and the state variable X. Although we are suppressing it in the notation, X* and
U* in fact depend on the initial parameters X0, t0, and so forth. Thus in the cargo
dispatching example, the amount of cargo at the dock at the starting time t0
 defines the  ultimate dispatching policy. Denote the resulting value of the objec-
tive  functional (objective function) as F(X0, t0), that is

F(X0, t0) � �t1f (X*(t), U*(t), t) dt (A1.3)
t0

where a functional f(�) is defined as a function that has a domain whose elements
are functions, sets, or the like, and that assumes numerical values. Although
Equation A1.1 requires us to find an actual path as specified by the function
(U*(t), X*(t)), this maximizes an integral function, which once found results in
some ordinary maximum expressed in terms of the parameters of the model.
(Notice we suppress t1 here in Equation A1.3, as the parameter is not germane to
the present discussion). 

Given the initial state X0, a marginal value of the stock exists for any time
t between the initial time t0 and the terminal time t1. Denote this imputed value
by the equivalent of the Lagrange multiplier (or the dual variable) �(t) � FX(X*(t),
t), where FX stands for the derivative of F with respect to X. This marginal value of
the stock, �(t), is often referred to as the costate or adjoint variable in control theory.
The change in the value of the stock caused by dispatching is d[�(t)X(t)]/dt � �Ẋ�
X�̇. The true net benefit of dispatching at some schedule U(t) is the sum of the ben-
efits in the present, f(X, U, t), and the change in the maximum value of the stock
caused by executing that schedule in the present. The optimal path is obtained by
always setting the true marginal net benefits equal to zero along the entire  optimal
path of values (U*(t), X*(t)). Thus, we can characterize this solution to the control
problem as requiring that, at each time instance t (t0 � t � t1), the first  derivative
of F with respect to t be maximized, or for a continuous function F

Max [ f(X, U, t) � �Ẋ� X�̇ ] (A1.4)
U, X

Using the state Equation A1.2, this becomes

Max [ f(X, U, t) � �g (X, U, t) � X�̇ ] (A1.5)
U, X
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We suppress the dependence on t at this point because we have not yet found the
functions (U*(t), X*(t)) and expressed them as functions of t. Differentiating with
respect to the control variable U and the state variable X yields

fU � �gU � 0 (A1.6)

fX � �gX � �̇� 0 (A1.7)

Equation A1.6 is called the maximum principle; Equation A1.7 is called the
costate or adjoint equation. These two conditions plus the state equation Ẋ�
g(X, U, t) are the necessary conditions for an optimal path (U*(t), X*(t)) of control
and state variables over the planning period. Also determined is the path of
 marginal values of the stock, �(t).

Equations A1.6 and A1.7 are generally expressed in terms of the expres-
sion H � f � g, called the Hamiltonian. The maximum principle is ∂H/∂U � 0
 (assuming an interior solution to the problem) while the adjoint equation is
∂H/∂X � ��̇. In the original problem, given the initial stock level, X0, choosing 
U(t) determines the state equation Ẋ (t) and thus the state variable X(t). There is
 really only one independent variable, U, in this control problem. However, the
 introduction of the new variable �(t) adds another degree of freedom; as in static
Lagrangian analysis, we pretend the problem has one more dimension than it
 actually has.

Using the maximum principle, Equation A1.6, which is not a differential
equation (in other words, equation containing derivatives of t), and invoking the 
implicit function theorem of calculus, we can solve for U: U � k (X, �, t). Substituting
this into the state and adjoint equations produces two first-order equations and

Ẋ � g(X, k(X, �, t), t) (A1.8)

and

�̇� �fX (X, k(X, �, t), t) � �gX (X, k(X, �, t), t) (A1.9)

Solving these differential equations (and using the relevant end-point conditions
to evaluate the constants of integration) yields the optimum path of X and �.
Using the solutions to these equations—by substituting them into k (X, �, t)—
yields the optimum path of the control variable, U. The reader can see the close
parallel  between control theory and dynamic programming as explained in
Appendix 3.

Example
Consider the optimal control problem

Max  �t

0
(�X � �

1
2

� �U2) dt

subject to Ẋ� U, X(0) � X0, X(1) � X1, where � 	 0 is a parameter for this prob-
lem. The Hamiltonian for this problem is H(X, U, �) � �X � �

1
2� �U2 � �U. Assuming 

an interior solution, the necessary conditions are ∂H/∂U � ��U � � � 0 and
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∂2H/∂U2 �  � � � 0. By assumption � 	 0, so ∂2H/∂U2 
 0. Solving ∂H/∂U � 0
for U gives U � �/�. The other necessary conditions are the state and adjoint equa-
tions Ẋ� ∂H/∂� � U, �̇� � ∂H/∂X � 1. Using U � �/� in these equations yields,
Ẋ� �/�, X(0) � X0, X(1) � X1, and �̇� 1. Integrating �̇� 1 directly gives �*(t) � 
t � c1, where c1 is an unknown (as of yet) constant of integration. Substitute �*(t)
in �/� to get Ẋ� (t � c1)/�. Integrating this equation yields X*(t) � t2/2� �
c1t/� � c2 where c2 is another constant of integration. The constants of integra-
tion c1 and c2 are determined by using the initial and terminal conditions X(0) �
X0 and X(1) � X1, respectively. Use X(0) � X0 in X*(t) to get X*(0) � c2 � X0. Now
use X(1) � X1 to obtain the value of c1: X*(1) � �2

1
�
�� c1/� � X0 � X1; thus c1 � 

�(X � X0) � �
1
2�. These constants of integration are then substituted in (X*, �*) to

yield their optimal paths, and then �* is substituted into U � �/� to give the
 control’s optimal time path. Doing this gives the solution of

X*(t; �, X0, X1) � �
2
t
�

2

� � �(X1 � X0) � �
2
1
�
�� t � X0 (A1.10)

�*(t; �, X0, X1) � t � �(X1 � X0) � �
1
2

� (A1.11)

U*(t; �, X0, X1) � �
�

t
�� (X1 � X0) � �

2
1
�
� (A1.12)

Notice how the state, control, and marginal values are all expressed as functions
of one single variable, time t, in the final solution. ■

II. CALCULUS OF VARIATIONS 
Let us consider a special case of the control problem where Ẋ� g(X, U, t) � U.
That is, the time rate of change of the stock is identical to the control variable,
rather than some general function g(·) that might also include the stock itself and
time. Simply put, control activity is in direct proportion to (and equal to) the rate
of accumulation or depletion. Control in this case is the degenerate case of “going
with the flow.” Now substitute this state equation U � Ẋ into the integrand f(·)
in Equation A1.1. The result is the following objective functional

Max �t1

t0
f(X, Ẋ , t) dt (A1.13)

We call this problem the calculus of variations (Silberberg 1990).  In this problem,
we determine a function f(·) such that a certain definite integral involving that
function and certain of its derivatives takes on a maximum or minimum value.
Notice this special case of the general control theory problem has been illustrated
by the numerical example worked out above, where U is exactly set to Ẋ . The
corresponding solution maps out an optimal path as specified by the state vari-
able X(t) in Equation A1.10.

In this special case, the necessary conditions for a maximum (or mini-
mum) are as follows. Remember the maximum principle is HU � HẊ � fẊ� �gẊ �
0. However, gẊ � gU � 1 here, so this condition becomes
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fẊẊ � �� (A1.14)

Similarly the adjoint or costate equation is

H X � fX � �gX � fX � ��̇ (A1.15)

recognizing gX � ∂U/∂X � ∂Ẋ/∂X � 0. Since the right-hand side of the adjoint Equation
A1.15 directly above is the time derivative of the right-hand side of Equation
A1.14, these two equations can be combined into dfX /dt = ∂f /∂X Carrying out the
differentiation in the above equation results in the equivalent expression

fẊẊ (X, Ẋ , t) � fẊ̇ t�fẊ̇  X �fẊ̇  Ẋ Ẋ̇ (A1.16)

This is the classic Euler-Lagrange equation defining the necessary condition for
an optimal path. Solutions of this equation are known as extremals and an
 extremal which satisfies the appropriate end conditions at t0 and t1 is called a
 stationary function. Application of Equation A1.16 results in a second-order
 differential equation (except for special cases), whereas the necessary conditions
of control theory result in the first-order simultaneous Equations A1.8 and A1.9.
There is no uniform computational advantage to one approach over the other.
However, the Euler-Lagrange equation is difficult to interpret, while the control
theoretic equations often provide useful characterizations of the dynamics of
 spatial economic models.

Example
Take the control theoretic numerical example shown in the above section, where
f(·) � �X � �

1
2�  �Ẋ 2. According to the Euler-Lagrange equation one can verify by

regular calculus that fX � ��Ẋ where fX � �1. Solving the second-order differ-
ential equation Ẋ̇ � 1/� with the end-point conditions X(0) � X0 and X(1) � X1
yields the same solution as worked out previously. The solution is identical to
Equation A1.10, as one would expect. ■

III. VARIATIONAL INEQUALITY 
Obviously, both control theory and the calculus of variation are tools to analyze the
optimality conditions of functionals. A general condition that encompass both of
these techniques can be stated: Let f(x) be a functional on a normed (regular) vector
space Ω, it has a directional derivative at xq, and Ωq � Ω be convex. A necessary
 condition for xq � Ω to be a maximum of f on Ωq is that for all xq � Ωq, the gradient
∇f T(x) � (∂f/∂x1, . . . , ∂f/∂xn) (or the generalization of the first derivative) of f(xq, x �
xq) is less than or equal to a zero vector (� 0). This condition is illustrated for the
 maximization and minimization over a two-dimensional case in Figure A1.1. In the
unconstrained case, the necessary optimality conditions are that the gradient of f(xq, y)
is equal to a zero vector (0) for all y in Ω, where y � (x � x q).We call these  variational
equalities. In the constrained case, the optimality condition is called variational
 inequalities (Minoux 1986). Though these results are straightforward to establish,
they constitute the foundation of the calculus of variation. In fact it can be shown that
they make it possible for us to derive the necessary optimality conditions known as
the Euler-Lagrange equation for an interior (unconstrained)  optimum.
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A. Fundamentals
We can provide a formalization of the above discussion: Let f be a smooth real
valued function on the closed interval Ωq � [a, b]. We seek the points xq � Ωq for
which f(xq) � Min x�Ωq

f(x) (Kinderlehrer and Stampacchia 1980). Three cases can
occur for the two-dimensional case as shown in Figure A1.1: (a) if a 
 xq 
 b,
then ḟ(xq) � 0; (b) if xq � a, then  ḟ(xq) � 0, and (c) if xq � b, then  ḟ(xq) � 0. These
statements can be summarized by writing

ḟ(xq)( x � xq) � 0      ∀x � Ωq (A1.17)

Such a set of relationships will be referred to as variational inequality illustrated
here in two dimensions.

Let f be a smooth real valued function defined on the closed convex-set Ωq
of Euclidean n-dimensional space. Again we shall characterize the points xq � Ωq
such that f(xq) � Min x�Ωq

f(x). Assume xq is a point where the minimum is achieved
and let x � Ωq. Since Ωq is convex, the segment (1 � w)xq � w(x � xq), 0 � w � 1, lies
in Ωq.The function F(w) � f(xq � w(x � xq)), 0 � w � 1, attains its minimum at w � 0.
Analogous to the two-dimensional case above, Ḟ(0) � ∇fT(xq)(x � xq) � 0 for any 
x � Ωq. Consequently, the point xq satisfies the variational inequality 

xq � Ωq: ∇f T(xq)(x � xq) � 0      ∀x � Ωq (A1.18)

Figure A1.1  ILLUSTRATION OF VARIATIONAL INEQUALITY

a a < xq < b a < xq < b

Gradient  0
for constrained
Minimum

Gradient  0
for unconstrained
Maximum or Minimum

Gradient  0
for constrained
Maximum

b

f (x )

xq
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If Ωq is bounded, the existence of at least one xq is immediate. 
It should be noted that the above two cases—two and n-dimensional—

can be solved by means of calculus since they depend on a finite number of vari-
ables. Many optimization problems have unknowns beyond a finite number of
n variables. Consider a function u(t) of the real variable t on some interval [a, b].
Since the graph of the function u is defined by infinite pairs of [t, u(t)], we shall
say that we are dealing with an optimization problem in infinite dimension. We
have already encountered this in control theory, where u(t) � U(t) is the control
variable over time t. In this case, there are an infinite number of control paths
U(t) between the initialpoint t � a and end-point t � b. More generally, we shall
see that such problems can be formulated in the following way. Given a vector
space Ω of (infinite dimension) and a functional f on Ω, find u* such that for a
minimization problem, f(u*) � f(u), u � Ω, for unconstrained optimization, or
such that f(u*) � f(u), u � Ωq � Ω, for constrained optimization over a convex
 region. At this point, we will illustrate an application of variational inequality in
an infinite dimensional space. The following example is similar to a problem of
the calculus of variations.

Example
Let Ω be a bounded domain with boundary �Ω and let � be a given function on
Ω � Ω � Ω satisfying maxΩ� � 0 and � � 0 on �Ω. Define Ωq � {y � � in Ω and
y � 0 on �Ω}, where y is a function continuously differentiable in Ω. Notice this
is a convex set of functions that we assume is not empty. We seek a function u �
Ωq for which �Ω |∇u|2dx � �x

m
�

i
Ω
n

q
� �Ω |∇y|2dx.2 Assuming such a y function to exist,

we argue analogously to our previous discussion relying again on the convexity
of Ωq. For any y � Ωq, the sequence u � w(y � u) � Ωq, 0 � w � 1, whence the
function f(t) � �Ω |∇(u � w(y � u))|2 dx, 0 � w � 1, attains its minimum at w �
0. This implies that ḟ(0) � 0, which leads to the variational inequality

u � Ωq : �Ω ∇uT ∇(y � u) dx � 0      ∀y � Ωq (A1.19)

Intervening here is the point set {x � Ω: u(x) � �(x)}. Its presence distin-
guishes u from the solution of a boundary value problem such as the end-
point conditions imposed on the Euler-Lagrange second-order differential
 equation. As mentioned, one can interpret u as the height function of the equi-
librium  position of a thin membrane constrained to lie above the body {(x, xn�1):
xn�1 � �(x), x � Ω} and with fixed height zero (� � 0) on the boundary �Ω. In
 spatial economics, we may have a market defined within a geographic boundary.
The consumers in this market are charged a price of �, which is to be maximized.
Conventional business practice dictates, however, that the price be as uniform as
possible within the defined market such that market equilibrium results. ■

B. Existence and Uniqueness 
Variational inequalities are general formulations that encompass a plethora of
mathematical problems, including, but not limited to, optimization and comple-
mentarity problems. Variational inequalities were originally developed as a tool for
the study of certain classes of partial differential equations (equations containing
partial derivatives) such as those that arise in mechanics. A membrane example has
been shown above. Such problems were defined over infinite dimensional spaces.
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We focus here, however, on the finite-dimensional variational-inequality problem,
mainly defined for economic equilibrium applications (Nagurney 1993).

In geometric terms, variational inequality, Equation A1.18, states that the
gradient ∇f T(x) is orthogonal to the feasible convex set Ωq at the point xq. This
 formulation is particularly convenient because it allows for a unified treatment
of equilibrium problems and optimization problems. For example, the varia-
tional inequality problem can be shown to contain the complementarity problem
as a special case. The nonlinear complementarity problem, introduced earlier as
part of the Karash-Kuhn-Tucker condition in Chapter 4, is a system of equations
and inequalities stated as: Find xq � 0 such that

∇f(xq) � 0 and ∇fT(xq) xq � 0 (A1.20)

Whenever ∇f(x) � A�x � b, where A� is an n � n matrix and b is an n � 1 vector,
Equation A1.20 is then known as the linear complementarity problem. 

Variational inequality theory is also a powerful tool in the qualitative
analysis of equilibria. Existence of a solution to a variational inequality problem
follows from continuity of the function ∇f(x) entering the variational inequality,
provided that the feasible set Ωq is defined in the real space. It can be shown that
variational inequality (Equation A1.18) admits a solution if and only if there
 exists a bounded solution xq. Qualitative properties of existence and uniqueness
become easily obtainable under certain monotonicity conditions. For example, if
∇f(x) is strictly monotone on Ωq, then the solution is unique, if one exists.

Monotonicity is closely related to positive definiteness, in other words,
the generalization of a positive second derivative, where positive definiteness is
defined to be the value of

xT∇2f(x) x � xT ��∂∂x

2f

i

(
∂
x
x
)

j
�� x (A1.21)

Let x � (←xi→) T be a vector of decision variables and F�(x) � (←Fi(x)→)T be a
 vector of functions for i � 1, . . . , n. These functions are characterized by asym-
metric interactions ∂F�i (x)/∂x j � ∂F�j (x)/∂xi (i � j). Suppose that ∇F�(x) � Ḟ�(x) is
continuously differentiable on Ωq. Let us further suppose the Jacobian matrix (or
the generalization of the gradient for asymmetric interactions)

�
∂
∂
F
x
�

1

1� ... �
∂
∂
F
x
�

n

1�

. .
Ḟ�(x) � � . . �. .

�
∂
∂
F
x
�

1

n� ... �
∂
∂
F
x
�

n

n�

which need not be symmetric, is positive semi-definite (or the expression A1.21
for F�j (x) is greater than or equal to zero). Then Ḟ(x) is monotone. If the function
is positive definite (or expression A1.21 is strictly greater than zero), then Ḟ(x) is
strictly monotone.
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Example
Given the Jacobian matrix

∇F�(x) � Ḟ�(x) � � �
∂
∂
F
x
�

1

1
� �

∂
∂
F
x
�

2

1
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�
∂
∂
F
x
�

1

2
� �

∂
∂
F
x
�

2

2
�

and the Hessian is

∇2F�
1(x) � � �

∂
∂

2

x
F
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2

1

F
∂
�
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1

2
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2
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2
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xT∇2F�1x � (x1 x2) � ���
x
x

1

2
�� � 4x1

2 � 6x2
2 	 0

excluding the origin (0, 0). If it can be shown that the Hessian of the other three
 entries of matrix Ḟ� is also positive definite, then Ḟ� is strictly monotone. If this is
true for the entire convex feasible region Ωq, then the solution to the correspond-
ing optimization problem is unique. ■

IV. CATASTROPHE THEORY 
Let X be a set of state variables describing some system—the dependent variables
to be predicted in a model—and let U be a set of variables one can control. Then in
a gradient system,3 the equilibrium position is determined by

Min f(X, U) (A1.22)
X, U

This concept has been introduced in the previous section on control theory. The
dynamics of the process is given by ∂f/∂X � ∇f and the minimum of f, of course, 
occurs when

∇f � 0 (A1.23)

The appearance of the gradient ∇, of the potential function f explains the name
of this type of system (Wilson 1981; Lorenz 1993).

The solution to Equation A1.23 gives the equilibrium point, which mini-
mizes the potential function in Equation A1.22. As U varies, this determines a
 surface in the space (X, U). This is a surface representing possible equilibrium states
of the system. If, for example, there is a single state variable X and two  control vari-
ables U1 and U2, then this will be a surface in the three-dimension space (X, U1, U2).

2x1
2 � x1 � 3

.

x2
2 � 6x2 � 6 .

.

4 0
�
0   6

4 0
�
0   6
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In this context, distinction is often made between a slow variable and a fast variable.
Correspondingly, one may attach the time argument t behind the variables, which
now read as X(t) and U(t). By convention X(t) is a fast variable and U(t) a slow
 variable. Correspondingly, one can think of U as a set of parameters influencing X.
For a smooth, slow and small change in one or more of the U variables, a corre-
sponding smooth change in the state variables X can be  anticipated. For this to
occur, the surface in (X, U) space of equilibrium solutions has to be itself smooth and
not folded in any way. It has long been recognized that when, for a given U, there
are multiple solutions for X, then something more  complicated can occur. The
essence of catastrophe theory is the classification of these complications and
the proofs that, in a number of cases, they fall into a small group of basic types.

A. Basic Concepts
The solutions of Equation A1.22 or equivalently Equation A1.23 are the stationary
points of the function f or, more precisely, of a family of functions of X (the fast
 variables), parameterized by U (the slow variables). Stationary points are often max-
ima or minima, which are distinguished by, in the single state variable case, the sec-
ond derivative of f being negative or positive respectively. (In the multi-state variable
case, the corresponding result is that the Hessian matrix or the generalized version
of second derivative is negative or positive definite, respectively, as  mentioned ear-
lier in this appendix.) When stationary points are not maxima or minima, the second
derivative is zero or the Hessian matrix is singular. Such equilibrium points are
known as singularities and it is at and near such points that  unusual system behav-
ior is observed. What catastrophe theory does is to classify the kinds of singularities
that can occur. It has been shown that, for a number of control variables in the vec-
tor U up to or equal to four, the types of singularities, in a topological sense, are
 relatively few. For example, in the case of a single state  variable and two control
 variables, the surface of equilibrium points around a  singularity must be topologi-
cally equivalent to the cusp surface, which is illustrated in Figure A1.2. Application
of the cusp catastrophe is found in the “Chaos, Catastrophe, Bifurcation and
Disaggregation” chapter of Chan (2005) under the “Spatial Dynamics” section.

We can illustrate the possibilities of catastrophe theory using this figure.
The surface of possible equilibrium values describes all possible states of the
 system. A particular behavior of the system is a trajectory on the surface. The
study of such surfaces for particular systems, therefore, allows us to investigate
possible types of behavior, and we know that the surface must in a topological
sense be of the form shown in the figure. The italicized qualification is an impor-
tant one in practice and should be emphasized. It means that the surface of
 possible equilibrium values for a system can be forced into the form of
Figure A1.2 after some smooth transformation of the variables, where necessary.
This is known as a standard, or canonical form. The achievement of the appro-
priate transformation in applied work is often likely to be a very difficult task,
though insights can often be gained without it being carried through explicitly.

Three types of behavior that we are not accustomed to expect are shown
in sample trajectories on Figure A1.2:

(1) a sudden jump (or catastrophe);
(2) hysteresis—a reverse path to some point not being the same as the

starting point; and 
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(3) divergence—a small difference in approach toward, in this case, a 
cusp point, leads the system to the upper or lower surface and 
hence to a very different state.

It can easily be seen that the jump behavior arises from a path in the U-plane that
leads the system to fall from the upper surface to the lower one at a fold (in other
words, a change in state)—or vice versa.

It can also be seen that a fold, and hence jump behavior, arises because
in some regions of U-space, there are multiple equilibrium solutions for X. In
the particular case of Figure A1.2, there is a region in the central part of the
 diagram (at the fold) where there are three possible solution sets for X. It turns
out that the upper and lower surfaces represent stable minima (and hence are
observable) while the central part of the fold represents maxima and hence
 unstable (and unobservable) states. If this fold region is projected vertically
downwards onto the U-plane, we obtain the familiar cusp-shaped section of
that plane. This contains the set of values of U that are critical. Outside the
shaded region, the system only has one state available to it; inside there are two
possible observable states and hence possible conflict. As the boundary of the
critical region is crossed, jumps can take place. We will see later in this section,
and also in Section VI, how this preliminary analysis can be formalized into
 various concepts of stability. We will also see explicitly that, as noted above, the
function f is singular at critical parameter values and that geometrically this can

Figure A1.2  THE CUSP SURFACE

SOURCE: Wilson(1981). Reprinted with permission.
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be identified with folds in the equilibrium surface. In the critical region, where
there are multiple states, some rule has to be assumed, or discovered, about
which state the system actually adopts. This involves a delay convention, which
will be pursued later.

B. Elementary Catastrophes
We can examine the types of singularity in relation to canonical forms of
 functions and exploit the fact that other functions of the same co-rank4 and co-
 dimension5 can then be transformed (locally, in the neighborhood of a point) into
the same form. In general, the canonical forms are polynomials consisting of a
single state variable X, and assuming the form

f(X) � Xm � U1 Xm�2 � U2 Xm�3 � . . . � Um�2 X (A1.24)

The first term, in this case Xm, captures the degeneracy and type of singularity. If
all the U-variables are zero, this can be considered as the lowest order non-zero
term in a Taylor expansion. As the U-variables vary from zero values, the right
hand side of Equation A1.24 approximates the Taylor expansion of a whole fam-
ily of functions. Catastrophe theory essentially says that all other families of
functions with the same number of parameters have singularities of the same
type as the canonical, truncated Taylor expansion. This form is said to represent
a universal unfolding of singularities of this type. Thom’s theorem says that for
m up to six (that is, up to four control variables) this models all functions f of that
co-dimension. It also models the structure of the singularities, in this neighbor-
hood of the function. The canonical form can then be used as a model for the
 singularities of all the functions of this type.

The notion of unfolding can also be expressed in another way, based on
the concept of structural stability, which provides another route into catastrophe
theory. Consider the function

f(X) � X3 � UX (A1.25)

which is a special case of Equation A1.24 with m � 3. This is plotted in Figure
A1.3 for the cases U 
 0, U � 0, U 	 0. When U � 0, f(X) � X3 is not structurally
stable in the sense that the addition (or substraction) of a term UX, however
small U is, changes the shape of the curve in a basic way in the neighborhood of
the origin. The function f(X) in Equation A1.25 when U � 0, however, is struc-
turally stable: it retains its shape under small perturbations. However, f(X) � X3

is said to have a degenerate singularity at X � 0, and the addition of the term UX
is the simplest way to make the function structurally stable.

We noted earlier that catastrophes occur because of the existence of
 multiple minima of the potential function. The behavior manifold is defined as
the surface in (X, U) space that contains the minima of the potential function, the
possible equilibrium states of the system. We can usefully classify different
 possible types of system behavior by focusing on the control manifold, the equi-
librium surface in the smaller dimensional U-space. For each point on the control
manifold, consider the point or points (if any) to which it gives rise on the
 behavior manifold. We can identify regions of the control manifold as follows:
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(1) The region where those values of the control variables generate only
one equilibrium solution, and the behavior of the system is then
well-determined. 

(2) The region where there is more than one solution, discounting for
the time being any region where there may be no solution. (This is
known as the catastrophe set, and it is not immediately clear which
state the system adopts, additional information must be supplied.)

(3) The bifurcation set, which is the set of points that separates the 
catastrophe set from the “single solution” set. (It is the critical 
set of points at which a minimum disappears. It is at such points
that the system must jump to another state, and hence branch or
 bifurcate).

Notice these concepts have been illustrated in the cusp surface Figure
A1.2. The precise behavior of the system for control points within the catastro-
phe set is determined by a delay convention as mentioned. This is a rule that
must be supplied to determine which of the multiple possibilities the system
adopts. The two most common are first, perfect delay, which means that the
system stays in its original state until that state disappears as the trajectory
leaves the bifurcation set; and second, the Maxwell convention, which assumes
that if more than one minimum is available, the system chooses the state that
represents the lowest. In the perfect delay case, jumps take place as the trajec-
tory crosses the bifurcation line, as noted. In the Maxwell case, the region of
 interest is the so-called conflict set, defined as the points on the control manifold
at which two or more minima take equal values. This has been illustrated in
Figure A1.2 for the cusp case. With perfect delay, system behavior can be asso-
ciated with thresholds that the system must cross before a change. In the case of
the Maxwell convention, the conflict set can be seen as a traveling wave that is
the basis for morphogenesis (or structural development), which is particularly
important where the control variables are taken as representing space and time
(three space coordinates and one time coordinate). It is in this context that the
traveling wave concept plays a key role in applications.6

Figure A1.3  ILLUSTRATING STRUCTURAL STABILITY
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C. The Fold Catastrophe as an Example
The simplest of elementary catastrophes is the fold. It is the universal unfolding
of the singularities of X3 and its potential function is f � X3/3 � UX for a single
state variable X and a single control variable U. The possible equilibrium states
of this system are those for which f is a minimum, and we can find this by set-
ting the derivative to zero: df/dX � X2 � U � 0. This has solutions X � � 	�
U
,
and we note that the second derivative is d 2 f/dX2 � 2X. Since the derivative is
positive for positive values of X and negative for negative values, the minima
occur for the positive values and the maxima for negative values. The solution
also shows that real roots only exist for negative U. This information is dis-
played in Figure A1.4, which shows a parabola. The top half has been shown as
a solid curve, because it represents the minima and the stable, observable states
of the system. The bottom half is in dashed lines; it represents the maxima,
which are unstable and unobservable.

We can now illustrate the general argument in the previous subsection
by this simple example. The function f is a canonical representation for any func-
tion with a singularity of co-rank 1 at the origin and of co-dimension 1. (In other
words, d2f/dX � 2X is a first-order polynomial that vanishes at the origin, and
there exists only one control variable.) In this case, since we have only one state
variable and one control variable, the whole picture of possible equilibrium
 values—the singularities of f in the neighborhood of the origin, can be repre-
sented in two dimensions as shown in Figure A1.4. The control manifold, the
projection of the (X, U)-manifold onto the U-manifold, is in this case simply
the horizontal axis. There is no catastrophe set because there are no points on the
horizontal axis at which there are two or more values of X for which f is a mini-
mum. The bifurcation set is also very simple: it is the single point at the origin,
because here an observable minimum disappears. It is at this point, therefore,

U

XX 
2 + U  0

Stable states

Unstable states

Legend

SOURCE: Wilson(1981). Reprinted with permission.

Figure A1.4  EXAMPLE OF A FOLD CATASTROPHE
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that jump behavior can be observed. If the system is in a state given by negative
U and on a trajectory in which U is increasing, then as U passes through zero, the
stable minimum  equilibrium-state disappears, and the system will have to take
up some other state not accounted for by this diagram. 

Because there is no area of the control manifold that produces multi-valued
solutions, we cannot illustrate directly the concepts of delay conventions, conflict
sets, and so on. However, we can see by reference to the fold catastrophe example
in the book CD/DVD under the YiChan directory and in the “Activity Allocation
and Derivation” chapter of Chan (2005) that even in this case, states can be added
in the particular application that do create multi-valuedness. The example 
mentioned was concerned with the emergence or otherwise of spatial structure,
namely whether or not to develop a housing project. Obviously delay conventions
and associated concepts for thresholds are very important in this context. 

One other technique can be introduced at this stage that gives more
 insight into the workings of catastrophe theory. Plots such as Figure A1.4 give the
equilibrium values for X and U but do not show what is happening to the func-
tion f in the neighborhood of these values. This can be depicted on another form
of diagram as illustrated in Figure A1.3: structural stability. For typical values of
the control variable—in this case U 
 0, U � 0 and U 	 0—we can plot f against
the state variable, in this case X. In the U 
 0 case, the minimum (occurring at a
positive value of X) can easily be seen as can the way in which the plot of f
against X changes as U increases from a negative value. At U � 0, the graph is an
obviously limiting case: the maximum and minimum have fused to form a point
of inflexion, while for U 	 0, the stationary points have clearly disappeared.

D. Higher Order Catastrophes
Aside from the fold and cusp catastrophes, there are other potential functions
where catastrophes could occur. Of these, the seven elementary catastrophes are
listed in Table A1.1. The table gives the number of state variables, the number of

State
variables

Control variables/
Co-dimension

1

1

1

2

2

1

2

Name

Fold
a

Cusp

Swallow tail a

Hyperbolic a umbilic

Elliptic
a umbilic

Butterfly 

Parabolic umbilic

1

2

3

3

3

4

4

X 1
3 /3 U1 X 1

X1

4 /4 U1 X1

2 /2 U2 X1

X1

5 /5 U1 X1

3 3 U2 X1

2 /2 U3 X1

X 1

3
/3 X 2

3
/3 U1X 1X 2 U2 X 1 U3 X 2

X 1

3
/3 X

1
X

2

2 /2 U1(X 1

2 X
2

2)/2 U2X 1 U3 X 2

X 1

6
/6 U1 X 1

4
/4 U2 X 1

3
/3 U3 X 1

2
/2 U4X 1

X 1

2
X 2/2 X 2

4
/4 U1X 1

2
/2 U2X 2

2
/2 U3X 1 U4X 1

Potential function

a
These unfolding functions are self-duals.

SOURCE: Wilson (1981). Reprinted with permission.

Table A1.1  THE SEVEN ELEMENTARY CATASTROPHES
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control variables, and the potential function that gives the universal unfolding of
that type of singularity. Only the fold and cusp can be given a fully geometrical
treatment because in other cases four or more dimensions would be needed for
equivalent presentations. However, it is possible to generate pictures by portray-
ing two or three dimensions as slices of higher order diagrams. The full treatment
of the remaining elementary catastrophes are available in many other sources
that can be used for reference (Wilson 1981).

The list of elementary catastrophes can be extended slightly by looking
at duals. These exist for three of the entries in Table A1.1: the cusp, the butterfly
and the parabolic umbilic; the rest of the list are self-duals. Duals are constructed
by replacing the function being unfolded by its negative. In effect, this means
that the positions of maxima and minima are reversed as the control manifold is
covered. The self-duals are such because the negative sign can be produced by a
change of coordinates. In effect, a review of Table A1.1 shows that functions that
are wholly even-powered polynomials have duals which are different, while the
rest, including at least one odd-powered term, are not, as replacing X by �X
 produces the required minus sign. (For example, in the case of the fold, X3 sim-
ply becomes �X3 on this transformation.) 

We illustrate briefly the concept of a dual by reference to the cusp. The
potential function in Table A1.1 is replaced by f � �X4/4 � U1 X2 � U2 X and the
equivalent of Figure A1.4 can be used to see what happens when maxima
are turned into minima and vice versa. The only maxima for the cusp surface
were on the middle sheet of the folded section, and so this part of the surface in
the dual becomes the only set of minima and therefore the only observable states.
Thus there is a unique minimum inside the shaded areas of the control manifold
and no stable states outside it. The possible behaviors of the system are therefore
less interesting than that of the basic cusp surface. This particular example of
 catastrophe is also sometimes known as the false cusp. 

Finally, we note the existence and importance of what is called
 constraint catastrophes. These arise as, in effect, extensions of Thom’s theorem.
The theorem is concerned with maxima and minima determined by points of the
potential function where the derivative varnishes. If a model is constructed that
includes constraints, then observable minima may be determined by the
 constraint rather than by vanishing derivatives. This point is illustrated by the
curve shown in Figure A1.5, which shows the effect of a non-negativity
 constraint on a variable. In this case, local maxima or minima often occur on the
boundary imposed by the constraint, and the derivative of the potential function
does not vanish at that point.

E. Remarks
The reader will recall that the title of this appendix is “Control, Dynamics, and
System Stability.” While catastrophe theory contributes toward the subject of
this chapter qualitatively, our focus is really on the more general discussion of
system stability. Toward this goal, we will find that bifurcation theory is more
quantitative in its applications. Indeed it is likely that sudden changes
 addressed by  bifurcation theory are most important in applied work, inasmuch
as most  dynamic systems of interest are not gradient systems. In other words,
the  corresponding differential equation cannot be reduced to the optimization
form ∇f(X) � 0. Typically, such differential equations have a small number of



Control, Dynamics, and System Stability APPENDIX 1 481

isolated equilibrium points, and information about system behavior is pre-
sented as  trajectories on state-space diagrams. A continuous network example
is shown in the “Chaos, Catastrophe, Bifurcation, and Disaggregation” chapter
in Chan (2005). We will turn to these subjects sequentially in the sections below,
starting with time trajectories on state space. Meanwhile, it is interesting to
note that variational inequality may help identify the existence and uniqueness
of equilibria.

V. COMPARTMENTAL MODELS 
We have made a distinction throughout this book between prescriptive and
 descriptive analysis procedures. While the pevious sections of this appendix
have dealt with prescriptive procedures, the techniques involved here are
 specific to the description of systems in terms of processes. Indeed, in this case,
no variational principle, characteristic of the prescriptive approach, seems to
apply. The models currently used can be subdivided in two classes: the
 deterministic models in terms of differential or difference equations and the
 stochastic models in terms of Markov processes or chains. More recently, quasi-
deterministic models in terms of differential or difference stochastic equations
have been developed. These concepts apply readily to compartmental models,
subject of our present discussion (dePalma and Lefèvre 1987; Godfrey 1983;
Seber and Wild 1989).

A. Basics
A compartmental model is concerned with the description of a system divided
into a finite number of subsystems called compartments, between which the fun-
damental units of the system move. The purpose of this model is to describe the
 temporal evolution of the state of the system, which is defined as the number of
units in the different compartments. The compartmental models defined here are

x

f

(a) Local Max at X  0

x

f

(b) Local Min at X  0

Figure A1.5  LOCAL OPTIMA CREATED BY A CONSTRAINT
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intrinsically dynamic because the state of the system is the consequence of the
 various past transitions. The results derived describe the transient (finite time)
and stationary (infinite time) regimes of the models. Moreover, the systems
 considered are concerned with characterizing the state variable in terms of pop-
ulations or units, and special attention is paid to macroscopic behaviors and
 collective phenomena.

The most general form of compartmental equations for a system with n
compartments is:

�
d
d
X
t

i� � �H �i 0 � �
j�i

Hi j�� �
j�i

Hji�� H0i� i � 1, . . . , n (A1.26)

where Xi is the number of units in compartment i; H�ij is the flow rate from com-
partment i to compartment j and the subscript 0 denotes the environment.
Notice here that the flow rate H� is usually a function of the state variables, in
other words, H�(X1, X2, . . . , Xn). If the flow rates from all compartments to the
 environment are zero (H �i 0 �0, i � 1, . . . , n), the system is said to be closed; oth-
erwise it is open. Equation A1.26 is illustrated for two of the n compartments in
Figure A1.6.

Compartmental models typically involve rate constants like h in the
growth model dX(t)/dt � hX(t), where the growth rate is proportional to the
 population size X(t) at time t. Thus h � �dX

X
(t
(
)
t
/
)
dt

� or dX(t) � hX(t) dt. The reader
can easily check using calculus that this single compartment model has solution
X(t) � X(0) exp(ht). The example shows that compartmental models typically
 involve linear combinations of exponential terms, being solutions to differential
equations. Consider the three-compartment model as shown in Figure A1.7,
where an open system is portrayed, with both flow rates from and to the envi-
ron-ment. Notice the input rate h01 from the environment is exemplified previ-
ously by the control variable U in our discussion of control theory. Here in this
example, the change in the population in compartment 1 is dX1(t) � h21X2(t) dt �
h01dt � h13X3(t) dt � h12X1(t) dt. Correspondingly, the rate of change is given by

Ẋ1 � �
dX

d
1

t
(t)
� � h21X2(t) � h01 � (h13 � h12) X1( t) (A1.27)

Thus the whole system of Figure A1.7 is described by the set of differential
equations

SOURCE: Godfrey (1983). Reprinted with permission.
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Figure A1.6  ILLUSTRATING TWO COMPARTMENTS OF A GENERAL
COMPARTMENTAL MODEL
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Ẋ1 � (h13 � h12)X1(t) � h21 X2(t) � h01
Ẋ2 � �h12X1(t) � h21X2(t) (A1.28)
Ẋ3 � h13X1(t) � h30X3(t) 

We see that compartmental models, in their fundamental form, are
 simply sets of constrained first-order differential equations, the constraints being
the physical requirement that flow rates are non-negative. Two qualitatively
 different situations occur in this type of modeling. In the linear systems, the
 individuals have independent behaviors and consequently, the state of the pop-
ulation can be deduced simply from the behavior of their units. This applies to
migration models, for example, where each migrant is supposed to make his/her
decision independent of other migrants. In nonlinear models, the individuals
have interdependent behaviors whose aggregation can give rise to qualitatively
new situations. This applies to individual choice models in collective systems,
where individual decisions are often made conditioned upon the state of the sys-
tem. In other words, linear (time-invariant) compartmental models have flow
rates that are directly proportional to the quantity in the donor compartment,
with the constant of proportionality being referred to as a rate constant.
Nonlinear systems, on the other hand, have some of the flow rates specified as a
function of the state vector X instead of being constants.

B. Stochastic Models
While the above examples are illustrated for a deterministic case to fix ideas, the
concept carries over readily to the stochastic case. For a stochastic compartmen-
tal model, we make here the Markov assumption that states that the individuals
move from compartment to compartment with probabilities that depend on the
characteristics of these compartments but not on the previously occupied com-
partments. In other words, it has the typical Markovian property that the future
depends on the present but not on the past7. The situation is exactly analogous to
deterministic models. In the linear case, the transition probabilities do not
 depend on the state of the system (that is to say, on the number of individuals in
the compartment). In the nonlinear case, they do.

1. The Master Equation. Let us consider a compartment model with n compart-
ments. Xj(t) will denote the number of individuals in compartment j at time t, 
t � 0, and Xj* a positive realization of Xj(t), j � 1, . . . , n. Let X(t) be the n � 1 col-

13 2

h30

h13
h12

h21

h01

SOURCE: Seber and Wild (1989). Reprinted with permission.

Figure A1.7  ILLUSTRATING A THREE-COMPARTMENT MODEL
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umn vector (X1(t), . . . , Xn(t)) T and X* a possible realization of X(t). We define by
�ij(X*, t)dt, 1 � i � j � n, the probability that during the infinitesimal time inter-
val (t, t � dt), a given individual moves from compartment i to compartment j
when the system is in the state X* at time t. Let P(X0*, X*, t) denote the probability
that X(t) � X* given the initial condition X(0) � X0*. Let �j � (�j1, . . . , �jr), 
j � 1, . . . , n, be an orthonormal8 base of the transition rate space IIn, which maps
out the possible transitions from the current jth compartment.

The Kolmogorov forward differential equations9 give the temporal evo-
lution of the probability distribution of the system’s state. This accounts for the
gain terms allowing for transition to the state X*, and the loss terms allowing for
transitions from the state X*. These equations take the following form where the
gain terms are positive and the loss terms negative:

Ṗ(X0*, X*, t) � �
n

i�1
�
j�i

P(X0*, X* � �i � �j, t)(Xi* � 1)�ij(X* � �i � �j, t)

� �
n

j�1
P(X0*, X* � �j, t)(Xj* � 1)�j0(X* � �j, t)

� �
n

j�1
P(X0*, X* � �j, t)�0j(X* � �j, t) (A1.29)

�P(X0*, X*, t) � �n
i�1

�
j�i

Xi*�ij(X*, t)

� �
n

j�1
Xj*�j0(X*, t) � �

n

j�1
�0j(X*, t)�

The above constitute the master equations for the multvariate birth-and-death
process. The notations used are consistent with those in Appendix 3. These
 equations are difficult to solve in general. Short of a solution, however, there are
means to obtain information on the evolution of the system’s state, as we will
demonstrate.

2. A Special Nonlinear Case. In the nonlinear case, the transition rates �ij(X*, t),
�j0(X*, t), �0j(X*, t) depend explicitly on the state of the system. The presence of
the argument X* in the transition rates makes Equation A1.29 even more difficult
to solve. However, we will discuss two examples that permit the derivation of
 analytical results. Let us consider a population of N individuals, each individual
having to select one between two choices (1 and 2). The choice behavior of the
 individuals is described by a compartmental model, each choice corresponding to
a compartment in the system. Assuming the system was initially empty, we will
describe the state of the system with one of the two variables, Xi(t), whose real-
izations are denoted by X*. Let us now give the structure of the transition rate
�ij(X*, t), 1 � i, j � 2.

We will suppose that an individual decides to review and modify the
choice through two successive steps. First, during (t, t � dt), an individual
 reviews his or her present choice i with a probability � (i)dt; then, he or she selects
a choice j with a probability p(j)(X*) which has the following logit form:10

p(j)(X*) � ( j � 1, 2) (A1.30)
exp [v( j)(X*)/�(j)]

�����
exp [v(1)(X*)/�(1)] � exp [v(2)(X*)/�(2)]
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where v(1)(X*) and v(2)(X*) represent the utility functions of choices 1 and 2
 respectively, and � is a positive parameter tht expresses the degree of uncertainty
in the individual’s behavior. Specifically, we add an error term �(j) to the deter-
ministic value function v(j):  v(j)(X*) � �(j)�(j), where �(j) is a constant measuring the
importance of the error term. Thus �(j) can be thought of as a scaling constant; the
larger it is, the higher the uncertainty.

It is clear that the process for determining Xi(t) is reduced to a birth-
death process11. The global distribution of individual choices strongly depends
on the structure of the utility functions. For illustration, we will examine the
cases where the utilities of each choice is a linear or logarithmic function of the
number of individuals who have adopted this choice (that is, v(1)(X*) and v(2)(X*)
are linear or logarithmic functions of X* and N–X* respectively).

Let us first consider the case where the utility functions are linear:

v(1)(X*) � a � bX* X* � 0, . . . , N (A1.31)
v(2)(X*) � c � d(N � X*)

The Markov process is then irreducible (that is to say, all compartments intercom-
municate), lim

t → ∞
P(X0*, X*, t) � P(X*) exist and are independent of the initial condition 

X0*. Define the generating function12 G(� , t) � �X*�X*P(X0*, X*, t) where the nth-
derivative exists for G(�, t) ⏐�j⏐ 
 1, 1 � j � n; �x* � �1

x1*, . . . , �n
xn* . The generating

function for the probability distribution P(X0*, X*, t), where X* � [X1*(t), X2*(t), . . . ,
Xn*(t)]T, can be written out in long hand for a stationary, irreducible Markov
process. It  assumes the form P(X0*) � �1

X1*P(X1*) � �2
X2*P(X2*) � · · · � �n

Xn*P(Xn*).
Suppose there are no arrivals and  departures. Then for the stationary solution
lim
t → ∞

G(� , t) � (pT�)XT
0u� where p is a n � 1 Perron vector whose components are

 positive and of sum equal to 1, and u� is an N � 1 column vector (1, . . . , 1)T.

Consequently, at the stationary state, G is the generating function of a multinomial
vector of  exponent X0

Tu� and of parameter p (Cox and Miller 1965). In long hand, 

G(�, t) � [p(1)�1
X1* � p(2)�2

X2* � . . . � p(n)�n
Xn*]constant

We will now examine the symmetrical situation where �(1) � �(2), a � c,
and b � d to illustrate in a simple way the importance of nonlinearities. Clearly,
the stationary distribution is symmetrical, and �(1) � �(2) � �. When b � 0 (lin-
ear case), the stationary state can be shown via the above generating function re-
sult to be a binomial distribution of exponent N and parameter 0.5,

P(X*) � �X
N

* [exp(�0.5)]X*[1 � exp(�0.5)]N � X*

The values of b tht are positive (negative) express a behavior of imitation (anti-
limitation). It can be proved that if the imitation behavior becomes sufficiently
 important (or when b 	 2�/N), the stationary distribution passes from a
 unimodal to a bimodal shape: the state N/2 is no longer the mode of the distrib-
ution and corresponds now to a local minimum of the distribution. This is
 illustrated in Figure A1.8.
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Let us now consider the case where the utility functions are logarithmic:

v(1)(X*) � a � b ln X*
X* � 0, . . . , N (A1.32)

v(2)(X*) � c � d ln N�X*

The Markov process is then either irreducible or absorbing in relation to the sign
of the coefficients b and d. For example, when b and d are positive, there exists two
absorbing states 0 and N. In other words, the transitional probability �00 � 1 and
�NN � 1. In this case, it is quite plausible that one of these two states, 0 for exam-
ple, is in fact preferable to the other, N. As the absorption probabilities depend on
�, it is then natural to consider this parameter (interpreted here as the information
level accessible to individuals) as a control parameter to maximize the probability
of  absorption in state 0. It can be proved that here exists an optimal stationary pol-
icy that consists of taking for � the largest possible value when the choice distrib-
ution X* favors choice 1 to the detriment of choice 2 (that is when v(2)(X*) 
 v(1)(X*))
and the smallest possible in the contrary case. This is illustrated in Figure A1.9. 

The above two models represent examples of an epidemic model. Such
ecological models are related to the Lotka-Volterra predator-prey model as well
as nonlinear, dynamic, Lowry-derivative models13. They typically describe the in-
teracting (often conflicting) relationship between two or more populations. More
importantly, they illustrate the asymptotic behavior of stochastic models. Often,
a stationary solution is obtained that can be adequately modeled by a determin-
istic framework.

C. Deterministic Models
A deterministic version of Equation A1.29 can be written in terms of the follow-
ing differential equations:

N

bN  1.9

bN  2

bN  2.1

X*

P(X*)

N–
2

SOURCE: dePalma and Lefèvre (1987). Reprinted with permission.

Figure A1.8  STATIONARY DISTRIBUTION IN THE NONLINEAR CASE
WHEN � � 1
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�
dX

d
i

t
(t)
� � �

j�i
Xj(t)H�ji[X(t), t] � Xi(t) �

j�i
H�ij[X(t), t]

(A1.33)
�Xi(t)H�i 0[X(t), t] � H�0i [X(t), t]      i � 1, . . . , n

where X(t) � [X1(t), . . . , Xn(t)]T is the n � 1 column vector of the state of the  system
at time t, and H�ij(X, t)’s represent the deterministic flow rates defined before. In the
linear case, the systems of differential equations can be written in the form

Ẋ(t) � A�X(t) � U(t) (A1.34)

subject to X(0) � X0. Here U(t) can refer to an input vector or control variables.
Such equations are discussed in many books on differential equations and 
dynamical systems. They involve the use of matrix exponential exp (A�) for a
square matrix A�. This is defined as  exp(A�) � I�A��A�2/2! �A�3/3! � · · · and
this series converges for any A�. If A� is any square matrix, the general solution
of the homogeneous14 equation Ẋ � A�X is given by X � exp (A�t)c for any
 constant vector c. A particular solution15 is �t

0 exp (A�(t � 	))U(	) d	. Thus the
 complete solution to Equation A1.34 that satisfies the initial conditions is

X(t) � exp (A�t)N0 � �t

0
exp (A� (t � 	))U(	) d	 (A1.35)

When the n � n matrix A� has n linearly independent eigenvectors16, it is
possible to form the spectral decomposition A� � P�Q�P��1, where Q� is an n �
n matrix with n eigenvalues on its diagonal, or Q� � diag (q1�, q2�, . . . , qn�), and
the kth column of P� is a right eigenvector of A� corresponding to qk�. In particu-
lar, this is possible if all the eigenvalues of A� are distinct, as this implies that the
eigenvector are all linearly independent.

X*

a b lnNc  d lnN

0
N

(2)(X *)
v (1)

v
(X *)

SOURCE: dePalma and Lefèvre (1987). Reprinted with permission.

Figure A1.9  LOGARITHMIC UTILITY FUNCTION
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In the linear case the state of the system in the deterministic version is
the expected state in the Markovian version for identical initial conditions. In 
the nonlinear case, this result is no longer true. The Kurtz theorem establishes a
connection, under certain hypotheses, between the deterministic and Markovian
models. This result can be applied when the total population is important, say
proportional to a large number N�(large). In addition, it supposes that the arrival
rates in the system take the form N�(large)H�0i , and that the rates, H�0i, H�i0 and H�ij
(1 � i, j � n), depend on the state of the system through the relative frequencies
X/N�(large) (and not on the absolute values X).

Let Z(t)[large] denote the relative frequency (or density for short)
X/N�(large) and Z*(t) the density X*(t)/N�(large) for the stochastic and deter-
ministic versions respectively. Kurtz has proved the following theorem: Under
the hypothesis given above, if lim

N’(large) → ∞
Z(0)[N�(large)] � Z*(0), then for every 	

(0 � � � ∞) lim
N’(large) → ∞

sup
t ≤ �

|Z*(t[N�(large)] �Z*(t)| � 0. That is to say, the nor-
malized state in the Markovian version converges almost always to the normal-
ized state in the deterministic version. This allows one to use the deterministic
model to  approximate the stochastic.

D. Deterministic Example
Consider an example as illustrated in Figure A1.10, where the constant transi-
tion rates h are shown. In this open system, there is an initial quantity of N1*(0)
in compartment 1 and nothing elsewhere. The rate of change equations can be
written as

Ṅ 1 � � h12N1
Ṅ 2 � h12 � h32N3 � (h23 � h20)N2 (A1.36)
Ṅ 3 � h23 � h32N3

with initial conditions N1*(1, 0, 0)T and the parameters {N1*, h12, h23, h32, h20}
T.

Hence

�h12 0 0
A� �� h12 �(h23 � h20) h32�

0 h23 �h32

�h12 � q� 0 0
A� � q�I � � h12 � h23  � h20 � q′ h32 �

0 h23 �h32 � q�

21 3
h12

h23

h32

h20

SOURCE: Seber and Wild (1989). Reprinted with permission.

Figure A1.10  EXAMPLE OF A DETERMINISTIC COMPARTMENTAL MODEL



Control, Dynamics, and System Stability APPENDIX 1 489

The characteristic polynomial17 for the eigenvalues q� is

⏐A� � q�I⏐ � � (h12� q�)[q�2 � (h23 � h32 � h20)q� � h32h20] � 0 (A1.37)

with eigenvalues q� equal to �h12 and –1/2{h23 � h32 � h20 � [(h23 � h32 � h20)
2 �

4 h32h20]
1/2}. For simplicity, we will write the last two eigenvalues (out of three)

as a and b, where a � b � �(h23 � h32 � h20) and ab � h32h20.
The adjoint matrix is obtainable by replacing each element of a square

matrix by its co-factor18 and then interchanging rows and columns:

(h23�h20�q�)(h32�q�)�h23h32 0 0
adj (A��q�I) � � h12(h32 � q�) (h12�q�)(h32�q�) h32(h12�q�) (A1.38)

h12h23 h23(h12�q�) (h12�q�)(h12�h20�q�)�
It can be shown that any non-zero column of adj (A� � q�I) is a right eigenvector
xR of A� in the set of homogeneous equations A�xR � q�xR. Similarly, any row is a
left eigenvector xL, or xL

TA� � xLq�. Thus the right eigenvectors corresponding to
eigenvalues �h12, a and b respectively (after some slight manipulation and can-
celing common column factors), are

⏐ ⏐ ⏐ (h12 � a)(h12 � b) 0 0
R� � �x(�h12) x(a) x(b)� � � h12(h32 � h12) h32 � a h32 � b� (A1.39)

↓ ↓ ↓ h12h23 h23 h23

The left (row) eigenvectors using rows 1 and 3 of the adjoint matrix yield

1 0 0
L � � h12h23 h23(h12 � a) (h12 � a)(h23 � h20 � a)� (A1.40)

h12h23 h23h12 � b) (h12 � b)(h23 � h20 � b)

From linear algebra (Noble 1969), if A� has n independent right eigenvectors xR,
then to each xR there corresponds a left eigenvector xL for the same eigenvalue
such that xL

TxR � 1. We can thus normalize the rows of L using

x(q�) � xL(q�)/xL(q�)T xR(q�) (A1.41)

The resulting vector x(q�) is a row vector of R��1 since R��1R� � I:

�
(h12 � a

1
)(h12 � b)
� 0 0

R��1 � ��(h12 � a
h
)
12

(a � b)� �
a �

1
b

� �
h
h
23

23

�

(a
h
�

20

b
�

)
a

� � (A1.42)

�(h12 � b
h
)
12

(b � a)� �
b �

1
a

� �
h2

h
3

2

�

3(b
h
�
20 �

a)
b

�
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The solution to homogeneous equations Ẋ � A�X with initial condition
X(0) � X*(0) can be written as X(t) � exp(A�t)X*(0) � �q

j�1 �j exp(qj�t) where �j �
[x(q�)T X*(0)] xR(q�) and q is the number of eigenvalues. This has been referred to
as the sum of exponential model, and is typical of linear systems. Given X(0) �
N1*(0)(1, 0, 0)T, the solution X(t) in this case is

1 w�1
X(t) � N1*(0) �

3

j�1 
exp (q�j t) � xR(q�j)� ���x(q�j) →� � 0 �� � N1(0)* � w�2 � (A1.43)

0 w’3

Here,

w�1 � exp (�h12t)

w�2 � h12 ��(h12 �

h32

a
�

)(h
h

12

12

� b)� exp (�h12t) � �(h12 �

h32

a
�

)(a
a
� b)� exp (at)

� �(h12 �

h32

b
�

)(b
b
� a)� exp  (bt)� (A1.44)

w�3 � h12h23 ��(h12 � b
1
)(a � b)
� exp  (�h12t) � �

(h12 � b
1
)(a � b)
� exp  (at)

� �
(h12 � b

1
)(b � a)
� exp  (bt)�

We note that X1(t) � N1*(0) exp (�h12t) corresponds to a simple exponential decay.

