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Preface

This book provides a coherent description of the main economic concepts and
statistical methods used to analyse managerial performance. It is primarily aimed at
researchers, statisticians, accountants and economists working in regulatory
authorities, government departments and private firms. The target audience also
includes graduate students and academics. All readers are expected to have com-
pleted introductory university courses in economics, mathematics and statistics.

The book contains nine chapters. Chapter 1 provides a summary of the main
ideas presented later in the book. Among other things, it explains exactly what is
meant by the terms ‘production technology’, ‘production environment’, ‘produc-
tivity’ and ‘efficiency’. Chapter 2 discusses various sets and functions that can be
used to represent the input–output combinations that are possible using different
technologies in different environments. The focus is on distance, revenue, cost and
profit functions. Chapter 3 explains how to measure productivity change. In this
book, measures of productivity change are defined as measures of output quantity
change divided by measures of input quantity change. To explain changes in out-
puts and inputs, and therefore changes in productivity, we need to know something
about managerial behaviour. Chapter 4 explains that firm managers tend to behave
differently depending on what they value, and on what they can and cannot choose.
It then discusses some of the simplest optimisation problems faced by managers
(e.g. profit maximisation). Chapter 5 defines various measures of efficiency.
Measures of efficiency can be viewed as ex post measures of how well managers
have solved different optimisation problems. Estimating and predicting levels of
efficiency involves estimating production frontiers. Chapter 6 explains how to
estimate the parameters of piecewise frontiers. The focus of this chapter is on data
envelopment analysis (DEA) estimators. Chapter 7 explains how to estimate the
parameters of deterministic frontiers. Here, the focus is on least squares
(LS) estimators. Chapter 8 explains how to estimate the parameters of stochastic
frontiers. Here, the focus is on maximum likelihood (ML) estimators. Finally,
Chap. 9 provides a practical step-by-step guide to analysing managerial perfor-
mance. It also considers government policies that can be used to target the main
drivers of performance.
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There is enough material in Chap. 1 for a one- or two-day introductory course on
productivity and efficiency analysis. There is enough material in the remaining
chapters to build courses that can run over one or two semesters. Approximately
eight hours of lectures and four hours in the computer laboratory should be enough
to cover most of the material in Chaps. 2–5. Approximately twenty hours of lectures
and another fifteen hours in the computer laboratoty should be enough to cover
most of the material in Chaps. 6–8. A one-hour lecture and another hour in the
computer laboratory is enough to cover the material in Chap. 9. These time esti-
mates assume that students have little or no experience with computer program-
ming. The empirical results reported in this book were obtained by running R
Version 3.3.3 (2017-03-06) on a MacBookPro with an OS X 10.10.5 (Yosemite)
operating system. The datasets and computer codes are available at http://extras.
springer.com/2018. Slightly different results may be obtained by running different
software packages (including more recent versions of R) on computers with dif-
ferent operating systems.

Parts of the book are somewhat repetitive. Some readers may find this annoying.
However, it should help other readers see patterns in, and make connections
between, seemingly unrelated concepts and techniques. It should also help some
readers commit new material to memory. It also means that most chapters are
reasonably self-contained, which should make the book more useful as a reference
text.

Finally, some acknowledgements are due. Many of the definitions and concepts
presented in the book were first developed while I was on sabbatical at the
Universitat Autónoma de Barcelona in 2008. I would like to thank Emili
Grifell-Tatjé for hosting me during that visit, and also the Generalitat de Catalunya
for providing financial support. In the last decade, I have been refining the main
ideas and bringing them together in the form of this book. During this time, I have
received enormous encouragement from my wife, Adrienne, and my children,
Benjamin, Lachlan, Joshua and Courtney; I cannot thank them enough for their
patience and unwavering support. On an academic level, I am grateful for con-
structive comments provided by staff, students and academic visitors to the School
of Economics at the University of Queensland. I am also grateful for feedback
received during short courses delivered at the Australian Department of Health and
Ageing (DoHA), the Australian Consumer and Competition Commission (ACCC),
the Independent Hospital Pricing Authority (IHPA), the Victorian Department of
Education and Early Childhood Development (DEECD), the University of
Queensland, the University of Waikato, and the Australian Defence Force Academy
(ADFA). Individuals who deserve special mention include (in alphabetical order)
Julian Alston, Boris Bravo-Ureta, Cinzia Daraio, Rolf Färe, Finn Førsund, Bill
Greene, Kristiaan Kerstens, Chris Parmeter, Antonio Peyrache, Victor Podinovski,
Marshall Reinsdorf and Peter Schmidt. None of these individuals are in any way
responsible for any errors in the book.

Brisbane, Australia Christopher J. O’Donnell
August 2018
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Chapter 1
Overview

This book describes a coherent framework for analysing managerial performance.
The focus is on measures of performance that are useful for policy makers. The title
of the book reflects the fact that most, if not all, of these measures can be viewed as
measures of productivity and/or efficiency. This chapter provides an overview of the
main concepts and analytical methods described later in the book.

1.1 Basic Concepts and Terminology

The first step in analysing managerial performance is to identify the manager(s).
A manager is a person or other accountable body responsible for controlling (or
administering) a firm. In this book, the term ‘firm’ refers to a production unit (e.g., a
school, an assembly line, or an economy). Firm managers are decision makers. For
this reason, firms are often1 referred to as decision-making units (DMUs).

Assessments of managerial performance often depend on the way different vari-
ables involved in production processes are classified. In this book, all of the possibly
millions of variables that are physically involved in production processes are clas-
sified into those that are controlled by managers and those that are not. Those that
are controlled by managers are then further classified into inputs (i.e., products and
services that go in to production processes) and outputs (i.e., products and services
that come out of production processes). Those that are never controlled by man-
agers are referred to as environmental variables (e.g., rainfall in crop production).
Classifying variables in this way means that managers will not be held responsible
for the effects of variables they do not control. For example, farm managers will
not be labelled as inefficient when relatively low crop yields are due to low rainfall,

1See, for example, Charnes et al. (1981), Cooper et al. (2004) and Färe and Grosskopf (2010).
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2 1 Overview

and truckers will not be labelled as inefficient when delivery delays are due to poor
roads. Unless explicitly stated otherwise, the term ‘environmental variable’ is used
in this book to refer to a characteristic of a production environment. Characteristics
of production environments are variables that are physically involved in production
processes. They should not be confused with characteristics of market environments
(e.g., the degree of competition in output markets) or institutional environments (e.g.,
laws that prevent the use of child labour). Characteristics of market and institutional
environments do not generally affect the input-output combinations that are physi-
cally possible (i.e., they do not affect the physics). However, as we shall see, they
often affect the input-output combinations that managers choose.

One of the most important concepts in efficiency and productivity analysis is
the concept of a production technology. In this book, a production technology (or
simply ‘technology’) is defined as a technique, method or system for transforming
inputs into outputs (e.g., a technique for transforming seeds and other inputs into
vegetables). For most practical purposes, it is convenient to think of a technology as
a book of instructions, or recipe. The set of technologies that exist in a given period is
called a ‘technology set’ (e.g., the set of sustainable, hydroponic, organic, multilayer
and vertical-farming techniques for growing vegetables). If we think of a technology
as a book of instructions, or recipe, then we can think of a technology set as a library.
Measures of ‘technical efficiency’ are viewed as measures of how well technologies
are chosen and used (i.e., howwell managers ‘choose books/recipes from the library’
and ‘follow the instructions’). The term ‘technical progress’ refers to the discovery
of new technologies. Investigative activities aimed at discovering new technologies
are referred to as ‘research and development’ (R&D) activities. The term ‘technical
regress’ refers to the loss of existing technologies. An important assumption that is
maintained throughout the book is that there is no technical regress (i.e., as a society,
we do not forget the techniques, methods and systems we know).

The input-output combinations that are possible using different technologies can
usually be represented by distance, revenue, cost and/or profit functions. The exis-
tence of these functions has few, if any, implications for managerial behaviour. The
existence of a cost function, for example, does not imply that managers will aim to
minimise costs. Rather, different managers will tend to behave differently depend-
ing on what they value, and on what they can and cannot choose. For example, if
managers value goods and services at market prices, then, if possible, they will tend
to choose inputs and outputs to maximise profits. On the other hand, if managers
value products and services differently to the market, then they may instead choose
inputs and outputs to maximise measures of productivity. In this book, measures of
productivity are defined as measures of output quantity divided by measures of input
quantity. Government and community interest in productivity stems from the fact that
productivity change is often associated with changes in social welfare; according to
Kendrick (1961, p. 3), for example, “[t]he story of productivity, the ratio of output
to input, is at heart the record of man’s efforts to raise himself from poverty”.

Decision makers are often interested in measuring levels of efficiency. Measures
of efficiency can be viewed ex post measures of how well firmmanagers have solved
different optimisation problems. For example, measures of output-oriented technical
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efficiency can be viewed as measures of how well managers have maximised outputs
when inputs and output mixes have been predetermined. On the other hand, measures
of profit efficiency can be viewed asmeasures of howwell managers havemaximised
profits when inputs and outputs have been chosen freely.

Many decisionmakers are also interested inmeasuring productivity. This involves
assigning numbers to baskets of inputs and outputs.Measurement theory says that so-
called index numbers must be assigned in such a way that the relationships between
the numbers reflect the relationships between the baskets. For example, if we are
measuring changes in output quantities, and if basket A contains exactly twice as
much of every output as basket B, then the index number assigned to basket A
should be exactly twice as big as the number assigned to basket B. Index numbers
that are consistent with measurement theory can be computed using various additive,
multiplicative, primal and dual indices (i.e., formulas). Most of the indices currently
used in the productivity and efficiency literature yield numbers that are not consistent
with measurement theory.

Measuring changes in productivity is one thing. Explaining changes in productiv-
ity is another. In this book, changes in productivity are explained using a combination
of economic theory,measurement theory and statisticalmethods. Using this so-called
econometric approach, changes in productivity can be attributed to four main factors:
(a) technical progress (i.e., the discovery of new technologies), (b) environmental
change (i.e., changes in variables that are physically involved in production processes
but never controlled by managers), (c) technical efficiency change (i.e., changes in
how well technologies are chosen and used) and (d) scale and mix efficiency change
(i.e., changes in economies of scale and substitution). In practice, estimating these
different components involves estimating changes in the limits to production (i.e.,
changes in production frontiers). As we shall see, the choice of estimator depends
partly on what is known, or assumed, about production technologies.

1.2 Production Technologies

It is common to make assumptions about technologies by way of assumptions about
what they can and cannot produce. For example, it is common to assume that, with
a given set of technologies,

A1 it is possible to produce zero output (i.e., inactivity is possible);
A2 there is a limit to what can be produced using a finite amount of inputs (i.e.,

output sets are bounded);
A3 a positive amount of at least one input is needed in order to produce a strictly

positive amount of any output (i.e., inputs are weakly essential; there is ‘no free
lunch’);

A4 the set of outputs that can be produced using given inputs contains all the points
on its boundary (i.e., output sets are closed);
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A5 the set of inputs that can produce given outputs contains all the points on its
boundary (i.e., input sets are closed);

A6 if particular inputs can be used to produce a given output vector, then they can
also be used to produce a scalar contraction of that output vector (i.e., outputs
are weakly disposable); and

A7 if particular outputs can be produced using a given input vector, then they can
also be produced using a scalar magnification of that input vector (i.e., inputs
are weakly disposable).

Assumptions A1–A7 are maintained throughout this book. Other assumptions that
are made from time to time include the following:

A6s if given inputs can be used to produce particular outputs, then they can also be
used to produce fewer outputs (i.e., outputs are strongly disposable);

A7s if given outputs can be produced using particular inputs, then they can also be
produced using more inputs (i.e., inputs are strongly disposable);

A8s if a given output-input combination is possible in a particular production en-
vironment, then it is also possible in a better production environment (i.e.,
environmental variables are strongly disposable).

The word ‘strong’ is used in A6s and A7s to reflect the fact that A6s implies A6
and A7s implies A7 (symbolically, A6s ⇒ A6 and A7s ⇒ A7). The input-output
combinations that are possible using different sets of technologies can be represented
by output sets, input sets and production possibilities sets. If A2, A6 and A7 are true,
then they can also be represented by output and input distance functions.

1.2.1 Output Sets

Anoutput set is a set containing all outputs that can be produced using given inputs. In
this book, the focus is on period-and-environment-specific output sets. A period-and-
environment-specific output set is a set containing all outputs that can be produced
using given inputs in a given period in a given production environment. For a precise
definition, let x = (x1, . . . , xM )′, q = (q1, . . . , qN )′ and z = (z1, . . . , zJ )′ denote
vectors of nonnegative inputs, outputs and environmental variables (respectively). In
mathematical terms, the set of outputs that can be produced using the input vector x
in period t in a production environment characterised by z is

Pt (x, z) = {q : x can produce q in period t in environment z}. (1.1)

To illustrate, Table 1.1 reports artificial (or ‘toy’) data on I = 5 firms over T = 5
time periods. Each firm has used two inputs to produce two outputs in one of two
production environments. Figure 1.1 depicts the set of outputs that could have been
produced using the input vector ι = (1, 1)′ in period 1 in environment 1. The dots
in this figure mark the observed output combinations of the two firms that used this
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Table 1.1 Toy data

Row Firm Period q1 q2 x1 x2 z

A 1 1 1 1 1 1 1

B 2 1 1 1 0.56 0.56 1

C 3 1 2.37 2.37 1 1 1

D 4 1 2.11 2.11 1.05 0.7 1

E 5 1 1.81 3.62 1.05 0.7 1

F 1 2 1 1 0.996 0.316 2

G 2 2 1.777 3.503 1.472 0.546 2

H 3 2 0.96 0.94 0.017 0.346 1

I 4 2 5.82 0.001 4.545 0.01 2

J 5 2 6.685 0.001 4.45 0.001 1

K 1 3 1.381 4.732 1 1 1

L 2 3 0.566 4.818 1 1 1

M 3 3 1 3 1.354 1 1

N 4 3 0.7 0.7 0.33 0.16 1

O 5 3 2 2 1 1 2

P 1 4 1 1 0.657 0.479 1

R 2 4 1 3 1 1 1

S 3 4 1 1 1.933 0.283 2

T 4 4 1.925 3.722 1 1 2

U 5 4 1 1 1 0.31 1

V 1 5 1 5.166 1 1 1

W 2 5 2 2 0.919 0.919 2

X 3 5 1 1 1.464 0.215 2

Y 4 5 1 1 0.74 0.74 1

Z 5 5 1.81 3.62 2.1 1.4 1

input vector in this period in this environment (in this book, letters in figures generally
correspond to rows in tables). The set P1(ι, 1) is the area bounded by the two axes
and the curve passing through point C.

1.2.2 Input Sets

An input set is a set containing all inputs that can produce given outputs. Again,
this book focuses on period-and-environment-specific input sets. A period-and-
environment-specific input set is a set containing all inputs that can produce given
outputs in a given period in a given production environment. For example, the set of
inputs that can produce the output vector q in period t in an environment characterised
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0
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1 2.37
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Fig. 1.1 The outputs that could have been produced using one unit of each input in period 1 in
environment 1. The set P1(ι, 1) is the area bounded by the two axes and the curve passing through
point C

by z is
Lt (q, z) = {x : x can produce q in period t in environment z}. (1.2)

To illustrate, reconsider the toy data in Table 1.1. Figure 1.2 depicts the set of inputs
that could have produced one unit of each output in period 1 in environment 1.
The dots in this figure mark the observed input combinations of the two firms that
produced these outputs in this period in this environment. The set L1(ι, 1) comprises
all points on and above the curve passing through point B.

1.2.3 Production Possibilities Sets

A production possibilities set is a set containing all input-output combinations that
are physically possible. In this book, the focus is on two specific types of production
possibilities set: period-and-environment-specific production possibilities sets and
period-environment-and-mix-specific production possibilities sets.

A period-and-environment-specific production possibilities set is a set containing
all input-output combinations that are physically possible in a given period in a given
production environment. For example, the set of input-output combinations that are
physically possible in period t in a production environment characterised by z is

T t (z) = {(x, q) : x can produce q in period t in environment z}. (1.3)
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Fig. 1.2 The inputs that could have produced one unit of each output in period 1 in environment
1. The set L1(ι, 1) comprises all points on and above the frontier passing through point B

If there aremore than two outputs and inputs, then the onlyway to represent this set in
a two-dimensional figure is tomapmanyvariables into just twovariables. Throughout
this book, outputs are mapped into scalar-valued measures of total output and inputs
are mapped into scalar-valued measures of total input. In the case of outputs, the
measure of total (or aggregate) output associated with the vector q is given by Q(q),
whereQ(.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. In the case of inputs, the measure of total (or aggregate) input
associated with the vector x is given by X (x), where, again, X (.) is any nonnegative,
nondecreasing, linearly-homogeneous, scalar-valued aggregator function.

For a simple illustration, reconsider the toy data in Table 1.1, and let Q(q) =
0.484q1 + 0.516q2 and X (x) = 0.23x1 + 0.77x2. The associated aggregate outputs
and inputs are reported in Table 1.2. Figure 1.3 plots the aggregate outputs and inputs
of the five firms that operated in period 1 in environment 1. In this figure, the set
T 1(1) is represented by the area bounded by the horizontal axis and the curve passing
through point E.

A period-environment-and-mix-specific production possibilities set is a set con-
taining all input-output combinations that are physically possiblewhen using a scalar
multiple of a given input vector to produce a scalar multiple of a given output vector
in a given period in a given production environment. For example, the set of input-
output combinations that are possible when using a scalar multiple of x̄ to produce
a scalar multiple of q̄ in period t in an environment characterised by z is

T t (x̄, q̄, z) = {(x, q) : x ∝ x̄, q ∝ q̄, (x, q) ∈ T t (z)}. (1.4)
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Table 1.2 Aggregate outputs and inputsa

Row Firm Period Q(q) X (x)

A 1 1 1 1

B 2 1 1 0.56

C 3 1 2.37 1

D 4 1 2.11 0.7805

E 5 1 2.744 0.7805

F 1 2 1 0.472

G 2 2 2.668 0.759

H 3 2 0.950 0.270

I 4 2 2.817 1.053

J 5 2 3.236 1.024

K 1 3 3.110 1

L 2 3 2.76 1

M 3 3 2.032 1.081

N 4 3 0.7 0.199

O 5 3 2 1

P 1 4 1 0.520

R 2 4 2.032 1

S 3 4 1 0.663

T 4 4 2.852 1

U 5 4 1 0.469

V 1 5 3.150 1

W 2 5 2 0.919

X 3 5 1 0.502

Y 4 5 1 0.74

Z 5 5 2.744 1.561
aNumbers reported to less than three decimal places are exact in the sense that they have not been
rounded. Some of the other numbers may have been rounded

To illustrate, reconsider the toy data in Tables 1.1 and 1.2. Figure 1.4 plots the
aggregate outputs and inputs of the three firms that used a scalar multiple of ι to
produce a scalar multiple of ι in period 1 in environment 1. In this figure, the set
T 1(ι, ι, 1) is represented by the area bounded by the horizontal axis and the curve
passing through points B and C.

1.2.4 Output Distance Functions

Set representations of technologies can be difficult to work with mathematically. In
practice, it is common to work with distance functions. An output distance function
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Fig. 1.3 The input-output combinations that were possible in period 1 in environment 1. The set
T 1(1) is the area bounded by the horizontal axis and the curve passing through point E
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Fig. 1.4 The input-output combinations that were possible when using a scalar multiple of ι to
produce a scalar multiple of ι in period 1 in environment 1. The set T 1(ι, ι, 1) is the area bounded
by the horizontal axis and the curve passing through points B and C
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gives the reciprocal of the largest factor bywhich it is possible to scale up a given out-
put vector when using a given input vector. For example, if it is technically possible
to use given inputs to produce four times asmuch of every output, then the output dis-
tance function takes the value 1/4 = 0.25. Again, this book focuses on period-and-
environment-specific output distance functions. A period-and-environment-specific
output distance function gives the reciprocal of the largest factor by which it is pos-
sible to scale up a given output vector when using a given input vector in a given
period in a given production environment. For example, the reciprocal of the largest
factor by which it is possible to scale up q when using x in period t in environment
z is

Dt
O(x, q, z) = inf{ρ > 0 : q/ρ ∈ Pt (x, z)}. (1.5)

For a numerical example, reconsider the toy data reported in Table 1.1. The outputs
of firm 1 in period 1 (hereafter firmA) were previously mapped to point A in Fig. 1.1.
That figure reveals that it would have been technically possible to hold the inputs of
thefirmfixed and scale up its outputs by a factor of nomore than2.37.Thus, in the case
of firmA, the output distance function takes the valueD1

O(ι, ι, 1) = 1/2.37 = 0.422.

1.2.5 Input Distance Functions

An input distance function gives the reciprocal of the smallest fraction of a given
input vector that can produce a given output vector. For example, if it is technically
possible to produce a given output vector using as little as one-half of a given input
vector, then the input distance function takes the value 1/0.5 = 2. Again, this book
focuses on period-and-environment-specific input distance functions. A period-and-
environment-specific input distance function gives the reciprocal of the smallest
fraction of a given input vector that can produce a given output vector in a given
period in a given production environment. For example, the reciprocal of the smallest
fraction of x that can produce q in period t in environment z is

Dt
I (x, q, z) = sup{θ > 0 : x/θ ∈ Lt (q, z)}. (1.6)

For a numerical example, reconsider the toy data in Table 1.1. The inputs of firm 1
in period 1 (i.e., firm A) were previously mapped to point A in Fig. 1.2. That figure
reveals that it would have been technically possible to produce the outputs of the
firm using as little as 0.56/1 = 56% of its inputs. Thus, in the case of firm A, the
input distance function takes the value D1

I (ι, ι, 1) = 1/0.56 = 1.786.
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1.2.6 Other Sets and Functions

If assumptions A1–A7 are true, then the input-output combinations that are possible
using different technologies can also be represented by revenue and cost functions.
A revenue function gives the maximum revenue that can be earned using given
inputs. A cost function gives the minimum cost of producing given outputs. Other
sets and functions that are discussed in this book include profit functions, production
functions, input requirement functions, directional distance functions, hyperbolic
distance functions, technology-and-environment-specific sets and functions, period-
specific sets and functions, and state-contingent sets and functions.

1.3 Measures of Productivity Change

In this book, measures of productivity change are defined as measures of output
quantity change divided by measures of input quantity change. Computing measures
of output and input quantity change involves assigning numbers to baskets of outputs
and inputs.Measurement theory says that so-called index numbers cannot be assigned
in an arbitrary way. Rather, they must be assigned in such a way that the relationships
between the numbers mirror the relationships between the baskets. To illustrate, con-
sider the baskets of maple syrup and Vegemite and the associated sets of quantity
index numbers presented in Table 1.3. Among other things, the index numbers in col-
umn L indicate that basket W contains twice as much syrup and Vegemite as basket
A. The other index numbers in the table can be interpreted in a similar way. The index
numbers in column L are the only numbers that are consistent with measurement

Table 1.3 Quantity index numbers

L F CF EKS

Basket A 1 1 1 1

Basket M 2.032 1.892 2.389 1.942

Basket R 2.032 1.893 2.854 1.943

Basket W 2 2 3.642 2.027
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theory. Observe, for example, that basket M contains the same amount of syrup and
Vegemite as basket R, and only in column L is the index number in rowM the same as
the index number in rowR.Arguably themost important distinguishing feature of this
book is that it assigns numbers to baskets of outputs and inputs in a way that is con-
sistent with measurement theory. To clarify the approach, this section introduces firm
and time subscripts into the notation. Thus, for example, qit = (q1i t , . . . , qNit )

′ and
xit = (x1i t , . . . , xM it )

′ now denote the output and input vectors of firm i in period t .

1.3.1 Output Quantity Indices

An index is a rule or a formula that tells us how to use data to measure the change in
one or more variables over time and/or space. An index number is the value obtained
after data have been substituted into the formula. In this book, an output quantity
index (or simply ‘output index’) that compares qit with qks is defined as any variable
of the form

QI(qks, qit ) ≡ Q(qit )/Q(qks) (1.7)

where Q(.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. All output indices of this type yield numbers that are consistent
with measurement theory. They are also proper indices in the sense that, if outputs
are positive, then they satisfy axioms Q1 to Q8 listed in O’Donnell (2016). Two of
the most important axioms are a transitivity axiom and a proportionality axiom. The
transitivity axiom says that a direct comparison of the outputs of two firms should
yield the same index number as an indirect comparison through a third firm. If, for
example, firm R produced the same amount of every output as firm M, and firm M
produced λ times as much as firm A, then the index that compares the outputs of firm
R with the outputs of firm A must take the value λ (indicating that firm R produced
λ times as much as firm A). The proportionality axiom says that if firm W produced
λ times as much as firm A, then the index that compares the outputs of firm W
with the outputs of firm A must take the value λ. The class of proper output indices
includes the Lowe index defined by O’Donnell (2012, Eq. 3). Output indices that do
not satisfy the transitivity axiom and are therefore not proper include the well-known
Fisher and Törnqvist indices. Output indices that do not satisfy the proportionality
axiom and are therefore not proper include the chained Fisher (CF) index and an
index proposed by Elteto and Koves (1964) and Szulc (1964) (hereafter, EKS).

To illustrate, consider the output quantities, output prices and output index num-
bers reported inTable 1.4.Theoutput quantities reported in this table are the quantities
reported earlier in Table 1.1. The index numbers in the different columns are Lowe
(L), Fisher (F), CF and EKS index numbers that compare the output quantities in
each row with the output quantities in row A. The Lowe index numbers were com-
puted using the same aggregator function that was used to compute the aggregate
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Table 1.4 Output quantities, output prices and output index numbersa,b

Row q1 q2 p1 p2 L F CF EKS

A 1 1 0.57 0.41 1 1 1 1

B 1 1 0.26 0.25 1 1 1 0.992∗

C 2.37 2.37 0.57 0.41 2.37 2.37 2.37 2.37

D 2.11 2.11 0.58 0.53 2.11 2.11 2.11 2.096∗

E 1.81 3.62 0.26 0.26 2.744 2.640∗ 2.695∗ 2.677∗

F 1 1 0.59 0.76 1 1 0.972∗ 0.986∗

G 1.777 3.503 0.63 0.65 2.668 2.575 2.626 2.608

H 0.96 0.94 0.34 0.31 0.950 0.951 0.950 0.944

I 5.82 0.001 0.46 0.58 2.817 2.952 2.800 2.672

J 6.685 0.001 0.61 1.43 3.236 2.789 3.217 2.508

K 1.381 4.732 0.57 0.41 3.110 2.783 3.716 2.883

L 0.566 4.818 0.49 0.65 2.760 2.648 3.251 2.737

M 1 3 0.51 0.46 2.032 1.892∗ 2.389∗ 1.942∗

N 0.7 0.7 0.52 0.23 0.7 0.7 0.943∗ 0.711∗

O 2 2 0.37 0.17 2 2 2.695∗ 2.029∗

P 1 1 0.41 0.76 1 1 1.348∗ 0.982∗

R 1 3 0.53 0.48 2.032 1.893∗ 2.854∗ 1.943∗

S 1 1 0.53 0.37 1 1 1.514∗ 1.001∗

T 1.925 3.722 0.91 0.53 2.852 2.631 3.973 2.706

U 1 1 0.31 1.03 1 1 1.359∗ 0.981∗

V 1 5.166 0.47 0.08 3.150 2.099 3.530 2.296

W 2 2 0.57 0.27 2 2 3.642∗ 2.027∗

X 1 1 0.31 0.51 1 1 1.821∗ 0.983∗

Y 1 1 0.31 0.67 1 1 1.821∗ 0.981∗

Z 1.81 3.62 0.42 0.69 2.744 2.745∗ 5.447∗ 2.759∗
aL = Lowe; F = Fisher; CF = chained Fisher; EKS = Elteto-Koves-Szulc
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
∗Incoherent (not because of rounding)

outputs in Table 1.2. Lowe index numbers are consistent with measurement theory.
Observe, for example, that the output vector in row M is the same as the output
vector in row R, and the Lowe index number in rowM is the same as the Lowe index
number in row R (the index numbers in these particular rows are, in fact, the index
numbers reported above in Table 1.3). The Fisher, CF and EKS index numbers are
not consistent with measurement theory.2 Numbers that are clearly incoherent are
marked with an asterisk (∗). Observe, for example, that the outputs in row E are the

2In practice, CF (resp. EKS) indices are mainly used for time-series (resp. cross-section) compar-
isons. For this reason, the CF numbers in Table 1.4 were computed by treating the observations in
the dataset as observations on one firm over twenty-five periods. The EKS numbers were computed
by treating the observations in the dataset as observations on twenty-five firms in one period.
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same as the outputs in row Z, but the CF index number in row E differs from the CF
index number in row Z.

1.3.2 Input Quantity Indices

In this book, an input quantity index (or simply ‘input index’) that compares xit with
xks is defined as any variable of the form

XI(xks, xit ) ≡ X (xit )/X (xks) (1.8)

where X (.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. Again, all input indices of this type yield numbers that are
consistent with measurement theory. They are also proper indices in the sense that,
if inputs are positive, then they satisfy axioms X1 to X8 listed in O’Donnell (2016).
The class of proper input indices includes the Lowe index defined by O’Donnell
(2012, Eq. 4). Again, input indices that are not proper include the Fisher, CF and
EKS indices.

To illustrate, consider the input quantities, input prices and input index numbers
reported in Table 1.5. The input quantities reported in this table are the quantities
reported earlier in Table 1.1. The index numbers in the different columns are Lowe
(L), Fisher (F), CF and EKS index numbers that compare the input quantities in each
row with the input quantities in row A. The Lowe index numbers were computed
using the same aggregator function that was used to compute the aggregate inputs
in Table 1.2. Again, these numbers are consistent with measurement theory. For
example, the input vector in row D is the same as the input vector in row E, and the
Lowe index number in row D is the same as the Lowe index number in row E. Again,
the Fisher, CF and EKS index numbers are not consistent with measurement theory.3

Again, numbers that are clearly incoherent are marked with an asterisk (∗). Observe,
for example, that the input vector in row Z is twice as big as the input vector in row
E, but the EKS index number in row Z is not twice as big as the EKS index number
in row E.

1.3.3 Productivity Indices

Productivity indices are measures of productivity change. Without loss of generality,
this book focuses on measures of total factor productivity (TFP) change. An index
that compares the TFP of firm i in period t with the TFP of firm k in period s is defined

3Again, the CF numbers were computed by treating the observations in the dataset as observations
on one firm over twenty-five periods. The EKS index numbers were computed by treating the
observations in the dataset as observations on twenty-five firms in one period.
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Table 1.5 Input quantities, input prices and input index numbersa,b

Row x1 x2 w1 w2 L F CF EKS

A 1 1 0.28 1.91 1 1 1 1

B 0.56 0.56 0.22 0.58 0.56 0.56 0.56 0.525∗

C 1 1 0.28 1.91 1 1 1 1

D 1.05 0.7 0.16 0.41 0.781 0.771∗ 0.771∗ 0.749∗

E 1.05 0.7 0.07 1.02 0.781 0.734∗ 0.771∗ 0.797∗

F 0.996 0.316 0.24 0.29 0.472 0.501 0.464 0.502

G 1.472 0.546 0.16 0.16 0.759 0.819 0.715 0.798

H 0.017 0.346 0.17 0.7 0.270 0.293 0.189 0.253

I 4.545 0.01 0.27 0.39 1.053 1.049 1.001 1.339

J 4.45 0.001 0.29 0.79 1.024 0.825 0.976 1.102

K 1 1 0.28 1.91 1 1 1.182∗ 1

L 1 1 0.21 0.56 1 1 1.182∗ 0.939∗

M 1.354 1 0.16 0.74 1.081 1.054 1.276 1.056

N 0.33 0.16 0.24 2.3 0.199 0.179 0.223 0.196

O 1 1 0.24 0.15 1 1 1.032∗ 0.863∗

P 0.657 0.479 0.26 0.61 0.520 0.517 0.578 0.495

R 1 1 0.16 0.22 1 1 1.064∗ 0.899∗

S 1.933 0.283 0.19 0.62 0.663 0.575 0.861 0.668

T 1 1 0.17 0.26 1 1 1.088∗ 0.905∗

U 1 0.31 0.27 0.91 0.469 0.432 0.568 0.464

V 1 1 0.29 0.78 1 1 1.178∗ 0.939∗

W 0.919 0.919 0.39 0.81 0.919 0.919 1.083∗ 0.848∗

X 1.464 0.215 0.21 0.31 0.502 0.519 0.787 0.572

Y 0.74 0.74 0.23 0.69 0.74 0.74 0.946∗ 0.700∗

Z 2.1 1.4 0.31 0.22 1.561 1.642∗ 2.159∗ 1.479∗
aL = Lowe; F = Fisher; CF = chained Fisher; EKS = Elteto-Koves-Szulc
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
∗Incoherent (not because of rounding)

as any variable of the form TFPI(xks, qks, xit , qit ) ≡ QI(qks, qit )/XI(xks, xit ) where
QI(.) is any proper output index and XI(.) is any proper input index. Equivalently,

TFPI(xks, qks, xit , qit ) ≡ TFP(xit , qit )/TFP(xks, qks) (1.9)

where TFP(xit , qit ) ≡ Q(qit )/X (xit ) denotes the TFP of firm i in period t . All TFP
indices (TFPIs) of this type are said to be proper. If outputs and inputs are positive,
then they satisfy axioms T1 to T8 listed in O’Donnell (2017). The class of proper
TFPIs includes the Lowe index defined by O’Donnell (2012, Eq. 5). TFPIs that are
not proper include the Fisher, CF and EKS indices.
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Table 1.6 Output quantities, input quantities and TFPI numbersa,b

Row q1 q2 x1 x2 L F CF EKS

A 1 1 1 1 1 1 1 1

B 1 1 0.56 0.56 1.786 1.786 1.786 1.889∗

C 2.37 2.37 1 1 2.37 2.37 2.37 2.37

D 2.11 2.11 1.05 0.7 2.703 2.737 2.737 2.799

E 1.81 3.62 1.05 0.7 3.516 3.599∗ 3.495∗ 3.359∗

F 1 1 0.996 0.316 2.117 1.994 2.096 1.963

G 1.777 3.503 1.472 0.546 3.515 3.145 3.670 3.269

H 0.96 0.94 0.017 0.346 3.513 3.250 5.028 3.728

I 5.82 0.001 4.545 0.01 2.675 2.815 2.798 1.996

J 6.685 0.001 4.45 0.001 3.159 3.378 3.296 2.276

K 1.381 4.732 1 1 3.110 2.783 3.144 2.883

L 0.566 4.818 1 1 2.760 2.648 2.750 2.916

M 1 3 1.354 1 1.879 1.795 1.872 1.840

N 0.7 0.7 0.33 0.16 3.516 3.913 4.233 3.629

O 2 2 1 1 2 2 2.611∗ 2.350∗

P 1 1 0.657 0.479 1.923 1.935 2.332 1.985

R 1 3 1 1 2.032 1.893 2.682 2.162

S 1 1 1.933 0.283 1.509 1.738 1.757 1.498

T 1.925 3.722 1 1 2.852 2.631 3.652 2.991

U 1 1 1 0.31 2.134 2.317 2.391 2.117

V 1 5.166 1 1 3.150 2.099 2.996 2.445

W 2 2 0.919 0.919 2.176 2.176 3.364∗ 2.390∗

X 1 1 1.464 0.215 1.991 1.926 2.313 1.719

Y 1 1 0.74 0.74 1.351 1.351 1.925∗ 1.401∗

Z 1.81 3.62 2.1 1.4 1.758 1.672∗ 2.523∗ 1.866∗
aL = Lowe; F = Fisher; CF = chained Fisher; EKS = Elteto-Koves-Szulc
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
∗Incoherent (not because of rounding)

To illustrate, consider the output quantities, input quantities and TFPI numbers
reported in Table 1.6. The output and input quantities reported in this table are the
quantities reported earlier inTables 1.1, 1.4 and1.5. TheTFPI numbers in the columns
labelled L, F, CF and EKS were obtained by dividing the output index numbers in
Table 1.4 by the corresponding input index numbers in Table 1.5. The index numbers
in Table 1.6 compare the output-input combinations in each rowwith the output-input
combinations in rowA. The Lowe index numbers reported in column L are coherent.
Observe, for example, that (a) the output vector in rowW is twice as big as the output
vector in row A, (b) the input vector in rowW is only 0.919 times as big as the input
vector in row A, and (c) the Lowe TFPI number is 2/0.919 = 2.176. Again, the
Fisher, CF and EKS index numbers are not coherent. Observe, for example, that (a)
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the output vector in row Z is the same as the output vector in row E, (b) the input
vector in row Z is twice as big as the input vector in row E, but (c) the CF index
number in row Z is not half as big as the CF index number in row E.

1.3.4 Other Indices

Other indices discussed in this book include output price indices, input price in-
dices, terms-of-trade (TT) indices, implicit output indices, implicit input indices and
implicit productivity indices. Implicit output (resp. input) indices are obtained by di-
viding revenue (resp. cost) indices by output price (resp. input price) indices. Implicit
productivity indices are obtained by dividing profitability indices by TT indices. Ex-
cept in restrictive special cases, implicit indices yield numbers that are not consistent
with measurement theory.

1.4 Managerial Behaviour

To explain changes in outputs and inputs, and therefore changes in productivity,
we need to know something about managerial behaviour. The existence of differ-
ent sets and functions has few, if any, implications for behaviour. The existence of
revenue functions, for example, does not mean that managers will choose outputs
in order to maximise revenues, and the existence of cost functions does not mean
they will choose inputs to minimise costs. Instead, different managers will tend to
behave differently depending on what they value, and on what they can and cannot
choose. Some of the simplest optimisation problems faced by firm managers involve
maximising outputs, minimising inputs and/or maximising productivity.

1.4.1 Output Maximisation

Themanagers of some firms (e.g., themanagers of government departments, benevo-
lent societies, conservation groups and socially-responsible corporations) often value
products and services differently to the market. There are also many products and
services that are not exchanged in a market and therefore do not have a market price
(e.g., city parks). If a firm manager places nonnegative values on outputs (not neces-
sarily market values) and all other variables involved in the production process have
been predetermined (i.e., have been determined in a previous period), then (s)he will
generally aim to maximise a measure of total output. If there is more than one output,
then the precise form of the output maximisation problem will depend on how easily
the manager can choose the output mix. Suppose, for example, the manager of firm
i can only choose output vectors that are scalar multiples of qit . In this case, his/her
period-t output-maximisation problem can be written as
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Fig. 1.5 Output maximisation. If the output mix of firm A had been predetermined, then the
manager could have maximised total output by operating the firm at point C

max
q

{Q(q) : q ∝ qit , Dt
O(xit , q, zit ) ≤ 1} (1.10)

whereQ(.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
function satisfying Q(qit ) > 0. The output vector that solves this problem is q̄i t ≡
q̄ t (xit , qit , zit ) = qit/Dt

O(xit , qit , zit ). The associated aggregate output is Q(q̄i t ) =
Q(qit )/Dt

O(xit , qit , zit ).
For a numerical example, reconsider the toy data in Table 1.1. Also let Q(q) =

0.484q1 + 0.516q2. Figure 1.5 depicts the output maximisation problem that would
have faced the manager of firm 1 in period 1 (i.e., firm A) had the firm’s output mix
been predetermined. In this figure, the frontier passing through point C is the frontier
depicted earlier in Fig. 1.1. The outputs of firm 1 in period 1 map to point A. The
aggregate output at this point is Q(q11) = 1. The dashed line passing through point
A is an iso-output line with a slope of −0.938 and a q2 intercept of Q(q11)/0.516 =
1.938. The other dashed line is an iso-output line with the same slope but a higher
intercept. Output maximisation involves choosing the iso-output line with the highest
intercept that passes through a technically-feasible point. If the output mix of firm
A had been predetermined, then the output-maximising iso-output line would have
been the one passing through point C. The aggregate output at this point isQ(q̄11) =
4.593 × 0.516 = 2.37.
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1.4.2 Input Minimisation

If a firm manager places nonnegative values on inputs (again, not necessarily market
values) and all other variables involved in the production process have been prede-
termined, then (s)he will generally aim to minimise a measure of total input. If there
is more than one input, then the precise form of the input minimisation problem will
depend on how easily the manager can choose the input mix. Suppose, for example,
the manager of firm i can only use input vectors that are scalar multiples of xit . In
this case, his/her period-t input-minimisation problem can be written as

min
x

{X (x) : x ∝ xit , Dt
I (x, qit , zit ) ≥ 1} (1.11)

where X (.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function satisfying X (xit ) > 0. The input vector that solves this prob-
lem is x̄i t ≡ x̄ t (xit , qit , zit ) = xit/Dt

I (xit , qit , zit ). The associated aggregate input is
X (x̄i t ) = X (xit )/Dt

I (xit , qit , zit ).
For a numerical example, reconsider the toy data in Table 1.1. Also let X (x) =

0.23x1 + 0.77x2. Figure 1.6 depicts the input minimisation problem that would have
faced the manager of firm 1 in period 1 (i.e., firm A) had the firm’s input mix been
predetermined. In this figure, the frontier passing through point B is the frontier
depicted earlier in Fig. 1.2. The inputs of firm 1 in period 1 map to point A. The
aggregate input at this point isX (x11) = 1. The dashed line passing through pointA is
an iso-input line with a slope of−0.299 and an x2 intercept of X (x11)/0.77 = 1.299.
The other dashed line is an iso-input line with the same slope but a lower intercept.

0

x2

x1

A

B

1.299

0.727

1

1

0.56

Fig. 1.6 Input minimisation. If the input mix of firm A had been predetermined, then the manager
could have minimised total input use by operating the firm at point B
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Input minimisation involves choosing the iso-input line with the lowest intercept
that passes through a technically-feasible point. If the input mix of firm A had been
predetermined, then the input-minimising iso-input line would have been the one
passing through point B. The aggregate input at this point is X (x̄11) = 0.727 ×
0.77 = 0.56.

1.4.3 Productivity Maximisation

If a firm manager places nonnegative values on outputs and inputs (again, not nec-
essarily market values) and all environmental variables have been predetermined,
then (s)he may aim to maximise a measure of TFP. If there is more than one output
and more than one input, then the precise form of the manager’s TFP maximisation
problem will depend on how easily (s)he can choose the output mix and the input
mix. Suppose, for example, the manager of firm i can choose all outputs and inputs
freely. In this case, his/her period-t TFP-maximisation problem can be written as

max
q,x

{Q(q)/X (x) : Dt
O(x, q, zit ) ≤ 1} (1.12)

whereQ(.) and X (.) are nonnegative, nondecreasing, linearly-homogeneous, scalar-
valued aggregator functions with parameters (or weights) that represent the values
the manager places on outputs and inputs. There may be several pairs of output and
input vectors that solve this problem. Let q∗

i t ≡ qt (zit ) and x∗
i t ≡ xt (zit ) denote one

such pair. The associated maximum TFP is TFPt (zit ) = Q(q∗
i t )/X (x∗

i t ).
For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. Figure 1.7

depicts the TFP maximisation problem that would have faced the manager of firm 1
in period 1 (i.e., firm A). The frontier in this figure is the frontier depicted earlier in
Fig. 1.3. The outputs and inputs of firm 1 in period 1 map to point A. The dashed line
passing through point A is an iso-productivity ray with a slope of TFP(x11, q11) =
slope 0A = 1/1 = 1. The other dashed lines are iso-productivity rays with higher
slopes. TFP maximisation involves choosing the iso-productivity ray that has the
highest slope and passes through a technically-feasible point. If the manager of firm
A had been able to choose all outputs and inputs freely, then the TFP-maximising
iso-productivity ray would have been the one passing through points N and E. The
TFP at any point on the line connecting these two points is TFP1(z11) = slope
0N = slope 0E = 0.7/0.1991 = 2.744/0.7805 = 3.516.
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Fig. 1.7 Productivity maximisation. If the manager of firm A had been able to choose all outputs
and inputs freely, then (s)he could have maximised TFP by operating the firm anywhere on the line
connecting points N and E

1.4.4 Other Types of Behaviour

Other optimisation problems (and therefore other types of managerial behaviour)
discussed in this book involve maximising revenue, minimising cost, maximising
profit, maximising net output, and maximising return to the dollar.

1.5 Measures of Efficiency

Measures of efficiency can be viewed as ex post measures of how well firm man-
agers have solved different optimisation problems. Except where explicitly stated
otherwise, all measures of efficiency defined in this book take values in the closed
unit interval. A firm manager is said to have been fully efficient by some measure if
and only if that measure takes the value one.

1.5.1 Output-Oriented Measures

Output-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situations where managers have placed nonnegative values on outputs (not
necessarily market values) and inputs have been predetermined. In these situations,
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the relevance of a particular measure depends on how easily the manager has been
able to choose the outputmix. If, for example, the outputmix of the firm has been pre-
determined, then the most relevant measure is output-oriented technical efficiency
(OTE). Several measures of OTE can be found in the literature. In this book, the
OTE of manager i in period t is defined as OTEt (xit , qit , zit ) = Dt

O(xit , qit , zit ).
Equivalently,

OTEt (xit , qit , zit ) = Q(qit )/Q(q̄i t ) (1.13)

whereQ(qit ) is the aggregate output of the firm andQ(q̄i t ) = Q(qit )/Dt
O(xit , qit , zit )

is the maximum aggregate output that is possible in period t when using xit to
produce a scalar multiple of qit in an environment characterised by zit . The right-
hand side of (1.13) is, in fact, an output index. If environmental variables have been
predetermined, then it can be viewed as a measure of how well the manager has
solved problem (1.10).

For a numerical example, reconsider the output maximisation problem depicted
earlier in Fig. 1.5. In that figure, the outputs of firm 1 in period 1 were represented
by point A. The aggregate output at point A is Q(q11) = 1.938 × 0.516 = 1. The
aggregate output at point C isQ(q̄11) = 4.593 × 0.516 = 2.37. The OTE ofmanager
1 in period 1 is OTE1(x11, q11, z11) = Q(q11)/Q(q̄11) = 0.422 (i.e., the aggregate
output at point A divided by the aggregate output at point C).

The fact that the OTE of a manager can be defined in terms of aggregate outputs
means it can be depicted in input-output space. It can also be viewed as a TFPI.
For example, points A and C in Fig. 1.5 map to points A and C in Fig. 1.8. The
frontier depicted in this figure is the frontier depicted earlier in Fig. 1.4. The TFP
at point A is TFP(x11, q11) = Q(q11)/X (x11) = slope 0A = 1. The TFP at point

Fig. 1.8 Output-oriented technical inefficiency. The gap between the rays passing through points
A and C is due to technical inefficiency
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C is TFP(x11, q̄11) = Q(q̄11)/X (x11) = slope 0C = 2.37. The OTE of manager 1
in period 1 is OTE1(x11, q11, z11) = TFP(x11, q11)/TFP(x11, q̄11) = 0.422 (i.e., the
TFP at point A divided by the TFP at point C).

1.5.2 Input-Oriented Measures

Input-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situationswheremanagers have placed nonnegative values on inputs (again,
not necessarily market values) and outputs have been predetermined. In these situa-
tions, the relevance of a particular measure depends on how easily the manager has
been able to choose the input mix. If, for example, the input mix of the firm has been
predetermined, then the most relevant measure is input-oriented technical efficiency
(ITE). Again, several measures of ITE can be found in the literature. In this book,
the ITE of manager i in period t is defined as ITEt (xit , qit , zit ) = 1/Dt

I (xit , qit , zit ).
Equivalently,

ITEt (xit , qit , zit ) = X (x̄i t )/X (xit ) (1.14)

where X (xit ) is the aggregate input of the firm and X (x̄i t ) = X (xit )/Dt
I (xit , qit , zit )

is the minimum aggregate input needed to produce qit in period t when using a scalar
multiple of xit in an environment characterised by zit . The right-hand side of (1.14)
is an input index. If environmental variables have been predetermined, then it can be
viewed as a measure of how well the manager has solved problem (1.11).

For a numerical example, reconsider the input minimisation problem depicted
earlier in Fig. 1.6. In that figure, the inputs of firm 1 in period 1 were represented by
pointA. The aggregate input at pointA isX (x11) = 1.299 × 0.77 = 1. The aggregate
input at point B is X (x̄11) = 0.727 × 0.77 = 0.56. The ITE of manager 1 in period
1 is ITE1(x11, q11, z11) = X (x̄11)/X (x11) = 0.56/1 = 0.56 (i.e., the aggregate input
at point B divided by the aggregate input at point A).

The fact that the ITE of a manager can be defined in terms of aggregate inputs
means it can also be depicted in input-output space. It can also be viewed as a TFPI.
For example, points A and B in Fig. 1.6 map to points A and B in Fig. 1.9. The
frontier passing through point B in Fig. 1.9 is the frontier depicted earlier in Figs.
1.4 and 1.8. The TFP at point A is TFP(x11, q11) = Q(q11)/X (x11) = slope 0A = 1.
The TFP at point B is TFP(x̄11, q11) = Q(q11)/X (x̄11) = slope 0B= 1.786. The ITE
of manager 1 in period 1 is ITE1(x11, q11, z11) = TFP(x11, q11)/TFP(x̄11, q11) =
1/1.786 = 0.56 (i.e., the TFP at point A divided by the TFP at point B).
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Fig. 1.9 Input-oriented technical inefficiency. The gap between the rays passing through points A
and B is due to technical inefficiency

1.5.3 Productivity-Oriented Measures

Productivity-oriented measures of efficiency are relevant measures of managerial
performance in situationswheremanagers have placed nonnegative values on outputs
and inputs (again, not necessarily market values) and chosen at least one output and
at least one input freely. In these situations, the relevance of a particular measure
depends on how easily the manager has been able to choose the output mix and the
input mix. If, for example, all outputs and inputs have been chosen freely, then the
most relevant measure is technical, scale and mix efficiency (TSME). The TSME of
manager i in period t is

TSMEt (xit , qit , zit ) = TFP(xit , qit )/TFP
t (zit ) (1.15)

where TFP(xit , qit ) = Q(qit )/X (xit ) is the TFP of the firm and TFPt (zit ) is the
maximum TFP that is possible in period t in an environment characterised by zit .
The right-hand side of (1.15) is a TFPI. If environmental variables have been prede-
termined, then it can be viewed as a measure of how well the manager has solved
problem (1.12).

For a numerical example, reconsider the TFPmaximisation problem depicted ear-
lier in Fig. 1.7. Relevant parts of that figure are now reproduced in Fig. 1.10. In these
figures, the outputs and inputs of firm 1 in period 1map to point A. The TFP at point A
is TFP(x11, q11) = slope 0A= 1/1 = 1. The TFP at any point on the line connecting
points N and E is TFP1(z11) = slope 0E = 2.744/0.7805 = 3.516. The TSME of
manager 1 in period 1 is TSME1(x11, q11, z11) = TFP(x11, q11)/TFP1(z11) = 0.284
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Fig. 1.10 Technical, scale and mix inefficiency. The gap between the rays passing through points
A and E is due to technical, scale and mix inefficiency

(i.e., the TFP at point A divided by the TFP at any point on the line connecting points
N and E).

The measure of TSME defined by (1.15) can be decomposed into a measure of
technical efficiency and a measure of scale and mix efficiency. Both output- and
input-oriented decompositions are available. The technical efficiency components
are the measures of OTE and ITE defined by (1.13) and (1.14). The scale and mix
efficiency components are productivity-oriented measures of economies of scale
and substitution. Economies of scale and substitution are the benefits obtained by
changing the scale of operations, the output mix, and the input mix. On the output
side, the so-called output-oriented scale and mix efficiency (OSME) of manager i in
period t is

OSMEt (xit , qit , zit ) = TFP(xit , q̄i t )/TFP
t (zit ) (1.16)

where TFP(xit , q̄i t ) = Q(q̄i t )/X (xit ) is the maximum TFP possible when using xit
to produce a scalar multiple of qit in period t in an environment characterised by zit .
Equations (1.13), (1.15) and (1.16) imply that

OSMEt (xit , qit , zit ) = TSMEt (xit , qit , zit )/OTE
t (xit , qit , zit ). (1.17)

This equation says that OSME is the component of TSME that remains after account-
ing for OTE. On the input side, the so-called input-oriented scale and mix efficiency
(ISME) of manager i in period t is

ISMEt (xit , qit , zit ) = TFP(x̄i t , qit )/TFP
t (zit ) (1.18)
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Fig. 1.11 Technical, scale and mix inefficiency. The gap between the rays passing through points
A and C is due to technical inefficiency. The gap between the rays passing through points C and E
is due to scale and mix inefficiency

where TFP(x̄i t , qit ) = Q(qit )/X (x̄i t ) is the maximum TFP possible when using a
scalar multiple of xit to produce qit in period t in an environment characterised by
zit . Equations (1.14), (1.15) and (1.18) imply that

ISMEt (xit , qit , zit ) = TSMEt (xit , qit , zit )/ITE
t (xit , qit , zit ). (1.19)

This equation says that ISME is the component of TSME that remains after account-
ing for ITE.

For a numerical example, reconsider the measures of OTE, ITE and TSME
depicted in Figs. 1.8, 1.9 and 1.10. Relevant parts of those figures are now re-
produced in Figs. 1.11 and 1.12. In Fig. 1.11, the OSME of manager 1 in pe-
riod 1 is OSME1(x11, q11, z11) = TFP(x11, q̄11)/TFP1(z11) = 0.674 (i.e., the TFP
at point C divided by the TFP at any point on the line connecting points N and
E). In Fig. 1.12, the ISME of manager 1 in period 1 is ISME1(x11, q11, z11) =
TFP(x̄11, q11)/TFP1(z11) = 0.508 (i.e., the TFP at point B divided by the TFP at
any point on the line connecting points N and E).

1.5.4 Other Measures

Other measures of efficiency discussed in this book include metatechnology ratios
and measures of revenue, cost, profit, mix, allocative and scale efficiency. Metatech-
nology ratios can be viewed asmeasures of howwellmanagers have chosen their pro-
duction technologies (i.e., how well they have chosen their ‘books of instructions’).
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Fig. 1.12 Technical, scale and mix inefficiency. The gap between the rays passing through points
A and B is due to technical inefficiency. The gap between the rays passing through points B and E
is due to scale and mix inefficiency

Measures of revenue, cost and profit efficiency are measures of how well managers
have maximised revenue, minimised cost and maximised profit. Measures of mix ef-
ficiency are measures of howwell managers have captured economies of substitution
(i.e., the benefits obtained by substituting some outputs for others, or by substitut-
ing some inputs for others). Measures of scale efficiency are measures of how well
managers have captured economies of scale (i.e., the benefits obtained by changing
the scale of operations).

1.6 Piecewise Frontier Analysis

Estimating and/or predicting levels of efficiency involves estimating production fron-
tiers. A widely-used estimation approach involves enveloping scatterplots of data
points as tightly as possible without violating any assumed properties of production
technologies. Some of the most common assumptions lead to estimated frontiers that
are comprised of multiple linear segments (or pieces). The associated frontiers are
known as piecewise frontiers.4

4In mathematics, a piecewise function is a function defined on a sequence of intervals (or sub-
domains). Examples include the absolute value function and the Heaviside step function.
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1.6.1 Basic Models

The most common piecewise frontier models (PFMs) are underpinned by the fol-
lowing assumptions:

PF1: production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

PF2: all relevant quantities, prices and environmental variables are observed and
measured without error;

PF3: production frontiers are locally (or piecewise) linear;
PF4: outputs, inputs and environmental variables are strongly disposable; and
PF5: production possibilities sets are convex.

If these assumptions are true, then most measures of efficiency can be estimated
using linear programming (LP). The associatedmodels and estimators are commonly
known as data envelopment analysis (DEA) and estimators.

Output-Oriented Models

Output-oriented PFMs are mainly used to estimate the measure of OTE defined
by (1.13). If there are I firms in the dataset and assumptions PF1 to PF5 are true,
then the DEA estimation problem can be written as

max
μ,λ11,...,λI t

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr ,
I∑

h=1

t∑
r=1

λhr zhr ≤ zit ,

I∑
h=1

t∑
r=1

λhr xhr ≤ xit ,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (1.20)

This LP problem seeks to scale up the output vector while holding inputs and en-
vironmental variables fixed. The value of μ at the optimum is an estimate of the
reciprocal of OTEt (xit , qit , zit ).

For a numerical example, reconsider the toy data in Table 1.1. The estimation
problem for manager 1 in period 1 is

max
μ,λ11,...,λ51

μ

s.t. 1μ − 1λ11 − 1λ21 − 2.37λ31 − 2.11λ41 − 1.81λ51 ≤ 0
1μ − 1λ11 − 1λ21 − 2.37λ31 − 2.11λ41 − 3.62λ51 ≤ 0

1λ11 + 1λ21 + 1λ31 + 1λ41 + 1λ51 ≤ 1
1λ11 + 0.56λ21 + 1λ31 + 1.05λ41 + 1.05λ51 ≤ 1
1λ11 + 0.56λ21 + 1λ31 + 0.7λ41 + 0.7λ51 ≤ 1

λ11 + λ21 + λ31 + λ41 + λ51 = 1

and λ11, . . . , λ51 ≥ 0.

The value of the μ at the optimum is 2.37. The associated estimate of OTE is
OT̂E1(x11, q11, z11) = 1/2.37 = 0.422. DEA estimates of OTE for other managers
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Table 1.7 DEA estimates of OTEa

Row Firm Period OTE

A 1 1 0.422

B 2 1 1

C 3 1 1

D 4 1 1

E 5 1 1

F 1 2 0.865

G 2 2 1

H 3 2 1

I 4 2 0.871

J 5 2 1

K 1 3 1

L 2 3 1

M 3 3 0.653

N 4 3 1

O 5 3 0.844

P 1 4 0.594

R 2 4 0.671

S 3 4 0.583

T 4 4 1

U 5 4 0.654

V 1 5 1

W 2 5 0.895

X 3 5 0.836

Y 4 5 0.516

Z 5 5 0.867
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

in other periods can be obtained in a similar way and are reported in Table 1.7. The
solution for manager 1 in period 1 is depicted in Fig. 1.13. In this figure, the outputs
of firm 1 in period 1 map to point A. The piecewise frontier passing through point C
is an estimate of the true frontier depicted earlier in Fig. 1.5.

Input-Oriented Models

Input-oriented PFMs are mainly used to estimate the measure of ITE defined by
(1.14). If there are I firms in the dataset and assumptions PF1 to PF5 are true, then
the DEA estimation problem can be written as
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Fig. 1.13 An estimate of output-oriented technical efficiency. In the case of firm A, the DEA
estimate of OTE is OT̂E1(x11, q11, z11) = 1/2.37 = 0.422

min
μ,λ11,...,λI t

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit ,
I∑

h=1

t∑
r=1

λhr zhr ≤ zit ,

μxit ≥
I∑

h=1

t∑
r=1

λhr xhr ,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (1.21)

This LP problem seeks to scale down the input vector while holding outputs and
environmental variables fixed. The value of μ at the optimum is an estimate of
ITEt (xit , qit , zit ).

For a numerical example, reconsider the toy data in Table 1.1. The estimation
problem for firm 1 in period 1 is

min
μ,λ11,...,λI t

μ

s.t. 1λ11 + 1λ21 + 2.37λ31 + 2.11λ41 + 1.81λ51 ≥ 1
1λ11 + 1λ21 + 2.37λ31 + 2.11λ41 + 3.62λ51 ≥ 1
1λ11 + 1λ21 + 1λ31 + 1λ41 + 1λ51 ≤ 1

1μ − 1λ11 − 0.56λ21 − 1λ31 − 1.05λ41 − 1.05λ51 ≥ 0
1μ − 1λ11 − 0.56λ21 − 1λ31 − 0.7λ41 − 0.7λ51 ≥ 0

λ11 + λ21 + λ31 + λ41 + λ51 = 1

and λ11, . . . , λ51 ≥ 0.

The value of μ at the optimum is I T̂E1(x11, q11, z11) = 0.56. DEA estimates of ITE
for other firms in other periods can be obtained in a similar way and are reported in
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Table 1.8 DEA estimates of ITEa

Row Firm Period ITE

A 1 1 0.56

B 2 1 1

C 3 1 1

D 4 1 1

E 5 1 1

F 1 2 0.954

G 2 2 1

H 3 2 1

I 4 2 0.955

J 5 2 1

K 1 3 1

L 2 3 1

M 3 3 0.604

N 4 3 1

O 5 3 0.777

P 1 4 0.551

R 2 4 0.657

S 3 4 0.669

T 4 4 1

U 5 4 0.689

V 1 5 1

W 2 5 0.846

X 3 5 0.881

Y 4 5 0.387

Z 5 5 0.5
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

Table 1.8. The solution for firm 1 in period 1 is depicted in Fig. 1.14. In this figure, the
inputs of firm 1 in period 1 map to point A. The piecewise frontier passing through
point B is an estimate of the true frontier depicted earlier in Fig. 1.6.

Productivity-Oriented Models

Productivity-oriented PFMs are mainly used to estimate the measure of TSME
defined by (1.15). If estimates of OTE and ITE are available, then Eqs. (1.17) and
(1.19) can subsequently be used to estimate themeasures ofOSMEand ISMEdefined
by (1.16) and (1.18).
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Fig. 1.14 An estimate of input-oriented technical efficiency. In the case of firmA, theDEAestimate
of ITE is I T̂E1(x11, q11, z11) = 0.56/1 = 0.56

Estimating the measure of TSME of defined by (1.15) involves estimating
TFPt (zit ). If there are I firms in the dataset and assumptions PF1 to PF5 are true,
then the DEA estimation problem can be written as

max
q,x,μ,θ11,...,θI t

{
Q(q) : q ≤

I∑
h=1

t∑
r=1

θhrqhr ,
I∑

h=1

t∑
r=1

θhr zhr ≤ μzit , X (x) = 1,

I∑
h=1

t∑
r=1

θhr xhr ≤ x,
I∑

h=1

t∑
r=1

θhr = μ, θhr ≥ 0 for all h and r
}
. (1.22)

If the aggregator functions are linear, then this problem is an LP problem. Whether
or not the aggregator functions are linear, the value of the objective function at the
optimum is an estimate of TFPt (zit ). This can be substituted into (1.15) to obtain an
estimate of TSMEt (xit , qit , zit ).