E. Stochastic Example
Shown in Figure A1.11 is a two-compartment open model. For this model, the
 parameters {�12, �21, �10, �20} are given. Notice the flow rates are now denoted
by �’s instead of h’s to show the stochastic nature of the current model, conso-
nant with the notation used in Equation A1.29. In lieu of the rate-of-change ma-
trix A�, we write its stochastic counterpart as II � [�ij]. Here the matrix takes on
the form

0 �10 �20
II � � 0 ��10
�12 �21 �

0 �12 ��20��21

where the first row and column refer to transitions to and from the environment.
For this model the explicit form for P(t) � exp (IIt) is readily obtainable. The
eigenvalues of II are q�0 � 0 and q�1, q�2 = –1/2{�10 � �12 � �20 � �21 � [(�10 � �12
��20 � �21)

2 � 4�21�12]
1/2}. Now 

1 p01(t) p02(t)
P(t) � � 0 p11(t) p12(t) �

0 p21(t) p22(t)
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and using the method of the deterministic example above, including normaliza-
tion via Equation A1.41, we find that

p11(t) � �
q�2 �

1
q�1

� [(�01 � �21 � q�2) exp (q�1t) � (�01 � �21 � q�1) exp (�q�2t)]

and (A1.45)

p21(t) � �q�2

�

�
21

q�1
� [exp (q�2t) � exp (q’1t)]

The terms p22(t) and p21(t) are obtained by symmetry, and the values of p01(t) and
p02(t) follow from the fact that the column sums of P are unity.

F. Discrete Time Models
Let us revisit a compartmental system where a discrete time scale t � 0, 1, 2, . . .
is used instead of a continuous time axis. First, let us consider the stochastic
model. We are interested in the linear case where the transition rates �ij(X*, t),
�0j(X*, t) and �j0(X*, t) are independent of X*. If pij(t) denote the probability that
an individual in compartment i at time 0 is in compartment j at time t, P(t) is the n � n
matrix of these pij(t)’s as mentioned. Equation A1.29 can be written in a compact
form as P(t � 1) � P(t)II(t) where II(t) is the n � n matrix of the �ij(t)’s. We note
that if II(t) is a constant matrix II, then

P(t) � IIt (A1.46)

It can be shown through the use of generating functions that expected values of
X can be written asymptotically (t → ∞) as the difference equation

E[X(t � 1)] � II�E[X(t)] � II0(t) (A1.47)

where II0(t) � [�10(t), . . . , �n0(t)]
T.

The deterministic version associated with the Markov model above is
constructed formally by putting X*(t � 1) � E[X(t � 1)|X(t)] and X*(t) � X(t).
Thus X*(t) is solution of the following system of difference equations:

X*(t � 1) � A�t[X(t), t]X*(t) � A0[X(t), t] (A1.48)

1 2
12

21

10 20

SOURCE: Seber and Wild(1989). Reprinted with permission.

Figure A1.11  EXAMPLE OF A STOCHASTIC COMPARTMENTAL MODEL
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where we replace II with A�. In the linear case, the above equation reduces to
Equation A1.47. This says that, as in the continuous time version, the state of the
deterministic model is asymptotically equal to the expected state of the
Markovian model (for identical initial conditions).

We have demonstrated above and in Section V-C that the normalized
Markovian process converges to its associated deterministic version almost
surely as the population size becomes very large. In applications, it is then nat-
ural to approximate the stochastic model by the deterministic one, in view of the
computational advantage. However, the Kurtz theorem does not give any
 information on the quality of this approximation over time. It is possible to
 express the stochastic process as the sum of the deterministic process and a sto-
chastic diffusion (epidemic) process19. The result allows us to judge the validity
of the approximation as a function of time. Moreover, it is also very useful for
statistical inference because a likelihood function can then be easily constructed
from the data. We call this procedure the quasi-deterministic approach. While
we will show an example, the reader is referred to dePalma and Lefèvre (1987)
for details of this procedure.

Comparing the deterministic with the probabilistic evolution, Haag
(1989) notes that the latter is the more general formulation, since the case of
 incomplete knowledge about the system comprises complete knowledge as a
limit case while the converse is not true. The limit case of almost complete
knowledge of the  dynamics is revealed by the shape of the probability distribu-
tion P(X0*, X*, t) itself in the master equation A1.29. In this case, the master
 equation leads to an evolution in such a way that it develops one outstanding
mode sharply peaked around the most likely state X*Max(t). This means that the
system assumes state X* � X*Max(t) with overwhelming probability at time t,
while all the other states X* � X*Max are highly improbable at the same time.
Evidently this particular case descries a quasi-deterministic evolution of the sys-
tem along path X*(t) � X*Max(t).

G. Example of a Quasi-Deterministic Analysis 
Consider a closed system solution to the linear version of difference Equation
A1.48 in which A0 � B0 � 0 and Equation A1.48 represents the individual terms
of the geometric series20

I � B̃� B̃ 2 � · · · � B̃ k k → ∞ (A1.49)

It can be shown that this deterministic approximation of the stochastic Equation
A1.47 may or may not converge under certain circumstances (Yi 1986; Noble
1969). Here we will investigate the circumstances where convergence is guaran-
teed. Through this exercise, we wish to arrive at a stationary solution to Equation
A1.49 and in the process show an example of how a seemingly complex stochas-
tic model can be approximated asymptotically by a simple deterministic model.

Before we start, several basic concepts in matrix algebra need to be  reviewed.
Matrix norm on square matrix B̃ is defined as ||B̃|| � Max||z||�1||B̃z|| where z �
x/||x||, x is any vector, and ||z|| � 1. In this spirit, the matrix norm ||B̃|| is  parallel
to the concept of a vector norm ||x||. On the other hand, the spectral radius of  matrix
B̃ , �̆(B̃), is defined as Maxk |qk�| where qk�s are eigenvalues of B̃. For  example, 
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let B̃� [ �
1
0� �1

c
� ] for any real c.||B̃|| � [1/2c2 � 1 � 1/2c(c2 � 4)1/2]1/2 and the spectral

radius �̆(B̃ ) �1.
Now according to the definition of matrix norm, we can state for the 

∞-norm

||B̃||∞ � Max ||B̃z||∞ � ||B̃xi||∞ (A1.50)
||z||� 1

where xi s are any normalized eigenvector (in other words, ||xi||∞ � 1). Introduc-
ing eigenvalues, ||B̃ xk||∞ � ||qk�xi||∞ � |qk�| ||xi||∞ � |qk�| where qk�s are any
eigenvalues. Combined with the spectral radius definition, �̆(B̃ ) � Maxk |qk�| �
maxk ||B̃ xk||∞. From the result of Equation A1.50, �̆(B̃ ) � ||B̃ ||∞ for any eigen-
value. This means we have an easily calculable bound of the spectral radius.
Thus in the example above, we have �̆(B̃ ) � ||B̃||∞ � 1 � |c|. This illustrates an
 important feature of using norms.

According to the definition of the norm of a vector, if ||x||∞ � 1, this
means that Maxi |zi| � 1. In this case, the ∞-norm of a matrix is defined as ||B̃ x||∞ �
Maxi |�j b̃ ij xj| � Maxi �j |b̃ ij||xj| � Maxi �j |b̃ij| (Noble 1969). Hence

||B̃|| � Max ||B̃x||∞ � Max �
n

j�1
|b̃ ij| (A1.51)

||x|| � 1 i

Suppose the maximum sum occurs at row k*, then we construct a vector x with 
xj � 1 if b̃ k*j � 0, and xj � �1 if  b̃ k*j 
 0. For this x, equality is obtained in
Equation A1.51.

Next, define P� � [x1, . . . , xn] consisting of linearly independent eigen-
vectors. We also define the eigenvalue matrix 

q�1 0 . . . 0
0 q�2 0 . . . 

Q� � � 0 0 q�3 . . . �.. . . . . 0
0 . . . 0 q�n

B̃xk = Q”xk (xk � 0). We have B̃P� � B̃ (x1, . . . , xn) � (B̃x1, . . . , B̃xn) � (q�1x1, . . . ,
q�nxn) � P�Q�. It  follows that B̃ � B̃P�P��1 � P�Q�P��1. Correspondingly, 

B̃2 � (P�Q��P��1)(P�Q��P��1) � P�Q��2 P��1, . . . , 

q�r
1 0 0 . . . 0

B̃ r � P�Q�r P��1� P� � 0 q 2�
r . .

. . . � P�1.

0 . . . 0 qn�
r

Obviously, if �̆(B̃ ) 
 1, in other words, |q�k| 
 1 for all k, qk�
r → 0 as r → ∞. One

can conclude therefore that �rl→
im

∞� B̃� � 0 if �̆(B̃) 
 1. 
For matrix series I � B̃ � B̃2 � · · · � B̃k, we have (I � B̃)(I � B̃ � B̃2 � · · · � B̃k)

� I � Bk�1. From what have been shown,  �̆(B̃) 
||B̃||∞ � Maxi �j b̃ij 
 1 for b̃ij � 0. 
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It  follows that (I � B̃ )(I � B̃ � B̃ 2 � · · · � B̃ k) � I, as k → ∞. Notice (I � B̃ ) is 
non- singular, inasmuch as there exists another matrix, namely the matrix series 
(I � B̃ � · · · � B̃ k) such that their product is I (non-zero). Hence, we can formally
 express the  series as a  finite quantity: I � B̃ � B̃2 � · · · � B̃k � I/(I � B̃) as k → ∞. The
division I/(I � B̃ )  provides an asymptotic stationary solution to Equation A1.49. It
should also be  emphasized that the solution is no longer stationary if the spectral
 radius is equal or  bigger than unity. The watershed value of 1 for the spectral radius is
referred to as a  bifurcation point—a key concept in analyzing system stability.
Application of such quasi-deterministic analysis is found in the “Garin-Lowry model”
sections in the “Chaos, Bifurcation” chapter of Chan (2005) and also coded in the
CD/DVD software under the YiChan directory.

VI. SYSTEM STABILITY 
We have demonstrated the concept of bifurcation in the above sections, in which
critical values of a parameter determine totally different behavior of the system.
We will generalize these concepts in the current section, where system stability
is discussed (dePalma and Lefèvre 1987). First we examine the autonomous case of
Equation A1.33, in other words, the situation when the system dX/dt � F(X, H�, t)
is independent of time, or dX/dt � F(X, H�). With this simplification, we will
rewrite Equation A1.33 as

�
dX

d
j

t
(t)
� � Fj[X1(t), . . . , Xn(t)]    j � 1, . . . , n (A1.52)

In general, it is not possible to solve this system explicitly. Nevertheless, mathe-
matical methods do exist to obtain some information on the solution. Among
these methods, we mentioned bifurcation theory, catastrophe theory, and stabil-
ity theory. The stationary states of Equation A1.52, denoted by X� � (X1�, . . . ,
Xn�)

T, are defined by d[Xj(t)]/dt � 0 ( j � 1, . . . , n). They are solutions of the fol-
lowing algebraic system:

Fj(X1�, . . . , Xn�) � 0    j � 1, . . . , n (A1.53)

In other words, these are solutions to the system when motion ceases.

A. Basic Types of Trajectory 
The solution as sketched out in Equation A1.53 can be classified into a handful of
trajectory types (Wilson 1981). It is also most common for a system to have a small
number of single equilibrium points. If they are stable, trajectories lead into them,
and they are called attractors. If they are unstable, trajectories are repelled by such
points, and they are called repellers. When there are two or more state variables
as shown in Equation A1.53 and sketched out in Figure A1.12, the equilibrium
point may be saddle points, which represent a special kind of instability. In this
case, most trajectories are repelled by such points, but there can be two trajecto-
ries (in opposite directions) that pass through the saddle, and these play an
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 important role in sketching trajectories in general. They separate the state space
into two regions with trajectories on each side being directed to different stable
equilibrium points. For this reason, such a trajectory is known as a separatrix, and
it plays an important role in bifurcation behavior.

To make it perfectly clear, consider a system described by state variables
X1 and X2. First, we distinguish two kinds of behavior in the neighborhood of a

Figure A1.12  STABLE AND UNSTABLE EQUILIBRIA
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stable equilibrium point. These are shown on a state space plot in Figure A1.12.
In case (a), the trajectories lead directly to the equilibrium point and represent an
exponential convergence. Such attractors are also called a sink. In case (b), the
trajectories spiral into it and represent oscillatory convergence. Such an attractor
is also called a focus. Typical time plots for X-against-t are shown also for the two
cases side by side. 

Corresponding plots exist for unstable equilibrium points. Here sad-
dle points behave like unstable case (c) points, but with the addition of the
 trajectories that form the separatrix as shown in (d). If behavior is neither con-
vergent to a stable point nor divergent, then it may be periodic. There are two
basic types as shown in Figure A1.13. Case (a) is a closed orbit periodicity, when
the trajectory never leaves one of many possible such orbits (the particular one
being determined by the initial conditions). Case (b) is limit cycle behavior: a
 typical trajectory winds in and out of a closed orbit and may become asymptoti-
cally close to it. It turns out that closed orbit behavior is structurally unstable
while limit cycle behavior is structurally stable.

Finally, there are examples of system behavior characterized by neither
stable or unstable equilibrium points, nor by oscillating behavior of any regular
periodicity. Such behavior is called chaotic and is demonstrated by irregular
looking time plots of state variables. Furthermore, particular (complicated)
 systems may exhibit a number of different kinds of solution for different starting
values of the variables and for different parameter values. As a result, a state-
space diagram may be a mixture of trajectories related to different kinds of equi-
librium values and may change character as the parameters change.

B. Bifurcation Theory 
Bifurcation theory studies the multiplicity of the solutions of Equation A1.53 as
a function of some parameters H� of the model (Dendrinos and Mullully 1985;
Hildebrand 1962). A bifurcation point [H�, X�(H�)] is a point such that in its 
neighborhood, the multiplicity of the stationary state changes, as discussed
above in conjunction with the trajectories and illustrated by the Section V-G

Center
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X2

(a) Closed orbit (unstable)

X1

X2

(b) Limit cycle (stable)

SOURCE: Wilson(1981). Reprinted with permission.

Figure A1.13  PERIODIC TRAJECTORIES IN STATE SPACE
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above. Consider a dynamical system of the form dX/dt � F(X, H�) where X and
F are n-dimensional vectors and H� is an m-dimensional vector of parameters.
As H� changes, the phase plane21 also changes. Usually the change is continu-
ous, but at certain bifurcation points the change in dynamic trajectories is
abrupt. 

The simplest bifurcation is found in the univariate system equation dX/dt �
aX as a varies from �∞ to �∞. Negative a generates a set of negative exponential
(stable) trajectories, while positive a depicts exponential (unstable) growth. At
zero the trajectory bifurcates. These three trajectories and the associated (simple)
phase diagram for a is shown in Figure A1.14. In each case, a family of trajecto-
ries are shown, corresponding to different initial conditions. We have witnessed
an example of this type of bifurcation in Chapter 1, under Figure 1.1. 

A slightly more complicated example is the following two-state system

Ḟ1 � Ẋ1 � X2
Ḟ2 � Ẋ2 � X1

2 � X2 � a (A1.54)

The equilibrium solution is approximated by the matrix linear system dX/dt �
A�X(t) where the stability setting Jacobian-matrix A� has elements Aij where

Aij � �
∂
∂
X
Fi

j
�⏐X �

i, j � 1, 2, . . . , n (A1.55)

In other words, for a two-dimensional case, 

A� � � � 
X� 
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Figure A1.14  EXAMPLE OF A SIMPLE BIFURCATION
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We follow the solution procedure outlined by Equation A1.35, and the determin-
istic example worked out in the same Section (V-D). Letting Xi(t) � Xi� � �i(t) and
expanding the Taylor series around the equilibrium state Xi�, the solution to the
above system is X(t) � N0 exp (q�t), where the matrix N0 contains constants that
depend on the initial values X(0), and q� is the vector of the eigenvalues of A.

Here in this example, solution to the equations yield X� � (X1�, X2�) �
(�	a
, 0). If a is negative, there are no real valued equilibria, since the square root
of a negative number yields an imaginary root. If a is positive, there are two real
valued equilibria: (	a
 , 0) and (�	a
 , 0). Linearizing around these points, one
 obtains the matrix 

A� � ��� 2
0
	a

� �

�

�

1
1
��

according to Equation A1.55 with eigenvalues q�1 � 1/2[�1 � (1 � 8	a
)1/2] and 
q�2 � 1/2[�1 � (1 � 8	a
)1/2]. Solution of such system of equations in general
yields eigenvalues that are complex or real numbers. The complex part induces
an oscillating behavior while the real part gives rise to an exponentially increas-
ing or decreasing solution according to its sign being positive or negative. Conse-
quently, the stationary state X� is asymptotically stable if all the real parts are neg-
ative; the state X� is unstable if there exists at least one positive real part. In ad-
dition, the state X� is marginally stable if there is at least one eigenvalue whose
real part is null and if all the other eigenvalues have a negative real part. 

Consider the ordinary differential equation dX/dt � F(X, t). Remem-
bering isoclines are the family of curves defined by the equation F(X, t) � K,
where K is a constant. In the autonomous case under consideration, this becomes
simply dX(t)/dt � F(X(t)) and F(X(t)) � K. The differential equation states that at
any point X(t) for which F(X(t)) is defined, the slope of any integral curve pass-
ing through that point is given by F(X(t)). Suppose we plot the family of isocline
curves, F(X(t)) � K for a series of values of the constant K. All integral curves of
the differential equation intersect a particular curve of the family of isocline
curves with the same slope angle �, where tan � is given by the value of K spec-
ifying the isocline. Thus if on each isocline a series of short parallel segments hav-
ing the required slope is drawn, an infinite number of integral curve can be
drawn by starting in each case at a given point on one isocline and sketching a
curve passing through that point with the indicated slope and crossing succes-
sive isoclines with the slopes associated with them. This method can always be
used to determine graphically the particular solution of the differential equation
that passes through a prescribed point X*(t) when the function F is single valued
and continuous. The procedure is illustrated in Figure A1.15.

Applying the above procedure to the current two-state example, the first
intersection of isoclines always implies a saddle, since 1 � 8	a
 	 0. One eigen-
value is positive whereas the other is negative. However, in the second intersec-
tion 1 � 8	a
 could be positive, zero, or negative. At the point where it is zero, 
(a � 1/64), the nature of the dynamic path changes. As a increases the system’s
trajectories are transformed from a stable sink (q1�, q2� negative, real, unequal) to
a stable focus (q1�, q2� complex, with negative real parts). Another illustration is
found under the “Synergetic Models of Spatial Interaction” subsection of the
“Activity Allocation and Derivation” chapter in Chan (2005).
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C. Comments 
The above example is cited for illustrative purposes only. In real systems, problems
tend to be nonlinear, and the solution procedure becomes a lot more complex. It is
not unusual to resort to numerical simulation, which is often the only feasible
means to solve the problem. Insights can be obtained, however, by developing a
qualitative theory in which the topological nature of the model’s equilibrium point
is studied. In the preceding subsections, we have explored how the main types of
solutions for dynamical systems described by differential equations are constructed
and how to get some insights by representing them graphically or through simple
examples. It should already be clear by implication that the possible types of bifur-
cation behavior are richer than indicated in the canonical forms of catastrophe
 theory. We now summarize several cogent observations (Wilson 1981).

First, we note that the solutions (for equilibrium points) to Equations
A1.52 will typically involve multiple solutions because of any nonlinearities in
the functions Fj . Hence, the manifold of equilibrium solutions in the space of 
(X, H�) variables will be folded. This can lead to the same broad kinds of bifur-
cation as in catastrophe theory, as suggested in the introduction to Section IV. 

Second, we observe that the types of solutions to the differential equa-
tions can be determined by parameter values. There can be critical parameter val-
ues at which a stable sink becomes a focus, as shown in the numerical example
above. Similarly, one can envisage situations in which a stable equilibrium point
becomes unstable or disappears, or at which a periodic solution could disappear
and be replaced by a stable equilibrium point, or vice versa. (These changes are
collectively known as the Hopf bifurcation). In theory, all the possible inter-
changes between the kinds of solution (or trajectory) listed in Section VI-A are
possible. It is useful to be alert to this in applied work. 

Finally, we also note here in passing a completely different type of pos-
sible bifurcation. Suppose a system is disturbed from an equilibrium position
and moves to a non-equilibrium state in the neighborhood of a separatrix in state

Figure A1.15  GRAPHICAL SOLUTION OF A DIFFERENTIAL EQUATION
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space. Then if the separatrix is crossed, the return to equilibrium could be to a
state other than the original one. This is analogous to the cusp catastrophe
 discussion in Subsection IV-A.

VII. CONCLUDING REMARKS
In this appendix, we have reviewed the theories that govern the evolution of
 complex systems over time, including the influence of external factors. It can be
seen that the body of knowledge in this area is huge and has diverse roots among
a number of disciplines. We can, at best, provide only an overview in the limited
number of pages here. While the theories hold great promise in modeling  facility
location and land use, their present status can often only allow us to computa-
tionally solve small problems. In limited cases, the theories can be best used
 qualitatively to gain insights, rather than used quantitatively to yield computa-
tional results, even for small problems. Many larger systems need to be modeled
by numerical simulation, even though such systems can be set up analytically as
equation sets. This point is demonstrated in some detail in the main body of this
book and Chan (2005). Under certain circumstances, stochastic systems can be
 approximated by deterministic systems, effecting a fair amount of computational
savings. Overall, the aim of this appendix is to provide the basics and a road map
for readers to relate these diverse theories to one another, particularly in the
 context of problem solving. We include the appropriate references to the vast
amount of literature for further investigation.

ENDNOTES
1 For the dynamic programming problem, this is called the state transition equation.
2 Those who are familiar with the calculus of variations of deformable bodies will recognize this as

the variational form of a thin membrane, often written as ��
Ω
1/2 (∇u)2 dx � 0, where u is the

 amplitude of such small deformation as oscillation. Here u takes on a prescribed function along the
boundary. In this context, the variational equational equation simply prescribes that the potential
energy stored in the membrane must be in equilibrium. In the two-dimensional x1�x2 case, for
 example, the potential energy 1/2(∇u)2 is simply 1/2(u2

x � u2
y).

3 Suppose that a function f(X(t), U(t )) exists such that fX � F (X, U) � ∂X /∂t �Ẋ. A dynamic system
that can be derived from such a function f (X, U ) is formally called a gradient system.

4 The co-rank measures the degree of degeneracy of the worst kind of singularity that can occur in
the particular family of functions. For nth-order polynomial functions of one variable, for example,
the degree of degeneracy is n, where all derivatives up to the nth order vanish.

5 The co-dimension of a family of functions is the number of control variables U that parameterize
these functions.

6 An example of such an application can be found in the “Chaos, Catasrophe, Bifurcation and
Disaggregation” chapter in Chan (2005) under the “Spatial Dynamics” section.

7 For a discussion of the Markovian process, see Appendix 3.
8 When the column vectors in a square matrix are mutually orthogonal and of unit length, we say

that the matrix is orthonormal. Specifically, if the dot product of vector x, xTx � || x || 2� 1, the vec-
tor x is said to be normalized. If a set of vectors x1, . . . , xn is orthogonal and normalized (in other
words, xi

Txj � 0, i � j; xi
Txi � 1), then the vectors are said to be orthonormal.

9 An example of such equations has been illustrated in Appendix 3 in the derivation of the Poisson
process.

10 The logit model is explained in Chapter 3.
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11 An example of the birth-death process has been illustrated in the derivation of the M/M/1 queue as
part of Appendix 3.

12 Consider a random variable taking on the values � � 0, 1, 2, . . . with the associated probabilities P0,
P1, P2, . . . . The generating function for this probability distribution is G(�) � P0 + �P1 + �2P2 + · · · �
∑x �xPx. This function has several useful properties. First G(1) � 1, G(0) �P0, and dP/d� = ∑x x�x -1Px.
Notice that dG/d�⏐��1��∞

x�0 
x Px � E(x), which yields the mean of the random variables x. By the

same token, dkG/d�k⏐��0 � x!Px which yields the individual terms of the distribution. The generating
function is often used to derive many analytical results in stochastic processes.

13 Both the predator-prey and the dynamic Lowry derivative models are explained in the “Lowry-based
Models” and “Chaos, Catastrophe, Bifurcation and Disaggregation” chapters of Chan (2005).

14 A homogeneous equation is one that does not have an input or forcing function U(t) on the   right-
hand side. In the case of linear algebraic equations, this means the right-hand side is a zero vec-
tor. For a linear homogeneous equation, any linear combination of individual solutions is also a
 solution.

15 A particular solution to a differential equation is that part of the solution in response to the input or
control function U(t).

16 Consider the homogeneous set of equations: AX � q�X. Values of q� for which non-trivial solutions
exist are called eigenvalues, and corresponding vector solutions X are known as eigenvectors.
More specifically, X here is a right eigenvector.

17 If (A� � q�I)x � 0 where x� 0, and we set the determinant to zero, in other words, |A� � q�I | � 0,
then the scalar roots q�k of the resulting polynomial are eigenvalues of A�.

18 If the row and column containing an element (i, j) in a square matrix are deleted, the determinant
of the remaining square array is called the minor of (i, j ), and is denoted by Mij. The cofactor of 
(i, j ) is then defined by (–1)i+jMij.

19 This can be likened to a time series that consists of a structural part and a noise term. See the
“Spatial Time Series” chapter of Chan (2005) for a more complete discussion.

20 This is witnessed by the solution to the Garin-Lowry model as shown in the “Chaos, Catastrophe,
Bifurcation, and Disaggregation” chapter of Chan (2005). In the un-capacitated case, a constant
transition matrix II is assumed, resulting in the special solution of Equation A1.46.

21 Also known as a phase diagram, this is an analytic device to characterize the solution without
 necessarily writing out the system solution explicitly. An example will be illustrated shortly in
Figure A1.14.
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This appendix puts in one place a few basic statistical analysis techniques,
 including estimators, goodness-of-fit parameters, ordinary and stepwise regres-
sion, analysis of variance, nonlinear regression, and the general idea behind
 statistical modeling. As with the previous two appendices, we strive to provide a
self-contained account through numerical examples, rather than formal deve -
lopments. Most important, the relationships between different statistical tools are
clearly delineated, particularly in our explanation of stepwise regression. It paves
the way for chapters such as Chapter Three and these chapters in Chan (2005):
“Generation, Competition and Distribution,” “Spatial Econometrics,” “Spatial
Time Series,” and “Spatial Temporal Information.” It is particularly convenient in
numerous places in the current book where statistical knowledge is assumed,
 including the software on the CD/DVD.

I.  STATISTICAL ANALYSIS: 
BASIC CONCEPTS

For the purpose of this discussion, statistics can be thought of as dealing with
 representative indicators of figures, when a huge number of figures need to be sum-
marized in terms of a more compact set of information. An estimator such as the
mean or average is a good example, wherein n numbers are represented in terms of
a single one: –

X � Σn

i = 1
xi/n. Here capital X stands for the random variable for the

data and xis are the data observations themselves. Similarly, one can  define the
spread of the data about the mean, an estimator called standard deviation:

s � �� (A2.1)

Variance is the square of standard deviation, such that the sign of standard
 deviation—indicating whether the specific figures are smaller than or bigger than
the mean—is set aside. To summarize the two estimators, mean and standard
 deviation, one can define the coefficient of variation, which compares the
 magnitude of the spread with the average, s/X�. A small coefficient suggests a sharp
distribution, while a large one implies a flat distribution.

�
n

i�1
(xi � X�)2

��(n � 1)
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A normal distribution is representative of many large samples of data—
data on anything from income to population. The mean and standard deviations
are overlaid on top of the normal distribution in Figure A2.1. It shows that about
68.3 percent of the sample will be within one standard deviation from the
mean and about 95 percent within two standard deviations. Inasmuch as the
 normal distribution describes any large sample, such numbers are very useful in
detecting abnormalities such as outliers.

It is appropriate at this time to introduce the concept of degree of
 freedom (dof). Notice that in computing the standard deviation, we divide the
sum of the data by (n � 1) instead of n, which makes it different from computing
the mean. While there is a lengthy explanation possible for such a practice, there
is an informal way to rationalize it here. We can think of the degree of freedom as
the number of useful, or contributory, pieces of information. Imagine that a piece
of information is no longer useful once it has been used. If there are n data points
to begin with, or n useful pieces of information. We extract from the pool of data
one piece of information, for instance, say the mean. The number of unused ones
or contributory data remaining will be (n � 1). Viewed in this light,

dof � (number of observations � number of coefficients estimated)

It goes without saying that the larger the degree of freedom, the more represen-
tative the estimator, since it is based on a large pool of useful information, instead
of a meager sample. In practice, there are often more data pieces than the number
of estimated parameters; the precise dof becomes less important and the difference
between (n � 1) and n in the denominator of Equation A2.1 is minute. We suggest
that the sample estimator [using (n � 1) division] approximates the population
estimator [using n division].

Figure A2.1  ILLUSTRATING MEAN AND STANDARD DEVIATION IN A
NORMAL DISTRIBUTION
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II.  GOODNESS-OF-FIT MEASURES
If one generalizes from a single dimension to two or more dimensions, we start to
worry about the relationship between the data represented in these dimensions.
For example, we may be interested in the linkage between the number of work
trips made and the population density in each of the subareas. Likewise, we may
want to study the relationship between the employment level and the population,
suspecting that the two may be related. In other words, the more people around,
the larger the number of people working and hence the more work trips made. We
call these the degrees of correlation. The more one variable is related to another,
the larger the correlation between them. The correlation coefficient, r, between
the retail-land-use random variable (Y) and the retail-employment random vari-
able (X), for example, may be 0.96. This indicates a close relationship between the
two variables, considering that by convention, 1 is the largest correlation  possible;

r0 �

where x and y are data observations. A close examination of this expression will
suggest that a plot of the retail land use (in acres or hectares) against retail
 employment will yield a linear relationship, in that retail land use goes up as
 retail employment goes up. One can readily see this in a shopping mall, as
 illustrated in the correlation coefficient plot in Chapter 3.

In forecasting applications, we often distinguish between two situations.
The first is when the relationship between two variables are sought, both of which
are known for a future year. The second is when we want to forecast a variable
from an independent variable that we know. The relationship between the latter
pair of variables is called the partial correlation coefficient while the relationship
between the former is simply the correlation coefficient. Another way of saying
this is that the partial correlation coefficient measures the linear association
 between the dependent and independent variables, while the correlation coeffi-
cient does the same job between two independent variables. We want a high value
for the partial correlation coefficient. The exact opposite is true for the  correlation
coefficient. The reason is that a high partial means good explanatory power of the
independent variable in predicting the dependent variable. However, a high
 correlation among two independent variables means that there is some kind of
double counting. In other words, the same information is used twice to predict
the dependent variable. For example, one should be careful in using both
 population and employment as independent, or explanatory, variables for the
number of work trips generated from a subarea. The simple reason is that they are
related. Including both variables will lead toward a statistical fallacy known as
collinearity.

If we generalize the concept to two or more independent variables and
one dependent variable, we have broadened the concept of a partial correlation
coefficient to a multiple correlation coefficient. This pertains to the power of sev-
eral independent variables in predicting the dependent variable. For example, if
land use development is to be forecasted, one way to do this is to relate land
 development in the future to the population and per capita income in the area.

�t (xt � X�) (yt � Y�)
���

sXsY
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The stronger the relationship between land development and population/
income, the more accurate the forecast is likely to be. In other words, a multiple
correlation coefficient R close to unity is preferred to one that is smaller.
When there is only one dependent and one independent variable, the multiple
correlation coefficient R becomes the partial correlation coefficient r�0.

III.  LINEAR REGRESSION
The concept of multiple correlation coefficient, the square of which is some-
times known as coefficient of multiple-determination, brings us to the
 subject of  linear regression. Linear regression can be thought of as the
 structural postulation between dependent and independent variables that can
be  supported by sound goodness-of-fit parameters, where goodness-of-fit
 parameters are simply multi-dimensional extension of estimators like mean and
variance. Take the example of work trip forecasting. Suppose the following
 structural relationship is postulated: Y � a � bX where Y is the number of total
trips predicted and X is the household income (in thousands of U. S. dollars), and
a, b are calibration coefficients, which take on the values of 29.33 and 1.150
 respectively for the data shown in Table A2.1. These values are calculated on the
basis of these formulas:

b �

and a � Y� � b�X. In other words, b is calculated as

and a as 52.333 � (1.15)(20). These formulas determine a and b on the basis of min-
imizing the sum of the deviations of the dependent variable from the regression
line.

To show this concept, a plot of the regression line is given in Figure A2.2,
in which the deviations, sometimes referred to as residuals, are highlighted. Here
the multiple correlation coefficient, R, is 0.985. This is close enough to 1.000. In an
applicational context, however, this coefficient is often much less than unity. The
toy problem we have been using, as illustrated in Figure A2.2, shows a definite re-
lationship between work trip and population. In most regression applications, the
square of the figure is used, R2, such that

R2 �

(30 � 20)(65 � 52.333) � (20 � 20)(50 � 52.333) � (10 � 20)(42 � 52.333)
���������

(30 � 20)2 � (20 � 20)2 � (10 � 20)2

�
n

t�1
(xt � X�)(yt � Y�)

��
�
n

t�1
(xt � X�)2

�
n

t�1
(ŷt � Y�)2

��
�
n

t�1
(yt � Y�)2
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Table A2.1  DATA FOR THE REGRESSION EXAMPLE

Household income 

(in thousands)

No. of trips per

week Y
Error

30

20

10

Households

Jones

Browns

Robinsons

65

50

42

63.833

52.333

40.833

1.167

2.333

1.167

Estimated no.

of trips Ŷ

Figure A2.2  REGRESSION LINE OF EXAMPLE

N
o

. o
f 

tr
ip

s

Household income

12

24

36

48

(Y  =  52.33)

Y   =  29.33   +  1.15X

error

Normal distribution
of residual

60

72

10 20 30 40

Data point

Legend

(X  =  20)

where ŷt is the estimated number of trips for family t (t � 1, 2, 3) from the equation
Ŷ � 29.33 � 1.15X. In other words, they are the values read off from the regression
line itself (Figure A2.2) for a given household income x. R2 � 0.970 is then calcu-
lated as

R2 �
(63.833 � 52.333)2 � (52.333 � 52.333)2 � (40.833 � 52.333)2

�������
(65 � 52.333)2 � (50 � 52.333)2 � (42 � 52.333)2
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One can think of Ŷ as a two-dimensional generalization of the mean estimator.
The difference between the data point yt and the estimated value ŷt is called the
error of estimation at. Viewed in this light, one can write yt � ŷt � at, and the 
regression equation can be written as Y � a � bX � � where � is the error term
random variable (see Figure A2.2 and Table A2.1).

The parameter R2 has the interpretation of the percentage of variation
 explained by the regression. In other words, the amount of relationship that is cap-
tured by the linear model itself in terms of the structural equation Y � a � bX, with
the remaining part due to random error associated with any statistical analysis. A
moment’s reflection will show that R2 can also be expressed in terms of these
 alternative expressions

R2 �

or

R2 �

The higher the R2 value, the more significant the regression equation is. The
only exception is over-fitting, which is best exemplified by fitting two data
points with a regression line. This results in R2 � 1, but dof � 0, meaning there
is no allowance for statistical analysis. As seen from this toy problem and will
be shown in the analysis-of-variance discussion later, including a large number
of independent variables (in comparison to the number of data points)
 decreases the dof and increases the R2. The increase in R2 purely due to a larger
number of independent variables is not necessarily helpful. First, there is an
extra cost of data collection. Aside from data collection, there is also an extra bur-
den in using a more complicated model. Second, including two independent vari-
ables that are strongly correlated does not contribute to the explanatory power of
the equation. As a matter of fact, it will detract from it. There is a delicate trade-
off, therefore, between having a perfect statistical fit and simplifying a model by
minimizing the number of explanatory variables. We often refer to this tradeoff as
the art of parsimony.

The standard error of estimate (SEE) is a measure of the dispersion of
the observed data about the regression line. This can again be thought of as a two-
dimensional generalization of the standard deviation about the mean. The
smaller the SEE, the tighter the fit of the regression line about the data:

SEE � ��
n

t��1��
(y�t

d
��of�ŷt)�2

��
It can be verified that the SEE in this case is 2.858, which is calculated as

SEE � �[(�6�5� �� 6�3�.
—
83�3�)2� �� (�5�0� �� 5�2�.3�3�3�)2� �� (�4�2� �� 4�0�.8�3�3�)2�]/�(3� �� 2�)�

(variance explained by the regression)
����

(total unconditional variance)

(source of variation due to regression)
�����

(total source of variation)
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Two dimensional generalization of the coefficient of variation can also be made. 
It is simply

��
S

Y

E

�

E
�� 100%

It measures how accurately the dependent variable can be estimated by the
 regression equation, relative to the mean of the dependent variable observations.
Obviously, the smaller the ratio, the more accurate the estimate tends to be. In
our case, the ratio is (2.858)/(52.333) � 5.46%, reflecting quite a high degree of
accuracy.

A last set of goodness-of-fit measures pertains to the regression coefficients.
The t-ratio or t-statistic shows how well the coefficient b is calibrated. Statistically, it
is simply defined as tb � b/sb, where sb � SEE/(sX√

−
n) when n is a large number. Notice

this is again a two-dimensional generalization of the concept of sX�
� sX/√

−
n. This is a

test on the null hypothesis that the coefficients should be zero. In other words, the
 regression equation has no explanatory power since the data has no pattern, or the
data represent total randomness. In this toy example, tb is calculated as

tb ��
2.858

1

/

.

(

1

1

5

0

0

)(�3�)
�� 6.969

While the first equation in this paragraph may be inappropriate for a
small number of data points (n � 3) in this case, the formula should be a good
approximation for large samples in general. To assess how significant the cali-
bration coefficient b is, we examine the t-table, which shows that t (1, 0.90) �
6.314, or the t-value for a Student’s t distribution at 1 dof and 90 percent confi-
dence level is 6.314. Since tb � 6.969 is larger than 6.314, we reject the null
 hypothesis and state that the coefficient b is significant at 90 percent confidence
level. In other words, the linear regression model is useful in explaining the varia-
tion of the Y random variable in terms of the X random variable. Implicit in the
 definition of the t-statistic is the assumption that the error is normally distributed.
This is  illustrated in Figure A2.2 by the normal distribution drawn around the
 regression line. The technical way of describing this assumption is to say that the
residuals are homoscedastic. 

F-ratio or F-statistic measures how well the coefficients perform as a
whole, in this case only the parameter b itself. F is computed as

F � � (A2.2)

Here the dof refers to the regression coefficient data pool rather than the observa-
tion data pool. The F-statistic is then calculated as

F � {[(63.833 � 52.333)2 � (52.333 � 52.333)2

� (42 � 53.333)2]/(2 � 1)]}/(2.858)2 � 32.388

�
n

t�1
(ŷt � Y�)2/dof

��SEE
mean variance due to regression
����
mean variance about regression
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Since there is only one coefficient b in a bivariate regression, the square of the 
t-ratio is the same as the F-value. To show the significance of the calibration, we
examine the F-statistic, F(1,1,0.90) � 39.9 (or the F-ratio at 90 percent confidence
level with 1 dof at the numerator and the denominator. This supports the null
 hypothesis, suggesting that the calibration parameters are insignificant. However,
with 32.388 being bigger than F(1, 1, 0.75) � 5.83, it says that the calibration 
parameters are significant at a reduced confidence level of 75 percent, if in fact 
75 percent confidence level is acceptable. Thus by lowering the confidence level,
a formerly unacceptable regression model may now be acceptable.

IV.  ANALYSIS OF VARIANCE
To gain better insight, an analysis of variance can be performed on linear regres-
sion. Analysis of variance (ANOVA) breaks total variance of a set of data into two
components: data dispersion from local mean and local mean deviation from
global mean. Placed in the context of regression, one can explain the sum of
squares of the deviations of yt about Y" in terms of the sum-of-squares of the
 deviations of yt s from the regression line and the sum-of-squares of deviations of
the estimated values ŷ t about Y�":

�t (yt � Y�)2 � �t(yt � Ŷ )2 � �t(ŷt � Y�)2 (A2.3)

This equation is best illustrated by Figure A2.3, which breaks down total variance
into its two components for an illustrative data point (xt, yt). Another way to
 explain ANOVA for regression is that

(total [corrected] sum of squares) � (error sum of squares)
� (explained sum of squares)

or

(total source of variation) � (source of variation about regression)
� (source of variation due to regression)

The word corrected is used to distinguish between raw data yt and data corrected
for the mean (yt �

–
Y). The degrees of freedom for each of the above three terms

are n � 1, n � k, and k � 1 respectively, where k is the number of parameters
 estimated in the regression equation.

A typical ANOVA table is shown in Table A2.2 for the example
 problem we have been using thus far. It can be verified that the F-ratio is com-
puted as 264.5/8.167 � 32.388, which is exactly the same as Equation A2.2. When
the numerator (mean variance due to regression) possesses only one dof, as in the
case of a bivariate regression, F will be the same as t2 (as  mentioned). This is
checked out in this case, where the t-statistic was computed as 5.691 (t2 � 32.388).
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Figure A2.3  ANALYSIS OF VARIANCE AS APPLIED TO LINEAR REGRESSION

X

Y

Y

Total variance

a bX

Variance
due to
regression

Variance
about
regression Data point (xt, yt)

Table A2.2  EXAMPLE ANALYSIS-OF-VARIANCE TABLE

Degree of

freedom

Sum of

squares F-ratio

1

1

2

Source of

variation

Due to regression

About regression

Total

246.500

8.167

272.667

264.500

8.167

32.388

Mean

square

V.  USING THE REGRESSION EQUATION 
Earlier, we made a distinction between sample estimator and the population esti-
mator. An analogy can be drawn for the regression line here. A model can be 
constructed to estimate the “true” Y values from a population regression line
E[Y|X � x*] � �� � ��X (Crow, Davis, and Maxfield 1960). This contrasts with an
estimate obtainable from a regression line y � a � bx based on sample observa-
tions (x*, y*). Since a and b are observations from random variables a~ and b~, the
estimator for y* is ŷ � a � bx*. In the absence of a true population, we are inter-
ested in the accuracy of estimating E[Y] at X � x*.



A.  Confidence Interval
In practical applications, the ordinate of the sample regression line for any given x*
(which need not be any of the observed xi�s) is calculated as Y � a � bX. This  Y nec-
essarily differs from the true or population mean ordinate at X � x*, which would
be obtained if an infinite number of observations could be made with the same value
x*. We can show how good our estimate Y of the true mean ordinate E[Y|X � x*]
is by calculating the 100(1 � �)% confidence limits

Ŷ � t�/2, n�2 	M* 	 Ŷ � t�/2, n�2 sY ��
n
1

�� �� �t(xt – �X)2 (A2.4)

� Ŷ � t�/2, n�2 sY ��
n
1

�� �� �
(�(
n
x�*

���

1�X�
)s�)

X
2

2

��
where t�/2,n�2, is the t-statistic (at 100(1 � �)% confidence-level and (n � 2) dof ).
This statistic is obtainable from any statistical tables and 	M* is the variance of a
 normally distributed set of residuals around the sample regression line at X � x*.
In this way, we can construct a confidence interval for any particular ordinate of
 interest. Stated in another way, there is now a way to tell how good any Ŷ is.

Example
Using the data of Table A2.1, we calculate a 95 percent confidence-interval for the
ordinate to the regression line of Figure A2.2 for the household income x* � 20
thousand. First, ŷ * � 29.33 � 1.15(20) � 52.333 (which is the same as Y).

�M* 	 (11.676) ��
1
3

�� �� �
(�(
3
2� 0

�� ��1)�2
(1�0

0�)2

)
�� � (11.676) ��

1
3

�� � 6.741 (A2.5)

95 percent confidence interval on E[Y|x � 20] is therefore t0.025,1�M* 
 (12.706) 
(6.741) � 85.651. In other words, for the household with the average income of
$20,000, 95 percent of the number of trips made will fall within the band 52.333 �
85.651. Admittedly, this is a very wide band, reflecting the questionable validity of
this toy regression model and the validity of the implicit assumption of having a
large number of data points. This is particularly suspect since the band is at its nar-
rowest when x* � X�, as seen by the calculations in Equation (A2.5). A check on less
central positions such as x* � 10 and 30 will verify that the band widths are
�342.60 on either side of the regression line! ■

B. Prediction Interval
Suppose a regression line has been estimated. We obtain another observation X �
x�, and we are interested in the confidence interval on the estimated Y for this new
observation. This typically arises in forecast applications. For instance, future trips
(Y�) are generated from a target-year population (x�). In other words, the best esti-
mate of y� � a � bx� is to be obtained. The total variance of Y� is made up of two
components. The first is the uncertainty of y itself, �2, corresponding to the inher-
ent error term � independent of x� in the true regression line Y� � �� � ��x� � �. The
second is the statistical estimate on the line that changes with the observations x. As
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(x* – �X)2
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the database pool increases, this second variance term, corresponding to the tilting
effect of an additional data point, will go down. Expressed more formally, we have

�2
Y� � �2 � �2

M� (A2.6)

Let us look at this another way. For any given x�, the individual values of
Y are scattered above and below both the true and the sample regression lines. In
practice, it may often be of interest to know how closely one can predict an indi-
vidual value of Y rather than just the accuracy of the mean value given by the
 regression line. The formula for a 100(1 � 
)% prediction interval for Y is

Ŷ � t�/2, n�2 sY �1� �� �
n
1����� �

(�x
(n����

�� X
1�)

�
s�2

x

)2

��
Notice this expression is very similar to Equation A2.4, except that we have
 identified two components of the variance as shown in Equation A2.6—one
 corresponding to the inherent uncertainty and the second associated with the
 additional data point x�.

Example
Continuing the same trip generation example, the 95 percent prediction interval
for a single trip observation Y at income x� � 25 thousand is

58.08 � (12.706)(11.676) �1� �� �
1
3����� �

(�(

3

2� 5

�� ��1)�2

(1�0

0�)2

)
�� � 58.08 � 238.432 (A2.7)

Again, this toy problem is for illustration only, since the prediction interval is far
too huge to be of any use. ■

C. Summary
The entire “interval” problem can be viewed in terms of two graphical illustrations.
Figure A2.4 shows the inherent probabilistic element of data. Even if a true regres-
sion is obtained by virtue of an infinite number of data points in the sample, there
is still a spread of the data, the residuals, around the regression line. In other words,
Y is a random variable that follows a probabilistic distribution. The residual, �, is
assumed to be normally distributed with a variance of �2. In practice, such a true
regression line is never obtainable. In its place, an estimated regression line is cali-
brated based on the model Ŷ � ã � b̃x, for given values of x. Here ã and b̃ are
 random variables, with specific values of ã* and b̃* calibrated by a sample of data
points. To predict a value of Y for a given x* or x� value in practice, two types of
 errors can be involved: the inherent error 	2 as discussed above, and the error due
to randomness of the regression coefficients themselves, �2

Ŷ (that is, tilting of the
 regression line). In other words,

	2
Y � 	2 � � 2

Ŷ (A2.8)

Figure A2.5 shows that there is randomness in the calibration coefficients a and
b, which result in a family of regression lines that are contained in the error
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Figure A2.4  PREDICTION BANDS FOR A “TRUE” REGRESSION LINE
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Figure A2.5  CONFIDENCE BANDS FOR AN ESTIMATED REGRESSION LINE
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VI. STEPWISE REGRESSION
Stepwise regression is a procedure to search for the best equation automatically. In
the case of multiple regression where there are a number of possible explanatory
variables (instead of just one as in the toy problem used for illustration so far), it is
not at all clear which of them will contribute the most in the regression. Take the
following example, which is a trip generation analysis based on stepwise regres-
sion for a 29-zone1 study area (Hutchinson 1974). Here, trips are generated from
land use information, including zonal population and employment activities:

Y � 69.92 � 1.71X3 (R2 � 0.735, t3 � 8.7)
Y � 78.63 � 0.78X2 � 1.24X3 (R2 � 0.888, t2 � 5.8, t3 � 8.0) (A2.9)
Y � 58.36 � 1.24X1 � 0.76X2 � 0.71X3 (R2 � 0.938, t1 � 4.7, t2 � 7.6, t3 � 4.4)

Here the notation for t-statistics is referenced against the explanatory variable.
Thus t1 is the t-statistic for the first explanatory variable X1, t2 the second
 explanatory variable X2 and so on. With t(25 � 27,0.99) � 2.8, the question is: How
many of the explanatory variables should be included and which of the three
equations is the best?

A. Backward and Forward Regression
To generate these equations, two stepwise regression procedures are commonly
found in many statistical packages: the backward elimination procedure and the
forward selection procedure (or a combination of both). Specifically, the backward
elimination procedure does the following:

1. It includes all variables in the equation to start with.
2. The partial F-test value is then calculated for every variable that is

treated as though it were the last variable to enter the equation. 
3. The lowest partial F-test value FL is compared to a pre-selected 

significance level F0.
4. If FL � F0, the variable XL (which gives rise to FL ) is removed from

consideration and the equation re-computed in the remaining
 variables. Go to step 2.

5. If FL � F0 , adopt the equation as calculated.

The forward selection procedure, on the other hand, performs the following steps:

1. Select the explanatory variable X most correlated with Y (for  instance,
X1) and calibrate the equation Y � f(X1).

 envelope defined by Equation A2.8. This band is a combination of both random
and estimation errors. Thus the confidence band is reduced to the prediction
band when the data sample is so huge that it encompasses the entire population.
In this case the term � 2

Ŷ becomes zero, taking away the curvature of the error
 envelope and reducing it to a constant band �2 around the true regression line
as shown in Figure A2.4.
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Table A2.3  CALIBRATION RESULTS OF THE FORWARD REGRESSION PROCEDURE

2. Find the partial correlation coefficient between Xj (j  1) and Y (after
allowances for X1). The Xj with the highest partial correlation coeffi-
cient is selected (say X2) and a second equation Y � f(X1, X2) is fitted.
Repeat this step until X1, X2, . . . , Xq are in the regression.

3. As each variable is entered into the regression, the following values
are examined: R2 and the partial F-test value for the variable most
 recently entered. The latter shows whether the variable has taken up
a significant amount of the variation over that removed by variables
previously in the regression.

4. As soon as the partial F-value related to the most recently entered
variable becomes insignificant, the process is terminated.

Example
A regression model for home-based non-work trips in York, Pennsylvania, is to be
constructed. Variables are added into the model one at a time. The order of inser-
tion is determined by using the partial correlation coefficient, which measures the
importance of a variable not yet in the equation. The selection stops when the con-
tribution of such a variable ceases to be significant at a predetermined level, as
measured by the increase in partial F. Table A2.3 summarizes the results of the
 regression procedure. It can be seen that the variables enter the equation in the
order of the largest partial-correlation coefficient (indicating the most significant).
The R value increases significantly from the equation with one variable to the one
with two variables, indicating a better fit. Adding the third variable to the equa-
tion did not change the R value that much, which means that this third variable is
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not helping the equation to a better fit. Remember the R value would have a ten-
dency to go up as the number of variables increases (due to a decrease in dof ).
Thus the increase in R2 can be attributable to statistical properties rather than the
explanatory power of a variable.

The partial F-value decreases as more variables are added to the equation,
which is normally the case. But the decrease of the partial F-value from the total-
employment explanatory variable of the first equation to the housing land-use
variable in the second is significant, while that from the second to the third (with
the housing-density explanatory variable) is even more significant in comparison.
This indicates that by adding the housing land use variable, our confidence level to
reject the null hypothesis did not decrease. However, we cannot say the same for
the housing density variable. These facts point toward favoring the equation in
step 2, resulting in the equation trip = f (housing land use, total employment). This is
confirmed by the sharp drop of the overall F-ratio from step 2 to step 3. ■

B. Goodness-of-Fit Parameters for Stepwise Regression
A number of goodness-of-fit parameters are used to measure the significance of
the stepwise regression equation. In the backward elimination procedure, the
goodness-of-fit parameter used to terminate further deletion of explanatory vari-
ables, as pointed out above, is the partial F-value. It is defined as 

This is the same as

This indicates the contribution of the coefficient bi corresponding to the ith inde-
pendent variable. More precisely, the partial F-value is

where the value of the ith variable is the marginal explained sum-of-squares due
to the extra degree of freedom. It is, by definition, different from the regular 
F-value, which is

In the forward selection procedure, the square of the partial correlation
coefficient is the contribution to explained variation by the candidate variable Xj.
It is defined as

variance due to regression with one variable eliminated
������

variance about regression with none eliminated

(“explained” sum-of-squares)/(k � 1)�(“explained” sum-of-squares)/[(k � 1) � 1]
����������

(“unexplained” sum-of-squares)/(n � k)

sum-of-squares (bi|b0j, b1, . . . , bi � 1, . . . , bk)/1
�����

error-sum-of-squares/(n � k)

(“explained” sum-of-squares)/(k � 1)
�����

(“unexplained” sum-of-squares)/(n � k)
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This is the same as

More precisely, it can also be thought of as the percentage of variance in Y not
 accounted for by other variables, but explained by the variable in question (Kane
1968):

(A2.10)

Recall that partial correlation describes the extent of linear association that is
 obtained between a particular pair of variables when other specified variables are
held constant. Computationally speaking, it is more convenient to use the fol-
lowing iterative relationship:

rY⏐Xi
(Xj) � (A2.11)

where the notation rY⏐Xi
(Xj) denotes the partial correlation between Y and Xj given

Xi is in the equation already, r (Y, Xi) is the unconditional partial correlation of Y
with Xi, and r (Xi, Xj) is simply the correlation between two independent variables.
Should independent variable k be now introduced into the equation, its partial cor-
relation coefficient can simply be calculated from the ones already known:

rY⏐XiXj
(Xk) � (A2.12)

Notice any unknown quantity in the right-hand side above can be calculated by
Equation A2.11 recognizing that i and j can be interchanged, and the definition of
the Y variable is also relative.2

Partial Correlation Example
For estimating home-based non-work trips, let us calculate, via Equation A2.11,
the partial correlation coefficient for housing land use given total employment is
already in the regression equation. Using the notations and the correlation matrix
given in Table A2.4, we are interested in

rY⏐X1
(X2) �

“explained”-sum-of-squares (with Xj in) � “explained”-sum-of-squares ( with Xj out)
���������total-sum-of-squares (with Xj out)

sum-of-squares (Xj⏐X1, X2, . . . , Xj � 1, Xj � 1, . . . , Xk)
������
total-sum-of-squares (X1, X2, . . . , Xj � 1, Xj � 1, . . . , Xk)

R2
Y⏐X1, X2, . . . , Xk

� R2
Y⏐X1, . . . , Xj � 1, Xj+1, . . . , Xk������

1 � R2
Y⏐X1, X2, . . . , Xj � 1, Xj + 1, . . . , Xk

r(Y, Xi) � r(Y, Xj) r(Xi, Xj)
����

�(1� �� r��2(�Y�,�X�j))�(1� �� r�2(�X�i,�X�j))�

rY⏐Xi
(Xk) � rY⏐Xi

(Xj) rXj⏐Xi
(Xk)

����
�(1� �� r�2

Y�⏐X�i
(X� j))�(1� �� r�2

X�j⏐X� i
(X�k)�)�

r(Y, X2) � r(Y, X1) r(X1, X2)
����
�(1���r�2(�Y�,�X�1)�) (�1���r�2(�X�1,� X�2))�
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� � 0.5133 (A2.13)

This result agrees with that reported in Table A2.3. It can be seen from Equation
A2.12 that second-order partial correlation coefficients, such as that for housing
density, involve a lot more calculations than the first-order coefficient calculated
above, since they build upon the results of Equation A2.11. ■

The partial F-value for forward regression, similar to the backward
 regression, is defined as

or

or

(A2.14)

It can be seen, again, that the partial F used in forward-regression is different from
the regular F. While there are computational shortcuts in calculating partial F, the
central ideas are captured in the above discussions and the following example. ■

0.2492 � (0.5861)(�0.2600)
����
�(1� �� (0.5861)2)(1 � (�0.2600)2)

variance due to regression with another variable added
������

variance about regression with existing variables

(“explained” sum-of-squares)/((k � 1) � 1)�(“explained” sum-of-squares)/(k � 1)
���������

“unexplained” sum-of-squares/(n� k)

sum-of-squares (bk �1⏐b0, b1, b2 , . . . , bk)/1
�����

error sum-of-squares/(n � K)

Home-based
non-work
trips (Y)

Total
employment

(X1)

Housing
density

(X3)

Home-based
non-work trips (Y )

Total employment
(X1)

Housing land use
(X2)

Housing density
(X3)

0.5861 0.2492

0.2600

0.1213

0.0188

0.2610

Housing
land use

(X2)

Table A2.4  CORRELATION MATRIX FOR CALCULATING PARTIAL-
CORRELATION
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Partial F Example
Consider the home-based non-work-trip forward-regression Y � f(X1, X2) again.
Let b1 be the calibration coefficient for X1 and b2 for X2. While the partial F’s are
part of the output, it can also be gleaned from the analysis-of-variance tables
 according to the definition of partial F above. Notice the partial F for b2 or due to
X2 is computed in the last column of Table A2.5, second entry from the bottom. Of
further interest is the fact that the third entry from the bottom as indicated is not
the partial F for b1. The value for b2 agrees with the partial F as documented in
Table A2.3. Both are 13.953 in value. ■

It should be noted that the goodness-of-fit parameter, the coefficient of mul-
tiple determination (R2), is not comparable between the various steps of the step-
wise regression. The reason is that the (dof) change from one step to another. Recall
that

R2 � 1 � � (A2.15)

where the numerator has n � k dof while the denominator has n � 1. As more and
more explanatory variables are added, k becomes larger or n � k becomes smaller.
There is a tendency for the numerator to become smaller as there is less var iability
(remember the case of zero dof when a regression line is fitted on two points.) 
One way to compensate for this is to adjust Equation A2.14 as follows 

�i(yi � Ŷ )2

��
�i (yi � Y� )2

Table A2.5  EXAMPLE OF PARTIAL F FOR FORWARD REGRESSIONa

Adjusted-R2 �R
_

2 � 1 � (1 � R2) �nn
�
�k

1
�

Adjusted-R2 Example
In the home-based non-work trip regression Y � f (X1, X2) shown in Table A2.3, 
R2 � 0.5164. The adjusted R2 becomes R2 � 1 � (1 � 0.5164)[(42 � 1)/(42 � 3)] =
0.4916. As expected, R�2 is smaller than the R2. Put in another way, R2 is inflated in
comparison to the R�2 due to the diminished dof. ■
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VII. MATRIX APPROACH TO 
LINEAR REGRESSION

In the context of multiple linear regression, it is convenient to generalize our
 parameter estimation discussions in terms of matrix notations. Y is defined to be
the vector of n observations yt where t � 1, 2, . . . , n; X is the n � (k � 1) matrix of
independent variables constituting the observations xt; (where t � 1, 2, . . . , n and
j � 1, 2, . . . k; b is the vector of parameters to be estimated (consisting of intercept
a and coefficients b1, b2, . . . , bk; and � � (�1, �2 , . . . , �n) is the vector of errors. Our
bivariate toy problem can be put in matrix notation as follows: 

1    30
Y � (65, 50, 42)T, X � � 1    20 , b � (a, b)T, � � (�1, �2, �3)

T

1    10     

Now we can write the matrix regression equation as

Y � Xb � � (A2.16)

This is simply a compact way of writing

65 1 30 �1� 50  � �1 20  � �
b
a

�  � ��2  (A2.17)
42 1 10 �3

which constitutes a simultaneous set of three equations. A set of normal equations
can be defined from Equation A2.16 by first writing Xb � Y (leaving out the error
vector) and then pre-multiplying by X T, resulting in XT Xb � XT Y. From these
normal equations, the coefficients b can be solved, yielding the least square esti-
mates (a, b): b � (XT X)�1XT Y.