For a numerical example, reconsider the toy data in Table 1.1. Also suppose
that Q(q) = 0.484q1 + 0.516q2 and X (x) = 0.23x1 + 0.77x2 (these functions were
used earlier to compute the aggregate outputs and inputs in Table 1.2). The estimation
problem for firm 1 in period 1 is
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max
q,x,μ,θ

0.484q1 + 0.516q2

s.t. q1 − 1θ11 − 1θ21 − 2.37θ31 − 2.11θ41 − 1.81θ51 ≤ 0
q2 − 1θ11 − 1θ21 − 2.37θ31 − 2.11θ41 − 3.62θ51 ≤ 0

1θ11 + 1θ21 + 1θ31 + 1θ41 + 1θ51 − 1μ ≤ 0
0.23x1 + 0.77x2 = 1

1θ11 + 0.56θ21 + 1θ31 + 1.05θ41 + 1.05θ51 − x1 ≤ 0
1θ11 + 0.56θ21 + 1θ31 + 0.7θ41 + 0.7θ51 − x2 ≤ 0
θ11 + θ21 + θ31 + θ41 + θ51 − μ = 0

and q1, q2, x1, x2, θ11, . . . , θ51 ≥ 0.

The value of the objective function at the optimum is TF̂P1(z11) = 3.516. The TFP
of firm 1 in period 1 is TFP(x11, q11) = 1. The associated DEA estimate of TSME
is T ŜME1(x11, q11, z11) = TFP(x11, q11)/TF̂P1(z11) = 0.284. DEA estimates of
TSME for other managers in other periods can be obtained in a similar way and
are reported in Table 1.9. This table also reports estimates of OTE, OSME, ITE and
ISME. The OTE and ITE estimates are the ones reported earlier in Tables 1.7 and 1.8.
The OSME (resp. ISME) estimates were obtained by dividing the TSME estimates
by the OTE (resp. ITE) estimates. The results for manager 1 in period 1 are depicted
in Fig. 1.15. In this figure, the piecewise frontier passing through points B and E is
an estimate of the true frontier passing through point E in Fig. 1.3. The piecewise
frontier passing through points B and C is an estimate of the true frontier passing
through points B and C in Fig. 1.4. The outputs and inputs of firm 1 in period 1 map
to point A. The TFP-maximising point is point E. Points B and C are technically effi-
cient points. The dashed lines passing through these points are iso-productivity rays
with different slopes. The DEA estimates of TSME, OSME and ISME for manager
1 in period 1 are given by the ratios of these slopes.

Other Models

Other PFMs discussed in this book include revenue-, cost- and profit-oriented
models. These models are mainly used to estimate measures of revenue, cost, profit,
allocative, pure mix and pure scale efficiency.

1.6.2 Productivity Analysis

Productivity analysis involves both measuring and explaining changes in productiv-
ity. This section focuses on explaining changes in TFP. This involves decomposing
proper TFPI numbers into measures of environmental change, technical change, and
efficiency change. If production frontiers are piecewise linear, then the easiest way
to proceed is to rewrite (1.15) as TFP(xit , qit ) = TFPt (zit ) × TSMEt (xit , qit , zit ). A
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Table 1.9 DEA estimates of TSME, OSME, OTE, ISME and ITEa,b

Row Firm Period TSME OTE OSME ITE ISME

A 1 1 0.284 0.422 0.674 0.56 0.508

B 2 1 0.508 1 0.508 1 0.508

C 3 1 0.674 1 0.674 1 0.674

D 4 1 0.769 1 0.769 1 0.769

E 5 1 1 1 1 1 1

F 1 2 0.602 0.865 0.696 0.954 0.631

G 2 2 1 1 1 1 1

H 3 2 0.999 1 0.999 1 0.999

I 4 2 0.761 0.871 0.874 0.955 0.797

J 5 2 0.899 1 0.899 1 0.899

K 1 3 0.885 1 0.885 1 0.885

L 2 3 0.785 1 0.785 1 0.785

M 3 3 0.534 0.653 0.819 0.604 0.886

N 4 3 1 1 1 1 1

O 5 3 0.569 0.844 0.674 0.777 0.732

P 1 4 0.547 0.594 0.921 0.551 0.992

R 2 4 0.578 0.671 0.861 0.657 0.880

S 3 4 0.429 0.583 0.737 0.669 0.642

T 4 4 0.811 1 0.811 1 0.811

U 5 4 0.607 0.654 0.928 0.689 0.881

V 1 5 0.896 1 0.896 1 0.896

W 2 5 0.619 0.895 0.692 0.846 0.732

X 3 5 0.566 0.836 0.677 0.881 0.643

Y 4 5 0.384 0.516 0.745 0.387 0.994

Z 5 5 0.5 0.867 0.577 0.5 1
aTSME = OTE × OSME = ITE × ISME. Some estimates may be incoherent at the third decimal
place due to rounding (e.g., the product of the OTE and OSME estimates in row Z is not exactly
equal to 0.5 due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks, xit , qit ) = TFPt (zit )/TFP
s(zks)

× TSMEt (xit , qit , zit )/TSMEs(xks, qks, zks). (1.23)

The first ratio on the right-hand side is an environment and technology index (ETI)
(i.e., a combined measure of environmental and technical change). The second ratio
is a technical, scale and mix efficiency index (TSMEI).

Output- and input-oriented decompositions of TFPI numbers are also available.
For an output-oriented decomposition, the easiest way to proceed is to rewrite
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Fig. 1.15 Estimates of technical, scale and mix efficiency. The DEA estimates of TSME,
OSME and ISME for manager 1 in period 1 are T ŜME1(x11, q11, z11) = (slope 0A)/(slope 0E)
= 0.2844, OŜME1(x11, q11, z11) = (slope 0C)/(slope 0E) = 0.674 and I ŜME1(x11, q11, z11) =
(slope 0B)/(slope 0E) = 0.508

(1.17) as TSMEt (xit , qit , zit ) = OTEt (xit , qit , zit ) × OSMEt (xit , qit , zit ). A similar
equation holds for firm k in period s. Substituting these equations into (1.23) yields

TFPI(xks, qks, xit , qit ) = TFPt (zit )/TFP
s(zks)

× OTEt (xit , qit , zit )/OTE
s(xks, qks, zks)

× OSMEt (xit , qit , zit )/OSMEs(xks, qks, zks). (1.24)

The first ratio on the right-hand side is the ETI in (1.23). The second ratio is an output-
oriented technical efficiency index (OTEI). The last ratio is an output-oriented scale
and mix efficiency index (OSMEI).

For an input-oriented decomposition, the easiestway to proceed is to rewrite (1.19)
as TSMEt (xit , qit , zit ) = ITEt (xit , qit , zit ) × ISMEt (xit , qit , zit ). A similar equation
holds for firm k in period s. Substituting these equations into (1.23) yields

TFPI(xks, qks, xit , qit ) = TFPt (zit )/TFP
s(zks)

× ITEt (xit , qit , zit )/ITE
s(xks, qks, zks)

× ISMEt (xit , qit , zit )/ISMEs(xks, qks, zks). (1.25)

The first ratio on the right-hand side is the ETI in (1.23) and (1.24). The second ratio is
an input-oriented technical efficiency index (ITEI). The last ratio is an input-oriented
scale and mix efficiency index (ISMEI).
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For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. Associated
Lowe TFPI numbers were reported earlier in column L of Table 1.6. Associated
DEA estimates of OTE, OSME, ITE and ISME were reported earlier in Table 1.9.
Output- and input-oriented decompositions of the TFPI numbers are now reported in
Table 1.10. The OTEI, OSMEI, ITEI and ISMEI numbers were obtained by dividing
the estimates of OTE, OSME, ITE and ISME for each firm in each period by the
corresponding estimates for firm 1 in period 1. The ETI numbers were obtained as
residuals (i.e., ETI = TFPI/(OTEI×OSMEI) = TFPI/(ITEI×ISMEI)).

Table 1.10 Output- and input-oriented decompositions of Lowe TFPI numbers using DEAa,b

Firm Period TFPI ETI OTEI OSMEI ETI ITEI ISMEI

1 1 1 1 1 1 1 1 1

2 1 1.786 1 2.37 0.753 1 1.786 1

3 1 2.37 1 2.37 1 1 1.786 1.327

4 1 2.703 1 2.37 1.141 1 1.786 1.514

5 1 3.516 1 2.37 1.483 1 1.786 1.969

1 2 2.117 1 2.05 1.033 1 1.704 1.243

2 2 3.515 1 2.37 1.483 1 1.786 1.968

3 2 3.513 1 2.37 1.482 1 1.786 1.967

4 2 2.675 1 2.063 1.297 1 1.705 1.569

5 2 3.159 1 2.37 1.333 1 1.786 1.769

1 3 3.110 1.000 2.370 1.312 1.000 1.786 1.742

2 3 2.760 1.000 2.370 1.165 1.000 1.786 1.546

3 3 1.879 1.000 1.547 1.215 1.000 1.078 1.743

4 3 3.516 1.000 2.370 1.483 1.000 1.786 1.969

5 3 2 1.000 2.000 1.000 1.000 1.388 1.441

1 4 1.923 1.000 1.408 1.366 1.000 0.984 1.954

2 4 2.032 1.000 1.590 1.278 1.000 1.173 1.732

3 4 1.509 1.000 1.381 1.093 1.000 1.195 1.263

4 4 2.852 1.000 2.370 1.203 1.000 1.786 1.597

5 4 2.134 1.000 1.550 1.376 1.000 1.230 1.735

1 5 3.150 1.000 2.370 1.329 1.000 1.786 1.764

2 5 2.176 1.000 2.120 1.026 1.000 1.510 1.441

3 5 1.991 1.000 1.982 1.004 1.000 1.573 1.266

4 5 1.351 1.000 1.223 1.105 1.000 0.691 1.956

5 5 1.758 1.000 2.054 0.856 1.000 0.893 1.969
aTFPI = ETI × OTEI × OSMEI = ETI × ITEI × ISMEI. Some index numbersmay be incoherent
at the third decimal place due to rounding (e.g., the product of the ETI, OTEI and OSMEI numbers
in row 2 is not exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8



1.6 Piecewise Frontier Analysis 37

1.6.3 Other Models

Other PFMs discussed in this book include free disposal hull (FDH) andmetafrontier
models. FDHmodels are obtained by relaxing the assumption that production possi-
bilities sets are convex. Metafrontier models can be used to decompose measures of
technical efficiency into metatechnology ratios and associated measures of residual
technical efficiency.

1.7 Deterministic Frontier Analysis

Production frontiers are often represented by distance, revenue, cost and/or profit
functions. These functions can sometimes bewritten in the form of regressionmodels
inwhich the explanatory variables are deterministic (i.e., not random). The associated
frontiers are known as deterministic frontiers.

1.7.1 Basic Models

Deterministic frontier models (DFMs) are underpinned by the following assump-
tions:

DF1 production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

DF2 all relevant quantities, prices and environmental variables are observed and
measured without error; and

DF3 the functional forms of relevant functions are known.

If these assumptions are true, then production frontiers can be estimated using single-
equation regression models with error terms representing inefficiency.

Output-Oriented Models

Output-oriented DFMs are mainly used to estimate the measure of OTE defined
by (1.13). This involves estimating the output distance function. Output distance
functions can be written in the form of regression models with nonnegative errors
representing output-oriented technical inefficiency. For example, consider the fol-
lowing output distance function:

Dt
O(xit , qit , zit ) =

⎛
⎝A(t)

J∏
j=1

z
δ j

j i t

M∏
m=1

xβm

mit

⎞
⎠

−1 (
N∑

n=1

γnq
τ
nit

)1/τ

(1.26)

whereA(t) > 0,A(t) ≥ A(t − 1),β = (β1, . . . , βM )′ ≥ 0,γ = (γ1, . . . , γN )′ ≥ 0,τ ≥
1 and γ ′ι = 1. After some simple algebra, this function can be rewritten as
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ln q1i t = α(t) +
J∑
j=1

δ j ln z ji t +
M∑

m=1

βm ln xmit − 1

τ
ln

(
N∑

n=1

γnq
∗τ
nit

)
− uit (1.27)

where α(t) ≡ lnA(t) is an output-oriented measure of technical change, q∗
nit ≡

qnit/q1i t denotes a normalised output, and uit ≡ − lnOTEt (xit , qit , zit ) ≥ 0 denotes
an output-oriented technical inefficiency effect.

Input-Oriented Models

Input-oriented DFMs are mainly used to estimate the measure of ITE defined by
(1.14). This involves estimating the input distance function. Input distance functions
can be written in the form of regression models with nonnegative errors representing
input-oriented technical inefficiency. For example, if the output distance function is
given by (1.26), then the input distance function is

Dt
I (xit , qit , zit ) =

⎛
⎝B(t)

J∏
j=1

z
κ j

j i t

M∏
m=1

xλm
mit

⎞
⎠

(
N∑

n=1

γnq
τ
nit

)−1/(τη)

(1.28)

where η = β ′ι, B(t) = A(t)1/η, κ j = δ j/η and λm = βm/η. After some simple alge-
bra, this function can be rewritten as

− ln x1i t = ξ(t) +
J∑
j=1

κ j ln z ji t +
M∑

m=2

λm ln x∗
mit − 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)
− uit

(1.29)

where ξ(t) ≡ lnB(t) is an input-oriented measure of technical change, x∗
mit ≡

xmit/x1i t denotes a normalised input, and, in a slight abuse of notation, uit ≡
− ln ITEt (xit , qit , zit ) ≥ 0 now denotes an input-oriented technical inefficiency
effect.

Other Models

DFMs can also be used to estimate measures of revenue, cost and profit efficiency.
This involves estimating revenue, cost and profit functions. These functions can also
be written in the form of regression models with nonnegative errors representing
inefficiency.

1.7.2 Least Squares Estimation

Least squares (LS) estimation of DFMs involves choosing the unknown parameters
to minimise the sum of squared inefficiency effects. In the efficiency literature, it is
common to assume that uit is a random variable with the following properties:
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LS1 E(uit ) = μ ≥ 0 for all i and t .
LS2 var(uit ) ∝ σ 2

u for all i and t .
LS3 cov(uit , uks) = 0 if i 
= k or t 
= s.
LS4 uit is uncorrelated with the explanatory variables.

LS1 says the inefficiency effects have the samemean. LS2 says they are homoskedas-
tic. LS3 says they are serially and spatially uncorrelated. LS4 is self-explanatory.

If a DFM contains an intercept and LS1 to LS4 are true, then LS estimators
for the slope parameters are consistent. A consistent estimator for the intercept can
be obtained by adjusting the LS estimator for the intercept upwards by an amount
equal to the maximum of the LS residuals. In this book, the associated estimators
for the intercept and slope parameters are collectively referred to as corrected least
squares (CLS) estimators. In practice, it is common to impose restrictions on the
parameters so that the estimated frontier is consistent with any assumed properties
of production technologies. If the restrictions are true, then associated restricted least
squares (RLS) estimators for the slope parameters are consistent. Again, a consistent
estimator for the intercept can be obtained by adjusting the RLS estimator for the
intercept upwards by an amount equal to the largest RLS residual. In this book, the
associated estimators for the intercept and slope parameters are collectively referred
to as corrected restricted least squares (CRLS) estimators.

For a numerical example, reconsider the toy data inTable 1.1. These data have been
used to obtain CLS and CRLS estimates of the parameters in (1.27). The estimates
are reported in Table 1.11. The CRLS estimates were obtained by restricting α(t) ≥
α(t − 1), β = (β1, . . . , βM )′ ≥ 0 and τ ≥ 1. The CRLS estimates have been used to
predict levels of OTE and ITE. The predictions are reported in Table 1.12. The OTE

Table 1.11 LS parameter estimates

Parameter CLS CRLS

α(1) ≡ lnA(1) 0.954 1.159

α(2) ≡ lnA(2) 0.903 1.159

α(3) ≡ lnA(3) 0.702 1.159

α(4) ≡ lnA(4) 0.723 1.159

α(5) ≡ lnA(5) 0.782 1.159

δ1 0.188 −0.056

β1 0.093 0.280

β2 0.259 0

γ1 0.771 0.724

γ2 0.229 0.276

τ −0.083 1
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Table 1.12 CRLS predictions of OTE and ITEa

Row Firm Period OTE ITE

A 1 1 0.314 0.016

B 2 1 0.369 0.029

C 3 1 0.744 0.348

D 4 1 0.653 0.219

E 5 1 0.715 0.302

F 1 2 0.327 0.018

G 2 2 0.660 0.226

H 3 2 0.938 0.795

I 4 2 0.900 0.686

J 5 2 1 1

K 1 3 0.724 0.315

L 2 3 0.546 0.115

M 3 3 0.447 0.057

N 4 3 0.300 0.014

O 5 3 0.652 0.218

P 1 4 0.353 0.024

R 2 4 0.487 0.077

S 3 4 0.271 0.009

T 4 4 0.790 0.430

U 5 4 0.314 0.016

V 1 5 0.675 0.245

W 2 5 0.668 0.237

X 3 5 0.293 0.013

Y 4 5 0.341 0.022

Z 5 5 0.589 0.151
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

predictions were obtained by evaluating (1.26). The ITE predictions were obtained
by evaluating the reciprocal of (1.28). The predictions for manager 1 in period 1 are
depicted in Figs. 1.16 and 1.17. In Fig. 1.16 (resp. 1.17), the outputs (resp. inputs)
of firm 1 in period 1 map to point A. In Fig. 1.16, the frontier passing through point
A∗ is an estimate of the true frontier depicted earlier in Fig. 1.5. In Fig. 1.17, the
frontier passing through point B∗ is an estimate of the true frontier depicted earlier
in Fig. 1.6.
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Fig. 1.16 A prediction of output-oriented technical efficiency. In the case of firm A, the CRLS
prediction of OTE is OT̂E1(x11, q11, z11) = 1/3.186 = 0.314
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Fig. 1.17 A prediction of input-oriented technical efficiency. In the case of firm A, the CRLS
prediction of ITE is I T̂E1(x11, q11, z11) = 0.016/1 = 0.016
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1.7.3 Productivity Analysis

For purposes of comparison with Sect. 1.6.2, this section focuses on decomposing
proper TFPI numbers. Again, both output- and input-oriented decompositions are
available.

For an output-oriented decomposition, a relatively easy way to proceed is to
write TFP(xit , qit ) = TFP(xit , qit ) exp(−uit )/Dt

O(xit , qit , zit ) where uit denotes an
output-oriented technical inefficiency effect. The precise form of this equation
depends partly on the form of the output distance function. If the output distance
function is given by (1.26), for example, then

TFP(xit , qit ) = A(t)

⎡
⎣

J∏
j=1

z
δ j

j i t

⎤
⎦

×
⎡
⎣TFP(xit , qit )

M∏
m=1

xβm
mit

(
N∑

n=1

γnq
τ
nit

)−1/τ
⎤
⎦ exp(−uit ).

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks, xit , qit ) =
[
A(t)

A(s)

] ⎡
⎣

J∏
j=1

(
z ji t
z jks

)δ j

⎤
⎦

×
[
TFPI(xks, qks, xit , qit )

M∏
m=1

(
xmit

xmks

)βm
(∑

n γnqτ
nks∑

n γnqτ
nit

)1/τ
]

×
[
exp(−uit )

exp(−uks)

]
. (1.30)

The first term on the right-hand side is an output-oriented technology index (OTI)
(i.e., a measure of technical change). The second term is an output-oriented envi-
ronment index (OEI) (i.e., a measure of environmental change). The third term is an
output-oriented scale and mix efficiency index (OSMEI). The last term is an output-
oriented technical efficiency index (OTEI). If there are no environmental variables
involved in the production process, then the second term vanishes. The conditions
under which other terms vanish is left as an exercise for the reader.

For an input-oriented decomposition, a relatively easy way to proceed is to write
TFP(xit , qit ) = TFP(xit , qit )Dt

I (xit , qit , zit ) exp(−uit ) where uit now denotes an
input-oriented technical inefficiency effect. Again, the precise form of this equation
depends partly on the form of the distance function. If the input distance function is
given by (1.28), for example, then
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TFP(xit , qit ) = B(t)

⎡
⎣

J∏
j=1

z
κ j

j i t

⎤
⎦

×
⎡
⎣TFP(xit , qit )

M∏
m=1

xλm
mit

(
N∑

n=1

γnq
τ
nit

)−1/(τη)
⎤
⎦ exp(−uit ).

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks , xit , qit ) =
[
B(t)

B(s)

] ⎡
⎣

J∏
j=1

(
z ji t
z jks

)κ j

⎤
⎦

×
[
TFPI(xks, qks , xit , qit )

M∏
m=1

(
xmit

xmks

)λm
(∑

n γnqτ
nks∑

n γnqτ
nit

)1/(τη)
]

×
[
exp(−uit )

exp(−uks)

]
. (1.31)

The first term on the right-hand side is an input-oriented technology index (ITI).
The second term is an input-oriented environment index (IEI). The third term is an
input-oriented scale and mix efficiency index (ISMEI). The last term is an input-
oriented technical efficiency index (ITEI). Again, the conditions under which these
terms vanish is left as an exercise for the reader.

For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. Asso-
ciated Lowe TFPI numbers were reported earlier in Table 1.6. Output- and input-
oriented decompositions of these numbers are now reported in Table 1.13. The OTI,
OEI, OSMEI, ITI, IEI and ISMEI numbers in each row were obtained by using
the CRLS estimates reported in Table 1.11 to evaluate the relevant terms in (1.30)
and (1.31). The OTEI and ITEI numbers were obtained as residuals (i.e., OTEI =
TFPI/(OTI×OEI×OSMEI) and ITEI = TFPI/(ITI×IEI×ISMEI); these numbers
could also have been obtained by taking ratios of the CRLS estimates of OTE and
ITE reported earlier in Table 1.12).

1.7.4 Other Models

Other DFMs discussed in this book include various systems of equations. These
systems can be used to explain variations in metafrontiers, output supplies and input
demands.
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Table 1.13 Output- and input-oriented decompositions of Lowe TFPI numbers using CRLSa,b

Firm Period TFPI OTI OEI OTEI OSMEI ITI IEI ITEI ISMEI

1 1 1 1 1 1 1 1 1 1 1

2 1 1.786 1 1 1.176 1.518 1 1 1.786 1

3 1 2.37 1 1 2.37 1 1 1 21.773 0.109

4 1 2.703 1 1 2.081 1.299 1 1 13.695 0.197

5 1 3.516 1 1 2.278 1.543 1 1 18.905 0.186

1 2 2.117 1 0.962 1.041 2.114 1 0.871 1.153 2.108

2 2 3.515 1 0.962 2.102 1.738 1 0.871 14.181 0.285

3 2 3.513 1 1 2.988 1.176 1 1 49.810 0.071

4 2 2.675 1 0.962 2.867 0.970 1 0.871 42.949 0.072

5 2 3.159 1 1 3.186 0.991 1 1 62.651 0.050

1 3 3.110 1 1 2.306 1.349 1 1 19.734 0.158

2 3 2.760 1 1 1.739 1.587 1 1 7.213 0.383

3 3 1.879 1 1 1.426 1.318 1 1 3.546 0.530

4 3 3.516 1 1 0.955 3.682 1 1 0.848 4.145

5 3 2 1 0.962 2.079 1 1 0.871 13.639 0.168

1 4 1.923 1 1 1.125 1.710 1 1 1.522 1.264

2 4 2.032 1 1 1.552 1.309 1 1 4.801 0.423

3 4 1.509 1 0.962 0.864 1.815 1 0.871 0.594 2.918

4 4 2.852 1 0.962 2.516 1.178 1 0.871 26.969 0.121

5 4 2.134 1 1 1 2.134 1 1 1 2.134

1 5 3.150 1 1 2.149 1.465 1 1 15.363 0.205

2 5 2.176 1 0.962 2.129 1.063 1 0.871 14.841 0.168

3 5 1.991 1 0.962 0.934 2.215 1 0.871 0.784 2.915

4 5 1.351 1 1 1.088 1.242 1 1 1.351 1

5 5 1.758 1 1 1.876 0.937 1 1 9.453 0.186
aTFPI = OTI × OEI × OTEI × OSMEI = ITI × IEI × ITEI × ISMEI. Some index numbers may
be incoherent at the third decimal place due to rounding (e.g., the product of the OTI, OEI, OTEI
and OSMEI numbers in row 2 is not exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

1.8 Stochastic Frontier Analysis

Distance, revenue, cost and profit functions can always be written in the form of
regression models with unobserved error terms representing statistical noise and
different types of inefficiency. In practice, the noise components are almost always
assumed to be stochastic. The associated frontiers are known as stochastic frontiers.
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1.8.1 Basic Models

Stochastic frontier models (SFMs) are underpinned by only one assumption, namely
that production possibilities sets can be represented by distance, revenue, cost and/or
profit functions.

Output-Oriented Models

Output-oriented SFMs are mainly used to estimate the measure of OTE defined
by (1.13). This involves estimating the output distance function. Any output distance
function can be written in the form of a regression model with an error representing
statistical noise and another error representing output-oriented technical inefficiency.
For example, any output distance function can be written as

ln q1i t = α + λt +
J∑
j=1

δ j ln z ji t +
M∑

m=1

βm ln xmit −
N∑

n=1

γn ln q
∗
nit + vi t − uit

(1.32)

where q∗
nit ≡ qnit/q1i t is a normalised output, γ = (γ1, . . . , γN )′ is a vector of pa-

rameters that sum to one, vi t is an error representing statistical noise, and uit ≡
− lnDt

O(xit , qit , zit ) is a nonnegative output-oriented technical inefficiency effect.
The exact nature of the noise component depends on the unknown output distance
function. If the output distance function is given by (1.26), for example, then

vi t = [α(t) − α − λt] +
[

N∑
n=1

γn ln q
∗
nit − 1

τ
ln

(
N∑

n=1

γnq
∗τ
nit

)]
. (1.33)

These terms can be viewed as functional form errors.

Input-Oriented Models

Input-oriented SFMs are mainly used to estimate the measure of ITE defined
by (1.14). This involves estimating the input distance function. Any input distance
function can be written in the form of a regression model with an error representing
statistical noise and another error representing input-oriented technical inefficiency.
For example, any input distance function can be written as

− ln x1i t = ξ(t) +
M∑

m=1

λm ln x∗
mit −

N∑
n=1

φn ln qnit + vi t − uit (1.34)

where x∗
mit ≡ xmit/x1i t is a normalised input, λ = (λ1, . . . , λM )′ is a vector of pa-

rameters that sum to one, vi t is an error representing statistical noise, and uit ≡
− ln ITEt (xit , qit , zit ) is now a nonnegative input-oriented technical inefficiency ef-
fect. In this case, the exact nature of the noise component depends on the unknown
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input distance function. If the input distance function is given by (1.28), for example,
then

vi t =
⎡
⎣

J∑
j=1

κ j ln z ji t

⎤
⎦ +

[
N∑

n=1

φn ln qnit − 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)]
. (1.35)

The first term is an omitted variable error. The second term can be viewed as a
functional form error.

Other Models

Revenue-, cost- and profit-oriented SFMs are also available. These models are
mainly used to estimate measures of revenue, cost and profit efficiency. This involves
estimating revenue, cost and profit functions. These functions can also be written in
the form of regression models with error terms representing statistical noise and
different types of inefficiency.

1.8.2 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation of SFMs involves choosing the unknown
parameters to maximise the joint density (or ‘likelihood’) of the observed data. For
simplicity, consider the output-oriented model defined by (1.32). This model can be
written more compactly as

yit = α + λt +
J∑
j=1

δ j ln z ji t +
M∑

m=1

βm ln xmit −
N∑

n=1

γn ln q
∗
nit + εi t (1.36)

where yit ≡ ln q1i t denotes the logarithm of the first output and εi t ≡ vi t − uit is
a composite error representing statistical noise and output-oriented technical inef-
ficiency. The likelihood of the observed data depends on the assumed probability
distributions of vi t and uit . It is common to assume that

ML3 vi t is an independent N (0, σ 2
v ) random variable, and

ML4 uit is an independent N+(μ, σ 2
u ) random variable.

If these assumptions are true, then the ML estimators for the unknown parameters in
the model are consistent, asymptotically efficient, and asymptotically normal. Fol-
lowing estimation, ML predictions of uit can be obtained by using theML parameter
estimates to evaluate

E(uit |εi t ) = μ∗
i t + σ∗

(
φ(μ∗

i t/σ∗)
�(μ∗

i t/σ∗)

)
(1.37)

where μ∗
i t ≡ (μσ 2

v − εi tσ
2
u )/(σ 2

v + σ 2
u ) and σ 2∗ ≡ σ 2

v σ 2
u /(σ 2

v + σ 2
u ). Let ũi t denote

the ML predictor for uit . The associated predictor for OTE is exp(−ũi t ).
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Table 1.14 ML parameter estimates

Parameter ML RML

α 0.990 0.480

λ −0.069 0

δ1 0.258 0.110

β1 0.148 0.092

β2 0.279 0.289

γ1 0.682 0.676

γ2 0.318 0.324

σ 2
u 0.225 0.000

σ 2
v 0.000 0.083

μ −0.139 −0.026

Table 1.15 ML predictions of OTE

Row Firm Period ML RML

A 1 1 0.398 0.995

B 2 1 0.510 0.995

C 3 1 0.944 0.995

D 4 1 0.921 0.995

E 5 1 0.985 0.995

F 1 2 0.492 0.995

G 2 2 0.880 0.995

H 3 2 1.000 0.995

I 4 2 0.381 0.995

J 5 2 0.956 0.995

K 1 3 0.933 0.995

L 2 3 0.511 0.995

M 3 3 0.620 0.995

N 4 3 0.628 0.995

O 5 3 0.765 0.995

P 1 4 0.640 0.995

R 2 4 0.694 0.995

S 3 4 0.528 0.995

T 4 4 0.972 0.995

U 5 4 0.679 0.995

V 1 5 0.884 0.995

W 2 5 0.910 0.995

X 3 5 0.637 0.995

Y 4 5 0.597 0.995

Z 5 5 0.965 0.995
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Fig. 1.18 A prediction of output-oriented technical efficiency. In the case of firm A, the ML
prediction of OTE is OT̂E1(x11, q11, z11) = 1/2.511 = 0.398

For a numerical example, reconsider the toy data inTable 1.1. These data have been
used to obtain ML and restricted ML (RML) estimates of the unknown parameters
in (1.32). The estimates are reported in Table 1.14. Both sets of estimates were
obtained under assumptions ML3 and ML4. The RML estimates were obtained by
restricting λ ≥ 0. Both sets of estimates have been used to predict levels of OTE. The
predictions are reported in Table 1.15. The ML prediction for manager 1 in period 1
is depicted in Fig. 1.18. In this figure, the outputs of firm 1 in period 1 map to point
A. The associated predicted frontier output is represented by A∗. The dashed line is
an estimate of a function that provides an approximation to the true frontier depicted
earlier in Fig. 1.5.

1.8.3 Productivity Analysis

For purposes of comparison with Sects. 1.6.2 and 1.7.3, this section again focuses on
decomposing proper TFPI numbers. Again, both output- and input-oriented decom-
positions are available. In each case, the precise form of the decomposition depends
partly on the SFM.

For an output-oriented example, consider the model defined by (1.32). After some
simple algebra, the antilogarithm of this equation can be written as:

1 = exp(α + λt)

⎡
⎣

J∏
j=1

z
δ j

j i t

⎤
⎦

[
M∏

m=1

xβm

mit

N∏
n=1

q−γn
ni t

]
exp(−uit ) exp(vi t ). (1.38)
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Multiplying both sides of this equation by TFP(xit , qit ) yields

TFP(xit , qit ) = exp(α + λt)

⎡
⎣

J∏
j=1

z
δ j

j i t

⎤
⎦

[
TFP(xit , qit )

M∏
m=1

xβm
mit

N∏
n=1

q−γn
ni t

]

× exp(−uit ) exp(vi t ) (1.39)

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks, xit , qit ) =
[
exp(λt)

exp(λs)

] ⎡
⎣

J∏
j=1

(
z ji t
z jks

)δ j

⎤
⎦

×
[
TFPI(xks, qks, xit , qit )

M∏
m=1

(
xmit

xmks

)βm N∏
n=1

(
qnks
qnit

)γn
]

×
[
exp(−uit )

exp(−uks)

] [
exp(vi t )

exp(vks)

]
(1.40)

In theory, the presence of statistical noise means we cannot interpret the first three
terms in this equation in the same way we interpreted the first three terms in (1.30).
However, in practice, the first term would normally be viewed as an output-oriented
technology index (OTI), the second term would normally be viewed as an output-
oriented environment index (OEI), and the third term would normally be viewed
as an output-oriented scale and mix efficiency index (OSMEI). In both theory and
practice, the fourth term is an output-oriented technical efficiency index (OTEI), and
the last term is a statistical noise index (SNI). Again, the conditions under which
these various terms vanish is left as an exercise for the reader.

For an input-oriented example, consider the model defined by (1.34). After some
simple algebra, the antilogarithm of this equation can be written as:

1 = exp[ξ(t)]
[

M∏
m=1

xλm
mit

N∏
n=1

q−φn
ni t

]
exp(−uit ) exp(vi t ). (1.41)

Multiplying both sides of this equation by TFP(xit , qit ) yields

TFP(xit , qit ) = exp[ξ(t)]
[
TFP(xit , qit )

M∏
m=1

xλm
mit

N∏
n=1

q−φn
ni t

]

× exp(−uit ) exp(vi t ) (1.42)

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields
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TFPI(xks, qks, xit , qit ) =
[
exp[ξ(t)]
exp[ξ(s)]

]

×
[
TFPI(xks, qks, xit , qit )

M∏
m=1

(
xmit

xmks

)λm N∏
n=1

(
qnks
qnit

)φn
]

×
[
exp(−uit )

exp(−uks)

] [
exp(vi t )

exp(vks)

]
(1.43)

Again, the presence of statistical noise means we cannot interpret the first two terms
in this equation in the same way we interpreted the first and third terms in (1.31).
However, in practice, the first term would normally be viewed as an input-oriented

Table 1.16 An output-oriented decomposition of Lowe TFPI numbers using MLa,b

Firm Period TFPI OTI OEI OTEI OSMEI SNI

1 1 1 1 1 1 1 1

2 1 1.786 1 1 1.281 1.394 1.000

3 1 2.37 1 1 2.37 1 1.000

4 1 2.703 1 1 2.314 1.168 1.000

5 1 3.516 1 1 2.474 1.421 1.000

1 2 2.117 0.933 1.196 1.236 1.534 1.000

2 2 3.515 0.933 1.196 2.209 1.426 1.000

3 2 3.513 0.933 1 2.511 1.499 1.000

4 2 2.675 0.933 1.196 0.958 2.503 1.000

5 2 3.159 0.933 1 2.400 1.410 1.000

1 3 3.110 0.871 1 2.344 1.523 1.000

2 3 2.760 0.871 1 1.283 2.469 1.000

3 3 1.879 0.871 1 1.556 1.386 1.000

4 3 3.516 0.871 1 1.578 2.557 1.000

5 3 2 0.871 1.196 1.920 1 1.000

1 4 1.923 0.813 1 1.607 1.472 1.000

2 4 2.032 0.813 1 1.743 1.433 1.000

3 4 1.509 0.813 1.196 1.327 1.170 1.000

4 4 2.852 0.813 1.196 2.441 1.202 1.000

5 4 2.134 0.813 1 1.705 1.539 1.000

1 5 3.150 0.759 1 2.220 1.869 1.000

2 5 2.176 0.759 1.196 2.285 1.050 1.000

3 5 1.991 0.759 1.196 1.599 1.372 1.000

4 5 1.351 0.759 1 1.498 1.188 1.000

5 5 1.758 0.759 1 2.424 0.955 1.000
aTFPI = OTI × OEI × OTEI × OSMEI × SNI. Some index numbers may be incoherent at the
third decimal place due to rounding (e.g., the product of the OTI, OEI, OTEI, OSMEI and SNI
numbers in row 6 is not exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
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technology index (ITI), and the second term would normally be viewed as an input-
oriented scale and mix efficiency index (ISMEI). In both theory and practice, the
third term is an input-oriented technical efficiency index (ITEI), and the last term is
a statistical noise index (SNI). Again, the conditions under which these terms vanish
is left as an exercise for the reader.

For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. The
associatedLoweTFPI numberswere reported earlier in Table 1.6.An output-oriented
decomposition of these numbers is now reported in Table 1.16. The OTI, OEI and
OSMEI numbers in each row were obtained by using the ML estimates in Table 1.14
to evaluate the relevant terms in (1.40). The OTEI numbers were obtained by taking
ratios of the ML predictions of OTE reported earlier in Table 1.15. The SNI numbers
were obtained as residuals (i.e., SNI = TFPI/(OTI×OEI×OTEI×OSMEI)).

1.8.4 Other Models

Other SFMs discussed in this book include various systems of equations. These
systems can be used to explain variations in metafrontiers, output supplies and input
demands.

1.9 Practical Considerations

This section considers some of the steps involved in conducting a policy-oriented
analysis of managerial performance. It also considers government policies that can
be used to target themain drivers of performance. In this book, the term ‘government’
refers to a group of people with the authority to control any variables that are not
controlled by firm managers.

1.9.1 The Main Steps

Policy-oriented performance analysis involves a number of steps that are best com-
pleted in a prescribed order or sequence. Themain steps are the following (immediate
predecessor steps are in parentheses):

1. Identify the manager(s).
2. Classify the variables that are physically involved in the production process (1).
3. Identify relevant measures of comparative performance (2).
4. Make assumptions about production technologies (2).
5. Assemble relevant data (3).
6. Select functions to represent production possibilities sets (4, 5).
7. Choose an estimation approach (4, 5).
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8. Estimate the model and test the model assumptions (6, 7).
9. Check if the main results are robust to the assumptions and choices made in steps

4, 6 and 7 (8).

Researchers with little interest in policy often complete these steps in a different
order. For example, academic researchers who are primarily interested in getting
their work published often start at Step 7 (i.e., they choose the estimation approach
first).

1.9.2 Government Policies

Changes in most measures of managerial performance can be attributed to four main
factors: (a) technical progress, (b) environmental change, (c) technical efficiency
change, and (c) scale, mix and/or allocative efficiency change. Different government
policies affect, and can therefore be used to target, these different components. For
example, governments can often increase rates of technical progress by conducting
their ownR&D, or by directly funding others to conduct R&D.They can often change
production environments by, for example, regulating (or failing to regulate) the im-
pact of production processes on the natural environment, and by providing and/or
decommissioning different types of public infrastructure. They can often raise levels
of technical efficiency by, for example, removing barriers to the adoption of particular
technologies, and by providing education and training services to advise managers
about the existence and proper use of new technologies. Finally, governments can
often raise levels of scale and mix efficiency by changing the variables that drive
managerial behaviour. For example, if firms are price-takers in output and input mar-
kets, and if managers seek to maximise profits, then governments can often raise
levels of scale and mix efficiency by changing relative output and input prices (e.g.,
by changing minimum wages, interest rates, taxes and/or subsidies).

1.10 Summary and Further Reading

This book is concerned with measuring and explaining changes in managerial per-
formance. The focus is onmeasures of performance that are useful for policymakers.
Most, if not all, of these measures can be viewed as measures of efficiency and/or
productivity. The measures of efficiency discussed in this book include measures
of technical, scale, mix, revenue, cost, profit and allocative efficiency. Measures of
efficiency that are not discussed include the measure of marginal cost efficiency dis-
cussed by Kutlu and Wang (2018), the measure of environmental efficiency defined
by Coelli et al. (2007, Eq. 7), and the measure of irrigation water efficiency defined
by Karagiannis et al. (2003, Eq. 2). Most of these other measures can, in fact, be
viewed as special cases of the measures discussed in this book.
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The measures of productivity discussed in this book include measures of total
factor productivity (TFP), multifactor productivity (MFP) and partial factor produc-
tivity (PFP). In this book, TFP is defined as ameasure of total output quantity divided
by a measure of total input quantity. Measures of MFP and PFP can be viewed as
measures of TFP in which one or more inputs have been assigned a weight of zero.
The definition of TFP used in this book is consistent with concepts and definitions of
TFP and/or TFP change that can be found in, for example, Barton and Cooper (1948,
p. 123),5 Jorgenson and Griliches (1967, pp. 249, 250), Christensen and Jorgenson
(1970, p. 42), Nadiri (1970, pp. 1138, 1139), Chambers and Pope (1996, p. 1360),
Prescott (1998, p. 526) and Good et al. (1999, Sect. 2.1). Elsewhere in the literature,
measures of TFP and/or TFP change are often defined in terms of incomes, revenues
and/or costs (e.g., Kendrick 1961, p. 10; Foster et al. 2008, p. 400; Lien et al. 2017,
p. 253).

This book attributes changes in TFP to four main factors: technical change, envi-
ronmental change, technical efficiency change, and scale and mix efficiency change.
Elsewhere in the literature, it is common to attribute TFP change to (a) technical
change only (e.g., Diewert and Morrison 1986, p. 659; Kumbhakar 2002, pp. 469,
471; Orea and Wall 2012, p. 103), (b) a combination of technical change and tech-
nical efficiency change (e.g., Nishimizu and Page 1982, pp. 920, 921; Färe et al.
1994, p. 71; Coelli et al. 2003, p. 323), or (c) a combination of technical change and
economies of scale (e.g., Kumbhakar et al. 2000, p. 496; Hranaiova and Stefanou
2002, p. 79). In the macroeconomics literature, it is common to equate TFP change
with the residuals from regression models (e.g., Olley and Pakes 1996, p. 1287).
These alternative approaches are not generally consistent with the way TFP is de-
fined in this book.

Finally, there are several other measures of managerial performance that are not
explicitly discussed in this book. These include various measures of corporate social
performance. Most of these measures can, in fact, be viewed as measures of TFP.
The literature on these measures can be accessed from Siegel and Vitaliano (2007),
Chen and Delmas (2011) and Gregory et al. (2016).
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Chapter 2
Production Technologies

To explain variations in managerial performance, we need to know something about
what can and cannot be produced using different production technologies. In this
book, a production technology (or simply ‘technology’) is defined as a technique,
method or system for transforming inputs into outputs. For most practical purposes,
it is convenient to think of a technology as a book of instructions, or recipe. In this
book, the set of technologies that exist in a given period is referred to as a technology
set. If we think of a technology as a book of instructions, then we can think of a
technology set as a library. The input-output combinations that are possible using
different technologies can be represented by output sets, input sets and production
possibilities sets. Under certain conditions, they can also be represented by distance,
revenue, cost and profit functions. This chapter defines, and discusses the properties
of, these different sets and functions.

2.1 Output Sets

An output set is a set containing all outputs that can be produced using given inputs.
A period-and-environment-specific output set is a set containing all outputs that can
be produced using given inputs in a given period in a given production environment.
For example, the set of outputs that can be produced using the input vector x in
period t in a production environment characterised by z is

Pt (x, z) = {q : x can produce q in period t in environment z}. (2.1)

This set provides the foundation for much of the analysis in this book. If there are
no environmental variables involved in the production process (i.e., if there is no
environmental change), then all references to environment z can be deleted. If there
is no technical change, then all references to period t can be deleted. If there is no
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environmental change, then the set defined by (2.1) is equal to the output set defined
by Balk (1998, Eq. 2.3). If there is no technical or environmental change, then it is
equal to the output set defined by Shephard (1970, p. 179).

2.1.1 Assumptions

It is common to make assumptions about technologies by way of assumptions about
what they can and cannot produce. For example, it is common to assume that, with
a given set of technologies,

A1 it is possible to produce zero output (i.e., inactivity is possible);
A2 there is a limit to what can be produced using a finite amount of inputs (i.e.,

output sets are bounded);
A3 a positive amount of at least one input is needed in order to produce a strictly

positive amount of any output (i.e., inputs are weakly essential; there is ‘no free
lunch’);

A4 the set of outputs that can be produced using given inputs contains all the points
on its boundary (i.e., output sets are closed);

A5 the set of inputs that can produce given outputs contains all the points on its
boundary (i.e., input sets are closed);

A6 if particular inputs can be used to produce a given output vector, then they can
also be used to produce a scalar contraction of that output vector (i.e., outputs
are weakly disposable); and

A7 if particular outputs can be produced using a given input vector, then they can
also be produced using a scalar magnification of that input vector (i.e., inputs
are weakly disposable).

Assumptions A1–A7 are maintained throughout this book. Other assumptions that
are made from time to time include the following:

A3s a positive amount of every input is needed to produce a nonzero amount of
output (i.e., inputs are strictly essential);

A4s the set of input-output combinations that are physically possible contains all
the points on its boundary (i.e., production possibilities sets are closed);

A6s if given inputs can be used to produce particular outputs, then they can also be
used to produce fewer outputs (i.e., outputs are strongly disposable);

A7s if given outputs can be produced using particular inputs, then they can also be
produced using more inputs (i.e., inputs are strongly disposable);

A8s if a given output-input combination is possible in a particular production en-
vironment, then it is also possible in a better production environment (i.e.,
environmental variables are strongly disposable)1; and

1Coelli et al. (2005, p. 192) refer to strongly disposable environmental variables as ‘positive effect’
environmental variables.
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A9s (a) a suitable magnification of a positive input vector can produce any finite
output vector, and (b) if some magnification of a non-zero input vector can
produce a positive output vector, then it can, by another suitable magnification,
produce any finite output vector (i.e., outputs are strongly attainable).

Assumptions A3s, A4s, A6s and A7s are stronger than assumptions A3, A4, A6
and A7 in the sense that the former imply the latter (i.e., A3s ⇒ A3, A4s ⇒ A4,
…, A7s ⇒ A7). Assumptions concerning technologies can usually be written more
precisely using output sets and mathematics. To illustrate, consider the period-and-
environment-specific output set defined by (2.1). In this case, A1–A7 can be written
as follows:

O1 0 ∈ Pt (x, z) for all (x, z) ∈ R
M+J
+ (inactivity);

O2 Pt (x, z) is bounded for all (x, z) ∈ R
M+J
+ (output sets are bounded);

O3 q ≥ 0 ⇒ q /∈ Pt (0, z) (inputs weakly essential; no free lunch);
O4 Pt (x, z) is closed for all (x, z) ∈ R

M+J
+ (output sets closed);

O5 the set {x : q ∈ Pt (x, z)} is closed for all (q, z) ∈ R
N+J
+ (input sets closed);

O6 q ∈ Pt (x, z) and 0 ≤ λ ≤ 1 ⇒ λq ∈ Pt (x, z) (outputs weakly disposable); and
O7 q ∈ Pt (x, z) and λ ≥ 1 ⇒ q ∈ Pt (λx, z) (inputs weakly disposable).

If there is no technical or environmental change, then these assumptions are equiva-
lent to the maintained axioms P.1–P.7 in Färe and Primont (1995, p. 27). In addition,
A3s, A4s and A6s–A9s can be written as follows:

O3s q ≥ 0 and xm = 0 for any m ⇒ q /∈ Pt (x, z) (inputs strictly essential);
O4s the set {(x, q) : q ∈ Pt (x, z)} is closed for all z ∈ R

J+ (prod. poss. sets closed);
O6s q ∈ Pt (x, z) and 0 ≤ q̄ ≤ q ⇒ q̄ ∈ Pt (x, z) (outputs strongly disposable);
O7s q ∈ Pt (x, z) and x̄ ≥ x ⇒ q ∈ Pt (x̄, z) (inputs strongly disposable);
O8s q ∈ Pt (x, z) and z̄ ≥ z ⇒ q ∈ Pt (x, z̄) (environ. variables strongly disp.); and
O9s if x > 0, or x ≥ 0 and q̄ ∈ Pt (λx, z) for some q̄ > 0 and λ > 0, then, for any

q ∈ R
N+ , there exists a scalar φ > 0 such that q ∈ Pt (φx, z) (outputs strongly

attainable).

If there is no technical or environmental change, then O6s and O7s are equivalent to
P.2.s and P.6.s in Färe and Primont (1995, p. 27). Other assumptions that are made
from time to time include the following:

O9 if x ≥ 0, q ≥ 0 and q ∈ Pt (λx, z) for some scalar λ > 0, then, for any scalar
θ > 0, there exists a scalar φ > 0 such that θq ∈ Pt (φx, z) (outputs weakly
attainable),

O10 q ∈ Pt (x, z) ⇔ λrq ∈ Pt (λx, z) for all λ > 0 (homogeneity),
O11 Pt (x, z) = Gt (x, z)Pt (ι, z) (output homotheticity),
O13 Pt (x, z) = Et (x, z)P1(x, ι) (implicit Hicks output neutrality), and
O15 Pt (x, z) is convex for all (x, z) ∈ R

M+J
+ (output sets convex),

where ι is a vector of ones with a row dimension that can be inferred from the context
(e.g., in O11 it is an M × 1 input vector; in O13 it is a J × 1 vector of environmental
variables) and Gt (.) and Et (.) are scalar-valued functions with properties that are
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consistent with the properties of Pt (x, z) (e.g., if O10 is true, then Gt (.) must be
homogeneous of degree r in inputs). If there is no environmental change, then O11
and O13 are equivalent to definitions that can be found in Balk (1998, pp. 16, 18).2

If there is no technical or environmental change, then O15 is equivalent to axiom P.9
in Färe and Primont (1995, p. 27).

Assumption O9 (weak attainability) says that if a non-zero input vector can be
used to produce a non-zero output vector, then any scalar magnification of that output
vector is attainable by a suitable scalar magnification of the input vector. Assumption
O10 (homogeneity) says that if a firm is operating on the production frontier and its
inputs are increased by one percent, then its outputs can be increased by r percent. In
this book, the production frontier is said to exhibit decreasing returns to scale (DRS),
nonincreasing returns to scale (NIRS), constant returns to scale (CRS), nondecreasing
returns to scale (NDRS), increasing returns to scale (IRS) or variable returns to scale
(VRS) as r is less than, no greater than, equal to, no less than, greater than, or
not equal to one. Assumption O11 (output homotheticity) says that the outputs that
can be produced using given inputs in a given period in a given environment are a
scalar multiple of the outputs that can be produced using one unit of each input in
the same period in the same environment. If there is only one output, then O11 is
true. Assumption, O13 (implicit Hicks output neutrality) says that the outputs that
can be produced using given inputs in a given period in a given environment are a
scalar multiple of the outputs that can be produced using the same inputs in period
one in an environment characterised by a vector of ones. Finally, assumption O15
(output sets convex) says that if an input vector can be used to produce two different
output vectors, then it can also be used to produce a convex combination of those
output vectors. Shephard (1970, p. 187) argues that O15 is valid for ‘time divisible’
technologies: the argument is that if q ∈ Pt (x, z) and q̄ ∈ Pt (x, z), then using x
to produce the convex combination (1 − λ)q + λq̄ is equivalent to producing q a
fraction (1 − λ) of the time and producing q̄ a fraction λ of the time. If market prices
are not affected by the outputs of firms (i.e., if firms are ’price takers’ in output
markets) and both O6s and 015 are true (i.e., if outputs are strongly disposable and
output sets are convex), then

O17 Pt (x, z) = {q : p′q ≤ Rt (x, p, z) for all p > 0}
where Rt (x, p, z) is the revenue functiondefinedby (2.16). Thismeans that the output
set is completely characterised by the revenue function. If there is no technical or
environmental change, then this so-called duality result is equivalent to proposition
(3.1.5) in Färe and Primont (1995, p. 49) .

2The reference vectors in O11 and O13 are arbitrary. Vectors of ones have been chosen here for
notational convenience. The choice of reference period in O13 is also arbitrary. Again, period 1 has
been chosen for notational convenience.
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2.1.2 Example

Many of the examples presented in this book are built around the following period-
and-environment-specific output set:

Pt (x, z) =
⎧
⎨

⎩
q :

(
N∑

n=1

γnq
τ
n

)1/τ

≤ A(t)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎫
⎬

⎭
(2.2)

where A(t) > 0, A(t) ≥ A(t − 1), β = (β1, . . . , βM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0,
τ ≥ 1 and γ ′ι = 1. This set satisfies O3s, O4s, O6s, O7s, O10, O11 and O13.

2.2 Input Sets

An input set is a set containing all inputs that can produce given outputs. A period-
and-environment-specific input set is a set containing all inputs that can produce
given outputs in a given period in a given production environment. For example,
the set of inputs that can produce the output vector q in period t in a production
environment characterised by z is

Lt (q, z) = {x : x can produce q in period t in environment z}. (2.3)

If there is no technical change, then all references to period t can be deleted. If there
are no environmental variables involved in the production process (i.e., if there is no
environmental change), then all references to environment z can be deleted. If there
is no environmental change, then the set defined by (2.3) is equal to the input set
defined by Balk (1998, Eq. 2.2). If there is no technical or environmental change,
then it is equal to the input set defined by Shephard (1970, p. 179).

2.2.1 Assumptions

Input sets and output sets are equivalent representations of the input-output combi-
nations that are possible using different technologies. This means that assumptions
concerning output sets imply, and are implied by, assumptions concerning input
sets. Again, it is often convenient to write these assumptions using mathematics. To
illustrate, consider the period-and-environment-specific input set defined by (2.3).
Mathematically, x ∈ Lt (q, z) if and only if q ∈ Pt (x, z). This means that A1–A7
(equivalently, O1–O7) can be written as follows:

I1 x ∈ Lt (0, z) for all (x, z) ∈ R
M+J
+ (inactivity);

I2 the set {q : x ∈ Lt (q, z)} is bounded for all (x, z) ∈ R
M+J
+ ;
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I3 q ≥ 0 ⇒ 0 /∈ Lt (q, z) (inputs weakly essential; no free lunch);
I4 the set {q : x ∈ Lt (q, z)} is closed for all (x, z)∈R

M+J
+ (output sets closed);

I5 Lt (q, z) is closed for all (q, z) ∈ R
N+J
+ (input sets closed);

I6 x ∈ Lt (q, z) and 0 ≤ λ ≤ 1 ⇒ x ∈ Lt (λq, z) (outputs weakly disposable); and
I7 x ∈ Lt (q, z) and λ ≥ 1 ⇒ λx ∈ Lt (q, z) (inputs weakly disposable).

Furthermore, if O3s, O4s, O6s–O9s, O9 and O10 are true, then, and only then (re-
spectively):

I3s q ≥ 0 and xm = 0 for any m ⇒ x /∈ Lt (q, z) (inputs strictly essential);
I4s the set {(x, q) : x ∈ Lt (q, z)} is closed for all z ∈ R

J+ (prod. poss. sets closed);
I6s x ∈ Lt (q, z) and 0 ≤ q̄ ≤ q ⇒ x ∈ Lt (q̄, z) (outputs strongly disposable);
I7s x ∈ Lt (q, z) and x̄ ≥ x ⇒ x̄ ∈ Lt (q, z) (inputs strongly disposable);
I8s x ∈ Lt (q, z) and z̄ ≥ z ⇒ x ∈ Lt (q, z̄) (environ. variables strongly disp);
I9s If x > 0, or x ≥ 0 and λx ∈ Lt (q̄, z) for some q̄ > 0 and λ > 0, then, for any

q ∈ R
N+ , there exists a scalar φ > 0 such that φx ∈ Lt (q, z) (outputs strongly

attainable);
I9 if x ≥ 0, q ≥ 0 and λx ∈ Lt (q, z) for some scalar λ > 0, then, for any scalar

θ > 0, there exists a scalar φ > 0 such that φx ∈ Lt (θq, z) (outputs weakly
attainable); and

I10 Lt (λq, z) = λ1/r Lt (q, z) for all λ > 0 (homogeneity).

Other assumptions that are made from time to time include the following

I12 Lt (q, z) = K t (q, z)Lt (ι, z) (input homotheticity),
I14 Lt (q, z) = J t (q, z)L1(q, ι) (implicit Hicks input neutrality), and
I16 Lt (q, z) is convex for all (q, z) ∈ R

N+J
+ (input sets convex),

where K t (.) and J t (.) are scalar-valued functions with properties that are consistent
with the properties of Lt (q, z) (e.g., if I10 is true, then K t (.) must be homogeneous
of degree 1/r in outputs). If there is no environmental change, then I12 and I14 are
equivalent to definitions that can be found in Balk (1998, pp. 16, 17).3 Assumption
I12 (input homotheticity) says that the inputs that can produce a given output vector
in a given period in a given environment are a scalar multiple of the inputs that can
produce one unit of each output in the same period in the same environment. If there
is only one input, then I12 is true. Assumption I14 (implicit Hicks input neutrality)
says that the inputs that can produce a given output vector in a given period in a given
environment are a scalar multiple of the inputs that can produce the same outputs in
period one in an environment characterised by a vector of ones. Technical change is
said to be Hicks-neutral (HN) if and only if it is both implicit Hicks output neutral
(IHON) and implicit Hicks input neutral (IHIN). Finally, I16 (input sets convex)
says that if an output vector can be produced using two different input vectors, then
it can also be produced using a convex combination of those input vectors. Again,
Shephard (1970, p. 15) argues that I16 is valid for time divisible technologies: in this
case, the argument is that if x ∈ Lt (q, z) and x̄ ∈ Lt (q, z), then using the convex

3In I12 and I14, the reference vectors are again arbitrary. In I14, the choice of reference period is
also arbitrary.
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combination (1 − λ)x + λx̄ to produce q is equivalent to using x a fraction (1 − λ)

of the time and using x̄ a fraction λ of the time. If market prices are not affected by
the inputs demanded by the firm (i.e., if the firm is a ’price taker’ in input markets)
and both I7s and I16 are true (i.e., if inputs are strongly disposable and input sets are
convex), then

I18 Lt (q, z) = {x : w′x ≥ Ct (w, q, z) for all w > 0}
where Ct (w, q, z) is the cost function defined by (2.21). This means that the input
set is completely characterised by the cost function. If there is no technical or envi-
ronmental change, then this duality result is equivalent to proposition (3.1.2) in Färe
and Primont (1995, p. 45).

2.2.2 Example

If the period-and-environment-specific output set is given by (2.2), then, and only
then, the period-and-environment-specific input set is

Lt (q, z) =
⎧
⎨

⎩
x :

M∏

m=1

xλm
m ≥

⎛

⎝B(t)
J∏

j=1

z
κ j

j

⎞

⎠

−1 (
N∑

n=1

γnq
τ
n

)1/(τη)
⎫
⎬

⎭
(2.4)

where η = β ′ι > 0, B(t) = A(t)1/η > 0, B(t) ≥ B(t − 1), λ = (λ1, . . . , λM)′ =
β/η ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0, κ j = δ j/η for all j , τ ≥ 1 and γ ′ι = λ′ι = 1. This
set satisfies I3s, I4s, I6s, I7s, I10, I12 and I14.

2.3 Production Possibilities Sets

A production possibilities set is a set containing all input-output combinations that
are physically possible. In this book, the focus is on two specific types of production
possibilities set: period-and-environment-specific production possibilities sets and
period-environment-and-mix-specific production possibilities sets.

A period-and-environment-specific production possibilities set is a set containing
all input-output combinations that are physically possible in a given period in a given
production environment. For example, the set of input-output combinations that are
physically possible in period t in a production environment characterised by z is

T t (z) = {(x, q) : x can produce q in period t in environment z}. (2.5)

This set can be found in O’Donnell (2016, p. 330). If there is no technical change,
then all references to period t can be deleted. If there are no environmental variables
involved in the production process (i.e., if there is no environmental change), then
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all references to environment z can be deleted. If there is no technical change, then
the set defined by (2.5) is equal to the ‘range of possible combinations of inputs ×
outputs’ defined by Badin et al. (2012, Eq. 1.2). If there is no environmental change,
then it is equal to the ‘technology’ defined by Balk (1998, Eq. 2.1). If there is no
technical or environmental change, then it is equal to the ‘graph’ defined by Shephard
(1970, p. 181).

A period-environment-and-mix-specific production possibilities set is a set con-
taining all input-output combinations that are physically possiblewhen using a scalar
multiple of a given input vector to produce a scalar multiple of a given output vector
in a given period in a given production environment. For example, the set of input-
output combinations that are possible when using a scalar multiple of x̄ to produce
a scalar multiple of q̄ in period t in an environment characterised by z is

T t (x̄, q̄, z) = {(x, q) : x ∝ x̄, q ∝ q̄, (x, q) ∈ T t (z)}. (2.6)

This set can be found in O’Donnell (2016, p. 331). By construction, T t (x̄, q̄, z) ⊆
T t (z).

2.3.1 Assumptions

Production possibilities sets, output sets and input sets are equivalent representa-
tions of the input-output combinations that are possible using different technologies.
Again, this means that assumptions concerning output and input sets imply, and are
implied by, assumptions concerning production possibilities sets. Again, it is often
convenient to write these assumptions using mathematics. To illustrate, consider
the period-and-environment specific production possibilities set defined by (2.5).
Mathematically, (x, q) ∈ T t (z) if and only if q ∈ Pt (x, z). This means that A1–A7
(equivalently, O1–O7) can be written as follows:

T1 (x, 0) ∈ T t (z) for all (x, z) ∈ R
M+J
+ (inactivity);

T2 {q : (x, q) ∈ T t (z)} is bounded for all (x, z) ∈ R
M+J
+ (output sets bounded);

T3 q ≥ 0 ⇒ (0, q) /∈ T t (z) (inputs weakly essential; no free lunch);
T4 the set {q : (x, q) ∈ T t (z)} is closed for all (x, z) ∈ R

M+J
+ (output sets closed);

T5 the set {x : (x, q) ∈ T t (z)} is closed for all (q, z) ∈ R
N+J
+ (input sets closed);

T6 (x, q) ∈ T t (z) and 0 ≤ λ ≤ 1 ⇒ (x, λq) ∈ T t (z) (outputs weakly disp.); and
T7 (x, q) ∈ T t (z) and λ ≥ 1 ⇒ (λx, q) ∈ T t (z) (inputs weakly disposable);

Furthermore, if O3s, O4s, O6s–O9s, O9, O10, O15 and I16 are true, then, and only
then (respectively):

T3s q ≥ 0 and xm = 0 for any m ⇒ (x, q) /∈ T t (z) (inputs strictly essential);
T4s T t (z) is closed for all z ∈ R

J+ (production possibilities sets closed);
T6s (x, q) ∈ T t (z) and 0 ≤ q̄ ≤ q ⇒ (x, q̄) ∈ T t (z) (outputs strongly disposable);
T7s (x, q) ∈ T t (z) and x̄ ≥ x ⇒ (x̄, q) ∈ T t (z) (inputs strongly disposable);
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T8s (x, q) ∈ T t (z) and z̄ ≥ z ⇒ (x, q) ∈ T t (z̄) (environ. variables strongly disp.);
T9s If x > 0, or x ≥ 0 and (λx, q̄) ∈ T t (z) for some q̄ > 0 and λ > 0, then, for any

q ∈ R
N+ , there exists a scalar φ > 0 such that (φx, q) ∈ T t (z) (outputs strongly

attainable);
T9 If x ≥ 0, q ≥ 0 and (λx, q) ∈ T t (z) for some scalar λ > 0, then, for any scalar

θ > 0, there exists a scalar φ > 0 such that (φx, θq) ∈ T t (z) (outputs weakly
attainable);

T10 (x, q) ∈ T t (z) ⇔ (λx, λrq) ∈ T t (z) for all λ > 0 (homogeneity);
T15 {q : (x, q) ∈ T t (z)} is convex for all (x, z) ∈ R

M+J
+ (output sets convex); and

T16 {x : (x, q) ∈ T t (z)} is convex for all (q, z) ∈ R
N+J
+ (input sets convex).

2.3.2 Example

If the period-and-environment-specific output set is given by (2.2), then, and only
then, the period-and-environment-specific production possibilities set is

T t (z) =
⎧
⎨

⎩
(x, q) :

(
N∑

n=1

γnq
τ
n

)1/τ

≤ A(t)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎫
⎬

⎭
(2.7)

where A(t) > 0, A(t) ≥ A(t − 1), β = (β1, . . . , βM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0,
τ ≥ 1 and γ ′ι = 1. This set satisfies T3s, T4s, T6s and T7s.

2.4 Output Distance Functions

If output sets are bounded and outputs are weakly disposable, then the input-output
combinations that are possible using different technologies can be represented by
output distance functions. An output distance function gives the reciprocal of the
largest factor by which it is possible to scale up a given output vector when using
a given input vector. A period-and-environment-specific output distance function
gives the reciprocal of the largest factor by which it is possible to scale up a given
output vector when using a given input vector in a given period in a given production
environment. For example, the reciprocal of the largest factor by which it is possible
to scale up q when using x in period t in environment z is

Dt
O(x, q, z) = inf{ρ > 0 : q/ρ ∈ Pt (x, z)}. (2.8)

This particular output distance function can be found in O’Donnell (2016, p. 330).
If there is no technical (resp. environmental) change, then all references to t (resp.
z) can be deleted. If there is no environmental change, then it is equal to the ‘(direct)
output distance function’ defined by Balk (1998, Eq. 2.6). If there is no technical
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or environmental change, then it is equal to the (direct) output distance function
defined by Färe and Primont (1995, Eq. 2.1.7). If output sets are closed and there is
no technical or environmental change, then it is equal to the distance function defined
by Shephard (1970, p. 207).

2.4.1 Properties

The properties of output distance functions can be derived from the properties of
output sets. For example, consider the output distance function defined by (2.8). If
Pt (x, z) is bounded, then this function exists. If outputs are also weakly disposable,
then q ∈ Pt (x, z) if and only if Dt

O(x, q, z) ≤ 1 (Färe and Primont 1995, p. 22).
More generally, if O1–O7 are true, then the following are true4:

DO1 0 ≤ Dt
O(x, q, z) for all (x, q, z) ∈ R

M+N+J
+ (nonnegative);

DO2 Dt
O(x, λq, z) = λDt

O(x, q, z) for all λ > 0 and (x, q, z) ∈ R
M+N+J
+ (linearly

homogeneous in q);
DO3 0 ≤ Dt

O(x, q, z) ≤ 1 for all q ∈ Pt (x, z), Dt
O(x, 0, z) = 0 for all (x, z) ∈

R
M+J
+ , and Dt

O(0, q, z) = +∞ for all q ≥ 0;
DO4 Dt

O(x, q, z) is continuous in q for all (x, z) ∈ R
M+J
+ ; and

DO5 Dt
O(x, q, z) is lower semi-continuous in x for all (q, z) ∈ R

N+J
+ .

If O6s, O7s, O9s, O15 and I16 are also true, then the following are true5:

DO6 q ≥ q̄ ≥ 0 ⇒ Dt
O(x, q, z) ≥ Dt

O(x, q̄, z) for all (x, z) ∈ R
M+J
+ (nondecreas-

ing in q);
DO7 x̄ ≥ x ⇒ Dt

O(x̄, q, z) ≤ Dt
O(x, q, z) for all (q, z) ∈ R

N+J
+ (nonincreasing in

x);
DO8 Dt

O(x, q, z) is convex in q for all (x, z) ∈ R
M+J
+ ; and

DO9 Dt
O(x, q, z) is quasiconvex in x for all (q, z) ∈ R

N+J+ .

If O10, O11 and O13 are true, then, and only then, the following are true (respec-
tively)6:

DO10 Dt
O(λx, q, z) = λ−r Dt

O(x, q, z) for all λ > 0 (homogeneity);
DO11 Dt

O(x, q, z) = Dt
O(ι, q, z)/Gt (x, z) (output homotheticity); and

DO13 Dt
O(x, q, z) = D1

O(x, q, ι)/Et (x, z) (implicit Hicks output neutrality).

4If O1 and O2 are true, then DO1 and DO2 are true. The first part of DO3 is obvious. The last two
parts of DO3 are equivalent to Do.1 and Do.5 in Färe and Primont (1995, pp. 17, 18). DO4 ⇔ ∇.7
in Shephard (1970, pp. 208, 211) which is satisfied under Do.4 in Färe and Primont (1995). DO2
and O4 ⇒ DO5. DO5 is equivalent to Do.4 in Färe and Primont (1995).
5O6s ⇒ DO6 and O7s ⇒ DO7 (Shephard 1970, proof of ∇.5 and ∇.8 on pp. 210–211). If O1, O2,
O4, O5, O6s, O7s, O9s, O15 and I16 are true, then A.1–A.8 in Shephard (1970) are true. Then DO8
and DO9 follow from Shephard (1970, pp. 207, 208, Prop. 61).
6Proofs of DO11 and DO13 are given in Appendix A.1 (Propositions 1 and 3).
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PropertyDO10 says that the output distance function is homogeneous of degree−r in
inputs. If this is true, then Dt

O(x, q, z) = Dt
I (x, q, z)−r where Dt

I (x, q, z) is the input
distance function defined by (2.12) (e.g., O’Donnell 2016, Proposition 3). Properties
DO11 and DO13 can be viewed as separability properties: if they are both true,
then the output distance function can be written as Dt

O(x, q, z) = Q(q)/Ft (x, z)
where Q(q) = D1

O(ι, q, ι) can be viewed as an aggregate output and Ft (x, z) =
Et (ι, z)Gt (x, z) canbeviewedas aproduction function.7 Formoredetails concerning
production functions, see Sect. 2.9.1. If (a) output and input sets are homothetic, (b)
technical change is HN, and (c) production frontiers exhibit CRS, then the output
distance function can bewritten as Dt

O(x, q, z) = Q(q)/[At (z)F(x)]where Q(q) =
D1

O(ι, q, ι), At (z) = Et (ι, z) and F(x) = D1
I (x, ι, ι)/D

1
I (ι, ι, ι).

8 Finally, if firms
are price takers in output markets and both O6s and 015 are true (i.e., if outputs are
strongly disposable and output sets are convex), then

DO17 Dt
O(x, q, z) = supp{p′q : Rt (x, p, z) ≤ 1}

where Rt (x, p, z) is the revenue functiondefinedby (2.16). Thismeans that the output
distance function is completely characterised by the revenue function. If there is no
technical or environmental change, then this result is equivalent to a duality result
that can be found in Färe and Primont (1995, p. 50).

2.4.2 Marginal Effects

If output distance functions are continuously differentiable, then differential calculus
can be used to define variousmarginal effects. For example, Table 2.1 presents several
marginal effects that can be derived from a differentiable period-and-environment
specific output distance function. Them-thmarginal product (MP) can be interpreted
as the radial expansion in the output vector that can be obtained from a marginal in-
crease in input m, holding all other variables fixed. The n-th normalised shadow
output price can be interpreted as the n-th shadow output price divided by the maxi-
mum revenue that a price-taking firm can earn using its inputs; shadow output prices
can be interpreted as the prices that would induce price-taking revenue-maximising
firms to operate at given points on the boundary of the output set; for more details,
see, for example, Färe et al. (1993, p. 376) and Färe and Primont (1995, pp. 58, 59).
The n-th shadow revenue share is the shadow revenue associated with the n-th output
divided by total shadow revenue; shadow revenues are equal to shadow output prices
multiplied by outputs. If the output set is homothetic (i.e., if DO11 is true), then
shadow revenue shares do not depend on inputs. If technical change is IHON (i.e., if
DO13 is true), then shadow revenue shares do not depend on environmental variables
and do not change over time. The m-th output elasticity can be interpreted as the
percent increase in all outputs that can be obtained from a one percent increase in

7A proof is given in Appendix A.1 (Proposition 5).
8A proof is given in Appendix A.1 (Proposition 17).
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Table 2.1 Selected output-oriented marginal effects

Marginal product MPt
m(x, q, z) = ∂(1/Dt

O (x,q,z))
∂xm

Normalised shadow output price ptn(x, q, z) = ∂Dt
O (x,q,z)
∂qn

Shadow revenue share r tn(x, q, z) = ∂ ln Dt
O (x,q,z)

∂ ln qn

Output elasticity ηtm(x, q, z) = − ∂ ln Dt
O (x,q,z)

∂ ln xm

Elasticity of scale ηt (x, q, z) = ∑M
m=1 ηtm(x, q, z)

Marginal rate of transformation MRT t
kn(x, q, z) = ∂Dt

O (x,q,z)/∂qn
∂Dt

O (x,q,z)/∂qk

Elasticity of transformation σ t
kn(x, q, z) = d ln(qk/qn )

d lnMRT t
kn(x,q,z)

input m, holding all other variables fixed. If the output set is homothetic, then output
elasticities do not depend on outputs. The elasticity of scale can be interpreted as the
percent increase in all outputs that can be obtained from a one percent increase in
all inputs, holding all other variables fixed. The production frontier is said to exhibit
DRS, NIRS, CRS, NDRS or IRS as the elasticity of scale is less than, no greater
than, equal to, no less than, or greater than one. If the output set is homothetic, then
the elasticity of scale does not depend on outputs. The kn-th marginal rate of trans-
formation (MRT) is the marginal rate at which output n can be substituted for output
k on the boundary of the output set, holding all other variables fixed; it can also be
viewed as the kn-th shadow output price ratio. If the output set is homothetic, then
MRTs do not depend on inputs. If technical change is IHON, then MRTs do not de-
pend on environmental variables and do not change over time. The kn-th elasticity of
transformation can be interpreted as the percent change in the kn-th output quantity
ratio associated with a one percent change in the kn-th shadow output price ratio.

2.4.3 Example

If the output set is given by (2.2), then the output distance function is

Dt
O(x, q, z) =

⎛

⎝A(t)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎞

⎠

−1 (
N∑

n=1

γnq
τ
n

)1/τ

(2.9)

where A(t) > 0, A(t) ≥ A(t − 1), β = (β1, . . . , βM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥
0,τ ≥ 1 and γ ′ι = 1. This function satisfiesDO6,DO7,DO10,DO11 andDO13with
r = −β ′ι. The m-th marginal product is MPt

m(x, q, z) = βmDt
O(x, q, z)/xm ≥ 0.

The n-th normalised shadow output price and the the n-th shadow revenue share are
(respectively)
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ptn(x, q, z) = γnq
τ−1
n

(
N∑

k=1

γkq
τ
k

)−1

Dt
O(x, q, z) ≥ 0 (2.10)

and rn(q) = γnq
τ
n

(
N∑

k=1

γkq
τ
k

)−1

≥ 0. (2.11)

Them-th output elasticity is βm ≥ 0. The elasticity of scale is η = β ′ι > 0. The kn-th
marginal rate of transformation is MRTkn(q) = (γn/γk)(qn/qk)τ−1. If τ > 1, then
the elasticity of transformation between any two outputs is σ = 1/(1 − τ) < 0.

2.5 Input Distance Functions

If inputs are weakly disposable, then the input-output combinations that are possible
using different technologies can be represented by input distance functions. An input
distance function gives the reciprocal of the smallest fraction of a given input vector
that can produce a given output vector. A period-and-environment-specific input
distance function gives the reciprocal of the smallest fraction of a given input vector
that can produce a given output vector in a given period in a given production
environment. For example, the reciprocal of the smallest fraction of x that can produce
q in period t in environment z is

Dt
I (x, q, z) = sup{θ > 0 : x/θ ∈ Lt (q, z)}. (2.12)

This particular input distance function can be found in O’Donnell (2016, p. 330). If
there is no technical (resp. environmental) change, then all references to t (resp. z)
can be deleted. If there is no environmental change, then it is equal to the (direct)
input distance function defined by Balk (1998, Eq. 2.4). If there is no technical or
environmental change, then it is equal to the (direct) input distance function defined
by Färe and Primont (1995, Eq. 2.1.19). If input sets are closed and there is no
technical or environmental change, then it is equal to the distance function defined
by Shephard (1970, p. 206).

2.5.1 Properties

The properties of input distance functions can be derived from the properties of input
sets. For example, consider the input distance function defined by (2.12). If inputs
are nonnegative, then this function exists. If inputs are also weakly disposable, then
x ∈ Lt (q, z) if and only if Dt

I (x, q, z) ≥ 1 (Färe and Primont 1995, p. 22). More
generally, if the input distance function exists, then the following are true (Färe and
Primont 1995, pp. 22, 28):
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DI1 0 ≤ Dt
I (x, q, z) for all (x, q, z) ∈ R

M+N+J
+ (nonnegative);

DI2 Dt
I (λx, q, z) = λDt

I (x, q, z) for all λ > 0 and (x, q, z) ∈ R
M+N+J
+ (linearly

homogeneous in x); and
DI3 Dt

I (x, q, z) ≥ 1 for all x ∈ Lt (q, z).

If I6s, I7s, I9s, O15 and I16 are also true, then the following are true9:

DI4 Dt
I (x, q, z) is upper semi-continuous in q for all (x, z) ∈ R

M+J
+ ;

DI5 Dt
I (x, q, z) is continuous in x for all (q, z) ∈ R

N+J
+ ;

DI6 q̄ ≥ q ⇒ Dt
I (x, q̄, z) ≤ Dt

I (x, q, z) for all (x, z) ∈ R
M+J
+ (nonincreasing in

q);
DI7 x̄ ≥ x ⇒ Dt

I (x̄, q, z) ≥ Dt
I (x, q, z) for all (q, z) ∈ R

N+J
+ (nondecreasing in

x);
DI8 Dt

I (x, q, z) is quasiconcave in q for all (x, z) ∈ R
M+J
+ ; and

DI9 Dt
I (x, q, z) is concave x for all (q, z) ∈ R

N+J
+ .

If I10, I12 and I14 are true, then, and only then, the following are true (respectively)10:

DI10 Dt
I (x, λq, z) = λ−1/r Dt

I (x, q, z) for all λ > 0 (homogeneity);
DI12 Dt

I (x, q, z) = Dt
I (x, ι, z)/K

t (q, z) (input homotheticity); and
DI14 Dt

I (x, q, z) = D1
I (x, q, ι)/J t (q, z) (implicit Hicks input neutrality).

Property DI10 says that the input distance function is homogeneous of degree −1/r
in outputs. If this is true, then Dt

I (x, q, z) = Dt
O(x, q, z)−1/r (e.g., O’Donnell 2016,

Proposition 3). Properties DI12 and DI14 can be viewed as separability prop-
erties: if they are both true, then the input distance function can be written as
Dt

I (x, q, z) = X (x)/Ht (q, z) where X (x) = D1
I (x, ι, ι) can be viewed as an aggre-

gate input and Ht (q, z) = J t (ι, z)K t (q, z) can be viewed as an input requirement
function.11 For more details concerning input requirement functions, see Sect. 2.9.2.
If (a) output and input sets are homothetic, (b) technical change is HN, and (c)
production frontiers exhibit CRS, then the input distance function can be written
as Dt

I (x, q, z) = Bt (z)X (x)/H(q) where Bt (z) = J t (ι, z), X (x) = D1
I (x, ι, ι) and

H(q) = D1
O(ι, q, ι)/D1

O(ι, ι, ι).12 Finally, if firms are price takers in input markets
and both I7s and I16 are true (i.e., if inputs are strongly disposable and input sets are
convex), then

DI18 Dt
I (x, q, z) = infw{w′x : Ct (w, q, z) ≥ 1}

where Ct (w, q, z) is the cost function defined by (2.21). This means that the input
distance function is completely characterised by the cost function. If there is no
technical or environmental change, then this result is equivalent to a duality result
that can be found in Färe and Primont (1995, p. 47).

9I6s ⇒ DI6 and I7s ⇒ DI7 (Shephard 1970, proof of D.4, D.5 and D.8 on pp. 68–70). If I1, I2,
I4, I5, I6s, I7s, I9s, I15 and I16 are true, then A.1–A.8 in Shephard (1970) are true. Then DI4–DI9
follow from Shephard (1970, pp. 207, Proposition 60)
10Proofs of DI12 and DI14 are given in Appendix A.1 (Propositions 9 and 11).
11A proof is given in Appendix A.1 (Proposition 13).
12A proof is given in Appendix A.1 (Proposition 18).
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2.5.2 Marginal Effects

If input distance functions are continuously differentiable, then differential calculus
can be used to define variousmarginal effects. For example, Table 2.2 presents several
marginal effects that can be derived from a differentiable period-and-environment
specific input distance function. The n-th marginal input (MI) can be interpreted
as the radial expansion in the input vector needed to produce a marginal increase
in output n, holding all other variables fixed. The m-th normalised shadow input
price can be interpreted as the m-th shadow input price divided by the minimum
amount it will cost a price-taking firm to produce its outputs; shadow input prices
can be interpreted as the prices that would induce price-taking cost-minimising firms
to operate at given points on the boundary of the input set; for more details, see, for
example, Färe and Primont (1995, p. 55). The m-th shadow cost share is the shadow
cost associated with the m-th input divided by total shadow cost; shadow costs are
equal to shadow input prices multiplied by inputs. If the input set is homothetic (i.e.,
if DI12 is true), then shadow cost shares do not depend on outputs. If technical change
is IHIN (i.e., if DI14 is true), then shadow cost shares do not depend on environmental
variables and do not change over time. The n-th input elasticity can be interpreted
as the percent increase in all inputs needed to produce a one percent increase in
output n, holding all other variables fixed. If the input set is homothetic, then input
elasticities do not depend on inputs. The elasticity of scale can be interpreted as
the percent increase in all inputs needed to produce a one percent increase in all
outputs, holding all other variables fixed. The elasticity of scale defined in Table2.2
is always equal to the elasticity of scale defined earlier in Table2.1 (Färe et al. 1986,
p. 180). If the input set is homothetic, then the elasticity of scale does not depend on
inputs. The km-th marginal rate of technical13 substitution (MRTS) is the marginal
rate at which input m can be substituted for input k on the boundary of the input set,
holding all other variables fixed; it can also be viewed as the km-th shadow input
price ratio. If the input set is homothetic, then MRTSs do not depend on outputs. If
technical change is IHIN, then MRTSs do not depend on environmental variables
and do not change over time. The km-th elasticity of substitution can be interpreted
as the percent change in the km-th input quantity ratio associated with a one percent
change in the km-th shadow input price ratio.

2.5.3 Example

If the input set is given by (2.4), then the input distance function is

13The term ‘technical’ is used here to distinguish the MRTS from a similar concept in consumer
demand theory. In consumer demand theory, the marginal rate of substitution (MRS) is the rate at
which consumers can exchange one good for another while holding utility and all other variables
fixed.
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Table 2.2 Selected input-oriented marginal effects

Marginal input MI tn(x, q, z) = ∂(1/Dt
I (x,q,z))
∂qn

Normalised shadow input price wt
m(x, q, z) = ∂Dt

I (x,q,z)
∂xm

Shadow cost share stm(x, q, z) = ∂ ln Dt
I (x,q,z)

∂ ln xm

Input elasticity φt
n(x, q, z) = − ∂ ln Dt

I (x,q,z)
∂ ln qn

Elasticity of scale φt (x, q, z) =
(∑N

n=1 φt
n(x, q, z)

)−1

Marginal rate of technical substitution MRT Stkm(x, q, z) = ∂Dt
I (x,q,z)/∂xm

∂Dt
I (x,q,z)/∂xk

Elasticity of substitution δtkm(x, q, z) = d ln(xk/xm )

d lnMRT Stkm (x,q,z)

Dt
I (x, q, z) =

⎛

⎝B(t)
J∏

j=1

z
κ j

j

M∏

m=1

xλm
m

⎞

⎠

(
N∑

n=1

γnq
τ
n

)−1/(τη)

(2.13)

where B(t) > 0, B(t) ≥ B(t − 1), λ = (λ1, . . . , λM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0,
τ ≥ 1, η > 0 and γ ′ι = λ′ι = 1. This function satisfies DI6, DI7, DI10, DI12 and
DI14 with r = η. The n-th input elasticity is

φn(q) = γnq
τ
n

(

η

N∑

k=1

γkq
τ
k

)−1

≥ 0. (2.14)

The n-th marginal input is MI tn(x, q, z) = φn(q)/[qnDt
I (x, q, z)] ≥ 0. The m-th

normalised shadow input price is wt
m(x, q, z) = λmDt

I (x, q, z)/xm ≥ 0. The m-th
shadow cost share is sm = λm . The elasticity of scale is φ = η > 0. The km-th
marginal rate of technical substitution is MRT Skm(x) = (λm/λk)(xk/xm). The elas-
ticity of substitution between any two inputs is δ = 1.

2.6 Revenue Functions

A revenue function gives themaximum revenue that can be earned using given inputs.
A period-and-environment-specific revenue function gives the maximum revenue
that can be earned using given inputs in a given period in a given production envi-
ronment. For example, the maximum revenue that can be earned using x in period t
in environment z is

Rt (x, d, z) = max
q

{p(q, d)′q : q ∈ Pt (x, z)} (2.15)

where d is a vector of nonnegative demand shifters that are not affected by the actions
of the firm (e.g., population) and p(q, d) is a vector of nonnegative inverse demand
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functions. If there is no technical (resp. environmental) change, then all references
to t (resp. z) can be deleted. If market prices are not affected by the outputs supplied
by the firm, then the firm is said to be a ‘price taker’ in output markets. For such a
firm, the maximum revenue that can be earned using x in period t in environment z
is

Rt (x, p, z) = max
q

{p′q : q ∈ Pt (x, z)} (2.16)

where p is a vector of nonnegative prices that are not affected by the outputs of
the firm. This function can be viewed as a special case of (2.15) corresponding to
∂p(q, d)/∂q = 0. If there is no environmental change, then it is equal to the revenue
function defined by Balk (1998, Eq. 4.1). If there is no technical or environmental
change, then it is equal to the ‘output maximal benefit function’ defined by Shephard
(1970, Eq. 98).

2.6.1 Properties

The properties of revenue functions can be derived from the properties of output sets.
For example, consider the revenue function defined by (2.16). If Pt (x, z) is closed
and bounded, then this function exists (Shephard 1970, p. 207). If some outputs are
regarded as undesirable (i.e., have a negative value), then it is possible to define
a revenue function that has the same properties as (2.16) except it is defined over
p ∈ R

N instead of p ∈ R
N+ (Shephard 1970, p. 229). If the revenue function defined

by (2.16) exists, then the following are true:

R1 Rt (0, p, z) = 0 and Rt (x, 0, z) = 0 for all (x, z) ∈ R
M+J
+ (no fixed income);

R2 Rt (x, p, z) ≥ 0 for all (x, p, z) ∈ R
M+N+J
+ (nonnegative);

R3 Rt (x, λp, z) = λRt (x, p, z) for all λ > 0 (linearly homogeneous in p);
R4 p̄ ≥ p ⇒ Rt (x, p̄, z) ≥ Rt (x, p, z) for all (x, z) ∈ R

M+J
+ (nondecreasing in p);

R5 Rt (x, p, z) is convex in p for all (x, z) ∈ R
M+J
+ ; and

R6 Rt (x, p, z) is continuous in p for all (x, z) ∈ R
M+J
+ .

If I7s, I16 and I5 are true, then the following are true (respectively) (Shephard 1970,
pp. 230, 231):

R7 x̄ ≥ x ⇒ Rt (x̄, p, z) ≥ Rt (x, p, z) for all (p, z) ∈ R
N+J
+ (nondecreasing in x);

R8 Rt (x, p, z) is concave in x for all (p, z) ∈ R
N+J
+ ; and

R9 Rt (x, p, z) is upper semi-continuous in x for all (p, z) ∈ R
N+J
+ .

Finally, if O10, O11 and O13 are true, then the following are true (respectively)14:

R10 R(λx, p, z, t) = λr Rt (x, p, z) for all λ > 0 (homogeneity);
R11 Rt (x, p, z) = Gt (x, z)Rt (ι, p, z) (output homotheticity); and
R13 Rt (x, p, z) = Et (x, z)R1(x, p, ι) (implicit Hicks output neutrality).

14Proofs of R11 and R13 are given in Appendix A.1 (Propositions 2 and 4).
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Table 2.3 Selected revenue-oriented marginal effects

Marginal revenue MRt
m(x, p, z) = ∂Rt (x,p,z)

∂xm

Revenue-maximising output supply q̈ tn(x, p, z) = ∂Rt (x,p,z)
∂pn

Revenue-maximising revenue share r̈ tn(x, p, z) = ∂ ln Rt (x,p,z)
∂ ln pn

Revenue elasticity κ t
m(x, p, z) = ∂ ln Rt (x,p,z)

∂ ln xm

Revenue elasticity of scale κ t (x, p, z) = ∑M
m=1 κ t

m(x, p, z)

Property R10 says that the revenue function is homogeneous of degree r in inputs.
Again, properties R11 and R13 can be viewed as separability properties: if they are
both true, then the revenue function can be written as Rt (x, p, z) = P(p)Ft (x, z)
where P(p) = R1(ι, p, ι) can be viewed as an aggregate output price and Ft (x, z) =
Et (ι, z)Gt (x, z) can be viewed as a production function.15

2.6.2 Marginal Effects

If revenue functions are continuously differentiable, then differential calculus can
be used to define various marginal effects. For example, Table 2.3 presents several
marginal effects that can be derived from a differentiable period-and-environment
specific revenue function. The m-th marginal revenue (MR) is the increase in maxi-
mum revenue that can be obtained from a marginal increase in input m, holding all
other variables fixed. The n-th revenue-maximising output supply is the amount of
output n that a price-taking firm must produce in order to maximise revenue. The
n-th revenue-maximising revenue share is the associated revenue from output n as a
proportion of maximum total revenue. If the output set is homothetic (i.e., if R11 is
true), then revenue-maximising revenue shares do not depend on inputs. If technical
change is IHON (i.e., if R13 is true), then revenue-maximising revenue shares do not
depend on environmental variables and do not change over time. The m-th revenue
elasticity is the percent increase in maximum revenue that can be obtained from a
one percent increase in input m, holding all other variables fixed. If the output set
is homothetic, then revenue elasticities do not depend on output prices. The revenue
elasticity of scale is the percent increase in maximum revenue that can be obtained
from a one percent increase in all inputs, holding all other variables fixed. If assump-
tion O15 is true (i.e., if the output set is convex), then the revenue elasticity of scale
is equal to the elasticity of scale defined earlier in Table 2.1 (Färe et al. 1986, p. 181).
If the output set is homothetic, then the revenue elasticity of scale does not depend
on output prices.

15A proof is given in Appendix A.1 (Proposition 6).



2.6 Revenue Functions 73

2.6.3 Example

If firms are a price takers in output markets and the output set is given by (2.2), then
the revenue function depends on the value of τ . If τ > 1, then

Rt (x, p, z) =
⎛

⎝A(t)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎞

⎠

(
N∑

n=1

γ σ
n p1−σ

n

)1/(1−σ)

(2.17)

where A(t) > 0, A(t) ≥ A(t − 1), β = (β1, . . . , βM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0,
γ ′ι = 1, and σ = 1/(1 − τ) < 0. This function satisfies R10, R11 and R13 with
r = β ′ι. The m-th marginal revenue is MRt

m(x, p, z) = βm Rt (x, p, z)/xm ≥ 0. If
the n-th output price is positive, then the n-th revenue-maximising output supply and
revenue share are

q̈ t
n(x, p, z) =

⎛

⎝A(t)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎞

⎠

(
γn

pn

)σ
(

N∑

k=1

γ σ
k p1−σ

k

)σ/(1−σ)

(2.18)

and r̈n(p) = γ σ
n p1−σ

n

(
N∑

k=1

γ σ
k p1−σ

k

)−1

. (2.19)

The m-th revenue elasticity is κm = βm ≥ 0. The revenue elasticity of scale is κ =
β ′ι > 0.

2.7 Cost Functions

A cost function gives the minimum cost of producing given outputs. A period-and-
environment-specific cost function gives the minimum cost of producing given out-
puts in a given period in a given production environment. For example, the minimum
cost of producing q in period t in environment z is

Ct (s, q, z) = min
x

{w(x, s)′x : x ∈ Lt (q, z)}. (2.20)

where s is a vector of nonnegative supply shifters that are not affected by the actions
of the firm (e.g., characteristics of production environments in upstream sectors) and
w(x, s) is a vector of nonnegative inverse supply functions. If there is no technical
(resp. environmental) change, then all references to t (resp. z) can be deleted. If
market prices are not affected by the inputs demanded by the firm, then the firm is
said to be a ‘price taker’ in input markets. For such a firm, the minimum cost of
producing q in period t in environment z is



74 2 Production Technologies

Ct (w, q, z) = min
x

{w′x : x ∈ Lt (q, z)} (2.21)

wherew is a vector of nonnegative prices that are not affected by the inputs demanded
by the firm. This function can be viewed as a special case of (2.20) corresponding
to ∂w(x, s)/∂x = 0. If there is no environmental change, then it is equal to the cost
function defined by Balk (1998, Eq. 3.1). If there is no technical or environmental
change, then it is equal to the cost function defined by Shephard (1970, Eq. 15).

2.7.1 Properties

The properties of cost functions can be derived from the properties of input sets. For
example, consider the cost function defined by (2.21). If Lt (q, z) is closed, then this
function is well-defined for all positive input price vectors and all output vectors that
are producible in environment z ∈ R

J+ (Färe and Primont 1995, p. 44). In this case,
the following are true (Shephard 1970, pp. 84, 85, 228):

C1 Ct (w, 0, z) = 0 and Ct (0, q, z) = 0 for all (q, z) ∈ R
N+J
+ (no fixed cost);

C2 Ct (w, q, z) ≥ 0 for all (w, q, z) ∈ R
M+N+J
+ (nonnegative);

C3 Ct (λw, q, z) = λCt (w, q, z) for all λ ≥ 0 (linearly homogeneous in w);
C4 w̄ ≥ w ⇒ Ct (w̄, q, z) ≥ Ct (w, q, z) for all (q, z) ∈ R

N+J
+ (nondecreasing in

w);
C5 Ct (w, q, z) is concave in w for all (q, z) ∈ R

N+J
+ ; and

C6 Ct (w, q, z) is continuous in w for all (q, z) ∈ R
N+J
+ .

If O6s, O15 and O4 are true, then the following are true (respectively) (Shephard
1970, pp. 190, 228):

C7 q̄ ≥ q ⇒ Ct (w, q̄, z) ≥ Ct (w, q, z) for all (w, z) ∈ R
M+J
+ (nondecreasing in

q);
C8 Ct (w, q, z) is convex in q for all (w, z) ∈ R

M+J
+ ; and

C9 Ct (w, q, z) is lower semi-continuous in q for all w > 0 and z ∈ R
J+.

Finally, if I10, I12 and I14 are true, then the following are true (respectively)16:

C10 Ct (w, λq, z) = λ1/rCt (w, q, z) for all λ > 0 (homogeneity);
C12 Ct (w, q, z) = K t (q, z)Ct (w, ι, z) (input homotheticity); and
C14 Ct (w, q, z) = J t (q, z)C1(w, q, ι) (implicit Hicks input neutrality).

Property C10 says that the cost function is homogeneous of degree 1/r in outputs.
Again, properties C12 and C14 can be viewed as separability properties: if they
are both true, then the cost function can be written as Ct (w, q, z) = W (w)Ht (q, z)
whereW (w) = C1(w, ι, ι) can be viewed as an aggregate input price and Ht (q, z) =
J t (ι, z)K t (q, z) can be viewed as an input requirement function.17

16Proofs of C12 and C14 are given in Appendix A.1 (Propositions 10 and 12).
17A proof is given in Appendix A.1 (Proposition 14).
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Table 2.4 Selected cost-oriented marginal effects

Marginal cost MCt
n(w, q, z) = ∂Ct (w,q,z)

∂qn

Cost-minimising input demand ẍ tm(w, q, z) = ∂Ct (w,q,z)
∂wm

Cost-minimising cost share s̈tm(w, q, z) = ∂ lnCt (w,q,z)
∂ lnwm

Cost elasticity ψ t
n(w, q, z) = ∂ lnCt (w,q,z)

∂ ln qn

Cost elasticity of scale ψ t (w, q, z) =
(∑N

n=1 ψ t
n(w, q, z)

)−1

2.7.2 Marginal Effects

If cost functions are continuously differentiable, then differential calculus can be used
to define various marginal effects. For example, Table 2.4 presents several marginal
effects that can be derived from a differentiable period-and-environment specific cost
function. Them-thmarginal cost (MC) is the increase in minimum cost when output
n is increased by a marginal amount, holding all other variables fixed. The n-th cost-
minimising input demand is the quantity of input m that a price-taking firm must
use in order to minimise cost. The m-th cost-minimising cost share is the associated
cost of input m as a proportion of minimum total cost. If the input set is homothetic
(i.e., if C12 is true), then cost-minimising cost shares do not depend on outputs. If
technical change is IHIN (i.e., if C14 is true), then cost-minimising cost shares do
not depend on environmental variables and do not change over time. The n-th cost
elasticity is the percent increase in minimum cost when output n is increased by one
percent, holding all other variables fixed. If the input set is homothetic, then cost
elasticities do not depend on input prices. The cost elasticity of scale is the percent
increase in minimum cost when all outputs are increased by one percent, holding all
other variables fixed. If assumption I16 is true (i.e., if the input set is convex), then
the cost elasticity of scale is equal to the elasticity of scale defined earlier in Tables
2.1 and 2.2 (Färe et al. 1986, p. 180). If the input set is homothetic, then the cost
elasticity of scale does not depend on input prices.

2.7.3 Example

If firms are price takers in input markets and the input distance function is given by
(2.13), then

Ct (w, q, z) =
⎛

⎝B(t)
J∏

j=1

z
κ j

j

⎞

⎠

−1
M∏

m=1

(
wm

λm

)λm
(

N∑

n=1

γnq
τ
n

)1/(τη)

(2.22)
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where B(t) > 0, B(t) ≥ B(t − 1), λ = (λ1, . . . , λM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0,
τ ≥ 1,η > 0 andγ ′ι = λ′ι = 1. This function satisfiesC10,C12 andC14with r = η.
The n-th cost elasticity is

ψn(q) = γnq
τ
n

(

η

N∑

k=1

γkq
τ
k

)−1

≥ 0 (2.23)

[this is equal to the n-th input elasticity given by (2.14)]. The n-th marginal cost is
MCt

n(w, q, z) = ψn(q)Ct (w, q, z)/qn ≥ 0. If the m-th input price is positive, then
the m-th cost-minimising input demand is

ẍ tm(w, q, z) =
⎛

⎝B(t)
J∏

j=1

z
κ j

j

⎞

⎠

−1 (
λm

wm

) M∏

k=1

(
wk

λk

)λk
(

N∑

n=1

γnq
τ
n

)1/(τη)

. (2.24)

The m-th cost-minimising cost share is λm ≥ 0. The cost elasticity of scale is ψ =
η > 0.

2.8 Profit Functions

A profit function gives the maximum profit that can be earned when inputs and
outputs can be chosen freely.A period-and-environment-specific profit function gives
the maximum profit that can be earned in a given period in a given production
environment when inputs and outputs can be chosen freely. If outputs are weakly
attainable and the set of technically-feasible input-output combinations that yield
nonnegative profit is nonempty and compact,18 then the maximum profit that can be
earned in period t in environment z is

Π t(s, d, z) = max
x,q

{p(q, d)′q − w(x, s)′x : (x, q) ∈ T t (z)} (2.25)

where p(q, d) and w(x, s) are the vectors of inverse demand and supply functions
introduced in Sects. 2.6 and 2.7. If there is no technical (resp. environmental) change,
then all references to t (resp. z) can be deleted. If firms are price takers in output and
input markets, then the maximum profit that can be earned in period t in environment
z is

Π t (w, p, z) = max
x,q

{p′q − w′x : (x, q) ∈ T t (z)} (2.26)

18A set is compact if it is closed and bounded. If the set of technically-feasible output-input com-
binations that yield nonnegative profit is compact, then profit achieves a maximum on T t (z). This
means the maximum operator can be used in (2.25) instead of the supremum operator.
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where p andw are vectors of nonnegative output and input prices that are not affected
by the outputs and inputs of the firm. This profit function can be viewed as a special
case of (2.25) corresponding to ∂p(q, d)/∂q = 0 and ∂w(x, s)/∂x = 0. If there is no
environmental change, then it is equal to the profit function defined by Balk (1998,
Eq. 7.1).

2.8.1 Properties

The properties of profit functions can be derived from the properties of production
possibilities sets. For example, consider the profit function defined by (2.26). If T t (z)
is nonempty, closed and convex, then the following are true (Färe and Primont 1995,
pp. 124, 125):

Π1 Π t (w, p, z) ≥ 0 (nonnegative);
Π2 Π t (λw, λp, z) = λΠ t(w, p, z) for all λ > 0 (linearly homogeneous in prices);
Π3 w̄ ≥ w ⇒ Π t (w̄, p, z) ≤ Π t (w, p, z) (nonincreasing in w);
Π4 p̄ ≥ p ⇒ Π t (w, p̄, z) ≥ Π t (w, p, z) (nondecreasing in p); and
Π5 Π t (w, p, z) is convex and continuous in (w, p) > 0.

2.8.2 Marginal Effects

If profit functions are continuously differentiable, then differential calculus can be
used to define variousmarginal effects. For example, Table 2.5 presents twomarginal
effects that can be derived from a differentiable period-and-environment specific
profit function. The n-th profit-maximising output supply is the amount of output
n that a price-taking firm must produce in order to maximise profit. Similarly, the
m-th profit-maximising input demand is the amount of input m that a price-taking
firm must use in order to maximise profit. These two results together are known as
Hotelling’s lemma.

Table 2.5 Selected profit-oriented marginal effects

Profit-maximising output supply q̊ tn(w, p, z) = ∂Π t (w,p,z)
∂pn

Profit-maximising input demand x̊ tm(w, p, z) = − ∂Π t (w,p,z)
∂wm
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2.8.3 Example

If firms are price takers in output and input markets and the production possibilities
set is given by (2.7), then the profit function depends on η = β ′ι and τ . If η < 1 and
τ > 1, then

Π t(w, p, z) = (1 − η)

⎛

⎝A(t)
J∏

j=1

z
δ j

j

M∏

m=1

(
βm

wm

)βm

⎞

⎠

1
1−η (

N∑

n=1

γ σ
n p1−σ

n

) 1
(1−σ)(1−η)

(2.27)

where A(t) > 0, A(t) ≥ A(t − 1), β = (β1, . . . , βM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0,
γ ′ι = 1 and σ = 1/(1 − τ) < 0. If the n-th output price and the m-th input price
are positive, then the n-th profit-maximising output and the m-th profit-maximising
input are

q̊ t
n(w, p, z) =

⎛

⎝A(t)
J∏

j=1

z
δ j

j

M∏
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wm

)βm

⎞

⎠

1
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×
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γ σ
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) 1
(1−σ)(1−η)

−1

(2.28)

and x̊ tm(w, p, z) =
⎛

⎝A(t)
J∏

j=1

z
δ j

j

M∏

k=1

(
βk

wk

)βk

⎞

⎠

1
1−η (

βm

wm

)

×
(

N∑

n=1

γ σ
n p1−σ

n

) 1
(1−σ)(1−η)

. (2.29)

2.9 Other Sets and Functions

Other sets and functions that can be used to analyse efficiency and productivity in-
clude production functions, input requirement functions, directional distance func-
tions, hyperbolic distance functions, technology-and-environment-specific sets and
functions, period-specific sets and functions, and state-contingent sets and functions.
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2.9.1 Production Functions

It is common19 to assume that there is only one output. If there is only one output
and assumptions A2, A4 and A6 are true, then the input-output combinations that are
possible using different technologies can be represented by production functions. A
production function gives the maximum output that a one-output firm can produce
using a given input vector. A period-and-environment-specific production function
gives themaximumoutput that a one-output firm can produce using a given input vec-
tor in a given period in a given production environment. For example, the maximum
output that a one-output firm can produce when using x in period t in environment
z is

Ft (x, z) = max{q : q ∈ Pt (x, z)}. (2.30)

An equivalent definition is Ft (x, z) = 1/Dt
O(x, 1, z). If there is no technical (resp.

environmental) change, then all references to t (resp. z) can be deleted. If there is
no environmental change, then the production function defined by (2.30) is equal to
the production function defined by Balk (1998, Eq. 2.8). If there is no technical or
environmental change, then it is equal to the production function defined by Shephard
(1970, p. 20). The properties of production functions are derived from the properties
of output sets. For example, if O1–O7 are true, then the following are true:

F1 Ft (x, z) < ∞ for all (x, z) ∈ R
M+J
+ (finite);

F2 0 ≤ Ft (x, z) for all (x, z) ∈ R
M+J
+ (nonnegative); and

F3 Ft (0, z) = 0 for all z ∈ R
J+ (inputs weakly essential).

If O7s, O10, O11, O13 and I16 are also true, then (respectively)20:

F7s x̄ ≥ x ⇒ Ft (x̄, z) ≥ Ft (x, z) (nondecreasing in x);
F10 Ft (λx, z) = λr Ft (x, z) for all λ > 0 (homogeneity);
F11 Ft (x, z) = Gt (x, z)Ft (ι, z) (output homotheticity);
F13 Ft (x, z) = Et (x, z)F1(x, ι) (implicit Hicks output neutrality); and
F15 Ft (x, z) is quasiconcave in x for all z ∈ R

J+.

If production functions are continuously differentiable, then differential calculus
can be used to define variousmarginal effects. For example, Table 2.6 presents several
marginal effects that can be derived from a differentiable period-and-environment-
specific production function. The m-th marginal product (MP) gives the marginal
increase in output that can be obtained from a marginal increase in input m, holding
all other variables fixed. The m-th output elasticity gives the the percent increase in
output that can be obtained from a one percent increase in input m, holding all other
variables fixed. The elasticity of scale gives the percent increase in output that can be
obtained from a one percent increase in all inputs, holding all other variables fixed.

19See, for example,Solow ( 1957, p. 312) and Hsieh and Klenow (2009, p. 1046).
20For proofs of F7s and F15, see Shephard (1970, p. 21). Proofs of F10, F11 and F13 are left as an
exercise for the reader.
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Table 2.6 Selected marginal effects

Marginal product MPt
m(x, z) = ∂Ft (x,z)

∂xm

Output elasticity ηtm(x, z) = ∂ ln Ft (x,z)
∂ ln xm

Elasticity of scale ηt (x, z) = ∑M
m=1 ηtm(x, z)

To make some of these concepts more concrete, suppose the output set is given
by (2.2). If there is only one output, then

Ft (x, z) = A(t)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m (2.31)

where A(t) > 0, A(t) ≥ A(t − 1), and β = (β1, . . . , βM)′ ≥ 0. The m-th marginal
product is MPt

m(x, z) = βmFt (x, z)/xm . Them-th output elasticity is ηm = βm . The
elasticity of scale is η = β ′ι. The production frontier exhibits DRS, NIRS, CRS,
NDRS or IRS as η is less than, no greater than, equal to, no less than, or greater
than one. If η = 1 and there is no environmental change, then (2.31) reduces to a
function that has the same structure, but not necessarily the same interpretation,21

as the production function of Solow (1957, Eqs. 3, 4d). If η = 1 and there is no
technical or environmental change, then it reduces to the production function of
Hsieh and Klenow (2009, Eq. 1).

2.9.2 Input Requirement Functions

If there is only one input involved in the production process and assumptions A5 and
A7 are true, then the input-output combinations that are possible using different tech-
nologies can be represented by input requirement functions. An input requirement
function gives the minimum input that a one-input firm requires in order to produce a
given output vector. A period-and-environment-specific input requirement function
gives the minimum input that a one-input firm requires in order to produce a given
output vector in a given period in a given production environment. For example, the
minimum input that a one-input firm requires in order to produce q in period t in
environment z is

Ht (q, z) = min{x : x ∈ Lt (q, z)}. (2.32)

21In this example, changes in A(t) are attributed to the discovery of new technologies. In this book,
such changes are referred to as technical change. Solow (1957) also attributes changes A(t) to
technical change. However, he “[uses] the phrase ‘technical change’ as a shorthand expression for
any kind of shift in the production function. Thus, speedups, improvements in the education of the
labor force, and all sorts of things will appear as ‘technical change”’ (Solow 1957, p. 312).
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Table 2.7 Selected marginal effects

Marginal input MI tn(q, z) = ∂Ht (q,z)
∂qn

Input elasticity φt
n(q, z) = ∂ ln Ht (q,z)

∂ ln qn

Elasticity of scale φt (q, z) =
(∑N

n=1 φt
n(q, z)

)−1

An equivalent definition is Ht (q, z) = 1/Dt
I (1, q, z). If there is no technical (resp.

environmental) change, then all references to t (resp. z) can be deleted. If there is
no technical or environmental change, then the input requirement function defined
by (2.32) is equal to the ‘inverse production function’ defined by Shephard (1970, p.
197). The properties of input requirement functions are derived from the properties
of input sets. For example, if I1–I7 are true, then the following are true:

H1 Ht (q, z) < ∞ for all (q, z) ∈ R
N+J
+ (finite);

H2 0 ≤ Ht (q, z) for all (q, z) ∈ R
N+J
+ (nonnegative); and

H3 Ht (0, z) = 0 for all z ∈ R
J+.

If I6s, I10, I12, I14 and O15 are also true, then (respectively)22:

H6s q̄ ≥ q ⇒ Ht (q̄, z) ≥ Ht (q, z) (nondecreasing in q);
H10 Ht (λq, z) = λ1/r H t (q, z) for all λ > 0 (homogeneity);
H12 Ht (q, z) = K t (q, z)Ht (ι, z) (input homotheticity);
H14 Ht (q, z) = J t (q, z)H 1(q, ι) (implicit Hicks input neutrality); and
H16 Ht (q, z) is quasiconvex in q for all z ∈ R

J+.

If input requirement functions are continuously differentiable, then differential
calculus can be used to define various marginal effects. For example, Table 2.7
presents several marginal effects that can be derived from a differentiable period-
and-environment-specific input requirement function. The n-th marginal input (MI)
gives themarginal increase in input needed to produce amarginal increase in output n,
holding all other variables fixed. The n-th input elasticity gives the percent increase
in input needed to produce a one percent increase in output n, holding all other
variables fixed. The elasticity of scale gives the percent increase in input needed to
produce a one percent increase in all outputs, holding all other variables fixed.

To make some of these concepts more concrete, suppose the input set is given by
(2.4). If there is only one input, then

Ht (q, z) =
⎛

⎝B(t)
J∏

j=1

z
κ j

j

⎞

⎠

−1 (
N∑

n=1

γnq
τ
n

)1/(τη)

(2.33)

22For proofs of H6s and H16, see Shephard (1970, p. 198). Proofs of H10, H12 and H14 are left as
an exercise for the reader.
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where B(t) > 0, B(t) ≥ B(t − 1), γ = (γ1, . . . , γN )′ ≥ 0, τ ≥ 1, η > 0 and
γ ′ι = 1. The n-th input elasticity is

φn(q) = γnq
τ
n

(

η

N∑

k=1

γkq
τ
k

)−1

≥ 0. (2.34)

The n-th marginal input is MI tn(q, z) = φn(q)Ht (q, z)/qn . The elasticity of scale is
φ = η. The production frontier exhibits DRS, NIRS, CRS, NDRS or IRS as η is less
than, no greater than, equal to, no less than, or greater than one.

2.9.3 Directional Distance Functions

If assumptions A2, A6 and A7 are true, then the input-output combinations that
are possible using different technologies can be represented by directional distance
functions. A directional distance function measures the distance in a given direction
from a given point to the boundary of a production possibilities set. A period-and-
environment-specific directional distance function measures the distance in a given
direction from a given point to the boundary of a period-and-environment-specific
production possibilities set. For example, the directional distance function that mea-
sures the distance in the direction (−gx , gq) from the point (x, q) to the boundary
of T t (z) is

Dt
D(x, q, z, gx , gq) = sup{β : (x − βgx , q + βgq) ∈ T t (z)}. (2.35)

If there is no technical (resp. environmental) change, then all references to t (resp. z)
can be deleted. If gx = 0 and gq = q, then Dt

D(x, q, z, gx , gq) = Dt
O(x, q, z)−1 − 1.

If gx = x and gq = 0, then Dt
D(x, q, z, gx , gq) = 1 − Dt

I (x, q, z)−1. If there is no
environmental change, then the directional distance function defined by (2.35) is
equal to the distance function defined by Balk (1998, Eq. 7.22). If there is no
technical or environmental change, then it is equal to the distance function defined
by Färe and Grosskopf (2000, Eq. 3) . The properties of directional distance func-
tions are derived from the properties of production possibilities sets. For example,
Dt

D(x, q, z, gx , gq) ≥ 0 if and only if (x, q) ∈ T t (z). More generally, if T1, T3, T4s,
T6s and T7s are true, then (Chambers et al. 1998, Lemma 2.2) :

DD1 Dt
D(x − αgx , q + αgq , z, gx , gq) = Dt

D(x, q, z, gx , gq) − α (translation);
DD2 Dt

D(x, q, z, gx , gq) is upper semicontinuous in x and q (jointly) for all z ∈ R
J+;

DD3 Dt
D(x, q, z, λgx , λgq) = (1/λ)Dt

D(x, q, z, gx , gq) for all λ > 0;
DD4 q̄ ≥ q ⇒ Dt

D(x, q̄, z, gx , gq) ≤ Dt
D(x, q, z, gx , gq) (nonincreasing in q); and

DD5 x̄ ≥ x ⇒ Dt
D(x̄, q, z, gx , gq) ≥ Dt

D(x, q, z, gx , gq) (nondecreasing in x).

For more details concerning directional distance functions and their properties,
see Chambers et al. (1996), Chambers et al. (1998) and Färe and Grosskopf (2000).
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2.9.4 Hyperbolic Distance Functions

If assumptions A2, A6 and A7 are true, then the input-output combinations that are
possible using different technologies can also be represented by hyperbolic distance
functions. A hyperbolic distance function measures the distance along a rectangu-
lar hyperbola from a given point to the boundary of a production possibilities set.
A period-and-environment-specific hyperbolic distance function measures the dis-
tance along a rectangular hyperbola from a given point to the boundary of a period-
and-environment-specific production possibilities set. For example, the hyperbolic
distance function that measures the distance along a rectangular hyperbola from the
point (x, q) to the boundary of T t (z) is

Dt
H (x, q, z) = inf{ρ > 0 : (ρx, q/ρ) ∈ T t (z)}. (2.36)

If there is no technical (resp. environmental) change, then all references to t (resp. z)
can be deleted. If there is no technical or environmental change, then the hyperbolic
distance function defined by (2.36) is equal to the distance function defined byCuesta
and Zofio (2005, Eq. 2). The properties of hyperbolic distance functions are derived
from the properties of production possibilities sets. For example, if T1–T7 are true,
then23

DH1 0 ≤ Dt
H (x, q, z) < +∞ for all (x, q) ∈ Dt (z);

DH2 Dt
H (0, 0, z) = 0 for all z ∈ R

J+;
DH3 Dt

H (λx, q/λ, z) = λ−1Dt
H (x, q, z) for all λ > 0, (x, q) ∈ Dt (z) and z ∈ R

J+
(almost homogeneous);

DH4 Dt
H (λx, q, z) ≤ Dt

H (x, q, z) for all λ ≥ 1 (nonincreasing in inputs); and
DH5 Dt

H (x, λq, z) ≤ Dt
H (x, q, z) for all 0 < λ ≤ 1 (nondecreasing in outputs)

where Dt (z) = {(x, q) : there exists a ρ > 0 such that (ρx, q/ρ) ∈ T t (z)} is the
effective domain of the function. For more details concerning hyperbolic distance
functions and their properties, see, for example, Färe et al. (1985, pp. 110–112) and
Färe et al. (2002) .

2.9.5 Technology-and-Environment-Specific Sets and
Functions

Technology-and-environment-specific sets are subsets of the period-and-environ-
ment-specific sets defined in Sects. 2.1, 2.2 and 2.3. A technology-and-environment-
specific output set, for example, is a set containing all outputs that can be produced

23T1–T7 ⇒ GR.1–GR.5 in Färe et al. (1985, p. 111). DH2–DH5 are equivalent to Fg .1, Fg .3, Fg .4
and Fg .5 in Färe et al. (1985, pp. 111, 112) (respectively). A function F(x, y) is said to be almost
homogeneous of degree a, b, and c, respectively, if and only if F(λax, λb y) = λc F(x, y) for any
λ > 0 (Lau 1972, p. 282).
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using given inputs and a given technology in a given production environment. For ex-
ample, the set of outputs that can be produced using the input vector x and technology
g in an environment characterised by z is

pg(x, z) = {q : x and technology g can produce q in environment z}. (2.37)

The associated period-and-environment-specific output set is Pt (x, z) = ∪g∈Gt

pg(x, z) where Gt is the period-t technology set. Thus, by construction, pg(x, z) ⊆
Pt (x, z) for all g ∈ Gt . Many of the examples presented in this book are underpinned
by the following technology-and-environment-specific output set:

pg(x, z) =
⎧
⎨

⎩
q :

(
N∑

n=1

γnq
τ
n

)1/τ

≤ a(g)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎫
⎬

⎭
(2.38)

where a(g) > 0, β = (β1, . . . , βM)′ ≥ 0, γ = (γ1, . . . , γN )′ ≥ 0, τ ≥ 1 and γ ′ι =
1. The associated period-and-environment-specific output set is given by (2.2), where
A(t) = maxg∈Gt a(g).

Under weak conditions, technology-and-environment-specific sets can be repre-
sented by technology-and-environment-specific analogues of the functions discussed
in Sects. 2.4, 2.5, 2.6, 2.7 and 2.8. For example, if output sets are bounded and outputs
are weakly disposable, then the input-output combinations that are possible using
different technologies can be represented by technology-and-environment-specific
output distance functions. A technology-and-environment-specific output distance
function gives the reciprocal of the largest factor by which it is possible to scale up
a given output vector when using a given input vector and a given technology in a
given production environment. For example, the reciprocal of the largest factor by
which it is possible to scale up q when using x and technology g in environment z is

dg
O(x, q, z) = inf{ρ > 0 : q/ρ ∈ pg(x, z)}. (2.39)

This distance function can be found in O’Donnell et al. (2017, Eq. 1). The asso-
ciated period-and-environment-specific output distance function is Dt

O(x, q, z) =
ming∈Gt d

g
O(x, q, z). Thus, by construction, dg

O(x, q, z) ≥ Dt
O(x, q, z) for all g ∈

Gt . The properties of technology-and-environment-specific output distance functions
are generally similar to those of period-and-environment-specific output distance
functions. For example, if outputs are strongly disposable, then the output distance
function defined by (2.39) is nonnegative, nondecreasing and linearly homogeneous
in outputs. If the technology-and-environment-specific production possibilities set is
given by (2.38), for example, then the technology-and-environment-specific output
distance function is
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dg
O(x, q, z) =

⎛

⎝a(g)
J∏

j=1

z
δ j

j

M∏

m=1

xβm
m

⎞

⎠

−1 (
N∑

n=1

γnq
τ
n

)1/τ

. (2.40)

The associated period-and-environment-specific output distance function is given by
(2.9), where A(t) = maxg∈Gt a(g).

2.9.6 Period-Specific Sets and Functions

Period-specific sets are supersets of the period-and-environment-specific sets defined
in Sects. 2.1, 2.2 and 2.3. A period-specific production possibilities set, for example,
is a set containing all input-output combinations that are physically possible in a
given period. For example, the set of input-output combinations that are physically
possible in period t is

T t = {(x, q) : x can produce q in period t}. (2.41)

An equivalent definition is T t = ∪z∈Z T t (z) where Z denotes the set of all possible
vectors of environmental variables. Thus, by construction, T t ⊇ T t (z) for all z ∈ Z .
If there is no technical change, then all references to period t can be deleted. In
this case, the set defined by (2.41) is equal to the ‘metatechnology set’ defined
by O’Donnell et al. (2008, Eq. 1) and the ‘marginal (unconditional) attainable set’
defined by Badin et al. (2012, Eq. 1.4).

Period-specific sets can generally be represented by period-specific analogues of
the functions discussed in Sects. 2.4, 2.5, 2.6, 2.7 and 2.8. For example, if output sets
are bounded and outputs are weakly disposable, then the input-output combinations
that are possible in different periods can be represented by period-specific output
distance functions. A period-specific output distance function gives the reciprocal
of the largest factor by which it is possible to scale up a given output vector when
using a given input vector in a given period. For example, the reciprocal of the largest
factor by which it is possible to scale up q when using x in period t is

Dt
O(x, q) = inf{ρ > 0 : (x, q/ρ) ∈ T t }. (2.42)

This distance function can be found in Balk (1998, p. 13). An equivalent definition
is Dt

O(x, q) = minz∈Z Dt
O(x, q, z). Thus, by construction, Dt

O(x, q) ≤ Dt
O(x, q, z)

for all z ∈ Z . Again, if there is no technical change, then all references to period t
can be deleted. In this case, the output distance function defined by (2.42) is equal
to the output distance function defined by Färe and Primont (1995, Eq. 2.1.11) and
the ‘output metadistance function’ defined by O’Donnell et al. (2008, Eq. 3). Again,
the properties of period-specific functions are generally similar to those of period-
and-environment-specific functions. For example, if outputs are strongly disposable,
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then the output distance function defined by (2.42) is nonnegative, nondecreasing
and linearly homogeneous in outputs.

2.9.7 State-Contingent Sets and Functions

Characteristics of production environments are often chosen by Nature. If all charac-
teristics of production environments are chosen by Nature, then production environ-
ments are often referred to as ‘states of Nature’. In such cases, environment-specific
sets and functions are sometimes referred to as state-contingent sets and functions.
For example, period-and-environment-specificproductionpossibilities sets are some-
times referred to as period-and-state-contingent production possibilities sets.
In mathematical terms, the set of input-output combinations that are physically
possible in period t in state of Nature s is

T t (s) = {(x, q) : x can produce q in period t in state s}. (2.43)

If there are S possible states of Nature, then the period-specific production possibili-
ties set (2.41) can be defined as T t = ∪s∈ΩT t (s) where Ω = {1, . . . , S}. As another
example, period-and-environment-specific output distance functions are sometimes
referred to as period-and-state-contingent output distance functions. In mathematical
terms, the reciprocal of the largest factor by which it is possible to scale up q when
using x in state s is

Dt
O(x, q, s) = inf{ρ > 0 : (x, q/ρ) ∈ T t (s)}. (2.44)

The period-specific output distance function (2.42) can be defined as Dt
O(x, q) =

mins∈Ω Dt
O(x, q, s). The properties of state-contingent sets and functions are iden-

tical to those of environment-specific sets and functions.

2.10 Summary and Further Reading

In this book, a production technology (or simply ‘technology’) is defined as a tech-
nique, method or system for transforming inputs into outputs. Examples include the
Bessemer and Hlsarna processes for making steel, and phonics methods for teaching
children to read. For most practical purposes, it is convenient to follow O’Donnell
(2016, p. 328) and Caselli and Coleman (2006, p. 509) and think of a technology
as book of instructions, or blueprint. Some authors use the term ‘technology’ quite
differently. For example, Griliches (1987, p. 8084) thinks of a technology ‘as con-
sisting of both the average set of recipes for doing things …and the currently known
best way of doing things”. Balk (1998, p. 12) uses the term ‘technology’ to describe
a set of feasible input-output combinations.
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In this book, the set of technologies that exist in any given period is called a
‘technology set’. If we think of a technology as a book of instructions, or blueprint,
then we can follow O’Donnell (2016, p. 328) and Caselli and Coleman (2006, p.
509) and think of a technology set as a library.24 Again, some authors use the term
‘technology set’ quite differently. For example, Färe and Primont (1995, p. 8) and
Coelli et al. (2005, p. 42) use the term ‘technology set’ to describe a set of feasible
input-output combinations.

The input-output combinations that are possible using different technologies can
be represented by output sets. An output set is a set containing all outputs that can
be produced using given inputs. Many researchers work with output sets that are
not specific to particular time periods or production environments; see, for example,
Shephard (1970, p. 179), Färe and Primont (1995, Eq. 2.1.8), Kumbhakar and Lovell
(2000, p. 22), Coelli et al. (2005, Eq. 3.2) and Fried et al. (2008, Eq. 1.8). In this
book, the focus is on period-and-environment-specific output sets. A period-and-
environment-specific output set is a set containing all outputs that can be produced
using given inputs in a given period in a given production environment.

The input-output combinations that are possible using different technologies can
also be represented by input sets. An input set is a set containing all inputs that
can produce given outputs. Again, many researchers work with input sets that are
not specific to particular time periods or production environments; see, for example,
Shephard (1970, p. 179), Färe and Primont (1995, Eq. 2.1.16), Kumbhakar and
Lovell (2000, p. 21), Coelli et al. (2005, Eq. 3.3) and Fried et al. (2008, Eq. 1.2). In
this book, the focus is on period-and-environment-specific input sets. A period-and-
environment-specific input set is a set containing all inputs that can produce given
outputs in a given period in a given production environment.