It can be seen that

1 30
XTX�1 � ��

3
1
0
��

2
1
0
��

1
1
0
� � 1 20  � �30

1
�

�

2
1
0

�

�

1
10

� �
3
3
0
0
2 �

�

2
2
0
0

2

�

�

1
1
0
02� � ��

�

n
xt
��

�

�

x
x

2
t

t
� (A2.18)

1 10

It can also be shown that

(XT X)�1 � �
n�(x

1

t�X�)2
� ����

x
x
t
2

t
�
�

n
�xt� � ��2.3

0
3
.
3
1

��
0
�

.0
0
0
.1
5

� (A2.19)

In addition,

65
XT Y � ��

3
1
0
��

2
1
0
��

1
1
0
� � 50 ��  � � �

�

x
y

tY
t

t
� � ��3135770�  (A2.20)

42

65�50�42
����
(30)(65)�(20)(50)�(10)(42)
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Thus 

b � ���2.
0
3
.
3
1
3

� �
0
�

.0
0
0
.1
5

� � 3
1
3
5
7
7
0

� � ��219..1258�
Within the numerical round-off errors of a basis inversion and the number of
 significant figures carried, this agrees with previous calculated values of a � 29.33
and b � 1.15.

VIII. NONLINEAR REGRESSION 
Regression models need not be linear. Suppose the  postulated model is of the form

Y � f (X1, X2, . . . ,  Xk; �1, �2, . . . , �r) � � (A2.21)

where �j are the estimated parameters (Draper and Smith 1966). If we write 
XT � (X1, X2, . . . , Xk); �

T � (�1, �2, . . . , �r), Equation A2.21 can be rewritten com-
pactly as

Y � f (X, �) � � (A2.22)

Notice that k is not necessarily the same as r—that the number of estimated
 parameters r do not necessarily have to be equal to the number of independent
variables k in general. We shall assume that errors (�) are uncorrelated, that 
var(�) � � 2, � is independent and normally distributed with a mean of zero and
 variance � 2.

When there are n observations of the form Yt, X1t , X2t , . . . , Xkt for t �
1, 2, . . . , n, we can write the model (22) as

Yt � f(Xt , �) � �t t � 1, 2, . . . ,  n (A2.23)

where Xt � (X1t , X2t , . . . , Xkt)
T. The assumption of normality and independence of

the errors can now be written compactly as � � N (0, I�2) where � � (�1, �2, . . . , �n)T,
and as usual 0 is a vector of zeros and I is an identity matrix. We define the error
sum-of-squares for the nonlinear model and the given data as

S(�) � �
n

t�1
[yt � f (Xt , �0)]

2 (A2.24)

The above is also referred to as the sum-of-squares surface. Notice that since yt
and Xt are fixed observations, the sum of squares is simply a function of �. The  �
so obtained is referred to as the conditional estimate, in the sense that they are
conditioned upon the given values of yt and Xt. We shall denote by �̂ a least
squares estimate of �—a value of � that minimizes S(�). It can be shown
that under the conditional assumptions, the least squares estimate of  is also the
maximum likelihood estimate.3 This is because the likelihood function for this
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problem can be written as L(�, 	2) � (2�	2)�n/2 exp [� S(�)/2	2], so that if �2 is
known, maximizing L(�, � 2) with respect to � is equivalent to minimizing S(�)
with respect to �.

To find the least squares estimate �̂, we need to differentiate Equation
A2.24 with respect to �̂. This provides the r normal equations, which must be
solved for �̂:

�
n

t�1
�[yt � f(Xt, �)]��∂f(

∂
X
�
t,

i

�)
��

� � �̂

� 0   i � 1, 2, . . . , r (A2.25)

Notice the derivative in square brackets is evaluated at the corresponding estimated
values �̂, which have the same subscript. When the function f(Xt, �) is linear

f(Xt, �) � �1X1t � �2X2t � . . . � �rXrt (A2.26)

this derivative is a function of the Xt only: ∂f/∂�i � Xit for i � 1, 2, . . . , r and does
not involve � at all. This leaves the normal equations in the form of linear equa-
tions in � as discussed in the previous section.

�
n

t�1
[yt � f(xt, �̂)] xit � �

n

t�1
(yt � ŷt) xit � 0      i � 1, 2, . . . , r (A2.27)

which is equivalent to XT (Y � X�̂) � 0, where the estimated parameters �̂ is the
same as b in linear regression. While this is a simple set of equations to solve for
linear regression, it is quite complicated for nonlinear cases, as demonstrated by
the example below. Unfortunately, nonlinear regression is the rule rather than the
exception in spatial time series, as demonstrated in the “Space Time Modeling”
section of the “Spatial Time Series” chapter of Chan (2005).

Example
Suppose we wish to find the normal equation(s) for obtaining the least squares
estimate �̂ of � for the model Y � f(�, �) � � where f(�,�) � exp(��	) and where n
pairs of observations (y1, t1), (y2, t2), . . . , (yn, tn) are available. We take the deriva-
tive ∂f/∂� � � 	e��	. Applying Equation A2.25 yields a single normal equation

�
n

j�1
[yj � exp(��̂tj)] [�tj exp(��̂tj)] � 0 (A2.28)

We can see that even with one parameter and a comparatively simple nonlin-
ear model, finding �̂ by solving the only normal equation is not easy. When more
parameters are involved and the model is more complicated, the solution of
the normal equations can be extremely difficult to obtain; iterative methods
must be employed in nearly all cases. To compound the difficulties, multiple
 solutions may exist, corresponding to multiple stationary values of the surface
function S(�̂). ■
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IX.  CONCLUDING REMARKS
This appendix reviewed some of the basic statistical concepts. We discussed esti-
mators in their single, two-dimensional, and multidimensional contexts, covering
linear regression, stepwise regression, and nonlinear regression. Aside from the
current volume, this introduction is meant to supplement such other chapters as
“Generation, Competition and Distribution” and “Spatial Time Series” in Chan
(2005), with pertinent fundamental principles. It does not pretend to replace
 excellent texts such as those listed in the references. However, care has been taken
to make the presentation as self-contained and tutorial as possible, and  to include
as many examples as necessary—conducted sometimes at the sacrifice of mathe-
matical rigor. The focus is on model calibration.

In linear regression, we pointed out that no single statistic can by itself
speak for the overall quality of the regression equation. A number of statistics
need to be considered together in assessing the quality of a calibration. Goodness-
of-fit parameters are confirmations of a priori professional judgment on the
 hypothesized structural equation. The ultimate quality of a regression equation
depends critically on the judicious choice of a sound structural equation, not just
on statistical tests. Hypothesis about such a regression equation should therefore
be re-examined all the time during a regression exercise to ensure a sound model.

Stepwise regression procedures are by no means perfect ways to automate
the selection of a best equation. They are heuristic ways based on selective statis-
tics such as partial-F or partial correlation coefficient. As pointed out in the text,
the values of partial-F and partial correlation coefficients are conditioned on what
variables are already included in the equation. A different sequence with which
explanatory variables are introduced in the equation will result in different values
for the same coefficient. Thus the use of partial-correlation coefficients in an
 iterative application of forward and backward regression fails to test whether the
elimination of a variable, for instance, Xj might have made it impossible for read-
mission. 

In practical applications, it is desirable to have a parsimonious equation,
meaning a simple model that is statistically significant. Too many explanatory
variables will not only introduce the problems associated with a diminishing
 degree of freedom, it will often pose prohibitive data-collection requirements. Let
us replace the first equation in Equation 9 with Y � 50.02 � 0.84X4 (R2 � 0.93, 
t4 � 19.2). The goodness-of-fit statistics are similar between the first and third
 regression equations. Both are superior to the second equation; however, since
the first equation is more parsimonious, it is preferred to the third. It can be seen
therefore that the selection of the best equation is not a purely statistical exercise.
It requires the combination of statistical tests with professional judgement in an
artful manner. 

Matrix notation for regression is convenient, particularly in the case of
multiple regression and nonlinear regression. Through such a notation, one can
easily see the relationship, say, between linear and nonlinear calibration. It was
shown that while calibration of linear regression is relatively straightforward, cal-
ibration of nonlinear regression is not. One of the state-of-the-art issues in this
field is the availability of stable and accurate nonlinear calibration procedures
(Seber and Wild 1989). Unfortunately, the real world is replete with examples of
nonlinear models. In spite of valiant attempts to provide generalized calibration
tools, practical computational experiences tend to be case-specific, as we can see
in the main body of this text.
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ENDNOTES

1 A zone (or more accurately traffic zone) is a subregion of a study area, each of which has its zonal
attributes such as population and employment.

2 This procedure can be generalized to an autoregressive time-series, as explained in the “Estimating
the Parameters” subsection of the “Spatial Time-Series” Chapter in Chan (2005).

3 The maximum-likelihood estimation procedure is explained in Chapter 3.
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In making locational decisions over time, we face a world of uncertainty. In this
 appendix, we put together the basic concepts behind time-dependent probabilistic
processes (or stochastic processes), including Poisson (random), queuing, Markov,
and state-transition procedures in general. Particularly of interest is optimizing
a Markovian decision system. A basic building block of these methodologies is
the Markovian (or memoryless) property, which suggests independence among
 sequential outcomes. By discussing the “memoryless properties” that govern
many of these phenomena, reference is made to dynamic programming,  non-
Markovian processes and compartmental models as well. All these are extensions
to the basic concepts. While compartmental models will be discussed in detail in
Appendix 1, their relationship to Markov process is delineated here. The proba -
bility self- instructional model serves as an excellent introduction to this appendix.

I.  POISSON PROCESS
One of the motivations to study stochastic process is to address problems of
 congestion. Congestion is often manifested in terms of waiting lines (or queues)
at a service facility such as a fire station, which has to respond to probabilistic
 demands over the entire neighborhood it serves. Given demands are usually
 random and there is a limited number of fire engines, the fire station can be taxed
to its limit on occasions. Stochastic process helps us to understand such situations
and to offer possible solutions. 

A.  State Transition Equations 
The first step in the analysis process is to understand how random demands arrive.
To represent random demands, consider the state transition diagram shown in
Figure A3.1, where each state stands for the number of demands arriving in the
 period of time t. Let pij stand for the probability of transitioning from state i to j or that
the  demand changes from i to j. The differential equations governing the evolution
of the system over time, when demands arrive at an average rate of  �”, becomes

ṗ00(t) � ��”p00(t)
ṗ01(t) � �”p00(t) � �”p01(t) (A3.1)
ṗ02(t) � �”p01(t) � �”p02(t)
.
.
.
etc.,
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or ṗ0k(t) � �”p0k�1(t) � �”p0k(t) for k � 0, 1, . . . , n; where ṗ0i'(t) is the time deriv-
ative of the probability of transitioning to state i. The subscript 0 simply suggests
the system starts empty. In matrix form,

ṗ00(t) ��” p00(t)
ṗ01(t) �” ��” p01(t)� ṗ02(t) � � � �' ��" � � p02(t) � (A3.2). ...      .

. .

. .
ṗ0n(t) ... p0n(t)

or ṗ0(t) � �� p0(t), which describes the system evolving over time increments dt.
Here �� is the matrix of transition rates from state 0 to state x.

Figure A3.1  CUMULATIVE ARRIVAL PATTERN AND ASSOCIATED STATE-TRANSITION DIAGRAM
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B.  Solution to Random Process
Solving the first line of Equation A3.1 by integration, with the constant of inte-
gration p00(0) � 1, we have p00(t) � e��”�. This curve is plotted in Figure A3.2 for
 illustration. Notice this is the probability that there is no event in time �, or the
 interarrival time t is greater than �: P(t � �). Substituting this integration result
into the second equation and integrating again yields p01(t) � e��”t. Repeating the
process one more time for the next equation, we have: p02(t) � (�”t)2e��”t/2. In
 general, p0x(t) � (�”t)xe��”t/x!, for x � 0, 1, 2, . . . , n. Thus for a given time period
t � �, the vector p0 gives the probability distribution of the various states, and the
sum of the entries in the vector is unity by definition of a probability distribution.
Such a Poisson distribution is plotted in Figure A3.3. When � is normalized to one
time unit, we have the alternate expression for Poisson distribution:

P(x) � �
�”
x!

e��"

� x � 0, 1, 2, . . . , n. (A3.3)

II.  FIELD DATA FROM AIR TERMINAL
The somewhat abstract ideas above can be illustrated with concrete data (Morlok
1978). Suppose we collected the information of Table A3.1 at an air terminal
 during an eight-hour day. Here in this figure one time unit represents a half hour.
For the time being, we only examine the first column—arrival time of an
 aircraft—since we are interested in the demands placed upon the terminal. In this
case, the first aircraft arrives 1/2 hour after the day begins, the second one arrives
one hour after the day starts and so on. The average arrival rate �“ is computed
as 12/16 or 0.75 vehicles per unit time.

Figure A3.3  POISSON-ARRIVAL DISTRIBUTION FUNCTION

0 1 2 3 4 5 x

P(x) pox(t 1)
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A.  Exponential Distribution
From the discussions in Section I-B, if arrivals are random, interarrival times are
exponentially distributed: P(t � �) � e�0.75� for 0 � � � ∞, where P(t � �) is the
probability that the interarrival time t is greater than �. Now we can compare the
field data with a theoretical exponential interarrival time distribution. If the two
match, then we can conclude that interarrivals are truly random. Table A3.2
shows how this can be conducted. For example, in the first row of the second
 column, there are clearly the entire 11 (12-1) interarrival times that are larger than
0 unit in duration, considering that an interarrival time is defined for each pair of
aircraft. In the second row, we counted only eight interarrival-times that are one
unit or longer and so on. Now we plot the theoretical curve against the experi-
mental curve in Figure A3.4, which allows for a visual inspection of the two
curves side by side. Notice the average interarrival time, 1/�” or 1.333 units, is
also graphed in Figure A3.4 for reference.

B.  Poisson Distribution
Again from Section I-B, if arrivals are random, the number of aircraft arriving in
a unit of time (1/2 hour) constitutes a Poisson distribution: P(X � x) � (e�[0.75]x)/x!
for x � 0, 1, 2, 3, . . . , where P(X � x) is the probability that x aircraft arrive in the
time unit. Table A3.3 shows both theoretical and field data side by side. For
 example, there are six occurrences in which no aircraft arrive in a time unit, and
eight occurrences in which one aircraft arrives in a time unit and so on. All these
come from the first data column of Table A3.1. Comparison between theoretical

Table A3.1  AIRCRAFT ARRIVAL AND DEPARTURE FIELD DATA
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and empirical curves in Figure A3.5 does not seem to support the assumption of
a random process, even though the previous test using exponential function 
resulted in a more positive visual verification. Rigorous, scientific goodness-of-fit
statistics such as the chi-square should be used in lieu of a manual, visual
process.1

III.  M/M/1 QUEUE
Instead of just the demand arrival pattern, one can use similar state transition
equations to derive the full set of waiting-line or queuing equations. This covers
both arrivals and departures after receiving service at the terminal. We assume
random arrivals and random service here, or more specifically Poisson arrivals
with an average rate of �”and exponential service time averaging 1/�'. Let Pi(t)
be the probability that the system is in state i at time t. In Figure A3.6, we have the
transition diagram to describe random arrivals and random service at a single
server. The usual convention is to use M/M/1 designation where the first M
stands for random arrival, the second M stands for random service, and 1 stands
for a single server.

Starting with an empty system, or state i � 0, the transition differential-
equation set is

Ṗ0(t) � � �”P0(t) � �'P1(t)
Ṗ1(t) � � (�”� �')P1(t) � �”P0(t) � �'P2(t)

(A3.4)
Ṗ2(t) � � (�”� �')P2(t) � �”P1(t) � �'P3(t)                      
.
.
.
etc.

where Ṗi(t) is the time derivative of the probability of being in state i. In general,
Ṗ0i(t) � � (�”� �')Pi(t) � �”Pi�1(t) � �'Pi�1(t) for i � 0, . . . , ∞. Expressed in
 matrix form:

0 1 2 3
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Figure A3.6  CUMULATIVE ARRIVAL AND DEPARTURE CURVES AND ASSOCIATED TRANSITION
DIAGRAM
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Ṗ0(t) ��” �' P0(t)
Ṗ1(t) �” �(�”� �') �' P1(t)� Ṗ2(t)� � �' �(�”� �') �' � �P2(t) � (A3.5). � ...      .

. ... .

. ... .

Ṗn(t) Pn(t)

or Ṗ(t) � ∏
�

P(t), where 0 � t � ∞, and the system evolves over the time incre-
ments dt.

For the steady-state (or average) situation, all derivatives are zero, and
we have the following equation set after dropping the t argument:

�”P0 � �'P1
(�” � �')P1 � �”P0 � �'P2
(�” � �')P2 � �”P1 � �'P3
.
.
.
etc.

Solving these equations yields P1 � �'0, where �' � �”/�'; P2 � �'2P0; P3 � �'3P0; ...
etc. Substituting into the relationship that P0 � P1 � P2 � P3 � ... � 1, we have
P0(1 � �' � �'2 � ... ) � 1, or P0 � (1 � �'). Now, re-substituting back P1 � �'
       (1 � �'), P2 � �'2(1 � �'), P3 � �'3(1 � �'), ... and so forth. The average length of a
waiting line or queue, including the one being served, is therefore

L� � 0P0 � 1P1 � 2P2 � ...
� (1 � �')(�' � 2�'2 � 3�'3 � ...)
� (1 � �')�'(1 � 2�' � 3�'2 � ...) 
� (1 � �’)�’(1 � �’)�2 � �’/(1 � �’)

From the queue length, other queuing statistics can be derived. For example, the
total time in the system, which is the amount of time for the last arrival to spend
in line plus the time being served is simply (1/�')L�, or � �'/�'(1 � �').

IV.  QUEUING SYSTEMS
The above derivations are based on a set of state transition equations that describe a
Markov process—especially, a continuous-time Markov process. Similar processes
can be used to model other types of queues. For example, if we have  established
that the arrivals are not random in the air terminal example, some other distribu-
tions may fit the data better, and the M/M/1 queue may not be an appropriate
model to use in this case. We wish to present several queuing  models below. But
due to space limitation, we will not show the detailed steps of derivation, as we
have done in the case of M/M/1 queue. Interested readers should refer to standard
texts on queuing for details (See Cooper [1980] for example).
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A.  Basic Theory
The basic idea behind queuing is really quite straightforward. We have a stream
of demands coming in, and they are being met by a service facility. The demand
traffic eventually exits after being served at the end of the process. A schematic
describing this phenomenon can be sketched: �”→�’→... where in the air termi-
nal example both parameters �”and �‘ are measured in vehicles/time-unit. �” is
called the average rate of arrival, and �’ is the average rate of service. As defined
in Section III, �”/�’ is called the utilization factor �’, or the traffic intensity,
 signifying the percentage of time the server is busy on the average. Broadly
speaking, there are two types of queuing: deterministic and probabilistic. A
 deterministic queue is straightforward; it is analogous to a sink with a running
faucet. Water enters the sink via the faucet at a precise rate of �”, and the sink
drains at a precise rate of �’. Unless the water comes in faster than going out, or
�” 	 �’, there is no water backup, which is analogous to saying that no queue is
formed. When �” 	 �’, water backs up in the sink and the water level keeps on
rising,  resulting in a wet floor when water eventually overflows. In the case of a
probabilistic process, a queue may be formed even though that on the average
�” 
 �’, since the water is coming in and going out at fluctuating rates. Thus on
occasions, the water gushes out of the faucet while the drain is sluggish, causing
water backup, even though on the average, the sink is supposed to drain faster
than the incoming rate at the faucet.

We can summarize the probabilisic situation with the following table:

�” �’ delay Wq

random random worst
random constant medium
constant random least

which says that if the faucet runs randomly, and the drain works randomly, the
water backs up and the water in the sink takes a long time to clear on the aver-
age. If the faucet runs randomly, but the drain is perfectly reliable, the situation
is more under control. The best is when the incoming water is steady, even
though the drain may be haphazard. All these refer to the situation when
�” 
 �’. Obviously, we are guaranteed an infinite backup and a wet floor when
�” � �’ to begin with. Standardized short-hand notations for random is M (as
mentioned previously) and for constant D. Based on this notation, the queuing
system above in the second line of the table  is an M/D/1 model, where the last
number again denotes one single server, similar to the case of M/M/1 queue.
The average system-behavior is summarized in Figure A3.7, which shows the
steady-state (or stationary) behavior of the queues. On the average, the delay is
at its worst for M/M/1 queue, and least for D/D/1 (until the water spills over
beginning at �” � �’). Notice the figure is dimensionless, in that both scales of
the horizontal and vertical axes are independent of any particular unit of
 measurement. First of all, the utilization factor is clearly dimensionless. Total
time in the system (in units/unit) is scaled with the average service time being 1
unit. In our air terminal example, it simply means that everything is a multiple
of 1/2 hour. The total time WT is the sum of the delay time in queue Wq and the
service time 1/�’. It refers to the time spent by a single vehicle unit to be served
at the terminal.
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In the case of multiple servers, a schematic can be drawn as follows:

�’→
�’→
.

�”→ � . (A3.6)
.
�’→

The more servers, the less the delay time, as illustrated by M/M/p, or the p-server
system shown in Figure A3.8. For example, for a utilization factor �’ � 0.6, the
 single-server queue incurs the largest system delay (at 2.5 units/unit), the  two-
server queue less (at 1.8 units/unit) and the three-server queue the least (at 1.3
units/unit).

B.  Queuing Formulas
Now back to the single-server system. For a first-come-first-served (FIFO) system,
the following queuing equations can be obtained:
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Figure A3.7  AVERAGE PERFORMANCE OF VARIOUS QUEUING DISCIPLINES
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queue queue length delay                  
discipline (Lq) (Wq)     

D/D/1 0 0             
D/M/1 (Intractable analytically, resort to simulation)
M/D/1 �’2/2(1 � �’) �’/2�’(1 � �’)   
M/M/1 �’2/(1 � �’) �/�(1 � �’)

Notice the average queue length and queuing delay for an M/D/1 queue is half
of that for an M/M/1 queue, as confirmed by the plot in Figure A3.7. Several
other observations are also worthy of note. First, the percentage of idle time � 1 �
�’ � P(system empty) � P0. For  an  M/M/1  system,  P(i units in the system) �
P0�’i � Pi. Second, total time in system (WT) is the combination of queuing delay
and service time as mentioned, or Wq � (1/�’). Third, it is seen that the total
 number of demands on the system is the combination of those in the queue and
those being served � Lq � �’, and queuing delay is simply Wq � Lq/�”. Finally, of
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Figure A3.8  PERFORMANCE OF MULTI-SERVER QUEUES
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significance is that most queuing systems are not subject to closed-form solutions,
as already alluded to in the case of D/M/1 queue, not to say more complicated
ones.

Example
Suppose demand arrives at a rate of �” � 0.75 veh/unit-time and �’ � 1
veh/unit-time, setting aside economic and other considerations, is it more desir-
able to have constant service time or random service time? 

According to the formulas given above, we construct this tabular calculation:

queue Wq

M/D/1 �
2(1)(1

0.
�

75
0.75)

�� 1.5

M/M/1 �
1(1

0
�

.7
0
5
.75)

� � 3

Thus the obvious answer is to go for constant service time since it results in half
of the wait time (and queue length) alluded to earlier. The astute reader would
have arrived at this conclusion directly from the queuing formula table above,
without substituting any numbers. ■

An example of a multi-server system is the random-arrival, random-
service M/M/p queuing model, where the percentage of idle time is

P0 �

(A3.7)

Pi � �
Lq � (A3.8)

Example
Given �” � 2 veh/Min, and �’ � 3 veh/Min and p � 2, what is the percentage
time the system is empty? How about with one vehicle in the system and with
two vehicles in the system?

P0 � � 0.5
(A3.9)

P1 � [(2/3)1/1!](0.5) � 0.333 and P2 � [(2/3)2/2!22�2](0.5) � 0.111. ■

(�"/�')i(�"/�'p)P0���
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�
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In many queuing systems, an arrival who finds all servers occupied is, for
all practical purposes, lost to the system. For example, suppose someone calls in a
fire alarm and no fire engines are available; an engine has to be called in from a
neighboring town or the fire will simply burn out of control. The result is that the
demand evaporates from the local fire station. Thus, a request for a fire engine that
occurs when no engines are available may be considered lost to the system. If
 demand arrivals who find all servers occupied leave the system, we call the sys-
tem blocked-demands cleared. Assuming that interarrival times are exponential,
such a system may be modeled as an M/G/p/p system, where G stands for  general
distribution (which includes the above cases of random and constant  service) and
all p servers are identically distributed. The extra p at the end of the notation stands
for a capacity of serving up to p demands only. 

For an M/G/p/p system, L’, WT, Lq and Wq are of limited interest. Since a
queue can never occur, hence Lq � Wq � 0. We let 1/�’ be the mean service time and
�” be the arrival rate. Then WT � 1/�’. In most blocked-demands cleared systems,
primary interest is focused on the fraction of all demand arrivals who are turned
away. Hence an average of �”P(p) arrivals per unit time will be lost to the system,
where P(p) is generally referred to as the loss probability. Since an average of �”
(1 � P(p)) arrivals per unit time will actually enter the system, we may conclude that
the average queue length in the system (including the ones being served) is

L’ � �
�”(1 �

�’
P(p))
�

For an M/G/p/p system, it can be shown that P(p), the percentage time p-servers
are occupied, depends on the service time distribution only through its mean
1/�’. This fact is known as Erlang’s loss formula. In other words, any M/G/p/p
system with an arrival rate �” and service time of 1/�’ will have the same value
of P(p) (Winston 1994) and

P(p) � (�’p/p!)/
k�1
�
p

�’k/k!

The Erlang loss formula, including the loss probability P(p), has been computed
in terms of nomographs for everyday use (Cooper 1980). The Erlang loss formula
is important in locating such facilities as fire stations, as shown in the “Stochastic
Facility Location” subsection of the “Measuring Spatial Separation” chapter in
Chan (2005).

C.  Choosing a Queuing Discipline
With so many queuing disciplines, the logical question at this juncture is “Which
model best describes our situation?” Obviously, the answer is not simple, since
this is where theory meets application. Perhaps the best way to answer this ques-
tion is to return to the field data we collected in Table A3.1 for the air terminal. In
this data set, we assume that only one ground crew is available, who takes exactly
a half hour to service an aircraft. Notice that only the first two columns need to be
compiled, the rest can be calculated. Take the first row for example. Since it is the
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first aircraft that arrived, no wait is necessary for it to be serviced. The total time
in the system consists of only the service time, which is a half hour. The only
 demand traffic is this first aircraft, which constitutes the total number of vehicles
in the system. Since this is the only aircraft thus far, there is no interarrival time
yet. Following this line of logic, the reader is invited to go through another few
lines and derive the rest of the columns from the first two in Table A3.1. From the
discussions in Section II, we were inconclusive about whether demand arrivals
are random. The service pattern, however, appears to be deterministic, since it
takes precisely one half hour to service an aircraft. Remember that the average
 arrival rate was 0.75 vehicles per unit-time. We compute the rest of the parame-
ters below: service rate � �’ � 1 veh/unit, utilization factor � �’ � 0.75, total
time in system � 16.9/12 � 1.41 units, and (interarrival time � 15/11 = 1.26).
Based on these calculations, both the theoretical curve and empirical data point
can be plotted. We now overlay the experimental data point on the M/D/1
 theoretical plot of WT against �' in Figure A3.9. Now the question that arises is:
How good is the M/D/1 model in predicting field data? The answer is again
 inconclusive, since only one data point is available. Additional information is
 required for a more definitive answer to the question. This example, simple as it
may be, shows that choosing a queuing discipline to fit the data—one of the most
important tasks—is by no means straightforward.
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Figure A3.9  FIELD DATA ON M/D/1 CURVE
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One obvious solution is to collect more data. This will allow more val-
idation points to be plotted, not just the one shown in Figure A3.9. This does
not, however, address the validation question any better than what has been
illustrated. Use of statistical tests, such as the chi-square goodness-of-fit sta-
tistic, would help. But again the answer ultimately rests with the judgment of
the model builder. Even if the data pass the statistical test, there remains the
following question: “Are the data collected in isolation or are they part of a
larger queuing  system (such as a system preceded by aircraft landing pat-
terns)?” If it is part of a larger system, the input rate to the gate cannot be  random
in spite of the statistical tests. The input stream in this case is likely to be influ-
enced by the landing  policy, or technically speaking, conditioned upon the land-
ing pattern. This opens the question of whether two queues—aircraft landing and
service at the gate—are actually in tandem. It is easy to see, again through this
simple example, that choosing the appropriate queuing discipline  remains an art
(not a science.)

V.  MARKOVIAN PROPERTIES
Regarding the state transition equations shown above in Sections I and III, both
examples are special cases of the continuous time Markov process, where the
 following Markovian properties are discerned:

1. The conditional probability of any future state X(tk�1) � j, given any
past state X(t0) � i0, . . . , X(tk�1) � ik�1 and the present state X(tk) � ik is
independent of past states and depends only on the present state of the
process:

P[X(tk�1) � j⏐X(tk) � ik, X(tk�1) � ik�1, . . . , X(t0) � i0] �

P[X(tk�1) � j⏐X(tk) � ik]

This is usually referred to as the memoryless property.

2. The process is stationary if the transitional probabilities above
 depend only on the time interval between the events rather than 
on absolute time t: P[X(t2) � j⏐X(t1) � i] � P[X(t2 � t1) � j⏐X(0) � i], 
for all i, j, t1, t2 (t1 
 t2). In other words, the starting time of the pro-
cess is unimportant in comparison to the amount of time that has
elapsed t � t2 � t1. Given these two properties, a Markov process 
is completely described by its transition probabilities pij(t) � 
P[X(t) � j⏐X(0) � i]. Notice the concept of stationarity is similar to
that in time series (see the “Spatial Time Series” chapter in Chan
[2005]).

Examples
Consider a Poisson process in which X(0) � 0 gives rise to a distribution p0x(t) �
(�”t)xe��”t/x!, for x � 0, 1, 2, 3, . . . , n. Suppose for X(t1) � 2, p2X’(�) � (�”�)X’e��”�/X’!,
where � � t � t1 and X’ � x � 2. For the time interval t or �, both are the same distri-
bution function in spite of different start times (0 vs. t1) and different initial conditions
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(X(0) � 0 vs. X(t1) � 2). Having two vehicle arrivals already merely shifted the
 cumulative curve up by 2 for the initial state, irrespective of past history of the arrival
pattern. With a transformation of state variables, Xi (t1) � 0, which is the same as
x(0) � 0. In diagrammatic form, the same cumulative and state transition diagram for
Poisson process can be overlaid on top of Figure A3.6: one starts at time 0 and the
other at t1. This example illustrates the memoryless and stationary properties of a
Markovian system. Also for the same example, p00(�) � p22(�) � e��”� for 0 � � � ∞;
or the times between events in a Poisson process are all negative exponentially dis-
tributed with the same parameter �”. This is irrespective of whether we start with t �
0 (when the system is idle) or t � t1 (after two arrivals have been logged).

Similarly, for M/M/1 queue, the initial state can be X(0) � 0 or X(t1) � 2,
and the identical distribution Pi � �’i(1 � �’) results in the steady state.
Graphically speaking, cumulative and state transition diagrams for both M/M/1
queues can again be overlaid on top of Figure A3.6 to illustrate the memoryless
and stationary properties. In this Figure, both cumulative/departure and state
transition diagrams look the same to the right of the starting point. The only dif-
ference is that two arrivals and one departure have occurred in the latter case.
Again, the history of the process is adequately represented by the initial state.
X(0) and X(t1) and does not depend on the history prior to t � 0 and t � t1. ■

VI.  MARKOVIAN PROPERTIES 
OF DYNAMIC PROGRAMMING

Perhaps we can illustrate Markovian property even better with regular dynamic
programming (DP), which is a set of deterministic state transition equations in
which a decision variable is built into a Markovian system for optimization pur-
poses. The best way to describe DP is through examples.

A. Vehicle Dispatching Example
We are to construct a timetable for dispatching a cargo aircraft toward the end
of a business day. The cargo carrying capacity of the vehicle is 30,000 lbs
(15,000 kg). Due to space limitations, we do not allow more than a vehicle load
of cargo (30,000 lbs) to accumulate at the loading dock. Our objective is to
 minimize the cost-of-operation and delay cost experienced by the cargo
 consignee (who either receive the cargo early or late). One can think of con-
structing a timetable as making a series of decisions as to whether or not to
 dispatch at each instance when 10,000 lb (5,000 kg) of cargo are accumulated.
Figure A3.10 shows a demand-arrival pattern from 4:30 pm to 6:30 pm. We
 define stages k as the times at which dispatching decisions are made; and states
Xk as the accumulated inventory of cargo at the loading dock when a dis-
patching decision is reviewed. The rules of engagement are that when the ve-
hicle is filled up, it has to be dispatched. At the end of the business day, all cargo
has to be dispatched in order to clear the dock. The decision variable yk is a binary
0-1 variable: 1 stands for “dispatch” and 0 for “hold”. The operating cost function
c(yk) can be represented by Table A3.4. Thus if the decision is to dispatch, it will in-
variably cost 6,000 dollars to fly the aircraft. On the other hand, the delay cost is
varying depending on the shape of the demand arrival curve shown in Figure
A3.10. These delay costs can be calculated below.
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1. Markovian Properties.  Delay to consignee can be represented in pound-
minutes (kg-Min), graphically depicted as the shaded wedges in Figure A3.10 if the
decision is always to dispatch at each decision point. Assume a delay wedge, mea-
sured in lb-Min (kg-Min), can be approximated by a triangle. When the decision is
no at the first decision point E, the delay cost will be the bigger triangle ABC rather
than the two smaller triangles ADE and DBF. Would this refer us two stages back
rather than just one stage, thus destroying the Markovian property? Graphical
 examination seems to confirm this, since between the two the rectangle DFCE is
missing. But a little transformation of the cost accounting procedure will guarantee
the Markovian property. To show this, a little calculation will help:
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Figure A3.10  DEMAND ARRIVAL PATTERN

Table A3.4  OPERATING AND DELAY COSTS FOR DISPATCHING EXAMPLE
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Average delay-cost for a vehicle load of cargo in dollars
� (avg delay to a lb [kg]) (value of time for a veh load of cargo)
� (abscissa/2) (time value for an avg veh load of 10,000 lb [5,000 kg])

↑ ↑
in Min in $/Min

� (abscissa/2) ($200/Min)

Average delay for triangle ABC
� AC/2
� AE/2 � EC/2
� (avg delay of triangle ADE) � (avg delay of triangle DBF).

This transformation effectively measures delay in terms of time on the horizontal
axis. By accounting for an average load of cargo, the missing rectangle dilemma
disappears. Each decision yk over time interval (tk � tk�1) is now separable, and
costs are cumulative (incremental from the last “running sum.”) Notice the
 assumption on the size of an average cargo load is unimportant, as long as we use
the same vehicle load consistently. For an average load of 10,000 lb., the delay
costs are shown in Table A3.4.

Here in this example, all arc costs are anticipatory and discretionary.
However, there is an unavoidable overhead cost of  $(4640 � 1410 � 1410 �
2220 � 420) � $12,000, in other words the sum of all shaded triangles in Figure
A3.10. They are the result of our policy that a dispatch decision will not be
 reviewed until 10,000 pounds of cargo have arrived. Notice the $12,100 is implicit
and does not need to appear in our objective function. Instead of measuring
 anticipatory delay by a triangular wedge, however, it can be shown that a retro-
spective delay can be measured by such rectangles as that formed by the points
DFCE. In this case, only historic cost is accounted for and the anticipatory
 overhead-cost evaporates. The return function is now both a function of the
 decision variable xk and the state variable Xk: c(xk, Xk). The Markovian property is
automatically upheld, and hence no cost transformation is necessary.

2. Solution Algorithm. Now that we have established a Markovian system,
the problem is ready for solution. To properly solve this problem, however, a state-
stage diagram needs to be constructed. This diagram—pictured in Figure A3.11—
is derived from the demand arrival curve, but the linkage stops at that point.
Similar to the Markovian state-transition diagram depicted in Figure A3.1 and
Figure A3.6, the state stage diagram can be described by a set of state transition
equations. The steady-state equations (for measuring cargo in pounds) look like

Xk � Xk�1 � 10000(1 � yk�1[Xk�1/10000]) (A3.10)

where Xk is the state variable (in lbs of cumulative cargo at the dock) at decision
point k. These equations are subject to boundary conditions at k � 0 and 5: when
k � 0, yk � 0; and at k � 5, y5 � 1. Numerical examples of these steady-state tran-
sition equations can be provided. For a hold decision at decision point 0, the accu-
mulated cargo at the next decision point will be 10000 lbs. as confirmed by X1 �
X0 � 10000(1 � y0[X0/10000]) � 0 � 10000(1 � 0[0/10000]) � 10000. Another hold
decision at k � 1 will result in 20,000 lb cargo at the dock by decision point k � 3:
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X2 � X1 � 10000(1 �  y1[X1/10000]) � 10000 � 10000(1 � 0 [10000/ 10000]) � 20000,
and so forth.

Solution of the system of equations can be carried out working
 backwards:

f5*(X5 � 10000) � 6000, where y5 � 1
f5*(X5 � 20000) � 6000, where y5 � 1
f5*(X5 � 30000) � 6000, where y5 � 1

where fk is the running sum or the criterion function. In tabular form

k � 6 X5 f5*(X5) y5———————————
10000 6000 1
20000 6000 1
30000 6000 1
———————————
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f4*(10000) � [c(y4) � f5*(X5)]
� Min{[6000 � f5*(10000)], [2420 � f5*(20000)]}
� Min [(6000 � 6000), (2420 � 6000)] � 8420, where y4 � 0

f4*(20000) � Min {[6000 � f5*(10000)], [2420 � f5*(30000)]}
� Min (6000 � 6000, 2420 � 6000) � 8420, where y4 � 0

f4*(30000) � Min [6000 � f5*(10000)] � 12000, where y4 � 1

The recursive function for these three equations is the common form

f4*(X4) � Min
y4�1, 0 

[f4(X4, y4)] � Min
y4�1, 0 

[c(y4) � f5*(X5)]

In tabular form:

k � 5 X4 f4*(X4) y4
———————————
10000 8420 0
20000 8420 0
30000 12000 1
———————————

The remaining iterations can be tabulated as follows:

Xk�1 fk�1* (Xk�1) yk�1
———————————–
10000 10640 0

k � 4 20000 14220 0
30000 14420 1
———————————–
10000 15630 0

k � 3 20000 15830 0
———————————–

k � 2 10000 17240 0
———————————–

k � 1 0 21880 0
———————————–

In general, the recursive equation is fk�1* (Xk�1) � Min
yk�1�1, 0

[c(yk�1) � fk* (Xk)] for 

k � 5, 4, . . . , 1. We trace back using the state transition Equation A3.10, with the
assistance of the tabular computations for k � 5, 4, 3, 2, 1 above. Starting with the
boundary condition at k � 1: X0 � 0, y0 � 0 → X1 � 10000, y1 � 0 → X2 � 20000,
y2 � 0 → X3 � 30000, y3 � 1 → X4 � 10000, y4 � 0 → X5 � 20000, y5 � 1. Thus the
dispatch timetable is to send an aircraft out at decision points 3 and 5. This trans-
lates to about 5:40 p.m. and 6:30 p.m. While the example has been worked out
using backward recursion, it can be shown that it can be solved equally well using
forward recursion.
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B.  Principle of Optimality
In summary, a Markovian system such as the example above can be optimized
using the principle of optimality, which we shall recap simply: After k decisions
have been made, the effect of the remaining n � k stages on the total criterion-
function f depends only on the state at stage k and the final n � k decisions. In
other words, an optimal policy for the remaining stages is independent of the
 policy adopted in previous stages. This principle is the basis of many solutions to
an optimal control problem such as the vehicle dispatching one under discussion. 

The general forward recursion equations of DP can now be expressed as
follows (backward recursion is similar):

fk*(Xk) � optx [rk(xk) ●● fk�1* (Xk�1)]
s.t.  Xk�1 � h’(xk, Xk)     k � 1, 2, . . . , n

where opt is a subproblem of maximization or minimization, ●● stands for addition
or multiplication, X is the state variable, k is the stage variable, x is the decision
variable, f is the criterion function, r(xk) is the return function2, and h’ is the state
transition function. In the vehicle dispatching example, these terms can be illus-
trated below. Notice that each minimization subproblem can be solved by simple
arithmetic calculations: 

Formal terms Illustration in the
vehicle-dispatching example_____________________________________________________

Xk�1 � h’(Xk, xk) Xk � Xk�1 � 10000 (1 � xk�1[Xk�1/10000])
rk(xk)         c(yk)
fk c(yk) � fk�1
subproblem arithmetics
solution_____________________________________________________

Based on this example, these general observations can be made regarding
the optimization of a Markovian system. First the system has to be decomposable:

fn(xn, Xn) � f0(x0, X0) ●● r(x1, X1) ●● r(x2, X2) ●● . . . ●● r(xn, Xn)

where the return function r is separable or r(X, Y) � r1(X, r2(Y)), in other words,
return at each stage is independent of previous decisions and subsequent
 decisions, and r1 is monotonically nondecreasing (or nonincreasing) relative to
its second argument. Then local decision at each stage “adds up” to an overall
 multistage decision. An example of a separable function is (x1 � x2

3), or x1x2. As an
opposite example (x1 ln x2 � x2) illustrates a non-decomposable function. 

Second, the system has to be Markovian:

fn*(xn, Xn) �  opt  {fn(xn, Xn)} � opt
xn

{ opt [ fn�1(xn�1, Sn�1)]}

� opt
xn

〈 opt
xn�1

{ opt [fn�2(xn�2, Sn�2)]} 〉 . . . etc. 

x1, . . . , xn�2

x1, . . . , xn�1x1, . . . , xn
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This says that after k decisions have been made, the effect of the remaining n � k
stages on the total criterion function depends only on the state Xk, and the final
n � k decisions xk�1 , . . . , xn�1, xn. Put it in a different way, an optimal policy for
the remaining stages is independent of the policy adopted in previous stages.

These two properties—separability and memorylessness—are prereq-
uisites to the optimization of a Markovian system. We have described them
above in terms of forward recursion. Similar arguments can be made for back-
ward recursion as well.3 Even though a deterministic system was used in the
DP example, we will show below how this can be generalized to a probabilis-
tic system.

VII.  MARKOVIAN DECISION PROCESSES 
Infinite-horizon probabilistic dynamic-programming problems are called
Markovian decision processes (MDP) (Winston 1994). An MDP is described by
four types of information: state space, decision set, transition probabilities, and
expected rewards. At the beginning of each period, the MDP is in some state i,
where i is a member of the state space X’ � {1, 2, . . . , n}. For each state i, there is
a finite set of allowable decisions, D(i). Suppose a period begins in state i, and a
decision d”�D(i) is chosen. Then with probability �(j⏐i, d”), the next period’s
state will be j. The next period’s state depends only on the current period’s state
and on the decision chosen during the current period (and not on previous states
and decisions). During a period in which the state is i and a decision d”�D(i) is
chosen, an expected reward of r(i, d”) is received.

A.  Policy Iteration
In an MDP, what criterion should be used to determine the correct decision?
Answering this question requires that we discuss the idea of an optimal policy for
an MDP. A policy is a rule that specifies how each period’s decision is chosen. A
policy �

~ is a stationary policy if whenever the state is i, the policy �
~ chooses

 (independently of the period) the same decision (call this decision �(i)). If a policy
�* has the property that for all i�X’, the optimal expected value of the decision at
state i, Z(i), is the same as that obtained from the policy �*, Z�*(i), or Z(i) � Z�*(i),
then �* is an optimal policy.

1.  Value Determination. Let us determine a system of linear equations that
can be used to find Z�(i) for i�X’ for any stationary policy �. If �(i) stands for the
decision chosen by the stationary policy � whenever the process begins a period
in state i, then Z�(i) can be found by solving the following system of n linear equa-
tions, the value determination equations:

Z�(i) � r(i, �(i)) � �’ �
n

j�1 
�(j⏐i, �(i))Z�(j)    i � 1, . . . , n (A3.11)

Here we are discounting rewards by assuming that a dollar reward received dur-
ing the next period will have the same value as a reward of �’ dollars (0 
 �’ 
 1)
received during the current period. This is equivalent to assuming that the



Excellent (E)

Good (G)

Average (A)

Bad (B)

Excellent (E)

Present state 

of site

Probability that site begins next year as

Good (G)

0.7 0.3

0.7 0.3

0.6 0.4

1.0a

Average (A) Bad (B)

aA "bad" site remains "bad" until relocation takes place.
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 decision maker wishes to maximize expected discounted reward. Then the
 expected discounted reward earned during an infinite number of periods consists
of r(i, �(i)) (the expected reward earned during the current period) plus �’ times
the expected discounted reward. This discounted value includes the reward to the
 beginning of the next period, earned from the next period onward. But with prob-
ability �(j⏐i, �(i)), we will begin the next period in state j and earn an  expected
discounted reward, back to this next period, of Z�(j). Thus the expected
 discounted reward, discounted back to the beginning of the next period and
earned from the beginning of the next period onward, is given by �n

j�1 �(j⏐i,
�(i))Z�(j). Equation A3.11 now follows. Notice its similarity to the recursion equa-
tion in deterministic dynamic programming.

Example
To illustrate the use of the value determination equations, let us consider a site
 relocation example characterized by Table A3.5, which shows the probable degra-
dation of a site over time as demand patterns change. We consider the following sta-
tionary policy for the site relocation example: �(E) � �(G) � N and �(A) � �(B) � Y,
where Y stands for relocation and N stands for no relocation. This policy relocates
a bad (B) or average (A) site to an excellent (E) site at a cost (negative reward) and
does not relocate a good (G) or excellent (E) site. For this policy and the given
 rewards and discount factor, Equation A3.11 yields the following four equations:

Z�(E) � 100 � 0.9(0.7 Z�(E) � 0.3 Z�(G))      Z�(A) � 100 � 0.9(0.7 Z�(E) � 0.3 Z�(G))
Z�(G) � 80 � 0.9(0.7 Z�(G) � 0.3 Z�(A))    Z�(B) � �100 � 0.9(0.7 Z�(E) � 0.3 Z�(G))

The last two equations suggest that with probabilities 0.7 and 0.3, the excellent
site will remain “excellent” or become “good” respectively at the beginning of the
next period. Solving these equations yields Z�(E) � 687.81, Z�(G) � 572.19,
Z�(A) � 487.81, and Z�(B) � 487.81. In other words, following the stationary pol-
icy as outlined above, the expected value of having an excellent, good, average,
and bad site can be uniquely determined. ■

2.  Howard’s Method for Optimal Policy. We now describe Howard’s
(1960) policy iteration method for finding an optimal stationary policy for an
MDP. 

Table A3.5  TRANSITION MATRIX OF SITE-RELOCATION EXAMPLE
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Step 1. Policy evaluation: Choose a stationary policy �
~ and use the

value determination equations to find Z�(i), i � 1, . . . , n.
Step 2. Policy improvement: For all states i � 1, . . . , n, compute

Z�' � Max
d"�D(i)

(r(i, d") � �' �
n

j�1
�(j⏐i, d")Z�(j) (A3.12)

Since we can choose d” � �(i) for i � 1, . . . , n, Z�’(i) � Z�(i). If Z�’(i) � Z�(i) for 
i � 1, . . . , n, then �~ is an optimal policy. If Z�’(i) 	 Z�(i) for at least one state, �~ is
not an optimal policy. In this case, modify �~ so that the decision in each state is
the decision attaining the maximum in Equation A3.12 for Z�’(i). This yields a new 
stationary policy �’ from which  Z�’(i) � Z�(i) for i � 1, . . . , n, and for at least one
state i’, Z�'(i’) 	 Z�(i’). Return to Step 1, with policy  �~’ replacing policy  �~. The
policy iteration method is guaranteed to find an optimal policy after evaluating a
finite number of policies. We now use the policy iteration method to find an 
optimal stationary policy for the site relocation example.

Example
We begin with the stationary policy as mentioned: �(E) � �(G) � N and �(A) �
�(B) � Y. For this policy, we have already found that Z�(E) � 687.81, Z�(G) �
572.19, Z�(A) � 487.81, and Z�(B) � 487.81. We now compute Z�'(E), Z�'(G), Z�'(A),
and Z�'(B). Since N is the only possible decision in E according to Table A3.5,
Z�'(E) � Z�(E) � 687.81 and Z�'(E) is attained by the decision N. State G can
 become state E with a relocation (Y) or stay at G with no relocation (N):

Z�'(G) � Max ��100 � 0.9(0.7 Z�(E) � 0.3 Z�(G)) � 487.81 (Y) (A3.13)80 � 0.9(0.7 Z�(G) � 0.3 Z�(A)) � Z�(G) � 572.19*   (N)

Thus, Z�'(G) � 572.19 is attained by the decision N which incurs a larger reward.
State A can become E or remain at A involving a Y or N decision respectively:

Z�'(A) � Max ��100 � 0.9(0.7 Z�(E) � 0.3 Z�(G) � 487.81 (Y) (A3.14)50 � 0.9(0.6 Z�(A) � 0.4 Z�(B)) � Z�(A) � 489.03* (N)

Thus Z�'(A) � 489.03 is attained by the decision N. B can be upgraded to E or
 remain at B:

Z�'(B) � Max ��100 � 0.9(0.7Z�(E) � 0.3Z�(G)) � 487.81* (Y) (A3.15)10 � 0.9Z�(B) � 449.03 (N)

Thus Z�'(B) � Z�(B) � 487.81.
We have found that Z�'(E) � Z�(E), Z�'(G) � Z�(G), Z�'(B) � Z�(B), and

Z�'(A) 	 Z�(A). The policy ~
� is not optimal, and the policy ~

�' given by �'(E) �
�'(G) � �'(A) � N, �'(B) � Y, is an improvement over �. Notice the new policy
 relocates only when the site is bad. We now return to Step 1 and solve the value
determination equations for �'. From Equation (A3.11), the value determination
equations for �' are

Z�'(E) � 100 � 0.9(0.7 Z�'(E) � 0.3 Z�'(G)) Z�'(A) � 50 � 0.9(0.6 Z�'(A) � 0.4 Z�'(B))
Z�'(G) � 80 � 0.9(0.7Z�'(G) � 0.3Z�'(A)) Z�'(B) � �100 � 0.9(0.7 Z�'(E) � 0.3 Z�'(G))
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Solving these equations, we obtain Z�'(E) � 690.23, Z�’(G) � 575.50, Z�'(A) �
492.35, and Z�'(B) � 490.23. Observe that in each state i, Z�'(i) 	 Z�(i). We now
apply the policy iteration procedure to �’. We compute Z�'' (E) � Z�'(E) � 690.23, N
being the only decision.

Z'�'(G) � Max ��100 � 0.9(0.7Z�'(E) � 0.3 Z�'(G)) � 490.23 (Y) (A3.16)80 � 0.9(0.7Z�'(G) � 0.3 Z�'(A)) � Z�'(G) � 575.50* (N)

for transitions to E and G respectively. Thus, Z�’'(G) � Z�'(G) � 575.50 is attained
by the decision N.

Z'�(A) � Max ��100 � 0.9(0.7Z�'(E) � 0.3Z�'(G)) � 490.23 (Y) (A3.17)50 � 0.9(0.6Z�'(A) � 0.4Z�'(B)) � Z�'(A) � 492.35*  (N)

for transitions to E and A. Thus Z�'(A) � Z�'(A) � 492.35 is attained by the
 decision N.

Z�'(B) � Max ��100 � 0.9(0.7 Z�'(E) � 0.3 Z�'(G)) � 490.23* (Y) (A3.18)10 � 0.9 Z�'(B) � 451.21 (N)

for states E and B. Thus Z�'' (B) � Z�'(B) � 490.23 is attained by Y.
For each state i, Z�'' (i) � Z�'(i). Thus �' is an optimal stationary policy. In

order to maximize expected discounted rewards (profits), a bad site should be
 relocated, but an excellent, good, or average site should not be relocated. If we
began period 1 with an excellent location, an expected discounted reward of
$690.23 dollars could be earned and so on. ■

B.  Reward Per Period
Linear programming can be used to find a stationary policy that maximizes
the expected per-period rewards earned over an infinite horizon. Consider a
 decision rule or policy � that chooses decision d”�D(i) with probability Pid”
 during a period in which the state is i. A policy �' will be a stationary policy if
each Pid” equals 0 or 1. To find a policy that maximizes expected reward per
 period over an infinite horizon, let Pid” be the fraction of all periods in which the
state is i and decision d”�D(i) is chosen. Then the expected reward per period is
to be optimized:

Max �
n

i�1     
a�

d"�D(i)
Pid"r(i, d")

What constraints must be satisfied by the Pid"? First, all Pid"s must be non-nega-
tive, or Pid" � 0 for i � 1, . . . , n and d"�D(i). Second, sum of the probabilities
must add up to unity:

Max �
n

i�1     
a�

d"�D(i)
Pid" � 1
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Finally, the fraction of all periods during which a transition occurs out of state j
must equal the fraction of all periods during which a transition occurs into state j.
This is identical to the restriction on steady-state probabilities for Markov chains
(see Equations A3.1 and A3.4):

a�
d"	D(j)

Pjd" (1 � � (j⏐i, d" )) � a�
d"	D(i) 

�
ij 

Pid" � �(j⏐i, d")    j � 1, . . . , n (A3.19)

which, after rearranging, yields

a�
d"	D(j)

Pjd" � a�
d"	D(i) 

�
i�j 

Pid"�(j⏐i, d")    j � 1, . . . , n (A3.20)

It can be shown that this LP has an optimal solution in which for each i, at most
one Pid" 	 0. This optimal solution implies that the expected reward per period is
minimized by a solution in which each Pid" equals 0 or 1. Thus the optimal
 solution to the LP will occur for a stationary policy. For states having Pid" � 0, any
decision may be chosen without affecting the expected reward per period.