The input-output combinations that are possible using different technologies can
also be represented by production possibilities sets. A production possibilities set is
a set containing all input-output combinations that are physically possible. Again,
many researchers work with production possibilities sets that are not specific to par-
ticular time periods or production environments; see, for example, Shephard (1970,
p. 181), Kumbhakar and Lovell (2000, p. 18), Färe and Primont (1995, p. 8), Coelli et
al. (2005, Eq. 3.1), and Fried et al. (2008, Eq. 1.1).25 In this book, the focus is on two
specific production possibilities sets: period-and-environment-specific production
possibilities sets and period-environment-and-mix-specific production possibilities
sets. A period-and-environment-specific production possibilities set is a set contain-
ing all input-output combinations that are physically possible in a given period in
a given production environment; examples of such sets can be found in O’Donnell
(2016, p. 330) and O’Donnell et al. (2017, p. 119). A period-environment-and-mix-
specific production possibilities set is a set containing all input-output combinations
that are physically possible when using a scalar multiple of a given input vector

24O’Donnell (2016) refers to a technology set as a ‘metatechnology’. This terminology is common
in the metafrontier literature. See, for example, Casu et al. (2013).
25Shephard (1970) andKumbhakar andLovell (2000) refer to production possibilities sets as graphs;
Färe and Primont (1995) and Coelli et al. (2005) refer to them as technology sets.
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to produce a scalar multiple of a given output vector in a given period in a given
production environment; an example of such a set can be found in O’Donnell (2016,
p. 331).

It is common to make assumptions about technologies by way of assumptions
about what they can and cannot produce. For example, it is common to assume that,
with a given set of technologies, (A1) inactivity is possible, (A2) output sets are
bounded, (A3) inputs are weakly essential (i.e., there is ‘no free lunch’), (A4) output
sets are closed, (A5) input sets are closed, (A6) outputs are weakly disposable, and
(A7) inputs are weakly disposable. These seven assumptions are the ‘maintained
set of axioms’ in Färe and Primont (1995, pp. 26, 27). They are also maintained
throughout this book. In the production economics literature, the following additional
assumptions are also made from time to time: (A6s) outputs are strongly disposable,
(A7s) inputs are strongly disposable, (A8s) environmental variables are strongly
disposable, (A15) output sets are convex, and (A16) input sets are convex.

If output sets are bounded and outputs areweakly disposable, then the input-output
combinations that are possible using different technologies can be represented by out-
put distance functions. An output distance function gives the reciprocal of the largest
factor by which it is possible to scale up a given output vector when using a given
input vector. Again, many researchers work with output distance functions that are
not specific to particular time periods or production environments; see, for example,
Shephard (1970, p. 207),Färe and Primont (1995, Eqs. 2.1.6, 2.1.11), Kumbhakar
and Lovell (2000, Eq. 1.11), Coelli et al. (2005, Eq. 3.5) and Fried et al. (2008, Eq.
1.11). In this book, the focus is on period-and-environment-specific output distance
functions. A period-and-environment-specific output distance function gives the re-
ciprocal of the largest factor by which it is possible to scale up a given output vector
when using a given input vector in a given period in a given production environ-
ment; examples of such functions can be found in O’Donnell (2016, p. 330) and
O’Donnell et al. (2017, Eq. 3). Output distance functions are nonnegative and lin-
early homogeneous in outputs. If outputs are strongly disposable, then they are also
nondecreasing in outputs. If they are continuously differentiable, then differential
calculus can be used to derive various marginal effects (e.g., marginal products and
normalised shadow output prices).

If inputs are weakly disposable, then the input-output combinations that are pos-
sible using different technologies can be represented by input distance functions. An
input distance function gives the reciprocal of the smallest fraction of inputs that a
firm needs to produce its outputs. Again, many researchers work with input distance
functions that are not specific to particular time periods or production environments;
see, for example, Shephard (1953, p. 5; 1970, p. 206), Färe and Primont (1995, Eq.
2.1.19), Kumbhakar and Lovell (2000, Eq. 1.5), Coelli et al. (2005, Eq. 3.6) and Fried
et al. (2008, Eq. 1.5). In this book, the focus is on period-and-environment-specific
input distance functions. A period-and-environment-specific input distance function
gives the reciprocal of the smallest fraction of inputs that a firm needs to produce
its outputs in a given period in a given production environment; examples of such
functions can be found in O’Donnell (2016, p. 330) and O’Donnell et al. (2017, Eq.
4). Input distance functions are nonnegative and linearly homogeneous in inputs. If
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inputs are strongly disposable, then they are also nondecreasing in inputs. If they are
continuously differentiable, then differential calculus can be used to derive various
marginal effects (e.g., normalised shadow input prices and the elasticity of scale).

If output sets are bounded and outputs are weakly disposable, then the input-
output combinations that are possible using different technologies can be represented
by revenue functions. A revenue function gives the maximum revenue that can be
earned using given inputs. Again, many researchers work with revenue functions
that are not specific to particular time periods or production environments; see, for
example, Färe and Primont (1995, Eq. 3.1.4) and Fried et al. (2008, Eq. 1.24). In this
book, the focus is on period-and-environment-specific revenue functions. A period-
and-environment-specific revenue function gives the maximum revenue that can be
earned using given inputs in a given period in a given production environment. If
firms are price takers in output markets, then revenue functions are nonnegative,
nondecreasing and linearly homogeneous in output prices. If they are continuously
differentiable, then differential calculus can be used to derive variousmarginal effects
(e.g., marginal revenues and revenue-maximising revenue shares).

If inputs are weakly disposable, then the input-output combinations that are possi-
ble using different technologies can be represented by cost functions. A cost function
gives the minimum cost of producing given outputs. Again, many researchers work
with with cost functions that are not specific to particular time periods or production
environments; see, for example, Färe and Primont (1995, Eq. 3.1.1) and Fried et
al. (2008, Eq. 1.20). In this book, the focus is on period-and-environment-specific
cost functions. A period-and-environment-specific cost function gives the minimum
cost of producing given outputs in a given period in a given production environ-
ment. If firms are price takers in input markets, then cost functions are nonnegative,
nondecreasing and linearly homogeneous in input prices. If they are continuously
differentiable, then differential calculus can be used to derive variousmarginal effects
(e.g., marginal costs and cost-minimising cost shares).

If outputs are weakly attainable and the set of technically-feasible input-output
combinations that yield nonnegative profit is compact, then profit functions exist. A
profit function gives the maximum profit that can be earned when inputs and outputs
can be chosen freely. Again, many researchers work with profit functions that are not
specific to particular time periods or production environments; see, for example, Färe
and Primont (1995, Eq. 6.1.3) and Fried et al. (2008, Eq. 1.28). In this book, the focus
is on period-and-environment-specific profit functions. A period-and-environment-
specific profit function gives the maximum profit that can be earned in a given
period in a given production environment when inputs and outputs can be chosen
freely. If firms are price takers in output and input markets, then profit functions are
nonnegative and nonincreasing (resp. nondecreasing) in input prices (resp. output
prices). If they are continuously differentiable, then differential calculus can be used
to derive profit-maximising output supplies and input demands.

Other sets and functions discussed in this book include production functions,
input requirement functions, directional distance functions, hyperbolic distance func-
tions, technology-and-environment-specific sets and functions, period-specific sets
and functions, and state-contingent sets and functions. A production function gives



90 2 Production Technologies

the maximum output that a one-output firm can produce using a given input vec-
tor; examples of production functions that are not specific to particular time pe-
riods or production environments can be found in Shephard (1970, p. 20) and
Färe and Primont (1995, p. 8). An input requirement function gives the minimum in-
put that a one-input firm needs in order to produce a given output vector; an example
of an input requirement function that is not specific to a particular time period or pro-
duction environment is the ‘inverse production function’ defined by Shephard (1970,
p. 197). A directional distance function measures the distance in a given direction
from a given point to the boundary of a production possibilities set; an example of a
directional distance function that is not specific to a particular time period or produc-
tion environment can be found in Färe and Grosskopf (2000, Eq. 3). The basic idea
behind directional distance functions can be traced back at least as far as the shortage
function of Luenberger (1992, p. 242, Definition 4.1). A hyperbolic distance func-
tion measures the distance along a rectangular hyperbola from a given point to the
boundary of a production possibilities set; an example of a hyperbolic distance func-
tion that is not specific to a particular time period or production environment can be
found in Cuesta and Zofio (2005, Eq. 2). Technology-and-environment-specific sets
are subsets of period-and-environment-specific sets. A technology-and-environment-
specific production possibilities set, for example, is a set containing all input-output
combinations that are physically possible using a given technology in a given pro-
duction environment; an example of such a set can be found in O’Donnell et al.
(2017, p. 118). Under weak conditions, technology-and-environment-specific sets
can be represented by technology-and-environment-specific functions. For example,
if output sets are bounded and outputs are weakly disposable, then the input-output
combinations that are possible using different technologies can be represented by
technology-and-environment-specific output distance functions. A technology-and-
environment-specificoutput distance functiongives the reciprocal of the largest factor
by which it is possible to scale up a given output vector when using a given input
vector and a given technology in a given production environment; an example of
such a function can be found in O’Donnell et al. (2017, Eq. 1). Period-specific sets
are supersets of period-and-environment-specific sets. A period-specific production
possibilities set, for example, is a set containing all input-output combinations that
are physically possible in a given period; an example of such a set can be found
in Balk (1998, Eq. 2.1). Under weak conditions, period-specific sets can be repre-
sented by period-specific functions. For example, if output sets are bounded and
outputs are weakly disposable, then the input-output combinations that are possible
in different periods can be represented by period-specific output distance functions.
A period-specific output distance function gives the reciprocal of the largest factor
by which it is possible to scale up a given output vector when using a given in-
put vector in a given period; an example of such a function can be found in Balk
(1998, Eq. 2.6). Finally, if all characteristics of production environments are chosen
by Nature, then production environments are often referred to as ‘states of Nature’.
In such cases, environment-specific sets and functions are sometimes referred to as
state-contingent sets and functions. For example, period-and-environment-specific
production possibilities sets are sometimes referred to as period-and-state-contingent
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production possibilities sets.More details (andmuch of the jargon) surrounding state-
contingent sets and functions can be accessed from Chambers and Quiggin (2000)
and Rasmussen (2003).

Finally, other functions that are not discussed in this book include indirect output
distance functions, indirect input distance functions, cost indirect revenue functions,
revenue indirect cost functions, and nonstandard profit functions. An indirect output
distance function gives the reciprocal of the largest factor by which it is possible to
scale up a given output vector for a given cost. An indirect input distance function
gives the reciprocal of the smallest fraction of a given input vector that can earn a
given revenue. A cost indirect revenue function gives the maximum revenue that can
be earned for a given cost. A revenue indirect cost function gives the minimum cost
of earning a given revenue. Finally, a nonstandard profit function gives the maximum
profit that a firm can earn when output quantities and input prices are predetermined
but output prices and input quantities can be chosen freely. For more details on
indirect functions, see Färe and Primont (1994). For more details on nonstandard
profit functions, see Humphrey and Pulley (1997, p. 81) and Kumbhakar (2006).26
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Chapter 3
Measures of Productivity Change

In this book, measures of productivity change are defined as measures of output
quantity change divided by measures of input quantity change. Computing measures
of output and input quantity change involves assigning numbers to baskets of outputs
and inputs.Measurement theory1 says that so-called index numbers must be assigned
in such a way that the relationships between the numbers mirror the relationships
between the baskets. For example, if we are computing a measure of output quantity
change, and if basket A contains exactly twice as much of every output as basket
B, then the index number assigned to basket A should be exactly twice as big as
the number assigned to basket B. This chapter explains how to compute output and
input quantity index numbers (and therefore productivity index numbers) that are
consistent with measurement theory.

3.1 Output Quantity Indices

An index is a rule or formula that explains how to use data to measure the change
in one or more variables across time and/or space. An index number is the value
obtained after data have been substituted into the formula.2 In this book, an output
quantity index (or simply ‘output index’) that compares the outputs of firm i in period

1Measurement theory is the study of how numbers are assigned to objects. Classical measurement
theory holds that only quantitative attributes of objects are measurable. The representational theory
of measurement holds that qualitative attributes of objects are also measureable. For more details,
see Sarle (1997), Hosch (2011, pp. 227–229) and Tal (2016, Sect. 3).
2Similar distinctions can be found in other areas of science. In econometrics, for example, an
estimator is a rule or formula that explains how to use data to estimate the value of a population
parameter, while an estimate is the value obtained after data have been substituted into the formula.
See, for example, Hill et al. (2011, p. 53).
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t with the outputs of firm k in period s is defined as any variable of the form3

QI (qks, qit ) ≡ Q(qit )/Q(qks) (3.1)

where Q(.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. If outputs are positive,4 then all output indices of this type satisfy
the following axioms5:

QI1 qrl ≥ qit ⇒ QI (qks, qrl) ≥ QI (qks, qit ) (weak monotonicity),
QI2 QI (qks, λqit ) = λQI (qks, qit ) for λ > 0 (homogeneity type I),
QI3 QI (λqks, λqit ) = QI (qks, qit ) for λ > 0 (homogeneity type II),
QI4 QI (qks, λqks) = λ for λ > 0 (proportionality),
QI5 QI (qks, qit ) = 1/QI (qit , qks) (time-space reversal) and
QI6 QI (qks, qrl)QI (qrl , qit ) = QI (qks, qit ) (transitivity).

The interpretation of these axioms is straightforward. In a cross-section context, for
example, axiom QI1 (weak monotonicity) says that if firm C produced more than
firm B, then the index that compares the outputs of firm C with the outputs of firm
A cannot take a value less than the index that compares the outputs of firm B with
the outputs of firm A. Axiom QI2 (homogeneity type I) says that if firm C produced
λ times as much as firm B, then the index number that compares the outputs of firm
C with the outputs of firm A must be λ times the index number that compares the
outputs of firm B with the outputs of firm A. Axiom QI3 (homogeneity type II) says
that if firm D produced λ times as much as firm B, and firm C produced λ times as
much as firm A, then the index that compares the outputs of firm D with the outputs
of firm C must take the same value as the index that compares the outputs of firm B
with the outputs of firm A. Axiom QI4 (proportionality) says that if firm B produced
λ times as much as firm A, then the index that compares the outputs of firm B with
the outputs of firm A must take the value λ. Axiom QI5 (time-space reversal) says
that the index number that compares the outputs of firm B with the outputs of firm
A must be the reciprocal of the index number that compares the outputs of firm A
with the outputs of firm B. Thus, for example, if we find that firm B produced twice
as much as firm A, then we must also find that firm A produced half as much as
firm B. Axiom QI6 (transitivity) says that if we compare the outputs of firms C and
A indirectly through firm B, then we must get the same index number as when we
compare the outputs of firms C and A directly. Thus, for example, if we find that

3This definition can be traced back at least as far as O’Donnell (2012a). Elsewhere in the literature,
output and input indices are rarely defined in terms of aggregate quantities. When they are, the
aggregator functions are often observation-varying (e.g., they depend on observation-varying prices
or value shares) and/or their monotonicity and homogeneity properties are not all specified. See,
for example, Diewert (1976).
4If some outputs are zero, then some output indices may be mathematically undefined and may
therefore not satisfy some axioms.
5These statements, and similar statements elsewhere in this chapter, are axioms in the sense that
they are substantive assertions about elements of the domain of index number theory.
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firm C produced twice as much as firm B, and that firm B produced twice as much
as firm A, then we must also find that firm C produced four times as much as firm A.

In O’Donnell (2016), an output index is said to be proper if and only if QI1
to QI6 are satisfied.6 The geometric average of any set of proper output indices is
also a proper output index. Depending on the aggregator functions, proper output
indices may have other properties. For example, if aggregator functions are strictly
increasing in outputs, then the associated output indices are strongly monotonic.
Strong monotonicity means that if firm C produced more than firm B, then the index
number that compares the outputs of firmCwith the outputs of firmAwill be greater
than the index number that compares the outputs of firmBwith the outputs of firmA.

Any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued aggrega-
tor function can be used for purposes of constructing a proper output index. Linear
(resp. double-log) functions can be used to construct additive (resp. multiplicative)
indices. If outputs are strongly disposable, then output distance functions can be used
to construct primal indices. If cost functions are homogeneous in outputs, then they
can be used to construct dual indices. Locally-linear functions (i.e., linear functions
with parameters that are permitted to vary from one observation to the next) can
be used to construct benefit-of-the-doubt (BOD) indices. In practice, the choice of
function is generally a matter of taste.7

3.1.1 Additive Indices

Additive output indices are constructed using aggregator functions of the form
Q(qit ) ∝ a′qit where a is any nonnegative vector of weights. The associated index
that compares the outputs of firm i in period t with the outputs of firm k in period s
is8

6In O’Donnell (2016), an output index is said to be proper if and only if eight axioms are satisfied.
If QI4 and QI6 are satisfied, then, and only then, the extra two axioms of O’Donnell (2016), an
identity axiom and a circularity axiom, are also satisfied. The use of the term ‘proper’ in an index
number context can be traced back to O’Donnell (2012b, p. 6).
7If output distance functions and/or cost functions are unknown, then the choice set will obviously
be limited. Samuelson and Swamy (1974) write that “we cannot hope for one ideal formula for the
index number: if it works for the tastes of Jack Spratt, it won’t work for his wife’s tastes; if say,
a Cobb-Douglas function can be found that works for him with one set of parameters and for her
with another set, their daughter will in general require a non-Cobb-Douglas formula! Just as there
is an uncountable infinity of different indifference contours—there is no counting tastes—there is
an uncountable infinity of different index-number formulas, which dooms Fisher’s search for the
ideal one. It does not exist even in Plato’s heaven.” (p. 568).
8The use of the term ‘additive’ to describe an index of this type can be traced back at least as
far as Aczel and Eichhorn (1974). The index is additive in the sense that QI A(qks , qit + qrl ) =
QI A(qks , qit ) + QI A(qks , qrl ) and 1/QI A(qks + qrl , qit ) = 1/QI A(qks , qit ) + 1/QI A(qrl , qit )
(Aczel and Eichhorn 1974, p. 525).
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QI A(qks, qit ) ≡ (a′qit )/(a′qks). (3.2)

Any nonnegative observation-invariant measures of relative value can be used as
weights. In practice, the choice of weights is a matter of taste. One possibility is to
use averagemarket prices as weights. In this case, the index defined by (3.2) takes the
form of the Lowe index defined by O’Donnell (2012c, p. 877); this index should be
used by analysts who regard output prices as appropriate measures of relative value
(e.g., analysts who might otherwise use a Fisher, chained Fisher or EKS index).
Alternatively, let Q denote a matrix of mean-corrected9 outputs with N columns and
as many rows as there are observations in the dataset. If the eigenvector associated
with the largest eigenvalue of Q′Q is nonnegative, then it can be used as vector of
weights. In this case, the index defined by (3.2) takes the form of the ‘output factor’
defined by Daraio and Simar (2007, Eq. 6.2, p. 149).

3.1.2 Multiplicative Indices

Multiplicative output indices are constructed using aggregator functions of the form
Q(qit ) ∝ ∏N

n=1 q
an
nit where a1, . . . , aN are any nonnegative weights that sum to one.

The associated index that compares the outputs of firm i in period t with the outputs
of firm k in period s is10

QI M(qks, qit ) ≡
N∏

n=1

(
qnit
qnks

)an

. (3.3)

Any nonnegative observation-invariant measures of relative value can be used as
weights, provided they sum to one. Again, the choice of weights is a matter of
taste. One possibility is to use average revenue shares as weights. In this case, the
index defined by (3.3) takes the form of the geometric Young (GY) index defined by
O’Donnell (2012b, Eq. 5); this index should be used by analysts who regard revenue
shares as appropriate measures of relative value (e.g., analysts who might otherwise
use a Törnqvist, chained Törnqvist or CCD index). Another possibility is to estimate
the weights in a linear regression framework. For example, Eq. (3.3) can be rewritten
as

ln(q1i t/q1ks) =
N∑

n=2

an[ln(q1i t/q1ks) − ln(qnit/qnks)] + eit (3.4)

9Here, the term ‘mean-corrected’ means all variables have been re-scaled to have unit means.
10The use of the term ‘multiplicative’ to describe an index of this type can be traced back at least as
far as Coelli et al. (2005, p. 131). The index is multiplicative in the sense that QI M (qks � qgh, qit �
qrl ) = QI M (qks , qit )QI M (qgh, qrl ).
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where eit = ln QI M(qks, qit ) is an unobserved log-index that in most other contexts
would be interpreted as statistical noise. The unknown parameters/weights in this
regression model can be estimated using, for example, least squares methods. The
associated output index numbers are the antilogarithms of the residuals. This index
should be used by analysts whowant tominimise the amount of variation in the index
numbers. It can also be used by analystswho have no information about output prices,
revenue shares or production technologies.

It is worth noting that multiplicative output indices fail a determinateness test. The
determinateness test says that the index should not go to zero or infinity as any output
goes to zero. If there is only one output, then all well-known output indices fail the
determinateness test. Partly for this reason, many authors view the determinateness
test as an undesirable one; see, for example, Samuelson and Swamy (1974, p. 572)
(these authors discuss the determinateness test in the context of price indices).

3.1.3 Primal Indices

Primal11 output indices are constructed using output distance functions as aggregator
functions. For a primal output index to be a proper index, the output distance function
must be nondecreasing in outputs, implying that outputs must be strongly disposable.
In this case, a suitable aggregator function is Q(qit ) ∝ Dt̄

O(x̄, qit , z̄) where t̄ is a
fixed time period and x̄ and z̄ are fixed vectors of inputs and environmental variables
(again, the choices of t̄ , x̄ and z̄ are a matter of taste). The associated primal index
that compares the outputs of firm i in period t with the outputs of firm k in period s
is

QI P(qks, qit ) ≡ Dt̄
O(x̄, qit , z̄)/D

t̄
O(x̄, qks, z̄). (3.5)

This index canbe tracedback toO’Donnell (2016,Eq. 2). It should beusedby analysts
who regardmarginal rates of transformation as appropriatemeasures of relative value
(e.g., analysts who might otherwise use a generalised Malmquist index). If there is
no technical or environmental change, then it reduces to the output index defined by
Färe and Primont (1995, p. 38). If output sets are homothetic, then it does not depend
on x̄ . If technical change is IHON, then it does not depend on t̄ or z̄. Ultimately,
the exact form of the index depends on the output distance function. If the output
distance function is given by (2.9), for example, then

QI P(qks, qit ) =
( ∑

n γnqτ
nit∑

n γnqτ
nks

)1/τ

. (3.6)

11Balk (1998, p. 100) also uses the term ‘primal’ in reference to an index that is constructed using
an output distance function.
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Observe that this index does not depend on the choices of t̄ , x̄ or z̄. This is because
the output distance function given by (2.9) represents a homothetic output set with a
boundary that exhibits IHON technical change.

3.1.4 Dual Indices

Dual12 output indices are constructed using cost functions as aggregator functions.
For a dual output index to be a proper index, the cost function must be homogeneous
in outputs. If the cost function is homogeneous of degree 1/r in outputs, for example,
then a suitable output aggregator function is Q(qit ) ∝ Ct̄ (w̄, qit , z̄)r where t̄ is a fixed
time period and w̄ and z̄ are fixed vectors of input prices and environmental variables
(again, the choices of t̄ , w̄ and z̄ are a matter of taste). The associated dual index that
compares the outputs of firm i in period t with the outputs of firm k in period s is

QI D(qks, qit ) ≡ Ct̄ (w̄, qit , z̄)
r/Ct̄ (w̄, qks, z̄)

r . (3.7)

This index should be used by analysts who regard marginal costs as appropriate
measures of relative value. If there is no technical change, then it reduces to the
output index defined by O’Donnell (2012b, Eq. 3). If input sets are homothetic, then
it does not depend on w̄. Ultimately, the exact form of the index depends on the cost
function. If the cost function is given by (2.22), for example, then

QI D(qks, qit ) =
( ∑

n γnqτ
nit∑

n γnqτ
nks

)1/τ

. (3.8)

Observe that this index is the same as the index defined by (3.6). This is because
the output distance function given by (2.9) and the cost function given by (2.22) are
equivalent representations of a homothetic output set with a boundary that exhibits
IHON technical change.

3.1.5 Benefit-of-the-Doubt Indices

Benefit-of-the-doubt (BOD)13 output indices are constructed using aggregator func-
tions of the form Q(qit ) = a′

i t qit where ait is an unknown vector of nonnegative
weights. If Q(.) is continuously differentiable, then, by Euler’s homogeneous func-
tion theorem, ait = ∂Q(qit )/∂qit . Computing BODoutput indices involves choosing
the weight vector tomaximise Q(qit ). The only constraint is that if the chosen weight

12In production economics, the term ‘dual’ is usually used to describe cost, revenue and profit
functions (e.g., Beavis and Dobbs 1990, p. 99).
13Cherchye et al. (2007) attribute the term ‘benefit-of-the-doubt’ to Melyn and Moesen (1991).
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vector is used to aggregate any output vector in the dataset, then the resulting aggre-
gate output can be no greater than one.14 Thus, the optimisation problem is

max
ait

{
a′
i t qit : ait ≥ 0, a′

i t qhr ≤ 1 for all h and r
}
. (3.9)

This optimisation problem can be found in O’Donnell and Nguyen (2013, Eq. 22).
Let QB(qit ) denote the maximised value of the objective function. The associated
BOD index that compares the outputs of firm i in period t with the outputs of firm k
in period s is

QI B(qks, qit ) ≡ QB(qit )/Q
B(qks). (3.10)

A strongly monotonic version of this index can be obtained by adding the constraint
ait > 0 to problem (3.9).Whether the weights in problem (3.9) are positive or merely
nonnegative, the fact that they vary with i and t means the index defined by (3.10)
has high ‘characteristicity’. Characteristicity refers to “the degree to which weights
are specific to the comparison at hand” (Caves et al. 1982b, p. 74).15 The BOD output
index should be used by analysts who believe measures of relative value should vary
from one output comparison to the next. It can also be used by analysts who have no
information about output prices, revenue shares or production technologies.

3.1.6 Other Indices

Other types of output indices include binary, chained and multilateral indices. These
are not proper output indices in the sense that they do not generally satisfy all of
axioms QI1–QI6. Binary output indices are designed for comparing two output vec-
tors only. Chained output indices are mainly used for comparing the outputs of a
single firm over several time periods. Multilateral output indices are mainly used for
comparing the outputs of several firms in a single time period.

3.1.6.1 Binary Indices

Binary output indices do not generally satisfy axiom QI6 (transitivity). The class of
binary output indices includes Fisher, Törnqvist and generalised Malmquist (GM)
indices. The Fisher index that compares the outputs of firm i in period t with the

14The choice of one as the maximum aggregate output is arbitrary.
15The BOD output index is a proper index, implying it satisfies a circularity axiom (among others).
Characteristicity and circularity are generally in conflict with each other. Drechsler (1973, p.17)
claims, incorrectly, that they are always in conflict with each other. This erroneous claim can be
traced back to Fisher (1922, p. 275).
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outputs of firm k in period s is16

QI F (qks, qit , . . . ) ≡
(
p′
i t qit

p′
i t qks

p′
ksqit

p′
ksqks

)1/2

. (3.11)

If observed output prices are firm- and time-invariant, then Fisher output index num-
bers are equal to Lowe output index numbers. The Törnqvist index that compares the
outputs of firm i in period t with the outputs of firm k in period s is

QI T (qks, qit , . . . ) ≡
N∏

n=1

(
qnit
qnks

)(rnit+rnks )/2

(3.12)

where rnit ≡ pnitqnit/Rit is the n-th observed revenue share. If observed revenue
shares are firm- and time-invariant, then Törnqvist output index numbers are equal
to GY output index numbers. Finally, there are several Malmquist indices defined
in the literature. In this book, the GM index that compares the outputs of firm i in
period t with the outputs of firm k in period s is defined as

QIGM(qks, qit , . . . ) ≡
(
Dt

O(xit , qit , zit )

Dt
O(xit , qks, zit )

Ds
O(xks, qit , zks)

Ds
O(xks, qks, zks)

)1/2

. (3.13)

If output sets are homothetic and technical change is IHON, then this particular
Malmquist index is equivalent to the primal index defined by (3.5). If the output dis-
tance function is given by (2.9), then it is equivalent to the primal index defined by
(3.6). If there is only one firm involved in the comparison and there is no environmen-
tal change, then the two ratios in (3.13) are equivalent to theMalmquist output indices
defined by Diewert (1992, Eqs. 118, 119) (hence the use of the term ‘generalised’).
If (a) there is no environmental change, (b) firms are price takers in output markets,
(c) firm managers maximise revenue, (d) output prices and quantities are strictly
positive, (e) the period-s and period-t output distance functions are nondecreasing in
outputs, and (f) the period-s and period-t output distance functions are translog func-
tions with identical second-order coefficients, then the GM index defined by (3.13) is
equivalent to the Törnqvist index defined by (3.12) (Caves et al. 1982a, Thm. 2.). For
this reason, Törnqvist output indices are said to be exact for translog output distance
functions. Unfortunately, properties (e) and (f) cannot both be true.17 This means
that Törnqvist output indices are merely ‘superlative’. Superlative output indices are

16The right-hand side of this equation is a function of qks , qit , pks and pit . However, only qks and
qit have been listed on the left-hand side. In this book, dots and ellipses are used in functions to
indicate that one or more variables have been omitted.
17If the output distance function is nondecreasing in outputs, then the partial derivatives of the
distance function with respect to the outputs must be nonnegative for all feasible input-output
combinations. If the output distance function is a translog function, then it is possible to find
feasible input-output combinations such that at least one partial derivative is negative. Ergo, the
output distance function cannot be a translog function.
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exact for functions that can generally only provide second-order approximations to
output distance functions.

3.1.6.2 Chained Indices

Chained output indices do not generally satisfy axiom QI4 (proportionality). The
class of chained output indices includes chained Fisher (CF), chained Törnqvist (CT)
and chained generalised Malmquist (CGM) indices. The CF index that compares the
outputs of firm i in period t with the outputs of firm i in period 1 is

QICF (qi1, qit , . . . ) ≡
t−1∏

s=1

QI F (qis, qi,s+1, . . . ) (3.14)

where QI F (qis, qi,s+1, . . . ) is a binary Fisher index. If observed output prices are
firm- and time-invariant, then CF output index numbers are equal to Lowe output
index numbers. The CT index that compares the outputs of firm i in period t with
the outputs of firm i in period 1 is

QICT (qi1, qit , . . . ) ≡
t−1∏

s=1

QI T (qis, qi,s+1, . . . ) (3.15)

where QI T (qis, qi,s+1, . . . ) is a binary Törnqvist index. If observed revenue shares
are firm- and time-invariant, then CT output index numbers are equal to GY output
index numbers. Finally, the CGM index that compares the outputs of firm i in period
t with the outputs of firm i in period 1 is

QICGM(qi1, qit , . . . ) ≡
t−1∏

s=1

QIGM(qis, qi,s+1, . . . ) (3.16)

where QIGM(qis, qi,s+1, . . . ) is a binary GM index. If output sets are homothetic
and technical change is IHON, then CGM output index numbers are equal to primal
output index numbers computed using (3.5).

3.1.6.3 Multilateral Indices

Multilateral output indices do not generally satisfy axiom QI4 (proportionality).
They are also particularly sensitive to the addition or removal of observations from
the dataset. Thismeans, for example, that the index number that compares the outputs
of firm A with the outputs of firm B will generally change when firm Z is added to
the dataset (even if the outputs of firm Z are the same as the outputs of a firm that is
already represented in the dataset).
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The class of multilateral output indices includes an index proposed by Elteto and
Koves (1964) and Szulc (1964) (hereafter, EKS), an index proposed by Caves et al.
(1982b) (hereafter CCD), and a multilateral generalised Malmquist (MGM) index.
The EKS index that compares the outputs of firm i in period t with the outputs of
firm k in period t is

QI EK S(qkt , qit , . . . ) ≡
(

It∏

r=1

QI F (qkt , qrt , . . . )QI F (qrt , qit , . . . )

)1/It

(3.17)

where It is the number of firms in the dataset in period t and QI F (qkt , qrt , . . . ) is a
binary Fisher index. If observed output prices are firm- and time-invariant, then EKS
output index numbers are equal to Lowe output index numbers. The CCD index that
compares the outputs of firm i in period t with the outputs of firm k in period t is

QICCD(qkt , qit , . . . ) ≡
(

It∏

r=1

QI T (qkt , qrt , . . . )QI T (qrt , qit , . . . )

)1/It

(3.18)

where QI T (qkt , qrt , . . . ) is a binary Törnqvist index. If observed revenue shares are
firm- and time-invariant, then CCD output index numbers are equal to GY output
index numbers. Finally, theMGM index that compares the outputs of firm i in period
t with the outputs of firm k in period t is

QI MGM(qkt , qit , . . . ) ≡
(

It∏

r=1

QIGM(qkt , qrt , . . . )QIGM(qrt , qit , . . . )

)1/It

(3.19)

where QIGM(qkt , qrt , . . . ) is a binary GM index. If output sets are homothetic and
technical change is IHON, then MGM output index numbers are equal to primal
output index numbers computed using (3.5).

3.1.7 Toy Example

Reconsider the output quantity and price data reported earlier in Table1.4. Sets of
associated output index numbers are reported in Table3.1. In this table, the index
numbers in any given row compare the outputs in that row with the outputs in row
A. For example, in any given column, the index number in row O indicates that
the output vector (2, 2)′ is twice as big as the output vector (1, 1)′. The numbers in
column AEW are additive index numbers obtained by assigning the outputs equal
weight. The numbers in columnL (resp.GY) are Lowe (resp. geometricYoung) index
numbers. The numbers in column OLS are multiplicative index numbers obtained
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Table 3.1 Proper output index numbersa,b

Row q1 q2 AEW L GY OLS P D BOD Ave.

A 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 1 1 1 1

C 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37

D 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11

E 1.81 3.62 2.715 2.744 2.603 2.062 3.617 3.617 2.758 2.827

F 1 1 1 1 1 1 1 1 1 1

G 1.777 3.503 2.64 2.668 2.537 2.019 3.500 3.500 2.681 2.748

H 0.96 0.94 0.95 0.950 0.949 0.956 0.940 0.940 0.950 0.948

I 5.82 0.001 2.911 2.817 0.062 1.140 0.011 0.011 2.771 0.298

J 6.685 0.001 3.343 3.236 0.066 1.276 0.013 0.013 3.183 0.336

K 1.381 4.732 3.057 3.110 2.634 1.741 4.726 4.726 3.137 3.147

L 0.566 4.818 2.692 2.760 1.740 0.847 4.810 4.810 2.968 2.576

M 1 3 2 2.032 1.779 1.229 2.996 2.996 2.048 2.071

N 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

O 2 2 2 2 2 2 2 2 2 2

P 1 1 1 1 1 1 1 1 1 1

R 1 3 2 2.032 1.779 1.229 2.996 2.996 2.048 2.071

S 1 1 1 1 1 1 1 1 1 1

T 1.925 3.722 2.824 2.852 2.720 2.179 3.719 3.719 2.867 2.939

U 1 1 1 1 1 1 1 1 1 1

V 1 5.166 3.083 3.150 2.366 1.362 5.159 5.159 3.183 3.083

W 2 2 2 2 2 2 2 2 2 2

X 1 1 1 1 1 1 1 1 1 1

Y 1 1 1 1 1 1 1 1 1 1

Z 1.81 3.62 2.715 2.744 2.603 2.062 3.617 3.617 2.758 2.827
aAEW = additive with equal weights; L = Lowe; GY = geometric Young; OLS = multiplicative
with OLS weights; P = primal with CNLS parameter estimates; D = dual with CNLS parameter
estimates; BOD = benefit-of-the-doubt
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8

by using the method of ordinary least squares (OLS) to estimate the weights in
(3.4). The numbers in columns P and D are primal and dual index numbers obtained
by replacing the unknown parameters in (3.6) and (3.8) with corrected nonlinear
least squares (CNLS) estimates of the parameters in (7.2).18 The numbers in column
BOD are benefit-of-the-doubt index numbers. The numbers in the last column are
unweighted geometric averages of the index numbers in the other seven columns.
All of the index numbers in Table3.1 are proper in the sense that they have been
obtained using indices that satisfy axioms QI1 to QI6. They are also consistent with
measurement theory. Measurement theory says that the relationships between the

18The CNLS estimates of τ , γ1 and γ2 are 1, 0.0018 and 0.9982 respectively.
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index numbers must mirror the relationships between the output vectors. Observe,
for example, that the output vector in row M is the same as the output vector in row
R, and, in any given column, the index number in row M is the same as the index
number in row R.

Output indices that do not generally satisfy one or more of axioms QI1 to QI6
include Fisher, Törnqvist, CF, CT, EKS and CCD indices. Index numbers obtained
using these indices are reported in Table3.2. For illustrative purposes, the CF and
CT index numbers were computed by treating the observations in the dataset as
observations on a single firm over twenty-five periods. The EKS and CCD index
numbers were computed by treating the observations in the dataset as observations on

Table 3.2 Other output index numbersa,b

Row q1 q2 F T CF CT EKS CCD

A 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 0.992∗ 1.011∗

C 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37

D 2.11 2.11 2.11 2.11 2.11 2.11 2.096∗ 2.129∗

E 1.81 3.62 2.640∗ 2.636∗ 2.695∗ 2.691∗ 2.677∗ 2.840∗

F 1 1 1 1 0.972∗ 0.971∗ 0.986∗ 1.022∗

G 1.777 3.503 2.575 2.571 2.626 2.622 2.608 2.769

H 0.96 0.94 0.951 0.951 0.950 0.950 0.944 0.958

I 5.82 0.001 2.952 0.948 2.800 0.748 2.672 0.562

J 6.685 0.001 2.789 1.058 3.217 0.860 2.508 0.622

K 1.381 4.732 2.783 2.769 3.716 6.323∗ 2.883 3.090

L 0.566 4.818 2.648 2.369 3.251 5.440∗ 2.737 2.862

M 1 3 1.892∗ 1.879∗ 2.389∗ 4.068∗ 1.942∗ 2.088∗

N 0.7 0.7 0.7 0.7 0.943∗ 1.611∗ 0.711∗ 0.688∗

O 2 2 2 2 2.695∗ 4.604∗ 2.029∗ 1.969∗

P 1 1 1 1 1.348∗ 2.302∗ 0.982∗ 1.036∗

R 1 3 1.893∗ 1.880∗ 2.854∗ 4.914∗ 1.943∗ 2.089∗

S 1 1 1 1 1.514∗ 2.624∗ 1.001∗ 0.999∗

T 1.925 3.722 2.631 2.631 3.973 6.888 2.706 2.771

U 1 1 1 1 1.359∗ 2.332∗ 0.981∗ 1.054∗

V 1 5.166 2.099 2.070 3.530 6.437∗ 2.296 2.276

W 2 2 2 2 3.642∗ 6.734∗ 2.027∗ 1.971∗

X 1 1 1 1 1.821∗ 3.367∗ 0.983∗ 1.031∗

Y 1 1 1 1 1.821∗ 3.367∗ 0.981∗ 1.041∗

Z 1.81 3.62 2.745∗ 2.729∗ 5.447∗ 10.075∗ 2.759∗ 2.985∗
aF = Fisher; T = Törnqvist; CF = chained Fisher; CT = chained Törnqvist; EKS = Elteto-Koves-
Szulc; CCD = Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p.8
∗Incoherent (not because of rounding)
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twenty-five firms in a single period. The index numbers in Table3.2 are inconsistent
with measurement theory. Numbers that are clearly incoherent are marked with an
asterisk (∗). Observe, for example, that the output vector in row E is the same as
the output vector in row Z, but the index numbers in row E differ from the index
numbers in row Z. As another example, the outputs in row L are both less than five
times greater than the outputs in row A, but the CT index number in row L is 5.44.
In this book, these types of errors are viewed as measurement errors.

3.2 Input Quantity Indices

In this book, an input quantity index (or simply ‘input index’) that compares the
inputs of firm i in period t with the inputs of firm k in period s is defined as any
variable of the form19

X I (xks, xit ) ≡ X (xit )/X (xks) (3.20)

where X (.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. If inputs are positive,20 then all input indices of this type satisfy
the following axioms:

XI1 xrl ≥ xit ⇒ X I (xks, xrl) ≥ X I (xks, xit ) (weak monotonicity);
XI2 X I (xks, λxit ) = λX I (xks, xit ) for λ > 0 (homogeneity type I);
XI3 X I (λxks, λxit ) = X I (xks, xit ) for λ > 0 (homogeneity type II);
XI4 X I (xks, λxks) = λ for λ > 0 (proportionality);
XI5 X I (xks, xit ) = 1/X I (xit , xks) (time-space reversal); and
XI6 X I (xks, xrl)X I (xrl , xit ) = X I (xks, xit ) (transitivity).

The interpretation of these axioms is analogous to the interpretation of axioms QI1
to QI6 in Sect. 3.1. In a time-series context, for example, axiom XI6 (transitivity)
says that if we compare the inputs used in periods 1 and 3 indirectly through period
2, then we must get the same index number as when we compare the inputs used in
periods 1 and 3 directly. Thus, if a firm used twice as much of every input in period
3 as it did in period 2, and it used three times as much of every input in period 2 as
it did in period 1, then all direct and indirect comparisons should say that it used six
times as much of every input in period 3 as it did in period 1.

In O’Donnell (2016), an input index is said to be proper if and only if XI1 to
XI6 are satisfied.21 The geometric average of any set of proper input indices is also
a proper input index. Again, depending on the aggregator functions, proper input
indices may have other properties. For example, if aggregator functions are strictly

19This definition can be traced back at least as far as O’Donnell (2012a). See footnote 3 on p. 94.
20If some inputs are zero, then some input indices may be mathematically undefined and may
therefore not satisfy some axioms.
21In O’Donnell (2016), an input index is said to be proper if and only if eight axioms are satisfied. If
XI1 to XI6 are satisfied, then, and only then, all eight of the O’Donnell (2016) axioms are satisfied.
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increasing in inputs, then the associated input indices are stronglymonotonic. Strong
monotonicity means that if more inputs were used in period 3 than in period 2, then
the index number that compares the inputs in period 3 with the inputs in period 1
will be greater than the index number that compares the inputs in period 2 with the
inputs in period 1.

Any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued aggrega-
tor function can be used for purposes of constructing a proper input index. Again,
the choice of function is generally a matter of taste. Again, linear (resp. double-log)
functions can be used to construct additive (resp. multiplicative) indices. If inputs
are strongly disposable, then input distance functions can be used to construct primal
indices. If revenue functions are homogeneous in inputs, then they can be used to
construct dual indices. Finally, locally-linear functions can be used to construct BOD
indices.

3.2.1 Additive Indices

Additive input indices are constructed using aggregator functions of the form
X (xit ) ∝ b′xit where b is any nonnegative vector of weights. The associated index
that compares the inputs of firm i in period t with the inputs of firm k in period s is

X I A(xks, xit ) ≡ (b′xit )/(b′xks). (3.21)

Any nonnegative observation-invariant measures of relative value can be used as
weights. Again, the choice of weights is a matter of taste. One possibility is to use
average market prices as weights. In this case, the index defined by (3.21) takes the
form of the Lowe index defined by O’Donnell (2012c, p. 877); this index should be
used by analysts who regard input prices as appropriate measures of relative value
(e.g., analysts who might otherwise use a Fisher, chained Fisher or EKS index).
Alternatively, let X denote a matrix of mean-corrected inputs with M columns and
as many rows as there are observations in the dataset. If the eigenvector associated
with the largest eigenvalue of X ′X is nonnegative, then it can be used as vector of
weights. In this case, the index defined by (3.21) takes the form of the ‘input factor’
defined by Daraio and Simar (2007, Eq. 6.1, p. 148).

3.2.2 Multiplicative Indices

Multiplicative input indices are constructed using aggregator functions of the form
X (xit ) ∝ ∏M

m=1 x
bm
mit where b1, . . . , bM are any nonnegative weights that sum to one.

The associated index that compares the inputs of firm i in period t with the inputs of
firm k in period s is
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X I M(xks, xit ) ≡
M∏

m=1

(
xmit

xmks

)bm

. (3.22)

Any nonnegative observation-invariant measures of relative value can be used as
weights, provided they sum to one. Again, the choice of weights is a matter of taste.
One possibility is to use average cost shares as weights. In this case, the index defined
by (3.22) takes the form of the GY index defined by O’Donnell (2016, p. 333); this
index should be used by analysts who regard cost shares as appropriate measures of
relative value (e.g., analysts who might otherwise use a Törnqvist, chained Törnqvist
or CCD index). Another possibility is to estimate the weights in a linear regression
framework. For example, Eq. (3.22) can be rewritten as

ln(x1i t/x1ks) =
M∑

m=2

bm[ln(x1i t/x1ks) − ln(xmit/xmks)] + eit (3.23)

where eit = ln X I M(xks, xit ) is an unobserved log-index that in most other contexts
would be interpreted as statistical noise. The unknown parameters/weights in this
regression model can be estimated using, for example, least squares methods. The
associated input index numbers are the antilogarithms of the residuals. This index
should be used by analysts whowant tominimise the amount of variation in the index
numbers. It can also be used by analysts who have no information about input prices,
cost shares or production technologies. Finally, it is worth noting that multiplicative
input indices fail an input-oriented version of the determinateness test discussed at
the end of Sect. 3.1.2.

3.2.3 Primal Indices

Primal22 input indices are constructed using input distance functions as aggregator
functions. For a primal input index to be a proper index, the input distance function
must be nondecreasing in inputs, implying that inputs must be strongly disposable. In
this case, a suitable aggregator function is X (xit ) ∝ Dt̄

I (xit , q̄, z̄) where t̄ is a fixed
time period and q̄ and z̄ are fixed vectors of outputs and environmental variables
(again, the choices of t̄ , q̄ and z̄ are a matter of taste). The associated primal index
that compares the inputs of firm i in period t with the inputs of firm k in period s is

X I P(xks, xit ) ≡ Dt̄
I (xit , q̄, z̄)/Dt̄

I (xks, q̄, z̄). (3.24)

This index can be traced back to O’Donnell (2016, Eq. 3). It should be used by
analysts who regard marginal rates of technical substitution as appropriate measures

22Balk (1998, p. 59) also uses the term ‘primal’ in reference to an index that is constructed using
an input distance function.
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of relative value (e.g., analysts who might otherwise use a generalised Malmquist
index). If there is no technical or environmental change, then it reduces to the input
index defined by Färe and Primont (1995, p. 36). If input sets are homothetic, then
it does not depend on q̄ . If technical change is IHIN, then it does not depend on t̄ or
z̄. Ultimately, the exact form of the index depends on the input distance function. If
the input distance function is given by (2.13), for example, then

X I P(xks, xit ) =
M∏

m=1

(
xmit

xmks

)λm

. (3.25)

This index can be viewed as a multiplicative index with weights given by shadow
cost shares. Observe that it does not depend on the choices of t̄ , q̄ or z̄. This is because
the input distance function given by (2.13) represents a homothetic input set with a
boundary that exhibits IHIN technical change.

3.2.4 Dual Indices

Dual input indices are constructed using revenue functions as aggregator functions.
For a dual input index to be aproper index, the revenue functionmust be homogeneous
in inputs. If the revenue function is homogeneous of degree r in inputs, for example,
then a suitable input aggregator function is X (xit ) ∝ Rt̄ (xit , p̄, z̄)1/r where t̄ is a
fixed time period and p̄ and z̄ are fixed vectors of output prices and environmental
variables (again, the choices of t̄ , p̄ and z̄ are a matter of taste). The associated dual
index that compares the inputs of firm i in period t with the inputs of firm k in period
s is

X I D(xks, xit ) ≡ Rt̄ (xit , p̄, z̄)
1/r/Rt̄ (xks, p̄, z̄)

1/r . (3.26)

This index should be used by analysts who regard marginal revenues as appropriate
measures of relative value. If output sets are homothetic, then it does not depend on
p̄. Ultimately, the exact form of the index depends on the revenue function. If the
revenue function is given by (2.17), for example, then

X I D(xks, xit ) =
M∏

m=1

(
xmit

xmks

)λm

(3.27)

where λm = βm/η is a shadow cost share and η = ∑
m βm is the elasticity of scale.

Observe that this index is the same as the index defined by (3.25). This is because
the input distance function given by (2.13) and the revenue function given by (2.17)
are equivalent representations of a homothetic input set with a boundary that exhibits
IHIN technical change.
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3.2.5 Benefit-of-the-Doubt Indices

BOD input indices are constructed using aggregator functions of the form X (xit ) =
b′
i t xit where bit is an unknown vector of nonnegative weights. If X (.) is con-
tinuously differentiable, then bit = ∂X (xit )/∂xit . Computing BOD input indices
involves choosing the weight vector to minimise X (xit ). The only constraint is that
if the chosen weight vector is used to aggregate any input vector in the dataset,
then the resulting aggregate input can be no less than one.23 Thus, the optimisation
problem is

min
bit

{
b′
i t xit : bit ≥ 0, b′

i t xhr ≥ 1 for all h and r
}
. (3.28)

This optimisation problem can be found in O’Donnell and Nguyen (2013, Eq. 23).
Let XB(xit ) denote the minimised value of the objective function. The associated
BOD index that compares the inputs of firm i in period t with the inputs of firm k in
period s is

XB(xks, xit ) ≡ XB(xit )/X
B(xks). (3.29)

Like the BOD output index, this is a proper index with high characteristicity. A
strongly monotonic version can be obtained by adding the constraint bit > 0 to
problem (3.28). The BOD input index should be used by analysts who believe mea-
sures of relative value should vary from one input comparison to the next. It can
also be used by analysts who have no information about input prices, cost shares or
production technologies.

3.2.6 Other Indices

Other types of input indices include binary, chained and multilateral indices. These
are not proper input indices in the sense that they do not generally satisfy all of axioms
XI1 to XI6. Binary input indices are designed for comparing two input vectors only.
Chained input indices are mainly used for comparing the inputs of a single firm over
several time periods. Multilateral input indices are mainly used for comparing the
inputs of several firms in a single time period.

3.2.6.1 Binary Indices

Binary input indices do not generally satisfy axiom XI6 (transitivity). The class of
binary input indices includes Fisher, Törnqvist and GM indices. The Fisher index

23The choice of one as the minimum aggregate input is arbitrary.
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that compares the inputs of firm i in period t with the inputs of firm k in period s is

X I F (xks, xit , . . . ) ≡
(
w′
i t xit

w′
i t xks

w′
ks xit

w′
ks xks

)1/2

. (3.30)

If observed input prices are firm- and time-invariant, then Fisher input index numbers
are equal to Lowe input index numbers. The Törnqvist index that compares the inputs
of firm i in period t with the inputs of firm k in period s is

X I T (xks, xit , . . . ) ≡
M∏

m=1

(
xmit

xmks

)(smit+smks )/2

(3.31)

where smit ≡ wmit xmit/Cit is the m-th observed cost share. If observed cost shares
are firm- and time-invariant, then Törnqvist input index numbers are equal to GY
input index numbers. Finally, the GM index that compares the inputs of firm i in
period t with the inputs of firm k in period s is

X IGM(xks, xit , . . . ) ≡
(
Dt

I (xit , qit , zit )

Dt
I (xks, qit , zit )

Ds
I (xit , qks, zks)

Ds
I (xks, qks, zks)

)1/2

. (3.32)

If input sets are homothetic and technical change is IHIN, then this index is equivalent
to the primal index defined by (3.24). If the input distance function is given by (2.13),
then it is equivalent to the primal index defined by (3.25). If there is only one firm
involved in the comparison and there is no environmental change, then the two ratios
in (3.32) are equivalent to the Malmquist input indices defined by Diewert (1992,
Eqs. 97, 98) (hence the use of the term ‘generalised’). If (a) there is no environmental
change, (b) firms are price takers in input markets, (c) firm managers minimise cost,
(d) input prices and quantities are strictly positive, (e) the period-t and period-s input
distance functions are nondecreasing in inputs, and (f) the period-t and period-s input
distance functions are translog functions with identical second-order coefficients,
then the GM index defined by (3.32) is equivalent to the Törnqvist index defined
by (3.31) (Caves et al. 1982a, Thm. 1). For this reason, Törnqvist input indices are
said to be exact for translog input distance functions. Unfortunately, properties (e)
and (f) cannot both be true.24 This means that Törnqvist input indices are merely
superlative. Superlative input indices are exact for functions that can generally only
provide second-order approximations to input distance functions.

24If the input distance function is nondecreasing in inputs, then the partial derivative of the distance
function with respect to the inputs must be nonnegative for all feasible input-output combinations.
If the input distance function is a translog function, then it is possible to find feasible input-output
combinations such that at least one partial derivative is negative. Ergo, the input distance function
cannot be a translog function.
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3.2.6.2 Chained Indices

Chained input indices do not generally satisfy axiom XI4 (proportionality). The
class of chained input indices includes CF, CT and CGM indices. The CF index that
compares the inputs of firm i in period t with the inputs of firm i in period 1 is

X ICF (xi1, xit , . . . ) ≡
t−1∏

s=1

X I F (xis, xi,s+1, . . . ) (3.33)

where X I F (xis, xi,s+1, . . . ) is a binary Fisher index. If observed input prices are
firm- and time-invariant, then CF input index numbers are equal to Lowe input index
numbers. The CT index that compares the inputs of firm i in period t with the inputs
of firm i in period 1 is

X ICT (xi1, xit , . . . ) ≡
t−1∏

s=1

X I T (xis, xi,s+1, . . . ) (3.34)

where X I T (xis, xi,s+1, . . . ) is a binary Törnqvist index. If observed cost shares are
firm- and time-invariant, then CT input index numbers are equal to GY input index
numbers. Finally, the CGM index that compares the inputs of firm i in period t with
the inputs of firm i in period 1 is

X ICGM(xi1, xit , . . . ) ≡
t−1∏

s=1

X IGM(xis, xi,s+1, . . . ) (3.35)

where X IGM(xis, xi,s+1, . . . ) is a binary GM index. If input sets are homothetic and
technical change is IHIN, then CGM input index numbers are equal to primal input
index numbers computed using (3.24).

3.2.6.3 Multilateral Indices

Multilateral input indices do not generally satisfy axiom XI4 (proportionality). They
are also particularly sensitive to the addition or removal of observations from the
dataset. The class of multilateral input indices includes the EKS, CCD and MGM
indices. The EKS index that compares the inputs of firm i in period t with the inputs
of firm k in period t is

X I EK S(xkt , xit , . . . ) ≡
(

It∏

r=1

X I F (xkt , xrt , . . . )X I F (xrt , xit , . . . )

)1/It

(3.36)
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where It is the number of firms in period t and X I F (xkt , xrt , . . . ) is a binary Fisher
index. If observed input prices are firm- and time-invariant, then EKS input index
numbers are equal to Lowe input index numbers. The CCD index that compares the
inputs of firm i in period t with the inputs of firm k in period t is

X ICCD(xkt , xit , . . . ) ≡
(

It∏

r=1

X I T (xkt , xrt , . . . )X I T (xrt , xit , . . . )

)1/It

(3.37)

where X I T (xkt , xrt , . . . ) is a binary Törnqvist index. If observed cost shares are
firm- and time-invariant, then CCD input index numbers are equal to GY input index
numbers. Finally, the MGM index that compares the inputs of firm i in period t with
the inputs of firm k in period t is

X I MGM(xkt , xit , . . . ) ≡
(

It∏

r=1

X IGM(xkt , xrt , . . . )X IGM(xrt , xit , . . . )

)1/It

(3.38)

where X IGM(xkt , xrt , . . . ) is a binary GM index. If input sets are homothetic and
technical change is IHIN, then MGM input index numbers are equal to primal input
index numbers computed using (3.24).

3.2.7 Toy Example

Reconsider the input quantity and price data reported earlier in Table1.5. Sets of
associated input index numbers are reported in Table3.3. In this table, the index
numbers in any given row compare the inputs in that row with the inputs in row A.
For example, in any given column, the index number in rowY indicates that the input
vector (0.74, 0.74)′ is only 0.74 times as big as the input vector (1, 1)′. The numbers
in column AEW are additive index numbers obtained by assigning the inputs equal
weight. The numbers in columnL (resp.GY) are Lowe (resp. geometricYoung) index
numbers. The numbers in column OLS are multiplicative index numbers obtained
by using OLS to estimate the weights in (3.23). The numbers in columns P and D
are primal and dual index numbers obtained by replacing the unknown parameters
in (3.25) and (3.27) with CNLS estimates of the relevant parameters in (7.2).25 The
numbers in column BOD are benefit-of-the-doubt index numbers. The numbers in
the last column are unweighted geometric averages of the index numbers in the other
seven columns. All of the index numbers in Table3.3 are proper in the sense that
they have been obtained using indices that satisfy axioms XI1 to XI6. They are also
consistent with measurement theory. Observe, for example, that the input vector in

25The CNLS estimates of λ1 and λ2 are 0.2367 and 0.7633 respectively.
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Table 3.3 Proper input index numbersa,b

Row x1 x2 AEW L GY OLS P D BOD Ave.

A 1 1 1 1 1 1 1 1 1 1

B 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

C 1 1 1 1 1 1 1 1 1 1

D 1.05 0.7 0.875 0.781 0.831 0.938 0.770 0.770 0.830 0.826

E 1.05 0.7 0.875 0.781 0.831 0.938 0.770 0.770 0.830 0.826

F 0.996 0.316 0.656 0.472 0.513 0.724 0.415 0.415 0.458 0.511

G 1.472 0.546 1.009 0.759 0.830 1.117 0.690 0.690 0.779 0.827

H 0.017 0.346 0.182 0.27 0.097 0.039 0.170 0.170 0.223 0.143

I 4.545 0.01 2.278 1.053 0.133 0.829 0.043 0.043 0.240 0.274

J 4.45 0.001 2.226 1.024 0.035 0.431 0.007 0.007 0.223 0.122

K 1 1 1 1 1 1 1 1 1 1

L 1 1 1 1 1 1 1 1 1 1

M 1.354 1 1.177 1.081 1.137 1.245 1.074 1.074 1.132 1.130

N 0.33 0.16 0.245 0.199 0.217 0.270 0.190 0.190 0.223 0.218

O 1 1 1 1 1 1 1 1 1 1

P 0.657 0.479 0.568 0.52 0.547 0.602 0.516 0.516 0.545 0.544

R 1 1 1 1 1 1 1 1 1 1

S 1.933 0.283 1.108 0.663 0.638 1.133 0.446 0.446 0.462 0.650

T 1 1 1 1 1 1 1 1 1 1

U 1 0.31 0.655 0.469 0.509 0.722 0.409 0.409 0.451 0.506

V 1 1 1 1 1 1 1 1 1 1

W 0.919 0.919 0.919 0.919 0.919 0.919 0.919 0.919 0.919 0.919

X 1.464 0.215 0.840 0.502 0.484 0.859 0.339 0.339 0.351 0.493

Y 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74

Z 2.1 1.4 1.750 1.561 1.662 1.876 1.541 1.541 1.661 1.652
aAEW = additive with equal weights; L = Lowe; GY = geometric Young; OLS = multiplicative
with OLS weights; P = primal with CNLS parameter estimates; D = dual with CNLS parameter
estimates; BOD = benefit-of-the-doubt
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8.
Some numbers may be incoherent at the third decimal place due to rounding (e.g., the number in
row Z of column L is not exactly twice as big as the number in row E of column L due to rounding)

row D is the same as the input vector in row E, and, in any given column, the index
number in row D is the same as the index number in row E.

Input indices that do not generally satisfy one or more of axioms XI1 to XI6
include Fisher, Törnqvist, CF, CT, EKS and CCD indices. Index numbers obtained
using these indices are reported in Table 3.4. Again, for illustrative purposes, the CF
and CT index numbers were computed by treating the observations in the dataset
as observations on a single firm over twenty-five periods. The EKS and CCD index
numbers were computed by treating the observations in the dataset as observations on
twenty-five firms in a single period. The index numbers in Table3.4 are inconsistent
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Table 3.4 Other input index numbersa,b

Row x1 x2 F T CF CT EKS CCD

A 1 1 1 1 1 1 1 1

B 0.56 0.56 0.56 0.56 0.56 0.56 0.525∗ 0.526∗

C 1 1 1 1 1 1 1 1

D 1.05 0.7 0.771∗ 0.774∗ 0.771∗ 0.774∗ 0.749∗ 0.742∗

E 1.05 0.7 0.734∗ 0.732∗ 0.771∗ 0.774∗ 0.797∗ 0.789∗

F 0.996 0.316 0.501 0.515 0.464 0.473 0.502 0.474

G 1.472 0.546 0.819 0.835 0.715 0.730 0.798 0.749

H 0.017 0.346 0.293 0.280 0.189 0.105 0.253 0.189

I 4.545 0.01 1.049 0.312 1.001 0.303 1.339 0.532

J 4.45 0.001 0.825 0.114 0.976 0.296 1.102 0.272

K 1 1 1 1 1.182∗ 2.596∗ 1 1

L 1 1 1 1 1.182∗ 2.596∗ 0.939∗ 0.940∗

M 1.354 1 1.054 1.055 1.276 2.800∗ 1.056 1.058

N 0.33 0.16 0.179 0.179 0.223 0.488∗ 0.196 0.195

O 1 1 1 1 1.032∗ 2.288∗ 0.863∗ 0.813∗

P 0.657 0.479 0.517 0.518 0.578 1.280∗ 0.495 0.490

R 1 1 1 1 1.064∗ 2.359∗ 0.899∗ 0.883∗

S 1.933 0.283 0.575 0.613 0.861 1.917 0.668 0.645

T 1 1 1 1 1.088∗ 2.418∗ 0.905∗ 0.893∗

U 1 0.31 0.432 0.445 0.568 1.258 0.464 0.454

V 1 1 1 1 1.178∗ 2.601∗ 0.939∗ 0.941∗

W 0.919 0.919 0.919 0.919 1.083∗ 2.390∗ 0.848∗ 0.845∗

X 1.464 0.215 0.519 0.535 0.787 1.680∗ 0.572 0.528

Y 0.74 0.74 0.74 0.74 0.946∗ 2.068∗ 0.700∗ 0.703∗

Z 2.1 1.4 1.642∗ 1.649∗ 2.159∗ 4.724∗ 1.479∗ 1.385∗
aF = Fisher; T = Törnqvist; CF = chained Fisher; CT = chained Törnqvist; EKS = Elteto-Koves-
Szulc; CCD = Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

with measurement theory. Again, numbers that are clearly incoherent are marked
with an asterisk (∗). Observe, for example, that the input vector in row Z is twice as
big as the input vector in row E, but the index numbers in row Z are not twice as
big as the index numbers in row E. As another example, the inputs in row M are not
even twice as big as the inputs in row A, but the CT index number in row M is 2.8.
Again, in this book, these types of errors are viewed as measurement errors.
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3.3 Productivity Indices

Productivity indices are measures of productivity change. This section focuses on
TFP indices (TFPIs). Multifactor productivity (MFP) indices and partial factor pro-
ductivity (PFP) indices can be treated as special cases of TFP indices in which one
or more inputs are given a weight of zero.