Example
For the relocation example above, the corresponding LP looks like

Max 100PEN � 80PGN � 50PAN � 10PBN � 100(PGY � PAY � PBY)
s.t. PEN � PGN � PAN � PBN � PGY � PAY � PBY � 1

PEN � 0.7(PEN � PGY � PAY � PBY)
PGY � PGN � 0.3(PGY � PAY � PBY � PEN) � 0.7PGN
PAY � PAN � 0.3PGN � 0.6PAN
PBY � PBN � PBN � 0.4PAN

with all Pid" non-negative. It was found that the optimal objective function is at $60.
The only non-zero decision variables are PEN � 0.35, PGN � 0.50, and PAY � 0.15.
Thus the system is optimized by not relocating from an excellent or good site, but
relocating from an average site. Since we are relocating from an average site, the
action chosen during a period in which the site is bad is of no importance. It is not
surprising the optimal policy reached here is different from those in response to
maximizing expected discounted rewards. ■

Additional locational examples of the Markovian decision process can be
found in Chapter 3 under the “Stochastic Process” subsection and in “Measuring
Spatial Separation” chapter under the “Approximate versus Exact Measure” sub-
section in Chan (2005).

VIII.  RECURSIVE PROGRAMMING 
Related to Howard’s policy-iteration method is recursive programming, an ana-
logue spearheaded by economists (Day 1973). We will introduce recursive pro-
gramming via an example here. More general computational treatment is found
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in the sub-subsection bearing the same name in the “Location Routing” chap-
ter of Chan (2005). Suppose a firm is planning on a multiyear production of
two products. Let x1(t), x2(t) be the amounts to be produced on each of the
two commodities over year t � 1, 2, and so forth. Let I1(t) and I2(t) be the  profits
per unit at the end of year t. Let c1 and c2 be the resource requirements of one
unit of the two commodities. Let b1 be the yearly combined production quota
of the two  commodities, as limited by, labor availability for instance. Finally, let
b2(t) be the production budget available at the beginning of year t. Assuming
 constant return to scale, or c1 and c2 are independent of x1 and x2, the decision
problem at the  beginning of year t can be represented by the linear programming
problem:

I(t) � Max [I1(t)x1 � I2(t)x2] (A3.21)
x1, x2

s.t. 
x1 � x2 � b1

c1x1 � c2x2 � b2(t) (A3.22)
x1, x2 � 0

The optimal solution of this LP, x1(t) and x2(t), will give the production of each
commodity in period t.

The expected marginal net-revenue values of the two factors, labor and cap-
ital, are given by the dual variables u1(t) and u2(t), obtainable from the dual program:

ID(t) � Min [b1u1 � b2(t)u2] (A3.23)
u1, u2

s.t.
u1 � c1u2 � I1(t)
u1 � c2u2 � I2(t) (A3.24)

u1, u2 � 0

A.  Existence of Solutions
Let pi(t) be the market price at the end of year t for each commodity, then the
profit from each commodity unit is the net between revenue and cost:

Ii(t) � pi(t � 1) � ci i � 1, 2 (A3.25)

Working capital now is limited to the sales minus overhead (say at a constant
amount of C0 for each period):

b2(t) � �i pi(t � 1) xi(t � 1) � C0 (A3.26)

For each year, the existing supply is sold at a uniform price in a perfectly
competitive market. The price received for each commodity is a function of the
total amount of commodity supplied. When a commodity is sold at a positive
market price, its price is determined by a linear demand-function, defined by
 intercept a and slope b:
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pi(t) � Max{0, ai � bixi(t)}   i � 1, 2 (A3.27)

The system of Equations A3.21–A3.27 is defined as a recursive program. The 
primal-dual LP problems Equations A3.21–A3.24 describe the optimization com-
ponent, as driven by profitability. Equations A3.26–A3.27 together with the defini-
tion (Equation A3.25) describe the feedback mechanism, in other words how the
market dynamics work. It is a closed, discrete time, dynamic system of which one
may ask such traditional questions as: Do equilibria exist? Are they stable?

The dual LP at any time t are dual feasible so long as 

�i �Max�0, ai � bi xi(t � 1)�� xi(t � 1) � C0 (A3.28)

In other words, if total revenue in the preceding year is insufficient to cover the
overhead, then no surplus remains to finance the current year’s production. The
system goes bankrupt. So long as each dual program in the sequence is feasible in
the above sense, then optimal solution values x1(t), x2(t), u1(t) and u2(t) exist at
each time t. When this occurs, I(t) � ID(t) by the duality theorem of LP.

It is important to emphasize that the solution values x1(t), x2(t), u1(t) and
u2(t) describe and do not prescribe behavior in our model. That is, these values are
not necessarily optimal ex post. For the industry as a whole, the actual optimum
is the monopoly solution given by the quadratic programming problem4 that
arises when a perfect knowledge of the demand curves (Equation A3.27) is
 accounted for by the decision makers over time. 

B.  Phase S olutions
If a solution of the problem at the time t is unique, it lies at an extreme point of the LP
feasible region. If there is more than one solution, then extreme point solutions are
among them. Consequently, a solution at any time t can be represented by a set of
equated constraints corresponding to the duality conditions. These equations give the
algebraic description of the extreme point. Because of the recursive character of the
sequence of programs, these sets of equated constraints identify difference equations
that describe the behavior of the production variables and marginal value for a given
time period. Since these sets may change from time to time, the system as a whole is
a multiple-phase system. Questions concerning growth, cycles and equilibrium con-
sequently boil down to an analysis of the conditions for the occurrence of specific
phases (sets of difference equations) and the dynamic properties of each phase.

By examining the extreme solution possibilities we find the following six
cases:

Phase 0 (Null phase): nothing produced, no imputed value.

Phase 1-s: fixed-factor constraints equated, the first commodity produced.

Phase 2-s: fixed-factor constraints equated, the second commodity
 produced.

Phase 1-r: financial constraints equated, the first commodity produced.

Phase 2-r: financial constraints equated, the second commodity produced.

Phase 12-rs: both constraints equated, both commodities produced.
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To each of these extreme solutions corresponds a set of equations:

Phase 0: x1(t) � 0, x2(t) � 0, u1(t) � 0 and u2(t) � 0

Phase 1-s: x1(t) � 1, x2(t) = 0, u1(t) � a1 � b1x1(t � 1) � c1, u2(t) � 0

Phase 2-s: x2(t) � 1, x1(t) � 0, u1(t) � A3 � b2x2(t � 1) � c2, u2(t) � 0

Phase 1-r: x1(t) � (1/c1)[�i{ai � bixi (t � 1)}xi(t � 1) � C0], x2(t) � 0,
u2(t) � (1/c1)[a1 � b1x1(t � 1) � c1], u1(t) � 0

Phase 2-r: x2(t) � (1/c2)[�i{ai � bixi(t � 1)xi(t � 1) � C0], x1(t) � 0,
u2(t) � (1/c2)[a2 � b2x2(t � 1) � c2], u1(t) �0 

Phase 12-rs: ��xx1
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Which phase holds in a given time period depends on the solution in the
preceding time period and the relative positions of constraints and objective func-
tions that the preceding solution brings about. Various possibilities are shown to
occur, including phase and production periodicity, convergence to a stationary
state and so on. It is important to note that solutions are multi-phase; they satisfy
different sets of dynamic equations at various times during their evolution.
Recursive programming is the problem of optimizing an infinite set of recursively
generated linear functionals subject to an infinite set of recursively generated
 linear constraints. This could be expressed as the search for a set of functions that
satisfy a system of nonlinear simultaneous difference inequalities (duality condi-
tions). Among the possible solutions of a given system are sometimes one that
 exhibit an optimality property, in other words, they converge to some desirable
state.  Notice this is not always the case in practice, and it is in this respect that
 recursive programming is different from dynamic programming.

IX.  CONCLUDING REMARKS
We have illustrated in this appendix several examples of a Markovian system,
 including Poisson or random demand pattern and queuing. These are both time-
dependent probabilistic processes, or what is commonly known as stochastic
processes. An equally common Markovian system is regular dynamic programming
(DP), which can be both a deterministic and probabilistic process. All the above
 mentioned processes can be described by state transition equations, characterized by
memoryless properties. This property suggests that the entire history of the process
can be encapsulated in the last state of the system. A hybrid of a Markovian system
and DP is found in Markovian decision processes, in which a stochastic process is
 optimized through time. We bring out the stationarity  property of these processes,
which allows steady-state equations to be written. A distinction is made, however,
 regarding optimizing the expected reward over the complete time horizon of a sys-
tem and the expected reward per time period. While both policies can be stationary,

1
���

�i{ai � bi xi(t � 1)}xi(t � 1) � C0

a1 � b1 x1(t � 1) � c1���
a2 � b2 x2(t � 1) � c2
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they are intrinsically different since the former is specified for the entire life span
while the latter is by definition time-period dependent. Although less known outside
the economic literature, recursive programming (RP) is an allied concept to dynamic
programming. It is a robust solution algorithm for sequential processes. Unlike DP,
however, RP yields only local optimum where it exists, since it lacks the Markovian
properties that allow decomposition of the optimization procedure into stages. 

Admittedly we have only touched on a few fundamentals in this appendix,
but it serves as an adequate prerequisite to understanding much of the  discussions
on stochastic facility location problems, one of the main topics in this text. It also 
allows understanding of the optimality conditions for certain heuristics in simulta-
neous location routing models, particularly the Route Improvement Synthesis and
Evaluation (RISE) algorithm contained in the software CD/DVD and described
also in the “Location-Routing” chapter of Chan (2005).

ENDNOTES

1 An explanation of goodness of fit and chi-square is contained in Appendix 3 on “Statistical Tools” and
the “Descriptive Tools” chapter respectively.

2 Note that the return function can also be a function of both the decision variable and the state vari-
able, rk(xk,Sk). This is the case when delay is measured by a rectangle such as DFCE rather than a
line segment such as AE/2 in Figure A3.10.

3 DP is used to solve a multi-period capacitated location problem in the “Facility Location” chapter
under the “Long-run Location Production Allocation Problems” section of Chan (2005).

4 A quadratic program has an objective function that is a quadratic function of the decision variables,
subject to a set of linear constraints. An example is the quadratic assignment problem in Chapter 3.
Also, a monopolistic market model is given in the “Alternative Models of Spatial Competition” section
of the “Spatial Equilibrium” chapter in Chan (2005), showing a nonlinear objective function.
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This appendix provides an optimization background necessary for a better
 appreciation of the pertinent chapters. These chapters include location and rout-
ing and other prescriptive models of spatial analysis.

I.  LINEAR PROGRAMMING
Linear programming is a procedure used to arrive at the best solution for a set of
linear algebraic inequalities and a linear objective function. It should be obvious
from Chapter 4 that the graphical method for solving linear programs (LP) is
 limited to models of two decision variables. An algebraic procedure is needed to
solve LPs with numerous variables and inequalities. Also, such an algebraic
 technique is conducive to computer programming. One algebraic technique for
solving LPs is the simplex algorithm. A large number of software packages are
available to perform the computation. Because the method has been around for
quite some time, most have been refined for computational efficiency. Here we
outline the basic concepts mainly for a more coherent discussion of more general
and efficient procedures. These include relaxation and decomposition techniques,
which form the thrust of this appendix.

A. Simplex Algorithm 
Consider the LP

Max zx � x1 � x2
s.t. 3x1 � 6x2 � 1 (A4.1)5x1 � 4x2 � 1

xi � 0   i � 1, 2

First, we solve this graphically as before in Figure A4.1, just for compari-
son with the algebraic method described below. To start the primal simplex alge-
braic procedure, the inequalities of the constraint equations are now changed into
equalities by the addition of slack variables x3 and x4. The adjusted system of
equations now looks like

zx � x1 � x2 � 0
3x1 � 6x2 � x4 � 1 (A4.2)
5x1 � 4x2 � x3 � 1

Appendix 4
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where the right-hand side (RHS) of (1, 1)T represents positive resources to
be allocated among the decision variables in order to maximize a figure
of merit, called the objective function. This operation is an attempt to provide a
starting basic feasible solution (BFS) to the LP. As it stands, a solution consisting of
(x3, x4) � (1, 1) and (x1, x2) � (0, 0) is a perfectly good—albeit no where near opti-
mal—solution to the LP. In this solution, (x3 x4)  are the basic variables, and they
form the basis of non-negative values. The variables (x1 x2)  are nonbasic variables,
assuming zero values. This BFS corresponds to the origin in the graphic plot shown
in Figure A4.1.

This set of equations is then organized around a tableau, and Gaussian
operations are performed as they would be in solving a set of simultaneous equa-
tions. As shown in Figure A4.2, the procedure pivots from one extreme point or
vertex of the feasible region to another, corresponding to changing the basis in the
algebraic context. Figure A4.2 is a good reference for the algebraic operations,
showing the movement from extreme point to extreme point as the maximization
objective function gets bigger and bigger. Two rules are followed in the pivoting
operations. First, the column with the most negative number in the first row is
picked to be the variable to enter the basis. For example, x1 (or x2) will be the vari-
able to enter in the first pivot. This says that the best way to improve the value of
the objective function is to go up the steepest slope, in this case along the x1-axis.
Because the terms have been moved from the right to the left in the objective func-
tion during the transformation shown above in Equation A4.2, only by engaging
the variables with the negative cost coefficients will the figure of merit z increase.
These are the variables j which will provide a net improvement in the objective
function in the allocation of limited resources among several activity variables.

Figure A4.1  GRAPHIC SOLUTION TO LINEAR PROGRAM
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Such net improvement is often referred to as the reduced cost, (zj � cj). It signifies
that the engagement of xj will benefit the objective function by cj but at an oppor-
tunity cost of zj , reflecting idling other activities xk (k � j).

Once the entering variable has been identified, entries in the column
 directly under the entering variable (x1, in this case) will be paired against the
RHS. A ratio of the RHS entries and the positive elements in the column will be
taken. The row with the smallest ratio will determine the variable to exit the basis.
In the first pivot, it is clear that the third row, corresponding to x3 will exit. This
second rule keeps the next solution within the feasible region and also ensures a
non-negative solution. The row with the smallest ratio identifies the most confin-
ing resource—among the two resources in this example—and keeps us operating
“within our means”. Choosing only the positive entries in the column of the
 entering variable is an attempt to stay away from unboundedness—in other
words, the endless engagement of an activity variable since it consumes no real
resources during its deployment.

Once the column and row have been identified, in this case column 2 and
row 3, the element that belongs to both the row and column becomes the pivot.
Gaussian operations are performed between all the rows to make this pivot unity
in value and the rest of the entries in the column zero. Following our example, we

Figure A4.2  LINEAR PROGRAMMING TABLEAUX SHOWING PIVOTING
OPERATIONS
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have successfully carried this out in the first tableau. This tableau has a basis
made up of x1 and x4 recognize that variables outside the basis (the nonbasic vari-
ables) are at zero value by definition, corresponds to the extreme point (1/5, 0)T

in Figure A4.1. (Notice that should we pick x2 as the variable to enter, the basis
would be x2 and x3 and would correspond to the extreme point (0, 1/6)T. Instead
of being at “sea level” (zx � 0) when we started at original vertex (0, 0), the new 
altitude at (1/5, 0)T is now 1/5.

A second pivot will introduce x2 into the basis and elevate the altitude
further to 2/9 at the new vertex (1/9, 1/9). We know we have arrived at the
 optimum since none of the entries in the first row are negative any more. Should
we engage any of the variables to enter the basis, we will be descending, instead
of ascending, the slope. In fact, the disappearance of all negative entries in the
first row constitutes the termination rule. The readers probably recognize that
these pivots are essentially effected by basis inverses in linear algebra. Matrix
 formulation of pivots will be shown below.

B. Some Other Key Concepts
The simplex procedure works because there is a finite number of extreme
points, a convex combination of which will define all points in the feasible
 region, or polyhedron, of the LP. In other words, if x1 and x2 are two extreme
points, the convex combination wx1 � (1 � w)x2 (0 � w � 1) forms a point that
will be within the polyhedron. Furthermore, an optimum has to occur at an
 extreme point. This is clear from the graphical plot of this LP example in
Figure A4.1, in which the reader is challenged to show otherwise, excepting for
the case when the objective function parallels one of the constraints. The same
concept can be demonstrated in the unbounded polyhedron shown in the dual
space of this LP.1 In Figure A4.3, we have extreme directions d1 and d2 in addi-
tion to extreme points �1, �2 and �3. It is clear from this figure that we can repre-
sent every point in the set as a convex combination of the extreme points plus a
non-negative linear combination of the extreme directions. Consider the point �,
which can be represented as �0 plus a positive multiple of the extreme direction
d1. Notice that  �0 �� points in the direction d1. But �0 itself is a convex combina-
tion of the extreme points �1 and �3. Hence �0 � � � �d1 � w�1 � (1 � w)�3 �
�d1 where 0 � w � 1 and � � 0.

Notice this version of the simplex algorithm works only for these specific
conditions:

(a) maximization of the objective function,
(b) less-than-or-equal-to in all the constraint equations, with positive

RHSs,
(c) non-negativity in all the decision variables.

But it is also a general procedure since many LPs can be cast into this
form. For example, any minimization objective function can be converted to a
maximization format:

Min z � �
n

j�1
cj xj becomes Max z’ � �

n

j�1
cj xj



Review of Some Pertinent Optimization Schemes APPENDIX 4 561

(Such a conversion suggests that the termination rule for a minimization LP
should be when the first row of the simplex tableau consists of all non-positive
entries.) Similarly, constraints not in the correct form can be converted:

�j aij xj � bi becomes �j � aij xj � �bi

Equalities can be expressed in terms of two inequalities. Thus

�j aij xj � bI becomes �j aij xj � bI and �j aij xj � bi

Finally, a negative RHS can be converted to a positive value by multiplying both
sides of the constraint by a negative one. The simplex algorithm proceeds simi-
larly as in the previous case once the model is cast into the form shown in
Equation A4.1. Notice that there is really no magic in the form encapsulated in
Equation A4.1. It is simply a convenient way to obtain a BFS, and it also allows us
to explain the logic behind the simplex steps easily in terms of resource allocation.
Should there be any difficulty in this conversion—and it will arise sometimes—
other means for obtaining an initial BFS are necessary. There are several ways to
do so, including solving the dual instead of the primal problem, wherein a mini-
mization problem is converted to a maximization problem. An artificial variable
may be added (with zero cost coefficient) to an equality constraint to make up the
full rank of a BFS. Another way is to look for an initial solution based on existing
operating conditions in practice. Interested readers may wish to consult Winston
(1994) or Hillier and Lieberman (1990) regarding the precise procedures for doing

Figure A4.3  DUAL OF LINEAR PROGRAMMING EXAMPLE
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this. In most applications, however, software packages are available to take
care of the entire computational procedure, leaving more time for the user to
 formulate the LP and perform the analysis and to discern abnormalities in the
computation when one occurs.

C. Theory of Simplex
We can summarize the simplex method as a set of matrix operations. First, we cast
Equation A4.2 into an equation form:

Min z
s.t. z � cT

BxB � cT
N xN � 0 (A4.3)

ABxB � ANxN � b
xB, xN � 0

(A4.4)

Equation A4.4 is transformed in pivoting operations by pre-multiplying by A�1
B

xB � A�1
B ANxN � A�1

B b (A4.5)

Multiplying Equation A4.5 by cB and adding to Equation A4.3:

z � 0xB � (cT
BA�1

BAN � cN )xN � cBA�1
Bb (A4.6)

By setting the nonbasic variables to zero xN � 0, Equation A4.5 yields xB � AB
�1b

and Equation A4.6 yields z � cBAB
�1b. The tableau looks like the following in each

iteration, including the last and optimal iteration:

z xB xN RHS

Row 0 1 0 cT
BA�1

BAN � cT
N cT

BA�1
Bb (A4.7)

Row 1→m 0 I A�1
BAN A�1

Bb

Consult the example worked out below for an illustration. To do this it is conve-
nient to rearrange the slack variables in Equation A4.2 in terms of an identity
 matrix I by reversing rows 1 and 2 in the constraints.

Example
Given the following maximization LP tableau that has been rearranged into the
format of Equation A4.3, where the basis AB is the identity matrix:

z x3 x4 x2 x1 RHS
————————————————————
1 0 0 �40 �10 0
————————————————————
0 1 0 1 1 10
0 0 1 5 2 30
————————————————————
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Here cB � (0 0)T, cN � (40 10)T, AN � ��
1
5

1
2

�� and  b � (10 30)T. The reduced cost for 

column 2 is cT
BA�1

BAN(x2) � c(x2) � 0 � 40 � �40, which constitutes the pivot 

column to enter the basis. Now AB � ��10 1
5
��, cB � (0 40)T, cN � (0 10)T, and AN � ��01 1

2
��. 

According to the format of Equation A4.7, the inverse of the basis AB is taken, and
the refreshed tableau becomes

z x3 x2 x4 x1 RHS
————————————————————
1 0 0 8 6 240
————————————————————
0 1 0 �1/5 3/5 4
0 0 1 1/5 2/5 6
————————————————————

This illustrates one pivot of the simplex. If Equations A4.3 and A4.4 are
viewed as the initial tableau where AN is an identity matrix and Equation A4.7
the optimal tableau (as in a 2 	 4 example tableau), then cN is a zero vector and
cT

BAB
�1AN � cT

BA�1
B is simply the dual vector. In general, �i � cBA�1

BAN(si ) �
cN(si) for the nonbasic variable si and zero for the basic variables, where si is the
slack for inequality i. Thus in this example, the dual vector can be read from the
first row of the last tableau, directly above the identity matrix where the slack
variables were in the initial tableau. This means  �1 � 0 and �2 � 8 as the readers
can verify. Furthermore,AB

�1 can be found where the identity matrix forthe slacks

was, namely AB
�1 � � �. ■

II. NETWORK-WITH-SIDE-CONSTRAINTS
While the simplex procedure is a good way to introduce optimization procedures,
there are more efficient techniques to solve such a model, depending on the struc-
ture of the tableau. Network-flow programming is an excellent way to attack
large-scale models, when the tableau can be cast into special formats.2 A general-
ized network-flow algorithm is network-with-side-constraints (NSC), which can
be applied toward problems having the following structure:

Min wTx � cTy
s.t. Ax �b (A4.8)

Bx � Cy � b'

where A is the network matrix, B and C are arbitrary matrices. d and d' are arc
capacity vectors on flow variables x and other variables y respectively. The algo-
rithm takes advantage of the nice properties of the network matrix A, which is
 assumed to be the more prominent part of the tableau in comparison to B and C,
and achieves computational efficiency that way. Let us call NETSIDE the off-
the-shelf program available in SAS/OR, CPLEX, and other production codes to
solve NSC problems.

1 �1/5
�
0 1/5
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A. Multicommodity-Flow Problem
A good way to illustrate NSC is through a well-known special case: the 
multicommodity-flow problem. Consider the two-commodity (r � 1, 2) problem
illustrated in Figure A4.4, where the supply for nodes 1, 2 and 3 for both
 commodities is at most 2, and the demand at nodes 4, 5, and 6 for both commodi-
ties is at least 2. The individual bounds dk

r are infinite for all arcs and both
 commodities (r � 1, 2), and the mutual capacity for arc 1 (d1) is 2 and all other arcs
(dj , j � 1) have a capacity of 3. A corresponding tableau for this problem is shown
in Figure A4.5. It is clear that the tableau can be partitioned into A, B, and C
 matrices, with A being the block-diagonal network matrix containing the two
commodities, while B and C constitute the arc flow constraints, x is the regular
network flow vector and y the slack flow vector.

Specialization of the primal simplex algorithm for network programs
 results in the simplex-on-a-graph algorithm, where there is a graphic/labeling
 replacement for each step of the simplex. The tableau with a basic solution looks
like Figure A4.5, where the basic variables are boxed within the solid lines and
the nonbasic variables to enter the basis are housed in dashed lines. The process
in which a nonbasic variable enters the basis, or the incremental method of 
inverting a basis, is performed by an orientation sequence. For example, see the
first column of the tableau in Figure A4.5, where the NETSIDE algorithm
(Kennington and Helgason 1980) is being illustrated. Notice arc 4 of commodity 1
is introduced into the basis by an orientation sequence. The example illustrates
this algorithm in the tableau, where primal feasibility is maintained and com-
plementary slackness relaxed.3

By way of a definition, the orientation sequence of a path P of length k,
O'(P), is specified by a sequence of these numbers:

O'i (P) � �� 1 if eji
� (i, i � 1)

i � 1, . . . , k
� 1 if eji

� (i � 1, i) (A4.9)

Figure A4.4  SAMPLE MULTICOMMODITY-FLOW NETWORK
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where eji
is the arc j associated with node/vertex i. The associated basis trees for

the tableau in Figure A4.5 are sketched in Figure A4.6 where the nonbasic
 network flow variables are arcs 4, 3, and 8. An example of the orientation
 sequence for P � {3, 5, 2, 6} is  O'(P) � {1, �1, 1}. In household terms, the orien-
tation sequence records whether the path is with the direction of the arrow or
against the direction of the arrow. This is recorded using a � 1 and �1 respec-
tively. The orientation sequence O'(P) performs a series of computations on the
graph similar to basis inversion in simplex. In Figure A4.6, we can show how a
nonbasic vector in the commodity-1 tree can be represented in terms of basic
 vectors by way of an orientation sequence. For example, the nonbasic arc-4

Figure A4.5  BLOCK DIAGONAL MATRIX CORRESPONDING TO AN ORIENTATION SEQUENCE
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 considered for entering the network basis can be represented in terms of three
basic arcs 5, 2 and 1, and the algebra proceeds as follows:

A(4) � A(5) � A(2) � A(1)
� e2(4) � e5(4)) � (e1(4) � e5(4)) � (e1(4) � e4(4))

0 0 0
1 0 1
0 0 0 (A4.10)� e2(4) � e4(4) � �0 �� � 1 �� � �1 �0 0 0
0 0 0

Here A(j) stands for the column vector in the simplex tableau for arc j, ei(j) is 
the unitary column vector for arc j with the unitary entry in the ith row. Care
should be exercised in distinguishing the arc notation eji

from the unitary column
notation ei(j).

B. The Network-with-Side-Constraints Algorithm 
Having illustrated some basic ideas, we will show an NSC algorithm—
NETSIDE—step by step through an example (Kennington and Helgason 1980).
The following problem is of the same format as Equation A4.8:
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Figure A4.6  BASIS TREES SHOWING ORIENTATION SEQUENCE
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Min 10x2 �2x3 �3x5 �4x6
————————————————————————————

s.t. x7 �x1 �x2 | � 10
�x1 �x3 �x4 �x5 | � 0

�x2 �x3 �x5 �x6 | � 0
�x4 �x6 | � �10 (A4.11)

————————————————————————————
10x1 �2x3 �3x4 �2x5 |�y1 � 16

x1 �4x3 �x5 | �y2 � 10
————————————————————————————

Recall that regular LP simplex starts with a full rank m for the constraint
matrix, where m is the number of nodes in the node-arc incidence matrix. But in
Chapter 4, we suggested that the rank of the node-arc incidence matrix A is of
rank m � 1. An artificial variable is added to make up the full rank of m as
 required in LP. An artificial variable is added to one of the nodes, say node m. The
augmented constraint matrix now looks like [A, em(m)], with the additional uni-
tary column vector corresponding to the mth root-arc in a basis of (m � 1) arcs.
This arc is added to root-node m. Since any basic LP solution must contain m lin-
early independent columns, the artificial variable must appear in every basic sim-
plex-on-a-graphsolution (in other words, every tree). An artificial variable in LP
is added to an equality constraints in LP merely to provide a starting BFS; corre-
spondingly this artificial arc carries with it a zero cost. We have already seen 
examples of a root arc, namely arc 10, and root node 6 in Figure A4.4 through
Figure A4.6. More examples will be forthcoming in the following computation
steps. For the current example (Figure A4.7), all variables are bounded as
 indicated in the table below, with x7, the root arc flow, bounded between 0 and ∞,
and the slack flows also uncapacitated 0 � yj � ∞.

Arc j 1 2 3 4 5 6
——————————————————————–
dj 12 18 5 12 1 16

1. Initialization Step. Equation A4.11 shows that the tableau for the
 example problem can be partitioned into matrices A, B, and C as was the case
with the multicommodity flow problem. The initial basis for this tableau is a 6 	 6
matrix B�.

The algebraic representation is the matrix B� � �}GD H
F

}� which is

x7 x2 x5 x6 x1 x3

1 1 1

–1 –1 1

–1 1 1 –1

1

–2 10 –2

1 1 4
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where G is a square sub-matrix of the network matrix A carrying the same rank,
with det(G) � 0, constituting a rooted spanning tree. The corresponding graphi-
cal representation is a tree, which is shown in Figure A4.8.

Inverse of this matrix takes on special form, requiring only two inverses
G�1 and Q�1:

B� �1 � �G�1 � G�1HQ�1DG�1 �G�1HQ�1� i � 1, . . . , k (A4.12)
�Q�1DG�1 Q�1

where Q�1 � F � DG�1H. Even though the G�1 can be arrived at by graphical
means, we show the straightforward inversion below as a start:

1 1 1 1

G�1 � � 0 �1 �1 �1 �, Q�1 � � 1/12 1/15 � and the initial B�1 looks like0 �1 0 0 0 1/5

0 0 0 �1

1 1   1   1
– 9/10

– 7/10

– 1/10 1/15

1/5

– 1/12

 1/12

– 1/12

–1 –1 –1/15
–2/15

–1

1/5

Figure A4.7  EXAMPLE TO ILLUSTRATE NETWORK-WITH-SIDE-CONSTRAINT
ALGORITHM
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The current solution, as evaluated by B�1��
b
b

�, is

(xB
1, xB

2, xB
3, xN

4, xB
5, xB

6, xB
7, y

N
1, yN

2 )� (2 8 2 0 0 1 0 0 0 0)

where the superscript B marks a basic variable and N a nonbasic variable.
After guessing at an initial basis B�, and hence G (or the basis tree TB) for A,

we proceed with the two basic steps of LP simplex: entry and exit of variables into G.
The pricing step selects the entry variable while the ratio test selects the exit variable.

2. Pricing Step. An integral part of obtaining the reduced costs in the top row of
the simplex tableau is computing the dual variable. The dot product of the dual 
vector, representing nodal potentials or “odometer readings” vj for network flow, and
the column vector under consideration will obtain the reduced cost vTAN(k) � wk of
the column concerned. Notice the column for the kth arc (i, j) is in the nonbasic 
matrix outside B�. In a network, the reduced cost is the potential difference across the
arc (vj � vi) that overcomes the arc cost wij, v�ij � (vj � vi) � wij. To obtain the dual 
variable vj in a network with side constraints: 

(v1⏐v2)T � (w1⏐w2)TB��1 � [{(w1)T � (w1)TG�1HQ�1D
� (w2)TQ�1D)G�1⏐((w2)T � (w1)TG�1H}Q�1]

according to Equation A4.12 distinguishing between the spanning tree and non-
spanning tree parts of B��1. We will compute this in several steps utilizing graph-
ical means where feasible. In this effort, we utilize two well-known facts. The
rows and columns of the node-arc incidence matrix of any spanning tree can be
rearranged to be lower triangular. The converse is the well-known result that
every basis matrix defines a spanning tree.

Figure A4.8  TREE REPRESENTING INITIAL BASIS
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Step 1. First, we calculate (�1)T � (w1)TG�1 as follows. Let G be the basis
with corresponding basis tree TB. By virtue of Equation A4.5, any the kth compo-
nent of dual variable can be obtained by first solving Gy' � A(k) � ei(k) � ej(k) for
the updated column y'. Here ei(k) and ej(k) are the unitary vectors for arc k made
up of �1 and �1 in the columns of the node-arc incidence matrix corresponding
to the beginning node of starting arc and the ending node of the terminating arc
in a path P, as illustrated in Equation A4.10. The dual variable is simply (w1)Ty'.
The basis of a min-cost-flow network program G (or the tree TB) can be put in
lower triangular form with �1 or �1 on the diagonals. This means the system
of equations Gy' � A(k) can be solved by simple forward substitution process.
Since G is triangular, y' may be obtained directly and hence algebraic inverse G�1

is not required. We further make use of TB to solve this triangular system. Let P �
{1, 2, . . . , n � 1} be the unique path in TB linking node i(k) to node j(k), then

�
n

i�1
O'i(P)A(ji) � ei(k) � ej(k)

In other words, if the arcs in TB are ordered as ek1,ek2
, . . . , ekj

corresponding to the
columns of G, then the pth component of y' can be determined by the orientation
sequence

yp � �O'i(P)  if ekp
� eji 

� P
0          otherwise

(A4.13)

A clarification note is in order at this point. Decision variable y is to be distin-
guished from updated column y', and A(j) here refers to the jth column in A.

Now the arcs in the tree TB is already ordered in the columns of 

e7 e2 e5 e6

�
1 1 0 0

�
1

G � 0 0 �1 0 2
0 �1 1 1 3
0 0 0 �1 4

which is triangular. For column 2 of the network matrix in Equation A4.11, we
have a column vector A(2) � (1 � 1 0 0)T � (1 0 0 0) T � (0 1 0 0)T. This is con-
verted to y' by mapping path P � {1, 3, 2} in the tree TB in Figure A4.8 against the
orientation sequence, resulting in (0 1 1 0)T according to Equation A4.13. In other
words, we go down the vector entries corresponding to nodes 1, 2, 3, and 4 and
ask where the arrow on the arrival node points. Is it with the path orientation
(hence a �1 is assigned) or is it against (hence a �1 is assigned)? Notice y' checks
out the matrix inverse algebra of

G�1A(2) � �
1 1 1 1

� �
1

� � �
0

�0 �1 �1 �1 �1 1
0 �1 0 0 0 1
0 0 0 �1 0 0

as computed by “brute force” method above.
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Now that the updated column y(2) in the network part of network-
with- side-constraint tableau has been computed by graphical means as (0 1 1 0)T,
the dual variable associated with node 2—or the “odometer reading” at node 2—
of the network �1

2 � (w1)Ty(2) can readily be computed. This is done by summing
up the mileage �3 � 10 � �13, using the convention that flow goes from the root
node (0 potential) to lower potentials (negative “odometer readings”) at the other
nodes. More formally, the dual variable (w1)Ty' for each updated column y', or
(w1)TG�1, is simply

�j � �
n

i�1
wjiO'i(P)

where the orientation sequence O'2(P) and O'3(P)  are taken as �1’s, a convention
which will be explained shortly. Thus the complete pricing vector �1 � (�1

1, �
1
2,

�1
3, �1

4) � (0 � 13 � 10 � 14)T can be represented in Figure A4.9, where the su-
perscript 1 is the extra notation that identifies this as the duals associated with the
network part of the network-with-side-constraint tableau.

Notice that  in  this  figure, it  can  be  deduced also  from  the  sequence
x7 x2 x5 x6 in G that 

1 2 3 4

G�1 � �
1 1 1 1

�
e7

0 �1 �1 �1 e2
0 �1 0 0 e5
0 0 0 �1 e6

2

41

w2 10 w6 4

w5 3
w7

3

1
1 0

1
3 10

1
4 14

1
2 13

Figure A4.9  CALCULATION OF �1 FOR PRICING
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which checks out with the algebraic inverse shown earlier. Here the first row are
all ones corresponding to the orientation sequence of the root node, which is
taken as �1 by convention. The other arcs, if pointing in the opposite direction,
would have a negative orientation sequence. This explains a dual variable �2

1

of �13 instead of �13 and �3
1 � �10 instead of �10.

Step 2. Going back to the matrix expression for the dual variables (v1|v2)
at the beginning of this pricing step discussion. Let �2 � [(w1)T �
(w1)TG�1HQ�1D � (w2)TQ�1D] � [(w1)T � �1HQ�1D � w2)T Q�1D]. From this
formula, we can compute �2 � (0 10 7/10 4)T as:

�
1 0

��1 1 � 1/12 1/15� � � 0 0 �2 0 �0 �1 0 1/5 0 0 1 0
(A4.14)

(�2)T � (0 10 3 4) � (0 �13 �10 �14)

0 0

�(0 2) � 1/12 1/15� � � 0 0 �2 0 �0 1/5 0 0 10 0

Step 3. (v1)T � (�2)TG�1 is equivalent to step 1 in which �2 replaces wB.
This is again solved graphically in Figure A4.10 by computing nodal potentials,
 resulting in v1 � (v1

1 v2
1 v3

1 v4
1)T � (0 �10 7/10 �10 �14)T.

Step 4. (v2)T � [(w2)T� (�1)TH]Q�1

1 0

(v2)T � �(0 2) � (0 �13 �10 �14) ��1 1� � � 1/12 1/15�� � (�1 ) (A4.15)0 �1 0 1/5
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Figure A4.10  CALCULATION OF V1
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We now calculate the reduced costs using the dual variables (v1|v2)T by
examining the nonbasic column under x4, the nonbasic variable under considera-
tion: AN(4) � (0 �1 0 �1 �3 0)T, where the reduced cost is (v1|v2)TN(4) � w4. For
x4: v2

1 � v4
1 � 3v1

2 � w4 � �10 7/10 � (�14) � 3(�1 1/12) � 0 � 0. This means
 entering of x4 into the basis.

3. Ratio Test. Now is the time to pick an exit variable. Before the ratio test for
exist variable selection is done, however, column updates need to be performed
 according to the revised simplex method, wherein only the columns of interest y

and b (i.e., column k of the tableau and the RHS) are updated. Here y
 � B��1A�(k),
where we write

y
 � � }
y
y

1

2�� and     A�(k) � � }
A
B(

(
k
k
)
)

��
If the entering column corresponds to arc4, then

�y
1

�� �G
�1 � G�1HQ�1DG�1 �G�1HQ�1

� �A(k)�y2 �Q�1DG�1 Q�1 B(k)
(A4.16)

� �G
�1{A(k) � HQ�1DG�1A(k) � HQ�1 (k)}�Q�1{B(k) � DG�1A(k)}

Step 1. Considering the entering variable x4, perform the intermediate
column update y1 � G�1A(4) using part of Equation A4.16. This calculation is
shown in Figure A4.11. Here P � {2 3 4}, which when matched against the arrows
at the arrival node, shows that y1 � (0  0 �1 �1)T.

2

41

y1,2 0

y1,1 0

y1,3 1

y1,4 1

3

x4

Figure A4.11  y1 CALCULATION IN RATIO TEST
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Step 2. From the first entry of the vector in Equation A4.16, define y2 �
A(4) � HQ�1Dy1 � HQ�1B(4)

0 1   0 0 1 0 �3/20 

� 1 � ��1   1 � �1/12 1/15� �0  0  �2  0� � 0����1 1� �1/12 1/15� �3�� � 19/20 � (A4.17)y2 � 0 � 0 �1 0 1/5 0  0     1 0 �1 0�1 0 1/5 0 1/5 

�1 0  0 1 0 0 �1

Step 3. Again, from the first entry of the vector in Equation A4.16, y1 �
G�1y2, where the basis G is inverted by graphic means in Figure A4.12. In these
figures, we show the computations of y1

1 by tracing the path from node 1 to 
node 1 in TB, y2

1 by tracing from 2 to 1, y3
1 from 3 to 1, and y4

1. Notice that instead

2

1 4
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y 1 3
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Figure A4.12  CALCULATION OF y1
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of from node 1 to all other nodes, we are starting from other nodes to node 1, since
we have the system G�1y rather than �TG�1 to solve.

From the graphs, or referencing the orientation sequences already
 contained in

1 1 1 1

G�1� � 0 �1 �1 �1 �0 �1 0 0
0 0 0 �1

we write

�3/20 19/20 1/5 �1 0

y1 �� 0 ��� �19/20 ��� �1/5 ��� 1 ��� �3/20 �0 �19/20 0 0 �19/20

0 0 0 1 1

Step 4. According to Equation (A4.16), y2 � Q�1[B(4) � Dy1]. Hence

0

y2 � � 1/12 1/15 ��� 3 ��� 0 0 �2 0 � � 0 �� � � 3/20 �0 1/5 0 0 0 1 0 �1 1/5

1

� }
y
y

1

2}  � � (0 �3/20 �19/20 1 3/20 1/5)T. 

Similarly 

B��1 � }
b
b

'
�� � (0  8  0  10  22) (A4.18)

For the column corresponding to the entering variable, we perform two types of
ratio tests, since we have both a lower bound, 0, and upper bound, dk, on the de-
cision variables. The following tests correspond to the condition under which the
basic variable drops to its lower bound or reaches its upper bound  respectively:

�1 � Min � , ∞� � � , ∞� � Min � , , � � 10 (A4.19)
1�j�m

for positive entries in y
, and

�2 � Min � , ∞� � Min � , � � �
2
1
0
9
� (A4.20)

for negative entries.

2
�

�
1
5

�

2
�

�
2
3
0
�

10
�1

xj
B

�
⏐yj⏐

xj
B � 0
�

⏐yj⏐

1 � 0
�

�
1
2

9
0
�

18 � 8
�

�
2
3
0
�

dj
B � xj

B

�
⏐yj⏐1�j�m
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Considering the case when the entering variable xk can reach its upper
bound and hence be the restricting variable, the tolerable increase in resource
 engagement overall is

� � Min{�1, �2, d4} � Min{10, 20/19, 12} � 20/19 (A4.21)

In this case, the leaving variable will be x5 remembering the order of the variables
in B� and B� �1 is x7, x2, x5, x6, x1, and x3.

This completes a simplex-on-a-graph iteration, consisting of one pricing op-
eration and one ratio test for the sample problem. The network-with-side-constraint
algorithm is used in locating satallite tracking stations in the “Facility Location”
chapter under the “Generalized p-Median Problem” section in Chan (2005).

III. LAGRANGIAN RELAXATION
As can be seen from network with side constraints, for large-scale linear pro-
grams (LPs) or mixed integer programs (MIPs) with a special structure decom-
position methods can be employed for computational efficiency. The central idea
is to exploit the nice properties of the well-structured part of the mathematical
program (such as a network matrix) and to set aside the more complicated part in
the interim. Hence the term relaxation is sometimes used in the general decom-
position procedure of this kind.

A. Illustration of Basic Concepts
A more general way to introduce decomposition is through Lagrange relaxation,
which we will explain through an integer programming (IP) example (Fisher 1985)

Min zIP � �16x1 �10x2 �4x4
s.t. �8x1 �2x2 �x3 �4x4 � �10 (P)

�x1 �x2 � �1
�x3 �x4 � �1

xj � 0 or 1 for all j

which has the form

Min zIP � cTx
A1x � b1 (A4.22)
A2x � b2

The first constraint is judged to be the complicated one and we form the relaxed
Lagrangian by dualizing it:

zLR(�) � Min [�16x � 10x2 � 4x4 � �(�10 � 8x1 � 2x2 � x3 � 4x4)]
� Min [�x1(16 � 8�) � x2(10 � 2�) � x3(0 � �) � x4(4 � 4�)�10�]

s.t.      � x1 � x2 � �1
� x3 � x4 � �1
xj � {0, 1}  for all j (LR(�))
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Here we have formed the Lagrangian relaxation problem

zLR(�) � Minx [cTx � � � (b1�A1x)]
s.t. A2x � b2

xj � {0, 1}  for all j
(LR(�))

Notice that a network-with-side-constraints model can be formulated as a
Langrangian relaxation problem when A2 � A and A1 � [B C].

For the dual variable � fixed at some non-negative value this problem is
easy to solve (as a network flow problem for example), as shown in Figure A4.13
where the dual variable is fixed at its optimal value �*. The mathematical pro-
gram reduces to minimizing over x (a discrete variable), yielding the optimal
value at x* � x2. (Notice this includes the case of multiple optima.) For any other
values of �, a weak duality results, which says that the resulting optimization
over x will yield a z value smaller than before relaxation—some kind of a super
optimum. The inequality zLR(�) � zIP allows LR(�) to be used in place of LP to
provide lower bounds (cuts) in a branch and bound (B&B) algorithm for IP, where
the bounds are usually tighter than LP relaxation.5 The solution x* is optimal to IP
if there is a �* such that zLR(�*) � zIP.

B. Underlying Theory
Restating the above in more formal terms:

zLR(�) �Minx {z(�, x): x � conv(Q
~


)} (LR)

x

L(x, )

*

x3 x1
x2

Figure A4.13  MIN IN x AND MAX IN � FOR A WEAK DUALITY
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where the convex hull conv(Q
~


) is formed from a convex combination of discrete points
defined by A2x � b2. In transitioning from the LR(λ) to the (LR) formulation, the con-
vex hull has to be constructed from the polyhedron A2x ≥ b2 by trimming the “excess,”
thus exposing the discrete points. An example of this can be shown in Figure A4.14
below. It is interesting to contrast this with LP relaxation, in which zLP � Minx{c

Tx: x � S}
where S � {x � R�

n: Ax � b}. Here R�
n is the domain of continuous non- negative vari-

ables, rather than the discrete variables that are of real interest. We can now view the
Lagrangian relaxation problem as minimization over a set of discrete points:

zLR(�) � Min z(�, x
)
xi � Q

~



and to observe that for fixed xi, z(�, xi) �cTxi � �(b1 � A1xi) is a function of �.
Ideally, � should solve the Lagrangian dual problem zLD in accordance

with expression (LD) below, which provides the best choice of �.

zLD � Max zLR(�) (LD)
� � 0

zLD is always linear in �. Based on the constraints of the relaxed program, a finite num-
ber of combinations for xj are admissible, forming the feasible solutions x1, x2, . . . , x|J|.
These values and the resultant piecewise linear function are shown in Figure A4.15.
Contrast this with LP relaxation in which zLP(u) � Maxu{bTu:u � PD} where 

x1

x2

4321

2

1

x1

(x1)

(x2)

(x3)

x3 x2

{   }  Q
conv (Q )

conv (Q )  {x R2:
                            x2     0

x1                1
                               x2     2

x1 x2  2
                       2x1 x2     6}

Figure A4.14  OPTIMIZING OVER A CONVEX HULL
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PD � {u � R�
m :ATu � c} and zLP(u) � zIP. Here, columns are appended to the dual of

the LP corresponding to the imposition of integer values in the branching process.
Until all variables are integerized, LP relations will yield super-optima. In Lagrangian
relaxation, we are expressing LD formally as an LP with many constraints:

zLR(� � Max {z': z' � z(�, xi) for i � 2, . . . ,|J|} (LD')
� � 0

In other words:

Max z

s.t. �20 � 2� � z
 �10 � 8� � z


�16 � 2� � z
 �10� � z

�14 � 4� � z
 � � 0

This problem is sketched out in Figure A4.15. Problem (LD
) makes it apparent
that zLR(�) is the lower envelope of a finite family of linear functions. The func-
tion zLR(�) has all the nice properties, like continuity and concavity, that lend
themselves to hill climbing algorithms (specifically subgradient optimization)
(Ahuja et al. 1993; Nemhauser and Wolsey 1988).

zLR( , xi)

1

18

2

x1 x4 1
x2 x3 0

20 2

x1 1
x2 x3 x4 0

16 8

x2 x4 1
x1 x3 0

14 4

x1 x3 x4 0
x2 1

10 8

x1 x2 x3 x4 0
10

+

Figure A4.15  MAXIMIZATION IN DUAL VARIABLE
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C. Subgradient Optimization
It is appropriate at this juncture to explain the subgradient optimization algo-
rithm (Fisher 1985). At differentiable points of Figure A4.15, the derivative of
zLR(�) with respect to � is given by A1x � b1 or 8x1 � 2x2 � x3 � 4x4 � 10 in
our example, where x is an optimal solution to LR(�). These facts also hold in
general with the gradient of the zLR(�) function at differentiable points given
by A1x � b1, where x may not be optimal. This observation suggests it might
be fruitful to apply a gradient search method to maximize zLR(�) with some
adaptation at the points where zLR(�) is nondifferentiable. The subgradient method
chooses arbitrarily from the set of alternative optimal Lagrangian solutions xi at
these  nondifferentiable points and use the vector A1x � b1 for this solution as though
it were the gradient of LD
. The result is a procedure that determines a  sequence of
 values for � by beginning at an initial point �0 (such as zero) and  applying the
 following formula. We illustrate this problem for the case where � is scalar:

�k�1 � Max [0, �k � tk(b
1 � A1xk] (A4.23)

In this formula, tk is a scalar step size and xk is an optimal solution to LR(�k),
the Lagrangian problem with dual variables set to �k. Equation A4.23 can be thought
of as a generalization of the method of steepest ascent in nonlinear programming
when the objective function is piecewise linear (See Section III-F in Chapter 4).
The choice is between staying put or moving along a gradient, whichever is
 better. Even though we have illustrated subgradient optimization only through
the scalar example, multiple dimension generalization of Equation A4.23 can be
found in the formalization below and in Nemhauser and Wolsey (1988) and
Reeves (1993).

The nondifferentiability also requires some variation in the way the step
size is normally set in a gradient method. A formula for tk that has proven effec-
tive in practice is

tk � � (A4.24)

In this formula, z*IP is the objective function value of the best known feasible so-
lution to the original problem P and �k is a user defined scalar chosen between
0 and 2. It is assumed here that there are m1 complicated constraints in
A1x � b1. Notice Equation A4.24 measures the difference between z* and the
current Lagrangian objective against the Euclidean norm (or the l2-norm as
 described in Chapter 5 of this book and the “Measuring Spatial Separation”
chapter in Chan (2005). When the difference is large relative to the norm, a
larger step size is taken and vice versa. Frequently, the sequence �k is deter-
mined by starting with �k � 2 and reducing �k by a factor of two whenever
LR(�k) has failed to increase in a specified number of iterations. The feasible
value z* initially can be set to 0 and then updated using the solutions that are
obtained on those iterations, in which the Lagrangian problem solution turns
out to be feasible in the original problem P. Unless we obtained a �k for which

�k(zLE(�k)�z*IP)
��

� b1 � Axk �

�k(zLR(�k) � z*IP)
��

�
m1

i�1
(bi

1��
n

j�1
aij

1xj
k)2
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LR(�k) � z*IP, there is no way of proving optimality in the subgradient method.
To resolve this difficulty, the algorithm is usually terminated upon reaching a
specified  iteration limit.

Example
Here is an example of the subgradient method illustrating the judicious choice of
step sizes:

k Dual variable �k Step size tk

0 0 1
1 Max[0, 0 � (1)(�2)] � 2 1/2
2 Max[0, 2 � (1/2)(8)] � 2 1/4
3 Max[0, 0 � (1/4)(�2)] � 1/2 1/8
4 Max[0, 1/2 � (1/8)(�2)] � 3/4 1/16
5 Max[0, 3/4 � (1/16)(�2)] � 7/8 1/32
6 Max[0, 7/8 � (1/32)(�2)] � 15/16 etc.

As can be seen, the algorithm converges nicely to the optimal value of � � 1. ■

Subgradient Optimization Algorithm
The subgradient algorithm can now be applied to the Langrangian relaxation
problem as follows:

Step 1: Solve the Lagrangian relaxation problem LR(�k) to obtain the
 optimal xk.

Step 2: Evaluate the subgradient g(�k) � b1 � A1xk. If g(�k) � 0, stop;
(�k, xk) is an optimal solution.

Step 3: Let �k�1 � �k � tkg(�k), which is a m1-entry vector generalization
of Equation A4.23. Increment counter k � 1 → k, and go to step 1.

From Figure A4.15, it is easy to see that � � 1 maximizes zLR(�). Thus the
lower bound is zLR(1) � �18 and a corresponding feasible solution of zIP � �16
by inspection, namely one of three feasible solutions6: x � (1, 0, 0, 0), (0, 1, 0, 0), or
(0, 1, 0, 1). The solution (1, 0, 0, 0) yields zIP(1, 0, 0, 0) � �16. Formally, the lower
bound �18 should now be used in B&B to arrive at the optimal solution x*. In
other words, by taking a convex combination of points in Q	
, we obtain a point
x* in conv(Q	
) satisfying the complicating constraint, for which cTx* � zLD. This
shows that for the example we obtain zLD � Min{cTx:A1x � b1, x � conv(Q	
)}.
The major result is as follows: The primal LP problem of finding a convex com-
bination of points in Q	
 that also satisfies the complicating constraint A1x � b1

or �8x1 � 2x2 � x3 � 4x4 � �10 is dual to the Lagrangian dual, or the solution is
 optimal.

D. Branch-and-Bound (B&B) Solution
While we showed above how the optimum can be obtained, this is not simple in
general. Oftentimes, we need to resort to a tree search (B&B) procedure to resolve
the problem (as explained in Section III-B of Chapter 4). We use the traditional B&B
procedure in which a tree of solution alternatives is constructed with certain vari-
ables fixed to specified values at each node of the tree, representing a proposal xik.
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Shown below is a tabular display of the various contending solutions at � � 1 in
Figure A4.15. It serves to illustrate a B&B tree that can lead toward the optimal
 solution via pruning rules such as infeasibility, dominance, and incumbency7:

� Lagrangian solution zIP

x1 x2 x3 x4 zLR(�)
1 1 0 0 0 �18 �16*
1 1 0 0 1 �18 Infeasible
1 0 1 0 0 �18 �10
1 0 1 0 1 �18 �14

For example, a B&B tree will be pruned at the infeasible solution node as repre-
sented by the second line of the table. Similarly, the solutions on the third and
fourth lines are dominated by the solution of �16 in the first line. All things said
and done, here the solution at the first line is the optimum, yielding x* � (1 0 0 0)
and z*IP � 16.

Insightful as this example may be, left unexplained is the procedure
to generate the xi, from which the constraints of (LD') can be generated. For a

Step 1
Construction of branch-and-bound tree

Step 2
Adjustment of multipliers
– If k  0, go to step 3
– If zLR( k)  z*IP or iteration limit
   reached return to step 1
– Otherwise set k 1 by subgradient
   optimization *k ← k + 1

Step 3
Solution of Lagrangian problem
– Solve LR( *)
– Update z*IP if the Lagrangian solution
   xk is feasible in primal problem (IP)

Lower bound
zLR and 
possibly
feasible 
solution xik

Node of the tree:
z*IP – Best known 
feasible value
( 0 – initial multiplier 
 value when k  0)

xik k

* This includes the case when k 1  k 
  or k does not change.

Figure A4.16  GENERIC LAGRANGIAN-RELAXATION ALGORITHM

SOURCE: Fisher (1985). Reprinted with permission.
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 totally unimodular matrix, such as the one shown in A2, the xis are discer -
nable. However, this is not the case in general, when the extreme points of the
 polyhedron A2x � b2 are not integer valued. Suppose we start out with a couple
of integer points xi0 on an integer convex-hull Q	
, from which zLD(�) can be max-
imized at �0. Then for �0' � �0 we solve for zLR(�0', x) according to (LR) for ad-
ditional xij with which (LD') can be solved again, often with the help of a B&B
tree. The process then gets repeated again for the �1 so obtained, until two sub-
sequent iterations yield the same zLR(�*, x*). The generic Lagrangian- relaxation
algorithm is  illustrated in Figure A4.16. This figure shows the complete
Lagrangian relaxation algorithm consisting of three major steps. The first step is
the standard B&B process in which a tree of solution alternatives {xk} is generated
with certain variables fixed to specified values at each node of the tree, namely
the �k values. These specified values are passed from block 1 to block 2  together
with zIP*, the objective function value of the currently best-known feasible solu-
tion. In the initial step, we set k � 0 and the value of the starting multipliers �0

(normally to 0).
We iterate between blocks 2 and 3, adjusting the multipliers �k with the

vector generalization of the subgradient update and obtaining a new Lagrangian
solution xk respectively. This process continues until we either reach an interation
limit or discover an upper bound that is less than or equal to the current best-
known feasible solution zIP*. At this point, we pass back to block 1 the best upper-
bound together with any feasible solution zIP* that may have been obtained as a
 result of solving the Lagrangian problem LR(�k).