In this book, an index that compares the TFP of firm i in period t with the TFP of
firm k in period s is defined as any variable of the form

TFPI (xks, qks, xit , qit ) ≡ QI (qks, qit )/X I (xks, xit ) (3.39)

where QI (.) is any proper output index and X I (.) is any proper input index. This
definition can be traced back at least as far as O’Donnell (2013, p. 10). An equivalent
definition is

TFPI (xks, qks, xit , qit ) ≡ TFP(xit , qit )/TFP(xks, qks) (3.40)

where TFP(xit , qit ) ≡ Q(qit )/X (xit ) denotes the TFP of firm i in period t . If outputs
and inputs are positive,26 then all TFPIs of this type satisfy the following axioms:

TI1 qrl ≥ qit and xrl ≤ xit ⇒ TFPI (xks, qks, xrl , qrl) ≥ TFPI (xks, qks, xit , qit ) (weak
monotonicity);

TI2 TFPI (xks, qks, δxit λqit ) = (λ/δ)TFPI (xks, qks, xit , qit ) for λ > 0 and δ > 0
(homogeneity type I);

TI3 TFPI (δxks, λqks, δxit , λqit ) = TFPI (xks, qks, xit , qit ) forλ > 0 and δ > 0 (homo-
geneity type II);

TI4 TFPI (xks, qks, δxks, λqks) = λ/δ for λ > 0 and δ > 0 (proportionality);
TI5 TFPI (xks, qks, xit , qit ) = 1/TFPI (xit , qit , xks, qks) (time-space reversal);

and
TI6 TFPI (xks, qks, xit , qit ) = TFPI (xks, qks, xrl , qrl)TFPI (xrl , qrl , xit , qit )

(transitivity).

Again, the interpretation of these axioms is straightforward. In a cross-section con-
text, for example, axiom TI6 (transitivity) says that if we compare the TFP of firms
C and A indirectly through firm B, then we must get the same index number as when
we compare the TFP of firms C and A directly. Thus, if we find that firm C is twice
as productive as firm B, and firm B is twice as productive as firm A, then we must
also find that firm C is four times as productive as firm A.

In O’Donnell (2016), a TFPI is said to be proper if and only if it can be written
as a proper output index divided by a proper input index. Any proper output and
input indices can be used for this purpose. Again, the choice of indices is generally a
matter of taste. In practice, it is common, but not necessary, to divide output indices
of a given type by input indices of the same type.

26If someoutputs or inputs are zero, then someTFPIsmaybe either zeroormathematically undefined
and may therefore not satisfy some axioms.
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3.3.1 Additive Indices

Additive TFPIs are constructed by dividing additive output indices by additive input
indices. For example, the additive index that compares the TFP of firm i in period t
with the TFP of firm k in period s is

TFPI A(xks, qks, xit , qit ) ≡ a′qit
a′qks

b′xks
b′xit

(3.41)

where a is any nonnegative vector of output weights and b is any nonnegative vector
of input weights. If some inputs are given a weight of zero, then this index can be
viewed as an MFP index. If all inputs except one are given a weight of zero, then it
can be viewed as a PFP index. If all inputs except labour (resp. capital) are given a
weight of zero, then it can be viewed as a labour (resp. capital) productivity index. If
average market prices are used as weights, then it takes the form of the Lowe TFPI
defined by O’Donnell (2012c, p. 877); this index should be used by analysts who
regard market prices as appropriate measures of relative value (e.g., analysts who
might otherwise use a Fisher, chained Fisher or EKS index).

3.3.2 Multiplicative Indices

Multiplicative TFPIs are constructed by dividing multiplicative output indices by
multiplicative input indices. For example, the multiplicative index that compares the
TFP of firm i in period t with the TFP of firm k in period s is

TFPI M(xks, qks, xit , qit ) ≡
N∏

n=1

(
qnit
qnks

)an M∏

m=1

(
xmks

xmit

)bm

(3.42)

where a1, . . . , aN are nonnegative output weights that sum to one and b1, . . . , bM are
nonnegative input weights that sum to one. Again, if some inputs are given a weight
of zero, then this index can be viewed as an MFP index. If all inputs except one are
given aweight of zero, then it can be viewed as a PFP index. If all inputs except labour
(resp. capital) are given a weight of zero, then it can be viewed as a labour (resp.
capital) productivity index. If all outputs are given equal weight and all inputs are
given equal weight, then it takes the form of the GDF-based index defined by Portela
and Thanassoulis (2006, Eq. 4) (these authors define their index in a time-series
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context). If average revenue shares are used as output weights and average cost
shares are used as input weights, then it takes the form of the GY index defined by
O’Donnell (2016, Eq. 5); this index should be used by analysts who regard revenue
and cost shares as appropriate measures of relative value (e.g., analysts who might
otherwise use a Törnqvist, chained Törnqvist or CCD index). Another possibility is
to estimate the weights in a linear regression framework. For example, Eq. (3.42) can
be rewritten as

ln(q1i t/q1ks) − ln(x1i t/x1ks) =
N∑

n=2

an[ln(q1i t/q1ks) − ln(qnit/qnks)]

−
M∑

m=2

bm[ln(x1i t/x1ks) − ln(xmit/xmks)] + eit

(3.43)

where eit = ln TFPI M(xks, qks, xit , qit ) is an unobserved log-TFPI that inmost other
contextswould be interpreted as statistical noise. Theunknownparameters/weights in
thismodel can be estimated using, for example, least squaresmethods. The associated
TFPI numbers are the antilogarithms of the residuals. This index should be used by
analysts who want to minimise the amount of variation in the index numbers. It can
also be used by analysts who have no information about output prices, input prices,
revenue shares, cost shares or production technologies.

3.3.3 Primal Indices

Primal TFPIs are constructed by dividing primal output indices by primal input
indices. For example, the primal index that compares the TFP of firm i in period t
with the TFP of firm k in period s is

TFPI P(xks, qks, xit , qit ) ≡ Dt̄
O(x̄, qit , z̄)

Dt̄
O(x̄, qks, z̄)

Dt̄
I (xks, q̄, z̄)

Dt̄
I (xit , q̄, z̄)

(3.44)

where t̄ is a fixed time period and x̄ , q̄ and z̄ are fixed vectors of inputs, outputs and
environmental variables. This index can traced back to O’Donnell (2016, Eq. 4). It
should be used by analysts who regard marginal rates of transformation andmarginal
rates of technical substitution as appropriate measures of relative value (e.g., analysts
who might otherwise use a generalisedMalmquist or Hicks-Moorsteen index). For it
to be a proper index, the output distance function must be nondecreasing in outputs
and the input distance functionmust be nondecreasing in inputs, implying that outputs
and inputs must be strongly disposable. If there is no environmental change, then
it reduces to the Färe-Primont (FP) index defined by O’Donnell (2014, Eq. 11). If
output (resp. input) sets are homothetic, then it does not depend on x̄ (resp. q̄). If
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technical change is HN, then it does not depend on t̄ or z̄. Ultimately, the exact
form of the index depends on the output and input distance functions. If the output
distance function is given by (2.9), for example, then, and only then, the input distance
function is given by (2.13). In this case,

TFPI P(xks, qks, xit , qit ) =
( ∑

n γnqτ
nit∑

n γnqτ
nks

)1/τ M∏

m=1

(
xmks

xmit

)λm

. (3.45)

Observe that this index does not depend on the choices of t̄ , x̄ , q̄ or z̄. This is because
the output and input distance functions given by (2.9) and (2.13) represent homothetic
output and input sets with boundaries that exhibit HN technical change. If τ = 1,
then (3.45) takes the form of an additive output index divided by a multiplicative
input index. If some shadow cost shares are equal to zero, then it can be viewed as
an MFP index. If all shadow cost shares except one are equal to zero, then it can
be viewed as a PFP index. If all shadow cost shares except the shadow cost share
for labour (resp. capital) are equal to zero, then it can be viewed as a labour (resp.
capital) productivity index.

3.3.4 Dual Indices

Dual TFPIs are constructed by dividing dual output indices by dual input indices.
For a dual TFPI to be a proper index, the cost function must be homogeneous in
outputs and the revenue function must be homogeneous in inputs. If, for example,
the cost function is homogeneous of degree 1/r in outputs and the revenue function
is homogeneous of degree r in inputs, then the dual index that compares the TFP of
firm i in period t with the TFP of firm k in period s is

TFPI D(xks, qks, xit , qit ) ≡
(
Ct̄ (w̄, qit , z̄)

Ct̄ (w̄, qks, z̄)

)r (
Rt̄ (xks, p̄, z̄)

Rt̄ (xit , p̄, z̄)

)1/r

(3.46)

where t̄ is a fixed time period and w̄, p̄ and z̄ are fixed vectors of input prices, output
prices and environmental variables. This index should be used by analysts who regard
marginal revenues and marginal costs as appropriate measures of relative value. If
output (resp. input) sets are homothetic, then it does not depend on p̄ (resp. w̄).
Ultimately, the exact form of the index depends on the revenue and cost functions.
If the revenue function is given by (2.17), for example, then, and only then, the cost
function is given by (2.22). In this case,

TFPI D(xks, qks, xit , qit ) =
( ∑

n γnqτ
nit∑

n γnqτ
nks

)1/τ M∏

m=1

(
xmks

xmit

)λm

. (3.47)
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Observe that this index is the same as the index defined by (3.45). This is because
the distance, revenue and cost functions given by (2.9), (2.13), (2.17) and (2.22) are
equivalent representations of homothetic output and input sets with boundaries that
exhibits HN technical change.

3.3.5 Benefit-of-the-Doubt Indices

BOD TFPIs are constructed by dividing BOD output indices by BOD input indices.
For example, the BOD index that compares the TFP of firm i in period t with the
TFP of firm k in period s is

TFPI B(xks, qks, xit , qit ) ≡ QB(qit )

QB(qks)

XB(xks)

XB(xit )
(3.48)

where QB(qit ) denotes the maximised value of the objective function in problem
(3.9) and XB(xit ) denotes the minimised value of the objective function in problem
(3.28). This is a proper TFPI with high characteristicity. It should be used by analysts
who believe measures of relative value should vary from one TFP comparison to the
next. It can also be used by analysts who have no information about output prices,
input prices, revenue shares, cost shares or production technologies.

3.3.6 Other Indices

Other types of productivity indices include binary, chained and multilateral TFPIs.
These are not proper TFPIs in the sense that they cannot generally be written as
proper output indices divided by proper input indices. Binary TFPIs are designed for
comparing two observations only. Chained TFPIs are mainly used for comparing the
TFP of a single firm over several time periods. Multilateral TFPIs are mainly used
for comparing the TFP of several firms in a single time period.

3.3.6.1 Binary Indices

Binary TFPIs do not generally satisfy axiom TI6 (transitivity). The class of binary
TFPIs includes Fisher, Törnqvist and GM indices. Fisher TFPIs are constructed by
dividing Fisher output indices by Fisher input indices. For example, the Fisher index
that compares the TFP of firm i in period t with the TFP of firm k in period s is

TFPI F (xks, qks, xit , qit , . . . ) =
(
p′
i t qit

p′
i t qks

p′
ksqit

p′
ksqks

w′
i t xks

w′
i t xit

w′
ks xks

w′
ks xit

)1/2

. (3.49)
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If observed output and input prices are firm- and time-invariant, then Fisher TFPI
numbers are equal to Lowe TFPI numbers. Törnqvist TFPIs are constructed by divid-
ing Törnqvist output indices by Törnqvist input indices. For example, the Törnqvist
index that compares the TFP of firm i in period t with the TFP of firm k in period s
is

TFPI T (xks, qks, xit , qit , . . . ) ≡
N∏

n=1

(
qnit
qnks

)(rnit+rnks )/2 M∏

m=1

(
xmks

xmit

)(smit+smks )/2

.

(3.50)

If observed revenue and cost shares are firm- and time-invariant, then Törnqvist
TFPI numbers are equal to GY TFPI numbers. Finally, GM TFPIs are constructed
by dividing GM output indices by GM input indices. For example, the GM index
that compares the TFP of firm i in period t with the TFP of firm k in period s is

TFPIGM(xks, qks, xit , qit , . . . ) ≡
(
Dt

O(xit , qit , zit )

Dt
O(xit , qks, zit )

Ds
O(xks, qit , zks)

Ds
O(xks, qks, zks)

× Dt
I (xks, qit , zit )

Dt
I (xit , qit , zit )

Ds
I (xks, qks, zks)

Ds
I (xit , qks, zks)

)1/2

.

(3.51)

If output and input sets are homothetic and technical change is HN, then this index
is equivalent to the primal index defined by (3.44). If the output and input distance
functions are given by (2.9) and (2.13), then it is equivalent to the primal index
defined by (3.45). If there is no environmental change, then it takes the form of the
Malmquist TFPI of Bjurek (1996, Eq. 9)27 (hence the use of the term ‘generalised’).
The main idea behind the Bjurek index can be traced back to Diewert (1992, p. 240).
However, Diewert attributes the concept to Hicks (1961) and Moorsteen (1961).
For this reason, the Bjurek index is commonly referred to as a Hicks-Moorsteen
(HM) index (e.g., Briec and Kerstens 2011; Kerstens and Van de Woestyne 2014;
Mizobuchi 2017)

At least three other binary.Malmquist indices can be found in the literature. Except
in restrictive special cases, these indices cannot be written as output indices divided
by input indices, implying they cannot generally be viewed as productivity indices.
First, the output-oriented Malmquist (OM) index that compares the ‘productivity’ of
firm i in period t with the ‘productivity’ of firm k in period s is

TFPI OM(xks, xit , qks, qit , s, t) ≡
(

Ds
O(xit , qit ) Dt

O(xit , qit )

Ds
O(xks, qks) Dt

O(xks, qks)

)1/2

(3.52)

27Bjurek (1996) defines his index in a time-series context. In such a context, all notation pertaining
to firms can be suppressed.
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whereDt
O(xit , qit ) is a period-specificoutput distance function.Thebasic ideabehind

this index can be traced back at least as far as Caves et al. (1982a, p. 1404) (these
authors define their index in a cross-section context).28 Except in restrictive spe-
cial cases, it yields systematically biased estimates of productivity change: for more
details and an empirical demonstration, see Grifell-Tatjé and Lovell (1995).

Second, the input-orientedMalmquist (IM) index that compares the ‘productivity’
of firm i in period t with the ‘productivity’ of firm k in period s is

TFPI IM(xks, xit , qks, qit , s, t) ≡
(
Ds

I (xks, qks) D
t
I (xks, qks)

Ds
I (xit , qit ) D

t
I (xit , qit )

)1/2

(3.53)

where Dt
I (xit , qit ) is a period-specific input distance function. The idea behind this

index can be traced back to as far as Caves et al. (1982a, p. 1408) (again, these authors
define their index in a cross-section context). The IM index has the same pathological
properties as the OM index. If the period-t and period-s production frontiers exhibit
CRS, then the IM and OM indices are equivalent. If the output set is homothetic
and the period-t and period-s production frontiers exhibit CRS, then the IM and OM
indices are equivalent to the HM index (Mizobuchi 2017).

Finally, the reciprocal of the IM TFPI has the same form as the ‘input-based
Malmquist productivity index’ defined by Färe et al. (1992, Eq. 9) (these authors
define their index in a time-series context). The Färe et al. (1992) index has some
counterintuitive properties: if, for example, inputs are strongly disposable, then
increases in inputs and decreases in outputs will generally be associated with
increases in the value of their index, indicating that productivity has increased.

3.3.6.2 Chained Indices

Chained TFPIs do not generally satisfy axiom TI4 (proportionality). The class of
chained TFPIs includes CF, CT and chained CGM indices. The CF index that com-
pares the TFP of firm i in period t with the TFP of firm i in period 1 is

28The output distance functions that underpin the Caves et al. (1982a) index are firm-specific
functions. A firm-specific output distance function is presumably a representation of a firm-specific
output set. A firm-specific output set is presumably a set containing all outputs that can be produced
by a given firm using given inputs. Thus, Caves et al. (1982a) presumably have in mind that it was
technically possible for a given firm to transform a given input vector into a given output vector,
but, because it operates in a different production environment, it was not technically possible for
another firm to do the same. In contrast, Färe et al. (1994, Eq. 6). define an ‘output-basedMalmquist
productivity change index’ in a time-series context. The output distance functions that define their
index are period-specific functions. Thus, Färe et al. (1994) presumably have in mind that it was
technically possible to transform a given input vector into a given output vector in a given period, but,
because the requisite technologies may not have been developed, it may not have been technically
possible to do the same thing in an earlier period.
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TFPICF (xi1, qi1, xit , qit , . . . ) ≡
t−1∏

s=1

TFPI F (xis, qis, xi,s+1, qi,s+1, . . . ) (3.54)

where TFPI F (xis, qis, xi,s+1, qi,s+1, . . . ) is a binary Fisher index. If observed output
and input prices are firm- and time-invariant, then CF TFPI numbers are equal to
Lowe TFPI numbers. The CT index that compares the TFP of firm i in period t with
the TFP of firm i in period 1 is

TFPICT (xi1, qi1, xit , qit , . . . ) ≡
t−1∏

s=1

TFPI T (xis, qis, xi,s+1, qi,s+1, . . . ) (3.55)

where TFPI T (xis, qis, xi,s+1, qi,s+1, . . . ) is a binary Törnqvist index. If observed
revenue and cost shares are firm- and time-invariant, then CT TFPI numbers are
equal to GY TFPI numbers. Finally, the CGM index that compares the TFP of firm
i in period t with the TFP of firm i in period 1 is

TFPICGM(xi1, qi1, xit , qit , . . . ) ≡
t−1∏

s=1

TFPIGM(xis, qis, xi,s+1, qi,s+1, . . . ) (3.56)

where TFPIGM(xis, qis, xi,s+1, qi,s+1, . . . ) is a binary GM index. If output and input
sets are homothetic and technical change is HN, then CGM TFPI numbers are equal
to primal index numbers computed using (3.44).

3.3.6.3 Multilateral Indices

Multilateral TFPIs do not generally satisfy axiomTI4 (proportionality). They are also
particularly sensitive to the addition or removal of observations from the dataset. The
class of multilateral TFPIs includes EKS, CCD and MGM TFPIs. The EKS index
that compares the TFP of firm i in period t with the TFP of firm k in period t is

TFPI EK S(xkt , qkt , xit , qit , . . . ) ≡
( It∏

r=1

TFPI F (xkt , qkt , xrt , qrt , . . . )

× TFPI F (xrt , qrt , xit , qit , . . . )

)1/It

(3.57)

where It is the number of firms in period t and TFPI F (xkt , qkt , xrt , qrt , . . . ) is a
binary Fisher index. If observed output and input prices are firm- and time-invariant,
then EKS TFPI numbers are equal to Lowe TFPI numbers. The CCD index that



3.3 Productivity Indices 123

compares the TFP of firm i in period t with the TFP of firm k in period t is

TFPICCD(xkt , qkt , xit , qit , . . . ) ≡
( It∏

r=1

TFPI T (xkt , qkt , xrt , qrt , . . . )

× TFPI T (xrt , qrt , xit , qit , . . . )

)1/It

(3.58)

where TFPI T (xkt , qkt , xrt , qrt , . . . ) is a binary Törnqvist index. If observed revenue
and cost shares are firm- and time-invariant, then CCD TFPI numbers are equal to
GYTFPI numbers. Finally, theMGM index that compares the TFP of firm i in period
t with the TFP of firm k in period t is

TFPI MGM(xkt , qkt , xit , qit , . . . ) ≡
( It∏

r=1

TFPIGM(xkt , qkt , xrt , qrt , . . . )

× TFPIGM(xrt , qrt , xit , qit , . . . )

)1/It

(3.59)

where TFPIGM(xkt , qkt , xrt , qrt , . . . ) is a binary GM index. If output and input sets
are homothetic and technical change is HN, then MGM TFPI numbers are equal to
primal index numbers computed using (3.44).

3.3.7 Toy Example

Reconsider the output and input quantity and price data reported earlier in Tables 1.4
and 1.5. Sets of associated TFPI numbers are reported in Table3.5. These numbers
were obtained by dividing the output index numbers in Table3.1 by the corresponding
input index numbers in Table3.3. In Table 3.5, the index numbers in any given row
compare the inputs and outputs in that row with the inputs and outputs in row A.
All of these index numbers are proper in the sense that they have been obtained
by dividing proper output index numbers by proper input index numbers. They all
satisfy TI1 to TI6. Observe, for example, that (a) the output vector in rowW is twice
as big as the output vector in row A, (b) the input vector in rowW is only 0.919 times
as big as the input vector in row A, and (c), in any given column, the index number
in row W is equal to 2/0.919 = 2.176.

TFPIs that do not generally satisfy one or more of axioms TI1 to TI6 include
Fisher, Törnqvist, CF, CT, EKS and CCD indices. Index numbers obtained using
these indices are reported in Table3.6. These numbers were obtained by dividing
the output index numbers in Table 3.2 by the corresponding input index numbers in
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Table 3.5 Proper TFPI numbersa,b

Row q1 q2 x1 x2 AEW L GY OLS P D BOD Ave.

A 1 1 1 1 1 1 1 1 1 1 1 1

B 1 1 0.56 0.56 1.786 1.786 1.786 1.786 1.786 1.786 1.786 1.786

C 2.37 2.37 1 1 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37

D 2.11 2.11 1.05 0.7 2.411 2.703 2.539 2.249 2.738 2.738 2.541 2.554

E 1.81 3.62 1.05 0.7 3.103 3.516 3.133 2.198 4.694 4.694 3.321 3.422

F 1 1 0.996 0.316 1.524 2.117 1.948 1.381 2.412 2.412 2.182 1.958

G 1.777 3.503 1.472 0.546 2.616 3.515 3.054 1.807 5.069 5.069 3.440 3.324

H 0.96 0.94 0.017 0.346 5.234 3.513 9.811 24.340 5.543 5.543 4.251 6.647

I 5.82 0.001 4.545 0.01 1.278 2.675 0.464 1.375 0.268 0.268 11.558 1.089

J 6.685 0.001 4.45 0.001 1.502 3.159 1.890 2.962 1.773 1.773 14.249 2.750

K 1.381 4.732 1 1 3.057 3.110 2.634 1.741 4.726 4.726 3.137 3.147

L 0.566 4.818 1 1 2.692 2.760 1.740 0.847 4.810 4.810 2.968 2.576

M 1 3 1.354 1 1.699 1.879 1.565 0.988 2.789 2.789 1.809 1.833

N 0.7 0.7 0.33 0.16 2.857 3.516 3.221 2.594 3.686 3.686 3.134 3.218

O 2 2 1 1 2 2 2 2 2 2 2 2

P 1 1 0.657 0.479 1.761 1.923 1.827 1.662 1.937 1.937 1.834 1.838

R 1 3 1 1 2 2.032 1.779 1.229 2.996 2.996 2.048 2.071

S 1 1 1.933 0.283 0.903 1.509 1.568 0.883 2.243 2.243 2.163 1.540

T 1.925 3.722 1 1 2.824 2.852 2.720 2.179 3.719 3.719 2.867 2.939

U 1 1 1 0.31 1.527 2.134 1.966 1.385 2.445 2.445 2.218 1.976

V 1 5.166 1 1 3.083 3.150 2.366 1.362 5.159 5.159 3.183 3.083

W 2 2 0.919 0.919 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176

X 1 1 1.464 0.215 1.191 1.991 2.067 1.164 2.954 2.954 2.848 2.030

Y 1 1 0.74 0.74 1.351 1.351 1.351 1.351 1.351 1.351 1.351 1.351

Z 1.81 3.62 2.1 1.4 1.551 1.758 1.567 1.099 2.347 2.347 1.661 1.711

aAEW = additive with equal weights; L = Lowe; GY = geometric Young; OLS = multiplicative
with OLS weights; P = primal with CNLS parameter estimates; D = dual with CNLS parameter
estimates; BOD = benefit-of-the-doubt
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p.
8. Some numbers may be incoherent at the third decimal place due to rounding (e.g., the number
in row Z of column AEW is not exactly half as big as the number in row E of column AEW due to
rounding)

Table 3.4. Again, numbers that are clearly incoherent are marked with an asterisk
(∗). Observe, for example, that the output vector in row Z is the same as the output
vector in row E, and the input vector in row Z is twice as big as the input vector in
row E, but the TFPI numbers in row Z are not half as big as the index numbers in
row E. Again, in this book, these types of errors are viewed as measurement errors.
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Table 3.6 Other TFPI numbersa,b

Row q1 q2 x1 x2 F T CF CT EKS CCD

A 1 1 1 1 1 1 1 1 1 1

B 1 1 0.56 0.56 1.786 1.786 1.786 1.786 1.889∗ 1.922∗

C 2.37 2.37 1 1 2.37 2.37 2.37 2.37 2.37 2.37

D 2.11 2.11 1.05 0.7 2.737 2.725 2.737 2.725 2.799 2.870

E 1.81 3.62 1.05 0.7 3.599∗ 3.601∗ 3.495∗ 3.476∗ 3.359∗ 3.600∗

F 1 1 0.996 0.316 1.994 1.942 2.096 2.052 1.963 2.157

G 1.777 3.503 1.472 0.546 3.145 3.078 3.670 3.592 3.269 3.697

H 0.96 0.94 0.017 0.346 3.250 3.392 5.028 9.059 3.728 5.072

I 5.82 0.001 4.545 0.01 2.815 3.037 2.798 2.469 1.996 1.056

J 6.685 0.001 4.45 0.001 3.378 9.289 3.296 2.909 2.276 2.292

K 1.381 4.732 1 1 2.783 2.769 3.144 2.436 2.883 3.090

L 0.566 4.818 1 1 2.648 2.369 2.750 2.096 2.916 3.044

M 1 3 1.354 1 1.795 1.781 1.872 1.453 1.840 1.973

N 0.7 0.7 0.33 0.16 3.913 3.918 4.233 3.304 3.629 3.535

O 2 2 1 1 2 2 2.611∗ 2.012∗ 2.350∗ 2.421∗

P 1 1 0.657 0.479 1.935 1.930 2.332 1.798 1.985 2.113

R 1 3 1 1 1.893 1.880 2.682 2.083 2.162 2.366

S 1 1 1.933 0.283 1.738 1.631 1.757 1.369 1.498 1.549

T 1.925 3.722 1 1 2.631 2.631 3.652 2.848 2.991 3.104

U 1 1 1 0.31 2.317 2.248 2.391 1.853 2.117 2.324

V 1 5.166 1 1 2.099 2.070 2.996 2.475 2.445 2.418

W 2 2 0.919 0.919 2.176 2.176 3.364∗ 2.817∗ 2.390∗ 2.332∗

X 1 1 1.464 0.215 1.926 1.871 2.313 2.004 1.719 1.951

Y 1 1 0.74 0.74 1.351 1.351 1.925∗ 1.628∗ 1.401∗ 1.482∗

Z 1.81 3.62 2.1 1.4 1.672∗ 1.655∗ 2.523∗ 2.133∗ 1.866∗ 2.154∗
aF = Fisher; T = Törnqvist; CF = chained Fisher; CT = chained Törnqvist; EKS = Elteto-Koves-
Szulc; CCD = Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

3.4 Other Indices

Other types of indices include output price, input price, terms-of-trade, implicit
output, implicit input and implicit productivity indices.
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3.4.1 Output Price Indices

In this book, an index that compares the output prices received by firm i in period t
with the output prices received by firm k in period s is defined as any variable of the
form

P I (pks, pit ) ≡ P(pit )/P(pks) (3.60)

where P(.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. If output prices are positive, then all indices of this type satisfy
the following axioms:

PI1 prl ≥ pit ⇒ P I (pks, prl) ≥ P I (pks, pit ) (weak monotonicity),
PI2 P I (pks, λpit ) = λP I (pks, pit ) for λ > 0 (homogeneity type I),
PI3 P I (λpks, λpit ) = P I (pks, pit ) for λ > 0 (homogeneity type II),
PI4 P I (pks, λpks) = λ for λ > 0 (proportionality),
PI5 P I (pks, pit ) = 1/P I (pit , pks) (time-space reversal) and
PI6 P I (pks, prl)P I (prl , pit ) = P I (pks, pit ) (transitivity).

The interpretation of these axioms is analogous to the interpretation of QI1 to QI6.
In a cross-section context, for example, the proportionality axiom says that if the
output prices received by firm A are exactly λ times the output prices received by
firm B, then the index that compares the two sets of prices must take the value
λ. In this book, an output price index is said to be proper if and only if PI1 to
PI6 are satisfied.29 Again, any nonnegative, nondecreasing, linearly-homogeneous,
scalar-valued aggregator function can be used for purposes of constructing a proper
output price index. Again, the choice of function is generally a matter of taste. Linear
functions can be used to construct additive indices; an example is the Lowe price
index defined by Balk and Diewert (2003, Eq. 5).30 Double-log functions can be
used to construct multiplicative indices; an example is the GY output price index
defined by IMF (2004, p. 10). Locally-linear functions can be used to construct BOD
indices. Finally, if firms are price takers in output markets, then revenue functions
can be used to construct dual indices. In this last case, a suitable aggregator function
is P(pit ) ∝ Rt̄ (x̄, pit , z̄) where t̄ is a fixed time period and x̄ and z̄ are fixed vectors
of inputs and environmental variables (as usual, the choices of t̄ , x̄ and z̄ are a matter
of taste). The associated dual index that compares the output prices received by firm
i in period t with the output prices received by firm k in period s is

P I D(pks, pit ) ≡ Rt̄ (x̄, pit , z̄)/R
t̄ (x̄, pks, z̄). (3.61)

29In O’Donnell (2012b), an output price index is said to be proper if and only if nine axioms are
satisfied. If PI1 to PI6 are satisfied, then, and only then, eight of the O’Donnell (2012b) axioms are
satisfied. If the aggregator function is differentiable, then the ninth axiom is also satisfied.
30 Balk and Diewert (2003) define their price index in a consumer context. According to Hill (2008,
p. 2), many consumer price indices produced by statistical agencies turn out to be Lowe indices.
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If there is no technical change, then this index is equivalent to the output price index
defined byO’Donnell (2012b, Eq. 7). If there is no technical or environmental change,
then it is equivalent to the output price index defined by Färe and Primont (1995,
Eq. 3.5.6). If output sets are homothetic, then it does not depend on x̄ . If technical
change is IHON, then it does not depend on t̄ or z̄. Ultimately, the exact form of the
index depends on the revenue function. If the revenue function is given by (2.17),
for example, then

P I D(pks, pit ) =
(∑

n γ σ
n p1−σ

nit∑
n γ σ

n p1−σ
nks

)1/(1−σ)

. (3.62)

Most other output price indices are not proper in the sense that they do not sat-
isfy one or more of axioms PI1 to PI6. These include various binary, chained and
multilateral indices. Binary output price indices are designed for comparing two out-
put price vectors only; they do not generally satisfy PI6 (transitivity). The class of
binary output price indices includes Fisher and Törnqvist indices. Chained output
price indices are mainly used for comparing the prices received by a single firm over
several time periods; they do not generally satisfy PI4 (proportionality). The class of
chained output price indices includes CF and CT indices. Finally, multilateral output
price indices are mainly used for comparing the prices received by several firms in
a single time period; again, they do not generally satisfy PI4 (proportionality). The
class of multilateral output price indices includes EKS and CCD indices.

To illustrate, reconsider the output quantities and prices reported in Table1.4. Sets
of associated output price index numbers are reported in Table3.7. In this table, the
index numbers in any given row compare the output prices in that rowwith the output
prices in row A. The numbers in the L, GY and BOD columns are Lowe, geometric
Young and benefit-of-the-doubt index numbers; these are all proper index numbers
in the sense that they have been obtained using indices that satisfy axioms PI1 to
PI6. On the other hand, the numbers in the T, CT and CCD columns are Törnqvist,
chained Törnqvist and Caves-Christensen-Diewert index numbers that have been
obtained using indices that do not generally satisfy one or more of those axioms.
Again, for illustrative purposes, the CT index numbers were computed by treating
the observations in the dataset as observations on a single firm over twenty-five
periods, while the CCD index numbers were computed by treating the observations
in the dataset as observations on twenty-five firms in a single period. Again, numbers
that are clearly incoherent are marked with an asterisk (∗). Observe, for example,
that the output prices in row K are the same as the output prices in row A, but the CT
and CCD index numbers in row K are less than one (indicating that prices fell). As
another example, the output prices in row T are both higher than the output prices in
row A, but the CT index number in row T is less than one. Again, in this book, these
types of errors are viewed as measurement errors.
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Table 3.7 Output price index numbersa,b

Row p1 p2 L GY BOD T CT CCD

A 0.57 0.41 1 1 1 1 1 1

B 0.26 0.25 0.529 0.531 0.486 0.520 0.520 0.523

C 0.57 0.41 1 1 1 1 1 1

D 0.58 0.53 1.147 1.154 1.071 1.133 1.133 1.138

E 0.26 0.26 0.54 0.542 0.491 0.545 0.535 0.536

F 0.59 0.76 1.421 1.405 1.193 1.378 1.418 1.392

G 0.63 0.65 1.332 1.335 1.198 1.345 1.320 1.323

H 0.34 0.31 0.672 0.675 0.627 0.663 0.664∗ 0.666

I 0.46 0.58 1.094 1.083 0.925 0.908 0.970 0.992

J 0.61 1.43 2.211 1.988 1.538 1.370 1.286 1.548

K 0.57 0.41 1 1 1 1 0.789∗ 0.960∗

L 0.49 0.65 1.202 1.185 1 1.294 1.117 1.246

M 0.51 0.46 1.002 1.007 0.939 1.019 0.846 0.987

N 0.52 0.23 0.747 0.707 0.879 0.765 0.596∗ 0.757

O 0.37 0.17 0.538 0.513 0.625 0.551 0.429 0.546

P 0.41 0.76 1.255 1.182 0.939 1.192 0.932 1.214

R 0.53 0.48 1.043 1.049 0.976 1.061 0.735 1.028

S 0.53 0.37 0.917 0.915 0.925 0.918 0.633∗ 0.918

T 0.91 0.53 1.453 1.429 1.538 1.444 0.999∗ 1.406

U 0.31 1.03 1.473 1.213 1.108 1.349 1.053 1.392

V 0.47 0.08 0.528 0.387 0.794 0.435 0.254 0.401

W 0.57 0.27 0.839 0.803 0.963 0.857 0.462∗ 0.850

X 0.31 0.51 0.874 0.839 0.679 0.836 0.452 0.849

Y 0.31 0.67 1.058 0.968 0.755 0.997 0.540 1.018

Z 0.42 0.69 1.183 1.136 0.920 1.202 0.600 1.196
aL = Lowe; GY = geometric Young; BOD = benefit-of-the-doubt; T = Törnqvist; CT = chained
Törnqvist; CCD = Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

3.4.2 Input Price Indices

In this book, an index that compares the input prices paid by firm i in period t with
the input prices paid by firm k in period s is defined as any variable of the form

W I (wks,wit ) ≡ W (wit )/W (wks) (3.63)

where W (.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. If input prices are positive, then all indices of this type satisfy
the following axioms:
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WI1 wrl ≥ wit ⇒ WI (wks,wrl) ≥ WI (wks,wit ) (weak monotonicity),
WI2 WI (wks, λwit ) = λWI (wks,wit ) for λ > 0 (homogeneity type I),
WI3 W I (λwks, λwit ) = WI (wks,wit ) for λ > 0 (homogeneity type II),
WI4 WI (wks, λwks) = λ for λ > 0 (proportionality),
WI5 WI (wks,wit ) = 1/WI (wit ,wks) (time-space reversal) and
WI6 WI (wks,wrl)WI (wrl ,wit ) = WI (wks,wit ) (transitivity).

The interpretation of these axioms is analogous to the interpretation of PI1 to PI6.
In this book, an input price index is said to be proper if and only if WI1 to WI6
are satisfied. Again, any nonnegative, nondecreasing, linearly-homogeneous, scalar-
valued aggregator function can be used for purposes of constructing a proper input
price index. Again, the choice of function is generally a matter of taste. Linear
functions can be used to construct additive indices. Double-log functions can be used
to construct multiplicative indices. Locally-linear functions can be used to construct
BOD indices. Finally, if firms are price takers in input markets, then cost functions
can be used to construct dual indices. In this last case, a suitable aggregator function
isW (wit ) ∝ Ct̄ (wit , q̄, z̄)where t̄ is a fixed time period and q̄ and z̄ are fixed vectors
of outputs and environmental variables (again, the choices of t̄ , q̄ and z̄ are a matter
of taste). The associated dual index that compares the input prices paid by firm i in
period t with the input prices paid by firm k in period s is

WI D(wks,wit ) ≡ Ct̄ (wit , q̄, z̄)/Ct̄ (wks, q̄, z̄). (3.64)

If there is no technical or environmental change, then this index is equivalent to the
input price index defined by Färe and Primont (1995, Eq. 3.5.1). If input sets are
homothetic, then it does not depend on q̄ . If technical change is IHIN, then it does
not depend on t̄ or z̄. Ultimately, the exact form of the index depends on the cost
function. If the cost function is given by (2.22), for example, then

WI D(wks,wit ) =
M∏

m=1

(
wmit

wmks

)λm

. (3.65)

This index can be viewed as a multiplicative index with weights given by shadow
cost shares.

Most other input price indices are not proper in the sense that theydonot satisfy one
ormore of axiomsWI1 toWI6. These include various binary, chained andmultilateral
indices. Binary input price indices are designed for comparing two input price vectors
only; they do not generally satisfy WI6 (transitivity). The class of binary input price
indices includes Fisher and Törnqvist indices. Chained input price indices are mainly
used for comparing the prices paid by a single firm over several time periods; they do
not generally satisfy WI4 (proportionality). The class of chained input price indices
includes CF and CT indices. Finally, multilateral input price indices are mainly used
for comparing the prices paid by several firms in a single time period; again, they
do not generally satisfy WI4 (proportionality). The class of multilateral input price
indices includes EKS and CCD indices.
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To illustrate, reconsider the input quantities and prices reported in Table1.5. Sets
of associated input price index numbers are reported in Table3.8. In this table, the
index numbers in any given row compare the input prices in that row with the input
prices in row A. The numbers in the L, GY and BOD columns are Lowe, geometric
Young and benefit-of-the-doubt index numbers; these are all proper index numbers
in the sense that they have been obtained using indices that satisfy axioms WI1 to
WI6. On the other hand, the numbers in the T, CT and CCD columns are Törnqvist,
chained Törnqvist and Caves-Christensen-Diewert index numbers that have been
obtained using indices that do not generally satisfy one or more of those axioms.
Again, for illustrative purposes, the CT index numbers were computed by treating

Table 3.8 Input price index numbersa,b

Row w1 w2 L GY BOD T CT CCD

A 0.28 1.91 1 1 1 1 1 1

B 0.22 0.58 0.411 0.454 0.590 0.368 0.368∗ 0.395

C 0.28 1.91 1 1 1 1 1 1

D 0.16 0.41 0.294 0.325 0.427 0.274 0.274 0.282

E 0.07 1.02 0.471 0.387 0.443 0.491 0.456 0.446

F 0.24 0.29 0.309 0.316 0.615 0.317 0.358 0.309

G 0.16 0.16 0.192 0.189 0.410 0.191 0.227∗ 0.191

H 0.17 0.7 0.420 0.454 0.510 0.380 0.587 0.432

I 0.27 0.39 0.374 0.394 0.692 0.489 0.554∗ 0.408

J 0.29 0.79 0.552 0.610 0.783 0.694 0.596∗ 0.527

K 0.28 1.91 1 1 1 1 0.859∗ 1

L 0.21 0.56 0.395 0.436 0.565 0.354 0.304 0.38

M 0.16 0.74 0.428 0.457 0.497 0.415 0.350 0.420

N 0.24 2.3 1.127 1.043 1 1.143 0.939 1.063

O 0.24 0.15 0.252 0.216 0.615 0.191 0.181 0.216

P 0.26 0.61 0.455 0.502 0.682 0.416 0.383 0.435

R 0.16 0.22 0.217 0.227 0.410 0.179 0.171∗ 0.197

S 0.19 0.62 0.403 0.443 0.535 0.437 0.299 0.376

T 0.17 0.26 0.241 0.256 0.436 0.201 0.188∗ 0.221

U 0.27 0.91 0.585 0.642 0.766 0.592 0.465∗ 0.554

V 0.29 0.78 0.548 0.605 0.781 0.492 0.434∗ 0.527

W 0.39 0.81 0.640 0.701 1 0.555 0.487∗ 0.603

X 0.21 0.31 0.293 0.310 0.538 0.336 0.227 0.304

Y 0.23 0.69 0.464 0.511 0.635 0.422 0.345∗ 0.450

Z 0.31 0.22 0.336 0.300 0.795 0.287 0.215∗ 0.309
aL = Lowe; GY = geometric Young; BOD = benefit-of-the-doubt; T = Törnqvist; CT = chained
Törnqvist; CCD = Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)
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the observations in the dataset as observations on a single firm over twenty-five
periods, while the CCD index numbers were computed by treating the observations
in the dataset as observations on twenty-five firms in a single period. Again, numbers
that are clearly incoherent are marked with an asterisk (∗). Observe, for example,
that the input prices in row K are the same as the input prices in row A, but the CT
index number in row K is less than one (indicating that prices fell).

3.4.3 Terms-of-Trade Indices

The terms of trade (TT) is a measure of prices received divided by a measure of
prices paid. In this book, a proper index that compares the TT of firm i in period t
with the TT of firm k in period s is defined as any variable of the form

TTI (wks, pks,wit , pit ) ≡ PI (pks, pit )/WI (wks,wit ) (3.66)

where PI (.) is any proper output price index and WI (.) is any proper input price
index. If all output and input prices are positive, then all terms-of-trade indices (TTIs)
of this type satisfy the following axioms:

TT1 prl ≥ pit andwrl ≤ wit ⇒ TTI (wks, pks,wrl , prl) ≥ TTI (wks, pks,wit , pit )
(weak monotonicity);

TT2 TTI (wks, pks, δwit λpit ) = (λ/δ)TTI (wks, pks,wit , pit ) for λ > 0 and δ > 0
(homogeneity type I);

TT3 TTI (δwks, λpks, δwit , λpit ) = TTI (wks, pks,wit , pit ) for λ > 0 and δ > 0
(homogeneity type II);

TT4 TTI (wks, pks, δwks, λpks) = λ/δ for λ > 0 and δ > 0 (proportionality);
TT5 TTI (wks, pks,wit , pit ) = 1/TTI (wit , pit ,wks, pks) (time-space reversal); and
TT6 TTI (wks, pks,wit , pit ) = TTI (wks, pks,wrl , prl)TTI (wrl, prl ,wit , pit )

(transitivity).

Again, the interpretation of these axioms is straightforward. In a time-series context,
for example, axiom TT4 (proportionality) says that if all output and input prices
in period 5 were exactly double what they had been in period 1, then the index
that compares the TT in the two periods must take the value one (indicating that
there was no change in the TT). Any proper price indices can be used for purposes
of constructing a proper TTI. Again, the choice of indices is generally a matter
of taste. Additive (resp. multiplicative) TTIs are constructed by dividing additive
(resp. multiplicative) output price indices by additive (resp. multiplicative) input
price indices. Dual (resp. BOD) TTIs are constructed by dividing dual (resp. BOD)
output price indices by dual (resp. BOD) input price indices.

Most other TTIs are not proper in the sense that they do not satisfy one or more of
axioms TT1 to TT6. These include various binary, chained and multilateral indices.
Binary TTIs do not generally satisfy TT6 (transitivity); the class of binary TTIs
includes Fisher and Törnqvist indices. Chained TTIs do not generally satisfy TT4
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(proportionality); the class of chained TTIs includes CF and CT indices. Finally,
multilateral input price indices do not generally satisfy TT4 (proportionality); the
class of multilateral TTIs includes EKS and CCD indices.

To illustrate, reconsider the output and input quantities and prices reported in
Tables 1.4 and 1.5. Sets of associated TTI numbers are reported in Table3.9. These
numbers were obtained by dividing the output price index numbers in Table 3.7 by
the corresponding input price index numbers in Table 3.8. In Table3.9, the index
numbers in any given row compare the prices received and paid in that row with the
prices received and paid in row A. The L, GY and BOD index numbers are proper in
the sense that they have been obtained by dividing proper output price index numbers
by proper input price index numbers; they all satisfy axioms TT1 to TT6. On the
other hand, the T, CT and CCD numbers have been obtained using indices that do
not generally satisfy one or more of those axioms. Again, numbers that are clearly
incoherent are marked with an asterisk (∗). Observe, for example, that the prices
received and paid in row K are the same as the prices received and paid in row A,
but the CT and CCD index numbers in row K are less than one.

3.4.4 Implicit Output Indices

Implicit output indices are constructed by dividing revenue indices by output price
indices. For example, the implicit dual (ID) index that compares the outputs of firm
i in period t with the outputs of firm k in period s is

QI I D(qks, qit , pks, pit ) ≡ RI (pks, qks, pit , qit )/PI
D(pks, pit ) (3.67)

where RI (pks, qks, pit , qit ) = Rit/Rks is a revenue index and P I D(pks, pit ) is the
dual output price index defined by (3.61). Other implicit output indices are obtained
in a similarway. Implicit output indices are not proper indices in the sense that they do
not generally satisfy QI1 to QI6. Much depends on the characteristics of production
technologies and managerial behaviour. For example, if (a) firms are price takers in
output markets, (b) output sets are homothetic, (c) technical change is IHON, and
(d) the OAE of firm k in period s is equal to the OAE of firm i in period t , then the
ID output index defined by (3.67) is equal to the primal output index defined by (3.5)
(implying it satisfies QI1 to QI6).31

To illustrate, reconsider the output quantities and prices reported earlier in
Table1.4. Sets of associated implicit output index numbers are reported in Table3.10.
The index numbers in this table were obtained by dividing revenue index numbers
by the output price index numbers in Table3.7. In Table 3.10, the index numbers in
each row compare the outputs in that row with the outputs in row A. Again, numbers
that are clearly incoherent are marked with an asterisk (∗). Observe, for example, that

31A proof is given in Appendix A.1 (Proposition 19).
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Table 3.9 Terms-of-trade index numbersa,b

Row p1 p2 w1 w2 L GY BOD T CT CCD

A 0.57 0.41 0.28 1.91 1 1 1 1 1 1

B 0.26 0.25 0.22 0.58 1.286 1.17 0.823 1.415 1.415 1.325

C 0.57 0.41 0.28 1.91 1 1 1 1 1 1

D 0.58 0.53 0.16 0.41 3.9 3.552 2.509 4.137 4.137 4.029

E 0.26 0.26 0.07 1.02 1.147 1.399 1.106 1.111 1.173 1.201

F 0.59 0.76 0.24 0.29 4.6 4.451 1.939 4.345 3.961 4.501

G 0.63 0.65 0.16 0.16 6.92 7.078 2.92 7.051 5.827 6.934

H 0.34 0.31 0.17 0.7 1.599 1.489 1.231 1.746 1.132 1.542

I 0.46 0.58 0.27 0.39 2.928 2.752 1.335 1.857 1.749 2.428

J 0.61 1.43 0.29 0.79 4.004 3.261 1.963 1.975 2.157 2.935

K 0.57 0.41 0.28 1.91 1 1 1 1 0.919∗ 0.960∗

L 0.49 0.65 0.21 0.56 3.043 2.717 1.771 3.657 3.675 3.281

M 0.51 0.46 0.16 0.74 2.339 2.206 1.889 2.455 2.416 2.352

N 0.52 0.23 0.24 2.3 0.662 0.678 0.879 0.669 0.635 0.713

O 0.37 0.17 0.24 0.15 2.136 2.378 1.016 2.885 2.375 2.527

P 0.41 0.76 0.26 0.61 2.756 2.356 1.377 2.864 2.431 2.789

R 0.53 0.48 0.16 0.22 4.812 4.628 2.38 5.938 4.304 5.213

S 0.53 0.37 0.19 0.62 2.272 2.065 1.728 2.103 2.115 2.440

T 0.91 0.53 0.17 0.26 6.027 5.579 3.528 7.176 5.298 6.355

U 0.31 1.03 0.27 0.91 2.517 1.89 1.445 2.278 2.265 2.511

V 0.47 0.08 0.29 0.78 0.962 0.64 1.017 0.886 0.586 0.760

W 0.57 0.27 0.39 0.81 1.311 1.146 0.963 1.543 0.948 1.409

X 0.31 0.51 0.21 0.31 2.981 2.707 1.261 2.491 1.993 2.797

Y 0.31 0.67 0.23 0.69 2.282 1.894 1.189 2.363 1.565 2.265

Z 0.42 0.69 0.31 0.22 3.519 3.789 1.157 4.189 2.791 3.867
aL = Lowe; GY = geometric Young; BOD = benefit-of-the-doubt; T = Törnqvist; CT = chained
Törnqvist; CCD = Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

the output vector in row E is the same as the output vector in row Z, but the index
numbers in row E differ from the index numbers in row Z.

3.4.5 Implicit Input Indices

Implicit input indices are constructed by dividing cost indices by input price indices.
For example, the implicit dual (ID) index that compares the inputs of firm i in period
t with the inputs of firm k in period s is
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Table 3.10 Implicit output index numbersa,b

Row q1 q2 IL IGY IBOD IT ICT ICCD

A 1 1 1 1 1 1 1 1

B 1 1 0.984∗ 0.980∗ 1.071∗ 1 1 0.995∗

C 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37

D 2.11 2.11 2.083∗ 2.072∗ 2.232∗ 2.11 2.11 2.101∗

E 1.81 3.62 2.667∗ 2.657∗ 2.937∗ 2.641∗ 2.695∗ 2.688∗

F 1 1 0.969∗ 0.980∗ 1.154∗ 1 0.972∗ 0.989∗

G 1.777 3.503 2.602 2.595 2.893 2.577 2.626 2.619

H 0.96 0.94 0.938 0.933 1.005 0.951 0.950 0.946

I 5.82 0.001 2.498 2.523 2.955 3.011 2.818 2.755

J 6.685 0.001 1.883 2.093 2.707 3.037 3.237 2.690

K 1.381 4.732 2.783 2.783 2.783 2.783 3.526 2.900

L 0.566 4.818 2.894 2.936 3.479 2.688 3.114 2.792

M 1 3 1.925∗ 1.914∗ 2.055∗ 1.893∗ 2.280∗ 1.954∗

N 0.7 0.7 0.718∗ 0.758∗ 0.610∗ 0.7 0.899∗ 0.707∗

O 2 2 2.047∗ 2.148∗ 1.763∗ 2.001∗ 2.567∗ 2.019∗

P 1 1 0.952∗ 1.010∗ 1.272∗ 1.001∗ 1.281∗ 0.984∗

R 1 3 1.926∗ 1.916∗ 2.059∗ 1.894∗ 2.736∗ 1.955∗

S 1 1 1.002∗ 1.003∗ 0.993∗ 1 1.450∗ 1.001∗

T 1.925 3.722 2.615 2.659 2.471 2.631 3.806∗ 2.703

U 1 1 0.929∗ 1.127∗ 1.235∗ 1.014∗ 1.298∗ 0.982∗

V 1 5.166 1.708 2.327 1.135 2.070 3.543 2.250

W 2 2 2.044∗ 2.134∗ 1.780∗ 2.001∗ 3.710∗ 2.018∗

X 1 1 0.957∗ 0.997∗ 1.232∗ 1 1.851∗ 0.985∗

Y 1 1 0.945∗ 1.033∗ 1.325∗ 1.003∗ 1.851∗ 0.982∗

Z 1.81 3.62 2.810∗ 2.926∗ 3.614∗ 2.766∗ 5.542∗ 2.781∗
aIL = implicit Lowe; IGY = implicit geometric Young; IBOD = implicit benefit-of-the-doubt; IT =
implicit Törnqvist; ICT = implicit chained Törnqvist; ICCD = implicit Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

XI I D(xks, xit ,wks,wit ) ≡ C I (wks, xks,wit , xit )/WI D(wks,wit ) (3.68)

whereC I (wks, xks,wit , xit ) = Cit/Cks is a cost index andW I D(wks,wit ) is the dual
input price index defined by (3.64). Other implicit input indices are obtained in a
similar way. Implicit input indices are not proper indices in the sense that they do
not generally satisfy XI1 to XI6. Again, much depends on the characteristics of
production technologies and managerial behaviour. For example, if (a) firms are
price takers in input markets, (b) input sets are homothetic, (c) technical change is
IHIN, and (d) the IAE of firm k in period s is equal to the IAE of firm i in period t ,
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then the ID input index defined by (3.68) is equal to the primal input index defined
by (3.24) (implying it satisfies XI1 to XI6).32

To illustrate, reconsider the input quantities and prices reported earlier inTable1.5.
Sets of associated implicit input index numbers are reported in Table3.11. The index
numbers in this table were obtained by dividing cost index numbers by the input price
index numbers in Table3.8. In Table3.11, the index numbers in each row compare the
inputs in that rowwith the inputs in rowA.Again, numbers that are clearly incoherent
are marked with an asterisk (∗). Observe, for example, that the input vector in row T
is the same as the input vector in row A, but the index numbers in row T differ from
one.

3.4.6 Implicit Productivity Indices

Implicit productivity indices are constructed by dividing implicit output indices by
implicit input indices (equivalently, by dividing profitability indices by terms-of-
trade indices). For example, the implicit dual (ID) index that compares the TFP of
firm i in period t with the TFP of firm k in period s is

TFPI ID(xks, qks, xit , qit , . . . ) ≡ QI ID(qks, qit , . . . )/XI
ID(xks, xit , . . . ) (3.69)

where QI ID(qks, qit , . . . ) is the ID output index defined by (3.67) and X I ID

(xks, xit , . . . ) is the ID input index defined by (3.68). Other implicit TFPIs are
obtained in a similar way. These are not proper indices in the sense that they cannot
generally be written as proper output indices divided by proper input indices; this
implies they do not generally satisfy TI1 to TI6. Again, much depends on the char-
acteristics of production technologies and managerial behaviour. For example, (a) if
firms are price takers in output and input marketsindexprice taker!in input markets,
(b) output and input sets are homothetic, (c) technical change is HN, and (d) the
OAE and IAE of firm k in period s are equal to the OAE and IAE of firm i in period
t , then the ID TFPI defined by (3.69) is equal to the primal TFPI defined by (3.44)
(implying it satisfies TI1 to TI6).33

To illustrate, reconsider the output and input quantities and prices reported
in Tables 1.4 and 1.5. Sets of associated implicit TFPI numbers are reported in
Table3.12. These numbers were obtained by dividing the implicit output index num-
bers in Table3.10 by the corresponding implicit input index numbers in Table3.11.
In Table3.12, the index numbers in any given row compare the inputs and outputs
in that row with the inputs and outputs in row A. Again, numbers that are clearly
incoherent are marked with an asterisk (∗). Observe, for example, that the output

32A proof is given in Appendix A.1 (Proposition 20).
33A proof is given in Appendix A.1 (Proposition 21).
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Table 3.11 Implicit input index numbersa,b

Row x1 x2 IL IGY IBOD IT ICT ICCD

A 1 1 1 1 1 1 1 1

B 0.56 0.56 0.498∗ 0.451∗ 0.347∗ 0.556∗ 0.556∗ 0.518∗

C 1 1 1 1 1 1 1 1

D 1.05 0.7 0.706∗ 0.640∗ 0.487∗ 0.759∗ 0.759∗ 0.736∗

E 1.05 0.7 0.764∗ 0.928∗ 0.811∗ 0.732∗ 0.789∗ 0.806∗

F 0.996 0.316 0.489 0.478 0.245∗ 0.476 0.422 0.488

G 1.472 0.546 0.766 0.781 0.359 0.773 0.651 0.773

H 0.017 0.346 0.266 0.247 0.220 0.295 0.191 0.259

I 4.545 0.01 1.505 1.428 0.812 1.150 1.014 1.376

J 4.45 0.001 1.068 0.967 0.753 0.850 0.989 1.118

K 1 1 1 1 1 1 1.164∗ 1

L 1 1 0.890∗ 0.806∗ 0.623∗ 0.994∗ 1.157∗ 0.926∗

M 1.354 1 1.020 0.957 0.879 1.052 1.248 1.041

N 0.33 0.16 0.181 0.196 0.204 0.179 0.217 0.192

O 1 1 0.707∗ 0.825∗ 0.289∗ 0.933∗ 0.985∗ 0.825∗

P 0.657 0.479 0.465∗ 0.422∗ 0.310∗ 0.508 0.552 0.486

R 1 1 0.800∗ 0.765∗ 0.423∗ 0.971∗ 1.016∗ 0.880∗

S 1.933 0.283 0.614 0.559 0.463 0.567 0.828 0.659

T 1 1 0.814∗ 0.767∗ 0.450∗ 0.975∗ 1.042∗ 0.887∗

U 1 0.31 0.431 0.393 0.329 0.426 0.542 0.455

V 1 1 0.891∗ 0.807∗ 0.625∗ 0.994∗ 1.125∗ 0.927∗

W 0.919 0.919 0.787∗ 0.718∗ 0.504∗ 0.907∗ 1.034∗ 0.835∗

X 1.464 0.215 0.582 0.551 0.317 0.509 0.753 0.563

Y 0.74 0.74 0.670∗ 0.608∗ 0.490∗ 0.737∗ 0.901∗ 0.691∗

Z 2.1 1.4 1.302∗ 1.460∗ 0.551∗ 1.526∗ 2.037∗ 1.416∗
aIL = implicit Lowe; IGY = implicit geometric Young; IBOD = implicit benefit-of-the-doubt; IT =
implicit Törnqvist; ICT = implicit chained Törnqvist; ICCD = implicit Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

vector in row Z is the same as the output vector in row E, and the input vector in row
Z is twice as big as the input vector in row E, but the index numbers in row Z are not
half as big as the index numbers in row E.

3.5 Summary and Further Reading

Measuring changes in productivity involves assigning numbers to baskets of outputs
and inputs.Measurement theory says that so-called indexnumbers should be assigned
in such a way that the relationships between the numbers mirror the relationships
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Table 3.12 Implicit TFPI numbersa,b

Row q1 q2 x1 x2 IL IGY IBOD IT ICT ICCD

A 1 1 1 1 1 1 1 1 1 1

B 1 1 0.56 0.56 1.978∗ 2.174∗ 3.091∗ 1.798∗ 1.798∗ 1.920∗

C 2.37 2.37 1 1 2.37 2.37 2.37 2.37 2.37 2.37

D 2.11 2.11 1.05 0.7 2.949 3.238 4.585 2.781 2.781 2.855

E 1.81 3.62 1.05 0.7 3.492∗ 2.863∗ 3.622∗ 3.607∗ 3.415∗ 3.336∗

F 1 1 0.996 0.316 1.983 2.050 4.704 2.099 2.303 2.027

G 1.777 3.503 1.472 0.546 3.397 3.321 8.049 3.334 4.034 3.390

H 0.96 0.94 0.017 0.346 3.523 3.784 4.575 3.226 4.978 3.652

I 5.82 0.001 4.545 0.01 1.660 1.766 3.640 2.618 2.779 2.002

J 6.685 0.001 4.45 0.001 1.763 2.165 3.597 3.574 3.272 2.405

K 1.381 4.732 1 1 2.783 2.783 2.783 2.783 3.029 2.900

L 0.566 4.818 1 1 3.251 3.642 5.588 2.705 2.692 3.015

M 1 3 1.354 1 1.888 2.001 2.337 1.798 1.827 1.877

N 0.7 0.7 0.33 0.16 3.960 3.870 2.986 3.922 4.134 3.681

O 2 2 1 1 2.897∗ 2.602∗ 6.091∗ 2.145∗ 2.606∗ 2.449∗

P 1 1 0.657 0.479 2.049 2.397 4.100 1.972 2.322 2.024

R 1 3 1 1 2.408 2.503 4.868 1.951 2.692 2.222

S 1 1 1.933 0.283 1.631 1.795 2.145 1.762 1.752 1.518

T 1.925 3.722 1 1 3.211 3.469 5.487 2.697 3.653 3.046

U 1 1 1 0.31 2.155 2.869 3.753 2.381 2.395 2.160

V 1 5.166 1 1 1.917 2.883 1.815 2.083 3.150 2.428

W 2 2 0.919 0.919 2.597∗ 2.972∗ 3.534∗ 2.206∗ 3.590∗ 2.416∗

X 1 1 1.464 0.215 1.643 1.809 3.883 1.966 2.457 1.751

Y 1 1 0.74 0.74 1.410∗ 1.698∗ 2.706∗ 1.361∗ 2.055∗ 1.421∗

Z 1.81 3.62 2.1 1.4 2.157∗ 2.004∗ 6.561∗ 1.812∗ 2.720∗ 1.963∗
aIL = implicit Lowe; IGY = implicit geometric Young; IBOD = implicit benefit-of-the-doubt; IT =
implicit Törnqvist; ICT = implicit chained Törnqvist; ICCD = implicit Caves-Christensen-Diewert
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

between the baskets. In practice, assigning numbers to baskets of outputs and inputs
involves weighting the outputs and inputs in each basket. One way of ensuring that
the numbers are consistent with measurement theory is to use weights that do not
vary from one basket to the next. Some authors claim this fixed-weight approach is
absurd; for a recent discussion, see Diewert and Fox (2017, p. 279). The scientific
basis for these claims is unclear.34

In this book, an index that compares the outputs of firm i in period t with the
outputs of firm k in period s is defined as any variable of the form QI (qks, qit ) ≡

34Some observers put these claims down to hubris. See, for example, Samuelson and Swamy (1974,
p. 575).
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Q(qit )/Q(qks) where Q(.) is a nonnegative, nondecreasing, linearly-homogeneous,
scalar-valued aggregator function. Similarly, on the input side, an index that com-
pares the inputs of firm i in period t with the inputs of firm k in period s is defined
as any variable of the form X I (xks, xit ) ≡ X (xit )/X (xks) where X (.) is also a non-
negative, nondecreasing, linearly-homogeneous, scalar-valued function. Output and
input indices of this type yield numbers that are consistent with measurement theory.
They are also proper in the sense that, if outputs and inputs are positive, then they
satisfy a set of axioms listed in O’Donnell (2016). Two of the most important axioms
are a transitivity axiom and a proportionality axiom. The O’Donnell (2016) axioms
are weaker than most of the axioms (often called tests) discussed in the mainstream
index number literature (e.g., Diewert 1992; Balk 2008, pp. 58–61). These other
axioms/tests are relatively strong because they say something about price change as
well as quantity change. Not all of these other axioms/tests can be satisfied simulta-
neously; details can be accessed from Diewert (1992) and Balk (2008, Ch.3).