According to Fisher (1985), it is not uncommon in large-scale applications
to terminate the process depicted in Figure A4.16 before the B&B tree has been
 explored sufficiently to prove optimality. Beasley shared many of his computa-
tional experiences in Reeves (1993). In this case, the Lagrangian algorithm is
 really a heuristic—similar to LP relaxation—with some nice properties, such as
the maximum amount by which the heuristic solution zIP* deviates from optimal-
ity. Related discussions on Lagrangian relaxation can be found in Lubbecke and
Desrosiers (2005), Chapter 4, Section V in this book and in the “Facility Location”
chapter in Chan (2005) under “Median Location Problems.”

IV. BENDERS’ DECOMPOSITION
Lagrangian relaxation takes care of complicating constraints by incorporating
them in the objective function. Here we consider the allied problem of complicat-
ing variables. Suppose we have the following mixed integer program (MIP)

z � Max (gTy � cTx)
s.t.         By � Ax � b

where y are non-negative discrete variables of dimension n (y � Y� � Z�), and x
are continuous non-negative variables of dimension p (x � R�

p). We think of the
discrete variables y as complicating variables to what would otherwise be a
linear program (LP), or we can view the continuous variables x as complicating
variables to what would have been a pure integer program. Instead of Lagrangian
relaxation, an allied procedure called Benders’ decomposition is employed to
solve this MIP.
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A. Example 
Let us illustrate with a numerical example (Nemhauser and Wolsey 1988).

Max 5y1 � 2y2 � 9y3 � 2x1 � 3x2 � 4x3
s.t. 5y1 � 3y2 � 7y3 � 2x1 � 3x2 � 6x3 � �2

4y1 � 2y2 � 4y3 � 3x1 � x2 � 3x3 � 10 (A4.25)
yj � 5 for j � 1, 2, 3
y � Z�

3, x � R�
3

Here 

Y � {y � Z�
3 : yj � 5 for j � 1, 2, 3}

As a first step, we suppose that the integer variables y have been fixed, in other
words, projecting on y. The resulting LP is:

zLP(x) � Max{cTx:Ax � b � By, x � R�
p} (A4.26)

and its dual is

Min{(b � By) � : A� � c, � � R�
m } (A4.27)

which forms a subproblem. For our current example, we have the dual polyhe-
dron {A� � c, � � R�

2} of dimension 2 or

2�1 � 3�2 �    2
3�1 � �2 � �3
6�1 � 3�2 �    4

� � R�
2

This polyhedron is sketched out in Figure A4.17, where the extreme points and
extreme directions are shown. A bounded optimal solution can be represented by
these extreme points and directions.

Let �1, �2, . . . , �|K| be the extreme points and d1, d2, . . . , d|J| be the ex-
treme directions of the dual polyhedron D�. Then any point � in D� can be repre-
sented by the extreme points and directions as we explained in Section I-B:

� � �
k�K

wk�k � �
j�J

�jd
j

�
k�K

wk �1;   wk, �j � 0   k � K, j � J (A4.28)

If z � Maxx,y{gTy � cTx), then z � Maxy{gTy � Min{b � By)�} for each � � D�,
or z � Maxy{gTy � Minj�J

(b � By)�j}.. Here �j includes both extreme points and
 extreme directions. But if (b � By)dj � 0 for some j, we can choose �j large
enough so that



Review of Some Pertinent Optimization Schemes APPENDIX 4 585

z � Maxy{gTy � Min�� D{(b � By)�}

becomes infeasible. Hence we must impose the additional constraints (b � By)dj � 0.
[For those (b � By)dj � 0, naturally we would gravitate toward the extreme points
and move away from the extreme directions by setting the appropriate �j to zero.]
The MIP can now be rewritten as

z � Maxy{gTy � Min(b � By)�k} (A4.29)
k � K

(b�By)dj � 0  for j � J
y � Y

and the problem can be reformulated as the master problem

z � Max z

s.t.  z
 � gTy � (b � By)�k for k � K (A4.30)

(b � By)dj � 0  for j � J
y � Y

In our case for the finite number extreme points � and extreme directions d,
the complete master problem (which is an all-integer program) looks like

z � Max z

s.t. z
 � 5y1 � 2y2 � 9y3 �     (�2 � 5y1 � 3y2 � 7y3

z
 � 5y1 � 2y2 � 9y3 � 1/2(�2 � 5y1 � 3y2 � 7y3) � 1   /3(10 � 4y1 � 2y2 � 4y3)
z
 � 5y1 � 2y2 � 9y3 � 4/3(10 � 4y1 � 2y2 � 4y3)

1

2

43210

2

3

Extreme direction
d 2 = (1 3)

Extreme direction
d 1 = (1 0)

Extreme point
4 = (0 3)

Extreme point
1 = (1 0)

4

1

Extreme point
2 = (      )1 –

2
1 –
3

Extreme point
3 = (0    )4 –

3

Figure A4.17  DUAL POLYHEDRON FOR BENDERS’ EXAMPLE
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z
 � 5y1 � 2y2 � 9y3 �   3(10 � 4y1 � 2y2 � 4y3)
�2 � 5y1 � 3y2 � 7y3 � 0
�2 � 5y1 � 3y2 � 7y3 �   3(10 � 4y1 � 2y2 � 4y3 � 0
yj � 5 for j � 1, 2, 3

y � Z�
3

It can be verified that an optimal solution is y � (0 3 1)T and z
 � 3. Using this
 information, it can be easily verified that x � (1 0 0 0)T is part of the optimal  solution
to the example. This can be seen by substituting y � (0 3 1)T into Equation A4.25
and solve the resulting LP in x as represented by Equation A4.26.

B. Convergence
In practice, there are an enormous number of constraints in the above master
problem. A natural approach is to consider relaxations obtained by generating
only those constraints corresponding to a small number of extreme points k �
1, 2, . . . , k
 and extreme directions, j � 1, 2, . . . , j
. We call these the relaxed mas-
ter problems, yielding an optimal solution (z
, y), which is an upper bound on z.
The solution (z
, y) is optimal if and only if it is feasible to all constraints in
the master problem. In other words, we wish to check the subproblem shown
in Equation A4.27 where y is obtained from the optimal solution of the relaxed
master problem [Equation A4.30]. Given a finite number of extreme points k �
1, . . . , |K| and a finite number of extreme directions j � 1, . . . , |J|, an opti-
mal solution (z*, y*) exists. Let �
* be an optimal extreme point corresponding
to an  iteration where k
 � 1 extreme points and j
 � 1 extreme directions
have been  generated. If the optimum is obtained, z* � gTy* � (b � By*)�
*. Then
z
 � gTy* � (b � By*)�
* for all k and j. Otherwise, generate additional extreme
points and  directions as necessary in accordance with the relaxed master
 problem. Notice the iterations are schematically represented in Figure A4.15 if we
read zLR(� , xi) as z(� , yk) according to Equation A4.30, even though the figure was
drawn initially for Lagrangian relaxation.

An example illustrating the Benders’ convergence process is found in the
“Measuring Spatial Separation” chapter in Chan (2005) under the “Scheduling
Restrictions” subsection. This is supplemented by a homework problem in which
each step of the algorithm is spelled out in detail.

C. Extension
The discussion above can easily be extended to the case where the linear term gy
in the objective function is a nonlinear function f(y). In the above algorithm, sim-
ply replace gy with f(y) throughout. The only difference is in the way we solve the
master problem, which may involve a nonlinear solver. Nonlinear integer pro-
gramming is not an easy task, however. In principle, the Benders’ scheme can still
be applied, taking full advantage of the part of the mathematical program which
can be solved as a subproblem by LP.

Benders’ decomposition is sometimes referred to as a resource-directive
decomposition method. It starts with an initial solution consisting of, for
 instance, the discrete variable y and dual variable and adjusts the common
 resource available b by fixing the next y through master problem (30) and the
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corresponding (and hence x-variable) values through the dual subproblem (27).
As suggested by Figure A4.15, this resource-directive decomposition scheme can
be viewed as an alternative approach to the subgradient search used in
Lagrangian relaxation.

Benders’ decomposition is also a competing approach for solving the
multicommodity flow problem, formerly formulated in Section II-A as a network
with side constraints. In this regard, the common flow-capacity linking constraint
is By and the commodity-flows are modeled by Ax. The Benders’ approach
 decomposes the problem into a separate single-commodity flow problem for each
commodity by allocating the scarce bundle capacities to the various commodities.
Finding the optimal allocation (in other words, the one that gives the overall low-
est cost in this case) is an optimization problem with a simple constraint structure
and a (complicated) convex cost objective function. Using sensitivity information
about the single commodity subproblems, however, we can generate subgradient
information about the resource-allocation cost function and solve the allocation
problem by a version of the subgradient optimization technique. Interested 
readers are referred to Ahuja et al. (1993) for further details. Benders’ decomposi-
tion is an important and viable technique in solving location-routing models, as
illustrated in the “Generalized Benders’ Decomposition” subsection in the
“Simultaneous Location-and-Routing Models” chapter in Chan (2005).

V. ALGORITHMS AND COMPLEXITY
Throughout this book, particularly in the discussions in this appendix, we are
concerned with the efficiency of solution algorithms, which led to network-
with- side-restraints and Benders’ decomposition. The theory of computational
complexity yields insights into how difficult a problem may be to solve and hence
how much computational savings are obtainable from more efficient algorithms.
For example, we may be able to show that in the order of O(lk) time, for some
fixed k and data-input length l, an optimal solution is obtained. In this section, we
wish to define some commonly used terms and to fix some basic notions.

Class P problems: Most efficient min-path algorithms, for example, are polyno-
mial P in execution time. As shown in the literature, the complexity is O(m) for a
path, O(m2) for a tree and O(m3) for a point-to-point computation, where m is the
number of nodes in a network. The polynomial order makes min-cost-flow net-
work algorithms an attractive alternative to more computationally demanding
methods such as regular simplex, as illustrated in Section II-B.

NP problems: In contrast, simplex LP is a non-deterministic poly-nomial (NP)
problem. In the simplex algorithm, the number of elementary steps required to
solve the m 	 n LP is O(mn) arithmetic operations for each pivot iteration, since it
can be viewed as a matrix vector multiplication. The simplex algorithm can, at
worst, visit all basic feasible solutions, and there are at most ( m�

m
n) basic feasible

 solutions, requiring therefore (m�
m

n) pivots. All together, simplex is an O(mn(m�
m

n))
algorithm. Notice this makes the simplex a much less efficient algorithm than
 network flow. The relationship between class P and NP is illustrated in
Figure A4.18, in that polynomial problems are a subset, and a special case, of 
non-deterministic problems.
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NP-completeness: An NP-complete (NPC) problem is a computational problem
that is as hard as any reasonable problem; specifically, an NPC problem is char-
acterized by:

1. No NPC problem can be solved by any known polynomial algorithm.
2. If there is a polynomial algorithm for any NPC problem, then there

are polynomial algorithms for all NPC problems.

Figure A4.18 shows the class of NP and the two subsets P and NPC,
which are disjoint unless P � NP, which put us in the category of item 2 above. If
P � NP, it can be shown that P � NPC � NP.

Example
The (symmetric) traveling salesman problem (TSP) seeks to find the lowest cost
tour among m nodes and return home.8 There are (m � 1)!/2 possible tours in a
network, where a tour (or Hamilton circuit) is a path traversing each node in the
network exactly once. There is a solution to TSP if and only if a Hamilton circuit
exists. TSP is an NPC problem (even though the Hamilton circuit problem may be
a P problem). Finding the TSP tour among the 50 state capitals in the United
States, for instance, could require many billions of years, with the fastest com-
puter available. ■

NP-hard problems: One problem polynomially reduces to another if a polyno-
mially bounded number of calls to an algorithm for the second will always solve
the first. Sometimes we may be able to show that all problems in NP polynomi-
ally reduce to some problem 	. But we are unable to argue that 	 � NP. So 	
does not qualify to be called NP-complete. Yet undoubtedly � is as hard as any
problem in NP, and hence most probably intractable. It is for these problems that
we have reserved the term NP-hard. A polynomial algorithm for an NP-hard
problem implies P � NP. Problems that are both NP-hard and member of the class
NP are called NPC (Figure A4.18.). It has turned out that the family of NP-hard
problems is amazingly rich, including 0-1 integer/mixed integer programming
(polynomial backtracking)9.

NPC

NP

P

SOURCE: Nemhauser & Wolsey (1988). Reprinted with permission.

Figure A4.18  TYPES OF COMPLEXITY
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To date, complexity theory is still evolving and may continue to do so for
quite some time. With or without complexity theory, however, practitioners will
continue to be confronted by significant discrete problems in all sorts of manage-
ment and engineering settings. To date, the main value of the theory for practition-
ers has been to provide a theoretical base that confirms long held suspicions. Most
importantly, it allows us to gauge the worst-case scenarios of efficiency indepen-
dent of computer hardware and software—both of which are evolving too rapidly
to allow for meaningful comparisons across diverse computational platforms. One
must note that the worst-case behavior of an algorithm might be markedly differ-
ent from its behavior in practice. Indeed, several NP and NPC algorithms can be
solved very efficiently in practice. An example is the simplex algorithm, which has
undergone generations of streamlining to make it competitive with polynomial LP
solvers. However, in the words of Ahuja et al. (1993), we can safely say NPC prob-
lems sometimes do not have algorithms that can solve large practical instances in
reasonable time, whereas problems in class P often have.

VI. CONCLUDING REMARKS
This appendix describes some fundamental optimization algorithms that are
 applicable to the solution of facility location and land use problems. Of particular
interest is the notion of decomposition, which can greatly accelerate an algorithm,
including the case of mixed integer programs. Decomposition is broadly defined
to mean the exploitation of special structure of the problem. Thus in a network-
with-side-constraint model, we take advantage of the network part of the tableau
by using efficient labeling algorithms in lieu of regular simplex. In this fashion,
basis inverses—the more computationally intensive part of the process—are cut
down to a minimum.

In Langrangian relaxation, we set aside the complicated part of the con-
straints and concentrate on the nice ones first. Likewise, in Benders’ decomposi-
tion, we defer facing the complicated variables in preference for the better
 behaved ones. We bridged the gap between Lagrangian relaxation and Benders’
decomposition by pointing out that both can be best illustrated by a plot of both
the primal and dual space. The iterative procedure can be portrayed as a series of
adjustments on the pricing scheme, represented as different slopes on the objec-
tive functions. Alternatively, the computations can be viewed as a sequence of
cuts in the dual space, where each cut brings the solution closer to the optimal
 resource allocation. These are equally convenient and insightful ways of looking
at the problem. An example of the pricing scheme can be found in Figure A4.14.
There the slope of the objective functions is obtained for each extreme point
 defined either by x in Lagrangian relaxation or y in Benders’ decomposition. An
example of the cutting scheme can be found in Figure A4.15, where the dual 
variable is � for the respective examples for Lagrangian relaxation and Benders’
decomposition. Of equal importance here is the relationship between bounding
techniques, decomposition, and duality. They represent promising analytical-
solution techniques in dealing with complicating constraints or decision variables
in a mathematical program.

We conclude with a discussion on computational complexity—a taxon-
omy to categorize algorithmic efficiency. Drawing upon the examples worked out
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in this appendix, we have defined the commonly used terms such as polynomial,
non-deterministic polynomial (NP), NP-complete, and NP-hard. These terms
are used extensively in the literature. Through this taxonomy, we are able to
 comfortably justify the efficient algorithms introduced in this appendix, showing
how they compare with the more traditional approaches. While computational
complexity is a useful concept, we must point out that there are issues that go
 beyond the categorizations. It is possible to classify algorithms and problems by
their data structure. This final point is particularly relevant as we design
 geographic  information systems to support facility location and land use models.
(See Chapter 6 in this book and the “Spatial-Temporal Information” chapter in
Chan [2005]).

ENDNOTES

1 The dual of an LP is defined, according to Chapter 4, as Min{(�1 � �2): 3�1 � 5�2 � 1, 6�1 � 4�2 � 1},
where �1 and �2 and non-negative dual variables.

2 For a review of basic network-flow terminology, the reader is referred to Chapter 4, Section IV.
3 Complementary slackness is explained in Chapter 4, Section III-C.
4 When the entering variable is y instead of x, similar algebra applies. For details, see Kennington and

Helgason (1980).
5 LP relaxation is a common way to solve IP problems by ignoring integrality and solve the result-

ing LP. The integrality requirements are subsequently re-introduced through a branch and bound on
the fractional variables. For a discussion and illustration of LP relaxation, see Chapter 4 (Section II-B)
and the “Facility Location” chapter in Chan (2005) respectively.

6 Notice the fourth extreme point (1, 0, 0, 1) is infeasible since it violates the complicated constraint
�8x1 � 2x2 � x3 � 4x4 � 10.

7 The terms infeasibility, dominance, and incumbency are defined in Chapter 4, Section II-B.
8 For a complete discussion of the traveling salesman problem, see the chapter on “Measuring Spatial

Separation” in Chan (2005).
9 For a discussion of 0–1 integer/mixed integer programming algorithms, including backtracking and

branch and bound, see Chapter 4.

REFERENCES

Ahuja, R. K.; Magnanti, T. L.; Orlin, J. B. (1993). Network flows: Theory, algorithms, and appli-
cations. Englewood Cliffs, New Jersey: Prentice-Hall.

Bazaraa, M. S.; Jarvis, J. J.; Serali, H. D. (1990). Linear programming and network flows, 2nd
ed. New York: Wiley.

Chan, Y. (2005). Location, transport, and land-use: Modelling spatial-temporal information. Berlin
and New York: Springer.

Fisher, M. S. (1985). “An applications oriented guide to Lagrangian relaxation.” Interfaces
(Operations Research Society of America) 15, No. 2:10–21.

Hillier, F. S.; Lieberman, G. J. (1990). Introduction to mathematical programming. New York:
McGraw-Hill.



Review of Some Pertinent Optimization Schemes APPENDIX 4 591

Kennington, J. L.; Helgason, R. V. (1980). Algorithms for network programming. New York:
Wiley.

Lubbecke, M. E.; Desrosiers, J. (2005). “Selected topics in column generation.” Operations
Research, 53:1007–1023.

Nemhauser, G. L.; Wolsey, L. A. (1988). Integer and combinatorial optimization. New York:
Wiley.

Reeves, C. R., ed. (1993). Modern heuristic techniques for combinatorial problems. New York:
Halsted Press.

Winston, W. L. (1994). Introduction to mathematical programming: Applications and algorithms,
2nd ed. Belmont. California: Duxbury Press.





This appendix consists of technical words or concepts that are not necessarily famil-
iar to the general audience, mainly words that are not found in a standard English
dictionary. The main thrust of this book is to show the underlying concepts and the
relationship between technical concepts from different disciplines. This emphasis is
particularly apparent in this appendix. It complements, rather than competes with,
the comprehensive index compiled at the back of this book. In many ways, the
 appendix extends the main body of this text inviting the curious reader to go deeper
into this field. While each term is defined in as plain a language as possible, on rare
occasions one technical term is explained in terms of another. When a related
 technical term in this glossary is used within an explanation, it is italicized, alerting
the user that the related term is defined elsewhere in the glossary. Naturally, this
glossary is best used in conjunction with the book index as suggested earlier.

Accessibility, impedance, propensity functions, and trip frequency curves:
In this book, we discuss the importance of spatial costs in organizing the economic
activities in a study area. Spatial costs are defined in many different terms. For
 example, spatial separation is measured in both time and cost. When we wish to con-
vert these diverse measures into a single unit such as utiles, we face some challenges.
Aside from the conventional apples-versus-oranges conversion problem, utiles is
usually construed as “the more the merrier,” while time and cost, or impedance in
general, is defined as: “small is beautiful.” To resolve this problem, we often take an
inverse function of impedance to convert it from disutility to utility. This conversion
function is sometimes called the propensity function, which takes on the form of a
negative power function—(impedance)�b—or an exponential function—exp[�ß(im-
pedance)]—among others. Here both b and ß are positive calibration coefficients.
Irrespective of the form of the propensity function, it is usually calibrated by trip dis-
tribution curves, defined as the frequency with which a trip of certain duration is
being executed in the study area. Propensity functions and trip distribution curves
have similar shapes, differing only in their scaling constants. Sometimes, it is useful
to normalize these propensity functions against a regional total. In a region consist-
ing of two zones, for example, the propensity to zone 1, exp[ �ß1(impedance)1], is
 normalized against the total propensities to zones 1 and 2, or {exp[ �ß 1 (imped-
ance)1] � exp[ �ß2 (impedance)2]}, resulting in the accessibility to zone-1 : exp[ �ß 1
(impedance)1]/{exp[ �ß 1 (impedance)1] � exp[ �ß 2 (impedance)2]}. While these terms
are strictly defined here, they are often used loosely and interchangeably.

Additive versus multiplicative utility/value function: In defining a
multi-attribute utility/value function, many mathematical forms can be used. For
ease of calibration, it is proposed that we broadly classify the functions into two
types: additive and multiplicative. The former is linear while the latter is non-
linear, with the former being more straightforward to work with than the latter.
The additive form is often satisfactory when all we need is an ordinal ranking
among alternatives, in other words, to rank them in decreasing order of prefer-
ence. However, when preference intensity is required, or when we wish to know
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exactly by how much alternative A is preferred to alternative B, it is often neces-
sary to deal with the latter function.

Aggregate versus disaggregate: A model can be either simple or elaborate,
depending on the context of the study. A simple model has the advantage of
transparency for policy decisions, yet often lacks the details to support actual
 implementation. Simplicity is often attained by aggregation where an aggregate
model assumes homogeneity among the data within the analysis unit. For exam-
ple, all travelers within a zone are expected to value travel time equally. A disag-
gregate model retains the specific valuation of each individual traveler. Aside
from application, the specific analysis approach is dictated by data availability.
When only average conditions are reported, an aggregate analysis is often the
only feasible option. When more detailed information is available, a disaggregate
model can be constructed and is often more useful. The secret is the judicious and
consistent match between application, data, and models. In disaggregate land-use
models, for example, individual parameters such as the labor-force participation
rate (the ratio between service employment and population) can be calibrated
 individually for each zone, instead of for the entire region. This results in a more
descriptive version of zonal level development.

Allocation or distribution:  The ultimate goal of facility location or land
use is to serve the demands or the customers. Thus a fire station is located for the
sole purpose of putting out fires quickly, while a city master plan will provide all
the services to the local population in the best way possible. The way these
 demands are served reflects the merit or drawbacks of a spatial decision. This
 service pattern is often referred to as the demand allocation or activity distribution.
For example, a compact city form cuts down on commuting time from home to
work. A single  facility or a combination of facilities may provide the service.
Sometimes, specialized services may only be provided by a facility capable of
 delivering such services. There may be interaction among facilities that provide
these services. For example, the facilities may reinforce each other in stimulating
additional demands in aggregate. At the same time, they may compete for a mar-
ket share of the customers. The way the services are delivered has a direct bearing
upon how well customers are served. For example, a driver and vehicle may have
a  specific delivery route each day and make deliveries in the order along that route,
or a dedicated driver and  vehicle may make an out-and-back delivery. These two
delivery patterns have very different efficiencies and customer satisfaction, with the
former being more efficient and the latter being more pleasing to the customer.

Area, subarea, tessellation, and Voronoi diagram: In regional science,
 information is often sought for each location within a study area, rather than for
the entire region in aggregate. There are quite a few ways to divide up the area
depending on the problem context. We may divide it up by school districts, cen-
sus tracts, traffic zones or political jurisdictions, just to name a few ways. To cut
across all these subdivisions, we prefer to use the word subarea, to be distin-
guished from the entire study area. Thus we use the word subareal population
and employment rather than, for instance, zonal population and employment,
since the mathematical models apply equally well across the different ways to
subdivide a study area. A natural way to divide an area into subareas is to use tes-
sellations such as the Voronoi diagram. In this representation, each activity center
is defined as the generator, for which a zone of influence is defined, representing
the demands that are naturally attracted to this activity center. It has been shown
that such a tessellation is consistent with the central place theory, which hypoth-
esizes that interregional trade leads toward natural market place settlements.
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Asymtotics: A powerful tool in analysis is the asymptotic behavior of a
process or procedure. Many examples of this are documented in this book. We have
seen how location-routing models can be solved by heuristics that converge toward
the optimum. In system dynamics, convergence and divergence of a process are
 analyzed in terms of attractors and repellers. In statistics, the central limit theorem
suggests that many probability density functions converge toward a normal distri-
bution given a large enough sample is taken. In spatial processes, however, things
are more complex. The central limit theorem may not apply. This prevents borrow-
ing ideas from classical time-series models and applying them wholesale toward
spatial processes. In our discussions in this book, we have tried to highlight both
the commonality and differences between spatial statistics and classical statistics.
We draw analogies where we can between them, and at the same time point out
some unique behavior of spatial information not found in classical statistics.

Attractivity and lattice structure: The two paradigms used in facility
 location and land use are discrete versus continuous modeling. Irrespective of the
type of models used, there exists a central location where activities are gener-
ated from or attracted to, which takes on such names as centroids or generators.
The  system of centroids or generators often form a lattice structure, which
shows the proximity and relationship between them. Now the demands within
the zone of influence of a centroid or generator are expected to interact with the
respective centroid or generator. The zones of influence or market area can be
defined by a Voronoi polygon or other representation. The interaction between
centroids or generators can in turn be described by a number of different mod-
els. Among them are the gravity model, the weight matrices or spatial masks, or
the Delaunay triangles. The gravity model suggests that nearby and more
 intense activities  interact more than distant or low intensity activities. The spa-
tial mask simply summarizes these inter- centroid interactions in a matrix form.
Should spatial interaction be modeled by tile-like structures such as Voronoi
 diagram, the Delaunay triangles are simply the most direct paths of interaction
between generators.

Attractor, repeller, and separatrix: A dynamic system is said to be
 stationary when its behavior does not change over time. Close study of the
 stationary  behavior reveals some commonalities among them. The trajectories
can be  attracted to a sink or a focus, reaching a stable solution. Alternatively,
the trajectory can be repelled from a focus or they can be separated at a saddle
point, suggesting instability. A sink and stable focus are categorized as an attractor
while an unstable focus and saddle point are called a repeller and a separatrix
 respectively.

Average versus marginal cost: Average cost is the total production cost
apportioned among the number of units produced, and marginal cost is the cost
of producing an additional unit. A firm is most efficient, and is most profitable, if
it produces at the level where marginal revenue (the unit price charged to con-
sumers) is equal to marginal cost. In contrast, it would be less efficient and only
breaks even when marginal revenue (price) is set equal to average cost. While
these basic definitions are well understood, its application in the public sector is
more controversial. An example is marginal cost pricing of transportation
 services. It can be shown that it prevents Braess’ paradox from happening, or that
individual trip cost is worsened after a new link is added to the network. In this
regard, marginal cost pricing is desirable in that the average travel cost for the
user is less. Marginal cost pricing, however, may result in less total usage of
the transportation facility. Another example showing the controversial effects of
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pricing is in the development of a new community. Accessibility may be provided
to a new  community at the expense of the existing communities. But consumers’
surplus is increased for the entire population. In all these examples, the basic
 average and marginal cost concepts carry over to transportation when spatial
equilibrium is considered. Notice that transportation cost is added on top of
 production cost in determining interregional trade. In addition, demand for
transportation is modeled as a function of the transportation cost. Trade occurs
when transportation cost is compensated by the difference in price between the
production point and the consumption destination.

Backshift operator, transfer function, lag operator, and image processing
mask: In analyzing time series data, the backshift operator is a useful concept. It
affords a compact notation and tool for writing and analyzing time shifted data.
In its simplest form, the backshift operator simply lags a time series by one or
more period. Linear combinations of these lagged series are then formed by
putting different weights among each series. In a more involved usage, algebraic
manipulations such as divisions can be performed on these operators, allowing
powerful analysis of time series. In a similar vein, a transfer function consists of
a set of weights placed upon an input time series and transforms it to a different
output series. Often, the input series is white noise, or uncorrelated random
shocks, and the output series consists of correlated information. If the input series
is not white noise, its underlying pattern can be taken away by prewhitening the
time series. When these concepts are applied toward spatial data, we have the
spatial lag operator, which performs a similar function to that of the backshift 
operator, except in two dimensions. In image processing, we call this a mask,
defining how a subject data point (such as a pixel) relates to its surrounding data
(or “next door neighbors”). An image processing mask consists of a set of two-
dimensional spatial weights to be applied toward each data point. This trans-
forms the two-dimensional data set (an image) into a different one, often making
it less noisy or giving it more definition.

Basic versus nonbasic activities: According to economic-base theory,
basic activities are the goods and services that are seeds of economic develop-
ment for a local area. They are generally consumed outside the study area.
Nonbasic activities are derived from basic activities. They are the result of the
multiplier effect of basic activities upon the local economy. For that reason, non-
basic activities are for local consumption. The difficulty with this paradigm,
however, lies in how defensible these definitions of basic versus nonbasic activ-
ities really are. While the fundamental concept upon which the Lowry model is
built can be traced to economic-base theory, the explanation becomes blurred
once subareal allocation of activities becomes a key element. The distinction is
further complicated by economic development over time. In the local versus out-
side world paradigm of economic-base theory, it is fairly easy to distinguish
 between export versus local consumption (the location quotient definition), or
the requirements one economic sector places upon another (the minimum
 requirement definition). However, it is not so clear in applying this concept to
subareas in the local economy over time, where basic employment is supposed
to be exogenously fixed, while other service employments are located within the
study area in relation to these basic activities. The interaction among these
 activities can relocate basic employment. Development over time can also
change the requirement one economic activity places on another, particularly
when the zonal level of detail is required.
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Bayesian or subjective probability: According to Bayes, all probabilities
are subjective. However, the more sampled information one has, the better one can
determine the underlying probability with precision. Classic decision analysis
builds upon this fundamental idea and extends it into multiple attributes in recent
years. In remote sensing, this concept is used in classifying pixels in a satellite
image of land cover, to discern whether a pixel belongs to a lake or a forest for
 example. In time series, it is used to update the mean, variance, or model form as
new data become available. In accordance with Bayes, while we can get a good
 approximation, there really is no practical way to obtain the true probability
 distribution.

Capacitated versus uncapacitated: In facility location and land use 
models, distinction is made between whether or not a holding capacity exists in a
geographic unit. The model tends to be a great deal simpler to solve if there is no
capacity, but this is often a simplifying assumption. The demand increments are
then allocated or distributed exclusively to the closest facility. However, when
 capacity is present, demands or activities above and beyond the facility or zonal
capacity must be assigned somewhere else. No longer is there a binary pairing
 between demand and facility (or zone). Fractional assignments take place, in
which only part of the demand is accommodated by a single facility. In other
words, more than one facility is assigned to a demand.

Cardinality versus ordinality: In ranking alternatives, we can be satis-
fied with a simple preferential ordering, in which the ones from the top of the list
are picked over those at the bottom. If the preferential intensity is required, or we
wish to assess by how much alternative A at the top of the list is better than B at
the bottom, a scale or cardinality is involved. Obviously, the former preference
structure is simpler than the latter since less information is required to capture the
preferential intensity.

Catastrophe, hysteresis, and divergence: The trajectories of a chaotic
 system can be categorized. Among them is the sudden jump (or catastrophe), hys-
teresis, and divergence. A sudden jump is fairly self-explanatory. Hysteresis is
 defined as a trajectory in which a path, if reversed, ends up at a point other than
the starting point. A divergence suggests that a small difference in approach leads
the system to a very different state. These counter intuitive phenomena are dif-
ferent manifestations of a catastrophe theory in general.

Center versus anticenter: A center is the facility location that ensures that
the furthest demand is kept closest. The best example is a fire station, which
should be close to any fire that may flare up even at the most remote location. An
anticenter, on the other hand, is a location that keeps the closest demand as far
away as possible. Thus it is desirable to put a landfill as far away as possible from
the most exposed residence. Formally, we minimize the maximum distance
 between demand and the facility in the center problem, and we maximize the
minimum distance in the anticenter problem.

Centroid or generator: Two paradigms are used throughout facility loca-
tion and land use: a geographic representation can be continuous or discrete. One
way to compromise discrete versus planar models of land use is through the use
of centroids. Population and employment distribute continuously over a map.
However, there is advantage in modeling the zonal or subareal population or
 employment as concentrating in a single node called centroid. Centroid is an
imaginary node/vertex amid a plane through which activities (for example, trips)
originating from or destined for the subarea are loaded or unloaded from the
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map. In this case, the centroid is the geographic center or center of gravity for the
economic activities in this zone (or subarea). The use of centroids can also be
thought of as a more aggregate representation than its counterpart. Viewed in this
light, the question really boils down to how big one should define a zone (or
 subarea), and correspondingly the accuracy of using relatively few number of
centroids (vis-a-vis the extra computation involved with a larger number.) In this
text, centroids and generators are used interchangeably. The word generator
comes from the concept of Voronoi diagrams, representing the natural gathering
place for a subarea. (See also internodal versus intranodal.)

Collinearity: When two random variables are related to one another
 statistically, we say that they are collinear. Problems arise when both of these two
variables are included as independent or explanatory variables in a regression
model. This amounts to double counting the same explanatory variable in a
model. The result may be spurious correlation, or statistical relationships that are
chancy and not well supported by the facts and figures.

Combinatorial: Among discrete alternatives, one way to account for the
various options available is by combining them in different ways. In obnoxious
facilities location, for example, a combination of landfill, incinerator, and transfer
station may be desirable to dispose solid wastes. When there are many alterna-
tives, the combinations can become huge very quickly. Finding an efficient way to
choose among these combinations is mandatory. Modern mathematics has pro-
vided many guidelines to achieve this goal, as evidenced by recent advances in
combinatorics, the branch of mathematics that addresses this type of combina-
tional problem.

Complementarity problem: An optimization problem is often character-
ized by complementarity conditions, or the relationship between the primal and
dual representation of the problem. For both linear and nonlinear optimization,
the gradient of an objective function or functional is orthogonal to the feasible
convex set at the point of interest. In other words, the product of the gradient and
the feasible solution is always zero. For example, in the first row of a simplex
tableau, the rate of ascent (gradient) for a particular basic (non-zero) variable is
zero, while the rate of ascent for a nonbasic (zero) variable is non-zero. In both
cases, the product of the two pertinent quantities—gradient and variable—is al-
ways zero. In facility location and land use, spatial price equilibrium, or the way
that trade takes place between any two points, can be best formulated as a com-
plementarity problem. 

Complementarity versus substitutionality: According to classic micro-
economic theory, goods or services are either complements or substitutes of one
another. In our context, users either view alternative facilities as catering to their
needs in an aggregate or the goods and services offered by individual facilities are
replaceable among themselves. In most cases, the facilities play both roles,
 although not equally. The relative dominance among these roles results in inter-
esting spatial-activity derivation and allocation results that serve as extensions
and generalizations of classic facility-location models. These extensions and gen-
eralizations eventually bring us a land use model.

Condorcet versus Simpson points: In discrete facility location models, a
Condorcet point is any point in the network that is closest to most of the
 demands. A Simpson point is the least objectionable place where the maximum
demand closer to another point is at its minimum. Both Condorcet and Simpson
points are relative, rather than absolute, concepts.



Discussion of Technical Concepts APPENDIX 5 599

Contextuality: In discerning spatial patterns, whether they be land use
or satellite images, one can obtain a fair amount of information by observing the
neighborhood of what one is examining. Thus a noise pixel can be detected quite
clearly as an outlier and subsequently removed when context is taken into
 account. Similarly, a facility location decision cannot be divorced from the com-
munity in which the facility is to be sited. In this latter case, the local context of
the problem drives the location decision.

Control, state, slow, and fast variables: The term decision variables used
in operations research becomes control variables in control theory. Dependent
variables, on the other hand, are labeled state variables. In using catastrophe
 theory to analyze system stability, control and state variables are called slow and
fast variables respectively. When more than one control variable is present, we
refer to the set as control point.

Convex versus nonconvex programming: In optimization, one has either
a single (unique) global optimum or more than one local optimum. The former is
associated with a convex mathematical program while the latter a nonconvex
 program. A convex program is characterized by a number of nice mathematical
properties that satisfy strict duality conditions. On the other hand, nonconvex
 programs are characterized by less rigorous conditions, making the solution
 algorithms more ad hoc. In the majority of network facility-location models, inte-
grality (or discreteness) dictates an integer programming formulation, which is
nonconvex. For this reason, facility location models, besides being challenging to
apply, are also at the frontier of discrete optimization research.

Cross-sectional versus time series data: In the context of spatial-temporal
information, data points within the same time period are called cross-sectional
data. A time series, on the other hand, is the tracking of spatial data over multiple
periods. In household terms, the former can be thought of as a snapshot, while the
latter is a movie.

Curvilinear: An efficient frontier is defined as the set of nondominated
solutions when judged in terms of two or more criteria. In competitive or group
decision making, an efficient frontier can either be linear or bounded by curved
lines. The latter, or the curvilinear case, poses more computational challenge than
the former.

Dependent versus independent, criterion versus predictor, endogenous
 versus exogenous variables: In regular regression, a dependent variable is
 explained statistically by a number of independent variables. The dependent vari-
able  appears on the left-hand side and the independent variables on the right-hand
side of the equation. Independent variables are also called explanatory variables
or  regressors. The dependent variable is sometimes called response variable. In
canonical correlation, one ascertains if a set of criterion variables are possibly
 affected by a set of predictor (input) variables. Often, the number of criterion and
predictor variables can be collapsed or reduced to enable a simpler, more tractable
analysis. In econometrics, simultaneous equations are used to pose the relation-
ship between a number of endogenous variables and exogenous variables.
Endogenous variables appear on both the left-hand side and right-hand side of the
equations, while exogenous variables only appear on the right-hand side.

Deterministic versus probabilistic: Traditionally, the location literature
has been modeling spatial analysis in a sequence of deterministic events. Thus we
know exactly where the demands are, and we locate a service facility that will be
proximal to these demands. Recent decades have witnessed a broadening of view



600 APPENDIX 5 Discussion of Technical Concepts

when the demands are no longer known precisely ahead of time. Rather, they are
random or probabilistic. For example, a fair amount of progress has been made in
recent years in locating fire stations when there is little knowledge about when
and where a fire may break out. In this example, it is not easy to lay down a set
of rigid rules one follows in selecting a fire station site. One way to site a fire sta-
tion is to think of all possible ways fires can break out and locate the fire station
such that it will respond to these fires the fastest way. This is obviously not a
straightforward process and may take a huge amount of computer time (if it is at
all possible.) A better way is to model the fire outbreaks in terms of a random
process (stochastic process) and marshall our knowledge on random processes in
modeling the situation. The challenge obviously is to carry this in a spatial con-
text, posing additional analytical intricacies beyond the difficulty with modeling
standard random processes.

Differencing: Finding the change in values among discrete points in a
grid is the numerical equivalent of finding the differential in continuous vari-
ables. It is a much more general technique in that we can solve a much larger class
of problems, particularly when assisted by modern day computing. In spatial
analysis, it is often used to restore and enhance an image, such as in edge detec-
tion. Statistically, it also induces a homogeneous set of data, which allows for more
 insightful analysis to be performed (see separate entry in this glossary for the
 definition of homogeneity). In time series, data are differenced to achieve stationar-
ity, for similar purposes. Differencing in this case removes the trend from the
data, resulting in a constant mean. It allows us to concentrate on discerning the
underlying pattern in the data.

Dimensionless analysis: Oftentimes, it is insightful to display analysis
 results that are independent of the physical units used. An example is the nomo-
graphs used in queuing handbooks. For comparison among queuing disciplines, it
is most insightful to emphasize the relative performances among these queuing
 disciplines without regard to whether a metric or English system of weights and
measures is used. Instead of worrying about measuring total time in the system in
minutes, hours, or seconds, it is best to display it as a multiple of the service time. A
total-time-in-the-system being one means the only time required is the service time
and the system is totally congestion free. No wait is involved in this case, and the
customer receives service right away. On the other hand, a total time bigger than one
would suggest congestion, in which some wait in line is  inevitable. The amount of
wait is again quantified in multiples of the service time. Queuing delay of 0.5, for
 example, means the customer waits in line half as much time as being served.

Discrete versus continuous: Distinction is made between continuous and
discrete variables. When a variable assumes integer values such as 1, 2, 3 . . . , for
example, we say that it is a discrete variable. On the other hand, when the vari-
able can assume any rational value to as accurate a decimal point as needed, we
call this a continuous variable. In facility location and land use, we can either
 locate the facility in a network of arcs and nodes/vertices or on a plane. When a
facility is to be located in a network, it ends up at a node/vertex or on an arc.
We call this discrete facility location. In contrast, if a facility can be anywhere on
a plane, we refer to it as a planar location or continuous facility-location prob-
lem. Ranking discrete alternatives such as the candidate sites for an airport is a
complex task. Unlike its continuous counterpart, multicriteria simplex proce-
dure is no longer valid. We may miss some discrete alternatives that form the
 efficient frontier. Under these circumstances, implicit enumeration among pairs
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of  alternatives is a viable solution option. ELECTRE, for example, is a computer
program advanced by Roy (1977) to rank-order a set of discrete alternatives. This
was  referenced in the bibliography of Chapter 5. Consisting of a graph theoretic
outranking procedure, it identifies the set of noninferior solutions. Since its in-
ception the software has gone through at least two new releases to the public.

Discriminant: A yardstick is often required in classifying a population
into groups. This decision boundary is often represented in a discriminant func-
tion, which includes the important attributes that distinguish one group into
 another. For example, a properly defined discriminant will allow us to tell
whether a picture element (pixel) belongs to a lake or a forest.

Disjunctive graph: In a mathematical program, a set of constraints is
called disjunctive if at least one of the constraints has to be satisfied but not neces-
sarily all. Consider a multiple traveling salesmen example, there are n demand
 locations to be visited. To cover each location i, m salespersons are to be used in a
given order. The total time of the visit at location i by salesperson k is finite and is
known. The problem consists of finding a fixed order of visiting the demand loca-
tions sequentially by each salesperson so as to finish visiting these n locations as
soon as possible. For a given salesperson k, the tours (i, k) for i = 1, . . . , n can be
represented in a potential task graph called a disjunctive graph (a clover leaf graph
in this case). Here there are m such graphs (clover leafs), one by each salesperson.

Dissipative structure and self-organizing systems: The term dissipative
structure stems from physical systems with a permanent input of energy that dis-
sipates through the system. If energy input is interrupted, the system collapses to
its equilibrium state. This stands in contrast to conservative dynamical systems in
classical mechanics. In a conservative system, there is neither an additional input
nor a loss of energy, implying that no friction exists. As part of the development 
of socio-spatial dynamic theory, G. Nicolis and I. Prigogine (1977) proposed a the-
ory of self-organization that was observed in phase transitions in physical chem-
istry [Self-Organization In Non-Equilibrium Systems (Wiley, 1977)]. Departing from
conservative systems, they illustrated various self-organizing and non-equilibrium
systems well beyond physical sciences, ranging from dissipative structures to
order through fluctuations. (See also equilibrium and disequilibrium.)

Duality: In facility location and land use, duality has several meanings.
The first, perhaps the simplest, is the mathematical programming usage of the
word. It provides everything from computational bounds to economic interpreta-
tions. An example is the game theoretic interpretation, as in simple games that
can be analyzed as a primal-dual linear program. Primal and dual variables give
significant insight into location problems. Dualization of a mathematical program
also allows more efficient algorithms to be implemented. Then there is the appli-
cation of duality in spatial tessellation, or the analysis of space in terms of tile-like
units, ranging from squares to polygons. A dual graph can be constructed for
every tessellation that is presented, giving significant insights and allowing for
computational savings in location decisions.

Duopoly, triopoly, quadropoly, and oligopoly: In competitive facility
 location, each provider is locating a facility to capture as large a geographic mar-
ket share as can possibly be managed. When there are two competitors, we have
a duopoly. When we have three competitors, we have a triopoly. When there are
quite a few number of competitors, we have an oligopoly. Unlike monopoly or
pure competition, oligopolies are quite complex. While an oligopolistic market is
challenging to model to begin with, the spatial version of it certainly does not
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make it any easier. It turns out that the land-use modeling literature has a much
richer knowledge base to offer than the discrete/network facility-location
 analysts on this subject. It represents an area where the land-use and facility-
 location models may draw synergistic benefits from one another.

Econometric(s): The discipline of economics used to be quite a bit more
qualitative than it is today. Recent years have witnessed tremendous emphasis on
quantifying a number of concepts commonly used in classic economics, including
estimating demand and supply functions. As an adjective, econometric describes
any undertaking in estimation and measurement. As a noun, econometrics is the
science and art of estimation and measurement. This typically involves analyzing
historical information in support of a statistical hypothesis. There are two com-
mon types of land use models, one is based on deterministic simulation and the
other on econometric models. There is a relationship between time series and
econometric models wherein a specialization of the coefficients in a multivariate
time series yields an econometric system of equations.

Eigenvalue/eigenvector or characteristic-value/characteristic-vector: A
model in equilibrium is often described by a system of homogeneous linear equa-
tions. The behavior of the model is characterized by a parameter, which we call
the eigenvalue. In a mechanical system, for example, the eigenvalue is its natural
vibration frequency. In a multicriteria decision-making model such as the analytic
hierarchy process, the principal eigenvalue measures the consistency with which
the pairwise comparison survey is completed by the decision maker. The eigen-
vector here is the set of weights the decisionmaker places upon each attribute as
implied by the completed survey. In adjusting a time series to change, the eigen-
values of the estimation-error variance-covariance matrix may also be required.
In this case, the correlative properties of the time series are captured in the vari-
ance covariance matrix.

Elliptic, hyperbolic, and parabolic umbilic: As the control variables
change, a system can transition from a stable to unstable pattern at bifurcation
points. One type of such transition can be described by an elementary catastrophe
called an umbilic, which geometrically suggests a depression in the center of a sur-
face through which potential can be transferred. Depending on the number of con-
trol and state variables, we can have an elliptic, hyperbolic, or parabolic umbilic. The
former two are variations of the parabolic umbilic, obtainable, say, by replacing the
potential function by its negative. As with other elementary catastrophes such as the
cusp and the butterfly, they are canonical models rather than actual description of
the system under study. They allow us to understand the qualitative behavior, rather
than the quantitative behavior, of catastrophes in the system being studied.

Emittance: Most remote sensing devices work on signals that are
 reflected off the object being observed. We say that they process the emittance
from these objects. The emittance is different depending on the reflective angle,
and the type of energy source used to illuminate the object. The emittance data
are often processed and filtered for best detection by selected sensors.

Entropy: Borrowing from its Greek origin meaning “change,” entropy is
best interpreted in the spatial context as a measure of the frequency with which
an event occurs within a closed system. In an aggregate statement of a travel pat-
tern, for example, it is sometimes useful to have a description that is robust
enough to accommodate as many possible detailed patterns as possible. This is
called entropy maximization, and is applied often to capture all possible patterns.
In the absence of any additional information, this results in equally likely travel
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toward each destination given a fixed number of trips emanating from a central
location. Any additional information would obviously modify the homogeneous
travel to a pattern other than uniform, to be consistent with the newly acquired
knowledge. Additional information would include such knowledge as the rela-
tive trip lengths, which provide the percentages of short, medium, and long trips.
When interpreted this way, entropy maximization is equivalent to the information
minimization principle. (See also micro, meso and macro states.) Entropy can also be
interpreted as spatial uncertainty. It measures the degree of diversity in the dom-
inance of destinations. For a regular triangular lattice of equal size and with no
boundary effect, spatial uncertainty is at a minimum at the grid points and at a
maximum in the intervening space.

Enumeration: One of the ways to identify the best alternative is to exam-
ine each and every alternative. Comparison among their figures of merit will
 reveal the best alternative. For example, we may wish to select the least costly
 alternative. In the real world, however, such enumeration is either impractical or
impossible due to the large number of alternatives that exist. Here is when a
mathematical model of the problem may become useful. Solution to the model
automatically sorts out only the most promising alternatives or the very best
 alternative in an efficient way, without having to enumerate them exhaustively.

Equilibrium versus disequilibrium: Equilibrium is a stable state of a sys-
tem in which there is no immediate tendency for change. Small perturbation
would not dislocate the equilibrium state. The opposite situation is disequilibrium,
in which the system is characterized by instability. Disequilibrium can take on
many forms, including a cyclic pattern and truly chaotic patterns that do not have
any discernible order. (See also dissipative structure and self-organizing systems.)

Exponentiation: An exponent is the power to which a mathematical vari-
able or a mathematical term is raised. To exponentiate is to raise the entity to its
power. In spatial-temporal analysis, spatial cost is often measured in terms of an
exponentiated function of distance or time. For example, an exponent of one gives
a linear spatial-cost function; an exponent bigger than one a convex function, and
an exponent of less than one a concave function. Whether a unique optimal loca-
tion is obtained or where it is found depends on the shape of this function. It also
turns out the value of this exponent can transform one class of spatial problem to
another seemingly unrelated class. (See also parameterization.)

Externality: Microeconomics accounts for the transactions between vari-
ous parts of the economy via the price system. The price system is the mechanism
by which supply and demand of goods and services are cleared in the market-
place. It becomes quite evident that not every transaction can be regulated by
price. An example is pollution, which industries often incurred as part of the pro-
duction process. Yet its cost to society in terms of health hazards is not often
charged toward the industry. These costs are external to the accounting system
and therefore unaccounted for. We call these externalities.

Extremal and extremal solution: A well-known fact in linear program-
ming is that the optimal solution has to occur at an extreme point (or corner point)
of the feasible region. This property is carried over to network facility-location
models. For example, the optimal location is often found at a node/vertex (or an
 intersection) of the street network at which a fire station is to be sited. This is not
an  intuitive result by any means, since there is no reason a priori why the optimal
 location  cannot be on an arc or at any other place. This nodal optimality property,
where identified, does allow us to design some computationally efficient solution
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 algorithms. Available evidence suggests that certain extreme conditions also exist
in planar location models, in which the facility can be sited at any point in the
Euclidean space. For example, the optimal airport among three cities is often
 located at one of the cities. In other words, the optimal site is at a vertex of the
 triangle formed by the three cities, rather than somewhere inside the triangle. In a
calculus-of-variations problem, or a special case of a control problem, the solution
for an optimal path that satisfies the initial and end conditions is called an extremal
or a stationary function. This usage should not be confused with extremal point
 optimality mentioned above.

Factorization: As explained under frequency domain, Fourier transform is
a convenient  analysis of a signal over time. In Fourier analysis of discrete, mass
probability distributions, the transform is expressed as, or factorized into, a poly-
nomial of functions of complex variables. Unfortunately, this cannot be carried
over to the spatial domain directly. In a random or Poisson field, joint probability
mass functions can be factorized into conditional probabilities only under strin-
gent positivity conditions, where the positivity condition is a prerequisite prop-
erty for a random field. Under this situation, conditional probability models for
data of this kind cannot be of the simple nearest-neighbor variety commonly used
to analyze spatial data.

Feng shui: In Chinese mythology, facility location should fit into the har-
mony of the natural environment. This includes orientation of the facility with
 respect to the topology and layout of the surrounding land. Literally translated,
feng means “wind” and shui means “water,” referring to the elements. Should a
facility be placed the wrong way, bad luck will follow; while proper placement
will bring good luck. Increasingly, the western world has caught on to these
qualitative factors in facility location. The idea of feng shui is introduced in this
book to highlight its scope (and limitations). Instead of using a holistic view like
feng shui, we are often concentrating on the effect of one factor at a time. For
 example, what is the effect of highway construction (specifically) upon facility
location and land use?

Fractiles and fractile method: Fractal comes from the Latin word fractus,
meaning “broken,” describing objects that are too irregular to fit into traditional
geometrical setting. Many fractiles have some degree of self-similarity, they are
made up of parts that resemble the whole in some way. The similarity may be
 approximate or statistical. A space-filling curve used in routing is an example of
fractiles. The space-filling curve transforms a two-dimensional map into a single
dimension. By observing the clusters in the single-dimension line instead of
 proximity in two dimensions, vehicle tours can be constructed much more con-
veniently for each cluster of demand points. Fractile method is really a very dif-
ferent concept altogether. The word fractal is used only because we split a line up
into fractions in this method. In constructing the univariate utility function, one
common way is to have the decision maker play a lottery. The objective is to
 locate an indifference point by which the decision maker is undecided between
playing the lottery and being awarded a fixed sum. Based on preference for the
lottery or the fixed sum, the decision maker is either identified as risk-prone, risk-
neutral, or risk-adverse, and the corresponding convex, linear, or concave func-
tion defined. When enough lotteries are played, a sufficient number of points are
obtained to plot the univariate function. Drawing upon the common coin tossing
experience, it is natural to design a 50-50 lottery. Such a lottery also has the nice
property of dividing the vertical axis of the univariate utility function into halves,
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quarters and so forth each time an additional point is defined on the curve. Such
a survey procedure is referred to as the fractile method.

Frequency domain, Fourier transform, line spectrum, periodogram, and
time/image domain: A signal or data emitting from a source can be analyzed in a
couple of ways. We can analyze the signal directly (in its time domain), whether
it be a time series or a spatial image, or we can examine its frequency. Each of
these two methods has its advantage. The time domain is more intuitive, since it
describes the signal directly. The frequency domain, typically represented in
terms of a line spectrum or periodogram, is convenient for noise removal, as noise
has a distinctly different frequency than a regular signal. By examining the line
spectrum or periodogram, outlying frequencies corresponding to those from
noise, can be easily discerned and removed. Fourier transform is a common tech-
nique used to analyze the frequency of the signal and reconstruct the signal once
the noise is removed in the frequency domain. Among other uses, seasonal data
patterns can also be easily picked out from a line spectrum or periodogram. This
will help in identifying the correct time series model. Fourier transform is a con-
venient way to analyze signals in the frequency domain. In two-dimensional
 images, there are parallel, and sometimes more superior techniques for perform-
ing similar functions when stringent assumptions are made. Not only is the noise
removed in this case, often the image is made more crisp also by virtue of sharp-
ening the outlines.

Gaming: Many factors in facility location and land use cannot be quanti-
fied precisely, particularly the rivalry between stakeholders. Although the state of
the art has progressed significantly, the analytical techniques advanced in this
text—including game theory—are limited in their utility. This is the reason why
we discussed gaming. Gaming is an exercise that immerses the interested parties
in a replica of the real world scenario. Divorced from the dangers of failing, a
player can step through the many faceted situations of spatial decisions and learn
from the experience in a game. CLUG, the Community Land Use Game, is one
such game. Originated by Alan Feldt (1972), the game simulates the real world of
land development, complete with monetary transactions, urban renewal, and
politics. (See reference in the bibliography of Chapter 3.) It is a forerunner of
many subsequent efforts in this area.

Gradient versus subgradient search: Gradient search is the most general
way to solve regular nonlinear optimization problems. It is also known as the
method of steepest ascent/descent. When the slope is not smooth, but piecewise
linear, an equivalent scheme, called subgradient search is employed. In the former
case, a gradient is computed in each step. In the latter case, a Lagrangian  relaxation
problem needs to be solved first to determine the subgradient. In both cases, a step
size is computed to show the distance along which one climbs the slope. Both
 algorithms terminate when either the gradient or subgradient  approaches zero.

Graphs and networks: Graphs are convenient, visual ways to represent
the relationships between land use entities such as population and employ-
ment. For example, employment opportunities will bring in dependent popula-
tion into the community. This can be represented as an arrow drawn from
 employment to population. Other relationships can likewise be sketched, from
which mathematical models can be constructed. An advantage of such repre-
sentation is that certain mathematical properties can be readily discerned in the
graph. In constructing an econometric model between population and employ-
ment, for example, we can easily postulate the correlation coefficients between
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variables. The graph helps to identify the expected values of some of these corre-
lation coefficients. When flows are introduced in directed graphs, or a graph with
arrows drawn on the arcs, a network is obtained. Again, a network can unveil
useful mathematical properties of the model. An example is the representation of
a facility location model as a network-flow model. Here, the incidence relation-
ship in a tree graph is directly equivalent to the basis matrix of the corresponding
linear programming formulation of the facility location problem. Instead of
 inverting a basis matrix, we can now accomplish the same thing by manipulating
the graph. In this book, we show that many facility location models can be solved
more efficiently when represented as a network (rather than as a formal mathe-
matical program.) Also useful are the computational properties of the network
constraints, which lends itself to an integer solution for integer right-hand sides
of the mathematical program.

Homogeneity versus heterogeneity: Spatial data are said to be homoge-
neous if the statistical inference made at unit i is the same irrespective of where i
is. On the other hand, the data are heterogeneous if this is not so, or the inference
is different dependent upon where i is. The stochastic-process approach to spatial
data means that only one observation is variable at each instance. In other words,
the process of allocating values to the random variables in space or space-time is
performed one at a time. This gives rise to a computationally imposing situation,
and there are some operational difficulties. Since this is not particularly practica-
ble, some restrictions need to be imposed on the degree of dependence and
 heterogeneity that can be allowed. Only in this way can one handle the spatial
stochastic process. Essentially, in order to infer certain characteristics of the
 underlying process, a degree of stability—such as homogeneity—needs to be
 assumed among the spatial data.