Any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued aggrega-
tor function can be used for purposes of constructing a proper quantity index. The
choice of function is generally a matter of taste. Linear functions can be used to con-
struct additive indices; examples include the Lowe output and input indices defined
by O’Donnell (2012c, p. 877) and the output and input ‘factors’ defined by Daraio
and Simar (2007, Eqs. 6.1, 6.2). Double-log functions can be used to construct mul-
tiplicative indices; examples include the geometric young (GY) output and input
indices defined by O’Donnell (2012b, 2016). Other functions that have been used
to construct quantity indices include constant elasticity of substitution (CES) and
fixed-proportions functions; the use of these functions in an index number context
can be traced back at least as far as Samuelson and Swamy (1974, p. 574). If outputs
(resp. inputs) are strongly disposable, then output (resp. input) distance functions can
be used to construct primal output (resp. input) indices; examples include the output
and input indices of Färe and Primont (1995, pp. 36, 38) and O’Donnell (2016, Eqs.
2, 3). If cost (resp. revenue) functions are homogeneous in outputs (resp. inputs),
then they can be used to construct dual output (resp. input) indices; an example is the
output index defined by O’Donnell (2012b, Eq. 3). Finally, locally-linear functions
can be used to construct benefit-of-the-doubt (BOD) indices; examples include the
output and input indices described by O’Donnell and Nguyen (2013), the ‘human
development’ indices of Mahlberg and Obersteiner (2001) and Despotis (2005), and
the ‘technology achievement’ index of Cherchye et al. (2008). The additive, multi-
plicative, primal and dual indices discussed in this book are all fixed-weight indices,
whereas the BOD indices are variable-weight indices. They are all proper indices,
and they all yield numbers that are consistent with measurement theory.

Quantity indices that are not proper include various binary, chained and mul-
tilateral indices. Binary quantity indices are designed for comparing two quantity
vectors only. They do not generally satisfy the transitivity axiom. The binary output
and input indices discussed in this chapter include Fisher, Törnqvist and generalised
Malmquist (GM) indices. Chained quantity indices are mainly used for comparing
the outputs or inputs of a single firm over several time periods. They do not gen-
erally satisfy the proportionality axiom. The chained quantity indices discussed in
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this chapter include chained Fisher (CF), chained Törnqvist (CT) and chained GM
(CGM) indices. Finally, multilateral quantity indices are mainly used for comparing
the outputs or inputs of several firms in a single time period. Again, they do not gener-
ally satisfy the proportionality axiom. The multilateral quantity indices discussed in
this chapter include Elteto-Koves-Szulc (EKS), Caves-Christensen-Diewert (CCD)
and multilateral GM (MGM) indices.

Measuring changes in outputs and inputs is a precursor to measuring changes
in TFP. In this book, a proper TFP index (TFPI) is defined as any proper output
index divided by any proper input index. Again, the choice of indices is generally a
matter of taste. Additive TFPIs are constructed by dividing additive output indices by
additive input indices; an example is the Lowe TFPI defined by O’Donnell (2012c, p.
877). Multiplicative TFPIs are constructed by dividing multiplicative output indices
by multiplicative input indices; examples include the GDF-based index defined by
Portela andThanassoulis (2006,Eq. 4) and theGY indexdefinedbyO’Donnell (2016,
Eq. 5). PrimalTFPIs are constructed bydividing primal output indices by primal input
indices; examples include the Färe-Primont index defined by O’Donnell (2014, Eq.
11) and the ‘general’ index defined by O’Donnell (2016, Eq. 4). Dual TFPIs are
constructed by dividing dual output indices by dual input indices. BOD TFPIs are
constructed by dividing BOD output indices by BOD input indices. For empirical
applications of proper TFPIs, see, for example,O’Donnell (2012c), Tozer andVillano
(2013), Islam et al. (2014), Laurenceson and O’Donnell (2014), Khan et al. (2015),
Pan and Walden (2015), Fissel et al. (2015), Mugera et al. (2016), Carrington et al.
(2016), Anik et al. (2017), Baráth and Fertö (2017) and Briec et al. (2018).35

There aremany productivity indices that cannot bewritten as proper output indices
divided by proper input indices. These include various binary, chained and multilat-
eral TFP indices. Again, binary TFP indices are designed for making binary compar-
isons. Again, they are not generally transitive. The binary TFP indices discussed in
this chapter include Fisher, Törnqvist, GM, Hicks-Moorsteen (HM), output-oriented
Malmquist (OM), and input-oriented Malmquist (IM) indices. Other binary TFP
indices include the ‘indirect Malmquist (input based)’ productivity index of Färe
and Grosskopf (1990, Eq. 3.3) and the ‘cost Malmquist’ productivity index of Mani-
adakis and Thanassoulis (2004, Eq. 15). Even though these indices are binary indices,
they are often used, inappropriately, to makemultiperiod and/or multilateral compar-
isons: for applications of Fisher TFPIs in amultiperiod and/ormultilateral setting, see
Ray and Mukherjee (1996), Kuosmanen and Sipiläinen (2009), Sheng et al. (2011)
and Khan et al. (2017); for an application of the Törnqvist TFPI, see Elnasri and
Fox (2017); for applications of the HM TFPI, see O’Donnell (2010b), Arora and
Arora (2013), Arjomandi et al. (2014), Arjomandi et al. (2015), See and Li (2015)
and Deaza et al. (2016); for applications of the OM TFPI, see Färe et al. (1994),

35Many of these authors use either the DPIN software of O’Donnell (2010a) or the R package of
Dakpo et al. (2016) to compute ‘Färe-Primont’ TFPI numbers. In this book, these index numbers
are viewed as additive index numbers obtained using estimated representative normalised shadow
prices as weights.
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Coelli and Rao (2005) and Worthington and Lee (2008); for applications of the IM
TFPI, see Suhariyanto and Thirtle (2001) and Rahman (2007).

Chained productivity indices are mainly used for comparing the TFP of a single
firm over several time periods. Again, they do not generally satisfy a proportionality
axiom.The chainedTFPIs discussed in this chapter includeCF,CT andCGMindices.
For an empirical application of the CF TFPI, see Economic Inisights (2014). For an
empirical application of the CT TFPI, see See and Coelli (2013, Table 4).

Multilateral productivity indices aremainly used for comparing the TFP of several
firms in a single time period. Again, they do not generally satisfy a proportionality
axiom.Themultilateral TFPIs discussed in this chapter includeEKS,CCDandMGM
indices. For an empirical application of the CCD TFPI, see Bao (2014).

Other types of indices discussed in this chapter include output price, input price,
terms-of-trade, implicit output, implicit input and implicit productivity indices.
Implicit output (resp. input) indices are obtained by dividing revenue (resp. cost)
indices by output price (resp. input price) indices. Implicit productivity indices are
obtained by dividing profitability indices by terms-of-trade indices. Implicit indices
are not generally consistent with measurement theory. For empirical applications of
implicit output indices, see Fox et al. (2003), Ball et al. (2004) and Lawrence et al.
(2006).

Measures of change that are not discussed in this book include various indicators.
The composite quantity indicator of Blancas et al. (2013, Eq. 5) can be viewed as a
multiplicativeBOD index; it yields numbers that are not consistentwithmeasurement
theory. The Luenberger productivity indicator of Chambers et al. (1996) is based on
differences rather than ratios; it cannot be written as a proper output quantity index
divided by a proper input quantity index.
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Chapter 4
Managerial Behaviour

To explain changes in outputs and inputs, and therefore changes in productivity, we
need to know something about managerial behaviour. The existence of different sets
and functions has few, if any, implications for behaviour. The existence of revenue
functions, for example, does not mean that managers will choose outputs in order
to maximise revenues, and the existence of cost functions does not mean they will
choose inputs to minimise costs. Instead, different managers will tend to behave
differently depending on what they value, and on what they can and cannot choose.
For example, if managers value goods and services at market prices, then, if possible,
they will tend to choose outputs and inputs to maximise profits. On the other hand,
if managers value products and services differently to the market, then they may
instead choose outputs and inputs tomaximisemeasures of productivity. This chapter
discusses some of the simplest optimisation problems faced by firm managers.

4.1 Output Maximisation

If a firm manager places nonnegative values on outputs (not necessarily market
values) and all other variables involved in the production process have been pre-
determined (i.e., determined in a previous period), then (s)he will generally aim to
maximise a measure of total output. If there is more than one output, then the precise
form of the manager’s output maximisation problem will depend on how easily (s)he
can choose the output mix.

4.1.1 Output Mix Predetermined

If the manager of firm i can only choose output vectors that are scalar multiples of
qit , then his/her period-t output-maximisation problem can be written as
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Fig. 4.1 Output maximisation when the output mix has been predetermined. If the output mix of
firm i had been predetermined, then the manager could have maximised total output by operating
at point C

max
q

{Q(q) : q ∝ qit, Dt
O(xit, q, zit) ≤ 1} (4.1)

whereQ(.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function satisfying Q(qit) > 0. The output vector that solves this prob-
lem is q̄it ≡ q̄t(xit, qit, zit) = qit/Dt

O(xit, qit, zit). This vector is unique and does not
depend on the particular form of the aggregator function. The associated aggregate
output isQ(q̄it) = Q(qit)/Dt

O(xit, qit, zit). The associated value of the output distance
function is Dt

O(xit, q̄it, zit) = 1. This implies that the output-maximising point lies
on the boundary of Pt(xit, zit) (i.e., on the production frontier).

To illustrate, suppose there are only two outputs. Also suppose that Q(q) =
a1q1 + a2q2 where a1 and a2 are both positive. Figure 4.1 depicts the output maximi-
sation problem that would have faced the manager of firm i in period t had the firm’s
output mix been predetermined. In this figure, the curve passing through point C rep-
resents the boundary of Pt(xit, zit). The outputs of firm i in period t map to point A.
The aggregate output at this point isQ(qit). The dashed line passing through point A
is an iso-output line1 with a slope of−a1/a2 and a vertical intercept ofQ(qit)/a2. The
other dashed lines are iso-output lines with the same slope but higher intercepts. Out-
put maximisation involves choosing the iso-output line with the highest intercept that
passes through a technically-feasible point. If the outputmix of firm i had been prede-
termined, then themanager couldhavemaximised total output byoperating at pointC.
The aggregate output at this point isQ(q̄it). For a numerical example, see Sect. 1.4.1.

1IfQ(qit) = a1q1it + a2q2it , then q2it = Q(qit)/a2 − (a1/a2)q1it . This is the equation of a line with
a slope of −a1/a2 and an intercept of Q(qit)/a2. The term iso-output derives from the fact that all
points on this line yield the same aggregate output, namely Q(qit).
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4.1.2 Outputs Chosen Freely

If outputs are strongly disposable, then it is technically possible for firmmanagers to
choose them freely. If the manager of firm i can choose outputs freely, then his/her
period-t output-maximisation problem can be written as

max
q

{Q(q) : Dt
O(xit, q, zit) ≤ 1} (4.2)

where Q(.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function with parameters (or weights) that represent the values the man-
ager places on outputs. If there is more than one output, then there may be several
output vectors that solve this problem. Let q̂it ≡ q̂t(xit, zit) denote one such vector.
The associated maximum aggregate output is Q(q̂it). If both the aggregator function
and the output distance function are differentiable, then this solution can be charac-
terised in terms of the marginal effects discussed in Sect. 2.4.2. For example, let q̂nit
denote the n-th element of q̂it . If there exists an n such that ∂Q(q̂it)/∂ q̂nit > 0 and
ptn(xit, q̂it, zit) > 0, thenDt

O(xit, q̂it, zit) = 1. This implies that the output-maximising
point lies on the production frontier. As another example, if both q̂nit and q̂kit are pos-
itive, then MRTt

kn(xit, q̂it, zit) = [∂Q(q̂it)/∂ q̂nit]/′[∂Q(q̂it)/∂ q̂kit]. This implies that
total output will be maximised at a point where an iso-output line (or curve, if the
aggregator function is nonlinear) is tangent to the production frontier.

To illustrate, reconsider the output-maximisation problem depicted in Fig. 4.1.
Relevant parts of that figure are now reproduced in Fig. 4.2. In these figures, the
dashed lines are iso-output lines with a slope of −a1/a2. Output maximisation
involves choosing the iso-output line with the highest intercept that passes through

0

q2

q1

A

C

V

Q(qit)/a2

Q(q̂it)/a2

q1it

q2it

Fig. 4.2 Output maximisation when outputs can be chosen freely. If the manager of firm i had been
able to choose outputs freely, then (s)he could have maximised total output by operating at point V
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a technically-feasible point. If the manager of firm i had been able to choose outputs
freely, then (s)he could have maximised total output by operating at point V. The
aggregate output at this point is Q(q̂it).

4.1.3 Example

The output vector that solves (4.1) depends on the output distance function. If the
output distance function is given by (2.9), then

q̄t(xit, qit, zit) = qit

⎛
⎝A(t)

J∏
j=1

z
δ j

j it

M∏
m=1

xβm
mit

⎞
⎠

(
N∑
n=1

γnq
τ
nit

)−1/τ

. (4.3)

The output vector that solves (4.2) depends on both the output distance function and
the aggregator function. Suppose that Q(q) = a′q where a = (a1, . . . , aN )′ > 0. If
the output distance function is given by (2.9) and τ > 1, then the n-th element of
q̂t(xit, zit) is

q̂tn(xit, zit) =
⎛
⎝A(t)

J∏
j=1

z
δ j

j it

M∏
m=1

xβm
mit

⎞
⎠

(
γn

an

)σ
(

N∑
k=1

γ σ
k a

1−σ
k

)σ/(1−σ)

(4.4)

where σ = 1/(1 − τ) < 0.

4.2 Input Minimisation

If a firm manager places nonnegative values on inputs (again, not necessarily market
values) and all other variables involved in the production process have been prede-
termined, then (s)he will generally aim to minimise a measure of total input. If there
is more than one input, then the exact form of the manager’s input minimisation
problem will depend on how easily (s)he can choose the input mix.

4.2.1 Input Mix Predetermined

If the manager of firm i can only use input vectors that are scalar multiples of xit ,
then his/her period-t input-minimisation problem can be written as

min
x

{X (x) : x ∝ xit, Dt
I (x, qit, zit) ≥ 1} (4.5)
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0
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x1
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X(xit)/b2

X(x̄it)/b2
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Fig. 4.3 Input minimisation when the input mix is predetermined. If the input mix of firm i had
been predetermined, then the manager could have minimised total input by operating at point B

where X (.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function satisfying X (xit) > 0. The input vector that solves this problem
is x̄it ≡ x̄t(xit, qit, zit) = xit/Dt

I (xit, qit, zit). This vector is unique and does not depend
on the particular form of the aggregator function. The associated aggregate input is
X (x̄it) = X (xit)/Dt

I (xit, qit, zit). The associated value of the input distance function is
Dt

I (x̄it, qit, zit) = 1. This implies that the input-minimising point lies on the boundary
of Lt(qit, zit) (i.e., on the production frontier).

To illustrate, suppose there are only two inputs. Also suppose that X (x) = b1x1 +
b2x2 where b1 and b2 are both positive. Figure 4.3 depicts the input minimisation
problem that would have faced the manager of firm i in period t had the firm’s input
mix been predetermined. In this figure, the curve passing through point B represents
the boundary of Lt(qit, zit). The inputs of firm i in period t map to point A. The
aggregate input at this point is X (xit). The dashed line passing through point A is
an iso-input line2 with a slope of −b1/b2 and an vertical intercept of X (xit)/b2.
The other dashed lines are iso-input lines with the same slope but lower intercepts.
Input minimisation involves choosing the iso-input line with the lowest intercept
that passes through a technically-feasible point. If the input mix of firm i had been
predetermined, then the manager could have minimised total input by operating at
point B. The aggregate input at this point is X (x̄it). For a numerical example, see
Sect. 1.4.2.

2If X (xit) = b1x1it + b2x2it , then x2it = X (xit)/b2 − (b1/b2)x1it . This is the equation of a line with
a slope of −b1/b2 and an intercept of X (xit)/b2. The term iso-input derives from the fact that all
points on this line yield the same aggregate input, namely X (xit).
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4.2.2 Inputs Chosen Freely

If inputs are strongly disposable, then it is technically possible for firm managers to
choose them freely. If the manager of firm i can choose inputs freely, then his/her
period-t input-minimisation problem can be written as

min
x

{X (x) : Dt
I (x, qit, zit) ≥ 1} (4.6)

where X (.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function with parameters (or weights) that represent the values the man-
ager places on inputs. If there is more than one input, then there may be several
input vectors that solve this problem. Let x̂it ≡ x̂t(qit, zit) denote one such vector.
The associated minimum aggregate input is X (x̂it). If both the aggregator function
and the input distance function are differentiable, then this solution can be charac-
terised in terms of the marginal effects discussed in Sect. 2.5.2. For example, let x̂mit
denote the m-th element of x̂it . If there exists an m such that ∂X (x̂it)/∂ x̂mit > 0 and
wt
m(x̂it, qit, zit) > 0, then Dt

I (x̂it, qit, zit) = 1. This implies that the input-minimising
point lies on the production frontier. As another example, if both x̂mit and x̂kit are pos-
itive, then MRTStkm(x̂it, qit, zit) = [∂X (x̂it)/∂ x̂mit]/[∂X (x̂it)/∂ x̂kit]. This implies that
total input will be minimised at a point where an iso-input line (or curve, if the
aggregator function is nonlinear) is tangent to the production frontier.

To illustrate, reconsider the input-minimisation problem depicted in Fig. 4.3.
Relevant parts of that figure are now reproduced in Fig. 4.4. In these figures,
the dashed lines are iso-input lines with a slope of −b1/b2. Input minimisation
involves choosing the iso-input line with the lowest intercept that passes through a

0

x2

x1

A

B

U

X(xit)/b2

X(x̂it)/b2

x1it

x2it

Fig. 4.4 Input minimisation when inputs can be chosen freely. If the manager of firm i had been
able to choose inputs freely, then (s)he could have minimised total input by operating at point U
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technically-feasible point. If the manager of firm i had been able to choose inputs
freely, then (s)he could have minimised total input by operating at point U. The
aggregate input at this point is X (x̂it).

4.2.3 Example

The input vector that solves (4.5) depends on the input distance function. If the input
distance function is given by (2.13), then

x̄t(xit, qit, zit) = xit

⎛
⎝B(t)

J∏
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z
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j it
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xλm
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γnq
τ
nit

)1/(τη)

. (4.7)

The input vector that solves (4.6) depends on both the input distance function and
the aggregator function. Suppose that X (x) = b′x where b = (b1, . . . , bM )′ > 0. If
the input distance function is given by (2.13), then the m-th element of x̂t(qit, zit) is

x̂tm(qit, zit) =
⎛
⎝B(t)
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4.3 Revenue Maximisation

If a firm manager values outputs at market prices and all other variables involved
in the production process have been predetermined, then (s)he will generally aim to
maximise revenue. The exact form of the manager’s revenue maximisation problem
will depend onwhethermarket prices are affected by the outputs of the firm. Ifmarket
prices are affected by the outputs of the firm, then the firm is said to be a price setter
in output markets. If market prices are not affected by the outputs of the firm, then
the firm is said to be a price taker in output markets.

4.3.1 Price Setters in Output Markets

If firm i is a price setter in output markets, then the manager’s period-t revenue-
maximisation problem can be written as

max
q

{p(q, dit)′q : Dt
O(xit, q, zit) ≤ 1} (4.9)
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where dit is a vector of nonnegative exogenous3 demand shifters and p(q, dit)
is a vector of nonnegative inverse demand functions. If there is more than one
output, then there may be several output vectors that solve this problem. Let
q̈it ≡ q̈t(xit, dit, zit) denote one such vector. The associated maximum revenue is
Rt(xit, dit, zit) = p(q̈it, dit)′q̈it . If consumer demand is sufficiently weak, then it is
possible that Dt

O(xit, q̈it, zit) < 1. This implies that the revenue-maximising point
may lie inside the production frontier (O’Donnell 2016, p. 331). Conceptually, if
consumer demand is sufficiently weak, then it may be possible to maximise revenue
by selling a small quantity at a high price rather than selling a large quantity at a low
price.

For a numerical example, reconsider the toy data in Table 1.1. Suppose the two
inverse demand functions are the following:

p1(q, dit) = 0.8 + 0.1d1it + 0.24d2it − 0.57q1 (4.10)

and p2(q, dit) = 0.1 + 0.72d2it − 0.41q2. (4.11)

Figure 4.5 depicts the revenuemaximisation problem that would have faced the man-
ager of any firm that used one unit of each input in period 1 in environment 1. In this
figure, the curve passing through point C is the frontier depicted earlier in Fig. 1.1;
it represents the boundary of P1(ι, 1). If the vector of demand shifters had been
di1 = (4.1, 4.1)′, then anymanager could havemaximised revenue by choosing q̈i1 =
(1.925, 3.722)′. This vector maps to point T in Fig. 4.5. The associated vector of out-
put prices would have been p(q̈i1, 4.1ι) = (1.097, 1.526)′. The associated maximum
revenue would have been R1(ι, 4.1ι, 1) = 7.791. The dashed line passing through
point T is a pseudo-iso-revenue line4 with a slope of −p1(q̈i1, 4.1ι)/p2(q̈i1, 4.1ι) =
−0.719 and a vertical intercept of R1(ι, 4.1ι, 1)/p2(q̈i1, 4.1ι) = 5.105. On the other
hand, if the vector of demand shifters had been di1 = (1, 1)′ (⇒ consumer demand
had been relatively weak), then the manager of any firm using one unit of each
input could have maximised revenue by choosing q̈i1 = (1, 1)′. This vector maps
to point A in Fig. 4.5. In this case, the vector of output prices would have
been p(q̈i1, ι) = (0.57, 0.41)′. The associated maximum revenue would have been
R1(ι, ι, 1) = 0.98. The dashed line passing through point A is a pseudo-iso-revenue
line with a slope of −p1(q̈i1, ι)/p2(q̈i1, ι) = −1.39 and a vertical intercept of
R1(ι, ι, 1)/p2(q̈i1, ι) = 2.39.

3Here, the term ‘exogenous’ means that demand shifters (e.g., population, tastes) are not affected
by the actions of the firm (or, more precisely, the firm manager).
4If Rt(xit, dit, zit) = p1(q̈it, dit)q̈1it + p2(q̈it, dit)q̈2it , then q̈2it = Rt(xit, dit, zit)/p2(q̈it, dit) −
[p1(q̈it, dit)/p2(q̈it, dit)]q̈1it . This is the equation of a line with a slope of −p1(q̈it, dit)/p2(q̈it, dit)
and a vertical intercept of Rt(xit, dit, zit)/p2(q̈it, dit). The term iso-revenue derives from the fact that
if p(q̈it, dit) did not vary with q̈it , then all output combinations on this line would yield the same
revenue. The term pseudo is used here because p(q̈it, dit) does vary with q̈it .
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Fig. 4.5 Revenue maximisation for a price-setting firm. If consumer demand had been relatively
strong (resp. weak), then themanager of any firm using one unit of each input could havemaximised
revenue by operating at point T (resp. A)

4.3.2 Price Takers in Output Markets

If firm i is a price taker in output markets, then the manager’s period-t revenue-
maximisation problem can be written as

max
q

{p′
itq : Dt

O(xit, q, zit) ≤ 1} (4.12)

where pit is a vector of nonnegative prices that are not affected by the outputs of
the firm. This problem can be viewed as a special case of (4.9) corresponding
to ∂p(q, dit)/∂q = 0. Again, if there is more than one output, then there may be
several output vectors that solve this problem. In a slight abuse of notation, let
q̈it ≡ q̈t(xit, pit, zit) denote one such vector. The associated maximum revenue is
Rt(xit, pit, zit) = p′

it q̈it . If the output distance function is differentiable, then this solu-
tion can be characterised in terms of the marginal effects discussed in Sect. 2.4.2. For
example, let pnit (resp. q̈nit) denote the n-th element of pit (resp. q̈it). If there exists an n
such that pnit q̈nit > 0 and ptn(xit, q̈it, zit) > 0, then Dt

O(xit, q̈it, zit) = 1. This implies
that the revenue-maximising point lies on the boundary of Pt(xit, zit). As another
example, if both q̈nit and q̈kit are positive, then MRTt

kn(xit, q̈it, zit) = pnit/pkit . This
implies that revenue will bemaximised at a point where an iso-revenue line is tangent
to the frontier. For more details, see, for example, Färe and Primont (1995, Sect. 3.3)
and O’Donnell (2016, Propositions 11, 13).
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Fig. 4.6 Revenue maximisation for a price-taking firm. If firm i had been a price taker in output
markets, then the manager could have maximised revenue by operating at point K

To illustrate, suppose there are only two outputs. Figure 4.6 depicts the revenue
maximisation problem that would have faced the manager of firm i in period t. In this
figure, the curve passing through point C is the frontier depicted earlier in Figs. 4.1
and 4.2; it represents the boundary of Pt(xit, zit). The outputs of firm i in period t
map to point A. The revenue at this point is Rit = p′

itqit . The dashed line passing
through point A is an iso-revenue line5 with a slope of −p1it/p2it and a vertical
intercept of Rit/p2it . The other dashed lines are iso-revenue lines with the same slope
but higher intercepts. For the manager of a price-taking firm, revenue maximisation
involves choosing the iso-revenue line with the highest intercept that passes through
a technically-feasible point. If firm i had been a price taker in output markets and
its inputs had been predetermined, then the manager could have maximised revenue
by operating at point K. The revenue at this point is Rt(xit, pit, zit). Observe that the
revenue-maximising point in Fig. 4.6 is not the same as the output-maximising point
in either Fig. 4.1 or Fig. 4.2. This illustrates that maximising revenue is not generally
the same as maximising total output.

4.3.3 Example

Suppose that firm i is a price taker in output markets. If the output distance function
is given by (2.9), then the output vector that solves (4.12) depends on output prices

5If Rit = p1itq1it + p2itq2it , then q2it = Rit/p2it − (p1it/p2it)q1it . This is the equation of a line with
a slope of −p1it/p2it and an intercept of Rit/p2it . The term iso-revenue derives from the fact that all
points on this line yield the same revenue, namely Rit .
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and the value of τ . If the n-th output price is positive and τ > 1, then the n-th element
of q̈t(xit, pit, zit) is

q̈tn(xit, pit, zit) =
⎛
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where σ = 1/(1 − τ) < 0.

4.4 Cost Minimisation

If a firm manager values inputs at market prices and all other variables involved
in the production process have been predetermined, then (s)he will generally aim
to minimise cost. The exact form of the manager’s cost-minimisation problem will
depend on whether market prices are affected by the inputs demanded by the firm. If
market prices are affected by the inputs demanded by the firm, then the firm is said
to be a price setter in input markets. If market prices are not affected by the inputs
of the firm, then the firm is said to be a price taker in input markets.

4.4.1 Price Setters in Input Markets

If firm i is a price setter in input markets, then the manager’s period-t cost-
minimisation problem can be written as

min
x

{w(x, sit)
′x : Dt

I (x, qit, zit) ≥ 1} (4.14)

where sit is a vector of nonnegative exogenous6 supply shifters andw(x, sit) is a vector
of nonnegative inverse supply functions. If there is more than one input, then there
may be several input vectors that solve this problem. Let ẍit ≡ ẍt(sit, qit, zit) denote
one such vector. The associatedminimum cost isCt(sit, qit, zit) = w(ẍit, sit)′ẍit . If the
inverse supply function and the input distance function are differentiable, then this
solution can be characterised in terms ofmarginal effects. For example, letwm(ẍit, sit)
(resp. ẍmit) denote the m-th element of w(ẍit, sit) (resp. ẍit). If there exists an m such
that wm(ẍit, sit)ẍmit > 0 and ∂wm(ẍit, sit)/∂ ẍmit > 0, then Dt

I (ẍit, qit, zit) = 1. This
implies that the cost-minimising point lies on the boundary of Lt(qit, zit).

6Here, the term ‘exogenous’ means that supply shifters (e.g., characteristics of production envi-
ronments in upstream sectors) are not affected by the actions of the firm (or, more precisely, firm
managers).
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Fig. 4.7 Costminimisation for a price-setting firm. If input supplies had been relatively scarce (resp.
abundant), then the manager of any firm producing one unit of each output could have minimised
cost by operating at point F (resp. P)

For a numerical example, reconsider the toy data in Table 1.1. Suppose the two
inverse supply functions are the following:

w1(x, sit) = exp(0.27 ln x1 − 1.6 − 0.1s2it) (4.15)

and w2(x, sit) = exp(0.3 ln x2 − 0.01 − 1.2s1it − 0.09s2it). (4.16)

Figure 4.7 depicts the cost minimisation problem that would have faced the man-
ager of any firm that produced one unit of each output in period 1 in environment
1. In this figure, the curve passing through points P and F is the frontier depicted
earlier in Fig. 1.2; it represents the boundary of L1(ι, 1). If the vector of supply
shifters had been si1 = (1, 1)′, then the manager of any firm producing one unit of
each output could have minimised cost by using ẍi1 = (0.657, 0.479)′. This vec-
tor maps to point P in Fig. 4.7. The associated vector of input prices would have
been w(ẍi1, ι) = (0.163, 0.218)′. The associated minimum cost would have been
C1(ι, ι, 1) = 0.212. The dashed line passing through point P is a pseudo-iso-cost
line7 with a slope of −w1(ẍi1, ι)/w2(ẍi1, ι) = −0.746 and a vertical intercept of
C1(ι, ι, 1)/w2(ẍi1, ι) = 0.969. As another example, if the vector of supply shifters
had been si1 = (0.1, 0.1)′ (⇒ input supplies had been relatively scarce), then the
manager of any firm producing one unit of each output could have minimised cost by

7If Ct(sit, qit, zit) = w1(ẍit, sit)ẍ1it + w2(ẍit, sit)ẍ2it , then ẍ2it = Ct(sit, qit, zit)/w2(ẍit, sit) −
[w1(ẍit, sit)/w2(ẍit, sit)]ẍ1it . This is the equation of a line with a slope of −w1(ẍit, sit)/w2(ẍit, sit)
and a vertical intercept of Ct(sit, qit, zit)/w2(ẍit, sit). The term iso-cost derives from the fact that if
w(ẍit, sit) did not vary with ẍit , then all input combinations on this line would yield the same cost.
The term pseudo is used here because w(ẍit, sit) does vary with ẍit .
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using ẍi1 = (0.996, 0.316)′. This vector maps to point F in Fig. 4.7. In this case, the
vector of input prices would have been w(ẍi1, 0.1ι) = (0.2, 0.616)′. The associated
minimum cost would have been C1(0.1ι, ι, 1) = 0.393. The associated pseudo-iso-
cost line has a slope of−w1(ẍi1, 0.1ι)/w2(ẍi1, 0.1ι) = −0.324 and a vertical intercept
of C1(0.1ι, ι, 1)/w2(ẍi1, 0.1ι) = 0.639.

4.4.2 Price Takers in Input Markets

If firm i is a price taker in input markets, then the manager’s period-t cost-
minimisation problem can be written as

min
x

{w′
itx : Dt

I (x, qit, zit) ≥ 1} (4.17)

where wit is a vector of nonnegative prices that are not affected by the input demands
of the firm. This problem can be viewed as a special case of (4.14) correspond-
ing to ∂w(x, sit)/∂x = 0. Again, if there is more than one input, then there may
be several input vectors that solve this problem. In another slight abuse of nota-
tion, let ẍit ≡ ẍt(wit, qit, zit) denote one such vector. The associated minimum cost
is Ct(wit, qit, zit) = w′

it ẍit . If the input distance function is differentiable, then this
solution can be characterised in terms of the marginal effects discussed in Sect. 2.5.2.
For example, let wmit (resp. ẍmit) denote the m-th element of wit (resp. ẍit). If there
exists an m such that wmit ẍmit > 0 and wt

m(ẍit, qit, zit) > 0, then Dt
I (ẍit, qit, zit) = 1.

This implies that the cost-minimising point lies on the production frontier. As another
example, if both ẍmit and ẍkit are positive, thenMRTSt

km(ẍit, qit, zit) = wmit/wkit . This
implies that cost will be minimised at a point where an isocost line is tangent to the
frontier. For more details, see, for example, Färe and Primont (1995, Sect. 3.3) and
O’Donnell (2016, Proposition 16).

To illustrate, suppose there are only two inputs. Figure 4.8 depicts the cost min-
imisation problem that would have faced the manager of firm i in period t. In this
figure, the curve passing through point X is the frontier depicted earlier in Figs. 4.3
and 4.4; it represents the boundary of Lt(qit, zit). The inputs of firm i in period t map
to point A. The cost at this point isCit = w′

itxit . The dashed line passing through point
A is an iso-cost line8 with a slope of −w1it/w2it and an vertical intercept of Cit/w2it .
The other dashed lines are iso-cost lines with the same slope but lower intercepts. For
the manager of a price-taking firm, cost minimisation involves choosing the iso-cost
line with the lowest intercept that passes through a technically-feasible point. If firm
i had been a price taker in input markets and its outputs had been predetermined,
then the manager could have minimised cost by operating at point X. The cost at this

8If Cit = w1itx1it + w2itx2it , then x2it = Cit/w2it − (w1it/w2it)x1it . This is the equation of a line
with a slope of −w1it/w2it and an intercept of Cit/w2it . The term iso-cost derives from the fact that
all points on this line yield the same cost, namely Cit .
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Fig. 4.8 Cost minimisation for a price-taking firm. If firm i had been a price taker in input markets,
then the manager could have minimised cost by operating at point X

point is Ct(wit, qit, zit). Observe that the cost-minimising point in Fig. 4.8 is not the
same as the input-minimising point in either Fig. 4.3 or Fig. 4.4. This illustrates that
minimising cost is not generally the same as minimising total input.

4.4.3 Example

Suppose that firm i is a price taker in input markets. If the input distance function is
given by (2.13), then the input vector that solves (4.17) depends on input prices. If
the m-th input price is positive, then the m-th element of ẍt(wit, qit, zit) is

ẍtm(wit, qit, zit) =
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(4.18)

4.5 Profit Maximisation

If a firm manager values outputs and inputs at market prices and all environmental
variables have been predetermined, then (s)he will generally aim to maximise profit.
The exact formof themanager’s profitmaximisation problemwill depend onwhether
the firm is a price setter or price taker in output and/or input markets.
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4.5.1 Price Setters in Output and Input Markets

If firm i is a price setter in output and input markets, then the manager’s period-t
profit-maximisation problem can be written as

max
q,x

{p(q, dit)′q − w(x, sit)
′x : Dt

O(x, q, zit) ≤ 1} (4.19)

where dit and sit are vectors of nonnegative exogenous9 demand and supply shifters,
p(q, dit) is a vector of nonnegative inverse demand functions, andw(x, sit) is a vector
of nonnegative inverse supply functions. There may be several pairs of output and
input vectors that solve this problem. Let q̊it ≡ q̊t(sit, dit, zit) and x̊it ≡ x̊t(sit, dit, zit)
denote one such pair. The associated maximum profit is Π t(sit, dit, zit) = p(q̊it, dit)′
q̊it −w(x̊it, sit)′x̊it . Equivalently,Π t(sit, dit, zit)=P(q̊it, dit)Q(q̊it) − W (x̊it, sit)X (x̊it)
where Q(q̊it) is a scalar-valued aggregate output, X (x̊it) is a scalar-valued aggregate
input,P(q̊it, dit) = p(q̊it, dit)′q̊it/Q(q̊it) is a scalar-valued aggregate output price, and
W (x̊it, sit) = w(x̊it, sit)′x̊it/X (x̊it) is a scalar-valued aggregate input price. Except
in restrictive special cases (e.g., when inverse supply functions are nonincreas-
ing in inputs), associated values of the output and input distance functions are
Dt

O(x̊it, q̊it, zit) = Dt
I (x̊it, q̊it, zit) = 1. This implies that the profit-maximising point

lies on the boundary of T t(zit).
For a numerical example, reconsider the toy data in Table 1.1. Suppose the inverse

demand and supply functions are given by (4.10), (4.11), (4.15) and (4.16). Also
suppose that Q(q) = 0.484q1 + 0.516q2 and X (x) = 0.23x1 + 0.77x2. Figure 4.9
depicts the profit maximisation problem that would have faced the manager of any
firm that operated in period 1 in environment 1. In this figure, the curve pass-
ing through points H and G is the frontier depicted earlier in Fig. 1.3; it rep-
resents the boundary of T 1(1). If the vectors of demand and supply shifters had
been di1 = si1 = (1, 1)′, then the manager of any firm that operated in period 1 in
environment 1 could have maximised profit by using x̊i1 = (0.017, 0.346)′ to pro-
duce q̊i1 = (0.960, 0.940)′. The associated vectors of output and input prices would
have been p(q̊i1, ι) = (0.593, 0.435)′ and w(x̊i1, ι) = (0.061, 0.198)′. The associ-
ated aggregate quantities and prices would have been Q(q̊i1) = 0.950, X (x̊i1) =
0.270, P(q̊i1, ι) = 1.030 and W (x̊i1, ι) = 0.257. Maximised profit would have been
Π1(ι, ι, 1) = 0.908.This solutionmaps to pointH inFig. 4.9. Thedashed line passing
through this point is a pseudo-iso-profit line10 with a slope of W (x̊i1, ι)/P(q̊i1, ι) =
0.250 and a vertical intercept of Π1(ι, ι, 1)/P(q̊i1, ι) = 0.882. As another example,

9Here, the term ‘exogenous’ means that demand and supply shifters are not affected by the actions
of the firm (or, more precisely, the firm manager).
10If Π t(sit, dit, zit) = P(q̊it, dit)Q(q̊it) − W (x̊it, sit)X (x̊it), then Q(q̊it) = Π t(sit, dit, zit)/P
(q̊it, dit) + [W (x̊it, sit)/P(q̊it, dit)]X (x̊it). This is the equation of a line with a slope of
W (x̊it, sit)/P(q̊it, dit) and a vertical intercept of Π t(sit, dit, zit)/P(q̊it, dit). The term iso-profit
derives from the fact that if W (x̊it, sit) and P(q̊it, dit) did not depend on x̊it and q̊it , then all points
on this line would yield the same profit. The term pseudo is used here because W (x̊it, sit) and
P(q̊it, dit) do depend on x̊it and q̊it .
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Fig. 4.9 Profitmaximisation for a price-setting firm. If consumer demand had been relatively strong
(resp. weak) and input supplies had been relatively scarce (resp. abundant), then the manager of a
price-setting firm could have maximised profit by operating at point G (resp. H)

if the vectors of demand and supply shifters had been di1 = (4.1, 4.1)′ (⇒ con-
sumer demand had been relatively strong) and si1 = (0.1, 0.1)′ (⇒ input supplies
had been relatively scarce), then the manager of any firm that operated in period
1 in environment 1 could have maximised profit by using x̊i1 = (1.472, 0.546)′ to
produce q̊i1 = (1.777, 3.503)′. The associated vectors of output and input prices
would have been p(q̊i1, 4.1ι) = (1.181, 1.616)′ and w(x̊i1, 0.1ι) = (0.222, 0.726)′.
The associated aggregate quantities and prices would have been Q(q̊i1) = 2.667,
X (x̊i1) = 0.759, P(q̊i1, 4.1ι) = 2.909 and W (x̊i1, 0.1ι) = 0.952. Maximised profit
would have been Π1(0.1ι, 4.1ι, 1) = 7.036. This solution maps to point G in
Fig. 4.9. The pseudo-iso-profit line passing through this point has a slope of
W (x̊i1, 0.1ι)/P(q̊i1, 4.1ι) = 0.327 and a vertical intercept of Π1(0.1ι, 4.1ι, 1)/P
(q̊i1, 4.1ι) = 2.419.

4.5.2 Price Takers in Output and Input Markets

If firm i is a price taker in output and input markets, then the manager’s period-t
profit-maximisation problem can be written as

max
q,x

{p′
itq − w′

itx : Dt
O(x, q, zit) ≤ 1} (4.20)
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where pit andwit are vectors of nonnegative prices that are not affected by the outputs
supplied or inputs demanded by the firm.This problemcan be viewed as a special case
of (4.19) corresponding to ∂p(q, dit)/∂q = 0 and ∂w(x, sit)/∂x = 0. Again, there
may be several pairs of output and input vectors that solve this problem. In another
slight abuse of notation, let q̊it ≡ q̊t(wit, pit, zit) and x̊it ≡ x̊t(wit, pit, zit) denote
one such pair. The associated maximum profit is Π t(wit, pit, zit) = p′

it q̊it − w′
it x̊it .

Equivalently, Π t(wit, pit, zit) = P(q̊it, pit)Q(q̊it) − W (x̊it,wit)X (x̊it) where Q(q̊it) is
a scalar-valued aggregate output, X (x̊it) is a scalar-valued aggregate input, P(q̊it, pit)
= p′

it q̊it/Q(q̊it) is a scalar-valued aggregate output price, and W (x̊it,wit) = w′
it x̊it/

X (x̊it) is a scalar-valued aggregate input price. Thus, except in restrictive special
cases (e.g., there is only one output and only one input), and despite the fact that
the firm is a price taker in output and input markets, aggregate output and input
prices depend on the outputs supplied and inputs demanded by the firm. If the out-
put distance function is differentiable, then the solution to (4.20) can be charac-
terised in terms of the marginal effects discussed in Sect. 2.4.2. For example, let wmit

(resp. x̊mit) denote the m-th element of wit (resp. x̊it). If there exists an m such that
wmit x̊mit > 0 and MPt

m(x̊it, q̊it, zit) > 0, then Dt
O(x̊it, q̊it, zit) = 1. This implies that

the profit-maximising point lies on the production frontier.
For a numerical example, reconsider the toy data in Tables 1.1, 1.4 and 1.5. Also

suppose that Q(q) = 0.484q1 + 0.516q2 and X (x) = 0.23x1 + 0.77x2. Figure 4.10
depicts the profit maximisation problem that would have faced the manager of firm 3
in period 1. In this figure, the curve passing through point J is the frontier depicted in
Figs. 1.3 and 4.9; it represents the boundary of T 1(1). The outputs and inputs of firm 3
map to point C. The aggregate output and input quantities at this point are Q(q31) =
2.37 and X (x31) = 1. The associated aggregate prices are P(q31, p31) = 0.98 and
W (x31,w31) = 2.19. The profit of the firmwasΠ31 = 0.133. The dashed line passing
through pointC is a pseudo-isoprofit line11 with a slope ofW (x31,w31)/P(q31, p31) =
2.235 and a vertical intercept of Π31/P(q31, p31) = 0.135. It turns out that the man-
ager of firm 3 could havemaximised profit by using x̊31 = (4.450, 0.001)′ to produce
q̊31 = (6.685, 0.001)′. These outputs and inputs map to point J. The aggregate quan-
tities at this point are Q(q̊31) = 3.236 and X (x̊31) = 1.024. The associated aggre-
gate prices are P(q̊31, p31) = 1.178 and W (x̊31,w31) = 1.218. The associated profit
is Π1(w31, p31, 1) = 2.564. The dashed line passing through point J is a pseudo-
isoprofit linewith a slope ofW (x̊31,w31)/P(q̊31, p31) = 1.034 and a vertical intercept
of Π1(w31, p31, 1)/P(q̊31, p31) = 2.177.

11If Π31 = P(q31, p31)Q(q31) − W (x31,w31)X (x31), then Q(q31) = Π31/P(q31, p31) +
[W (x31,w31)/P(q31, p31)]X (x31). This is the equation of a line with a slope of
W (x31,w31)/P(q31, p31) and a vertical intercept of Π31/P(q31, p31). The term iso-profit derives
from the fact that if P(q31, p31) and W (x31,w31) did not vary with q31 and x31, then all points on
this line would yield the same profit. The term pseudo is used here because, except in restrictive
special cases (e.g., there is only one input and only one output), P(q31, p31) and W (x31,w31) do
vary with q31 and x31.
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Fig. 4.10 Profit maximisation for a price-taking firm. If firm 3 had been a price taker in output and
input markets, then the manager could have maximised profit by operating at point J

4.5.3 Example

Suppose that firm i is a price taker in output and input markets and the output distance
function is given by (2.9). The outputs and inputs that solve (4.20) depend on η = β ′ι
and τ . If η < 1 and τ > 1, for example, then the n-th element of q̊t(wit, pit, zit) and
the m-th element of x̊t(wit, pit, zit) are

q̊tn(wit, pit, zit) =
⎛
⎝A(t)

J∏
j=1

z
δ j

j it

M∏
m=1

(
βm

wmit

)βm

⎞
⎠

1
1−η (

γn

pnit

)σ

×
(

N∑
k=1

γ σ
k p

1−σ
kit

) 1
(1−σ)(1−η)

−1

(4.21)

and x̊tm(wit, pit, zit) =
⎛
⎝A(t)

J∏
j=1

z
δ j

j it

M∏
k=1

(
βk

wkit

)βk

⎞
⎠

1
1−η (

βm

wmit

)

×
(

N∑
n=1

γ σ
n p

1−σ
nit

) 1
(1−σ)(1−η)

(4.22)

where σ = 1/(1 − τ) < 0.
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4.6 Productivity Maximisation

If a firm manager places nonnegative values on outputs and inputs (again, not nec-
essarily market values) and all environmental variables have been predetermined,
then (s)he may aim to maximise a measure of TFP. If there is more than one output
and more than one input, then the precise form of the manager’s TFP maximisation
problem will depend on how easily (s)he can choose the output mix and the input
mix.

4.6.1 Output and Input Mixes Predetermined

If the manager of firm i can only use a scalar multiple of xit to produce a scalar
multiple of qit , then his/her period-t TFP-maximisation problem can be written as

max
q,x

{Q(q)/X (x) : x ∝ xit, q ∝ qit, Dt
O(x, q, zit) ≤ 1} (4.23)

whereQ(.) and X (.) are nonnegative, nondecreasing, linearly-homogeneous, scalar-
valued aggregator functions that satisfy TFP(xit, qit) = Q(qit)/X (xit) > 0. There
may be several pairs of output and input vectors that solve this problem. Let
q̆it ≡ q̆t(xit, qit, zit) and x̆it ≡ x̆t(xit, qit, zit)denote one such pair. The associatedmax-
imum TFP is TFPt(xit, qit, zit) = Q(q̆it)/X (x̆it). The associated values of the output
and input distance functions are Dt

O(x̆it, q̆it, zit) = Dt
I (x̆it, q̆it, zit) = 1. This implies

that the TFP-maximising point lies on the boundary of T t(xit, qit, zit).
To illustrate, let Q(q) = a′q and X (x) = b′x where a and b are positive vectors

satisfying a′ι = b′ι = 1. Figure 4.11 depicts the TFP maximisation problem that
would have faced the manager of firm i in period t. In this figure, the curve passing
through point D represents the boundary of T t(xit, qit, zit). The outputs and inputs of
firm i in period tmap to pointA. The aggregate output and input at this point areQ(qit)
and X (xit). The dashed line passing through point A is an iso-productivity ray12 with
a slope of TFP(xit, qit) = Q(qit)/X (xit). The other dashed lines are iso-productivity
rays with higher slopes. TFP maximisation involves choosing the iso-productivity
ray with the highest slope that passes through a technically-feasible point. If the
manager of firm i had only been able to use a scalar multiple of xit to produce a scalar
multiple of qit , then (s)he could have maximised TFP by operating at point D. The
TFP at this point is TFPt(xit, qit, zit) = Q(q̆it)/X (x̆it).

12The equation of the dashed line through point A is Q(qit) = TFP(xit, qit)X (xit). This is the
equation of a line with a slope of TFP(xit, qit) and an intercept of zero. The term iso-productivity ray
derives from the fact that all points on this ray map to the same level of TFP, namely TFP(xit, qit) =
Q(qit)/X (xit).
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Fig. 4.11 TFP maximisation when the output mix and input mix have been predetermined. If the
manager of firm i had only been able to use a scalar multiple of xit to produce a scalar multiple of
qit , then (s)he could have maximised TFP by operating at point D

4.6.2 Outputs and Inputs Chosen Freely

If outputs and inputs are strongly disposable, then it is technically possible for firm
managers to choose them freely. If the manager of firm i can choose outputs and
inputs freely, then his/her period-t TFP-maximisation problem can be written as

max
q,x

{Q(q)/X (x) : Dt
O(x, q, zit) ≤ 1} (4.24)

whereQ(.) and X (.) are nonnegative, nondecreasing, linearly-homogeneous, scalar-
valued aggregator functionswith parameters (orweights) that represent the values the
manager places on outputs and inputs. Again, theremay be several pairs of output and
input vectors that solve this problem.Letq∗

it ≡ qt(zit) and x∗
it ≡ xt(zit)denote one such

pair. The associatedmaximumTFP isTFPt(zit) = Q(q∗
it)/X (x∗

it). Except in restrictive
special cases (e.g., outputs are of no value to themanager), the associated values of the
output and input distance functions are Dt

O(x∗
it, q

∗
it, zit) = Dt

I (x
∗
it, q

∗
it, zit) = 1. Again,

this implies that the TFP-maximising point lies on the boundary of T t(zit).
To illustrate, reconsider the TFP maximisation problem depicted in Fig. 4.11.

The curve passing through point D in that figure is now reproduced in Fig. 4.12; it
represents the boundary of T t(xit, qit, zit). In Fig. 4.12, the curve passing through
point E represents the boundary of T t(zit). If the firm manager had only been
able to use a scalar multiple of xit to produce a scalar multiple of qit , then (s)he
could have maximised TFP by operating at point D. The TFP at this point is
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Fig. 4.12 TFP maximisation when outputs and inputs can be chosen freely. If the manager of
firm i had been able to choose outputs and inputs freely, then (s)he could have maximised TFP by
operating anywhere on the line connecting points N and E

TFP(x̆it, q̆it) = Q(q̆it)/X (x̆it).13 However, if the manager had been able to choose
outputs and inputs freely, then (s)he could have maximised TFP by operating at any
point on the line connecting points N and E. The TFP at any point on this line is
TFPt(zit) = Q(q∗

it)/X (x∗
it). For a numerical example, see Sect. 1.4.3.

4.6.3 Example

If the output distance function is given by (2.9), then the solutions to (4.23) and (4.24)
depend on the elasticity of scale. If η is greater (resp. less) than one, then, whether or
not output and input mixes are predetermined, TFP becomes infinitely large as the
firm becomes infinitely large (resp. infinitesimally small). If η = 1, then there are an
infinite number of output-input combinations that maximise TFP.

4.7 Other Types of Behaviour

Other optimisation problems faced by managers (and therefore other types of man-
agerial behaviour) involve choosing technologies, maximising net output, and max-
imising return to the dollar.Manymanagersmake decisions in the face of uncertainty.

13To avoid clutter, the axis label for X (x̆it) has been omitted from Fig. 4.12. In this particular
example, X (x̆it) = X (x∗

it).
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Somemanagers exhibit bounded rationality in the sense that they have limited capac-
ity to make rational (i.e., optimal) decisions within the time that is available.

4.7.1 Choosing Technologies

If more than one technology exists in period t, then the optimisation problems dis-
cussed in Sects. 4.1–4.6 can be solved as either maximax or minimin problems. The
output maximisation problem (4.1), for example, can be solved as a maximax prob-
lem. This involves (1) finding the maximum aggregate output possible using each
technology, then (2) finding the maximum of these maxima. In the first step, the
problem of finding the maximum aggregate output possible using technology g can
be written as

max
q

{Q(q) : q ∝ qit, dg
O(xit, qit, zit) ≤ 1} (4.25)

where dg
O(.) is the technology-and-environment-specific output distance function

defined by (2.39). The output vector that solves this problem is q̄git ≡ qit/d
g
O(xit, qit,

zit). The associated aggregate output is Q(q̄git) = Q(qit)/d
g
O(xit, qit, zit). The associ-

ated value of the output distance function is dg
O(xit, q̄

g
it, zit) = 1. This implies that the

output-maximising point lies on the boundary of the technology-and-environment-
specific output set defined by pg(xit, zit) = {q : (xit, q) ∈ tg(zit)}. In the second step,
the manager’s optimisation problem can be written as

max
g∈Gt

{Q(q̄git)} (4.26)

where Gt is the period-t technology set. The output vector that solves this problem is
q̄it = qit/Dt

O(xit, qit, zit) where Dt
O(xit, qit, zit) = ming∈Gt d

g
O(xit, qit, zit). The asso-

ciated value of the output distance function is Dt
O(xit, q̄it, zit) = 1. This implies that

the output-maximising point lies on the boundary of Pt(xit, zit) = ∪g∈Gt p
g(xit, zit).

To illustrate, reconsider the output maximisation problem depicted earlier in
Fig. 4.1, and suppose that technologies 1 and 2 were the only technologies that
existed in period t. The output maximisation problem faced by the manager is now
depicted in Fig. 4.13. In this figure, the curves passing through points Z and C repre-
sent the boundaries of p1(xit, zit) and p2(xit, zit) respectively. The outputs of firm i in
period t map to point A. The aggregate output at this point isQ(qit). The dashed line
passing through point A is an iso-output line with a slope of −a1/a2 and a vertical
intercept of Q(qit)/a2. The other dashed lines are iso-output lines with the same
slope but higher intercepts. Output maximisation involves choosing the iso-output
line with the highest intercept that passes through a technically-feasible point. If the
output mix of firm i had been predetermined and the manager had only been able to
choose technology 1, then (s)he could have maximised total output by operating at
point Z. The aggregate output at this point isQ(q̄1it). If the output mix of the firm had
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Fig. 4.13 Output maximisation when the output mix is predetermined. If the output mix of firm i
had been predetermined and the manager had been able to use either technology, then (s)he could
have maximised output by operating at point C

been predetermined and the manager had been able to choose either technology, then
(s)he could have maximised total output by choosing technology 2 and operating at
point C. The aggregate output at this point isQ(q̄it) = max{Q(q̄1it),Q(q̄2it)} = Q(q̄2it).
This is the solution depicted earlier in Fig. 4.1.

4.7.2 Maximising Net Output

If a firm manager places nonnegative values on outputs and inputs (not necessarily
market values) and all environmental variables have been predetermined, then (s)he
may aim to maximise a measure of net output (NO). If there is more than one output
and more than one input, then the precise form of the manager’s NO maximisation
problemwill depend on how easily (s)he can choose the output mix and input mix. If,
for example, the manager of firm i can choose outputs and inputs freely, then his/her
period-t NO-maximisation problem can be written as

max
q,x

{Q(q) − X (x) : Dt
O(x, q, zit) ≤ 1} (4.27)

whereQ(.) and X (.) are nonnegative, nondecreasing, linearly-homogeneous, scalar-
valued aggregator functions with parameters (or weights) that represent the values
the firm manager places on outputs and inputs. There may be several pairs of output
and input vectors that solve this problem. All such pairs lie on the boundary of
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T t(zit). If Q(q) = p′
itq and X (x) = w′

itx, then problem (4.27) is is equivalent to the
profit-maximisation problem (4.20).

4.7.3 Maximising Return to the Dollar

If a firm manager values outputs and inputs at market prices and all other variables
involved in the production process have been predetermined, then (s)he may aim to
maximise revenue divided by cost (or ‘return to the dollar’). The exact form of the
manager’s return to the dollar (RTD) maximisation problem will depend on whether
the firm is a price setter or price taker in output and/or input markets. If, for example,
firm i is a price-taker in output and input markets, then the manager’s period-t RTD
maximisation problem can be written as

max
q,x

{(p′
itq)/(w

′
itx) : Dt

O(x, q, zit) ≤ 1} (4.28)

where pit and wit are vectors of output and input prices that are not affected by the
actions the firm. Again, there may be several pairs of output and input vectors that
solve this problem.Again, all such pairs lie on the boundary ofT t(zit). Problem (4.28)
can be viewed as a special case of problem (4.24) corresponding to Q(q) = p′

itq and
X (x) = w′

itx.

4.7.4 Behaviour in the Face of Environmental Uncertainty

Managers often make production decisions in the face of uncertainty about charac-
teristics of their production environments. If so-called environmental variables are
discrete variables chosen by Nature, then managerial behaviour is best analysed in a
state-contingent framework. In the state-contingent literature, it is common to break
each production period into two sub-periods: in the first sub-period, the firmmanager
makes production decisions in the face of uncertainty about characteristics of his/her
production environment; in the second sub-period, Nature resolves any uncertainty
by choosing a value from the setΩ = {1, . . . , S}. For a simple example, suppose that
all environmental variables are unknown at the time production decisions are made.
Also suppose there is only one output and that all inputs involved in the production
process have been predetermined. Let qs denote the output produced when Nature
chooses state s ∈ Ω . If the manager of firm i seeks tomaximise expected output, then
the optimisation problem (s)he faces at the beginning of period t can be written as

max
q1,...,qS

{∑
s∈Ω

πsitqs : qs ≤ Ft(xit, s) for all s ∈ Ω

}
(4.29)
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where Ft(x, s) = 1/Dt
O(x, 1, s) is a period-and-state-contingent production function

and πsit is the subjective probability that manager i attaches to state s in period t.
There may be several state-contingent output vectors that solve this problem. In a
slight abuse of notation, let q̂it ≡ q̂t(xit, π1it, . . . , πSit) denote one such vector. The
associated expected output is E(q̂it) = ∑

s∈Ω πsit q̂sit where q̂sit denotes the s-th ele-
ment of q̂it . Note that if the manager wanted to avoid all environmental risk, then
(s)he could choose a solution vector in which all state-contingent outputs were equal.

To illustrate, consider a rice farmer who must decide when to drain his/her fields
in the face of uncertainty about whether pre-harvest evaporation will be either high
(s = 1) or low (s = 2). If a field is drained now and evaporation is high, then the
plants will suffer moisture stress before they reachmaturity and yield will be reduced
to the point where the field is not worth harvesting. If a field is drained nextmonth and
evaporation is low, then, by the time the field is dry enough formechanical harvesting,
the mature grain will have degraded to the point where, again, the field is not worth
harvesting. If a field is drained now (resp. next month) and evaporation is low (resp.
high), then the plants will reach maturity without moisture stress and the field will
dry out sufficiently for a timely harvest. If a farmer believes evaporation is likely to
be low (i.e., if he/she attaches relatively high probability to state 2), then he/she will
drain most of his/her fields now; in this case, output will be relatively high (resp.
low) if evaporation turns out to be low (resp. high). Suppose that farmer i believes
evaporation is likely to be low in period t (i.e., π2it > π1it). Figure 4.14 depicts the
expected-output maximisation problem that would have faced this farmer in this
period. In Fig. 4.14, the curve passing through point C represents the boundary of
the output set defined by Pt(xit) = {(q1, q2) : qs ≤ Ft(xit, s) for s = 1, 2}. The ray
from the origin through point A is known as the ‘bisector’; all points on this ray
are riskless insofar as the same output will be produced in each state of Nature. The
(riskless) state-contingent outputs of farmer imap to point A. The dashed line passing
through point A is an iso-expected-output line14 with a slope of −π1it/π2it and a
vertical intercept of E(qit)/π2it . The other dashed lines are iso-expected-output lines
with the same slope but higher intercepts. Expected-output maximisation involves
choosing the iso-expected-output line with the highest intercept that passes through a
technically-feasible point. Given his/her subjective probabilities, farmer i could have
maximised expected output by operating at point V. The expected output at this point
is E(q̂it). If farmer i had wanted to avoid all environmental risk, then (s)he could
have maximised (expected) output by operating at point C. The (expected) output at
this point is E(q̄it). The gap between the iso-expected-output lines passing through
points C and V represents the risk premium.

14If E(qit) = π1itq1it + π2itq2it , then q2it = E(qit)/π2it − (π1it/π2it)q1it . This is the equation of a
line with a slope of−π1it/π2it and an intercept of E(qit)/π2it . The term iso-expected-output derives
from the fact that all points on this line yield the same expected output, namely E(qit).
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Fig. 4.14 Expected output maximisation in the face of environmental uncertainty. If a manager
attaches a relatively high probability to state 2, then (s)hewillmaximise expected output by operating
above the bisector

4.7.5 Behaviour in the Face of Other Types of Uncertainty

It is common to assume that firmmanagers make output and/or input decisions in the
face of many other types of uncertainty. For example, Olley and Pakes (1996) assume
that managers make input decisions in the face of uncertainty about productivity.15

In their widely-cited analysis of the U.S. telecommunications industry, they assume,
inter alia, that (a) there is only one output, (b) all inputs can be classified as either
labour or capital goods, (c) the maximum output that can be produced using given
inputs (i.e., the production function) depends on the age of the firm (implying it is
firm- and time-varying), (d) the prices of labour and capital goods are firm-invariant,
(e) irrespective of the amount of labour that is used, a fixed proportion of the capital
stock is consumed in each period, (f) at the beginning of each period, the manager
chooses the volume of labour to be used in that period and the volume of capital
goods that will be added to the capital stock, (g) at the beginning of each period,
the manager knows how productive he/she will be in that period, but does not know
how productive he/she will be in subsequent periods, and (h) the manager makes
his/her labour and capital investment decisions to maximise the expected discounted
value of future net returns. If at any time the salvage (or sell-off) value of the firm is
greater than the expected returns from staying in business, then the firm will exit the
industry. Solving the manager’s optimisation problem yields (a) an exit rule and (b)
time-varying demand functions for labour and capital goods.

15It is not entirely clear what Olley and Pakes (1996) mean by the term ‘productivity’. They appear
to use the terms ‘productivity’ and ‘efficiency’ interchangeably.
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4.7.6 Bounded Rationality

Firmmanagers have limited capacity to make rational (i.e., optimal) decisions within
the time that is available. So-called ‘bounded rationality’ may be due to (a) lack of
knowledge about the set of choice alternatives that are available (e.g., the set of
technologies that exist), (b) lack of knowledge about characteristics of the produc-
tion environment (e.g., because some characteristics have not been observed), (c)
lack of knowledge about the payoffs associated with different choices (e.g., because
distance, revenue, cost and/or profit functions are unknown) and/or (d) lack of skill
in calculating the payoffs associated with different choices (e.g., because of lack
of training and/or experience). In these situations, firm managers often make deci-
sions using heuristics. A heuristic is a practical method for finding a solution that is
satisfactory but not necessarily optimal. In layman’s terms, a heuristic is a ‘rule of
thumb’. Managers who use heuristics act as ‘satisficers’. Satisficing means choos-
ing a course of action that is ‘good enough’. Heuristics can save time, effort and
resources. However, they can also lead to systematic errors. In this book, these types
of errors are referred to as ‘inefficiency’. In the behavioural economics literature,
they are sometimes16 referred to as ‘cognitive biases’.

4.8 Summary and Further Reading

To explain changes in productivity, we need to explain how output and input quan-
tities are determined. There are many economic models that can be used for this
purpose. Different models are distinguished by different assumptions about what
firm managers value, and what they can and cannot choose.

If a firm manager places nonnegative values on outputs (not necessarily market
values) and all inputs and environmental variables have been predetermined (i.e.,
determined in a previous period), then (s)he will generally choose outputs to max-
imise a measure of total output. If there is more than one output, then the precise
form of the manager’s output maximisation problem will depend on how easily (s)he
can choose the output mix. Irrespective of how easily the output mix can be chosen,
the output-maximising point will always lie on the boundary of the output set.

If a firmmanager places nonnegative values on inputs and all outputs and environ-
mental variables have been predetermined, then (s)he will generally choose inputs
to minimise a measure of total input. If there is more than one input, then the precise
form of the manager’s input minimisation problem will depend on how easily (s)he
can choose the input mix. Irrespective of how easily the input mix can be chosen,
the input-minimising point will always lie on the boundary of the input set.

If a firm manager values outputs at market prices and all inputs and environ-
mental variables have been predetermined, then (s)he will generally choose outputs
to maximise total revenue. For any given manager, the exact form of the revenue

16See, for example, Tversky and Kahneman (1974, p. 1130).
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maximisation problem will depend on whether the firm is a price setter or price taker
in output markets. If the firm is a price setter in output markets and consumer demand
is sufficiently weak, then it may be possible to maximise revenue by selling a small
quantity at a high price rather than selling a large quantity at a low price; in this
case, the revenue-maximising point may lie inside the boundary of the output set. If
the firm is a price taker in output markets, then the revenue-maximising point will
always lie on the boundary.

If a firmmanager values inputs at market prices and all outputs and environmental
variables have been predetermined, then (s)he will generally choose inputs to min-
imise total cost. For any given manager, the exact form of cost minimisation problem
will depend on whether the firm is a price setter or price taker in input markets. In
either case, the cost-minimising point will generally lie on the boundary of the input
set.

If a firmmanager values outputs and inputs at market prices and all environmental
variables have been predetermined, then (s)he will tend to choose outputs and inputs
to maximise either profit or return-to-the-dollar. For any given manager, the exact
form of his/her optimisation problemwill depend on whether the firm is a price setter
or price taker in output and input markets. In any case, the profit-maximising and
return-to-the-dollar-maximising output-input combinations will generally lie on the
boundary of the production possibilities set.

If a firm manager places nonnegative values on outputs and inputs (again, not
necessarily market values) and all environmental variables have been predetermined,
then (s)he will tend to choose outputs and inputs to maximise a measure of either
TFP or net output. If there is more than one output and more than one input, then the
precise form of the manager’s optimisation problem will depend on how easily (s)he
can choose the output mix and input mix. Irrespective of how easily the output and
input mixes can be chosen, the TFP-maximising and net-output-maximising output-
input combinations will always lie on the boundary of the production possibilities
set.

If more than one technology exists in a given period, then each of the optimisation
problems discussed above can be solved as either a maximax problem or a minimin
problem. For example, an output maximisation problem can be solved by (1) finding
the maximum aggregate output possible using each technology, then (2) finding the
maximum of these maxima. As another example, a cost minimisation problem can
be solved by (1) finding the minimum cost of production using each technology, then
(2) finding the minimum of these minima.

Some optimisation problems involve price, demand and/or environmental uncer-
tainty. Decision-making in the face of uncertainty is often analysed within a state-
contingent framework. For more details concerning state-contingent models of
behaviour, see Chambers and Quiggin (2000), Quiggin and Chambers (2006), Serra
et al. (2010), O’Donnell et al. (2010) and Rasmussen (2011). Some managers have
limited capacity to solve complex optimisation problems. For more details concern-
ing so-called bounded rationality, see the seminal work of Simon (1955). Boundedly-
rational managers often make decisions using heuristics (i.e., ‘rules of thumb’).
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Chapter 5
Measures of Efficiency

Measures of efficiency can be viewed as ex post measures of how well firm man-
agers have solved different optimisation problems. For example, measures of output-
oriented technical efficiency can be viewed as measures of how well managers have
maximised outputs when inputs and output mixes have been predetermined. Simi-
larly, measures of profit efficiency can be viewed as measures of how well managers
havemaximisedprofitswhen inputs andoutputs have been chosen freely. This chapter
discusses various output-, input-, revenue-, cost-, profit- and productivity-oriented
measures of efficiency. Except where explicitly stated otherwise, all measures of effi-
ciency defined in this chapter take values in the closed unit interval. A firm manager
is said to have been fully efficient by some measure if and only if that measure takes
the value one.

5.1 Output-Oriented Measures

Output-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situations where managers have placed nonnegative values on outputs (not
necessarily market values) and inputs have been predetermined (i.e., chosen in a pre-
vious period). In these situations, the relevance of a particular measure depends on
how easily the manager has been able to choose the output mix. If the output mix of
the firm has been predetermined, then the most relevant measure is output-oriented
technical efficiency (OTE). If themanager has been able to choose outputs freely, then
the most relevant measure is output-oriented technical and mix efficiency (OTME).
Measures of OTME can be decomposed into separate measures of technical and mix
efficiency.
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5.1.1 Output-Oriented Technical Efficiency

Several measures of OTE can be found in the literature. In this book, the OTE of
manager i in period t is defined as OTEt(xit, qit, zit) = Dt

O(xit, qit, zit). Equivalently,

OTEt(xit, qit, zit) = Q(qit)/Q(q̄it) (5.1)

where Q(qit) is the aggregate output of the firm and Q(q̄it) = Q(qit)/Dt
O(xit, qit, zit)

is themaximum aggregate output that is possible in period t when using xit to produce
a scalar multiple of qit in an environment characterised by zit . This particular measure
of OTE can be found in O’Donnell (2016, p. 332). If environmental variables have
been predetermined, then it can be viewed as a measure of how well the manager
has solved problem (4.1). If there is no environmental change, then it is equivalent
to the measure of ‘output technical efficiency’ defined by Balk (1998, Eq. 2.16). If
there is no technical or environmental change, then it is equivalent to the reciprocal
of the measure of ‘technical output efficiency’ defined by Färe and Primont (1995,
Eq. 3.4.14).

To illustrate, reconsider the output maximisation problem depicted earlier in
Fig. 4.1. For convenience, relevant parts of that figure are now reproduced in Fig. 5.1.
In these figures, the frontier passing through point C represents the boundary of
Pt(xit, zit). The outputs of firm i in period t map to point A. The dashed lines pass-
ing through points A and C are iso-output lines with the same slope but different
intercepts. The OTE of manager i in period t is given by the ratio of these intercepts.
Equivalently, OTEt(xit, qit, zit) = ||0A||/||0C|| (i.e., the length of the line segment
0A divided by the length of the line segment 0C).

0

q2

q1

A

C

Q(qit)/a2

Q(q̄it)/a2

q1it

q2it

Fig. 5.1 Output-oriented technical inefficiency. The gap between the dashed lines passing through
A and C is due to technical inefficiency
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Fig. 5.2 Output-oriented technical inefficiency. The gap between the rays passing through A and
C is due to technical inefficiency

The fact that the OTE of a manager can be defined in terms of aggregate outputs
means it can also be depicted in output-input space. It can also be viewed as a TFP
index. For example, pointsAandC inFig. 5.1map to pointsAandC inFig. 5.2. InFig.
5.2, the frontier passing through point C represents the boundary of T t(xit, qit, zit).
The TFP at point A is TFP(xit, qit) = Q(qit)/X (xit) = slope 0A. The TFP at point
C is TFP(xit, q̄it) = Q(q̄it)/X (xit) = slope 0C. The OTE of manager i in period
t isOTEt(xit, qit, zit) = TFP(xit, qit)/TFP(xit, q̄it) = (slope 0A)/(slope 0C) (i.e., an
index that compares the TFP at point A with the TFP at point C). For a numerical
example, see Sect. 1.5.1.

5.1.2 Output-Oriented Technical and Mix Efficiency

The OTME of manager i in period t is defined as

OTMEt(xit, qit, zit) = Q(qit)/Q(q̂it) (5.2)

whereQ(qit) is the aggregate output of the firm andQ(q̂it) is the maximum aggregate
output that is possible in period t when using xit in an environment characterised by
zit . This measure of efficiency appears to be new. If environmental variables have
been predetermined, then it can be viewed as a measure of how well the manager
has solved problem (4.2).

To illustrate, reconsider the output maximisation problem depicted earlier in
Fig. 5.14. Relevant parts of that figure are now reproduced in Fig. 5.3. In this figure,
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Fig. 5.3 Output-oriented technical and mix inefficiency. The gap between the dashed lines passing
through A and V is due to technical and mix inefficiency

the frontier passing through point C is the frontier depicted earlier in Fig. 5.1; it
represents the boundary of Pt(xit, zit). The outputs of firm i in period t map to point
A. The dashed lines passing through points A and V are iso-output lines with the
same slope but different intercepts. The OTME of manager i in period t is given by
the ratio of these intercepts.

Again, the fact that the OTME of a manager can be defined in terms of aggre-
gate outputs means it can be depicted in output-input space. Again, this means
it can be viewed as a TFP index. For example, points A and V in Fig. 5.3
map to points A and V in Fig. 5.4. In this figure, the frontier passing through
point E (and just above point V) represents the boundary of T t(zit). The TFP
at point A is TFP(xit, qit) = Q(qit)/X (xit) = slope 0A. The TFP at point V is
TFP(xit, q̂it) = Q(q̂it)/X (xit) = slope 0V. The OTME of manager i in period t is
OTMEt(xit, qit, zit) = TFP(xit, qit)/TFP(xit, q̂it) = (slope 0A)/(slope 0V) (i.e., an
index that compares the TFP at point A with the TFP at point V).

5.1.3 Output-Oriented Mix Efficiency

The measure of OTME defined by (5.2) can be decomposed into separate measures
of technical andmix efficiency. The technical efficiency component is the measure of
OTE defined by (5.1). The mix efficiency component is an output-oriented measure
of how well the manager has captured economies of output substitution. Economies
of output substitution are the benefits obtained by substituting some outputs for
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Fig. 5.4 Output-oriented technical and mix inefficiency. The gap between the rays passing through
A and V is due to technical and mix inefficiency

others (e.g., producing less of output 1 in order to produce more of output 2). In this
book, the so-called output-oriented mix efficiency (OME) of manager i in period t
is defined as

OMEt(xit, qit, zit) = Q(q̄it)/Q(q̂it) (5.3)

where Q(q̄it) = Q(qit)/Dt
O(xit, qit, zit) is the maximum aggregate output that is pos-

sible in period t when using xit to produce a scalar multiple of qit in an environment
characterised by zit . Equations (5.1), (5.2) and (5.3) imply that

OMEt(xit, qit, zit) = OTMEt(xit, qit, zit)/OTE
t(xit, qit, zit). (5.4)

This equation says that OME is the component of OTME that remains after account-
ing for OTE. If there is no environmental change, then the measure of OME defined
by (5.3) is equivalent to the measure of OME defined by O’Donnell (2010, Eq. 3.4).
If there is only one output, then it takes the value one.

To illustrate, reconsider the measures of OTE and OTME depicted in Figs. 5.1 and
5.3. For convenience, those figures are now combined into Fig. 5.5. In this figure, the
outputs of firm i in period tmap to pointA. The dashed lines passing through pointsA,
C and V are iso-output lines with the same slope but different intercepts. The OTME,
OTE and OME of manager i in period t are given by the ratios of these intercepts.

Again, the fact that the OME of a manager can be defined in terms of aggregate
outputs means it can be depicted in output-input space. Again, this means it can be
viewed as a TFP index. For example, points A, C and V in Fig. 5.5 map to points A,
C and V in Fig. 5.6. In this figure, the frontier passing through point C is the frontier
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Fig. 5.5 Output-oriented technical and mix inefficiency. The gap between the dashed lines passing
through A and C is due to technical inefficiency. The gap between the dashed lines passing through
C and V is due to mix inefficiency
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Fig. 5.6 Output-oriented technical and mix inefficiency. The gap between the rays passing through
A and C is due to technical inefficiency. The gap between the rays passing through C and V is due
to mix inefficiency

depicted earlier in Fig. 5.2; it represents the boundary of T t(xit, qit, zit). The frontier
passing through point E is the frontier depicted in Fig. 5.4; it represents the boundary
of T t(zit). The TFP at point C is TFP(xit, q̄it) = Q(q̄it)/X (xit) = slope 0C. The TFP
at point V is TFP(xit, q̂it) = Q(q̂it)/X (xit) = slope 0V. The OME of manager i in
period t is OMEt(xit, qit, zit) = TFP(xit, q̄it)/TFP(xit, q̂it) = (slope 0C)/(slope 0V)
(i.e., an index that compares the TFP at point C with the TFP at point V).
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5.1.4 Example

If the output distance function is given by (2.9), then the OTE of manager i in period
t is

OTEt(xit, qit, zit) =
⎛
⎝A(t)

J∏
j=1

z
δ j

j it

M∏
m=1

xβm
mit

⎞
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−1 (
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γnq
τ
nit

)1/τ

. (5.5)

The OTME and OME of the manager depend on both the aggregator function and
the value of τ . Suppose Q(q) = a′q where a = (a1, . . . , aN )′ > 0. If τ > 1, then

OTMEt(xit, qit, zit) = a′qit
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(5.6)

where σ = 1/(1 − τ) < 0. As τ → 1,1

OTEt(xit, qit, zit) →
⎛
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OTMEt(xit, qit, zit) → a′qit
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. (5.7)

5.2 Input-Oriented Measures

Input-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situations where managers have placed nonnegative values on inputs (not
necessarily market values) and outputs have been predetermined. In these situations,
the relevance of a particular measure depends on how easily the manager has been
able to choose the input mix. If the input mix of the firm has been predetermined, then
themost relevant measure is input-oriented technical efficiency (ITE). If themanager

1As τ → 1, σ → −∞. By a limiting argument originally due to Hardy et al. (1934, pp. 13, 15),

limσ→−∞
(∑

n γ σ
n a1−σ

n

)1/(1−σ) = max{a1/γ1, . . . , aN /γN }.
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has been able to choose inputs freely, then themost relevantmeasure is input-oriented
technical and mix efficiency (ITME). Measures of ITME can be decomposed into
separate measures of technical and mix efficiency.

5.2.1 Input-Oriented Technical Efficiency

Again, several measures of ITE can be found in the literature. The basic idea behind
these measures can be traced back to the ‘coefficient of resource utilization’ defined
by Debreu (1951, p. 285). In this book, the ITE of manager i in period t is defined
as ITEt(xit, qit, zit) = 1/Dt

I (xit, qit, zit). Equivalently,

ITEt(xit, qit, zit) = X (x̄it)/X (xit) (5.8)

where X (xit) is the aggregate input of the firm and X (x̄it) = X (xit)/Dt
I (xit, qit, zit) is

the minimum aggregate input needed to produce qit in period t when using a scalar
multiple of xit in an environment characterised by zit . This particular measure of
ITE can be found in O’Donnell (2016, p. 331). If environmental variables have been
predetermined, then it can be viewed as a measure of how well the manager has
solved problem (4.5). If there is no environmental change, then it is equivalent to the
measure of ‘input technical efficiency’ defined by Balk (1998, Eq. 2.15). If there is no
technical or environmental change, then it is equivalent to the measure of ‘technical
efficiency’ defined by Färe and Primont (1995, Eq. 3.4.7).

To illustrate, reconsider the input minimisation problem depicted earlier in Fig.
4.3. Relevant parts of that figure are now reproduced in Fig. 5.7. In these figures, the
frontier passing through point B represents the boundary of Lt(qit, zit). The inputs of
firm i in period t map to point A. The dashed lines passing through points A and B
are iso-input lines with the same slope but different intercepts. The ITE of manager i
in period t is given by the ratio of these intercepts. Equivalently, ITEt(xit, qit, zit) =
||0B||/||0A|| (i.e., the length of the line segment 0B divided by the length of the line
segment 0A).

The fact that the ITE of a manager can be defined in terms of aggregate inputs
means it can also be depicted in output-input space. It can also be viewed as a
TFP index. For example, points A and B in Fig. 5.7 map to points A and B in
Fig. 5.8. In Fig. 5.8, the frontier passing through point B is the frontier depicted
earlier in Fig. 5.2; it represents the boundary of T t(xit, qit, zit). The TFP at point A
is TFP(xit, qit) = Q(qit)/X (xit) = slope 0A. The TFP at point B is TFP(x̄it, qit) =
Q(qit)/X (x̄it) = slope 0B. The ITE of manager i in period t is ITEt(xit, qit, zit) =
TFP(xit, qit)/TFP(x̄it, qit) = (slope 0A)/(slope 0B) (i.e., an index that compares the
TFP at point A with the TFP at point B). For a numerical example, see Sect. 1.5.2.



5.2 Input-Oriented Measures 183

0

x2

x1

A

B

X(xit)/b2

X(x̄it)/b2

x1it

x2it

Fig. 5.7 Input-oriented technical inefficiency. The gap between the dashed lines passing through
A and B is due to technical inefficiency
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Fig. 5.8 Input-oriented technical inefficiency. The gap between the rays through A and B is due to
technical inefficiency

5.2.2 Input-Oriented Technical and Mix Efficiency

The ITME of manager i in period t is defined as

ITMEt(xit, qit, zit) = X (x̂it)/X (xit) (5.9)
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Fig. 5.9 Input-oriented technical and mix inefficiency. The gap between the dashed lines passing
through A and U is due to technical and mix inefficiency

where X (xit) is the aggregate input of the firm and X (x̂it) is the minimum aggregate
input needed to produce qit in period t in an environment characterised by zit . Again,
this measure of efficiency appears to be new. If environmental variables have been
predetermined, then it can be viewed as a measure of how well the manager has
solved problem (4.6).

To illustrate, reconsider the input minimisation problem depicted earlier in Fig.
4.4. Relevant parts of that figure are now reproduced in Fig. 5.9. In this figure,
the frontier passing through point B is the frontier depicted earlier in Fig. 5.7; it
represents the boundary of Lt(qit, zit). The inputs of firm i in period t map to point A.
The dashed lines passing through points A and U are iso-input lines with the same
slope but different intercepts. The ITME of manager i in period t is given by the ratio
of these intercepts.

Again, the fact that the ITME of a manager can be defined in terms of aggregate
inputs means it can be depicted in output-input space. Again, this means it can be
viewed as a TFP index. For example, points A and U in Fig. 5.9 map to points A
and U in Fig. 5.10. In this figure, the frontier passing through point E is the frontier
depicted earlier in Fig. 5.4; it represents the boundary of T t(zit). The TFP at point A
is TFP(xit, qit) = Q(qit)/X (xit) = slope 0A. The TFP at point U is TFP(x̂it, qit) =
Q(qit)/X (x̂it) = slope 0U. The ITME ofmanager i in period t is ITMEt(xit, qit, zit) =
TFP(xit, qit)/TFP(x̂it, qit) = (slope 0A)/(slope 0U) (i.e., an index that compares the
TFP at point A with the TFP at point U).
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Fig. 5.10 Input-oriented technical and mix inefficiency. The gap between the rays passing through
A and U is due to technical and mix inefficiency

5.2.3 Input-Oriented Mix Efficiency

The measure of ITME defined by (5.9) can be decomposed into separate measures
of technical and mix efficiency. The technical efficiency component is the measure
of ITE defined by (5.8). The mix efficiency component is an input-oriented measure
of how well the manager has captured economies of input substitution. Economies
of input substitution are the benefits obtained by substituting some inputs for others
(e.g., substituting capital for labour). In this book, the so-called input-oriented mix
efficiency (IME) of manager i in period t is defined as

IMEt(xit, qit, zit) = X (x̂it)/X (x̄it) (5.10)

whereX (x̄it) = X (xit)/Dt
I (xit, qit, zit) is theminimum aggregate input needed to pro-

duce qit in period t when using a scalar multiple of xit in an environment characterised
by zit . Equations (5.8), (5.9) and (5.10) imply that

IMEt(xit, qit, zit) = ITMEt(xit, qit, zit)/ITE
t(xit, qit, zit). (5.11)

This equation says that IME is the component of ITME that remains after accounting
for ITE. If there is no environmental change, then the measure of IME defined by
(5.10) is equivalent to the measure of IME defined by O’Donnell (2010, Eq. 4.6). If
there is only one input, then it takes the value one.

To illustrate, reconsider the measures of ITE and ITME depicted in Figs. 5.7 and
5.9. For convenience, those figures are now combined into Fig. 5.11. In this figure,
the inputs of firm i in period t map to point A. The dashed lines passing through
points A, B and U are iso-input lines with the same slope but different intercepts.
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Fig. 5.11 Input-oriented technical and mix inefficiency. The gap between the dashed lines passing
through A and B is due to technical inefficiency. The gap between the dashed lines passing through
U and B is due to mix inefficiency

The ITME, ITE and IME of manager i in period t are given by the ratios of these
intercepts.

Again, the fact that the IME of a manager can be defined in terms of aggregate
inputs means it can be depicted in output-input space. Again, this means it can be
viewed as a TFP index. For example, points A, B and U in Fig. 5.11 map to points A,
B and U in Fig. 5.12. In this figure, the frontier passing through point B is the frontier
depicted earlier in Fig. 5.8; it represents the boundary of T t(xit, qit, zit). The frontier
passing through point E is the frontier depicted in Fig. 5.10; it represents the boundary
ofT t(zit). TheTFP at point B isTFP(x̄it, qit) = Q(qit)/X (x̄it) = slope 0B. TheTFP at
point U is TFP(x̂it, qit) = Q(qit)/X (x̂it) = slope 0U. The IME of manager i in period
t is IMEt(xit, qit, zit) = TFP(x̄it, qit)/TFP(x̂it, qit) = (slope 0B)/(slope 0U) (i.e., an
index that compares the TFP at point B with the TFP at point U).

5.2.4 Example

If the input distance function is given by (2.13), then the ITE of manager i in period
t is

ITEt(xit, qit, zit) =
⎛
⎝B(t)
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z
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j it

M∏
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xλm
mit

⎞
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N∑
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γnq
τ
nit

)1/(τη)

. (5.12)
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Fig. 5.12 Input-oriented technical and mix inefficiency. The gap between the rays passing through
A and B is due to technical inefficiency. The gap between the rays passing through U and B is due
to mix inefficiency

The ITME and IME of the manager depend on the aggregator function. IfX (x) = b′x
where b = (b1, . . . , bM )′ > 0, then

ITMEt(xit, qit, zit) =
⎛
⎝b′xit B(t)

J∏
j=1

z
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j it

⎞
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and IMEt(xit, qit, zit) = (
b′xit

)−1
M∏

m=1

(
bmxmit

λm

)λm

. (5.13)

5.3 Revenue-Oriented Measures

Revenue-oriented measures of efficiency are relevant measures of managerial per-
formance in situations where managers have valued outputs at market prices and
inputs have been predetermined. The most widely-used revenue-oriented measure
of efficiency is revenue efficiency (RE). If a firm is a price taker in output markets,
then the RE of its manager can be decomposed into separate measures of technical
and allocative efficiency.
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5.3.1 Revenue Efficiency

For any given manager, the exact definition of RE depends on whether the firm is a
price setter or price taker in output markets.

5.3.1.1 Price Setters in Output Markets

If firm i is a price setter in output markets, then the RE of manager i in period t is

REt(xit, dit, qit, zit) = Rit/R
t(xit, dit, zit) (5.14)

whereRit = p(qit, dit)′qit is the revenue of the firm andRt(xit, dit, zit) is themaximum
revenue that can be earned using xit in period t when the production environment and
the demand market are characterised by zit and dit respectively. This particular mea-
sure of RE appears to be new. If environmental variables have been predetermined,
then it can be viewed as a measure of how well the manager has solved problem
(4.9).

For a numerical example, reconsider the revenue maximisation problem depicted
earlier in Fig. 4.5. Relevant parts of that figure are now reproduced in Fig. 5.13.
In these figures, the frontier passing through point C represents the boundary of
P1(ι, 1). If the vector of demand shifters had been di1 = (4.1, 4.1)′, then the revenue-
maximising point would have been point T. The associated maximum revenue would

0

q2

q1

A

C

T

1 1.925

1

3.722

5.105

Fig. 5.13 The revenue efficiency of the manager of a price-setting firm. If consumer demand had
been relatively strong, then the RE of the manager of firm A would have been RE1(ι, 4.1ι, ι, 1) =
0.548
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have been R1(ι, 4.1ι, 1) = 7.791. On the other hand, the revenue at point A would
have been R11 = 4.266. Thus, the RE of the manager of firm A would have been
RE1(ι, 4.1ι, ι, 1) = R11/R1(ι, 4.1ι, 1) = 4.266/7.791 = 0.548.

5.3.1.2 Price Takers in Output Markets

If firm i is a price taker in output markets, then the RE of manager i in period t is2

REt(xit, pit, qit, zit) = Rit/R
t(xit, pit, zit) (5.15)

whereRit = p′
itqit is the revenueof thefirmandRt(xit, pit, zit) is themaximumrevenue

that can be earned using xit in period t in a production environment characterised
by zit when output prices are given by pit . Again, this particular measure of RE
appears to be new. If environmental variables have been predetermined, then it can
be viewed as a measure of how well the manager has solved problem (4.12). If there
is no environmental change, then it is equivalent to the measure of RE defined by
Balk (1998, Eq. 4.4). If there is no technical or environmental change, then it is
equivalent to the reciprocal of the measure of ‘overall output efficiency’ defined by
Färe et al. (1985, Eq. 4.4.5).

To illustrate, reconsider the revenuemaximisation problem depicted earlier in Fig.
4.6. Relevant parts of that figure are now reproduced in Fig. 5.14. In these figures,
the frontier passing through point C is the frontier depicted earlier in Fig. 5.3; it
represents the boundary of Pt(xit, zit). The outputs of firm i in period t map to point
A. The dashed lines passing through points A and K are iso-revenue lines with the
same slope but different intercepts. The RE of manager i in period t is given by the
ratio of these intercepts. It is worth noting that the ratio of the intercepts in Fig. 5.14
is not the same as the ratio of the intercepts in Fig. 5.3. This illustrates that RE does
not generally equal OTME.

5.3.2 Output-Oriented Allocative Efficiency

The measure of RE defined by (5.15) can be decomposed into separate measures of
technical and allocative efficiency. The technical efficiency component is the mea-
sure of OTE defined by (5.1). If firm i is a price taker in output markets, then this
component can be written as

OTEt(xit, qit, zit) = Rit/R
t(xit, pit, qit, zit) (5.16)

2Equation (5.15) can be viewed as a special case of (5.14) corresponding to ∂p(qit, dit)/∂qit = 0.
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Fig. 5.14 The revenue inefficiency of the manager of a price-taking firm. The gap between the
dashed lines passing through A and K is due to revenue inefficiency

where Rt(xit, pit, qit, zit) = Rit/Dt
O(xit, qit, zit) is the maximum revenue that can be

earned using xit in period t in a production environment characterised by zit when
output prices are given by pit and outputs are a scalar multiple of qit . The allocative
efficiency component is a revenue-oriented measure of how well the manager has
captured economies of output substitution. If firm i is a price taker in output markets,
then the so-called output-oriented allocative efficiency (OAE) of manager i in period
t is

OAEt(xit, pit, qit, zit) = Rt(xit, pit, qit, zit)/R
t(xit, pit, zit). (5.17)

An implication of Eqs. (5.15), (5.16) and (5.17) is that

OAEt(xit, pit, qit, zit) = REt(xit, pit, qit, zit)/OTE
t(xit, qit, zit). (5.18)

This equation says that OAE is the component of RE that remains after accounting
for OTE. If there is no environmental change, then the measure of OAE defined by
(5.17) is equivalent to the measure of ‘output allocative efficiency’ defined by Balk
(1998, Eq. 4.6). If there is no technical or environmental change, then it is equivalent
to the reciprocal of the measure of ‘allocative output efficiency’ defined by Färe et al.
(1985, Eq. 4.6.1). If there is only one output, then it takes the value one.

To illustrate, reconsider the measure of RE depicted in Fig. 5.14. Relevant parts
of that figure are now reproduced in Fig. 5.15. In this figure, the outputs of firm i
in period t map to point A. The dashed lines passing through points A, C and K
are iso-revenue lines with the same slope but different intercepts. The RE, OTE and
OAE of manager i in period t are given by the ratios of these intercepts.
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Fig. 5.15 The revenue inefficiency of the manager of a price-taking firm. The gap between the
dashed lines passing through A and C is due to technical inefficiency. The gap between the dashed
lines passing through C and K is due to allocative inefficiency

5.3.3 Example

If the output distance function is given by (2.9), then the OTE of manager i in period
t is given by (5.5). The RE and OAE of the manager depend on the market power of
the firm and the value of τ . If, for example, the firm is a price taker in output markets
and τ > 1, then

REt(xit, pit, qit, zit) = p′
itqit
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where σ = 1/(1 − τ) < 0. As τ → 1,
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5.4 Cost-Oriented Measures

Cost-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situations where managers have valued inputs at market prices and outputs
have been predetermined. The most widely-used cost-oriented measure of efficiency
is cost efficiency (CE). The CE of any manager can be decomposed into separate
measures of technical and allocative efficiency.

5.4.1 Cost Efficiency

For any given manager, the exact definition of CE depends on whether the firm is a
price setter or price taker in input markets.

5.4.1.1 Price Setters in Input Markets

If firm i is a price setter in input markets, then the CE of manager i period t is

CEt(sit, xit, qit, zit) = Ct(sit, qit, zit)/Cit (5.19)

where Cit = w(xit, sit)′xit is the cost of the firm’s inputs and Ct(sit, qit, zit) is the
minimum cost of producing qit in period t when the production environment and the
supply sector are characterised by zit and sit respectively. This particular measure of
CE appears to be new. If environmental variables have been predetermined, then it
can be viewed as a measure of how well the manager has solved problem (4.14).

For a numerical example, reconsider the cost minimisation problem depicted
earlier in Fig. 4.7. Relevant parts of that figure are now reproduced in Fig. 5.16. In
these figures, the frontier passing through point P represents the boundary of L1(ι, 1).
If the vector of supply shifters had been si1 = (1, 1)′, then the cost-minimising point
would have been point P. The associatedminimumcostwould have beenC1(ι, ι, 1) =
0.212. On the other hand, the cost of the inputs at point A would have been C11 =
0.4552. Thus, the CE of the manager of firm A would have been CE1(ι, ι, ι, 1) =
C11/C1(ι, ι, 1) = 0.212/0.4552 = 0.466.

5.4.1.2 Price Takers in Input Markets

If firm i is a price taker in input markets, then the CE of manager i in period t is3

CEt(wit, xit, qit, zit) = Ct(wit, qit, zit)/Cit (5.20)

3Equation (5.20) can be viewed as a special case of (5.19) corresponding to ∂w(xit, sit)/∂xit = 0.
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Fig. 5.16 The cost efficiency of the manager of a price-setting firm. If input-supplies had been
relatively abundant, then the CE of the manager of firm A would have been CE1(ι, ι, ι, 1) = 0.466

where Cit = w′
itxit is the cost of the firm’s inputs and Ct(wit, qit, zit) is the minimum

cost of producing qit in period t in a production environment characterised by zit
when input prices are given by wit . Again, this particular measure of CE appears to
be new. If environmental variables have been predetermined, then it can be viewed
as a measure of how well the manager has solved problem (4.17). If there is no
environmental change, then it is equivalent to the measure of CE defined by Balk
(1998, Eq. 3.10). If there is no technical or environmental change, then it is equivalent
to the measure of ‘overall input efficiency’ defined by Färe et al. (1985, Eq. 3.4.4).

To illustrate, reconsider the cost minimisation problem depicted earlier in Fig.
4.8. Relevant parts of that figure are now reproduced in Fig. 5.17. In these figures,
the frontier passing through point X is the frontier depicted earlier in Fig. 5.9; it
represents the boundary of Lt(qit, zit). The inputs of firm i in period t map to point
A. The dashed lines passing through points A and X are iso-cost lines with the same
slope but different intercepts. The CE of manager i in period t is given by the ratio
of these intercepts. It is worth noting that the ratio of the intercepts in Fig. 5.17 is
not the same as the ratio of the intercepts in Fig. 5.9. This illustrates that CE does
not generally equal ITME.

5.4.2 Input-Oriented Allocative Efficiency

The measure of CE defined by (5.20) can be decomposed into separate measures of
technical and allocative efficiency. The technical efficiency component is themeasure
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Fig. 5.17 The cost inefficiency of the manager of a price-taking firm. The gap between the dashed
lines passing through A and X is due to cost inefficiency

of ITE defined by (5.8). If firm i is a price taker in input markets, then this component
can be written as

ITEt(xit, qit, zit) = Ct(wit, xit, qit, zit)/Cit (5.21)

where Ct(wit, xit, qit, zit) = Cit/Dt
I (xit, qit, zit) is the minimum cost of producing qit

in period t in a production environment characterised by zit when input prices are
givenbywit and inputs are a scalarmultiple of xit . The allocative efficiency component
is a cost-oriented measure of how well the manager has captured economies of input
substitution. If firm i is a price taker in inputmarkets, then the so-called input-oriented
allocative efficiency (IAE) of manager i in period t is

IAEt(wit, xit, qit, zit) = Ct(wit, qit, zit)/C
t(wit, xit, qit, zit). (5.22)

An implication of Eqs. (5.20), (5.21) and (5.22) is that

IAEt(wit, xit, qit, zit) = CEt(wit, xit, qit, zit)/ITE
t(xit, qit, zit). (5.23)

This equation says that IAE is the component of CE that remains after accounting for
ITE. If there is no environmental change, then the measure of IAE defined by (5.22)
is equivalent to the measure of ‘input allocative efficiency’ defined by Balk (1998,
Eq. 3.13). If there is no technical or environmental change, then it is equivalent to
the measure of ‘allocative input efficiency’ defined by Färe et al. (1985, Eq. 3.6.1).
If there is only one input, then it takes the value one.



5.4 Cost-Oriented Measures 195

0

x2

x1

A

B

X

Cit/w2it

Ct(wit ,xit ,qit,zit)/w2it

Ct(wit ,qit,zit)/w2it

x1it

x2it

Fig. 5.18 The cost inefficiency of the manager of a price-taking firm. The gap between the dashed
lines passing through A and B is due to technical inefficiency. The gap between the dashed lines
passing through B and X is due to allocative inefficiency

To illustrate, reconsider the measure of CE depicted in Fig. 5.17. Relevant parts
of that figure are now reproduced in Fig. 5.18. In this figure, the inputs of firm i in
period t map to point A. The dashed lines passing through points A, B and X are
iso-cost lines with the same slope but different intercepts. The CE, ITE and IAE of
manager i in period t are given by the ratios of these intercepts.

5.4.3 Example

If the input distance function is given by (2.13), then the ITE of manager i in period
t is given by (5.12). The CE and IAE of the manager depend on the market power of
the firm. If, for example, firm i is a price taker in input markets, then

CEt(wit, xit, qit, zit) =
⎛
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and IAEt(wit, xit, qit, zit) =
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m=1

(
smit
λm

)λm

(5.25)

where smit = wmitxmit/w′
itxit is the m-th observed cost share.
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5.5 Profit-Oriented Measures

Profit-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situations where managers have valued outputs and inputs at market prices
and then chosen them freely. The most widely-used profit-oriented measure of effi-
ciency is profit efficiency (PE). Measures of PE can be decomposed into output- and
input-oriented measures of technical, scale and allocative efficiency.

5.5.1 Profit Efficiency

For any given manager, the exact definition of PE depends on whether the firm is a
price setter or price taker in output and input markets.

5.5.1.1 Price Setters in Output and Input Markets

If firm i is a price setter in output and input markets, then the PE of manager i in
period t is

PEt(sit, xit, dit, qit, zit) = Πit I(Πit ≥ 0)/Π t(sit, dit, zit) (5.26)

where Πit = p(qit, dit)′qit − w(xit, sit)′xit is the profit of the firm, I(.) is an indica-
tor function that takes the value 1 if the argument is true (and 0 otherwise), and
Π t(sit, dit, zit) is the maximum profit that can be earned in period t in a production
environment characterised by zit when supply and demand markets are characterised
by sit and dit respectively. This particular measure of PE appears to be new. If envi-
ronmental variables have been predetermined, then it can be viewed as a measure of
how well the manager has solved problem (4.19).

For a numerical example, reconsider the profit maximisation problem depicted
earlier in Fig. 4.9. Relevant parts of that figure are now reproduced in Fig. 5.19.
The frontier in both figures represents the boundary of T 1(1). If the vectors of
demand and supply shifters had been di1 = (4.1, 4.1)′ and si1 = (0.1, 0.1)′, then the
profit maximising point would have been point G. The associated maximum profit
would have been Π1(0.1ι, 4.1ι, 1) = 7.036. On the other hand, the profit at point A
would have been Π11 = 3.196. Thus, the PE of the manager of firm A would have
been PE1(0.1ι, ι, 4.1ι, ι, 1) = Π11 I(Π11 ≥ 0)/Π1(0.1ι, 4.1ι, 1) = 3.196/7.036 =
0.454.
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Fig. 5.19 The profit efficiency of the manager of a price-setting firm. If consumer demand had
been relatively strong and input supplies had been relatively scarce, then the PE of the manager of
firm A would have been PE1(0.1ι, ι, 4.1ι, ι, 1) = 0.454

5.5.1.2 Price Takers in Output and Input Markets

If firm i is a price taker in output and input markets, then the PE of manager i in
period t is4

PEt(wit, xit, pit, qit, zit) = Πit I(Πit ≥ 0)/Π t(wit, pit, zit) (5.27)

whereΠit = p′
itqit − w′

itxit is the profit of the firm andΠ t(wit, pit, zit) is themaximum
profit that can be earned in period t in a production environment characterised by
zit when the output and input price vectors are pit and wit respectively. Again, this
particular measure of PE appears to be new. If environmental variables have been
predetermined, then it can be viewed as ameasure of howwell themanager has solved
problem (4.20). If the firm makes a profit and there is no technical or environmental
change, then it is equivalent to the reciprocal of the measure of ‘aggregate efficiency’
defined by Banker and Maindiratta (1988, p. 1320). Alternative measures of PE that
can be found in the literature include the measure of ‘Nerlovian profit efficiency’
defined byFäre andGrosskopf (1997, Eq. 6) and the ‘profit-based efficiencymeasure’
of Chambers et al. (1998, Eq. 23). These alternative measures do not necessarily take
values in the closed unit interval.

4Equation (5.27) can be viewed as a special case of (5.26) corresponding to ∂p(qit, dit)/∂qit = 0
and ∂w(xit, sit)/∂xit = 0.
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Fig. 5.20 The profit efficiency of themanager of a price-taking firm. If firmC had been a price taker
in output and inputmarkets, then thePEof itsmanagerwouldhavebeenPE1(w31, x31, p31, q31, 1) =
0.052

For a numerical example, reconsider the profit maximisation problem depicted
earlier in Fig. 4.10. Relevant parts of that figure are now reproduced in Fig. 5.20.
In this figure, the frontier passing through point J is the frontier depicted in Fig.
5.19; it represents the boundary of T 1(1). The frontier passing through point C rep-
resents the boundary of T 1(x31, q31, 1). If firm C had been a price taker in output and
input markets, then profit-maximising point would have been point J. The associated
maximum profit would have been Π1(w31, p31, 1) = 2.564. On the other hand, the
profit at point C would have been Π13 = 0.133. Thus, the PE of the manager of firm
C would have been PE1(w31, x31, p31, q31, 1) = Π31 I(Π31 ≥ 0)/Π1(w31, p31, 1) =
0.133/2.564 = 0.052.

5.5.2 Output-Oriented Scale and Allocative Efficiency

The measure of PE defined by (5.27) can be decomposed into an output-oriented
measure of technical efficiency and anoutput-orientedmeasure of scale and allocative
efficiency. The technical efficiency component is the measure of OTE defined by
(5.1). The scale and allocative efficiency component is a profit-oriented measure of
how well the manager has captured economies of scale and substitution. Economies
of scale and substitution are the benefits obtained by changing the scale of operations,
the output mix, and the input mix. If firm i is a price taker in output and input markets,
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then the so-called output-oriented scale and allocative efficiency (OSAE) of manager
i in period t is

OSAEt(wit, xit, pit, qit, zit) = (Rt(xit, pit, qit, zit) − Cit) I(Rt(xit, pit, qit, zit) ≥ Cit)

Π t(wit, pit, zit)
(5.28)

where Rt(xit, pit, qit, zit) = Rit/Dt
O(xit, qit, zit) is the maximum revenue that can be

earned using xit in period t in a production environment characterised by zit when
output prices are given by pit and outputs are a scalarmultiple of qit . Equations (5.16),
(5.27) and (5.28) imply that if OTE equals one, then PE equals OSAE. Thus, OSAE
can be viewed as the component of PE that remains after accounting for OTE.

For a numerical example, reconsider the measure of PE depicted in Fig. 5.20. In
this figure, the OTE of the manager of firm C is one. Thus, if the firm had been a
price taker in output and input markets, then the OSAE of the manager would have
been OSAE1(w31, x31, p31, q31, 1) = 0.052.

5.5.3 Input-Oriented Scale and Allocative Efficiency

The measure of PE defined by (5.27) can also be decomposed into an input-oriented
measure of technical efficiency and an input-oriented measure of scale and allocative
efficiency. The technical efficiency component is themeasure of ITE defined by (5.8).
Again, the scale and allocative efficiency component is a profit-oriented measure of
how well the manager has captured economies of scale and substitution. If firm i is
a price taker in output and input markets, then its so-called input-oriented scale and
allocative efficiency (ISAE) in period t is

ISAEt(wit, xit, pit, qit, zit) = (Rit − Ct(wit, xit, qit, zit)) I(Rit ≥ Ct(wit, xit, qit, zit))

Π t(wit, pit, zit)
(5.29)

where Ct(wit, xit, qit, zit) = Cit/Dt
I (xit, qit, zit) is the minimum cost of producing qit

in period t in a production environment characterised by zit when input prices are
given bywit and inputs are a scalar multiple of xit . Equations (5.21), (5.27) and (5.29)
imply that if ITE equals one, then PE equals ISAE. Thus, ISAE can be viewed as the
component of PE that remains after accounting for ITE.

For a numerical example, reconsider the measure of PE depicted in Fig. 5.20. In
this figure, the ITE of the manager of firm C is one. Thus, if the firm had been a price
taker in output and input markets, then the ISAE of the manager would have been
ISAE1(w31, x31, p31, q31, 1) = 0.052.
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5.5.4 Example

If the output distance function is given by (2.9), then the OTE of manager i in period
t is given by (5.5). The PE, OSAE and ISAE of the manager depend on both the
market power and the profit of the firm. For example, if the firm is a price taker in
output and input markets and it makes a profit, then

PEt(wit, xit, pit, qit, zit) =
⎛
⎝A(t)

J∏
j=1

z
δ j

j it

M∏
m=1

(
βm

wmit

)βm

⎞
⎠

1
η−1

×
(
p′
itqit − w′

itxit
1 − η

) (
N∑
n=1

γ σ
n p

1−σ
nit

) 1
(1−σ)(η−1)

. (5.30)

Associated expressions for the measures of OSAE and ISAE are messy; the deriva-
tions are left as an exercise for the reader.

5.6 Productivity-Oriented Measures

Productivity-oriented measures of efficiency are relevant measures of managerial
performance in situationswheremanagers have placed nonnegative values on outputs
and inputs (again, not necessarily market values) and chosen at least one output and
at least one input freely. In these situations, the relevance of a particular measure
depends on how easily the manager has been able to choose the output mix and the
input mix. If both the output mix and input mix have been predetermined, then the
most relevant measure is technical and scale efficiency (TSE). If the manager has
been able to choose all outputs and inputs freely, then the most relevant measure is
technical, scale and mix efficiency (TSME). Measures of TSE and TSME can be
decomposed into various measures of technical, scale and mix efficiency.

5.6.1 Technical and Scale Efficiency

In this book, the TSE of manager i in period t is defined as

TSEt(xit, qit, zit) = TFP(xit, qit)/TFP
t(xit, qit, zit) (5.31)

where TFP(xit, qit) = Q(qit)/X (xit) is the TFP of the firm and TFPt(xit, qit, zit) is the
maximumTFP that is possible in period t in an environment characterised by zit when
using a scalarmultiple of xit to produce a scalarmultiple ofqit . This particularmeasure
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Fig. 5.21 Technical and scale inefficiency. The gap between the rays through A and D is due to
technical and scale inefficiency

of TSE appears to be new. If environmental variables have been predetermined, then
it can be viewed as a measure of how well the manager has solved problem (4.23).
If there is no technical or environmental change, then it is equivalent to the measure
of TSE defined by Banker et al. (1984, p. 1089).

To illustrate, reconsider the TFP maximisation problem depicted earlier in Fig.
4.11. Relevant parts of that figure are now reproduced in Fig. 5.21. In these figures,
the frontier passing through point D is the frontier depicted earlier in Fig. 5.2; it
represents the boundary of T t(xit, qit, zit). The outputs and inputs of firm i in period
t map to point A. The TFP at point A is TFP(xit, qit) = slope 0A. If the manager
had only been able to use a scalar multiple of xit to produce a scalar multiple of qit ,
then (s)he could have maximised TFP by operating at point D. The TFP at point D
is TFPt(xit, qit, zit) = slope 0D. Thus, the TSE of the manager is TSEt(xit, qit, zit) =
TFP(xit, qit)/TFPt(xit, qit, zit) = (slope 0A)/(slope 0D) (i.e., an index that compares
the TFP at point A with the TFP at point D).

5.6.2 Technical, Scale and Mix Efficiency

In this book, the TSME of manager i in period t is defined as

TSMEt(xit, qit, zit) = TFP(xit, qit)/TFP
t(zit) (5.32)

where TFP(xit, qit) = Q(qit)/X (xit) is the TFP of the firm and TFPt(zit) is the max-
imum TFP that is possible in period t in an environment characterised by zit . This
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Fig. 5.22 Technical, scale and mix inefficiency. The gap between the rays through A and E is due
to technical, scale and mix inefficiency

measure of efficiency is equivalent to the measure of ‘firm efficiency’ defined by
O’Donnell (2016, p. 331). If environmental variables have been predetermined, then
it can be viewed as a measure of how well the manager has solved problem (4.25).
If there is no environmental change, then it is equivalent to the measure of ‘TFP
efficiency’ defined by O’Donnell (2010, Eq. 3.1).

To illustrate, reconsider the TFP maximisation problem depicted earlier in Fig.
4.12. Relevant parts of that figure are now reproduced in Fig. 5.22. In these figures,
the frontier passing through point E is the frontier depicted earlier in Fig. 5.4; it
represents the boundary of T t(zit). The outputs and inputs of firm i in period t map to
point A. The TFP at point A is TFP(xit, qit) = slope 0A. If the manager of firm i had
been able to choose outputs and inputs freely, then (s)he could have maximised TFP
by operating at point E. The TFP at point E is TFPt(zit) = slope 0E. Thus, the TSME
of the manager is TSMEt(xit, qit, zit) = TFP(xit, qit)/TFPt(zit) = (slope 0A)/(slope
0E) (i.e., an index that compares the TFP at point A with the TFP at point E).

5.6.3 Residual Mix Efficiency

The measure of TSME defined by (5.32) can be decomposed into a measure of tech-
nical and scale efficiency and a residual measure of mix efficiency. The technical and
scale efficiency component is the measure of TSE defined by (5.31). The associated
measure of residual mix efficiency (RME) is

RMEt(xit, qit, zit) = TFPt(xit, qit, zit)/TFP
t(zit) (5.33)
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Fig. 5.23 Technical, scale and mix inefficiency. The gap between the rays through A and D is due
to technical and scale inefficiency. The gap between the rays through D and E is due to residual mix
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where TFPt(xit, qit, zit) and TFPt(zit) are the measures of maximum TFP that appear
in Eqs. (5.31) and (5.32). This particular measure of RME appears to be new. Equa-
tions (5.31), (5.32) and (5.33) imply that

RMEt(xit, qit, zit) = TSMEt(xit, qit, zit)/TSE
t(xit, qit, zit). (5.34)

This equation says thatRME is the component of TSME that remains after accounting
for TSE (hence the use of the term ‘residual’). If there is no environmental change,
then the measure of RME defined by (5.33) is equivalent to the measure of RME
defined by O’Donnell (2010, Eq. 3.6).

To illustrate, reconsider the measures of TSE and TSME depicted in Figs.
5.21 and 5.22. Relevant parts of those figures are now reproduced in Fig. 5.23.
Recall from Figs. 5.21 and 5.22 that the TSE and TSME of the manager of firm
A are TSEt(xit, qit, zit) = (slope 0A)/(slope 0D) and TSMEt(xit, qit, zit) = (slope
0A)/(slope 0E). Consequently, the RME of the manager is RMEt(xit, qit, zit) =
TSMEt(xit, qit, zit)/TSEt(xit, qit, zit) = (slope 0D)/(slope 0E) (i.e., an index that
compares the TFP at point D with the TFP at point E).

5.6.4 Example

If the output distance function is given by (2.9), then measures of TSME and TSE
depend on the elasticity of scale. If η = 1, then the TSME and TSE of manager i in
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period t are given by the equations for OTME and OTE presented in Sect. 5.1.4 (or
the equations for ITME and ITE presented in Sect. 5.2.4). If η �= 1, then the TSME
and TSE of manager i in period t are both infinitesimally small.

5.7 Other Measures

Measures of TSE and TSME can be decomposed into various measures of output-
and input-oriented technical, scale and mix efficiency. If more than one technol-
ogy exists in a given period, then most measures of efficiency can be decomposed
into metatechnology ratios and residual measures of efficiency. Several nonradial
measures of efficiency are also available.

5.7.1 Output-Oriented Scale Efficiency

The measure of TSE defined by (5.31) can be decomposed into separate output-
oriented measures of technical and scale efficiency. The technical efficiency com-
ponent is the measure of OTE defined by (5.1). The scale efficiency component is a
measure of how well the manager has captured economies of scale. Economies of
scale are the benefits obtained by changing the scale of operations. In this book, the
so-called output-oriented scale efficiency (OSE) of manager i in period t is defined
as OSEt(xit, qit, zit) = infλ Dt

O(λxit, λqit, zit)/Dt
O(xit, qit, zit). An equivalent defini-

tion is

OSEt(xit, qit, zit) = TFP(xit, q̄it)/TFP
t(xit, qit, zit) (5.35)

where TFP(xit, q̄it) = Q(q̄it)/X (xit) is the maximum TFP possible when using xit to
produce a scalar multiple of qit in period t in a production environment characterised
by zit . Equations (5.1), (5.31) and (5.35) imply that

OSEt(xit, qit, zit) = TSEt(xit, qit, zit)/OTE
t(xit, qit, zit). (5.36)

This equation says that OSE is the component of TSE that remains after accounting
for OTE. If there is no environmental change, then the measure of OSE defined by
(5.35) is equivalent to the output-oriented measure of scale efficiency defined by
Balk (1998, Eq. 2.42). If the production frontier exhibits CRS, then it takes the value
one.

To illustrate, reconsider the measures of OTE and TSE depicted in Figs. 5.2
and 5.21. Relevant parts of those figures are now reproduced in Fig. 5.24. Recall
from Figs. 5.2 and 5.21 that the OTE and TSE of the manager of firm A are
OTEt(xit, qit, zit) = (slope 0A)/(slope 0C) and TSEt(xit, qit, zit) = (slope 0A)/(slope
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Fig. 5.24 Output-oriented technical and scale inefficiency. The gap between the rays through A
and C is due to technical inefficiency. The gap between the rays through C and D is due to scale
inefficiency

0D). Consequently, the OSE of the manager isOSEt(xit, qit, zit) = TSEt(xit, qit, zit)/
OTEt(xit, qit, zit) = (slope 0C)/(slope 0D) (i.e., an index that compares the TFP at
point C with the TFP at point D).

5.7.2 Output-Oriented Scale and Mix Efficiency

The measure of TSME defined by (5.32) can be decomposed into an output-oriented
measure of technical efficiency and an output-oriented measure of scale and mix
efficiency. The technical efficiency component is the measure of OTE defined by
(5.1). The scale and mix efficiency component is a productivity-oriented measure
of how well the manager has captured economies of scale and substitution. In this
book, the so-called output-oriented scale and mix efficiency (OSME) of manager i
in period t is defined as

OSMEt(xit, qit, zit) = TFP(xit, q̄it)/TFP
t(zit) (5.37)

where TFP(xit, q̄it) = Q(q̄it)/X (xit) is the maximum TFP possible when using xit to
produce a scalar multiple of qit in period t in a production environment characterised
by zit . Equations (5.1), (5.32) and (5.37) imply that

OSMEt(xit, qit, zit) = TSMEt(xit, qit, zit)/OTE
t(xit, qit, zit). (5.38)

This equation says that OSME is the component of TSME that remains after account-
ing for OTE. If there is no environmental change, then the measure of OSME defined
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Fig. 5.25 Technical, scale and mix inefficiency. The gap between the rays through A and C is
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by (5.37) is equivalent to the measure of OSME defined by O’Donnell (2012 , p.
881). If the production frontier exhibits CRS, then it is equal to the measure of OME
defined by (5.3).

To illustrate, reconsider the measures of OTE and TSME depicted in Figs.
5.2 and 5.22. Relevant parts of those figures are now reproduced in Fig. 5.25.
Recall from Figs. 5.2 and 5.22 that the OTE and TSME of the manager of firm
A are OTEt(xit, qit, zit) = (slope 0A)/(slope 0C) and TSMEt(xit, qit, zit) = (slope
0A)/(slope 0E). Consequently, the OSME of the manager is OSMEt(xit, qit, zit) =
TSMEt(xit, qit, zit)/OTEt(xit, qit, zit) = (slope 0C)/(slope 0E) (i.e., an index that
compares the TFP at point C with the TFP at point E).

5.7.3 Residual Output-Oriented Scale Efficiency

The measure of OSME defined by (5.37) can be decomposed into separate measures
of mix and scale efficiency. The mix efficiency component is the measure of OME
defined by (5.3). The associated measure of residual output-oriented scale efficiency
(ROSE) is

ROSEt(xit, qit, zit) = TFP(xit, q̂it)/TFP
t(zit) (5.39)

where TFP(xit, q̂it) is the maximum TFP that is possible in period t when using xit
in an environment characterised by zit . Equations (5.3), (5.37) and (5.39) imply that

ROSEt(xit, qit, zit) = OSMEt(xit, qit, zit)/OMEt(xit, qit, zit). (5.40)
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This equation says that ROSE is the component of OSME that remains after account-
ing for OME (hence the use of the term ‘residual’). If there is no environmental
change, then the measure of ROSE defined by (5.39) is equivalent to the measure of
ROSE defined by O’Donnell (2010, Eq. 3.5).

To illustrate, reconsider the measures of OME and OSME depicted in Figs.
5.6 and 5.25. Relevant parts of those figures are now reproduced in Fig. 5.26.
Recall from Figs. 5.6 and 5.25 that the OME and OSME of the manager of firm
A are OMEt(xit, qit, zit) = (slope 0C)/(slope 0V) and OSMEt(xit, qit, zit) = (slope
0C)/(slope 0E). Consequently, the ROSE of the manager is ROSEt(xit, qit, zit) =
OSMEt(xit, qit, zit)/OMEt(xit, qit, zit) = (slope 0V)/(slope 0E) (i.e., an index that
compares the TFP at point V with the TFP at point E).

5.7.4 Input-Oriented Scale Efficiency

The measure of TSE defined by (5.31) can also be decomposed into separate input-
oriented measures of technical and scale efficiency. The technical efficiency compo-
nent is the measure of ITE defined by (5.8). Again, the scale efficiency component
is a measure of how well the manager has captured economies of scale. In this
book, the input-oriented scale efficiency (ISE) of manager i in period t is defined as
ISEt(xit, qit, zit) = Dt

I (xit, qit, zit)/ supλ D
t
I (λxit, λqit, zit). An equivalent definition is

ISEt(xit, qit, zit) = TFP(x̄it, qit)/TFP
t(xit, qit, zit) (5.41)
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Fig. 5.27 Input-oriented technical and scale inefficiency. The gap between the rays through A
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where TFP(x̄it, qit) = Q(qit)/X (x̄it) is the maximum TFP possible when using a
scalar multiple of xit to produce qit in period t in a production environment charac-
terised by zit . Equations (5.8), (5.31) and (5.41) imply that

ISEt(xit, qit, zit) = TSEt(xit, qit, zit)/ITE
t(xit, qit, zit). (5.42)

This equation says that ISE is the component of TSE that remains after accounting
for ITE. If there is no environmental change, then the measure of ISE defined by
(5.41) is equivalent to the input-oriented measure of scale efficiency defined by Balk
(1998, Eq. 2.33). If there is no technical or environmental change, then it is equivalent
to the measure of (input) scale efficiency defined by Banker et al. (1984, p.1089).
Again, if the production frontier exhibits CRS, then it takes the value one.

To illustrate, reconsider the measures of ITE and TSE depicted earlier in Figs.
5.8 and 5.21. Relevant parts of those figures are now reproduced in Fig. 5.27.
Recall from Figs. 5.8 and 5.21 that the ITE and TSE of the manager of firm A are
ITEt(xit, qit, zit) = (slope0A)/(slope0B) andTSEt(xit, qit, zit) = TFP(xit, qit)/TFPt

(xit, qit, zit) =(slope 0A)/(slope 0D). Consequently, the ISE of the manager is
ISEt(xit, qit, zit) = TSEt(xit, qit, zit)/ITEt(xit, qit, zit) = (slope 0B)/(slope 0D) (i.e.,
an index that compares the TFP at point B with the TFP at point D).

5.7.5 Input-Oriented Scale and Mix Efficiency

The measure of TSME defined by (5.32) can also be decomposed into an input-
oriented measure of technical efficiency and an input-oriented measure of scale and
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mix efficiency. The technical efficiency component is the measure of ITE defined
by (5.8). Again, the scale and mix efficiency component is a productivity-oriented
measure of how well the manager has captured economies of scale and substitution.
In this book, the so-called input-oriented scale andmix efficiency (ISME) ofmanager
i in period t is defined as

ISMEt(xit, qit, zit) = TFP(x̄it, qit)/TFP
t(zit) (5.43)

where TFP(x̄it, qit) = Q(qit)/X (x̄it) is the maximum TFP possible when using a
scalar multiple of xit to produce qit in period t in a production environment charac-
terised by zit . Equations (5.8), (5.32) and (5.43) imply that

ISMEt(xit, qit, zit) = TSMEt(xit, qit, zit)/ITE
t(xit, qit, zit). (5.44)

This equation says that ISME is the component of TSME that remains after account-
ing for ITE. If there is no technical change, then the measure of ISME defined by
(5.43) is equivalent to themeasure of ISMEdefined byO’Donnell andNguyen (2013,
p. 325). If the production frontier exhibits CRS, then it is equal to the measure of
IME defined by (5.10).

To illustrate, reconsider the measures of ITE and TSME depicted in Figs.
5.8 and 5.22. Relevant parts of those figures are now reproduced in Fig. 5.28.
Recall from Figs. 5.8 and 5.28 that the ITE and TSME of the manager of firm
A are ITEt(xit, qit, zit) = (slope 0A)/(slope 0B) and TSMEt(xit, qit, zit) = (slope
0A)/(slope 0E). Consequently, the ISME of the manager is ISMEt(xit, qit, zit) =
TSMEt(xit, qit, zit)/ITEt(xit, qit, zit) = (slope 0B)/(slope 0E) (i.e., an index that com-
pares the TFP at point B with the TFP at point E).
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Fig. 5.28 Technical, scale and mix inefficiency. The gap between the rays through A and B is
due to technical inefficiency. The gap between the rays through B and E is due to scale and mix
inefficiency
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5.7.6 Residual Input-Oriented Scale Efficiency

The measure of ISME defined by (5.43) can be decomposed into separate measures
of mix and scale efficiency. The mix efficiency component is the measure of IME
defined by (5.10).The associated measure of residual input-oriented scale efficiency
(RISE) is

RISEt(xit, qit, zit) = TFP(x̂it, qit)/TFP
t(zit) (5.45)

where TFP(x̂it, qit) is the maximum TFP that is possible in period t when producing
qit in an environment characterised by zit . Equations (5.10), (5.43) and (5.45) imply
that

RISEt(xit, qit, zit) = ISMEt(xit, qit, zit)/IMEt(xit, qit, zit). (5.46)

This equation says that RISE is the component of ISME that remains after accounting
for IME (hence the use of the term ‘residual’). If there is no environmental change,
then the measure of RISE defined by (5.45) is equivalent to the measure of RISE
defined by O’Donnell (2010, Eq. 4.7).

To illustrate, reconsider the measures of IME and ISME depicted in Figs.
5.12 and 5.28. Relevant parts of those figures are now reproduced in Fig. 5.29.
Recall from Figs. 5.12 and 5.28 that the IME and ISME of the manager of firm
A are IMEt(xit, qit, zit) = (slope 0B)/(slope 0U) and ISMEt(xit, qit, zit) = (slope
0B)/(slope 0E). Consequently, the RISE of the manager is RISEt(xit, qit, zit) =
ISMEt(xit, qit, zit)/IMEt(xit, qit, zit) = (slope 0U)/(slope 0E) (i.e., an index that com-
pares the TFP at point U with the TFP at point E).
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5.7.7 Metatechnology Ratios

If more than one technology exists in period t, then most measures of efficiency can
be written as metatechnology ratios multiplied by residual measures of efficiency.
For example, the measure of OTE defined by (5.1) can be written as the product
of an output-oriented metatchnology ratio (OMR) and a measure of residual output-
oriented technical efficiency (ROTE). The OMR can be viewed as an output-oriented
measure of how well the manager has chosen the production technology (i.e., how
well (s)he has chosen the ‘book of instructions’). ROTE can be viewed as an output-
oriented measure of how well the manager has used his/her chosen technology (i.e.,
howwell (s)he has ‘followed the instructions’). For a precise definition, let git denote
the technology chosen by manager i in period t. The OMR and ROTE of the manager
in this period are

OMRgit t(xit, qit, zit) = Q(q̄gitit )/Q(q̄it) (5.47)

and ROTEgit (xit, qit, zit) = Q(qit)/Q(q̄gitit ) (5.48)

where Q(qit) is the aggregate output of the firm, Q(q̄gitit ) = Q(qit)/d
git
O (xit, qit, zit)

is the maximum aggregate output that is possible when using xit and technol-
ogy git to produce a scalar multiple of qit in an environment characterised by
zit , and Q(q̄it) = Q(qit)/Dt

O(xit, qit, zit) is the maximum aggregate output that is
possible when using xit and any technology that existed in period t to produce a
scalar multiple of qit in an environment characterised by zit . Equivalent definitions
areOMRgit t(xit, qit, zit) = Dt

O(xit, qit, zit)/d
git
O (xit, qit, zit) and ROTEgit (xit, qit, zit) =

dgit
O (xit, qit, zit). These definitions can be found in O’Donnell et al. (2017, Eqs. 10,
11). Equations (5.1), (5.47) and (5.48) imply that

ROTEgit (xit, qit, zit) = OTEt(xit, qit, zit)/OMRgit t(xit, qit, zit). (5.49)

This equation says that ROTE is the component of OTE that remains after accounting
for the OMR (hence the use of the term ‘residual’). If environmental variables have
been predetermined, then the OMR (resp. measure of ROTE) defined by (5.47) (resp.
5.48) can be viewed as a measure of how well the manager has solved problem
(4.26) (resp. 4.25). If there is no environmental change, then the OMR defined by
(5.47) has the same structure, but not necessarily the same interpretation,5 as the
metatechnology ratio defined by O’Donnell et al. (2008, Eq. 9). If there is only one
technology in period t, then it takes the value one.