Homoscedasticity, stationarity, ergodicity and isotropy: In ordinary-
least-squares regression, the model is homoscedastic if the residuals are
 uniformly distributed about the dependent variable means as shown by the
 regression line. In time series, where we regress a series against its lagged series,
the same property is named stationarity. Similarly, a time-varying (stochastic)
process is said to be stationary if it has become regular in its behavior (or reached
a steady state). In this situation, the dependent variable would have a constant
average value. Often, we prefer to model the underlying stationary process
(rather than, say, the evolving process or the raw data) for a couple of reasons.
First, it is more insightful (and therefore more valuable) to understand the
 underlying behavior. Second, it is easier to model than its non-stationary coun-
terpart. Once the underlying process is understood, we could always map the
 results back to the  dynamics of evolving process. When spatial data are involved,
it is often advantageous to model it as a random or Poisson field. While station-
ary concept still carries over in general, the process is much more complex. One
other useful property here is ergodicity, a concept borrowed from a memoryless
random process called Markov chain. Ergodicity ensures that, on the average, two
events will be independent in the limit. Now recall that by definition a Markov
chain is ergodic if all states in the state transition chain are recurrent, aperiodic,
and communicate with each other. An ergodic assumption allows for consistent
estimation of the joint probability of various variables in a spatial time series.

Hypercube model: The model dispatches a fleet of service vehicles in
 response to calls. A vehicle at a depot is either free or busy, as represented by the
binary 0–1 variable. For two depots with a vehicle at each, (0, 0) denotes both



Discussion of Technical Concepts APPENDIX 5 607

 vehicles are free and available for service, (0, 1) means only the vehicle from the
first depot is free; (1, 0) means only the vehicle at the second depot is available; 
(1, 1) says both are busy. The four states of the system—(0, 0), (0, 1), (1, 0), and 
(1, 1)—can be plotted as four nodes/vertices in a graph that describes the possible
transitions between these states. Such a state transition graph resembles a rectan-
gle, characterized by the four nodes/vertices and arcs representing the possible
transitions between the states. When there are three depots, the graph resembles 
a cube. In the general case when there are any number of depots, the graph is a 
hypercube, and hence the name hypercube model. Technically speaking, it is 
a spatial queuing model that caters to random calls or demands at an average 
arrival rate.

Inflexion point: Change of a graph from convex to concave or vice versa.
In the context of a simple elementary catastrophe, the inflexion point could show
the transition from stable solutions to unstable solutions. Thus in a plot of the
functional against a control variable, a negative control variable may signify the
existence of stationary solutions, while a non-negative value signifies instability.

Infrastructure: The functioning of society is supported by a number of 
facilities that are critical. Examples include utilities, transportation, and water
supply. They constitute a web of basic building blocks essential to a standard of
living. This book is concerned with the judicious configuration of such facilities,
or infrastructure, in achieving certain goals.

Integrality: Many spatial-temporal models require the decision variables
to assume binary or integer values. For example, we either locate a facility at a
node/vertex or we do not, a decision often represented by a binary 0–1 variable.
Similarly in image processing of satellite photos, we either classify a pixel (picture
element) to belong to the lake or the forest, but not to both. Unfortunately, the
computational requirement to solve this type of problem is often explosive. This
requires careful model formulation as well as fast algorithms, not to say advanced
computational machinery. When formulated as a binary or integer program,
many nice mathematical properties associated with, for instance, a continuous
variable model are also absent. For all these reasons, integrality requirements are
challenging (and often impossible) to fulfil. In locating a facility on a network
consisting of nodes/vertices and arcs, the optimal location is often found at a
node/vertex. This is a desirable property since it saves computational efforts.
Nodal optimality can be thought of as an analogue of the familiar extreme-point
optimality condition for linear programming. Both nodal optimality and extreme
point optimality are not obvious in many models and a fair amount of attention
has been paid by researchers to identify the conditions under which nodal opti-
mality holds. Nodal optimality conditions can be identified in median, center,
 deterministic and stochastic facility location problems (See also extremal solution.)

Internodal versus intranodal: In spatial representation, approximation is
often necessary. Thus we may consider all the population or employment in a
zone to concentrate at a node (often called a centroid), while in reality, they are
distributed among every part of the zone. Under this abstraction, trips executed
by the residents or employees will take a finite amount of time to come out of the
origin node in their journey toward a destination. Once they are in the destination
zone, it will also take a finite amount of time to get to its ultimate destination. We
refer to this finite egress and access time as the intranodal travel time, with the
time covering the line haul journey from origin to destination zones as the
 internodal travel time. (See also centroid.)
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Interregional transactions: Much of economic development and land
use is concerned with the trade between geographic regions of interest, including 
imports and exports. Interregional transactions form the driving force behind
spatial evolution. It is not sufficient only to model trade between economic 
sectors such as manufacturing, service, and household. Much of our concern here
in this book is on where these manufacturers, service providers, and households
are located, since their locations determine how much interaction is expected 
between them.

Intersectoral transactions: An economy is made up of sectors such as the
manufacturing sector, the service sector, the household sector, and so on. Each
sector trades with another in the conduct of business. Thus a manufacturer pur-
chases auditing service from the service sector and hires labor from the household
sector. Similarly, the household sector purchases manufactured products from the
manufacturer and buys entertainment from the service sector. This results in
 intersectoral transactions, which in turn makes the economy go round and round.

Intransitivity: To the average person, if alternative A is preferred to
 alternative B and alternative B is preferred to alternative C, then alternative A is
preferred to alternative C. Contrary to intuition, however, such transitivity
 between alternatives does not necessarily hold. While many such transitive cases
exist, the world is replete with intransitive alternatives. One can easily construct
an example that under a democratic voting process (based on majority), cyclic
ranking can result. In this case, A is preferred to B, B is preferred to C, and C is in
turn preferred to A. We say that intransitivity is observed. Intransitivity often
arises when one is judging along conflicting stimulus dimensions.

Isocost, iso-utility and isoquant curve: For a fixed amount of capital out-
lay, various combinations of resources can be purchased. The tradeoffs among these
resources form the isocost curve. Thus for a fixed household budget, one may wish
to trade off between spending it on housing and transportation. Living further out
of town will presumably lower housing cost, but this is done at the expense of
higher commuting expenses. The isocost curve forms the frontier of the purchasing
power of a fixed budget outlay. The household settles on a combination that maxi-
mizes its aggregate utility. The combination is often determined by an indifference
curve on which the household gets equal pleasure on each point on the curve. Thus
the curve represents a constant utility to this household. Viewing from the
 producer’s side, certain combination of input factors, such as labor and raw
 materials, will achieve a certain level of production. Several combinations of
input factors will accomplish the same level of production. The line drawn link-
ing these combinations is the isoquant curve. A market equilibrium is then deter-
mined by the consuming households and the producing industries.

Lagrange multipliers, dual, costate, or adjoint variables: In an optimiza-
tion problem, it is often of interest to impute the marginal value of a resource.
Various disciplines have different terminology for the same concept. Economists
may call it the opportunity cost. Mathematicians call it the Lagrange multiplier or
dual variable. Control theorists call it the costate or adjoint variable. The
Lagrange multiplier or dual variable is usually associated with the relaxation of a
limited resource, whether it be a budget or other constraints. It answers the ques-
tion: What will another dollar in the budget buy me when my budget has been
exhausted. Costate or adjoint variables, on the other hand, refer to the marginal
value of a stock. Thus for an inventory problem, this amounts to the opportunity
cost of a unit of inventory shortage. 
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Linearity: In its simplest form, a linear function has its dependent vari-
able directly proportional to the independent variable. A linear system does not
have reinforcing effects among the inputs, in other words, the response is directly
proportional to the applied excitation. A linear operator has the property that the
 effect on the sum of two components is similar to that of each component. A linear
filter, for example, takes a weighted sum of a time series to transform it into
 another time series. Thus a simple filter may just delay a time series by a constant
number of periods. These linearity properties allow superposition of the effects of
each of the individual excitations to form the resultant system response. A linear
system is, therefore, much easier to analyze than a nonlinear one. Computationally
speaking, it is desirable to approximate a nonlinear system by linearizing it under
specific, local conditions. For example, nonlinear regression is typically a
 computationally imposing task in statistics. Fortunately, it can be performed by
conditional least-squares linear-regression techniques. This is accomplished by
 estimating the regression coefficients for a given set of observations, hence the
word conditional.

Location factors: In spatial-temporal analysis, we try to discern those
 factors that have spatial implications. For example, transportation is a significant
factor in residential decisions. In these decisions, one trades off housing cost with
transportation cost. Together with housing cost, transportation becomes part of the
location expenditures in the household budget. This contrasts with non-location
expenditures, such as food, clothing and savings, for example.

Macrostate, mesostate, and microstate: A travel pattern can be described
conveniently in terms of these three states. Macrostate is the most aggregate
 description of a travel pattern, while microstate is the most detailed. For example,
a macrostate description would only indicate the total number of trips originating
or terminating in a zone. In contrast, a microstate description would identify each
trip individually about where it is heading. Correspondingly, the former requires
the least information and the latter the most. Suppose we wish to characterize the
travel pattern in terms of the macro and meso states. The most likely mesostate or
macrostate is assumed to be one with the greatest number of possible microstates.
Thus we maximize the possible microstates in an aggregate description of travel
pattern. (See entropy maximization.) In other words, we ask for the least amount of
information (information minimization) to characterize the travel pattern consistent
with some givens, such as the total number of trip originations. 

Maximum principle and adjoint equation: In control theory, we optimize
the performance of a system by manipulating the control variables and theoreti-
cally the state variable over time. The optimization procedure can be executed by
first optimizing with respect to the control variable and then the state variables.
The first optimization equation is termed the maximum principle and the second
the costate or adjoint equation. These two conditions plus the state equation are
the necessary conditions for optimality over time.

Median versus antimedian: A median is a location that is the closest to the
demands on the average. Thus, a retail chain may wish to open a store close to the
population. An antimedian is just the opposite. It puts the facility away from the
demands. An example is to locate an airport away from the population for noise
considerations. In short,  the median problem minimizes the distance to the total
regional demand, while the antimedian problem maximizes the distance to the
demand. Medianoid refers to a median on a tree (which is a network without any
closed loops or cycles).
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Medicenter versus anti-medicenter: A medicenter, also known as centian
(which stands for center and median), is a hybrid between a median and a center.
It takes care of both the proximity to demands as well as the reduction of the most
adverse exposure. One can argue this is the best criterion for locating a landfill—
close in general but not too close for the most irritated. Anti-medicenter is just the
opposite of medicenter. It maximizes the sum of the weighted distance where the
demands serve as weights. Yet at the same time, we minimize the maximum
weighted distance. It may be the best for locating an airport, which should be a
reasonable distance away from the regional population, yet within reach for the
most remote residents.

Min-max versus min-sum: There are two traditional criteria in locating
 facilities. One is the mini-max criterion and the other is the mini-sum criterion. The
min-max criterion results in a center, wherein the farthest demand is to be brought
as close to the service facility as possible. The min-sum criterion, on the other
hand, results in a median, a facility that is as close to the demands as possible on
the average. Within these two general criteria, quite a few variations are possible,
giving rise to a rich array of facility location models.

Model versus submodel: A model is a mathematical abstraction of a prob-
lem. In building large-scale mathematical models, it is often convenient to break
down the model into its parts, called submodels. The model is now made up of
several submodels. The art of modeling then becomes a matter of how to account
for the interaction between these submodels accurately. This to ensure that
 analyzing each submodel, one at a time, will not lose any property or behavior of
the overall model.

Model identification and specification: In fitting an econometric model
statistically, there has to be an appropriate match between the available data, the
structural equations describing the model, and the corresponding ability to
 calibrate model coefficients. Classical literature points toward the proper balance
between endogenous (dependent) and exogenous (independent) variables. Other-
wise, a model can be overspecified and overfitted. A regression line that is fitted
over two data points, for example, is both a mis-specified and overfitted model.
In spatial econometric models, we are explaining spatial dependence between the
variables defined at various locations. Spatial data come in different levels of
 aggregation, with some geographic units bigger and others smaller. To calibrate
a homogeneous model, we properly define spatially lagged variables with
 predefined weights. In image processing, we refer to these weights as masks.
Through these lagged or weighted variables, a model can be readily calibrated
consonant with the proper data format. Here, some lagged variables may become
endogenous variables, while others become exogenous variables. Combined with
other explicitly given spatial variables, a meaningful econometric model can cor-
respondingly be constructed. Mis-specification of a model can give rise to unrea-
sonable results that may look fine statistically, but has little meaning in modeling
the system at hand.

Monocentric: Classic regional-science literature has idealized a typical
city as having a single downtown with the highest development density, and the
rest of the development thins out toward the fringes. This simple monocentric
city form is constructed obviously for convenience. But it yields a number of
 insights, based on which more complex models can be built.

Monotonic/monotonicity: A monotonic function is either non-increasing
or non-decreasing. It has a nice analytic property for a number of spatial-temporal
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 applications. Among these is the economic-activity generation process in a study
area, in which the seed of economic development germinates multiplier effects on
the local economy. Barring any catastrophic intervention, the resulting population/
employment activity level is shown to be non-decreasing. In the absence of bifurca-
tion, the growth stabilizes in time to a limit. This process, and its monotonicity prop-
erty, forms the basic building block of a surprising number of land use models.

Multi-attribute/multicriteria/multi-objective: Utility theory is the foun-
dation of economics and operations research. The basic premise is that a number
of disparate metrics can be translated into a common unit called utiles. Once this
is done, cross comparison can then be made among alternatives with seemingly
incommensurate attributes or criteria. This is generally accomplished by a multi-
attribute utility function, which combines the incommensurate attributes or crite-
ria through weights and scaling constants. Cross comparison among alternatives
can still be possible without a multi-attribute utility function, although in a more
limited sense. For example, a shirt that is cheaper and better quality is always
 preferred to one that is more expensive and inferior in quality. Here, no utility
function needs to be constructed to combine price and quality, the two different
attributes, into utiles before a decision can be made between them.

Multicommodity or multiproduct: Rather than monolithic, often one
 differentiates the type of service provided, or the purpose of tripmaking.
Multicommodity or multiproduct flow results in such a situation, with each type
of service or trip tagged. The analyst needs to decide the most parsimonious
model commensurate with the problem at hand, wherein the complexity is justi-
fiable on the grounds of model realism. In many cases, the multicommodity or
multiproduct model is a simple extension of the single commodity/product case,
at least mathematically speaking.

Multinomial logit model: Often we wish to classify entities into multiple
groups based on their attributes. A statistical model is often formulated with a
 response variable having two or more categories. In the case of two responses, the
model is called binomial, and with three or more responses, it is called multino-
mial. An example is to find a neighborhood in which one locates a home. The
multinomial logit model is a common way to do this and over recent years has
found its way into the location and transportation literature. In many ways, it is
related to the venerable gravity model that is pervasive among those involved in
regional science. Instead of using power functions to describe accessibility, the
logit model prefers exponential utility functions. Among the advantages of the
logit model is that it is based on some widely accepted behavioral assumptions
regarding the utility associated with belonging to each group, such as the acces-
sibility to various opportunities in the study area should one locate a home in a
particular neighborhood. The logarithm of the model is linear, making it conve-
nient for calibration using ordinary-least-squares regression.

Multispectral sensors: Today’s remote sensing devices, such as satellites,
are equipped with more than one sensor. Several sensors are used to collect dif-
ferent emittance wavelengths, resulting in a signature of an object being observed
as characterized by the different waves the object emits. A much more positive
identification of the object can be obtained this way compared with a single sen-
sor that captures only one type of wavelength. For example, the human eye is a
sensor that is limited to see the visual wavelengths, which is but a minute fraction
of the signals emitted from an object. For this simple reason, multispectral sensors
can literally see the invisible.



612 APPENDIX 5 Discussion of Technical Concepts

Non-dominated, efficient, or Pareto optimal solutions versus supremum:
A cornerstone of multicriteria optimization is the concept of dominance. Thus site
A, which is cheaper and more functional, is a better site than B which is more
costly and less functional. Here, A is the non-dominated solution or the Pareto
 optimum, and B is the dominated one. This idea can be easily generalized to
many alternative sites, as long as we compare only two at a time. After an
 exhaustive comparison between all pairs and discarding all dominated alterna-
tives, those  remain form the non-dominated, efficient, or Pareto-optimal solution
set. In contrast, the supremum of a function refers to either the maximum or the
minimum on a unidimensional scale.

NP, NP-complete: NP stands for non-deterministic polynomial, charac-
terizing problems that have not been shown to be solvable within execution time
that goes up polynomially with the size of the problem. NP-complete (NPC) prob-
lems constitute a subset of NP problems. The implication is that once a member
of the NPC class of problem is solvable within polynomial time, the entire class of
problem will also be solvable within polynomial time. Being an integer program,
discrete facility-location models are at best an NPC problem, making it a difficult
problem to solve.

Object-oriented programming: One can think of solution algorithms for a
mathematical model as a set of computational procedures to process a set of input
data, resulting in a set of output data. The solution algorithm is as efficient as how
fast one can process the data. It follows that when the data are organized in the
right format, they can be processed faster than otherwise. Efficiency can also be
achieved if a set of computational procedures can be used time and again for a
number of purposes. This avoids coding a separate routine for each application.
Object-oriented programming is one good way to accomplish these objectives. In
location-allocation models, this means preprocessing of inter-point distance data
as both candidate and demand strings, which serves to update an allocation table.
In a data transfer protocol for geographic information systems, this means that we
define precisely such objects as a node/vertex and a chain in a vector data struc-
ture. Specifically, they are stored in relation to other related node/vertex-chain
 information. In this way, the efficient transfer of complete chains is facilitated.

Objective function or functional: In optimization problems, a figure of
merit is usually maximized or minimized. For example, profit is to be maximized
while cost is to be minimized. This figure of merit is expressed in terms of an
 objective function or functional. Thus profit or cost is expressed in terms of a set
of decision variables or control variables respectively. The two terms—function
and functional—are traditionally used in different disciplines, but are in fact
equivalent. Both define a domain whose elements are functions, sets, and the like.
According to traditional usage, objective functionals (the integration of a func-
tional overtime) normally have a time element associated with them, while
 objective functions are generally static expressions.

Optimality and stationarity: A function satisfies its optimality condi-
tions when it is maximized or minimized at a point within the feasible region. A
continuously differentiable function is optimized when it has a relative maximum
or minimum at a point assuming a stationary value. This value again lies at an
 interior point of the feasible region. At this point, the function is said to be
 stationary. A stationary point is obtained by setting the gradient of the functional
to zero. For this reason, it also includes an inflexion point of the function, which is
not a local optimum.
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Orthogonal/orthogonality: Independence among attributes is necessary
for the construction of a meaningful multi-attribute utility function, since we will
not be double counting an attribute. If two attributes are independent, they
are also orthogonal. Orthogonality is a more general term than independence,
however, since there are several types of independence in multi-attribute utility
theory, while orthogonality is pretty much a monolithic concept.

Orthonormal vectors: If a set of vectors is orthogonal and normalized,
the vectors are said to be orthonormal. These vectors form a convenient algebraic
basis for referencing. For example, in a stochastic compartmental model, the
 transition rate space can be conveniently characterized by a set of orthonormal
vectors. These vectors map out the possible transitions from the current jth
 compartment (state) to other compartments (states). Thus the transition rate to a
neighboring compartment is changed by a unit increase or decrease of activity
level or price. Here the increase or decrease is implemented by adding or sub-
tracting a unit vector from the current activity or price level.

Parametric versus non-parametric statistics: Means and variances are
typical ways to summarize statistical information. The use of the parameters such
as means and variances is a good example of parametric statistics. Data descrip-
tion can take on other forms, however. In a very small sample, means and vari-
ances are no longer meaningful, since there are simply too few data points for
these parameters to become representative of the entire data set. Dispensing with
the use of parameters, non-parametric statistics serves to characterize the data
under these circumstances. An example of non-parametric statistics is entropy,
defined here as the various representations of the data permissible within some
givens. In the example of a small data set, the givens may be the precious few ob-
served values of the data. There are obviously quite a few underlying data popu-
lations that could manifest themselves in these observed values. The number of
possible underlying data sets in this case is called entropy. One normally asks for
the maximum number of characterizations of a data pattern that requires the least
amount of information (minimal information), or entropy maximization. This
means we seek the largest possible number of underlying data populations that
are consistent with the few observed values. Notice here that not only is parame-
ter  estimation not required, no knowledge of the underlying data distribution is
 necessary. Non-parametric statistics plays a significant role in spatial statistics—
statistics that arise in facility location and land use.

Parameterization: In spatial allocation models such as the gravity model,
a key term is the accessibility factor, defined roughly as the inverse function of dis-
tance. It turns out that the exponent associated with spatial separation is a critical
parameter. It determines the importance of interaction between origins and desti-
nations vis-a-vis the dispersion or the distribution of activities such as population
and employment among neighbors. As it turns out, when this exponent is infinite,
there is nothing but interaction, or the assignment of supplies to demands. When
the exponent is very small, there is predominantly continuous allocation of activi-
ties among its neighbors. One can say that this exponent is the key to characteriz-
ing a model as discrete facility location or continuous activity allocation (land use)
models. One of the aims of this book is to show that through the transformation of
distance measures, one can relate apparently different spatial-temporal models to
one another. Another parameterization example is the relationship between a
 median model and a center model in facility location. It has been established that
upon appropriate transformation of the spatial-separation function through the
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exponent, a center model can be reduced to a median model. There are several
other examples, but these two cases serve as graphic illustrations. (See also expo-
nentiation above.) In time series, parameterization means specifying the degree
of differencing and the number of time lags built into the data, and so forth. It char-
acterizes the time series.

Pluralistic/pluralism: One of the challenges of facility location and land
use is the multiplicity of viewpoints held by a diversity of stakeholders. Often cit-
izens have a viewpoint opposite from that of the local government, and industries
have different objectives from environmentalists. Analysis techniques need to
 explicitly recognize this pluralism and produce useful information for all stake-
holders in the decision-making process.

Polyhedron and polytope: Many discrete facility-location problems are
solved by mathematical programs. The simplest mathematical program is linear
programming, which can be solved readily by off-the-shelf software. These pro-
grams work on the principle of searching among the faces of a polyhedron, or a
many-sided multi-dimensional body defined by the linear constraint inequalities
of the linear program. A polytope is simply a bounded (or finite) polyhedron. It
can be proved that one only needs to examine the extreme points or edges of a
polyhedron for an optimal solution, where an extreme point or edge is the place
where two or more faces come together. (See Appendix 4 [Optimization]; see also
extremal conditions.) The same concept can be carried over to other types of math-
ematical programs, such as integer programs and nonlinear programs, except the
search for optimality becomes much more complex.

Queuing: In this book, service vehicles are often lined up at the depot to
respond to calls or demands during busy periods. Until a vehicle has finished ser-
vicing a demand, it cannot be dispatched to another demand location. In this case,
one has to wait for a vehicle to become available; the vehicle then takes time to
travel to the scene; it spends time servicing the demand; and finally returns to the
depot ready for assignment again. Typical queuing literature, or the study of
waiting lines, is now extended to a spatial context, concomitant with the greatly
expanded analytical complexity.

Recursive operation, recursion, and recursive programming: In the tem-
poral dimension of spatial-temporal analysis, one wishes to lay out the evolution
of development from one time stage to another. To design the most desirable plan
in the long run, the question is whether it is sufficient to do the right thing at each
stage. Irrespective of whether it is or not, one can only execute a local decision at
each stage, and he or she does it repeatedly for each time stage. We call this repet-
itive process recursion. The same idea applies to stagewise decisions in which only
the spatial dimension is involved. An example is planning airline flights. A corpo-
rate planner starts out with candidate nonstop flights, then configures a one-stop
flight made up of a new leg attached to an existing nonstop, and finally configures
a two-stop flight by adding yet another leg to a one-stop. Again, the overall deci-
sion is broken down into a series of recursive decisions. Many computations are
recursive in nature, including the filtered and one-step ahead recursions in adjust-
ing a time series to a new pattern. When successive optimal recursions result in an
overall optimum, we are dealing with a Markovian process. When global opti-
mality is not guaranteed, we are merely dealing with a recursive program.

Satisficing: There are two types of achievements. The first is “the more
the merrier.” An obvious example is money; few would argue against having
more money, and the more the better. The second achievement is more precise.
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One aims to obtain a specific amount of an item, such as “achieving the clean air
standard.” When a standard or threshold is achieved, we have obtained a satis-
ficing solution. The concept of satisficing is therefore related to a threshold. Once
a threshold is exceeded, there is no preference between the resulting solutions, no
matter whether one barely exceeds it or exceeds it by a large margin. Related to
these concepts is Goal Programming, where the deviation from a preset goal is to
be minimized. A goal is defined as a target for achievement, such as an artist who
mixes colors in a palette to achieve an intended color the artist has in mind.
Oftentimes, it boils down to coming as close as possible to the color in the artist's
mind. The unwanted deviations can be ordered into priority levels. Minimizing a
deviation in a higher priority level is infinitely more important than any devia-
tions in lower priority levels. This is known as Lexicographic or Pre-emptive goal
programming. Considering the three fundamental colors—red, blue and 
yellow—the artist may value coming closest to the red hue more than the yellow
tone, and she values the yellow tone more than the blue tint.

Scaling and re-scaling: In spatial allocation of activities, it is necessary
to ensure the sum of the zonal allocations add up to the grand total for the 
region. As one derives population from employment and vice versa, the sum of
the  derived zonal allocations does not necessarily agree with the exogenously
forecast regional total. A scale factor simply ensures this happens. Another exam-
ple of scaling is the calibration of a multi-attribute utility function. Questioning
the  decision maker will yield a set of weights among the criteria. But there is no
guarantee that the utility function so obtained will be 0–1 ranged, the convention
for utility functions. A scale factor simply makes it happen. 

Single versus multiple periods: Oftentimes, it is important to consider the
expansion of a facility or facilities over time. When a facility is treated as a dis-
crete entity with a location and a service capacity, this multiperiod expansion
problem is anything but trivial. If we expand from existing facilities already in
place, we may not be able to do as well as starting with a clean slate every
 period. The goal of facility planning is to provide such continuity between
 single-period decisions and to come out with the most desirable evolution over
time. Again, while an aggregate statement of such a problem, such as in terms of
total service capacity to be provided, is relatively straightforward, the spatial
statement of the problem compounds the complexity rapidly.

Single versus multiple products: A facility can provide only one type of
service or that it can provide different ones. Closely related to this is the hierar-
chy of service provision. For example, a facility can provide up to a certain level
of service and no more, or it can provide all types of services. Once distinction is
made regarding the types of services, only an appropriate facility can render a
particular service. At the same time, more than one capable facility may cater to
the needs of a demand or customer. Facility B can serve as a backup in case facil-
ity A can no longer deliver the demand, or both A and B can satisfy the total needs
of a customer together. This tremendously complicates the one service provider
for one customer paradigm. This idea is not new in urban land use. There we
have the equivalent concept of trip purpose, or the type of trip that is being exe-
cuted. For example, office buildings take work trips while parks and recreational
facilities take nonwork trips. They provide different products or services. We find
mostly work trips during peak hours of the day and nonwork trips during off
peaks. Among recreational facilities are state parks, movie theaters, and bowling
alleys that can offer an alternative form of entertainment should a particular
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recreational facility become unavailable. For example, the seat capacity at a the-
ater may dictate a substitute, or backup, recreational alternative, either a theater
at a different location or perhaps a bowling alley. 

Siting: In this book, the term siting is used interchangeably with facility
location. With only minor exceptions, we do not deal with site layout in detail 
(although the theory is similar). Rather, we are concerned with the location of the
facility in relation to other facilities and the aggregate design parameters of the 
facility, such as size and capacity.

Software or computer programs: In today’s analysis world, seldom does
the analyst perform tasks without the aid of computer programs or software.
There really is no centralized software package for facility location and land use to
date. The compact disk that comes with this book is only a sample of what would
eventually be a generalized software suite for this field. Such a suite may be simi-
lar to the office suites for various office functions offered with today’s personal
computers. Clearly the eventual package should contain quite a few elements,
 including remote sensing/geographic information system, location-allocation pro-
cedures, location-routing algorithms, and land-use forecasting tools. Supporting
or utility routines should include optimization procedures (such as CPLEX), sta-
tistical routines (such as SAS), and stochastic/simulation programs. Part of the aim
of this volume is to provide the interested readers with food for thought for the
 design of an eventual facility location/land use software package.

Source and sink: In the location literature, sources are equated with a ser-
vice or production facility, while sinks are demand locations, where the customers
are located. Thus in both discrete and continuous (planar) location problems, they
are the places where service or commodity flows originate and terminate respec-
tively. This concept comes naturally with the discrete network-flow literature,
which traditionally has similar terminologies in place. In continuous problems,
sources and sinks are among several stable or unstable fixed points, singularity
points, or equilibrium points. These points in general characterize the flow pat-
terns on a plane. Existence of these points introduces discreteness of facility and
demand locations in an otherwise homogeneous pattern. This lessens the ideal-
ized distinction between discrete and continuous location problems.

Spatial versus aspatial analysis: A distinguishing feature of this book is
that it explicitly considers geographic attributes, network effects, and interaction
between economic activities among different areas within a region. In other
words, it analyzes problems with full recognition of the spatial dimensions. In
contrast, aspatial analysis deals only with aggregate attributes such as the popu-
lation and employment in the entire region, the total amount of retail floor space,
the total acreage of parks and recreation areas, the total number of hospitals, and
perhaps their growth over time. It does not disaggregate by zones or other sub-
areal units, neither does it deal with interzonal interactions such as commuting
between employment centers and population centers. Naturally, spatial analysis
is much more complex that aspatial analysis. (See also area and subarea.)

Spatial dependence and independence: When a spatial unit influences or is being
influenced by its neighbors, the subject unit is said to be spatially dependent on its neigh-
bors and vice versa. On the other hand, if all spatial units are truly random, they are said
to be independent of one another. In this case, the assumed value of a spatial unit i has
no relationship to the value of unit j. Spatial dependence is usually expressed in terms of
weights between units i and j, where a larger weight connotes a heavier dependence.
A totally independent set of spatial units is referred to as a random field.
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Stability and instability: A key property of a dynamical system is struc-
tural stability or instability. Inherent in the system is the innate ability to return
to equilibrium after perturbation or that it transforms into disequilibrium. We refer
to the former as a stable system and the latter unstable. In terms of spatial struc-
tures, the flow pattern of services and commodities between facilities and  demands
is a result of the economy that governs the study area. Locations of these facilities
can either be stable or unstable. Example of a stable facility location is a source
(where flows originate naturally). Certain saddles, with the associated  separatrices
or the dividing flow lines separating flows so that they are not converging on the
saddle point, are unstable. Flows can be periodic or cyclic. In this case, a family of
concentric circles around a fixed center suggests instability. On the other hand, a
limit cycle—in spite of slight irregularities in its orbit—will always return to its
starting point and hence it is stable. (See also equilibrium and disequilibrium.)

Statics versus dynamics: When a phenomenon is the same irrespective of
time, it is said to be static. By contrast, a dynamic phenomenon changes over time.
In this book, traditional facility-location models are often static in nature. Recent
advances in stochastic facility-location models have extended the horizon to time-
varying location decisions. By contrast, land use models are often used to forecast
population and employment for a target date. In that light, they are dynamic in
nature as one forecasts iteratively over, say five-year increments into the future.

Total unimodularity: If the constraint matrix of a linear program (LP) is
totally unimodular, and the right-hand side is an integer vector, the LP will yield
integer solutions. A network LP has exactly such property. To the extent that a
 facility location problem can often be formulated as a network LP, the desired
 integrality property is most valuable in solution procedures.

Trip and route, versus tour: Much of a location decision is the result of con-
sidering accessibility to economic, social, and recreational opportunities. To reach
these opportunities, trips may have to be executed either by the population or the
provider. In this case, the population follows a route to the goods and services, or the
goods or services have to be routed by the provider to the population. When a 
special delivery is made by the provider, the vehicle used for the delivery may be
productive only in one direction, namely on the way to the demands when carrying
the goods and services. The return trip is often empty and not productive,  unless 
another load is backhauled to the provider. On the other hand, if the population
combines several errands in a trip, these errands can be completed in a “round
robin” visit to several service providers. We call this a tour, which can likewise be 
executed by the provider to deliver the goods or services.

Unimodal, bimodal, or multimodal: In a frequency distribution, there
may be only one single peak. We call this distribution unimodal. When there are
two peaks, it is bimodal. In general, there can be multiple peaks, constituting a
multimodal frequency distribution.

Univariate, bivariate, and multivariate models: For pedagogic reasons,
most subjects are introduced in its simplest form, often involving one single 
variable. Multivariate models, however, are common in spatial-temporal analysis
since each unit (for instance, a zone in a region or pixels in a photo) is usually 
represented by separate variables. As a result, there are many entities to analyze.
Bivariate models are often used as a transition from univariate to the more complex
multivariate case.

Univariate spatial time-series: A time series is a sequence of observa-
tions on a single or multiple variables. This book is particularly interested in the
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latter when several spatially related variables are examined. It is often of interest
to analyze the underlying pattern of such a time series, so that one can forecast
future trends. One such analysis is to regress the time series with its lagged series,
and the quality of such a model is measured by a goodness-of-fit parameter such
as autocorrelation, the temporal counterpart of regular Pearson correlation in clas-
sical statistics. When each of these spatial variables is expected to behave simi-
larly, one can simply construct a univariate time series. Once calibrated, such a
time series would describe every spatial variable equally well over time. One
 pattern that exists in such a time series is seasonality. For example, people travel
more in the summer months than winter months annually. While differencing may
remove seasonality from a time series, a seasonal pattern may still remain in sta-
tionary data. This poses an additional challenge in model identification. Not only
does one need to identify the lags for the autoregressive and moving average
components (usually denoted by p and q respectively), additional specifications
on the season length for the two components (sp and sq) need to be made. These
two tasks, identification of p/q and sp /sq, are performed in the sequence as stated.
There is a close parallel between the identification of a seasonal non-spatial model
and the identification of a univariate spatial time-series. Normally, the spatial
time series can be analyzed as a scalar sequence of observations that in all
 appearances, resemble a seasonal time series. One can employ steps similar to the
seasonalized procedure to identify a spatial-temporal model.

Utiles: Utiles are the common currency of exchange among incommen-
surate quantities. Through the construction of a multi-attribute utility/value
function, for example, one can combine apples and oranges together in a common
unit called fruit. The common unit allows cross comparison to be made among
two very different quantities, including tradeoffs among them. Utiles is the basic
building block among most operations research and econometric analyses.

Variance, covariance, correlation, and autocorrelation: Variance (or stan-
dard deviation) of a single random variable is the spread of the data around the
mean. When two or more variables are involved, the metric is broadened to mea-
sure the scatter of data around the trend line explaining the relationship between
the two (or a dependent and several independent) variables. The less the scatter,
the more the variables are correlated via a trend line (surface). The more the scat-
ter, the more questionable the correlation. Formally, covariance between a pair of
variables is the product of the standard deviations of the two given variables and
the correlation between them. Thus one can see it reduces to the variance of a sin-
gle variable when the two random variables are identical, or when the correlation
between the two is unity. Where the concept is carried over to the spatial (multi-
variate) and temporal dimension, we have variance-covariance matrix and auto-
correlation. A variance-covariance matrix has the variances along its diagonal for
the same variable and covariances at off diagonal elements for a pair of different
variables. Autocorrelations are correlations between a time series and itself
shifted by a certain period of time, the former series forms the dependent variable
and the latter the independent variable. In analyzing time series, the use of auto-
covariance and auto-correlation functions aids in the identification and estima-
tion of the models.

Vector versus raster spatial-data storage: Spatial data can be stored
in two generic formats: vector and raster. The former is the traditional way,
 advanced long before the digital computer and satellite images. It exploits rela-
tions among points, lines, and areas. It has a more compact storage requirement
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and can be very precise in selected applications. However, the latter, because of
its grid or lattice structure, has the distinct advantage of format uniformity when
various data sources are merged, as long as the data are discretized into a grid. It
is also amenable to a wide variety of image restoration and enhancement rou-
tines. Many of today’s spatial data are digitized for storage, precisely for these
reasons. Obviously, the problem drives the logical format for data storage and no
single format is inherently superior to another. The data stored in vector or raster
format can be socioeconomic attributes such as population and employment, or
they can be gray values in a panchromatic image. For uniformity, we choose to
use the generic term activity in this book to describe any spatial data value.

Weighting: In evaluating alternatives, it is desirable to combine several
criteria or attributes into a single metric called utiles. In doing so, it is common to
weigh each criterion/attribute differently according to its importance and then
add them together, by means of a weighted sum for example. Obviously, the over-
all utile of an alternative is different depending on the specification of weights.
The ranking among alternatives according to utile is therefore different depend-
ing on the assignment of weights.

Work versus non-work trips: Transportation planning is a major factor in
land development. In transportation, distinction is made between trips made to
employment location and trips for other purposes. Generally speaking, work trips
are inelastic, while nonwork trips are much more elastic and are often discre-
tionary. Work trips determine factory and other employment locations with respect
to residential locations. Nonwork trips, on the other hand, determine the siting of
shopping malls and other services, again vis-a-vis residential neighborhoods.





This book aims to serve those who analyze spatial-temporal information. In this
appendix, we put the common abbreviations in one place for easy reference.
Compiled here is an illustrative list of acronyms used in the field, defined here as
the beginning initials of a technical term. Also included are “alphabet soup”
terms, which are the abbreviated names in common usage that do not necessar-
ily  correspond to the beginning initials. By intent, the list goes beyond those
terms used immediately in this text. Similar to Appendix 5, it serves as a quick,
easy recreance for those who might otherwise be “intimidated” by the profusion
of technical jargons in the literature.

Also included is a comprehensive list of mathematical symbols. Again,
the list goes beyond this immediate text. It includes those that appear in the
 companion volume: Chan, Y. (2005). Location, transport and land-use: Modelling
spatial-temporal information. Berlin and New York: Springer. The mathematical
symbols are totally consistent between this volume and the accompanying
 volume.

2SLS two-stage least squares (calibration procedure)
ACF autocorrelation function
ADBASE a multicriteria linear-programming model code
AHP  analytic hierarchy process
AIC  Akaike information criterion 
AMDAHL type of main frame computer
AMPL modeling programming language
ANOVA analysis of variance
API application programming interface
ARC/INFO a geographic information system
ARIMA auto regressive integrated moving average (model)
ARMA  auto regressive moving average (model)
ASSIST Ambulance System Site Inspection Simulation
ATLAS a geographic information system
AVHRR advanced very high resolution radiometer 
B & B branch and bound
BFS basic feasible solution
BW Benabdallah and Wright (algorithm for districting)
CAD computer-aided design
CBA capacitated basic algorithm
CD-ROM compact disk-read only memory
CDF cumulative density function
CFLOS cloud-free line of sight
CGI Common Gateway Interface
CI consistency index
CLI Command Line Interface
CLUG Community Land Use Game

Appendix 6
Abbreviation and Mathematical Symbols

621



622 APPENDIX 6 Abbreviation and Mathematical Symbols

CPLEX a linear and integer programming code
CRPC Centre Region Planning Commission
CS Central store
CSPE classical spatial price equilibrium
CW Clarke-Wright (routing heuristic)
D-A digital-analog
DCPLP dynamic capacitated plant-location-problem
DCS Defense Courier Service
DEA data envelopment analysis
DIME dual independence map encoding
DLG digital line graph
DLG-E digital line graph-enhanced
DM decision maker
DMU decision-making unit (in data envelopment analysis)
DN digital number (of a pixel)
dof degree of freedom
DP dynamic programming
DPM downtown people mover
ELECTRE a discrete-alternative multicriteria-optimization software
EMPIRIC a linear econometric land-use model
EMS Emergency Medical Services
ETAC Environmental Technical Applications Center
FANAL Factor analysis program in the EMPIRIC model
FFT fast Fourier transform
FGDC Federal Geographic Data Committee
FI full industries
FIFO first-in-first-out (queuing discipline)
FIPS Federal Information Processing Standard
FORCST Forecast program in the EMPIRIC model
FSCORE Factor Scores program in the EMPIRIC model
F-W Frank-Wolfe (method)
GAMS Generalized Algebraic Modeling System
GASP General Activity Simulation Program
GBF geographic base file
GEODSS ground-based electro-optical deep-space surveillance
GIS geographic information systems
GLONASS navigation satellite system operated by the Commonwealth of

Independent States
GMI Gray-McCrary index
GMP generalized median problem 
GNSS Global Navigation Satellite Systems
GOES Geostationary Operational Environmental Satellites
GPS Global Positioning System
GPSS General Purpose Simulation System
GRASS Geographical Resource Analysis Support System
GS goal setting
GSARP generalized search-and-rescue problem
GUF group utility/valve function
HFDF high frequency direction finder
IBIS image based information system
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IC information criterion (decision rule)
ICM iterative conditional mode (algorithm)
IGDS a geographic information system
IGUF individual group utility function
IMSL International Mathematical and Statistical Library
INFORMAP a geographic information system
IOM intervening opportunity model
IP integer programming
KKT Karash-Kuhn-Tucker (condition)
LANDSAT an earth surveillance satellite
LD Lagrangian dual
LGPL Lesser General Public License
LP linear program, linear programming
LR Lagrangian relaxation
LRP location-routing problem
LS Local store 
MADA multi-attribute decision analysis
MARMA multivariate auto-regressive moving-average model
MAUT multiattribute utility theory
MCDM multicriteria decision making
MCLP, MLP multicriteria linear program
MCO multicriteria optimization
MC-SIMPLEX multicriteria simplex
MCSLP maximum consumers’-surplus location problem
MDMTSFLP multi-depot multi-traveling-salesmen facility-location problem
MDP Markovian decision process
MDVRP multi-depot vehicle-routing problem
MICROSOLVE an operations-research software suite
MIP mixed integer programming
MIP83/XA a linear and integer programming software
MNBLP maximum net-benefit location problem
MOLIP multiple objective linear integer program
MPSX Mathematical Programming System extended
MSF minimum spanning forest
MSFC multiple space filling curve
MSS multispectral scanner
MTC marginal transportation (economic) cost
MTSFLP multiple-traveling-salesmen facility-location problem
MTSP multiple traveling-salesmen problem
MULSTARMA multivariate spatial-temporal auto-regressive moving-average

model
NASA National Aeronautics and Space Administration
NDCDB National Digital Cartographic Database
NETSIDE a network-with-side-constraints software
NIMBY not-in-my-backyard (syndrome)
NLIP nonlinear integer program
NLP Nonlinear programming 
NOAA-n National Oceanic and Atmospheric Administration n-series 

(meteorological satellites)
NP non-deterministic polynomial
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NPC NP-complete
NSC network-with-side-constraints
NVI normalized vegetation index
NWPA Nuclear Waste Policy Act
NWS National Weather Service
OBE operating basic earthquake
OGC Open Geospatial Consortium
OLS ordinary least squares 
P polynomial
PACF partial autocorrelation function
PAR calibration parameters of the auto-regressive terms in an

ARMA model
PC personal computer
PDF probability density function
PI partial industries
PMA calibration parameters of the moving-average terms in an

ARMA model
PMT person miles of travel
PMTSFLP probabilistic multiple-traveling-salesmen facility-location

problem
PMTSP probabilistic multiple-traveling-salesmen problem
POLYMETRIC a nonlinear econometric model
PROC procedure in the SAS software 
PRT personal rapid transit
PTSFLP probabilistic traveling-salesman facility-location problem
PTSP probabilistic traveling-salesman problem
PTST probabilistic traveling-salesman tour
PVRL probabilistic vehicle-routing location
QAP quadratic assignment problem
R2 Variance
RADARSAT Canadian satellite with all weather and night-time capability
RP recursive programming
RIOM regional input-output model
RISE route improvement synthesis and evaluation (algorithm)
SAR seasonal auto-regressive (model); search and rescue
SARMA seasonal auto-regressive moving-average (model)
SAS/OR an operations-research software suite within the SAS business

analytics software
SCA an integrated time-series-analysis computer-program
SDTS spatial data transfer standard
SEE standard error of estimate
SFC space filling curve (heuristic)
SIMAN a discrete-event simulation language
SIMSCRIPT a discrete-event simulation language
SIPs Statistically Improbable Phrases
SIR spaceborne imaging radar
SLAM a discrete-event simulation language
SMA seasonal moving average (model)
SMSA Standard Metropolitan Statistical Area
SPANS a geographic information system
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SPE spatial price equilibrium
SPLP simple plant-location problem 
SPOT a French commercial satellite
SPSS a statistical software system
SSM subregional simulation model
SSR sum of squared residuals
SSTMA seasonal spatial-temporal moving-average (model)
STACF spatial-temporal autocorrelation function
STATESPACE procedure within the SAS software
STARMA spatial-temporal auto-regressive moving-average (model)
STMA spatial-temporal moving-average (model)
STPACF spatial-temporal partial-autocorrelation function
SYSNLIN procedure within SAS for vector-time-series analysis
SYSTAT a statistical software
TAZ transportation analysis zone
TCTSP time-constrained traveling-salesman problem
TCVRP time-constrained vehicle-routing problem
TIGER Topologically Integrated Geographic Encoding and Referencing

(system)
TM Thematic Mapper
TRANSCAD a geographic information system for transportation

 applications
TS-IP Training System-Image Processing
TSFLP traveling-salesman facility-location problem
TSP traveling salesman problem
TST traveling salesman tour
TUM totally unimodular
TVP topological vector profile
UNEP United Nations Environment Programme
USGS United States Geological Survey
USPE univariate stochastic model preliminary estimation 

(program)
VARMA vector auto-regressive moving-average (model)
VBA Visual Basic for Applications
VGA video graphics adapter
VI vegetation index
VRP vehicle routing problem
WMTS-1 Wisconsin Multiple Time Series (program)-1st edition
X-SAR X-band Synthetic Aperture Radar
ZOOM Zero-One Optimization Model
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List of Symbols

a A calibration constant; for example, it is the service-employ-
ment multiplier or population-serving ratio (number of service
jobs generated from one household or resident)

ã Intercept regression-coefficient as a random variable
ã* Specific value of ã corresponding to a sample of data points
a� Acceleration of a vehicle; also a constant parameter, such as unit

cost of commuting (cost per unit-of-distance travelled), or the
exponent of the development opportunity Wj at destination j

ai Calibration parameter corresponding to the utility increase in
zone i, where utility is some measure of composite accessibility
to the zone; also the population-serving ratio at zone i

at Estimation-error or noise term for a series of data (t = 1, 2, . . . )
usually in a ‘normalized’ time-series, or after the data have been
differenced to a stationary series; the estimated error or noise in
Kalman filtering; also referred to as innovations when it is white
noise

ai
� Physical area of geographic sub-unit i or the demand-generating

potential of i
at

� Measurement error in a Kalman-filter time-series, representing
the difference between observed and measured data

aD Error term in a demand econometric-equation
aS Error term in a supply econometric-equation
aW Weighted labor-force-participation-rate, where the weights are

the percentages of regional population in each zone
ap The pth-sector employment-growth-rate in the entire study-area
aij Parallel to its single-dimension analogue, aij is an error- or

noise-term in the spatial context; it has a zero mean and a con-
stant variance; also stands for the entries in the A

_
matrix

ai
u Convex combination of the population-serving ratios, with nor-

malized accessibilities to zone i as weights
aj

p Employment multiplier considering the population-serving
ratio, i.e., (1 � aj)—segregated both by economic-sector p and
by zone j here

akl Calibration parameter in a predictor-prey equation-set showing
the interaction between the kth and lth species

akl
� The kth output (benefit) measures due to decision-making-unit

j considering both nonspatial and spatial attributes (see also A
_

=
[aij])

aij
pq(k) Impact of the pth-state-variable-in-zone-i-at-time-k on the qth-

state-variable-in-zone-j-at-time-k � 1
a�� Threshold for a high-pass noise-filter

Vector of calibration coefficients in the second stage of 2-stage
least-squares, consisting of q entries; also stands for the vector of
the error (noise) terms in a spatial-temporal forecasting-model

a' Vector whose ith element is the ratio of the-household-income
to the gross-output-in-the-ith-industrial-sector

a = ← →( )ai
T
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ã Interim error-vector or noise-term in a more efficient calibra-
tion-procedure for STARMA

aij = (←aij
k→)T Each entry of the A

_
= [aij] payoff-matrix is replaced by a vector

in a linear program, mainly to facilitate a multicriteria, two-
person, zero-sum, non-cooperative game; here k is the index for
a criterion

� Calibration constant, or step size in “hill-climbing” algorithms;
also the tail of a distribution

�' Angle between two criterion-functions in multicriteria linear-
programming; also a calibration constant

�'' Resulting problem-type after the original problem has been
polynomially reduced

�t Random-shock or white-noise input-time-series in a transfer-
function model

�
qp
ji Exponent in a Cobb–Douglas production-function correspond-

ing to the factor input xqp
ji 

A Accessibility expenditure for a household (part of locational
 expenditure); also the area

A(�) Area of �
Ai Weighted labor-force participation-rate, with accessibility from

zone i as weights
Aj Gross acreage of subarea j
A�j Useable gross-acreage of subarea j
At Error term in a “raw-data” time-series

j Developable acreage in subarea j

AB Basic land-use (AB
j is basic land-use in zone j)

AR Retail land (AR
j is retail land in zone j)

AU Unusable land (AU
j is unusable land in zone j)

Set of arcs in a network
Net acreage in subarea j devoted to the kth land-use

A = (←At→)T Vector of disturbance or error terms in econometric or spatial
time-series models, consisting of n observations; in 2-stage
least-squares, it consists of q entries, where q is the number of
endogenous variables

A As a matrix (instead of a vector), A stands for node-arc incidence-
matrix in network-flow programming

A' = [A'ij] An n � n square matrix; for a compartmental model, it is the
rate-of-change matrix; and for the matrix of secondary (retail)-
employment it is the distribution-rate by zone, where n � n'.

A0(t) Vector showing rate-of-change with the “outside world” over time
A'' = [(i, j)] Contiguity matrix with nonzero arc-entries where i is incident

upon j
Â An n � n matrix, which converts value-added output vector by

 industrial sectors to the same vector measured in labor-force base
Aj Vector of socioeconomic variables at location j, representing

such activities as population and employment
A(j) Column vector in the network-simplex tableau for arc j
–
A = [aij] Coefficient matrix of linear-programming constraints, where aij

expresses the incidence relationship between row i and column j;

A

A
Â j

k
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an example is the kth output measures due to decision-making-
unit j, akj, in a data-envelopment analysis.

AB Basis of a linear program
AN Nonbasic part of the tableau in a linear program
A1 The complicated set of constraints in a mixed integer-program
A2 The straightforward set of constraints in a mixed integer-program
b Generally a constant parameter, denoting a growth rate, inter-

cept or slope in a linear equation, or the positive exponent of a
spatial cost-function etc.

b̃ “Slope” regression-coefficient as a random variable
b̃* Specific value of b̃ for a sample of data points
bU Household budget
bj The fixed cost of siting a depot at node j
bj Travel-cost elasticity for activity j
bk(m) A scale factor used to adjust the kth zonal-retail-employment

from one loop of the Lowry model m to another m�1, where
m = 1, 2, . . .

bki , bik Slack-flow capacity on slack arc (k, i) or (i, k); also the benefit
variable in data-envelopment analysis, denoting the weight
placed on the kth benefit of the ith alternative

bkji Benefit variable used in the combined data-envelopment-analysis-
and-location model, showing the relative importance of assigning
the kth benefit to the demand-facility pair ij

b = (←b’i→)T Vector of estimated parameters in ordinary least-squares
 regression or other calibration procedures, consisting of k�1
 parameters (including the “intercept”); also the right-hand-side
of a linear or mixed integer program
A given vector of the right-hand-side of a mathematical pro-
gram; also the fixed external-flows in a network-flow program

b
– Updated right-hand-side of a linear program during a simplex

procedure; also the birth rates in a cohort-survival analysis
b1 The portion of the right-hand-side corresponding to the com-

plicated set of constraints in a mixed-integer-program
b2 The portion of the right-hand-side corresponding to the straight-

forward set of constraints in a mixed-integer-program
� A calibration constant, such as the positive exponent of a spatial

cost-function or the round-trip factor in stochastic facility-location.
(This same constant � is also referred to as b)

�� A calibration constant
�i Current level of inventory at location i
�t Prewhitened output time-series in a transfer-function model
B An arbitrarily large integer; also the backshift operator in a time

series
B� Bifurcation set of control variables
B�� Blue-collar employment
Bk Percentage reflectance in band k of a satellite sensor
BL , BR Left and right boundaries of a firm’s market area
B�k Number of times a facility is exposed to demands in period k
Bk Bound value for distance from a vertex, used to locate the inter-

secting point qk or a candidate location for a center

b' '( )= ← →bi
T
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Lower and upper bounds for the border-line length of a subregion
B = [bj] Birth matrix with nonzero diagonal-elements showing the “birth”

rate within subarea j
B = [bij] Arbitrary matrix in a tableau of network-with-side-constraint

program, corresponding to the flow variables
B' = [�ij] Calibration-coefficient matrix in the first stage of a 2-stage least-

squares, which measures q � k, where q is the number of endoge-
nous variables and k the exogenous variables

B̃ = [b̃ij] Quasi-deterministic transition-matrix in a compartmental model
Bi Diagonal-block i of the inverse of a network node-arc incidence-

matrix, expressed in terms of a spanning subgraph
B'' = [b'ij] Fixed cyclic-permutation �� expressed in terms of a matrix oper-

ation, where b'i,�'(t) = 1 and all other elements b'ij = 0
B
– Initial basis for a network-with-side-constraint model
c Cost of operation, unit-cost, or a constant in general (e.g., ci is

the unit cost at location i; ckl is the “interaction cost” of moving
materials between workstations k and l in an assembly line)

c� Proportionality constant
ck Weight reflecting the relative importance of home-based retail-

trips for purpose k
rcs(x) rth-stop coverage of state s by routing-variable x

Cost vector in the objective function of a linear program, which is
also the gradient of the objective function; here cj is the constant
unit-cost

c� Consumption-coefficient vector, whose ith element is the ratio of
the purchased-value-of-the-commodity-from-the-ith-industrial-
sector to the household income

cB The part of the cost-vector c corresponding to the basic variables
cN The part of the cost-vector c corresponding to the nonbasic

 variables
cr Binary vector of rth-stage coverage-requirements in the decom-

posed recursive-program
ck+r(k) Binary vector of rth-stage coverage-requirements on each origin—

destination pair in cycle k; 
conv(Q̃’) Convex combination of discrete points Q̃� in a feasible region of

an integer program
C Generalized cost to include both time and monetary outlay, or

unit composite-cost in general (e.g., Ci is the generalized cost of
operation or the inventory-carrying cost at location i, Cij is the
composite transportation-cost from location i to j, Cij

p is the
 composite transportation-cost from location i to j for commod-
ity p etc.)

C� Number of columns in a lattice, grid or a pixel image; also
household expenditure on community amenities (which is part
of non-locational expenditure)

C0 Overhead of a firm
Co Operating cost
Cs Capital cost
Cj Equity factor in districting algorithms

B BM M
Min Max,

c = cj( )← →

C c( ) [ ( ) ]k kk r= ← →+
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CX Coefficient-of-variation of variable X, or sX/
CXY Cross-covariance between random variables X and Y
C(Cij) Propensity, distribution, or accessibility function between i and

j, assuming such forms as exponential function or power func-
tion of spatial-cost Cij

C[a](x) Performance of arc or path a as a function flow-vector x
C’(τ) Accessibility to work-opportunities as a function of time τ
Ck(τ) Accessibility to the kth non-work-opportunity as a function of time τ
Ci(.) The cost function (including land rent), or performance func-

tion, of firm i—expressed in terms of the supply volume Vi
s or

other arguments
Cij(Vij) Transportation cost between origin–destination pair i – j as a

function of flow Vij between them
Ck,l Transportation cost between origin k and destination l
Cmn(r) Connectivity requirement between origin–destination pair m–n

via at most rth-stop itineraries
C = [Cij] Arbitrary matrix in a tableau of network-with-side-constraint

program, corresponding to the non-flow variables; also the
 covariance matrix

C = [c1, . . . , cq]T A q × n matrix of cost coefficients in a multicriteria linear- program,
where each criterion j has a cost and a gradient vector cj

C(.) State-connectivity function linking to past decisions and con-
nectivity requirements in a recursive program

C’ Diagonal matrix converting the gross-output vector to value-
added vector

Ĉ Matrix of estimated coefficients in stage 1 of 2-stage least-
squares, measuring q × k

C
– Number of cell columns in a grid region or in a raster image
� Unit price at the market, Lagrange multiplier, and a calibration

constant in general
�′ Capacity-utilization rate, bounded between zero and unity
�j

pq Dual variable associated with the input–output coefficients in
an entropy-maximization model

�′ = [q′j ] Matrix of subareal growth-rates along its diagonal
–� Economic-base multiplier over a time-increment 	t, combining

the activity-rate f and the population-serving-ratio a; –�ij (with
the subscript) would include the locational attributes as
 captured in work- and nonwork-accessibilities tij and uij

�i(p, s) General ‘strain’ or the savings from including new-demand i
via a triangular-inequality-style route-replacement between
points p and s


 The gross economic-multiplier deriving the total employment
from the initial basic-employment

� Vector of economic-multipliers deriving the total employment
in the study area from the initial basic-employment, including
cj, f and a

�t Observation matrix in Kalman filter; when multiplied against
the observed time-series, specifies what is actually observable


 (W, p) Optimization results from a facility-location model where p
 facilities are relocated to respond to a maximum demand of W

X
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�(k) = [←�i(k)→] Vector of payoff-function consisting of q entries, where q ≤ η′ µ
d Distance or spatial separation; also a proxy for a particular spatial

order
d’ Amount of differencing to induce stationarity in a time-series
d̋ A decision in a Markovian decision-process
di Distance from location i (notice this is not necessarily

Euclidean distance); or deviation from a standard or ideal in
dimension i; also the capacity of arc i or the weights in a trans-
fer function

dk Minimum threshold of retail-employment by trade-class k; dR

is the threshold for the case when there is only one trade class
dj(x) Multidimensional decision-boundary in a Bayesian classifier
d(B) = d0 � d1B Transfer function in a multivariate time-series, consisting of 
� d2B

2 � . . . weights d0, d1, d2, etc. and backshift operators B
dij Euclidean distance or the spatial-cost in general between loca-

tions i and j
dijk Euclidean distance or the spatial cost between locations i and

j in state k
dh

ij Distance or travel time between nodes i and j by salesman or
vehicle h

di Time a salesman or vehicle visits node i in a tour or a route
dij Distance or time between locations i and j, starting with ar-

rival at i and terminating at arrival at j (notice this is not nec-
essarily the Euclidean distance)

d(i, j) Planar Euclidean distance between two Cartesian coordinate
points i and j

d(xi, xi+1) Spatial separation between consecutive stops xi, xi+1
d, d’ Vector of arc capacities in network-flow programming
dj Extreme direction along the jth axis in a linear program
dk = (←di

k→) Direction of steepest ascent in the kth step of a hill-climbing
 optimization-algorithm, as characterized by n components of
the vector

� Change in a quantity (e.g., �x is the increase or decrease in
quantity x); �ij is the distance savings in directly going from i
to j, instead of through an intermediate point k

�(i) The steady-state decision whenever the state is i in a
Markovian-decision-process

δ̃ Policy in a Markovian decision-process
δ̃′ Improved stationary-policy in the policy-iteration procedure

of a Markovian-decision-process
�* Optimal policy in a Markovian-decision-process
�′, �′′ Fixed cyclic-permutation
�i Binary decision-variable to be switched on, conditional upon

another decision-variable being engaged; also a calibration
constant; or a nonnegative real-number denoting the number
of legs in a subtour-breaking constraint

�� Boundary of the bounded-domain �
δ(k) Savings by using route k
δ+(i) Set of nodes reachable from i
δ–(i) Set of nodes incident upon i
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�ij Route-distance savings by including demands i and j in a
single, rather than separate tours, in accordance with the
Clarke–Wright heuristic

� Vector of estimated-parameters in nonlinear regression
�̂ Least-squares estimate of �, usually obtained as a condi-

tional estimate
�j = (←�ij→)T Orthonormal base of the transition-rate space when the sys-

tem is in compartment j
D Distance or time of specified length
D’ Data, population density, or a measure of crowding
D′′ Dual polyhedron of a linear program; or a subset of nodes/

vertices
Dab Shortest distance from demand or customer a to demand b

along a path, or along a tour from depot a to demand b
D(i) Decision set in a Markovian decision-process
D(a,b) Shortest distance along a vehicle route from terminal a to

 terminal b
Di Cumulative distance (along a path) to demand i from a

 facility
Dl(V

d
l ) Demand at location l showing price against flow-quantity;

in other words, price paid at demand quantity Vd
l

D’i Cumulative distance (along a path) to demand i from all
 facility candidate-sites

Dk Total sales or service from facility k
DH Upper-bound distance
DL Lower-bound distance
DH

j Maximum allowable household-density in zone j
D = [dj] Death matrix with non-zero diagonal elements, showing the

“death” rate within subarea j
D’ Calibration-coefficient matrix in the first stage of 2-stage

least-squares, measuring q × q, where q is the number of
 endogenous variables

D
– = [Dab] |I|×|I| matrix of shortest cumulative-distances along a

path from vertex a to vertex b
D
– ’ = [Dqk] |I|× m matrix of distances from vertex q to arc k
Δi

j The difference between two utility measures i and j
∇f(x)=(←∂f/∂xi→)T Gradient of a function over n variables

=(Gx,Gy,Gz, . . .)T

e The exponent value of 2.7183; also a calibration constant
e� Number of exogenous variables left in the econometric

model after estimation
e�� Number of endogenous variables left in the econometric

model after estimation
ei Index to denote the ith type of industrial employment; also

the ith arc in a network
eji Arc j associated with node/vertex i
ei(j) Unitary column-vector for arc j with unitary entry in the ith row
 A very small number or a random perturbation
k Efficiency-measurement error-term associated with the kth

input–output pair in empirically curve-fitting a distance function
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Ɛ Normally-distributed error-vector with zero mean; when it has
a constant variance, it could be a vector of random perturba-
tions in the forecast using a transfer function, due to white noise
in the inputs

E Total employment
E� Number of exogenous variables
E�� Number of endogenous variables
EB Basic employment (EB

j) is basic employment in zone j)
ER Service employment
Ek Retail employment by trade-class k (Ek

j) is retail employment by
trade class k in zone j)

E(t) Relative smoothed-errors in adaptive-response-rate exponential-
smoothing

Ẽj Employment in the jth zone as projected from an areawide
growth-rate for each sector

Eijk Expected number of demands i in period k at location j
E(i1, i2, h1, h2) Net change in travel-distance from an exchange of demands i1

and i2 between tours h1 and h2
E�(i1, i2, h1, h2) Modified generalized-savings-measure from an exchange of

 demands i1 and i2 between tours h1 and h2
E Row vector of employment-levels, made up of individual zonal

employment Ei
f Average household-size in terms of the number of employed

residents per household, or reciprocal of the labor-force partici-
pation-rate (also called the activity rate)

f(.) Regular function of the argument (e.g., the criterion function in
dynamic programming)

f(xq, x − xq) A functional for which the directional derivative is being con-
sidered, approaching point xq from point x

f � Functional-attribute score, including spatial separation
f �(t) Cumulative demand at time-period t
fi Demand-for-service frequency at location i; also the natural

growth-rate of population in subarea i (the activity rate)
fW Weighted activity-rate, where the weights are the percentages of

regional population at each zone
fik Demand-for-service frequency at location i in state k
f �
ik Number of demands k serviced by facility i

fi
t Convex combination of activity-rate fi, where the weights are

the normalized accessibilities into zone i
fj

(l)(.) Speed-of-adjustment function for the jth zone and lth activity
fr

mn rth-stop demand between origin–destination m–n
f
.
(x) = df/dx Derivative of function f over variable x

f Partial-flow pattern in the decomposed RISE algorithm
F Set of candidate or new facilities to be sited, or an objective

functional
F(f(x)) = F(u�) Fourier transform of function f(x) in frequency u�

F�(z) Production function with input rates z = (←z→)T

F�(.) Regional-growth-rate function
Fk Fibonacci numbers; also the weighted activity-rate, with work-

accessibilities from zone k as the weights
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FX Derivative of function F with respect to variable X
F
.

= ∇F Gradient of the function F being maximized
F�i Unsatisfied demand or remaining service-capacity at each

 demand-node i to entertain additional vehicle-deliveries
Fij Accessibility factor between locations i and j, expressed as an

 inverse function of travel cost
Fik Probability that a demand from i is of type k
F = [F

ij
] Square matrix of population-distribution rate by zone,

measuring n� × n�
F�(x) = (←Fi(x)→) A vector of functions whose interactions ∂F�i(x)/∂xj �

∂F�j(x)/∂xi are asymmetric, where x = (←xi→)T for i = 1, . . . , n
g A scale factor; when serialized against argument m for exam-

ple, g(m), it is used to adjust zonal population from one loop
of the Lowry model m to another m � 1, where m = 1, 2, . . .

g(.) A special function of �, such as the state equation; the
 relocation-cost function in stochastic facility-location; or the
expected- master-travelling-salesman-tour length in proba-
bilistic travelling-salesman-problem

gk Generalized unit-cost at facility k or for vehicle k
g�i Load to be picked up at node/vertex i
g�i Spatial “drift” of activities toward location i, in accordance

with a profit/benefit motive or some gravitational potential-
function

gij Short-hand notation for nonwork accessibility between i and j
g Vector of coefficients associated with the discrete-variables y;

when used as a function, it is the subgradient
g(j) = (←g

h(j)→)T Vector of input measures for a decision-making unit j
G Number of salespersons in a travelling-salesman problem, or

the number of vehicle-tours out of a depot
G� Maximum fleet-size available at a depot; or share of the pop-

ulation which are immigrants
G(.) Multiple-travelling-salesmen expected-tour-length-func-

tion  invo lving k salespersons
G(�) Generating function for the probability distribution P0, P1,

P2, . . . , Pn where � takes on values of 0, 1, 2, . . . , n
G(�, t) Generating function for the probability distribution P (X*

0, X
*,

t); where X*
0 is the initial-condition vector, X* = [X*

1(t),
X*

2(t) . . . , X*
n(t)]T, and where the n-dimensional-vector � takes

on values of �X* ≡ (�1
x1*, �2

x2*, . . . , �n
xn*)T, for |�j|<1. Thus for the

stationary, irreducible Markov-process, it assumes the form
P(X*0) � �1

x1*P[X*1] � �2
x2*P[X*2] � . . . � �n

xn*P[X*n]
Gi Class or group i; also a generalized spatial-statistic for point i
Gi(p,s) Generalized savings-measure from including demand node i

between demand points p and s in a location–routing heuristic
G�i(p,s) Modified generalized-savings-measure from including node

i between points p and s, after considering different depot-
based tours

G*i (h��) Net change in cost from displacing demand i from tour h to h’’
G**i (h��) Net change in cost from displacing demand i from tour h to 

h’’ considering different fleets
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Gij Transaction of goods and services between the ith and jth
 industrial sectors

Gij General location-pair spatial-statistic
Gpq

ij Monetary transaction between the qth industrial sector in zone
j and the pth economic-sector in zone i in an input-output
model; with shorthand notation being Gpq

j for consumption
and Gq

ij for production respectively, considering only the
nonzero elements

G = [Gij] The growth matrix showing the growth springing off from
group/location i to group/location j (within a period of time);
also a basic-feasible-solution to a simplex-on-a-graph

G(.) Vector return-function in a recursive program
G�= [ghj] Input matrix containing the hth input for decision-making-unit j
ζ(l)

j (.) Economic surplus- or deficit-function at zone j of the lth type
h Index for a variable; generally to show a fleet type, a category

of inputs (costs) in data-envelopment analysis, or the iteration
number in a recursive program

h� Minimum fleet size
h�(.) State-transition function in dynamic programming
h�� Calibration parameter in a dynamic version of a spatial-loca-

tion model; an example is the time-scale parameter to convert
activity to a rate-of-change

hk Height of a subregion k
hij A rate- or calibration-constant in a deterministic compartmen-

tal-model; for example, the interaction between regions i and j
in a multiple-region predictor–prey equation-set, or a short-
hand notation for work-accessibility

h(j) = (←h
k(j)→)T Vector of output-measures for target decision-making-unit j

H Housing expenditure for a household (part of locational
 expenditure)

H(.) The Hamiltonian function in terms of the state equation, the
costate or adjoint variable, and the figure-of-merit at the pre-
sent; it also stands for a general function

H� An upper limit of discrete index h
H�(.) Regional growth-rate function
H�� Set of vehicles in a fleet, or the set of vehicle types in the fleet
|H��| Cardinality of set H’, or the number of members in the set; here

it is the fleet size
Hi Transaction of goods and services to the ith household-sector
Hi Set of potential tours in which demand i can be included
Hp Cost of one dispatch on route p
HG

r Imports to region r
H�i Hazard a node i is exposed to
Hij Hazard a link (i, j) is exposed to
H�ij(.) Flow-rate function from compartment i to compartment j
Hp

ij Monetary transaction between the household sector in zone i
and the pth economic-sector in zone j in an input–output
model

η Elasticity of demand
ηα/2 100(1–α/2 percentile of the standard normal-distribution
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� A parameter in general; for example, it can show decline in
 demand per unit-of-spatial-separation; �i is the rate-of-decline
(or diffusion rate) of inflows into i

�t Coefficient of the tth term in a moving-average time-series
�(B) The backshift operation of a moving-average model
�ij Proportion of activities (or trips) from origin-location i that end

up in destination-location j based strictly on accessibility alone
�ij A short-hand notation for the spatial-interaction term, indicat-

ing the proportion of activities (or trips) from origin-location i
that end up in destination j—based on both accessibility and the
attractiveness at the destination; i.e., the normalized accessibil-
ity-function between i and j

�k = [�ijk] A kth-order spatial-matrix of moving-average coefficients
�(B) = [�ij(B)] A spatial matrix of moving-average operators
i, j Indices for nodes/vertices; i normally stands for a demand

node and j a facility node; or they can just be any counter
i(k) Beginning node of arc k
j(k) Terminating node of arc k
i Cartesian coordinates of a demand i
I Set of nodes/vertices in a network
I(d) The spatial-statistic Moran’s-I for a particular spatial-order as

defined by the distance-parameter d
|I| Cardinality of set I, or the number of members in the set
Ik Profit or income for facility k
IN Set of unlabelled nodes
ID Dual objective-function in recursive program
I� Household or aggregate income
I�t Aggregate income at time t
I�h Set of potential demands for exchange, with an existing

 demand on the tour h
I�� Subset of potential demand nodes within the set I, where

 demands are non-zero
Ipk Any subset of nodes in the kth-stop route pk
I(i) Set of nodes/vertices which are input markets
I(0) Set of nodes/vertices which are output markets
I(t) 0–1 indicator-sequence reflecting the absence and presence of

an intervention, overlaying the transfer-function on top of the
time-series

Ii� A binary variable assuming unity if the combination of facilities
	 provides a satisfactory service to demand i

IRx Total expected-mutual-information between the facility pattern
in the region R and the demand spatial-pattern (when x = I), or
between the facility pattern and an individual demand (when
x = ik); i.e., how probable the facility pattern is consistent with
what is known about the demand pattern I or individual
 demand ik

I [X(k), �(k)] kth-stage payoff or objective-function of a recursive program, de-
fined in terms of decision-variables X and constraint  parameters �

I (P; Q) Information that allows updating a prior probability-distribution
Q to probability P
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rIs(.) Net-benefit function in a decomposed recursive-program
I Identity matrix
j*(k) Optimal facility location in state k
j Cartesian coordinates of a facility j
J Subset of nodes/vertices in a network, generally the candidate

sites for facility location
Jq Set of candidate production sites
|J| Cardinality of set J, or the number of members in the set
J� A particular control-point in the bifurcation set
J�� The double values that the state variable assumes, correspond-

ing to the control variable J� in the bifurcation set
J(i) Set of Voronoi polygons adjacent to the ith polygon
Jk Basis k of a multicriteria linear-program
k Index to show category k (e.g., Zk is the kth activity); it marks a

node, the commodity, the tree in a forest, or just serves as a
counter

k(.) Equation for the control variable over time, expressed in terms
of the state, the costate or adjoint variables

ki Calibration or scaling constant for zone i in a doubly-
 constrained gravity model; the Moran’s-I or General Spatial sta-
tistic; alternatively, it is the propensity to save (invest)

k row vector consisting of 0, + 1, –1 entries marking an orthonor-
mal base of the transition-rate space

K A discrete or continuous constant, or the upper limit of running
index k

K(t) Capital-stock investment over time
Ki, K�i Trip-production and -attraction rate at zone i respectively–
Kj

p A scaling constant; it ensures that the inter-sectorial and inter-
zonal flows sum up to the non-labor input to the input-output
table for sector-p and zone-j

K
.

r Instantaneous rate-of-capital-accumulation in region r
	 Combination of three or more facilities that perform a certain

function
	� The complement of the set 	
�h Cost of operating vehicle h
	h

i Marginal cost of serving demand-node i
K Combination of three or more facilities
l(T) Total cost of spanning-tree T, which is sum of the arc costs
l� Discount rate (e.g., on the number of commuting trips, or tradi-

tionally in the time stream of cost or benefits)
li Lower bound of a specified time window for a salesman or

 vehicle to visit node/vertex i
lj Calibration constant for zone j in a doubly-constrained gravity

model
lk Spatial order of the kth autoregressive-term in a spatial time-series
lh�� Ordered set of neighboring points (p, s) representing candidate

tour h�
lh���i� Ordered set of neighboring points (p, s) in tour h�� after remov-

ing demand i�
lmn(r) Length of an r-stop route originating in m and terminating in n
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rls(x) Route-length vector at stage r and in state s of a decom-
posed  recursive-program, expressed as a function of the
decision  variable x

L Nonempty subset of demand nodes/vertices, where a
 demand instance may be characterized by having actual
demands realized in a node subset L of the network
nodes/vertices I; the symbol also denotes twice the bound-
ary length of a district

|L| Cardinality of set L, or the number of members in the set
L
~

Length of the perimeter of a subarea
L
– The length of a queue, including the entity being served
L(.) Lagrangian or maximum-likelihood function
L� Probability that the location visited is the termination point

for the trip
L” A calibration constant in a bivariate predictor–prey

 difference-equation-set
Lq Queue length (excluding the one being served)
Lr Regional labor-input-factor
L(l)xi Spatial-lag operator on the value of spatial unit i, where l

refers to the lth contiguity-class such as the lth-order neigh-
bors; alternatively, we can write L(l)xi as a matrix operation
to compute the weighted sum of the neighboring values of
i contained in vector x, or (W(l))Tx. In general, L(l)(.) stands
for spatial-lag operator of the lth-order, with the 0th-order
operator reproducing the  observation itself, or L(0)(.) = .

LT(.) Length of a master travelling-salesman-tour, constructed
out of the set of nodes/vertices �

Lij Error (in terms of a “loss measure”) when a Bayesian
 classifier mis-assigns a multi-attribute observation
x = (x1, x2, . . . )T to group j when it actually belongs to
group i; usually Lij = 0 if there is no error and Lij = 1 if
there is a misclassification

Lj(x) Average misclassification error (in terms of a “loss measure”)
when assigning multi-attribute observation x = (x1, x2, . . . )

T

to group j; a couple of computational transformations of this
measure are L’j(x) and L”j (x)

L = (xL(q’1), xL(q’2), . . .)T Matrix containing the left eigenvectors xL
� Dual variable or Lagrange multiplier, with a specific (not

necessarily feasible) solution �
_

and the optimal solution �*

��i A normalized weight, where Σi��i = 1 unless noted otherwise
��� Arrival rate for a queuing process
�k = (←�k

i→)T The kth solution-vector in a Lagrange-relaxation procedure
��* Dual optimal-solution to the linear-program subproblem at

the last iteration within Benders’ decomposition
�(Jk) The weight cone for multicriteria linear-program, showing

the 
�-weight combinations that characterize a particular
solution Jk among the nondominated set of solutions

m, n Indices for dimension or for a node/vertex
m� A calibration constant in a bivariate predictor–prey

 difference-equation-set
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m* A critical bifurcation-value in a bivariate predictor–prey
 difference-equation-set

m1 A collection of entities of characteristic 1; e.g., the number of
complicated constraints in a Lagrangian-relaxation problem

mj A collection of entities of characteristic j; e.g., the number of
high-frequency direction finders in a bundle located at station j

mk Spatial-order of the kth moving-average term in a spatial time-series
mr Vehicle-fleet requirement at depot r, or the number of deployed

vehicles at depot r
m’i, mi” In- and out-movement rate to and from subarea i
m(k) Median for a median-filter using a k � k mask
m1, m2, . . ., mk’ Groups of demand nodes to be served by route 1, 2, . . . , k’, with

m1�m2 �
. . . � mk’ ≤ |I|

m’(q) Maximum shortest-distance from point q
m’ji Binary variable that is “switched on” when demand i is allo-

cated to facility j in a combined data-envelopment-analysis/
location model; also the benefit valuation for such i–j pair

M Area specification for a districting model
Mi Maximum inventory carried at node i
MMax Maximum number of nodes in a vehicle route
M
~

, M
~

’ A couple of matchings in a spanning-tree/perfect-matching
heuristic for the travelling-salesman-problem

M(t) Absolute smoothed-error (used in conjunction with relative
smoothed-error) for adaptive-response-rate exponential-
smoothing over time

M(�) Maximum of the weighted distances from the center candidates
to each of the demands in the candidate facility-locations �

M� Non-locational expenditure such as food, clothing, education,
savings etc.

M�� A very large number or weight
Mij Minor of a square matrix
M(W, p) Simulation results of a facility-location model where p facilities

are relocated to respond to a maximum load of W
M = [mij] Migration matrix showing the migration rate between locations

i and j
� Mean of a probability distribution
�� Service rate of a queuing process; also the number of interme-

diate stops in the longest vehicle-route
�j Positive weights placed upon an extreme direction dj in a linear

program
�i, �i Mean of observations in group i in both scalar and vector form
�(j) Scaling constant of the error  associated the value v being mea-

sured, resulting in �(j) + �(j) (J)

� A collection of integer numbers
�i Route shape parameter (serialized by i) used in location-routing

heuristics, assuming values such as 1 or 2
�t Noise series in a transfer-unction multivariate time-series
�p Dual variable associated with the control total of areawide-

transportation-cost constraint in an entropy-maximization
model
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� Collection of candidate facility-locations
�(X) Collection of all candidate facility-locations in the decision

space X
�(y) Collection of candidate facility-locations which are open (i.e.,

for those locations where yj = 1)
�(z) Collection of candidate facility-locations in the Z space, whose

distance bounds are within z units
� As used in the Minkowski’s distance function, it is the propor-

tion by which factor inputs have to be reduced to reach the effi-
cient point on the production frontier

n� The number of units in a spatial entity (e.g., the number of
zones in a region, the number of subareas in a study area, or the
total number of pixels in an image)

ns Number of sides in a subareal polygon (e.g., in a Dirichlet
 tesselation)

n(a, b) Number of stops between origin-terminal a and destination-
 terminal b

N Population or number of households (e.g., Ni is the population
at location i)

Nj Number of pattern vectors from class Gj, or the number of
nodes or pixel vectors belonging to class j

N’(large) A large number
N
– Total working population in the study area
Np Population working in economic-sector p
Nj

c Capacity for residential development in zone j
N’i Set of spatial units (including facilities) within a distance S from

demand i
Nij Binary decision-variables in a districting model, serving as a

“pointer” across a district boundary separating a geographic
sub-unit i and one that is not j; it is unitarilly value if subunit j
is  acquired and i is not

N Row vector of zonal population Ni
N(k) The nonbasic column associated with variable k in a linear-

 programming tableau
oi Export share of region i
O(lk) Worst-case kth-polynomial computational-complexity for input-

data-length l
Oi Export from the ith region
O’(P) = Orientation sequence of a path P, consisting of �1 and �1

{←Oi’(P)→} entries, depending on the orientation of the arc in the path
 sequence

Oi Export from the ith industrial sector, measured in dollars
O i

j Export from the ith industrial sector in subarea j, measured in
dollars

O = (0←Oi→)T Export vector in an aspatial input–output model, showing the
convention that the first sector (the household sector) has no
 exports

O = (0←Oi
j→)T Export vector in a spatial input-output model, where i is the

economic sector and j is the subarea
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p An integer number for the number of facilities, the number
of services provided, the index for the pth vehicle route, the
 parameter in the lp-metric, or the autoregressive lag order in a
time-series

p� Number of facilities in a subset of the p facilities (i.e., p ’≤  p)
pf Price of fuel
pg Price of the good
pk Price of a commodity k, with p standing for a vector of

 commodity prices
p’i Probability of adopting strategy i in a two-person game
p(j)(.) Probability function of choosing alternative j, j = 1, . . . , n
pik Empirical probability that demand k patronizes facility i; or the

probability of transitioning from state i to state k
p̂ik Estimated value of pik
pi� Empirical probability that a demand patronizes facility i
p�k Empirical probability that a demand k is being served
pj’'

q qth factor-of-production input-prices at subarea j
p’k Number of facilities of the kth type (as used in a multi-product

facility-location formulation)
p
_
(t) Capacity expansion at time t

p” Price of composite consumption good
pijk Conditional probability that event-type i occurs at geographic-

 region j at time-of-day k
p̂ijk Prediction of pijk based both on the hypothesized intervention

model and historical data
p̆ijk Analytical prediction of the relative probabilities pijk, for field

 implementation as a transfer function
p~ijk Relative probabilities after intervention probabilities have been

implemented, using the transfer function p̌ijk
p̀ijk Deseasonalized relative-probabilities after intervention proba-

bilities have been implemented
p = (←p(j)→) Perron vector whose components are positive and sum to unity
pi = (←p

.
ij(t)→)T Vector of transitioning probabilities from state i to state j (where

j = 1, . . . , n)
p
.
i = (←p

.
ij(t)→)T Time-derivative vector of probabilities transitioning transition-

ing from state i to state j (where j = 1, . . . , n)
P A path; also a set of vehicle routes generated for a network
P� Potential surface for destination choice, whose derivative

dP’/dCij is often operationalized by the trip-distribution function
PD Dual space of the linear-programming relaxation problem
P(p) Probability that p servers are occupied (busy)
P(.) Probability of an event �
Pi Nearest location for demand or customer i; also the probability

that the system is in state i
Pi(t) Probability that the system is in state i at time t
P’k , P(k) Steady-state probability of being in state k
Pid” Steady-state probability that decision d� is reached while in

state i
Pij Binary decision-variables in a districting model, serving as a

“pointer” across a district boundary separating a geographic
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sub-unit i from one that is not j; it is unitarilly value if i is
 acquired and j is not

Pijk Joint probability of event-type i occurring in area j at time k,
given that an event-type i occurred at time k

P̆ijk Analytical predictions of pijk aggregated monthly, based on
the hypothesized intervention-model

pmn
k Set of vehicle routes covering origin–destination pair m–n

via k-stop itineraries
pmn

c Set of vehicle routes covering origin–destination pair m–n
via connect itineraries

P
_

Scale of a facility as represented by its capacity, capital out-
lay etc.

P
~

l, P
_

l Lower and upper bound of the supply at location l
P
_
’ Aggregate production-function with capital as input

PP(•) Logical predicate over the argument •
Pj(p) Steady-state saturation-probability of all p service-units (in

 stochastic facility-location)
PPi = (←Pi→) or Updated probability-distribution for each of the n� subareas or 

(←Vij→) |I|nodes written in a vector form; also can be the  updated
travel-vector between i and j, V11, V12, . . . , Vij ,  . . . , V|i||j|,
measuring |I|.|J| long

P(t) = (←Pi(t)→) Vector of the state probabilities Pi(t); also the square matrix
of transition probabilities over time

P
.

= (←P
.
i(t)→) Time-derivative vector of state probabilities Pi (t)

P’= [x1, . . . , xn] Matrix containing independent eigenvectors x(q’j), j = 1, . . . , n
Pt-1, t Variance–covariance matrix for the difference between the

 observed and estimated Kalman-filter time-series-vector (or
the estimation-error vector)

πi Dual variable in a network; such as the shadow price at node
i, or a real number showing the amount of load carried on
board a vehicle at node/vertex i

π (j) Probability that an individual reviews his/her choice of the
jth compartment in a compartmental model

πij(
.) Probability a given individual moves from compartment i to

compartment j—as a function of, say, the state variable and
time

πi
j Dual variable associated with the ith column of the span-

ning-tree (j = 1) or non-spanning-tree (j = 2) part of the basis
(in a  network-with-side-constraint tableau)

π(•) Permutation operator on the argument •
πij( j|i, d”) The probability of transitioning from state i to state j during

one period of the Markov process, given a decision d� has
been made

∏ n n-dimensional transition-rate space
rπs(x, y) Vector gross-return-function of decisions x and y (in a

 decomposition implementation of recursive-program)
∏(.) Vector of gross return-functions of decisions in a recursive

program
∏0(t) = (←πi0(t)→)T Vector of transition rates with the “outside world” over time



Abbreviation and Mathematical Symbols APPENDIX 6 643

∏ = [πkl] Transition-probability matrix in a Markov chain or compart-
mental model, with each entry denoting the given probability of
transitioning from state k to state l; also the matrix of transition
rates from state k to state l

∏̃ Matrix of transition rates from state k to state l, considering both
arrival and service in a queue

q Index to show a node number, center number, median number,
number of substations, or the number of attributes, criteria,
 endogenous variables, eigenvalues, or differencing parameter
in a time series

qk Candidate location for a center k
qik Probability that an event-type i occurs at time k
q� Eigenvalue, with q�Max as the principal eigenvalue; also the

growth rate of an area (with q�j being the subareal growth-rate)
q�i Probability that strategy i is followed (in a two-person game);

also the ith eigenvalue
qi(.) Inventory-cost functions at demand-node i; or simply the unit

cost-of-time (a constant) from demand-origin i
q–j Mean queuing delay
Q Total economic-activity in the study area, such as consumption

in dollars or number of trips executed
Qi Ratio of two accessibility definitions from location i
Q̃l,Q

–
l Lower and upper bounds for the demand at location l

Q� Total number of servers, or number of suppliers
Q̃� Set of discrete points in the feasible region of an integer  program
Q�� Cost per rejected demand in a loss-system location-model
Q
– = [γ–ij] A matrix of economic-base multiplier over a time-increment 	t
Q = (←Qi→) Prior-probability distribution for locating in each of the n�

or [Qij] subareas (written in a vector form); or the vector of prior-travel
 between i and j, Qij

Qt�1 Variance–covariance matrix of the white-noise vector �t
Q� The XTX data-matrix in the nonlinear regression of a STARMA

model; where X is not explicitly given, and has to be numeri-
cally estimated

Q��= [qj] Matrix with eigenvalues q1, q2, . . . along its  diagonal
r Rent or mortgage, as part of locational expenditure (e.g., ri is the

rent for a unit of land i at a distance di from market, and r is the
vector of rents among these land units)

r0 Pearson correlation coefficient
rk Satisficing-level of criterion k; also the autocorrelation of lag-k in

a time-series
r�k Land-consumption rate per retail-employee of trade-class k
r� An lp-metric deviational measure from a standard or an ideal
r�(y�, x) Generalized-Leontief distance-measure, as a function of inputs

x and outputs y�

r(.) Spatial-separation or response-time function of argument �; or
the return function in dynamic programming

r�0 Partial correlation coefficient
r�k Partial-correlation-coefficient of lag-k in a time series
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rj The expected response-time of service unit j, consisting of mean
queuing-delay and mean-travel-time to the demand

rij Direct user-charge at facility j for user from origin i
r (i, d��) Reward expected at state i by making decision d� (in a

Markovian-decision process)
rXY, r(X,Y) Sample (cross) correlation coefficient between random-variables

X and Y
rY|XiXj . . . 

(Xk) Partial-correlation-coefficient between Y and Xk, given Xi,
Xj, . . . are in the equation already

r�i(.) Euclidean distance between demand i and a facility
r̂lm(k) kth-order spatial-temporal-autocorrelation between the lth and

mth neighbors of the subject site
R A closed region in Euclidean 2-space; the set of n subregions 

{R1, R2, . . . , Rn}; or the multiple correlation-coefficient
R(J) The set of n subregions, each identified by its service-facility

 location xi: {R(x1), . . . , R(xn)}
RT Total physical region made up of subregions R1, R2, . . . , Rn;

these regions can be of higher dimensions than the Euclidean 2-
space

R+
n Domain of continuous non-negative variables in Euclidean n-space

|R(k*)| The area of the largest empty-circle with center at k*, located at
any vertex of the bounded Voronoi diagram

|R(x)| The area of subregion R(x); |R(x*i)| is the area of the optimal ith
Voronoi polygon, with its facility at x*i

R� In stochastic facility-location models, R� is the required time in
dispatching a special reserve-service-unit from a neighboring
jurisdiction

R2 Coefficient of multiple-determination in regression
R
–2 Coefficient-of-multiple-determination after adjusted for the

 degree-of-freedom
R2

Y|X1,X2, . . . ,Xk
Coefficient of multiple-determination between Y and X

1, X2, . . . , Xk
R�(y�) Set of input requirements x to produce y� in a production function
R�� The entire image or entire region
R(+|–),R(–|+) Finite predictor/prediction-space used in spatial-temporal

canonical-analysis
Ri Subregion i within the entire region R”; also the production in

subregion i
R�i Normalizing constant in a spatial-interaction function, or the

denominator of the function �ij
Rp

i Production output of the pth industry in zone i
R
– Number of row cells in a grid region, a raster image, or a lattice
Ri Monetary output from the ith industrial-sector
Ri

j Monetary output from the ith industrial-sector located in
subarea j

Rs(d) Norm deviate of the generalized spatial-statistic (analogous to
the two-tailed t-statistic)

R
–

j
p The observed value of non-labor input to the input–output table

for sector p and zone j
R = (yze←Ri→) Output vector in an aspatial input–output model, showing the

production in each economic-sector, starting with output from
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the household (or labor) sector (measured in wages) and
 followed by the first, second, . . . industrial sectors i; here, the y
and ze symbols are defined at the back of this “List of Symbols”

R = (yze
j←Ri

j→) Output vector in a spatial input–output model, showing the
subareal production in each economic-sector i, starting with
the subareal output from the household (or labor) sector
 (measured in wages) and followed by the first, second, . . .
 industrial-sectors by subarea j; here, the y and zj

e symbols are
defined at the back of this “List of Symbols”

R� = [xR(q�1), Matrix containing the right eigenvectors xR
xR(q�2), . . . ]

R�� Commodity-value-added output-vector
Rt Variance–covariance matrix of the measurement error (or

noise) in a Kalman-filter time-series
� Parameter or dual variable to account for the delivery-vehicle capacity
�̆(B̃) Spectral radius of matrix B̃
�’ = λ”/μ’ Utilization rate of a server in a queuing system, or ratio of the

arrival rate 
” and service rate ��
�” Intensity of activity in a subarea
�j Utilization-rate of a service-unit j in stochastic facility-location;

also the import rate of region j
�p Productivity-in-the-pth-economic-sector per unit-of-labor
�ij Trade coefficient between regions i and j
�pq Technical coefficients showing the transactions between the pth

and qth economic-sectors in an input–output model
�pq

j Technical coefficient at the receiving-sector zone-j
�pq

ij Technical coefficients showing the transactions between the pth
economic-sector in zone i and the qth economic-sector in zone j
in an input–output model

� Matrix of technical or input–output coefficients [�pq], trade
 coefficients [�ij], or combined spatial-technical coefficients [�pq

ij ]
�̂ Diagonal matrix of trade coefficients, [�ii]
� j = [� j

h] A matrix of economic-multipliers for the jth economic-sector,
disaggregated by each zone-h

�S, �T The consumption and production multi-sectorial components
of the input/output-coefficient-matrix �, derived from row-
and column-sum normalization of transaction flows respec-
tively, with �S �T = �; the spatial, multi-subareal version
 assumes Gpq

j
/Gj

.q = �j
pq and Gij

q/G.j
q = �

ij
q]

�̂XY Population cross-correlation between random-variables X and Y
�̂2 Relative size of the variance; (1 – �̂2) is the variance reduction
s Source of a network
sp Autoregressive season-length in a seasonal time-series
sq Moving-average season-length in a seasonal time-series
s Prescribed frequency-of-visit at a node/vertex
sX Standard deviation of the random-variable X
s(j) Sum of vertex(node)–arc(link) distances for facility j (the small-

est sum identifies the general median)
s’(j) Sum of point–arc distances for facility j (the smallest sum iden-

tifies the general absolute median)
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s2 Sample variance, with s being the standard deviation
sij Length of the border separating geographic sub-unit i from sub-unit

j; also the surviving ratio of cohort-group j from cohort-group i
s� Average size of a site; or the ratio between the demand poten-

tials at sites i and j
s�� Slack node/vertex in a network
S A set of alternatives (e.g., the set of solutions that satisfies a

 predetermined goal or standard, the branch-and-bound search-
space in a linear-programming relaxation etc.)

S(•) Sum-of-squares surface constructed out of the parameters • in
nonlinear regression

S� Consumers’ surplus (or net benefit) to a tripmaker in making a
trip; alternatively it refers to a predetermined maximum-
 service-distance in discrete facility-location

S�� Another set of alternatives (for example, the set after introduc-
ing a new alternative)

Sk Set of demand vertices or nodes that would be covered by a center at qk
Si(p�, q�) The increase (or savings) via a triangular-inequality-style  inclu-

sion (or exclusion) of demand i between the adjacent points (p�, q�)
si(lh��/i�) Increase in travel distance from serving demand i via tour h”

(after the former-demand i’ has been removed)
Si Marginal-cost function for path i
Sl(V

S
l ) Supply function showing price against flow quantity, in other

words price charged at supply-quantity VS
l ; here, the supply

quantity Vl
s is defined later in this List of Symbols

S�kj Unit benefit of assigning the kth activity (or activity from zone
k) to zone j

Sjk The kth site-specific attribute of the jth facility (such as the
acreage of a state park)

Sk, l Marginal-cost function between origin k and destination l
Sij Vector of level-of-service variables between locations i and j,

 including such variables as travel time and travel cost
 Standard deviation of a probability distribution
2 Variance of a probability distribution (see also the sample-variance s2)
� Vendor score or simply a constant in a model
�i Real number showing the “odometer” reading of a vehicle at

node/vertex i
�2

Ŷ “Tilting” effect, as measured in terms of the variance, on the
 regression line (due to the randomness of the regression
 coefficients)

�2
M� “Tilting” effect, as measured in terms of the variance, on the

 regression line—when an additional data-point x� is added to
the regression

�2
Y Total regression-based prediction- or estimation-error, as

 expressed in terms of the variance of the predicted- or esti-
mated-values Y

�2
Y� Total regression-based prediction-error, as expressed in terms of

the variance of the predicted values Y�
�2

M* Variance of a normally-distributed set of residuals, around the
sample regression-line at X = x*
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�ij
pq Calibration coefficient such as the subareal investment-

 coefficient or the marginal capital-output-ratio, quantifying the
multiplier  effect of investment among economic sectors and
 between subareas

�2
j Variance (or second moment) of service-time at service-unit j

�h = (←�h
i →) Vector of dual-variables corresponding to the ith constraints

defining the hth travelling-salesman-polytope
� = [aj] Zonal population-serving-ratios along the diagonal of an n�×n�

matrix
Σ = [cov(ƐiƐj)] Error covariance-matrix
t Time dimension or simply a counter for a series of data (e.g.,

N(t) is the population at time t, 	t is a time increment)
t� Subareal share of transportation-accessibility-to-employment
tb Student-t statistic for calibration-parameter b
tα/2, n�2 t-statistic at 100(1 – α)% confidence-level and n – 2 degrees-

of-freedom
tN Sink node/vertex of a network
t” Technical-attribute score
tk Step size in iteration-k of a hill-climbing optimization-algorithm
t0 Dwell time at a terminal
th

j Delivery- or dwell-time at node j by salesman or vehicle h
tij Normalized work-accessibility-function between i and j
rts(x, Φ, V) Cost of providing service at state s and stage r of a recursive-

program
t̃ Random service-time on-scene t̃i or off-scene t̃j
t– Expected value of on-scene service-times to all demands i
t–� Ratio between intra-nodal distances at i and j
t–j Average service-time for a service-unit stationed at depot j,

 consisting of on-scene service-time at the demand t1
i and the off-

scene service-time at the depot t2
j

t = [tij] Matrix of normalized work-accessibilities, measuring n� × n�
tk = [τ k

ij] Matrix of travel-times between i and j
τ Time duration (e.g., τij or τ(i, j) is the travel time from location

i to j)
τ� Calibration constant in a dynamicized input–output model
τk A user-defined scalar in the subgradient optimization routine

ranged (say) between 0 and 2
τ̃ Random variable for service-time in a queuing process; τ̃j|i is

the random service-time for demand i from depot j
τ–j Expected one-way travel-time to a random demand from depot j
τ–j�(k) Expected travel-time from j to all demands in state k
T Transportation cost as part of locational expenditure; also quan-

tifies other technological factors
T. or T(.) A-priori travelling-salesman-tour as a function of �
T� Minimum spanning-tree of a graph
T�� Multi-graph, derived from the minimum spanning-tree by

 duplicating every arc of the graph; also an instance of the trav-
elling-salesman problem

TN Alternate sink-node/vertex in a network for excess flows
Tj Number-of-neighbors surrounding geographic sub-unit j
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T�i Proportion of sales from subject location to demand at i
T��i Electrical-flow capacity of a substation i
Tij Number of ith-group neighbors for a jth-group geographic

sub-unit
T̂ij Current estimate on random-variable Tij
T Diagonal matrix of zonal activities such as population
T(.) Vector of cost-functions in a recursive-program
TB Basis for a simplex-on-a-graph, represented graphically as a

tree
u Accessibility-to-population, or a calibration parameter in

 general; for example, uij is the normalized nonwork-accessibility
between i and j

u(t) The set of infinite control-paths between the initial point t = a
and end point t = b

u� Frequency of a signal
u�� Ratio of the maximum travel-distances between nodes i and j
ui(t) Dual variables in a recursive-program for t = 1, 2, . . .
ui Upper bound of a specified time-window when a salesman or

a vehicle visits node/vertex i
u�ij Capacity on arc (i, j) in a network
rus(x, y) Inference dual-variable to show the value (or shadow price) of

relaxing an rth connectivity-requirement at state s
u Surplus variables in a linear program; also a subset of control-

variables U
u� = [uij] Matrix of nonwork accessibilities, measuring n� × n�
U Utilities (e.g., U* is the maximum amount of utility from a

given income or budget)
U(h) Route length or the range of a vehicle tour for vehicle type 

h (h = 1, 2, . . . )
U� Maximum route-length or range among a fleet of vehicles,

U� = Maxh[U(h)]
U(t) Control variables over time t
U = (←Uj→) Vector of control-variables in control theory (slow variables),

usually expressed as a function of t; Uj also stands for just the
jth canonical-variate

U Diagonal matrix of zonal activities such as employment
U(k) = [←uk+r→] Matrix of inference dual-variables in a binary recursive-program
� Value or utility function, or simply the metric resulting from

such a measurement
�ij The composite travel-cost, or the “utility function,” between

zones i and j, combining time, cost and other travel imped-
ances into a single metric

�(k) Average filter using the kth-order neighbors
�� A given parameter (such as housing subsidy per household)
��� Velocity of a service vehicle in stochastic facility-location
�i Dual variable associated with node/vertex i
�w Walking speed
�Max Maximum velocity of a vehicle
�(j)(.) or �j(.) Deterministic value-function for alternative j
��ij The reduced cost for arc (i, j) in network-flow programming
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vi = (←�j
i→) An eigenvector consisting of as many entries as the number of

alternatives; this is equivalent to xi = x(q�i )
v Surplus variables in a linear program
V The amount of economic activities, traffic flow or patronage

(e.g., Vi is the amount of activities or trips originating or termi-
nating at location i, and Vij is the exchange of economic activi-
ties or traffic movement between locations i and j); V̂ is the
 estimated value and V* is the observed value.

V(h) Capacity of vehicle-type h, where h = 1, 2, . . .
V�(h) Capacity remaining on each vehicle h
V�(.) Normalized vehicle-capacity
Vd Inverse demand-function, or the price schedule expressed as a

function of a firm’s (firms’) total output; Vd
i is the excess

 demand at subarea i
V� Set of vertices or nodes in a graph or network
Vi The ith canonical-variate
Vij Flow between origin-destination pair i–j; Ṽij is the lower bound

and V
_

ij is the upper bound
Vijk Probability that a demand i of type k is received by facility j
Vk

ij Trips of type k from i to j
V̂ij Predicted interactions between subareas i and j
Ṽd

iq Amount supplied by all the firms other than q to demand-
location i

Vs
i Output of firm i; also standing for the excess supply of a firm

 located in subarea i
� Calibration constant representing such parameters as the trip-

generation rate or response rate of the system
�h Polytope (feasible region) defined by the hth travelling-salesman-

problem
�� Probability distribution (e.g., probability that the surplus result-

ing from the trip to j has a value in the neighborhood of S�)
� Cumulative distribution (e.g., �(�) = [F(�)]n is the cumulative

distribution-function of the largest-utility v among n indepen-
dent samples; �ij(S�) is the cumulative-distribution-function of
the surplus accruing from the preferred (optimal) trip between
location i and j)

�k Coefficient of the kth-lag term in an autoregressive-time-series
�(B) The backshift operation of an autoregressive model
�̂k Partial-autocorrelation-coefficient for the kth-lag term in an

 autoregressive-time-series
�̂kl Partial-autocorrelation-coefficient at temporal-lag k and spatial-

lag l in an autoregressive spatial-time-series
�(.) Flow-vector function at stage s of a decomposed recursive-

program
�(x) Demand density-function on Voronoi polygons
� Vector of pertinent flows at stage r and state s of a decomposed

recursive-program; these flows can be expressed in terms of the
pertinent demand-vector f

�T = (←�i→) Vector of autoregressive coefficients in a conditional spatial-
econometric model
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�k = [�ijk] A spatial autoregressive-coefficient matrix of order k
�(B) = [�ij(B)] A spatial autoregressive-operator matrix
�k(.) = [←�k+r→] Matrix of flow-vectors �k+r [←xk+r(k)→]
�k+r [←xk+r(k)→] Flow-vector at the kth cycle and rth stage, showing origin-

 destination-connectivity as a function of the iterative multi-
stop routing-decisions

X2 Chi-square statistic
� Expected cost between stockout and storage in a newsboy

problem
� = [fj] Zonal activity-rates along the diagonal of the n’ � n’ matrix
� Value of a given function; e.g., Sierpinski’s-curve value
�j Weights used in time-series forecasting
�k=1

n    (lk) Dynamic-program recursion-function for computing the
shortest-route-length l

� Dual variable corresponding to the terminal capacity con-
straint—a parameter to account for the given warehouse
 capacity; also regular vector space

�
_

A bounded domain including the boundary ��
�q = {Xq} A feasible region within the vector space �; e.g., a set of con-

straints in a spatial-equilibrium model, expressed in terms of
the flow decision-variables xq for each of the suppliers q

�ij Percentage-change-of-patronage at facility j from the
 demands that originate at i

	(B) = Σi	iB
i Backshift operator containing the dynamic multipliers �i in a

set of dynamic simultaneous-equations
	t�1,t Transition matrix in a Kalman filter
�’k Connectivity requirement on the origin–destination pairs

during the kth cycle
�’k(r) Connectivity requirement on a subset of the origin–destination

pairs during the rth stage in the kth cycle; i.e., the number of
constraint functions defining the local flow-pattern in a recur-
sive program for the RISE algorithm

w A constant, or an aggregate weight-parameter, placed on a
 variable or an estimator-measure (such as Moran’s-I, and its
variance, plus the mean and expected variance of the general
spatial-statistic)

wk A constant or a weight placed on entity or attribute k; when
these weights are normalized and summed to unity, we write 
Σi �i = 1

wk Weight reflecting the relative importance of workplace-based
retail-trips for purpose k

w̃1, w̃2 Weight parameters used in the formulas for the variance of
Moran’s-I

w’k Width of a subregion k
w’t A white-noise series, consisting of a sequence of uncorrelated

random-variables, each with zero mean and finite variance;
 engineers consider them as independent “shocks” that are
transformed by a “transfer function” to another time-series
whose successive values are highly dependent.

w”p Frequency on route p
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wij Weight placed on the demand-facility pair i–j or the weight
placed on arc flow (i, j), otherwise referred to as cost coeffi-
cients in the equivalent linear-program; also denotes the
weight entry in a spatial-weight-matrix W, with 0 ≤ Wij ≤ 1

wij(d) Binary valuations of wij when an activity at j is within a dis-
tance d from i

wijp Frequency on the (i, j) segment of route p
w j

i Weight contribution toward criterion i by alternative j
rw s(φ,V) Vector of route-frequencies at stage r and state s of a decom-

posed recursive-program
w = (←wi→)T Eigenvector consisting of q entries—this is equivalent to vi and

xi; also the cost vector in a network-flow program
w (l) = (←w(l)

ij→)T The vector of spatial-weights associated with the lth contiguity-
class; an example is the weights associated with the lth-order
neighbors—notice this is equivalent to the spatial operator L(l)(•)

W White-collar employment; also work load or demand placed
on a service-unit

Wi Size of demand or activity at i, which is proxy for development
opportunity at the zone; W� is the vector of development-
 opportunities among all zones

Wq Delay time in queue
WT Total time in system, including delay time in queue and the

time being served
W(t) Rate of investment in new capacity over time
W’i Revised size of demand or activity at i
Wij Service-effectiveness weight expressed as a function of the sep-

aration between demand i and facility j; i.e., the further apart i
and j are, the less effective it is for service to be rendered

W
_

p
i

Observed value of attractiveness or the opportunity of zone-i
as a location for industry-p

W h
i Observed zonal-residence attractiveness or opportunity

W p
i

Observed zonal-shopping attractiveness or opportunity
W = [wij] A q � q pairwise-comparison weight-matrix used in the

 analytic hierarchy process; also denotes the weight matrix in
spatial econometric-models, measuring n � n

W ’ = [wgh] An n’ � n’ activity derivation-and-allocation matrix of Lowry–
Garin model, with each entry denoting a zone pair g – h

W ” = [wj] The diagonal matrix consisting of per-capita value-added
 productivity (wage rate)

Wj Activity derivation–allocation, transition or spatial-weight
 matrix for the jth activity in a Lowry–Garin model

W (l) = [wij
(l)] Spatial weight-matrix for the lth-contiguity class; with the nor-

malized spatial-weights sum to unity Σjw
(l)
ij = 1 and W(0) = [w(0)

ij ] =
I or the 0th-order neighbors being the subject entry itself.

Wt Gain matrix in Kalman filter, representing the net percentage
of measurement-error or noise that is left after filtering

(w(t)y)�yt
Preprocessing of data y by removing the subject ith-entry, and
then replace it with a value resulting from “filtering” with a
 spatial-”mask” W(l) of order l

x* Sample observation or the optimal value of x
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x� A particular observation for the random-variable X
x�t Actual, accurate data in a Kalman-filter time-series (to be

 differentiated from what is observable)
x0, x’0, x 0”, ... Decision boundary between pattern groups 1 and 2, 2 and 3, 3

and 4, etc.
xij Allocation of demand i to facility j; or flow from i to j
xi Flow on path i in a network
xp

i Equilibrium economic-activity at each subarea i and sector p
x̃p

i Projected sales of product p in subarea i
xijk Allocation of demand i to facility j in state k
xmn Lost calls between origin–destination pair m–n
xm,n(Cm,n) Demand-for-transportation between origin–destination pair

m–n as a function of the transportation cost between them
xmn

p Binary link-allocation of demand between origin–destination
pair m–n to non-stop route or itinerary p

xji
qp Input of commodity-q from subarea-j in the production of

 commodity-p in subarea-i
xmip

mn Binary allocation of demand m–n on route p as indicated by the
usage of segment (m, i) in the itinerary

x = (←xj→)T Vector of decision-variables, or empirical readings (such as
change-in-accessibility for all the activities j)

xq An interior point in the feasible-region �q
xt = (x1, x2,. . .)

T Observed readings in a time-series
x’t = (x’1, x’2,. . .)

T Actual readings over time in a Kalman-filter time-series
xL The left eigenvector of a square matrix
xR The right eigenvector of a square matrix
xi The ith discrete-point proposal in a branch-and-bound tree,

 corresponding to a constraint in the Lagrangian-dual linear-program
xk The kth basic-solution in a linear-program, or the kth set of

 decision-variables (e.g., solution alternative in a branch-and-
bound tree, the location of the kth-facility, or the routing
 decision-variables for the kth-vehicle)

xs
0 Coordinates for the origin of a trip

xt
0 Coordinates for the destination of a trip

xik The ith discrete-point proposal in a branch-and-bound tree
during the kth-step of the subgradient-optimization procedure
of Lagrangian relaxation

x*(xs
0) Nearest public-transportation terminal for a trip starting at

 origin xs
0

x*(xt
0) Nearest public-transportation terminal for a trip terminating at

destination xt
0

x̂′t = (x̂1, x̂2, . . . )T Estimated-values of the observations in a Kalman-filter time-
 series

xk+r (k) The kth iterative multi-stop-routing decision-variables for the
rth-stage

x– k+r (k) Realized values for the kth iterative multi-stop routing-
decision-variables in the rth-stage

X The decision-variable X; or the decision or alternative space in
multi-criteria decision-making

X� The state space in Markovian decision processes



X
– Average of the independent random-variable X in a

 regression model
Xp Control total of areawide transportation-cost for com-

modity p
X(t) Random variable for the state at time t
Xk Random variable for the state at stage or time k
Xi(.) Accessibility from origin i to all destinations as a func-

tion of such parameter as travel cost
X�lj Activity-l’s accessibility to zone j
Xij Observed patronage of facility j by demand from

 location i
Xi

k
Amount of activity k in zone i
Exogenous- or independent-variable n � (k�1) matrix
in ordinary-least-squares regression, corresponding to
n observations and (k�1) calibration-parameters

X(t) = (←Xi(t)→)T Vector of state-variables in control theory (fast variables),
 expressed as a function of t in terms of the individual
state  variables Xi(t) for states i = 1, . . . , n

X(0) = X0 = (←Xi(0)→)T Initial condition of the state-vector at time 0 for states
i = 1, . . , n

XMax
* (t) The most-likely state

X(k) = [←xk+r(k)→] Matrix of binary-decision-variables in a recursive-
program  during the kth-cycle and the rth-stage

Xl(Δ)=(←xlj(Δ)→) Activity-l’s accessibility to individual-zone-j expressed
as change in the regional-share-in-accessibility

X��= (←X��i →) Stationary states in system of interacting differential-
equations

X j = [X j
gh] A matrix of accessibilities between zones g and h for

 activity j
y Wage rate for a household or total wages across the

labor-force
y* Sample observation or the optimal-value of y
y� Regression-based prediction corresponding to a given x�

yp The pth-component of the y�-vector in a network-tableau
yt Ordinate of an observed-data-point in the series t = 1,

2, . . .
ŷ t Estimated ordinate of an observed-data-point in the

 series t = 1, 2, . . .
yq Household-wage expenditure on the qth industrial-

sector
yjk Binary-decision-variable to assign facility to node-j in

state-k
yijk Binary-decision-variable to indicate that node/vertex-i

is served by facility-j in state-k
y mn

k Binary indicator to show that there are k stops between
origin–destination pair m–n

yu(k), v(l) Binary decision-variable to indicate moving a facility from
node/vertex u to v as the state transitions from k to l

Y = (←yj→)T Vector of integer-variables in a mathematical-program,
or simply a point within the regular vector-space
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yq A point other than xq within the feasible-region �q
y� = (←y’i→)T A vector of criterion-measures consisting of attributes i; also the

updated or ‘refreshed’ column in a network-flow-tableau dur-
ing the simplex-iterations

y�� Interim solution in Benders’ decomposition
y(k) The updated (or “refreshed”) kth column in a network-tableau
Y j = (←yj

i→)T A vector of criterion-measures for alternative j, or the jth group
of yi-variables (e.g., the delivery commitment of vehicle j
 toward demand i)

Y The decision-variable Y, or random-variable notation of the
 explanatory or dependent variable in ordinary-least-squares
 regression; also the regional income

Y
_

Mean of the random-variable Y
Y� Outcome or criterion space of multi-criteria decision-making;

also the prediction random-variable in regression
Y�� The combinatorial space of the discrete-variables yi
Yij A spatial-variable defined by the coordinates i and j—a variable

that is related to its neighbors in both axes of this coordinate
system; also the cross product showing the covariance between
the observations at i and j

Y = (←yi→)T Explanatory- or dependent-variable vector in ordinary-least-
squares regression, consisting of n observations; Ŷ denotes the
estimated-values of random-variable Y

Yij = [←yij
l→] Binary parameters of each constraint-function in recursive

 programming (p� in total), where i is the state-index and j the 

stage-index; Y(k) =

Y(.) State-connectivity linkage-function of past decisions and avail-
able vehicle-capacity in a recursive-program

Y� Labor-force-value-added output-vector
z Objective-function of an optimization-problem; also used to

 denote the activity-generation rate
z� A bound on z
z(j) Objective-function value of the jth alternative
zc Largest demand-facility assignment-distance
zi Amount of product or services sold at demand-point i; or a

transformed observation from the raw-data Zi
zt Stationary time-series with zero mean
zIP An integer-programming objective-function that is to be esti-

mated by Lagrangian-relaxation
ẑt

Stationary time-series with non-zero mean; also the estimated-
value in an adaptive time-series

z’j Binary variable to denote the location of a facility at j; zj is used
after yj when there is more than one type of facility to be located;
also the optimal benefit of opening facility-j in a generalized 
p-median-problem (as defined in a subproblem of Lagrangian-
relaxation solution

zj
0 Amount-of-output produced at supply-facility or plant j

zj
0i Amount-of-output produced at plant j and sent to output-

market i
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zij “Trunk” traffic from supply-source i to distribution-center j
zj

i Amount of input-i used by plant-j
zei Employment by the eith-type industry
ze

i Number-of-households in zone-i employed by industry
zet

ij
Supply-of-labor by household in zone-i to zone-j for employ-
ment by the eith-type industry

zi
L Lower-bound of objective-function-value at iteration-i

zi
U Upper-bound of objective-function-value at iteration-i

z� Lower or upper bound of objective-function-value
zij Binary indicator-variable to show whether a multiattribute

 observation x = (x1, x2, ... )T for a pixel of color j has been
 properly classified into group i; zij = 1 when it is properly clas-
sified into group i (or i = j) and zij = 0 when it is improperly clas-
sified (i ≠ j). In vector notation for two groups i and j, we write 
zi = (zii, zij)

T = (1, 0); and the random variable corresponding to 
zi = (zii, zij)

T is ~zi = (~zii, 
~zij)

T.
zij’ Impedance between zones i and j
zLD Objective-function-value of a Lagrangian-dual
zLP Objective-function-value for a linear-program relaxation
zLR Objective-function-value for a Lagrangian-relaxation problem
z̀i Goods in storage at location-i
z vector of Z values induced for stationary and with mean set to

zero; also stands for endogenous variables in an econometric
model

zj Vector-of-pixels z for group j in a Bayesian classifier
Z Activity level (where the activity can be population, employ-

ment, gray values, or any economic or non-economic activity)
Z(i) Expected-value of the decision made at state-i
Z’(i) Expected-value of the improved-decision made at state-i

 according to Howard’s policy-iteration
Zj Objective-function value or activity level at location-j
Zt Raw-data time-series before inducing stationarity
Z’t Actual, accurate data in a Kalman-filter time-series (to be dif-

ferentiated from what is observable)
Z
.
t Z

..
t First and second differencing of time-series Zt

Z� Preference structure in multi-criteria decision-making
Z” Deviation-measures from the efficient-contour of unity in the

Minkowski distance-function
Zij Value of spatial-data at grid-point i – j; often simplified to read

Zj to stand for the spatial-data value at location-j
Zl

j Value of the jth spatial-data at spatial-lag l
Z+

n n-dimensional Euclidean-space of positive discrete-values
Z = (←Zi→) Vector of exogenous-variables Zi of such activities as population

and employment in each zone-i; Z0 is the initial-values of Z
Z(t) Density or relative-frequency of the state-vector X(t); in other

words, the normalized state-vector
Zj = (←Zji→) The jth-activity assigned to zone-i
Zi Vector of the total-population/employment activity-levels at

time-period (iteration) i, with Z0 as the given final-period basic-
activities (from which other activities are generated)





Solutions to Exercises 
and Problems

I. SOLUTIONS TO SELF-INSTRUCTIONAL MODULES
In the following pages, we will provide the solutions to selected exercises and
problems. The first part documents the solutions to the following seven  Self-
Instructional Modules. As the reader may recall, each module was introduced as
an exercise at the end of the respective chapters. The module itself is physically
located on the CD/DVD, prepared in a format suitable for instructional home-
work  assignments. In keeping with the modular concept of these assignments,
the  solution to each module is provided as a separate document.

Chapter 1 EMPIRICAL MODELING MODULE
Chapter 2 PROBABILITY MODULE
Chapter 3 PROBABILITY DISTRIBUTION AND QUEUING MODULE
Chapter 4 GRAPH OPTIMIZATION MODULE
Chapter 5 RISK ASSESSMENT MODULE
Chapter 6 LINEAR PROGRAMMING MODULE Part 1—Model Formulation
Chapter 7 LINEAR PROGRAMMING MODULE Part 2—Solution
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A. Empirical Modeling Module: Answers 
to Illustrative Exercises

ILLUSTRATION (2)

The graph should be of the form:

ILLUSTRATION (3)

Using *logGNP* = 0.064 t + 1.62, the following Table can be constructed:

year (t) fitted *logGNP*

1 1.684
2 1.748
3 1.812
4 1.876
5 1.940
6 2.004
7 2.068
8 2.132
9 2.196

10 2.260
15 2.580
20 2.900
25 3.220
30 3.540

normal numeric scale

GNP ($ Billions)

year

lo
g 

sc
al

e
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The fitted *logGNP* is converted to actual GNP and compared with the actual
GNP:

year actual GNP ($ Billions) fitted GNP ($ Billions)

1 53 48.3
2 59 56.0
3 68 64.9
4 68 75.2
5 85 87.1
6 97 100.9
7 116 116.9
8 142 135.5
9 166 157.0

10 197 182.0

ILLUSTRATION (4)

gr
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s 
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bs

ta
nc

e 

year

year 0 5.2 10.4 15 20.8 26 31.2

cobalt 60 (g) 10 5 2.5 1.25 0.625 0.3125 0.1563

The graphs for cobalt 60 and cesium 134 should be of the form:
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ILLUSTRATION (5)

The graph of cesium 134 on the semi-log graph should be of the form:

Year

gr
am

s 
of

 r
ad

io
ac

tiv
e

ce
si

um
 1

34
lo

g 
sc
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e

n 68.68 54.48 45.89 40.03 35.72 32.40

r (in %) 1 2 3 4 5 6
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B. Probability Module: Answers to 
Illustrative Exercises

ILLUSTRATION (3)

S = {(H,H,H), (H,H,T), (H,T,H), (T,H,H), (T,T,H), (T,H,T), (H,T,T), (T,T,T)}

ILLUSTRATION (4)

S = {(M,D), (M,R), (M,O), (F,D), (F,R), (F,O)}

ILLUSTRATION (5)

The sample space is:

(1, 1)   (2, 1)   (3, 1)   (4, 1)   (5, 1)   (6, 1)
(1, 1)   (2, 2)   (3, 2)   (4, 2)   (5, 2)   (6, 2)
(1, 3)   (2, 3)   (3, 1)   (4, 3)   (5, 3)   (6, 3)

(1, 4)   (2, 4)   (3, 4)   (4, 4)   (5, 4)   (6, 4)
(1, 5)   (2, 5)   (3, 5)   (4, 5)   (5, 5)   (6, 5)
(1, 6)   (2, 6)   (3, 6)   (4, 6)   (5, 6)   (6, 6)



ILLUSTRATION (6)

“At least one head” {(H,H), (H,T), (T,H)}
“At least one head or one tail” {(H,H), (H,T), (T,H), (T,T)}
“two heads” {(H,H)}
“one tail” {(H,T), (T,H)}
“first coin is head” is {(H,H), (H,T)}
“second coin is tail” is {(H,T), (T,T)}.

ILLUSTRATION (7)

The event, “the sum of the spots on the 2 dice is 7,” is {(6,1), (5,2), (2,5), (4,3), (3,4), (1,6)}.
The event, “number on the second die is twice the number on the first die,” is
{(1,2), (2,4), (3,6)}.
The event, “the number on the second die is larger than the number on the first die,”
is {(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)).
The event, “the number on the first die is 2,” is {(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)}.

ILLUSTRATION (8)

The event, “first coin shows head or at least one coin shows head,” is {(H,H), (H,T), (T,H)}.
The event, “first coin shows head and at least one coin shows head,” is {(H,H), (H,T)}.
The event, “at least one coins shows tail or at least one coin shows head,” is
{(H,H), (H,T), (T,H), (T,T)}.
The event, “at least one coins shows tail and at least one coin shows head,” is {(H,T), (T,H)}.

ILLUSTRATION (11)

3rd selection has 28 possible choices.
4th selection has 27 possible choices.
5th selection has 26 possible choices.
The number of different course loads is: 30 � 29 � 28 � 27 � 26 = 17,100,720.

ILLUSTRATION (12)

2nd toss has 6 possible outcomes.
3rd toss has 6 possible outcomes.
The number of different outcomes is: 6 � 6 � 6 = 216.

ILLUSTRATION (13)

2nd toss has 36 possible outcomes.
3rd toss has 36 possible outcomes.
The number of different possible outcomes is: 36 � 36 � 36 = 46,656.
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ILLUSTRATION (16)

8P4 � 8!/(8
4)! � 1,680

ILLUSTRATION (17)

The 9 permutations are

aa bb cc
ab ba ca
ac bc cb

“APPLICATIONS” SECTION

There are 365 possible days for the 3rd person’s birthday.
There are 365 possible days for the 4th person’s birthday.
There are 365 possible days for the 5th person’s birthday.
365P

5 = 3655 = 6.48 � 1012

There are 362 days for the 4th person’s birthday.
There are 361 days for the 5th person’s birthday.

365P5 = 365! / (365 � 5)! = 365 � 364 � 363 � 362 � 361 = 6.30 � 1012

(b) 1�365P20/365P
20 = 1 � 0.589 = 0.411.

(c) 1�365P25/365P
25 = 1 � 0.431 = 0.569

C. Probability Distribution & Queuing Module:
Answers to Illustrative Exercises

ILLUSTRATION (2)
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Random variable X � number of Associated prob. of random 
dots showing variable X

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6



ILLUSTRATION (4)

(4-c)

n � 5, X = 2, p = 1
2

P(X � 2) � (52) (1/2)2(1/2)3 � 5/16 � 0.3125

(4-d)

P(X � 5) � (5
2) (1/2)5(1/2)0 � 1/32 � 0.0313

ILLUSTRATION (5)

(5-a)

n � 10, X � 8, p � 0.9

P(X � 8) � (10
8 ) (0.9)8(0.1)2 � 0.194
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1

1/6

2/6

2 3 4 5 6 X

P (X )

X P(X)

0 1/8 (TTT) Zero head

1 3/8 (HTT), (THT), (TTH) One head

2 3/8 (HHT), (HTH), (THH) Two heads

3 1/8 (HHH) Three heads

ILLUSTRATION (3)

2/8

1/8

0 1 2 3 X

4/8

3/8

P (X )



(5-b)

n � 10, X � 9, p � 0.9

P(X � 9) � (10
9 ) (0.9)9(0.1)1 � 0.387

ILLUSTRATION (7)

(7-a)

m � 1, X � 2

P(X � 2) � (e�1) (12)/(2!) � 0.184

(7-b)

P(X � 3) � (e
1) (13)/(3!) � 0.061

(7-c)

P(X = 4) = (e�1) (14)/(4!) = 0.015

ILLUSTRATION (8)

(8-b)

P(X � 2) = 1 � e�0.4 = 0.330

(8-c)

P(X � 3) = 1 � e�0.6 = 0.451

ILLUSTRATION (9)

(9-b)

P(X � 5) = 1 � e�2.5 = 0.918

(9-c)

P(X � 10) = 1 � e�5 = 0.993
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D. Graph Theory Module: Answers 
to Illustrative Exercises

ILLUSTRATION (1)
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Vertex A B C D E F

Degree? 2 6 4 4 2 6

ILLUSTRATION (2)

path
cycle
3
3

A forest is graph without cycles. It is made up of trees, which are not necessar-
ily connected.

ILLUSTRATION (3)

Vertex A B C D E F G H I J K L

Degree 4 4 4 4 4 4 1 1 1 1 1 1

It is a connected graph. It is not a tree. We can make it into a tree by eliminating
one of the two arcs connecting A to F, B to C and D to E and eliminating arc AB.

G

A

F

L E

D

J

B

H

C

I
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ILLUSTRATION (4)

A is 2 B is 2

ILLUSTRATION (5)

Yes, closed path can be traced. The degree of A is 2, B is 4, C is 2.

ILLUSTRATION (6)

A is 2 B is 6 C is 2 D is 2

ILLUSTRATION (7)

Vertex A B C D E

Degree 2 3 2 3 2

The graph is semi Eulerian because two vertices, B and D, have odd number
 degree.

ILLUSTRATION (8)

A

A

A

F

F

F

E

E

E

D

A and E ⇒ Odd;  B and F ⇒ Even

A and F ⇒ Odd;  B and E ⇒ Even

E and F ⇒ Odd;  B and A ⇒ Even

D

D

C

C

C

B

B

B



ILLUSTRATION (9)
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A

A

A

A

B

D

D

D

D

F

F

A, B, C, D, E, F ⇒ Even

E, D ⇒ Odd; A, B, C, F ⇒ Even

C, E ⇒ Odd; A, B, D, F ⇒ Even

B, E ⇒ Odd; A, F, D ⇒ Even

F

F

E

E

E

E

C

C

C

C

B

B

B

ILLUSTRATION (11)

The minimum spanning tree is

Arc LC CK JE BH FG CG KB AB KJ DE IE

Length 1 1 1 1 2 2 3 3 4 4 4

Notice arc LF is skipped.

Total Length � 26 km
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G

C

A
B

H

I

E

J

K

L

D

3

3

1

1

1

1

4

4

4

2

2

F

ILLUSTRATION (12)

Activity Cost

C $ 3,000

D $ 4,000

E $ 4,000

F $ 3,000

ILLUSTRATION (13)

(3, 5)(0, 3)

A B H

C

E

D

F

G

I

(3, 9)

(9, 19)

(19, 27)
(27, 28)

(12, 16)

(9, 12)

3

3

10

8

6

2 8

1

1

1

(5, 13)



The critical path is A to C to E to D to I.
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7
6
5
4
3
2
1

0 1 2 3 4 5 6 7 8 9 10 12 14
time, in month

16 18 20 22 24 26 28
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completion
time
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E

D
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The intrinsic labor cost � 65 person $ 2,000 � $ 130,000. 
The actual labor cost � 140 person months � $ 2,000 � $ 280,000.

Slacks:
Earliest start time for F is 9.
Latest start time for F is 21. Slack for F = 12
Earliest start time for H is 5.
Latest start time for H is 19. Slack for H = 14 months.

Resource Leveling

7
8

6
5
4
3
2
1

0 1 2 3 4 5 6 7 8 9 10 12 14
time, in month

16 18 20 22 24 26 28

A

previous B

previous ti

B

C

H

HF G
E D

re
so

ur
ce

, i
n 

m
an

 m
on

th

I

earliest
completion
time

Total person months = 4 � 28 � 112 person-months.
Min actual project cost � (112 person-months) � ($ 2,000/person-month) �
$224,000.
The resource leveling results in a saving of $ 56,000.



E. Risk Assessment Module: 
Answers To Illustrstive Exercises

On the benefit end, we have the net savings and the positive value of the project.
On the cost end, we have all the expenditures. The net benefit is the difference
 between benefit and cost. Since the current project yields the greatest net benefit,
it is to be built.

EXERCISES

Case 1:
$(750,000+150,000-500,000) = $400,000

Build, since the net benefit is a positive number.

Case 2:

Plant Total benefit Net benefit

A 900 400

B 750 50

C 475 275

D 350 150

E 600 525

Plant E has the largest net benefit.

Case 3:

Net benefit divided Cumulative initial
Plant Net benefit by initial cost cost, all plants

E 525 7.0 75

C 275 1.375 275

A 400 0.8 775

D 150 0.75 975

B 50 0.071 1,675

We propose to build plants E, C, A, D,
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Case 4:

A fails P = 0.1

B fails P = 0.1

C fails P = 0.1

C works P = 0.9

C works P = 0.9
A fails, B works, C works P = 0.081

A fails, B works, C fails P = 0.009

A and B fail, C works P = 0.009

A and B fail, C fails P = 0.001

B works P = 0.9

C fails P = 0.1

Fatalities Frequency

Nuclear plants 100 1/10,000

Air crashes, persons on 100 1/100
ground
Chlorine releases 100 about 1/75

Fires 100 1/10

Dam failures 100 about 1/50

Air crashes, total 100 about 1/7

Total man caused 100 about 1/2

ILLUSTRATION (2)
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ILLUSTRATION (3)

A fails

B fails

B works

C works

D works

D works

D works

D works

C works

C fails

C fails

D fails

D fails

D fails

D fails

A fails, B & C & D work P = 0.0729

P = 0.0081
P = 0.0081

P = 0.0009

P = 0.0009

P = 0.0009

P = 0.0001

P = 0.0081

A fails, B & C work, D fails
A fails, B works, C fails, D works

A fails, B works, C & D fail

A & B fail, C & D work

A & B fail, C works, D fails

A & B & C fail, D works

A & B & C fail, D fails



F. Linear Programming Module: Part 1 - Modeling
Answers To Illustrative Exercises

ILLUSTRATION (2)

Max Z = 20 X1 + 14X2 + 10X3

constraint equations:

6X1 + 5X2 + 3X3 ≤ 5,000
3X1 + 3X2 + X3 ≤ 3,000
1X1 + 2X2 + 3X3 ≤ 2,000

non-negativity:

X1 ≥ 0, X2 ≥ 0, X3 ≥ 0.

ILLUSTRATION (3)

Min  Z = 1X1 + 2X2 + 3X3
s. t.  4X1 + 3X2 + 2X3 ≥ 6

2X1 + 8X2 + 10X3 ≥ 8

ILLUSTRATION (4)

X22 = the number of units shipped from factory 2 to warehouse 2

Min Z = 20 X11 + 25X22 + 30X21 + 16X22
s. t. X11 + X12 = 800

X21 + X22 = 600
X11 + X21 ≤ 750
X12 + X22 ≤ 650

X11 ≥ 0, X12 ≥ 0, X21 ≥ 0, X22 ≥ 0
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ILLUSTRATION (5)

Min Z = 13.75 X1 + 11X2 + 6.875 X3

s. t. 220X1 + 195X2 + 110X3 ≤ 5,500
X1 +     X2 +      X3 ≤ 40
X1 +     X2 +      X3 ≤ 45

X1 ≥ 0, X2 ≥ 0, X3 ≥ 0. 

ILLUSTRATION (6)

Max Z = 60 X1 + 70 X2
s. t. X1 + X2 ≤ 40

1∕3X1 + X2 ≤ 20

X1 ≥ 0, X2 ≥ 0.

ILLUSTRATION (7)

Min Z = 1.20 X1 + 2.00X2 + 2.50X3 + 3.00X4 + 5.00X5 + 6.00X6

s. t. 200-X1 ≤ (0.10) (200)
200-X2 ≤ (0.10) (200)
150-X3 ≤ (0.10) (150)
50-X4 ≤ (0.10) (50)
75-X5 ≤ (0.10) (75)
25-X6 ≤ (0.10) (25)

0.012X1 + 0.014X2 + 0.018X3 + 0.040X4 + 0.045X5 + 0.060X6 ≤ 1.000
0.010X1 + 0.015X2 + 0.018X3 ≤ 500

0.025X4 + 0.035X5 + 0.040X6 ≤ 900

X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, X4 ≥ 0, X5 ≥ 0, X6 ≥ 0,

ILLUSTRATION (8)

X1 = lbs. of meat
X2 = lbs. of bread

X3 = lbs. of spinach

Min cost Z = 1.65 X1 + 0.70 X2 + 0.60 X3
s. t. 40X1 + 10X2 + 05X3 ≥ 100

8X1 + 35X2 + 06X3 ≥ 50
5X1 + 02X2 + 20X3 ≥ 15

X1, X2, X3 ≥ 0



G. Linear Programming Module: Part 2 - Solution
Algorithm Answers To Illustrative Exercises

ILLUSTRATION (10)

STEP 4

Z X1 X2 X3 X4 X5 RHS

1 �4 �3 �6 0 0 0

0 3 1 3 1 0 30

0 2 2 3 0 1 40

STEP 5

Z X1 X2 X3 X4 X5 RHS

1 �4 �3 �6 0 0 0

0 3 1 3 1 0 30

0 2 2 3 0 1 40

STEP 6

30/3 = 10

40/3 = 131∕3

The 1st constraint equation has the smallest RHS/X ratio.

STEP 8

(0 3 1 3 1 0 30 ) � 1∕3 = (0 1 1∕3 1 1∕3 0 10)

STEP 9

(a) Multiply new pivot row by (6) and add to objective function row to change �6 of the pivot
 column to 0.

(b) Multiply new pivot row by (
3) and add to 2nd constraint equation row to change 3 of the pivot
column to 0.

(c) 1  1  6  2  6  2

(0 1 1∕3 1 1∕3 0 10) � 6 = (0  6  2  6 2 0 60) add this to
objective function row: (0 �4 �3 �6 0 0  0)
new objective function row: (0  2 �1 0 2 0 60)
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2nd constraint equation row: (0     2  2  3     0  1  40)
2nd constraint eqn row: (0  �1  1  0  �1  1  10)

STEP 10

10/(1∕3) = (30)
(10/1) = (10)

STEP 11

The 2nd constraint equation now has the smallest RHS/X ratio. New pivot  element is 1.

(b) 
1/3

(c) (0 �1 1 0 �1 1 10) � 1 = (0 �1         1     0  �1        1       10   )
add this objective function row: (1    2      �1     0     2        0       60   )

new objective function row: (0    1         0     0     1        1       70   )

(0 �1 1 0 �1 1 10) � (�1/3) = (0    1∕3 �1∕3 0    1∕3 �1∕3 �10∕3)
add this objective function row: (0    0       1∕3 1    1∕3 0       10   )

new 1st constraint equation row: (0    4∕3 0     1    2∕3 �1∕3 20∕3)

STEP 12

Z = 70 X2 = (10) X3 = (20/3)
X1 = (0) X4 = (0) X5 = (0)

ILLUSTRATION (11)

Z �13 X1 �10 X2 = 0
X1 + X2 + X3 = 1,000
X1 +X4 = 600

X2 +X5 = 800

Z X1 X2 X3 X4 X5 RHS

1 �13 �10 0 0 0 0   
0 1 1 1 0 0 1,000

pivot row           0 1 0 0 1 0 600
0 0 1 0 0 1 800 

pivot 
column



New tableau after arithmetic procedures:

Z X1 X2 X3 X4 X5 RHS

1 0 �10 0 13 0 7,800
0 0 1 1 �1 0 400

pivot row           0 1 0 0 1 0 600
0 0 1 0 0 1 800 

pivot 
column

New tableau after arithmetic procedures:

Z X1 X2 X3 X4 X5 RHS

1 0 0 10 3 0 11,800
0 0 1 1 �1 0 400
0 1 0 0 1 0 600
0 0 0 �1 1 1 400 

All in the objective function row are zero or positive, thus it is the optimal tableau.
Maximal profit of Z = 11,800 cents, with
X1 = 600 produce 600 quarts of chocolate
X2 = 400 produce 400 quarts of vanilla
X5 = 400 slack; because we could sell up to 800 quarts of vanilla but we are only producing 400

quarts–there is a slack of 400 quarts when compared with maximum sale.

II. SOLUTIONS TO REGULAR PROBLEMS
Readers are expected to work out the solutions the regular problems in the 
end-of-the-chapter exercises. Accordingly, no solution is provided here.

III. SOLUTIONS TO SYNTHESIS EXERCISES AND PROBLEMS
For the synthesis exercises and problems, we are only providing solutions for selected
problems. The reader is supposed to work out the missing problems by herself.

A. Remote Sensing and Geographic Information Systems

1. Bayesian Classifier

For this model, we used a 3 � 3 grid, each with an associated gray value (Wright
and Chan 1994). Pixels 1, 2, 3, 6 and 9 belong to the pure-water class, with
gray values averaging 2.6. Pixels 4, 5, 7 and 8 represented polluted water, with 
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average gray-value of 7.75. Each x vector is made up of the row number of the
pixel, the column number of the pixel, and the gray value for the pixel. The
 second-order surface is calculated, which successfully delineates the pure water
from the polluted water.

To do this, we create a data-set consisting of nine x vectors, each con-
taining a row number (the first entry x1), a column number (the second entry x2)
and a value corresponding to the amount of ground-water pollution measured at
that pixel (the third entry x3). Thus the kth pixel is characterized by these three
attributes: xk = (xk1 xk2 xk3)

T. Here pixels are ordered as they are in the text.

x3 = (1 3 2)T x6 = (2 3 3)T x9 = (3 3 4)T

x2 = (1 2 3)T x5 = (2 2 8)T x8 = (3 2 7)T

x1 = (1 1 1)T x4 = (2 1 7)T x7 = (3 1 9)T

The number of pure-water pixels N1 is 5, and the number of polluted-water pixels N2
is 4. We calculate the mean vector and the covariance matrix. For example, the means
are �1 = (x1 + x2 + x3 + x6 + x9)/N1, and �2 = (x4 + x5 + x7 + x8)/N2 . The covariance
matrices are correspondingly C1 = (x1x1

T + x2x2
T + x3x3

T + x6x6
T + x9x9

T)/N1 – �1�1 and
C2 = (x4x4

T + x5x5
T + x7x7

T + x8x8
T)/N2 – �2�2. This results in �1 = (1.6 2.4 2.6)T, �2 = (2.5 

1.5 7.75)T, C1 = , andC2 = The inverse

C
1
–1 and C

2
–1 are then taken. The Bayes decision-functions for pure water and

 polluted water are computed as d1(x1, x2, x3) and d2(x1, x2, x3),where P(z1)=5/9
and P(z2) = 4/9.

Solve the equation d1(x1, x2, x3) =d2(x1, x2, x3) for x3 in terms of x1 and x2 so that
we can vary x1 and x2 across the region of interest and obtain a plot of x3. The end re-
sults is a surface plot which should separate pure from polluted water. In Figure S.1 is
the surface delineating the pure and polluted water—the pure water pixels all fall
under the surface while the polluted water pixels all appear above the surface.

2. Weighted Iterative Conditional Mode (ICM) Algorithm

In performing the ICM algorithm, we noticed that first- and second-order neigh-
bors are weighted the same when determining the allocation of a specific pixel
(Wright and Chan 1994). But according to Tobler’s first law, proximity is a factor
during allocation. If we assume the distance between the pixel in question and
its first-order neighbor on an ordinary square-grid is unity, the distance between
that pixel and its second-order neighbors is √2. We follow an inverse relationship
between distance and importance in determining the allocation of some  central
pixels (though an inverse squared or other relationship may have been used). We
obtain the weights by scaling the above relationship so that sum of all neighbors
of a pixel is still 8. This way, comparison may be made between this algorithm
and the previous un-weighted one. The weights obtained are 1.1716 for first-
order neighbors and 0.8284 for second-order neighbors. The sum over all of a
pixel’s neighbors is (4)(1.1716) + (4)(0.8284) = 8 and the first-order neighbors are
1.1716/0.8284 = √2 times as important as second-order neighbors.

0.64 0.36 0.64
0.36 0.64 0.56�
0.64 0.56 1.04

�
0.25 0 0.125

0 0.25 –0.125�
0.125 –0.125 0.688

�.



In the original ICM-algorithm, we simply scale the difference in the
number of pixels assigned to each subregion and add it to 0.5. Here, we scale the
weighted difference in the number of pixels and add it to 0.5. For instance, if a
pixel has two first-order neighbors assigned to subregion 1 and two assigned to
subregion 2, and two second-order neighbors assigned to each as well, the
 context makes no difference. The reason is that the weighted sum is 4—meaning
that 0 is added to 0.5 to constitute the ‘compare’ value. In the extreme case, how-
ever, four first-order neighbors allocated to subregion 1 and zero second-order
neighbors allocated to the same subregion would, in the un-weighted algorithm,
result in the same determination: context makes no difference. However, with
weighting, the sum is 4.6864 and the algorithm will increase the probability that
the pixel belongs to subregion 1 (the exact amount depends upon � and ).
Besides the weighting, the algorithm works in the same way.

We obtain the initial mean of the entire data-set gray-values—! = 4.722
and � = 1.981—and standardize the grey values to N(0.5, 1). Anything under 0.5
is an initial guess of clean pixels, anything over is the polluted pixels. Based on
initial guesses, we calculate means and standard deviations of standardized
grey-values for each initial subset, and obtained �1(x) = – 0.243, 1

2(x) = 0.227,
�2(x) = 1.739, 2

2(x) = 0.446. Now we set up the iteration across the eligible pixels
(no edges included) using the ICM equation, with � = 1.14.

Implementation of the ICM can be seen to be almost identical in both the
weighted and un-weighted cases. Difference lies in the calculation of the “compare”
values, in which the summation must be broken into a first-order and a second-
order summation. We were able to obtain the same delineation of  polluted and 
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unpolluted ground-water using a lower � of 1.14 (from 1.34 for the un-weighted
case)—as alluded to above. The upper boundary for obtaining the same delineation
also improved to � = 1.151. Above this �, the upper right-corner was allocated to the
unpolluted subregion. Convergence was obtained in two iterations.

This result shows that the weighted ICM can be used to allow � to be
more flexible in obtaining “correct” pixel allocation than the un-weighted case.
Also, weighting the second-order neighbors less than the first-order neighbors
seems a more realistic formulation of the problem and could be extended to more
than two orders of neighbors. In short, advantages of the weighted ICM over the
un-weighted ICM include the following: (a) more flexibility in � value selections
and (b) a more realistic representation of how different order-neighbors affect a
pixel’s allocation. The weighted ICM-algorithm appears to be a promising tool
for use in delineating polluted from unpolluted ground-water. Further areas of
improvement include deciding the correct weight to use and extending the
model to three dimensions. If non-homogeneity of the ground composition
 results in irregular-shaped pollution-plumes, the weighted ICM-algorithm
should have no problems with classification since the global approximation of
the ground truth is comprised of the collection of each pixel’s local truth.

3. Combined Classification Scheme

(a) Weighted ICM algorithm.  In this weighted ICM algorithm, the procedure is  similar
to that described in Section 1.c and will not be repeated here (Wright and Chan 1994a).
However, we wish to emphasize once again that with weighting—as contrasted with
the un-weighted case—the “compare”-value step works differently. Here, the differ-
ence between T̂1j and T̂2j is 1.3728 and the algorithm will increase the probability that
the pixel belongs to subregion 1 (the exact amount depends upon � and ).

We have also implemented the algorithm for edge pixels. These edge pixels
do not have enough neighbors to sum to eight, but the relative importance between
first- and second-order neighbors remains the same. The only difference with these
pixels is that, since nothing is known about the “other side” falling  beyond the bound-
ary, the possible amount of contextuality applied is less than that for interior points.

(b) MCDM formulation.  The X space in this problem consists of a binary decision-
variable representing each pixel. In the context of this problem, turning the vari-
able for a pixel “on” (xi = 1) implies delineating that pixel as polluted, whereas
leaving it “off” (xi = 0) implies an unpolluted pixel. The X space for the sample
problem here (a 10�10 grid) has 1.27�1030 discrete possibilities.

There are several possibilities in choosing the Y’ space for this problem.
First, we considered varying the ranges of � and the variance applied when
 creating the standardized grey-values in the algorithm. This method looks
promising to obtain a model with a large amount of flexibility, since it is prefer-
able to maximize the ranges of each. Due to the possible ranges of  being so
small, however, we decided against this alternative.

The Y’ space presented in this project pits the choice of the channel-1
weight (and by default, then, the channel-2 weight as well) against the choice of �.
This is reasonable since we would like to minimize the value of � in order to “let
the data speak for themselves” as much as possible.

(c) Noninferior solutions.  The first step is to classify the pixels into polluted and
 unpolluted subregions. To do this, we calculate the mean of all the pixels. Any val-



ues below this mean are considered unpolluted, any values above this mean are con-
sidered polluted. Next, we standardized those pixels initially allocated to the un-
polluted subregion to a mean of 0 and a standard deviation of 0.25. We also stan-
dardize those pixels initially allocated to the polluted subregion to a mean of 1 and
a standard deviation of 0.25. Even though we could have chosen from a range of
possible standard deviations, we chose 0.25 since two standard deviations above the
unpolluted mean and two standard deviations below the  polluted mean is 0.5. That
is, there is only a 2.5 percent overlap between the two subregions distributions.

Then, we determine for each pixel a value based on the number of
neighbors in each subregion, 2, and �. The standardized grey-value is compared
against this value; if the standardized grey-value is less than the value, the pixel
is allocated to the unpolluted subregion, otherwise it is allocated to the polluted
subregion. These new allocations are then used as input for the next iteration. In
most problems, convergence occurs after one iteration. We used 0 through 1 in
increments of 0.1 for the channel-1 weights (channel-2 weight equals one minus
channel-1 weight). We also stepped through � in whole-number increments from
0 (no contextuality) to 10. The feasible Y’ space in this problem consists of all 
positive �-values and all channel-1 weights between 0 and 1 inclusive.

The preference structure we selected for this problem consists of a
 specific allocation of pixels as seen above in the “ground truth.” The smallest
“distance” from that ground truth represents a non-dominated solution. Zero
 “distance” is considered Pareto optimal. We consider the number of pixels in the
ICM-generated solution different from the ground truth to be this “distance.”

A contour plot of the “distances” away from the ground truth is shown in
Figure S.2 The results from any preference structure could have been displayed, so this
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Figure S.2 CONTOUR OF ERRED PIXELS FROM THE GROUND TRUTH
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plot is not unique. There is a contour area within which the Pareto  optimal was ob-
tained, all within the � range of 0.9 to 1.3 with a channel-1 weight  ranging from 0.3 to
0.6. Since the result is Pareto optimal, translation back to the X space results in the same
plot as the “ground truth” plot. Figure S.3 shows a plot of the weighted channels using
channel-1 weight equal to 0.4 and channel-2 weight equal to 0.6. Compared with the
original “ground truth,” we see the pitting found in channel 2 less severe, but still see
some noise around the perimeter of the plot. Thus � = 3 is necessary to be greater than
0 (non-contextual) in order to delineate these noisy pixels as unpolluted areas.

B. Facility Location

1. Quadratic-Assignment Problem

(a) Formulation. The problem is formulated as the following linear binary pro-
gram. A, B, C, D denote the four work-stations, which are to be placed in loca-
tions a, b, c, d. When workstation A is located at a, XAa = 1, etc.

MIN
27200YABab + 25600YABac + 32000YABad + 28800YABbc + 16000YABbd 
+ 14400YABcd + 13600YACab + 12800YACac + 16000YACad + 8000YACbd 
+ 7200YACcd + 10200YADab + 9600YADac + 6000YADbd + 540YBDcd 
+ 6800YBDab + 6400YBDac + 8000YBDad + 7200YBDbc + 4000YBDbd 
+ 3600YBDcd + 3400YCDac + 3200YCDac + 4000YCDad + 3600YCDbc 
+ 2000YCDbd + 1800YCDcd

s.t.
XAa�XAb�XAc�XAd�1 XBb�XCc�2YBCbc>�0 XAa�XCd�YACad<�1
XBa�XBb�XBc�XBd�1 XBb�XCd�2YBCbd>�0 XAb�XCc�YACbc<=1
XCa�XCb�XCc�XCd�1 XBc�XCd�2YBCcd>�0 XAb�XCd�YACbd<=1
Xda�XDb�XDc�XDd�1 XBa�XDb�2YBDab>�0 XAc�XCd�YACcd<=1
XAa�XBa�XCa�XDa�1 XBa�XDc�2YBDac>�0 XAa�XDb�YADab<=1

Figure S.3 IMAGE FROM WEIGHTED CHANNELS
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XAb�XBb�XCb�XDb�1 XBa�XDd�2YBDad>�0 XAa�XDc�YADac<=1
XAc�XBc�XCc�XDc�1 XBb�XDc�2YBDbc>�0 XAa�XDd�YADad<=1
Xad�XBd�XCd�XDd�1 XBb�XDd�2YBDbd>�0 XAb�XDc�YADbc<=1
XAa�XBb�2YABab>�0 XBc�XDd�2YBDcd>�0 XAb�XDd�YADbd<=1
XAa�XBc�2YABac>�0 XCa�XDb�2YCDab>�0 Xac�XDd�YADcd<=1
XAa�XBd�2YABad>�0 XCa�XDc�2YCDac>�0 XBa�XCb�YBCab<=1
XAb�XBc�2YABbc>�0 XCa�XDd�2YCDad>�0 XBa�XCc�YBCac<=1
XAb�XBd�2YABbd>�0 XAb�XDc�2YADbc>�0 XBa�XCd�YBCad<=1
XAc�XBd�2YABcd>�0 XAb�XDd�2YADbd>�0 XBb�XCc�YBCbc<=1
XAa�XCb�2YACab>�0 Xac�XDd�2YADcd>�0 XBb�XCd�YBCbd<=1
XAa�XCc�2YACac>�0 XCd�XDc�2YCDbc>�0 XBc�XCd�YBCcd<=1
XAa�XCd�2YACad>�0 XCb�Xdd�2YCDbd>�0 XBa�XDb�YBDab<=1
XAb�XCc�2YACbc>�0 Xcc�XDd�2YCDcd>�0 XBa�XDc�YBDac<=1
XAb�XCd�2YACbd>�0 XAa�XBb�YABab<=1 XBa�XDd�YBDad<=1
XAc�XCd�2YACcd>�0 XAa�XBc�YABac<=1 XBb�XDc�YBDbc<=1
XAa�XDb�2YADab>�0 XAa�XBd�YABad<=1 Xbb�XDd�YBDbd<=1
XAa�XDc�2YADac>�0 XAb�XBc�YABbc<=1 XBc�XDd�YBDcd<=1
Xaa�XDd�2YADad>�0 XAb�XBd�YABbd<=1 XCa�XDb�YCDab<=1
XBa�XCb�2YBCab>�0 XAc�XBd�YABcd<=1 XCa�XDc�YCDac<=1
XBa�XCc�2YBCac>�0 XAa�XCb�YACab<=1 XCa�XDd�YCDad<=1
XBa�XCd�2YBCad>�0 XAa�XCc�YACac<=1 XCd�XDc�YCDbc<=1
XCb�Xdd�YCDbd<=1
XCc�XDd�YCDcd<=1

(b) Solution. Solution yields an objective function of zero and the following uni-
tary-valued variables XAd, XBc, XCb, XDa; with the rest of the variables assum-
ing zero. In other words, work-station A is assigned to location d, workstation B
to c, C to b and D to a.

(c) Discussion. While the binary variables are in agreement with the answer given
in the text, the zero objective-function-value may look ‘strange’ at first sight. If the
linear version is merely an approximation of the nonlinear model, one would expect
the objective function to reflect the minimum cost of assignment and be other than
zero. A moment’s reflection, however, would reveal that zero is the correct answer,
and the objective function of the linear model is not an approximation of the non-
linear objective. In the notation of the quadratic assignment model in Section VI of
Chapter 4, a zero linear-objective merely reflects that all the yklij = xkixlj = 0—hence
the objective function that sums over all yklij is correspondingly zero. This says that
the variables xki and xlj cannot be unitary-valued simultaneously. Only one of the
two can be unity at most, with the other being zero. In other words, the assignment
of work-station k to location i and the  assignment of work-station l to location j can-
not take place simultaneously. This is reinforced by the observation that the con-
straints xki + xlj – 2yklij " 0 are non-binding, suggesting a degenerate case.

C. Location-Routing

1. Districting

The application of the location model requires several steps as described in state-
ment of the problem (Patterson 1995). We start with Phase I of the algorithm,
which does the partitioning.
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Step 1.1: Choose the number (p) of maintenance depots to be located
within the communications network. We choose p = 2. Therefore 1/p = 0.50, and
the tolerance (�) is set to 0.10 as suggested.

Step 1.2: Partitioning algorithm. This algorithm is again broken into two steps.
Phase I is a complete enumeration of the possible subnetworks. The maximum distance
for compactness is arbitrarily set at 150 (which is arbitrarily chosen to show the elimi-
nation of a possible subnetwork because of proximity concerns, that being a subnet-
work consisting of nodes 1-2-4). The Phase I subnetwork set is shown in Figure S.4.

Phase II implements the model described in the problem statement. The
model is formulated and solved using an EXCEL spreadsheet. The formulation
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Figure S.4 TREE-SEARCH PARTITIONING ALGORITHM

SOURCE: Patterson (1995). Reprinted with Permission.



and solution are shown in the original problem statement. The results of this ap-
plication are two subnetworks in which the maintenance depots are to be located.
The best partition possible consists of nodes 1-3 and 2-4-5. This means that one
depot is to be located at node 1 or 3, while the other is located at node 2, 4, or 5.

2. Minkowski’s Metric

Given y1 = (14, 13), y2 = (4, 4), and r’(y; p) � [Σi|yi
1�y2

i|
p]1/p as plotted in Figure S.5,

we will sketch the various shapes of the Minkowski’s metric.

(a) When 1 ≤ p ≤ ∞, r’(y; p) is called the lp-metric. As p→ ∞ r’(y; p) � Max
{|14�4|, |13�4|} � 10. As p→1, r’(y; p) � |14�4| � |13�4| � 19.
(b) The Minkowski’s metric is a generalization of lp-metric, when p goes below
unity in value. As p→ 0, r’(y; p) � {|14�4|o � |13�4|o}∞ � ∞; and as p→ 1, r’(y;
p) � {|14�4| � |13�4|} � 19.
For example, when p � �1/2, r'(y; �1/2) � {|14�4|�1/2 � |13�4|�1/2}�2 � 2.37.
When p � �1, r’(y; �1) � {|14�4|�1 � |13�4|�1}�1 � 4.74. When p = �2, 
r’(y; �2) � {|14�4|�2 � |13�4|�2}�1/2 � 6.69. As p → � ∞, r’(y; p)→ Min
[|14�4|, |13�4|] � 9.
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(c) As p → ∞, r’(y; p)→ Max {|14�4|, |13�4|} = 10. Now if we minimize r', 
representing say the distance to the ideal, then we are minimizing the maximum
deviation from the ideal. Such a metric is often used to model  situations where
one minimizes the maximum regret.
(d) Refer to the plot in Figure S.9. The unit contours are defined as (|y1|p +
|y1|p)1/p = 1. It is clear that for y1 = (0, 0) and y2 = y, we have the following norms: 
r’= (y; 1) = (|y1| + |y2|) = 1; r'(y; 2) = (|y1|2 + |y2|2)1/2 = 1; and r’ (y; ∞) = limp→∞
(|y1|p + |y2|p)1/p = Max {|y1|, |y2|} � 1 meaning that either |y1| = 1 or |y2| = 1.
Normalized to be unity in value, r'(y; 1) shows a totally-compensatory utility-
function of y = (|y1|, |y2|), i.e., there is an exact tradeoff between |y1| and |y2|. On
the other hand, r'(y; #) denotes a totally-noncompensatory utility function, i.e., 
either |y1| or |y2| would prevail, depending on which one is larger. r'(y; 2) is
somewhere in between—neither totally-compensatory nor totally-noncompensatory.
In general, the higher the value of p the more weight is given the attribute which
is larger.



Figure S.9 ISO-CONTOURS OF UNITY FOR l
P
-METRIC

(e) Notice that when there is only one attribute y1 or y2, the three functions are
identical, since there is no tradeoff between two attributes anymore. Thus the
points (1,0),(0,1),(�1,0),(0,�1) are always the same regardless of p value.

D. Activity Derivation, Competition and Allocation

1. Multicriteria Game

In a zero-sum game, DM1 (playing ‘offensive’) maximizes his minimum gain
while DM2 (playing ‘defensive’) minimizes his maximum loss, and the gain of
DM1 is identical to the loss of DM 2 (Zelany 1982). Multiple payoff is in terms of
a vector (rather than a scalar):
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DM2

q'1 q'2 q'3
DM1 p'1 (3,2) (3,4) (1,5)

p'2 (2,1) (3,2) (2,2)
p'3 (4,1) (1,3) (3,1)

Thus if both DMs decide to play their second option, DM1 wins 3 units in the first
dimension and 2 in the second. DM2 loses the same amounts. p'i and q'j  denote
the probability DM1 and DM2 will play the ith and jth strategy respectively. A
pure strategy is when p's and q's are 1 or 0 in value.

Each vector payoff aij = (aij
1 , aij

2 ) is to be replaced by a convex combina
tion of both components: waij

1 + (1–w)aij
2. For example, a11 = 3w + (1 – w)2 = w + 2,

and so on. It can be shown that an LP can be set up to solve this problem if 
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variables p and q are defined such that p' = pz' and q' = qz' and z’ = 1/z. Notice that
p1 + p2 + p3 is not necessarily unity in this case, neither would q1 + q2 + q3. Now
we have the game for DM2 as follows:

Max z � q1 + q2 + q3
(w + 2)q1 + (4 – w)q2 + (5�4w)q3 $ 1

s.t. (w + 1)q1 + (w + 2)q2 + 2q3 $ 1.
(3w + 1)q1 + (3�2w)q2 + (2w+1)q3 $ 1

The initial tableau is given by

q1 q2 q3 q4 q5 q6 RHS

�1 �1 �1 0 0 0 0
q1 w+2 4�w 5�4w 1 0 0 1
q2 w+1 w+2 2 0 1 0 1
q3 3w+1 3�2w 2w+1 0 0 1 1

(Notice it will be a minimization LP for DM1)

Set w = 0 and solve by simplex. Then explore the optimality for parameter
w changing from 0 to 1.

For 0 $ w $ 3/5 the optimal solution is

q1 = 1_____
2 + W ‘ 

q2 = 0, q3 = 0

and the dual solution is

while the objective function reaches 1/(2+w). For w ≥ 3/5 the optimal  solution is

and the dual solution is

while the objective function reaches 1/(5 – 4w).
It appears that there are two non-dominated pairs of pure strategies:

(i) If w is between 0 and 3/5,
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and

(ii) If w is at or bigger than 3/5, then

and

The respective payoffs are (3, 2) and (1, 5) as shown in the payoff matrix under
row 1 and column 1 for case (i) and row 3 column 1 in case (ii).

Depending on w, an average payoff can be calculated. Observe that
for w = 3/5 both strategies lead to the same average return: 3/5(3) + 2/5(2) =
3/5(1) + 2/5(5) = 2.60. Patterson et al. (1994) showed that multiple optimal-
solutions exist at w � 0.6, consisting of both pure and mixed strategies. For
0.6 $ w $ 1 mixed strategies exist in addition to the pure  strategy. The multiple
solution is consistent with the transition from pure to mixed strategies as the
value of w crosses the 0.6 mark. Furthermore at w � 1, it can be shown that value
of the game is 2.333, representing another local maximum for this game. This
‘second’ maximum corresponds to the mixed strategy of  p'1 � 0, p'2 � 0.67, and
p'3 � 0.33 (q'1 � 0, q'2 � 0.333, and q'3 � 0.667).

2. Gravity vs. Transportation Model

(a) When � = 0, Cij
–� = 1 and assumes its maximum value.

(b) When � = #, Cij
–� → 0, assuming its minimum value.

(c) The equation zij' = CijVij becomes

with the same constraints. The minimization solution will be indeterminate
among all trip-distribution feasible-solutions.

(d) The equation zij' � CijVij becomes very small with Cij
–� → 0, with zij' → # for

any finite Vij. The objective function is a strong driving force in  determining the
resulting trip-distributions Vij*.
(e) Part (c) suggests a trip distribution independent of travel cost while part (d)
suggests one that is particularly sensitive to travel cost.
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Vij � (z’ij)(1)   or z’ij � Vij

z � ∑ij z’ij � ∑ij Vij
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3. Calibration of a Doubly-Constrained Model

The calibration equations are shown in Chapter 3, Section B. Notice the two
equation-sets are coupled together, in that k appears on the right-hand-side of the
first equation set, and l appears on the right-hand-side of the second. An iterative
solution strategy is anticipated.

We wish to solve the four equations and four unknowns for k1, k2, l1, and
l2 as represented by Equation 3.47 when n' = 2:

k1 = (400l1+62.5l2)
–1 k2 = (100l1+250l2)

–1

l1 = (300k1+87.5k2)
–1 l2 = (75k1+350k2)

–1

Suppose we start with the arbitrary values of 1 for the k’s. Substituting 1’s in the
formulas will yield l1 = 0.00258, l2 = 0.00235. Now substitute these l values into
the formulas for the k’s in the above equation set, one will find that these new
values for the k’s are no longer 1’s. We continue this process until a consistent set
of k’s and l’s are obtained, as shown in the Table below. It can be seen that we ob-
tain  convergence within five iterations.

Iteration k1 k2 l1 l2

1 1 1 0.00258 0.00235
2 0.84827 1.18273 0.00279 0.00209
3 0.80217 1.24766 0.00286 0.00201
4 0.78763 1.26823 0.00288 0.00199
5 0.78347 1.27307 0.00289 0.00198
6 0.7810 1.27551 – –
Final 0.781 1.276 0.0029 0.0020

E. Land-Use Models

1. Economic Base and Activity Allocation

Let us examine Chan and Rasmussen (1979) in terms of both the aggregate total-
forecast and the subareal housing-distribution. This is to verify the soundness of
the Economic-base Theory and the Gravity Spatial-interactance relationship—two
of the basic building blocks of many urban-development models. The Chan and
Rasmussen study appears to yield lower forecasts in general than the CRPC ap-
proach. This is attributed to the fact that the Chan and Rasmussen procedure con-
siders not only the demand for housing, but also the economic base to support new
residents in the area. Furthermore, the actual housing requirement is tempered by
the availability of housing supply. The CRPC approach, on the other hand, does
not seem to address the problem of land-holding capacity. It is a “statement of the
need” for additional housing, whether or not land is actually available for new
housing development. The former can be view as the realizable demand while the
latter can be interpreted as the gross demand.

Commuting between home and the place of employment is recognized
by the Chan and Rasmussen study as one of the major determinants of residen-
tial location. As such, spatial interaction is explicitly modeled by a gravity-type
formulation that locates residents in relation to their place of employment.



The CRPC study, on the other hand, is a good deal less specific in dealing with
 locational choice, where subareal housing is simply derived from its population
projection. In other words, while the Chan and Rasmussen study recognizes the
coupling relationship between transportation and land-use, less emphasis is
given by the CRPC housing forecast. It is not surprising, therefore, that the Chan
and Rasmussen study projects (quite realistically) more clustering of high-density
housing close to State College, which is by far the largest employment center of
the region.

Both the CRPC and Chan/Rasmussen study assume that there are no
substantial in-or-out migration, suggesting the student enrollment at Penn State
would stabilize at 31, 500 by 1985. Both studies again assume the existing trends,
including birth/death rates and other coefficients and ratios, will remain constant
over time for each township. These assumptions, particularly the first two, did
not hold true over the years. The scientific resources at Penn State University
have attracted new industries (and therefore population) into the region. Defying
the demographic projection, participation of a more mature student-body broke
the enrollment ceiling forecasted for the traditional, post-World-War-II 18–21 age-
group. Over the ten years from 1975 to 1985, State College and its immediate
 environs have decidedly gotten more urban than anticipated. This is evidenced
by the unexpected increase in multiple-family units in State College and all the
townships in the Center Region. In State College, single-family units are replaced
by multiple-family units. With the  exception of a decline in State-College proper,
single-family units also increase elsewhere to a level comparable to the CRPC
forecast, which is above the Chan and Rasmussen study. In short, the observed
housing-units are closer to the CRPC optimistic-forecast than the Chan and
Rasmussen study. The significant  in-migration makes the difference, suggesting
that there are really other “basic industries”  beyond higher education—a fact
overlooked by Chan and Rasmussen.

F. Spatial-Temporal Information

1. Cohort-Survival Method

(a) Crude birthrate of any region is defined as birth-per-person (or per 100 
persons) in that period for that region (Jha 1972). For example, if the number of
births for York County is 2000 for five years (1940–1945) and its average population
over the period is 210, 000, crude birthrate for York in 1940–1945 is
2,000/210,000 = 1/105, or we can say that crude birthrate is one in 105 people.

Crude death-rate is similar to crude birthrate. If in the above example for
the same period, the number of deaths for different reasons is 500, then crude
death-rate for that period will be 500/210,000 � 0.0023.

If the total number of people coming into York County in the five-year
 period (1940–1945) is 1,400 and the outgoing number from this region is 1,295,
then net migration will be 1,400–1,295 = 105. This will, of course, be net in-mi-
gration.
(b) From the given Table, the number of children born in 1940–1945 is 7.
The probability of having a child for age-group 15–19 is [7/(14 + 16 + 21)]
[14/(14 + 16 + 21)] = (0.137)(0.275) = 0.035. Here (14 + 16 + 21) = 51 is the total
number of women of child-bearing age in 1945, ranging from 15 to 29 year old.
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The probability of having a child for the woman age-group 20–24 is
(0.137)(16/51) = 0.043. The probability of having a child for the woman 
age-group 25–29 is (0.137)(21/51) = 0.0565. For the  desired growth-matrix, the
top row of the matrix—the birth rates —may be calculated as 
follows:

and so on. Here b(10 – 14) is the fertility-rate of age-group 10–14 (which is zero in
our case), sij = (s5 + . . . + s9)/(s0 + . . . + s4) is the surviving ratio of  cohort-group i
(0–4 year) in group j (5–9 year), Nf is the number of female children, while Nc is
the total number of children. As a degenerate case for the postnatal population,
the probability of living from birth to the end of five-years is (s0 + . . . + s4)/s(0),
where s(0) is the number of births to begin with.

We can now write the equation G N(t) = N(t + 	t) as discussed in the
“Interregional growth and distribution” section of the “Economics” chapter,
where G is the 6�6 growth-matrix, N(t) is the female-population in 1940, and
N(t + 	t) is the female-population in 1945. Here the surviving-ratio (s0 + . . . +
s4)/s(0) is given as 0.98 and the percentage of female-children is Nf/Nc = 0.49.
Over five-years, we have (5)(0.98)(0.49) = 2.43 times as many female children,
following the last part of the above birthrate equation: [(s0 + . . . +
s4)/s(0)](Nf/Nc).

In the absence of migration, the sub-diagonal elements of the growth-
matrix G = [Gij] can be calculated as follows. Starting with the surviving-ratio 
(s5 + . . . + s9)/(s0 + . . . + s4) for the 5–9 year group, where the numerator is 10 and
the  denominator is also 10, the ratio is unity. Here are the detailed calculations
for the remaining age-groups:

b13
b s5 s9

s0 s4

b(15 − 19)10 − 14
2 2

= +
+ +

⎡

⎣
⎢

⎤

⎦
⎥

( ) + +. . .
. . .

ss0 s4

s

Nf
Nc0

+ +. . .

( )

bT–
( )ijb= ← →

Age 0–4 5–9 10–14 15–19 20–24 25–29

Group (i) 1 2 3 4 5 6
calculation 1 12/14 14/15 16/18 21/22 –
Si+1,i = Gi+1,i 1 0.86 0.93 0.89 0.95 –

Elements of the top row of the growth matrix, or the birthrate for female-children
bij, are computed from the birthrate equation as follows:

b13 = [(0.86)(35/2)(2.43)]/1000 = 0.036
b14 = [(32/2)+(0.93)(43/2)]2.43/1000 = 0.090
b15 = [(43/2)+(0.89)(56/2)]2.43/1000 = 0.109
b16 = (56/2)2.43/1000 = 0.067.



The equation G N(t) = N(t + 	t) now reads

Thus the difference between the 1945 women-population totals—as given and as
computed—is only (80) – (30 + 10 + 12 + 14 + 16 + 21) = 80 – 76 = 4, or 400 women.
The difference is attributable to the “truncated” first entry (or the 0–4 year group).
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