To illustrate, reconsider the output maximisation problem depicted earlier in Fig.
4.13. For convenience, that figure is now reproduced in Fig. 5.30. In these figures,
the curves passing through points Z and C represent the boundaries of p1(xit, zit)
and p2(xit, zit). The outputs of firm i in period t map to point A. The dashed lines

5The ‘group-k’ distance function in O’Donnell et al. (2008) is not necessarily a technology-specific
distance function. It could, for example, be a period-and-environment-specific distance function.
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Fig. 5.30 Output-oriented technical efficiency. The gap between the dashed lines passing through
points Z and C is due to the choice of technology. The gap between the dashed lines passing through
points A and Z is due to residual technical inefficiency (i.e., how the chosen technology is used)

passing through points A, Z and C are iso-output lines with the same slope but dif-
ferent intercepts. The OTE, OMR and ROTE of manager i in period t are given by
the ratios of these intercepts. For example, if the firm manager had used technology
1, then OTEt(xit, qit, zit) = Q(qit)/Q(q̄it), OMR1t(xit, qit, zit) = Q(q̄1it)/Q(q̄it) and
ROTE1(xit, qit, zit) = Q(qit)/Q(q̄1it). Equivalently, if the firmmanager had used tech-
nology 1, then OTEt(xit, qit, zit) = ||0A||/||0C|| (i.e., the length of the line segment
0A divided by the length of the line segment 0C),OMR1t(xit, qit, zit) = ||0Z||/||0C||
(i.e., the length of 0Z divided by the length of 0C) and ROTE1(xit, qit, zit) =
||0A||/||0Z|| (i.e., the length of 0A divided by the length of 0Z).

Again, the fact that OMRs and measures of ROTE can be defined in terms of
aggregate outputs means they can be depicted in output-input space. Again, this
means they can be viewed as TFP indices. For example, points A, C and Z in Fig.
5.30 map to points A, C and Z in Fig. 5.31. In this figure, the frontier passing
through point C is the frontier depicted earlier in Fig. 5.2; it represents the bound-
ary of T t(xit, qit, zit). The frontier passing through point Z represents the boundary
of t1(xit, qit, zit) = {(x, q) : x ∝ xit, q ∝ qit, q ∈ p1(x, zit)}. The TFP at point A is
TFP(xit, qit) = Q(qit)/X (xit) = slope 0A. The TFP at point Z is TFP(xit, q̄1it) =
Q(q̄1it)/X (xit) = slope 0Z. The TFP at point C is TFP(xit, q̄it) = Q(q̄it)/X (xit) =
slope 0C. If the firmmanager had used technology 1, then the OTE, OMR and ROTE
of the manager would have been
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Fig. 5.31 Output-oriented technical efficiency. The gap between the rays passing through points Z
and C is due to the choice of technology. The gap between the rays passing through points A and Z
is due to residual output-oriented technical inefficiency (i.e., how the chosen technology is used)

OTEt(xit, qit, zit) = TFP(xit, qit)/TFP(xit, q̄it) = (slope 0A)/(slope 0C),

OMR1t(xit, qit, zit) = TFP(xit, q̄
1
it)/TFP(xit, q̄it) = (slope 0Z)/(slope 0C)

and ROTE1(xit, qit, zit) = TFP(xit, qit)/TFP(xit, q̄
1
it) = (slope 0A)/(slope 0Z).

5.7.8 Nonradial Measures

Each measure of efficiency defined in this chapter can be viewed as a measure of
the difference between two vectors. For example, the measure of OTE defined by
(5.1) can be viewed as a measure of the difference between the output vectors qit and
q̄it , while the measure of TSME defined by (5.32) can be viewed as a measure of
the difference between the netput vectors (−xit, qit) and (−x∗

it, q
∗
it). In the efficiency

literature, a measure of efficiency is said be radial if the vectors involved in the
comparison are scalarmultiples (i.e., radial expansions or contractions) of each other.
All othermeasures of efficiency are said to be nonradial. The class of radial efficiency
measures includes the OMR defined by (5.47) and the measures of OTE, ITE and
ROTE defined by (5.1), (5.8) and (5.48). All other measures of efficiency defined in
this chapter are nonradial measures. All of these (radial and nonradial) measures have
two important properties: (a) they are invariant to changes in units of measurement,
and (b) they take values in the closed unit interval. Other nonradial measures of
efficiency include the asymmetric ‘input efficiency function’ of Färe (1975, p. 21),
the ‘Russell measure of input efficiency’ defined by Färe and Lovell (1978, p. 158),
the ‘Russell-extended Farrell efficiency index’ defined by Zieschang (1984, p. 390),
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the ‘modified asymmetric Färe efficiency measure’ defined by Dervaux et al. (1998,
p. 301), the GDF-basedmeasures of technical and profit efficiency defined by Portela
and Thanassoulis (2007, Eqs. 3, 5), and the DDF-based ‘metafrontier performance
indexes’ of Zhang et al. (2013, Eqs. 6, 8, 12). Many of these measures are critically
discussed in the surveys of Russell and Schworm (2009, 2011). Not all of them are
invariant to changes in units of measurement, and not all of them lie in the closed
unit interval.

5.8 Summary and Further Reading

Measures of efficiency can be viewed as ex post measures of how well firm man-
agers have solved different optimisation problems. Except where explicitly stated
otherwise, all measures of efficiency defined in this book take values in the closed
unit interval. A firm manager is said to have been fully efficient by some measure if
and only if that measure takes the value one.

Output-oriented measures of efficiency can be viewed as measures of how well
firm managers have maximised outputs when inputs and environmental variables
have been predetermined (i.e., determined in a previous period). In these situations,
the relevance of a particular measure depends on how easily the manager has been
able to choose the output mix. If the output mix of the firm has been predetermined,
then the most relevant measure is output-oriented technical efficiency (OTE). The
basic concept behind OTE can be traced back at least as far as Farrell (1957, p. 259).
If the manager has been able to choose outputs freely, then the most relevant measure
is output-oriented technical and mix efficiency (OTME). This concept appears to be
new. The OTME of any manager can be decomposed in to separate measures of
OTE and output-oriented mix efficiency (OME). The concept of OME can be traced
back at least as far as O’Donnell (2010, Eq. 3.4). The OME of a manager can be
viewed as an output-oriented measure of how well (s)he has captured economies
of output substitution. Economies of output substitution are the benefits obtained
by substituting some outputs for others (e.g., producing less of output 1 in order to
produce more of output 2). Economies of output substitution differ from economies
of scope; in the economics, literature, the term ‘economies of scope’ usually refers
to the benefits obtained by producing several goods together rather than producing
each one separately (e.g., Panzar and Willig 1981).

Input-oriented measures of efficiency can be viewed as measures of how well
firm managers have minimised inputs when outputs and environmental variables
have been predetermined. In these situations, the relevance of a particular measure
now depends on how easily the manager has been able to choose the input mix. If
the input mix of the firm has been predetermined, then the most relevant measure
is input-oriented technical efficiency (ITE). The concept of ITE can be traced back
to the ‘coefficient of resource utilization’ defined by Debreu (1951, p. 285). If the
manager has been able to choose inputs freely, then the most relevant measure is
input-oriented technical and mix efficiency (ITME). This concept also appears to be
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new. The ITME of any manager can be decomposed in to separate measures of ITE
and input-oriented mix efficiency (IME). The IME of a manager is an input-oriented
measure of how well (s)he has captured economies of input substitution. Economies
of input substitution are the benefits obtained by substituting some inputs for others
(e.g., substituting capital for labour). The concept of IME can be traced back at least
as far as O’Donnell (2010, Eq. 4.6).

Revenue-oriented measures of efficiency can be viewed as measures of how well
firm managers have maximised revenues when inputs and environmental variables
have been predetermined and outputs have been chosen freely. The most common
revenue-orientedmeasure of efficiency is revenue efficiency (RE). For any givenfirm,
the exact definition of RE depends on whether the firm is a price setter or price taker
in output markets. If the firm is a price setter (resp. price taker) in output markets,
then the RE of the manager depends, inter alia, on ‘demand shifters’ (resp. output
prices). If the firm is a price taker in output markets, then the RE of the manager
can be decomposed into separate measures of OTE and output-oriented allocative
efficiency (OAE). The OAE of the manager is a revenue-oriented measure of how
well (s)he has captured economies of output substitution. The concept of OAE can
be traced back at least as far as Färe et al. (1985, Sect. 4.6).

Cost-oriented measures of efficiency can be viewed as measures of how well firm
managers haveminimised costs when outputs and environmental variables have been
predetermined and inputs have been chosen freely. The most common cost-oriented
measure of efficiency is cost efficiency (CE). For any given firm, the exact definition
of CE depends on whether the firm is a price setter or price taker in input markets.
If the firm is a price setter (resp. price taker) in input markets, then the CE of the
manager depends, inter alia, on ‘supply shifters’ (resp. input prices). The concept of
CE can be traced back to the measure of ‘overall efficiency’ defined by Farrell (1957,
p. 255). The CE of any manager can be decomposed into separate measures of ITE
and input-oriented allocative efficiency (IAE). The IAE of the manager is a cost-
oriented measure of how well (s)he has captured economies of input substitution.
The concept of IAE can be traced back to the measure of ‘price efficiency’ defined
by Farrell (1957, p. 255).

Profit-oriented measures of efficiency can be viewed as measures of how well
firm managers have maximised profits when environmental variables have been pre-
determined and outputs and inputs have been chosen freely. The most widely-used
profit-oriented measure of efficiency is profit efficiency (PE). For any given firm, the
exact definition of PE depends on whether the firm is a price setter or price taker
in output and input markets. If the firm is a price setter (resp. price taker) in output
and input markets, then the PE of the manager depends, inter alia, on demand and
supply shifters (resp. output and input prices). Measures of PE can be decomposed
into separate measures of technical, scale and allocative efficiency. Both output- and
input-oriented decompositions are available. The technical efficiency components
are measures of OTE and ITE. The associated scale and allocative efficiency com-
ponents are measures of output-oriented scale and allocative efficiency (OSAE) and
input-oriented scale and allocative efficiency (ISAE). The OSAE and ISAE of a
manager are profit-oriented measures of how well (s)he has captured economies of
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scale and substitution. Economies of scale and substitution are the benefits obtained
by changing the scale of operations, the output mix, and the input mix. The concepts
of OSAE and ISAE appear to be new.

Productivity-oriented measures of efficiency can be viewed as measures of how
well firmmanagers havemaximised productivity when environmental variables have
been predetermined. In these situations, the relevance of a particularmeasure depends
on how easily the manager has been able to choose the output mix and the input mix.
If both the output mix and the input mix have been predetermined, then the most
relevant measure is technical and scale efficiency (TSE). The concept of TSE can
be traced back at least as far as Banker et al. (1984, p. 1089). Measures of TSE can
be decomposed into separate output- and input-oriented measures of technical and
scale efficiency. The technical efficiency components are measures of OTE and ITE.
The associated scale efficiency components are measures of output-oriented scale
efficiency (OSE) and input-oriented scale efficiency (ISE). The OSE (resp. ISE) of
a manager is an output-oriented (resp. input-oriented) measure of how well (s)he
has captured economies of scale. Economies of scale are the benefits obtained by
changing the scale of operations. If the manager has been able to choose outputs
and inputs freely, then the most relevant productivity-oriented measure of efficiency
is technical, scale and mix efficiency (TSME). This concept can be traced back at
least as far as the measure of ‘TFP efficiency’ defined by O’Donnell (2010). The
TSME of any manager can be decomposed into a measure of TSE and a measure of
residualmix efficiency (RME). The concept of RME can be traced back toO’Donnell
(2010). Measures of TSME can also be decomposed into separate output- and input-
oriented measures of technical, scale and mix efficiency. The technical efficiency
components are measures of OTE and ITE. The associated scale and mix efficiency
components are measures of output-oriented scale and mix efficiency (OSME) and
input-oriented scale and mix efficiency (ISME). The OSME and ISME of a manager
are productivity-orientedmeasures of howwell (s)he has captured economies of scale
and substitution. The concepts of OSME and ISME can be traced back at least as far
as O’Donnell (2012). Measures of OSME and ISME can be further decomposed into
separate measures of mix and scale efficiency. The mix efficiency components are
measures ofOMEand IME.The associated scale efficiency components aremeasures
of residual output-oriented scale efficiency (ROSE) and residual input-oriented scale
efficiency (RISE). The concepts of ROSE and RISE can be traced back to O’Donnell
(2010).

If more than one technology exists in a given period, then each measure of effi-
ciency discussed above can be decomposed into the product of a metatchnology ratio
and a measure of residual efficiency. On the output side, for example, the OTE of any
firm can be decomposed into an output-oriented metatechnology ratio (OMR) and a
measure of residual output-oriented technical efficiency (ROTE). The OMR can be
viewed as an output-oriented measure of how well the firm manager has chosen the
production technology (i.e., how well (s)he has chosen the ‘book of instructions’).
The ROTE of the manager can be viewed as an output-oriented measure of how
well (s)he has used his/her chosen technology (i.e., how well (s)he has ‘followed
the instructions’). The concept of an OMR can be traced back at least as far as the
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‘technology gap ratio’ of Battese and Rao (2002); the concept of ROTE can be traced
back to their measure of technical efficiency with respect to the ‘group frontier’. On
the input side, the ITE of any firm can be decomposed into an input-oriented metat-
echnology ratio (IMR) and a measure of residual input-oriented technical efficiency
(RITE). The IMR can be viewed as an input-oriented measure of how well the firm
manager has chosen the production technology; the RITE of the manager can be
viewed as an input-oriented measure of how well (s)he has used his/her chosen tech-
nology. The concept of an IMR can be traced back at least as far as the measure of
‘inter-envelope efficiency’ defined by Charnes et al. (1981).

Other interesting measures of efficiency include various non-radial measures.
Many of these measures are defined in terms of directional or hyperbolic distance
functions. Examples include the ‘metafrontier performance indexes’ of Zhang et al.
(2013, Eqs. 6, 8, 12). These measures of efficiency do not necessarily lie in the closed
unit interval.
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Chapter 6
Piecewise Frontier Analysis

Estimating/predicting levels of efficiency involves estimating production frontiers.
A widely-used estimation approach involves enveloping scatterplots of data points
as tightly as possible without violating any assumptions that have been made about
production technologies. Some of the most common assumptions lead to estimated
frontiers that are comprised of multiple linear segments (or pieces). The associated
frontiers are known as piecewise frontiers. This chapter explains how to estimate the
unknown parameters of so-called piecewise frontier models (PFMs). It then explains
how the estimated parameters can be used to analyse efficiency and productivity
change. The focus is on what are commonly known as data envelopment analysis
(DEA) estimators. These estimators date back at least as far as Farrell (1957).

6.1 Basic Models

The most common PFMs are underpinned by the following assumptions:

PF1 production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

PF2 all relevant quantities, prices and environmental variables are observed and
measured without error;

PF3 production frontiers are locally (or piecewise) linear;
PF4 inputs, outputs and environmental variables are strongly disposable; and
PF5 production possibilities sets are convex.

If these assumptions are true, then production frontiers and most measures of effi-
ciency can be estimated using linear programming (LP). The associated models and
estimators are commonly known as DEA models and estimators.
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6.1.1 Output-Oriented Models

Output-oriented PFMs are mainly used to estimate the measure of OTE defined by
(5.1). They can also be used to estimate the measure of OTME defined by (5.2).
Subsequently, Eq. (5.4) can be used to estimate the measure of OME defined by
(5.3).

Estimating the measure of OTE defined by (5.1) involves estimating the period-
and-environment-specific output distance function. If assumptions PF1 to PF3 are
true, then this function takes the form

Dit
O(xit, qit, zit) = γ ′

itqit/(αit + δ′
itzit + β ′

itxit) (6.1)

where αit is an unknown scalar and γit = (γ1it, . . . , γNit)
′, δit = (δ1it, . . . , δJit)

′ and
βit = (β1it, . . . , βMit)

′ are unknown vectors. The superscripts i and t appear on the
left-hand side of this equation to indicate that the unknown parameters are permit-
ted to vary from one data point to the next (i.e., locally). The term ‘locally-linear
frontier’ derives from the fact that if Dit

O(xit, qit, zit) = 1 (i.e., if the firm operates
on the frontier), then the relationship between the inputs, outputs and environmental
variables is γ ′

itqit = αit + δ′
itzit + β ′

itxit (i.e., a linear function with parameters that
are permitted to vary locally). Estimation involves choosing the unknown parame-
ters to maximiseDit

O(xit, qit, zit) subject to the requirement that assumptions PF4 and
PF5 are satisfied. Assumption PF4 will be satisfied if and only if γit ≥ 0, δit ≥ 0 and
βit ≥ 0. If there are I firms in the dataset, then assumption PF5 will be satisfied if and
only if γ ′

itqhr ≤ αit + δ′
itzhr + β ′

itxhr for all h ≤ I and r ≤ t. With these constraints,
the estimation problem becomes the following:

max
αit ,δit ,βit ,γit

{
γ ′
itqit/(αit + δ′

itzit + β ′
itxit) : γit ≥ 0, δit ≥ 0, βit ≥ 0,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.2)

This problem can be found in O’Donnell et al. (2017, Eq. 17). If the data are cross-
section data, then all references to time periods can be deleted. If there are no environ-
mental variables involved in the production process (i.e., if there is no environmental
change), then the environmental variables and their coefficients can be deleted. If the
data are cross-section data and there is no environmental change, then problem (6.2)
reduces to the fractional programming problem of Banker et al. (1984, Eq. 22).

Solving (6.2) is complicated by the fact that the parameters are unidentified. A
unique set of parameters can be identified by setting γ ′

itqit = 1. With this so-called
normalising constraint, problem (6.2) can be rewritten as

min
αit ,δit ,βit ,γit

{
αit + δ′

itzit + β ′
itxit : γit ≥ 0, δit ≥ 0, βit ≥ 0, γ ′

itqit = 1,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.3)
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This LP problem can be found in O’Donnell et al. (2017, Eq. 18). The value of the
objective function at the optimum is an estimate of the reciprocal ofOTEt(xit, qit, zit).
Most efficiency researchers would refer to problem (6.3) as the ‘multiplier’ form of
the DEA estimation problem. If there is no environmental change, then it reduces to
problem (6.6) in O’Donnell (2010b, p. 543).

Every LP problem has a dual form with the property that if the so-called primal
problem and its dual both have feasible solutions, then the optimised values of the
two objective functions are equal. The dual form of problem (6.3) is

max
μ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.4)

This problem can be found in O’Donnell et al. (2017, Eq. 19). It seeks to scale up
the output vector while holding inputs and environmental variables fixed. The value
of μ at the optimum is an estimate of the reciprocal of OTEt(xit, qit, zit). Again, if
the data are cross-section data, then all references to time periods can be deleted. If
there is no environmental change, then the constraint involving the environmental
variables can be deleted. Most efficiency researchers would refer to problem (6.4) as
the ‘envelopment’ form of the DEA estimation problem. If there is no environmental
change, then it reduces to problem (6.9) in O’Donnell (2010b, p. 544). If the data are
cross-section data and there is no environmental change, then it reduces to a problem
that can be found in Färe et al. (1994, p. 103).

Estimating the measure of OTME defined by (5.2) involves estimating Q(qit)/Q
(q̂it). If there are I firms in the dataset and assumptions PF1 to PF5 are true, then the
estimation problem is

max
q,λ11,...,λIt

{
Q(q)/Q(qit) : q ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.5)

If the aggregator function is linear (resp. nonlinear), then this is a linear (resp. non-
linear) programming problem. Whether or not the aggregator function is linear, the
value of the objective function at the optimum is an estimate of the reciprocal of
OTMEt(xit, qit, zit). If there is no environmental change and Q(.) is a linear function
that gives all outputs equal weight, then problem (6.5) reduces to problem (A.15) in
O’Donnell (2010b, p. 560).

For a numerical example, reconsider the toy data reported earlier in Table 1.1.
Associated DEA estimates of OTME, OTE and OME are reported in Table 6.1. The
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Table 6.1 DEA estimates of OTME, OTE and OMEa,b

Row Firm Period OTME OTE OME

A 1 1 0.390 0.422 0.924

B 2 1 1 1 1

C 3 1 0.924 1 0.924

D 4 1 0.769 1 0.769

E 5 1 1 1 1

F 1 2 0.626 0.865 0.724

G 2 2 1 1 1

H 3 2 1 1 1

I 4 2 0.871 0.871 1

J 5 2 1 1 1

K 1 3 1 1 1

L 2 3 0.887 1 0.887

M 3 3 0.651 0.653 0.997

N 4 3 1 1 1

O 5 3 0.643 0.844 0.762

P 1 4 0.547 0.594 0.921

R 2 4 0.653 0.671 0.974

S 3 4 0.448 0.583 0.769

T 4 4 0.917 1 0.917

U 5 4 0.622 0.654 0.950

V 1 5 1 1 1

W 2 5 0.683 0.895 0.764

X 3 5 0.592 0.836 0.708

Y 4 5 0.411 0.516 0.797

Z 5 5 0.864 0.867 0.997

Geometric mean 0.749 0.828 0.905
aOTME = OTE × OME. Some estimates may be incoherent at the third decimal place due to
rounding (e.g., in any given row, the product of the OTE and OME estimates may not be exactly
equal to the OTME estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

OTE and OTME estimates were obtained by solving problems (6.4) and (6.5) for
each firm in each period. The OME estimates were obtained by dividing the OTME
estimates by the OTE estimates (i.e., the OME estimates were obtained as residuals).
If there is more than one output, as there is in this example, then measures of OTME
and OME depend on the aggregator function. The aggregator function used in this
example wasQ(q) = 0.484q1 + 0.516q2. This function was used earlier to compute
the aggregate outputs in Table 1.2. It is also the aggregator function that was used to
compute the Lowe output index numbers in Table 3.1.
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6.1.2 Input-Oriented Models

Input-oriented PFMs are mainly used to estimate the measure of ITE defined by
(5.8). They can also be used to estimate the measure of ITME defined by (5.9).
Subsequently, Eq. (5.11) can be used to estimate the measure of IME defined by
(5.10).

Estimating the measure of ITE defined by (5.8) involves estimating the period-
and-environment-specific input distance function. If assumptions PF1 to PF3 are
true, then this function takes the form

Dit
I (xit, qit, zit) = (θ ′

itxit)/(ξ
′
itqit − κ ′

itzit − φit) (6.6)

where φit is an unknown scalar and ξit = (ξ1it, . . . , ξNit)
′, κit = (κ1it, . . . , κJit)

′ and
θit = (θ1it, . . . , θMit)

′ are unknown vectors. Again, the superscripts i and t appear
on the left-hand side of this equation to indicate that the unknown parameters are
permitted to vary locally. Estimation involves choosing the unknown parameters to
minimise Dit

I (xit, qit, zit) subject to the requirement that assumptions PF4 and PF5
are satisfied. Assumption PF4 will be satisfied if and only if ξit ≥ 0, κit ≥ 0 and
θit ≥ 0. If there are I firms in the dataset, then assumption PF5 will be satisfied if and
only if θ ′

itxhr ≥ ξ ′
itqhr − κ ′

itzhr − φhr for all h ≤ I and r ≤ t. With these constraints,
the estimation problem becomes the following:

min
ξit ,κit ,φit ,θit

{
θ ′
itxit/(ξ

′
itqit − κ ′

itzit − φit) : ξit ≥ 0, κit ≥ 0, θit ≥ 0,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.7)

This is a fractional programming problem with an infinite number of solutions. A
unique solution canbe obtained by setting θ ′

itxit = 1.With this normalising constraint,
the problem can be rewritten as

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : ξit ≥ 0, κit ≥ 0, θit ≥ 0, θ ′
itxit = 1,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.8)

This LP problem can be found in O’Donnell et al. (2017, Eq. A8). The value of the
objective function at the optimum is an estimate of ITEt(xit, qit, zit). Again, if the
data are cross-section data, then all references to time periods can be deleted. If there
is no environmental change, then the environmental variables and their coefficients
can be deleted. Again, most efficiency researchers would refer to problem (6.8) as
the multiplier form of the DEA estimation problem. If there is no environmental
change, then it reduces to problem (6.5) in O’Donnell (2010b, p. 543). If the data are
cross-section data and there is no environmental change, then it reduces to problem
(20) in Banker et al. (1984).
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The dual form of problem (6.8) is

min
μ,λ11,...,λIt

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

μxit ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.9)

This problem can be found in O’Donnell et al. (2017, Eq. A9). It seeks to scale
down the input vector while holding outputs and environmental variables fixed. The
value of μ at the optimum is an estimate of ITEt(xit, qit, zit). Again, if the data are
cross-section data, then all references to time periods can be deleted. If there is
no environmental change, then the constraint involving the environmental variables
can be deleted. Again, most efficiency researchers would refer to problem (6.9) as
the envelopment form of the DEA estimation problem. If the data are cross-section
data, then it reduces to problem (7.6) in Coelli et al. (2005, p. 192). If there is no
environmental change, then it reduces to problem (6.7) in O’Donnell (2010b, p. 543).
If the data are cross-section data and there is no environmental change, then it reduces
to problem (19) in Banker et al. (1984).

Estimating the measure of ITME defined by (5.9) involves estimating X (x̂it)/X
(xit). If there are I firms in the dataset and assumptions PF1 to PF5 are true, then the
estimation problem is

min
x,λ11,...,λIt

{
X (x)/X (xit) :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

x ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.10)

If the aggregator function is linear (resp. nonlinear), then this is a linear (resp. nonlin-
ear) programming problem.Whether or not the aggregator function is linear, the value
of the objective function at the optimum is an estimate of ITMEt(xit, qit, zit). If there
is no environmental change and X (.) is a linear function that gives all inputs equal
weight, then problem (6.10) reduces to problem (6.15) in O’Donnell (2010b, p. 547).

For a numerical example, reconsider the toy data reported earlier in Table 1.1.
Associated DEA estimates of ITME, ITE and IME are reported in Table 6.2. The
ITE and ITME estimates were obtained by solving problems (6.9) and (6.10) for
each firm in each period. The IME estimates were obtained by dividing the ITME
estimates by the ITE estimates (i.e., the IME estimates were obtained as residuals).
If there is more than one input, as there is in this example, then measures of ITME
and IME depend on the aggregator function. The aggregator function used in this
example was X (x) = 0.23x1 + 0.77x2. This function was used earlier to compute
the aggregate inputs in Table 1.2. It is also the aggregator function that was used to
compute the Lowe input index numbers in Table 3.3.
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Table 6.2 DEA estimates of ITME, ITE and IMEa,b

Row Firm Period ITME ITE IME

A 1 1 0.56 0.56 1

B 2 1 1 1 1

C 3 1 1 1 1

D 4 1 1 1 1

E 5 1 1 1 1

F 1 2 0.603 0.954 0.632

G 2 2 1 1 1

H 3 2 1 1 1

I 4 2 0.864 0.955 0.905

J 5 2 1 1 1

K 1 3 1 1 1

L 2 3 1 1 1

M 3 3 0.602 0.604 0.997

N 4 3 1 1 1

O 5 3 0.581 0.777 0.748

P 1 4 0.548 0.551 0.994

R 2 4 0.651 0.657 0.990

S 3 4 0.430 0.669 0.643

T 4 4 0.843 1 0.843

U 5 4 0.608 0.689 0.883

V 1 5 1 1 1

W 2 5 0.632 0.846 0.748

X 3 5 0.567 0.881 0.644

Y 4 5 0.385 0.387 0.996

Z 5 5 0.5 0.5 1

Geometric mean 0.741 0.814 0.911
aITME = ITE × IME. Some estimatesmay be incoherent at the third decimal place due to rounding
(e.g., in any given row, the product of the ITE and IME estimates may not be exactly equal to the
ITME estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

6.1.3 Revenue-Oriented Models

Revenue-oriented PFMs are mainly used to estimate the measure of RE defined by
(5.15). If estimates of OTE are available, then Eq. (5.18) can subsequently be used
to estimate the measure of OAE defined by (5.17).
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Estimating themeasure of REdefined by (5.15) involves estimatingRt(xit, pit, zit).
If there are I firms in the dataset and assumptions PF1 to PF5 are true, then the
estimation problem is

max
q,λ11,...,λIt

{
p′
itq : q ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.11)

The value of the objective function at the optimum is an estimate of Rt(xit, pit, zit).
This can be substituted into (5.15) to obtain an estimate of REt(xit, pit, qit, zit). Ob-
serve that the constraints in problem (6.11) are the same as the constraints in problem
(6.5); the only difference between the two problems is the objective function. Again,
if the data are cross-section data, then all references to time periods can be deleted.
If there is no environmental change, then the constraint involving the environmental
variables can be deleted. If the data are cross-section data and there is no environ-
mental change, then problem (6.11) reduces to problem (7.2) in Coelli et al. (2005).

For a numerical example, reconsider the toy data reported earlier in Table 1.1.
Associated DEA estimates of RE, OTE and OAE are reported in Table 6.3. The OTE
estimates are those reported earlier in Table 6.1. The RE estimates were obtained by
first solving problem (6.11) for each firm in each period. This step yielded estimates
of Rt(xit, pit, zit). The RE estimates were then obtained by dividing observed rev-
enues by these estimates of Rt(xit, pit, zit). Finally, the OAE estimates were obtained
by dividing the RE estimates by the OTE estimates (i.e., the OAE estimates were
obtained as residuals).

6.1.4 Cost-Oriented Models

Cost-oriented PFMs aremainly used to estimate themeasure of CE defined by (5.20).
If estimates of ITE are available, then Eq. (5.23) can subsequently be used to estimate
the measure of IAE defined by (5.22).

Estimating themeasure ofCEdefinedby (5.20) involves estimatingCt(wit, qit, zit).
If there are I firms in the dataset and assumptions PF1 to PF5 are true, then the esti-
mation problem is

min
x,λ11,...,λIt

{
w′
itx :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

x ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.12)
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Table 6.3 DEA estimates of RE, OTE and OAEa,b

Row Firm Period RE OTE OAE

A 1 1 0.415 0.422 0.984

B 2 1 1 1 1

C 3 1 0.984 1 0.984

D 4 1 0.789 1 0.789

E 5 1 1 1 1

F 1 2 0.643 0.865 0.744

G 2 2 1 1 1

H 3 2 1 1 1

I 4 2 0.871 0.871 1

J 5 2 1 1 1

K 1 3 1 1 1

L 2 3 0.908 1 0.908

M 3 3 0.644 0.653 0.987

N 4 3 1 1 1

O 5 3 0.821 0.844 0.973

P 1 4 0.511 0.594 0.861

R 2 4 0.656 0.671 0.978

S 3 4 0.413 0.583 0.709

T 4 4 0.989 1 0.989

U 5 4 0.638 0.654 0.976

V 1 5 0.678 1 0.678

W 2 5 0.848 0.895 0.947

X 3 5 0.633 0.836 0.757

Y 4 5 0.353 0.516 0.684

Z 5 5 0.818 0.867 0.943

Geometric mean 0.752 0.828 0.908
aRE = OTE × OAE. Some estimates may be incoherent at the third decimal place due to rounding
(e.g., in any given row, the product of the OTE and OAE estimates may not be exactly equal to the
RE estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

The value of the objective function at the optimum is an estimate of Ct(wit, qit, zit).
This can be substituted into (5.20) to obtain an estimate of CEt(wit, xit, qit, zit). Ob-
serve that the constraints in problem (6.12) are the same as the constraints in problem
(6.10); the only difference between the two problems is the objective function. Again,
if the data are cross-section data, then all references to time periods can be deleted.
If there is no environmental change, then the constraint involving the environmental
variables can be deleted. If the data are cross-section data and there is no environ-
mental change, then problem (6.12) reduces to problem (7.1) in Coelli et al. (2005).
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Table 6.4 DEA estimates of CE, ITE and IAEa,b

Row Firm Period CE ITE IAE

A 1 1 0.56 0.56 1

B 2 1 1 1 1

C 3 1 1 1 1

D 4 1 1 1 1

E 5 1 1 1 1

F 1 2 0.351 0.954 0.368

G 2 2 0.839 1 0.839

H 3 2 1 1 1

I 4 2 0.846 0.955 0.886

J 5 2 1 1 1

K 1 3 1 1 1

L 2 3 1 1 1

M 3 3 0.603 0.604 0.999

N 4 3 1 1 1

O 5 3 0.776 0.777 0.999

P 1 4 0.497 0.551 0.902

R 2 4 0.634 0.657 0.965

S 3 4 0.423 0.669 0.633

T 4 4 0.917 1 0.917

U 5 4 0.610 0.689 0.886

V 1 5 1 1 1

W 2 5 0.687 0.846 0.812

X 3 5 0.325 0.881 0.368

Y 4 5 0.377 0.387 0.975

Z 5 5 0.5 0.5 1

Geometric mean 0.712 0.814 0.875
aCE = ITE × IAE. Some estimates may be incoherent at the third decimal place due to rounding
(e.g., in any given row, the product of the ITE and IAE estimates may not be exactly equal to the
CE estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

For a numerical example, reconsider the toy data reported earlier in Table 1.1.
Associated DEA estimates of CE, ITE and IAE are reported in Table 6.4. The ITE
estimates are those reported earlier in Table 6.2. The CE estimates were obtained by
first solving problem (6.12) for each firm in each period. This step yielded estimates
of Ct(wit, qit, zit). The CE estimates were then obtained by dividing these estimates
by observed costs. Finally, the IAE estimates were obtained by dividing the CE
estimates by the ITE estimates (i.e., the IAE estimates were obtained as residuals).
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6.1.5 Profit-Oriented Models

Profit-oriented PFMs are mainly used to estimate the measure of PE defined by
(5.27). If estimates of OTE and ITE are available, then Eqs. (5.28) and (5.29) can
subsequently be used to obtain estimates of OSAE and ISAE.

Estimating themeasure ofPEdefinedby (5.27) involves estimatingΠ t(wit, pit, zit).
If there are I firms in the dataset and assumptions PF1 to PF5 are true, then the esti-
mation problem is

max
q,x,λ11,...,λIt

{
p′
itq − w′

itx : q ≤
I∑

h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ x,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.13)

The value of the objective function at the optimum is an estimate of Π t(wit, pit, zit).
This can be substituted into (5.27) to obtain an estimate of PEt(wit, xit, pit, qit, zit).
Again, if the data are cross-section data, then all references to time periods can
be deleted. In this case, problem (6.13) has the same structure, but not the same
interpretation,1 as problem (2) in Färe et al. (1990). If there is no environmental
change, then the constraint involving the environmental variables can be deleted. If
the data are cross-section data and there is no environmental change, then problem
(6.13) reduces to problem (7.3) in Coelli et al. (2005).

For a numerical example, reconsider the toy data reported earlier in Table 1.1. As-
sociated DEA estimates of PE, OTE, OSAE, ITE and ISAE are reported in Table 6.5.
The PE estimates were obtained by first solving problem (6.13) for each firm in each
period. This step yielded estimates of Π t(wit, pit, zit). The PE estimates were then
obtained using (5.27). TheOTE and ITE estimates are those reported earlier in Tables
6.1 and 6.2. These technical efficiency estimates were used to obtain estimates of
Rt(xit, pit, qit, zit) = Rit/Dt

O(xit, qit, zit) andCt(wit, xit, qit, zit) = Cit/Dt
I (xit, qit, zit).

The OSAE and ISAE estimates were then obtained using (5.28) and (5.29).

6.1.6 Productivity-Oriented Models

Productivity-oriented PFMs are mainly used to estimate the measure of TSME de-
fined by (5.32). They can also be used to estimate the measure of TSE defined by

1Färe et al. (1990) consider the case where a subset of inputs are pre-determined (or ‘fixed’). The
fixed-input constraint in their so-called short-run profit maximisation problem plays the same role
as, but has a different interpretation to, the environmental variable constraint in problem (6.13).
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Table 6.5 DEA estimates of PE, OTE, OSAE, ITE and ISAEa

Row Firm Period PE OTE OSAE ITE ISAE

A 1 1 0 0.422 0.150 0.56 0

B 2 1 0.084 1 0.084 1 0.084

C 3 1 0.150 1 0.150 1 0.150

D 4 1 0.751 1 0.751 1 0.751

E 5 1 1 1 1 1 1

F 1 2 0.303 0.865 0.366 0.954 0.308

G 2 2 0.878 1 0.878 1 0.878

H 3 2 0.246 1 0.246 1 0.246

I 4 2 0.609 0.871 0.776 0.955 0.632

J 5 2 0.514 1 0.514 1 0.514

K 1 3 0.210 1 0.210 1 0.210

L 2 3 0.885 1 0.885 1 0.885

M 3 3 0.346 0.653 0.719 0.604 0.487

N 4 3 0.032 1 0.032 1 0.032

O 5 3 0.491 0.844 0.633 0.777 0.553

P 1 4 0.215 0.594 0.458 0.551 0.278

R 2 4 0.562 0.671 0.903 0.657 0.608

S 3 4 0.132 0.583 0.371 0.669 0.199

T 4 4 0.618 1 0.618 1 0.618

U 5 4 0.191 0.654 0.363 0.689 0.233

V 1 5 0 1 0 1 0

W 2 5 0.278 0.895 0.374 0.846 0.360

X 3 5 0.184 0.836 0.250 0.881 0.202

Y 4 5 0.105 0.516 0.428 0.387 0.251

Z 5 5 0.666 0.867 0.811 0.5 0.804

Arithmetic mean 0.378 0.851 0.479 0.841 0.411
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

(5.31). Subsequently, Eq. (5.34) can be used to estimate the measure of RME defined
by (5.33). If estimates of OTE, OME, ITE and IME are available, then Eqs. (5.36),
(5.38), (5.40), (5.42), (5.44) and (5.46) can also be used to estimate the measures of
OSE , OSME , ROSE, ISE , ISME and RISE defined by (5.35), (5.37), (5.39), (5.41),
(5.43) and (5.45).

Estimating the measure of TSME defined by (5.32) involves estimating TFPt(zit).
If there are I firms in the dataset and assumptions PF1 to PF5 are true, then the
estimation problem is
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max
q,x,λ11,...,λIt

{
Q(q)/X (x) : q ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ x,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (6.14)

Observe that the constraints in this problem are the same as the constraints in problem
(6.13); the only difference between the two problems is the objective function. The
optimised value of the objective function in problem (6.14) is an estimate ofTFPt(zit).
This can be substituted into (5.32) to obtain an estimate of TSMEt(xit, qit, zit). Let
q∗
it and x

∗
it denote values of q and x that solve (4.24). The values of q and x that solve

(6.14) are estimates of q∗
it and x∗

it .
Problem (6.14) is a fractional programming problem. The Charnes and Cooper

(1962) transformation for fractional programs can be used to rewrite it as

max
q,x,μ,θ11,...,θIt

{
Q(q) : q ≤

I∑
h=1

t∑
r=1

θhrqhr,
I∑

h=1

t∑
r=1

θhrzhr ≤ μzit, X (x) = 1,

I∑
h=1

t∑
r=1

θhrxhr ≤ x,
I∑

h=1

t∑
r=1

θhr = μ, θhr ≥ 0 for all h and r
}
. (6.15)

The value of the objective function at the optimum is still an estimate of TFPt(zit).
However, whereas the values of q and x that solve (6.14) are estimates of q∗

it and x
∗
it ,

the values of q and x that solve (6.15) are estimates of q∗
it/X (x∗

it) and x
∗
it/X (x∗

it). The
value of μ at the optimum is an estimate of 1/X (x∗

it). If there is no environmental
change, then all constraints involvingμ can be deleted. If the aggregator functions are
linear (resp. nonlinear), then problem (6.15) is a linear (resp. nonlinear) programming
problem. If there is no environmental change and the aggregator functions are linear
with coefficients equal to one, then it reduces to problem (6.16) in O’Donnell (2010b,
p. 548).

Estimating the measure of TSE defined by Eq. (5.31) involves estimating TFPt

(xit, qit, zit). If there are I firms in the dataset and assumptions PF1 to PF5 are true,
then the estimation problem is2

max
ρ,μ,θ11,...,θIt

{
ρQ(qit) : ρqit ≤

I∑
h=1

t∑
r=1

θhrqhr,
I∑

h=1

t∑
r=1

θhrzhr ≤ μzit,

I∑
h=1

t∑
r=1

θhrxhr ≤ xit/X (xit),
I∑

h=1

t∑
r=1

θhr = μ, θhr ≥ 0 for all h and r
}
. (6.16)

2This estimation problem is obtained by replacing q and x in problem (6.15) with ρqit and δxit ,
then using the linear homogeneity properties of the aggregator functions to simplify. For example,
the constraint X (δxit) = 1 implies that δ = 1/X (xit), which in turn implies that δxit = xit/X (xit).
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Whether or not the output and input aggregator functions are linear, this is an
LP problem. The value of the objective function at the optimum is an estimate
of TFPt(xit, qit, zit). This can be substituted into (5.31) to obtain an estimate of
TSEt(xit, qit, zit).

For a numerical example, reconsider the toy data reported earlier in Table 1.1.
Associated DEA estimates of TSME, TSE and RME are reported in Table 6.6. Esti-
mates of TSME, OTE, OSME, OME, OSE, ROSE and RME are reported in Table
6.7. Estimates of TSME, ITE, ISME, IME, ISE, RISE and RME are reported in Ta-
ble 6.8. The TSME and TSE estimates were obtained by first solving problems

Table 6.6 DEA estimates of TSME, TSE and RMEa,b

Row Firm Period TSME TSE RME

A 1 1 0.284 0.422 0.674

B 2 1 0.508 0.753 0.674

C 3 1 0.674 1 0.674

D 4 1 0.769 1 0.769

E 5 1 1 1 1

F 1 2 0.602 0.615 0.978

G 2 2 1 1 1

H 3 2 0.999 1 0.999

I 4 2 0.761 0.849 0.896

J 5 2 0.899 1 0.899

K 1 3 0.885 1 0.885

L 2 3 0.785 1 0.785

M 3 3 0.534 0.592 0.903

N 4 3 1 1 1

O 5 3 0.569 0.569 1

P 1 4 0.547 0.547 1

R 2 4 0.578 0.642 0.901

S 3 4 0.429 0.551 0.779

T 4 4 0.811 0.838 0.968

U 5 4 0.607 0.624 0.973

V 1 5 0.896 1 0.896

W 2 5 0.619 0.619 1

X 3 5 0.566 0.725 0.781

Y 4 5 0.384 0.384 1

Z 5 5 0.500 0.5 1.000

Geometric mean 0.656 0.737 0.890
aTSME = TSE × RME. Some estimates may be incoherent at the third decimal place due to round-
ing (e.g., in any given row, the product of the TSE and RME estimates may not be exactly equal to
the TSME estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
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Table 6.7 DEA estimates of TSME, OTE, OSME, OME, ROSE, OSE and RMEa,b

Row Firm Period TSME OTE OSME OTE OME ROSE OTE OSE RME

A 1 1 0.284 0.422 0.674 0.422 0.924 0.730 0.422 1 0.674

B 2 1 0.508 1 0.508 1 1 0.508 1 0.753 0.674

C 3 1 0.674 1 0.674 1 0.924 0.730 1 1 0.674

D 4 1 0.769 1 0.769 1 0.769 1 1 1 0.769

E 5 1 1 1 1 1 1 1 1 1 1

F 1 2 0.602 0.865 0.696 0.865 0.724 0.962 0.865 0.711 0.978

G 2 2 1 1 1 1 1 1 1 1 1

H 3 2 0.999 1 0.999 1 1 0.999 1 1 0.999

I 4 2 0.761 0.871 0.874 0.871 1 0.874 0.871 0.976 0.896

J 5 2 0.899 1 0.899 1 1 0.899 1 1 0.899

K 1 3 0.885 1 0.885 1 1 0.885 1 1 0.885

L 2 3 0.785 1 0.785 1 0.887 0.885 1 1 0.785

M 3 3 0.534 0.653 0.819 0.653 0.997 0.821 0.653 0.907 0.903

N 4 3 1 1 1 1 1 1 1 1 1

O 5 3 0.569 0.844 0.674 0.844 0.762 0.885 0.844 0.674 1

P 1 4 0.547 0.594 0.921 0.594 0.921 1 0.594 0.921 1

R 2 4 0.578 0.671 0.861 0.671 0.974 0.885 0.671 0.956 0.901

S 3 4 0.429 0.583 0.737 0.583 0.769 0.958 0.583 0.946 0.779

T 4 4 0.811 1 0.811 1 0.917 0.885 1 0.838 0.968

U 5 4 0.607 0.654 0.928 0.654 0.95 0.976 0.654 0.954 0.973

V 1 5 0.896 1 0.896 1 1 0.896 1 1 0.896

W 2 5 0.619 0.895 0.692 0.895 0.764 0.906 0.895 0.692 1

X 3 5 0.566 0.836 0.677 0.836 0.708 0.956 0.836 0.867 0.781

Y 4 5 0.384 0.516 0.745 0.516 0.797 0.935 0.516 0.745 1

Z 5 5 0.500 0.867 0.577 0.867 0.997 0.579 0.867 0.577 1.000

Geometric mean 0.656 0.828 0.792 0.828 0.905 0.875 0.828 0.890 0.890
aTSME = OTE × OSME = OTE × OME × ROSE = OTE × OSE × RME. Some estimates may
be incoherent at the third decimal place due to rounding (e.g., in any given row, the product of the
OTE, OSE and RME estimates may not be exactly equal to the TSME estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

(6.15) and (6.16) for each firm in each period. This step yielded estimates of
TFPt(zit) and TFPt(xit, qit, zit). The aggregator functions used in this step were
Q(q) = 0.484q1 + 0.516q2 andX (x) = 0.23x1 + 0.77x2. These functionswere used
earlier to compute the aggregate outputs and inputs in Table 1.2. The next step was to
use the aggregate outputs and inputs in Table 1.2 to compute measures of TFP. The
TSME and TSE estimates were then obtained by dividing these measures of TFP by
the corresponding estimates of TFPt(zit) and TFPt(xit, qit, zit). The RME estimates
were obtained by dividing the TSME estimates by the TSE estimates (i.e., the RME
estimates were obtained as residuals). The OTE, ITE, OME and IME estimates are
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Table 6.8 DEA estimates of TSME, ITE, ISME, IME, RISE, ISE and RMEa,b

Row Firm Period TSME ITE ISME ITE IME RISE ITE ISE RME

A 1 1 0.284 0.56 0.508 0.56 1 0.508 0.56 0.753 0.674

B 2 1 0.508 1 0.508 1 1 0.508 1 0.753 0.674

C 3 1 0.674 1 0.674 1 1 0.674 1 1 0.674

D 4 1 0.769 1 0.769 1 1 0.769 1 1 0.769

E 5 1 1 1 1 1 1 1 1 1 1

F 1 2 0.602 0.954 0.631 0.954 0.632 0.998 0.954 0.645 0.978

G 2 2 1 1 1 1 1 1 1 1 1

H 3 2 0.999 1 0.999 1 1 0.999 1 1 0.999

I 4 2 0.761 0.955 0.797 0.955 0.905 0.880 0.955 0.889 0.896

J 5 2 0.899 1 0.899 1 1 0.899 1 1 0.899

K 1 3 0.885 1 0.885 1 1 0.885 1 1 0.885

L 2 3 0.785 1 0.785 1 1 0.785 1 1 0.785

M 3 3 0.534 0.604 0.886 0.604 0.997 0.888 0.604 0.981 0.903

N 4 3 1 1 1 1 1 1 1 1 1

O 5 3 0.569 0.777 0.732 0.777 0.748 0.979 0.777 0.732 1

P 1 4 0.547 0.551 0.992 0.551 0.994 0.998 0.551 0.993 1

R 2 4 0.578 0.657 0.880 0.657 0.990 0.888 0.657 0.977 0.901

S 3 4 0.429 0.669 0.642 0.669 0.643 0.998 0.669 0.824 0.779

T 4 4 0.811 1 0.811 1 0.843 0.962 1 0.838 0.968

U 5 4 0.607 0.689 0.881 0.689 0.883 0.998 0.689 0.906 0.973

V 1 5 0.896 1 0.896 1 1 0.896 1 1 0.896

W 2 5 0.619 0.846 0.732 0.846 0.748 0.979 0.846 0.732 1

X 3 5 0.566 0.881 0.643 0.881 0.644 0.998 0.881 0.823 0.781

Y 4 5 0.384 0.387 0.994 0.387 0.996 0.998 0.387 0.994 1

Z 5 5 0.500 0.5 1.000 0.5 1 1.000 0.5 1 1.000

Geometric mean 0.656 0.814 0.806 0.814 0.911 0.885 0.814 0.906 0.890
aTSME = ITE × ISME = ITE × IME × RISE = ITE × ISE × RME. Some estimates may be in-
coherent at the third decimal place due to rounding (e.g., in any given row, the product of the ITE,
ISE and RME estimates may not be exactly equal to the TSME estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

those reported earlier in Tables 6.1 and 6.2. The OSME and ISME (resp. OSE and
ISE) estimates were obtained by dividing the TSME (resp. TSE) estimates by the
OTE and ITE estimates. The ROSE and RISE estimates were obtained by dividing
the OSME and ISME estimates by the OME and IME estimates (i.e., they were
obtained as residuals).
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6.2 Models with Stronger Assumptions

In addition to assumptions PF1 to PF5, it is common to assume there is no technical
change. It is also common to assume that production frontiers exhibit NIRS, CRS
or NDRS. Imposing these types of assumptions requires modifications to the basic
DEA models described in Sect. 6.1. To avoid unnecessary repetition, this section
focuses on the modifications that must be made to basic output- and input-oriented
models; the modifications that must be made to other types of models are left as an
exercise for the reader.

6.2.1 No Technical Change

If there is no technical change, then production frontiers are time-invariant. In this
case, each (environment-specific) frontier should be estimated using data from all
time periods. This is equivalent to treating all the observations in the dataset as
observations from a single time period. For example, if the dataset covers T time
periods, then the multiplier and envelopment forms of the output-oriented DEA
models become (respectively)

min
αit ,δit ,βit ,γit

{
αit + δ′

itzit + β ′
itxit : γit ≥ 0, δit ≥ 0, βit ≥ 0, γ ′

itqit = 1,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ T

}
(6.17)

and

max
μ,λ11,...,λIT

{
μ : μqit ≤

I∑
h=1

T∑
r=1

λhrqhr,
I∑

h=1

T∑
r=1

λhrzhr ≤ zit,

I∑
h=1

T∑
r=1

λhrxhr ≤ xit,
I∑

h=1

T∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.18)

On the input side, if there is no technical change and the dataset coversT time periods,
then themultiplier and envelopment forms of the input-orientedDEAmodels become
(respectively)
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max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : ξit ≥ 0, κit ≥ 0, θit ≥ 0, θ ′
itxit = 1,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ T

}
(6.19)

and

min
μ,λ11,...,λIT

{
μ :

I∑
h=1

T∑
r=1

λhrqhr ≥ qit,
I∑

h=1

T∑
r=1

λhrzhr ≤ zit,

μxit ≥
I∑

h=1

T∑
r=1

λhrxhr,
I∑

h=1

T∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.20)

6.2.2 Nonincreasing Returns to Scale

If production frontiers exhibit NIRS, then the unknown parameters in (6.1) must
satisfyαit + δ′

itzit ≥ 0.With this constraint, themultiplier form of the output-oriented
DEA model becomes

min
αit ,δit ,βit ,γit

{
αit + δ′

it zit + β ′
itxit : γit ≥ 0, δit ≥ 0, βit ≥ 0, γ ′

itqit = 1, αit + δ′
it zit ≥ 0,

αit + δ′
it zhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.21)

Again, if the data are cross-section data, then all references to time periods can be
deleted. If there is no environmental change, then the environmental variables and
their coefficients can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.21) reduces to problem DO1 in Seiford and
Thrall (1990, p. 15). The dual (or envelopment) form of the problem is

max
μ,ρ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ ρzit,
I∑

h=1

t∑
r=1

λhr = ρ,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit, ρ ≤ 1, λhr ≥ 0 for all h and r
}
. (6.22)

If there is no environmental change, then the constraint involving the environmental
variables can be deleted. If the data are cross-section data and there is no environ-
mental change, then problem (6.22) reduces to problem PO1 in Seiford and Thrall
(1990, p. 15).
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On the input side, the NIRS assumption implies that the unknown parameters in
(6.6) must satisfy φit + κ ′

itzit ≥ 0. With this constraint, the multiplier form of the
input-oriented DEA model becomes

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : ξit ≥ 0, κit ≥ 0, θit ≥ 0, θ ′
itxit = 1, φit + κ ′

itzit ≥ 0,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.23)

Again, if there is no environmental change, then the environmental variables and
their coefficients can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.23) reduces to problem DI1 in Seiford and
Thrall (1990, p. 15). The dual (or envelopment) form of the problem is

min
μ,ρ,λ11,...,λIt

{
μ : qit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ ρzit,
I∑

h=1

t∑
r=1

λhr = ρ,

I∑
h=1

t∑
r=1

λhrxhr ≤ μxit, ρ ≤ 1, λhr ≥ 0 for all h and r
}
. (6.24)

Again, if there is no environmental change, then the constraint involving the envi-
ronmental variables can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.24) reduces to problem PI1 in Seiford and
Thrall (1990, p. 15).

6.2.3 Constant Returns to Scale

If production frontiers exhibitCRS, then the unknownparameters in (6.1)must satisfy
αit + δ′

itzit = 0. With this constraint, the multiplier form of the output-oriented DEA
model becomes

min
αit ,δit ,βit ,γit

{
β ′
itxit : γit ≥ 0, δit ≥ 0, βit ≥ 0, γ ′

itqit = 1, αit + δ′
itzit = 0,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.25)

Again, if there is no environmental change, then the environmental variables and
their coefficients can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.25) reduces to problem (4) in Charnes et al.
(1978). The dual (or envelopment) form of the problem is
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max
μ,ρ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ ρzit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr ≤ ρ, λhr ≥ 0 for all h and r
}
.

(6.26)

If there is no environmental change, then the constraints involving ρ can be deleted.
If the data are cross-section data and there is no environmental change, then problem
(6.26) reduces to problem (3) in Charnes et al. (1978).

On the input side, the CRS assumption implies that the unknown parameters in
(6.6) must satisfy φit + κ ′

itzit = 0. With this constraint, the multiplier form of the
input-oriented DEA model becomes

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit : ξit ≥ 0, κit ≥ 0, θit ≥ 0, θ ′

itxit = 1, φit + κ ′
itzit = 0,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.27)

Again, if there is no environmental change, then the environmental variables and
their coefficients can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.27) reduces to problem (10) in Banker et al.
(1984). The dual (or envelopment) form of the problem is

min
μ,ρ,λ11,...,λIt

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ ρzit,

μxit ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr ≤ ρ, λhr ≥ 0 for all h and r
}
. (6.28)

Again, if there is no environmental change, then the constraints involving ρ can be
deleted. If the data are cross-section data and there is no environmental change, then
problem (6.28) reduces to problem (9) in Banker et al. (1984).

Finally, it is common to make the CRS assumption, not because production fron-
tiers exhibit CRS, but because estimates of technical efficiency that have been ob-
tained under a CRS assumption can be used to obtain estimates of scale efficiency. To
be more specific, estimates of scale efficiency can be obtained by dividing estimates
of technical efficiency obtained under a CRS assumption by corresponding estimates
of technical efficiency obtained under a variable returns to scale (VRS) assumption.
For example, the measure of OSE defined by (5.35) can be estimated by dividing the
value of μ that solves (6.4) by the value of μ that solves (6.26). On the input side,
the measure of ISE defined by (5.41) can be estimated by dividing the value of μ

that solves (6.28) by the value of μ that solves (6.9).
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6.2.4 Nondecreasing Returns to Scale

If production frontiers exhibit NDRS, then the unknown parameters in (6.1) must
satisfyαit + δ′

itzit ≤ 0.With this constraint, themultiplier form of the output-oriented
DEA model becomes

min
αit ,δit ,βit ,γit

{
αit + δ′

itzit + β ′
itxit : γit ≥ 0, δit ≥ 0, βit ≥ 0, γ ′

itqit = 1, αit + δ′
itzit ≤ 0,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.29)

Again, if there is no environmental change, then the environmental variables and
their coefficients can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.29) reduces to problem DO2 in Seiford and
Thrall (1990, p. 15). The dual (or envelopment) form of the problem is

max
μ,ρ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ ρzit,
I∑

h=1

t∑
r=1

λhr = ρ,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit, ρ ≥ 1, λhr ≥ 0 for all h and r
}
. (6.30)

If there is no environmental change, then the constraint involving the environmental
variables can be deleted. If the data are cross-section data and there is no environ-
mental change, then problem (6.30) reduces to problem PO2 in Seiford and Thrall
(1990, p. 15).

On the input side, the NDRS assumption implies that the unknown parameters
in (6.6) must satisfy φit + κ ′

itzit ≤ 0. With this constraint, the multiplier form of the
input-oriented DEA model becomes

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : ξit ≥ 0, κit ≥ 0, θit ≥ 0, θ ′
itxit = 1, φit + κ ′

itzit ≤ 0,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.31)

Again, if there is no environmental change, then the environmental variables and
their coefficients can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.31) reduces to problem DI2 in Seiford and
Thrall (1990, p. 15). The dual (or envelopment) form of the problem is
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min
μ,ρ,λ11,...,λIt

{
μ : qit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ ρzit,
I∑

h=1

t∑
r=1

λhr = ρ,

I∑
h=1

t∑
r=1

λhrxhr ≤ μxit, ρ ≥ 1, λhr ≥ 0 for all h and r
}
. (6.32)

Again, if there is no environmental change, then the constraint involving the envi-
ronmental variables can be deleted. If the data are cross-section data and there is no
environmental change, then problem (6.32) reduces to problem PI2 in Seiford and
Thrall (1990, p. 15).

6.2.5 Toy Example

Reconsider the output and input quantity data reported earlier in Table 1.1. Some
associated DEA estimates of OTE and ITE are reported in Table 6.9. In this table, the
estimates reported in the columns labelled NTC were obtained under the assumption
there is no technical change (i.e., by treating the observations in the dataset as obser-
vations on twenty-five firms in a single time period). The estimates reported in the
columns labelled VRS, NIRS, NDRS and CRS were obtained under the assumption
that the production frontier exhibits VRS, NIRS, NDRS and CRS (respectively). The
estimates reported in the VRS columns are the estimates reported earlier in Tables
6.1 and 6.2. Dividing the CRS estimates of OTE (resp. ITE) by the VRS estimates
yields the OSE (resp. ISE) estimates reported earlier in Table 6.7 (resp. 6.8). By
construction, the VRS estimates are no less than the NIRS and NDRS estimates, the
NIRS and NDRS estimates are no less than the CRS estimates, and the two sets of
CRS estimates are identical. The relationships between these different estimates can
sometimes be used to estimate whether firms are operating in regions of increasing or
decreasing returns to scale. In the one-input-one-output case, for example, if a VRS
estimate of OTE (resp. ITE) is larger than the corresponding NDRS (resp. NIRS)
estimate, then the associated firm is estimated to be operating in a region of DRS
(resp. IRS).

6.3 Models with Weaker Assumptions

It is common to relax assumptions PF4 and PF5. Relaxing these assumptions also
requires modifications to the basic DEA models described in Sect. 6.1. Again, to
avoid unnecessary repetition, this section focuses on the modifications that must be
made to basic output- and input-oriented models; the modifications that must be
made to other types of models are left as an exercise for the reader.
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Table 6.9 DEA estimates of OTE and ITE under relatively strong assumptionsa

OTE ITE

Row Firm Period NTC VRS NIRS NDRS CRS NTC VRS NIRS NDRS CRS

A 1 1 0.422 0.422 0.422 0.422 0.422 0.286 0.56 0.422 0.56 0.422

B 2 1 0.610 1 0.753 1 0.753 0.511 1 0.753 1 0.753

C 3 1 1 1 1 1 1 1 1 1 1 1

D 4 1 0.949 1 1 1 1 0.926 1 1 1 1

E 5 1 1 1 1 1 1 1 1 1 1 1

F 1 2 0.614 0.865 0.615 0.865 0.615 0.629 0.954 0.615 0.954 0.615

G 2 2 1 1 1 1 1 1 1 1 1 1

H 3 2 1 1 1 1 1 1 1 1 1 1

I 4 2 0.871 0.871 0.871 0.849 0.849 0.932 0.955 0.849 0.955 0.849

J 5 2 1 1 1 1 1 1 1 1 1 1

K 1 3 1 1 1 1 1 1 1 1 1 1

L 2 3 0.933 1 1 1 1 0.938 1 1 1 1

M 3 3 0.643 0.653 0.653 0.592 0.592 0.589 0.604 0.592 0.604 0.592

N 4 3 1 1 1 1 1 1 1 1 1 1

O 5 3 0.844 0.844 0.844 0.569 0.569 0.777 0.777 0.777 0.569 0.569

P 1 4 0.594 0.594 0.594 0.547 0.547 0.551 0.551 0.551 0.547 0.547

R 2 4 0.671 0.671 0.671 0.642 0.642 0.624 0.657 0.642 0.657 0.642

S 3 4 0.583 0.583 0.551 0.583 0.551 0.669 0.669 0.551 0.669 0.551

T 4 4 1 1 1 0.838 0.838 1 1 1 0.838 0.838

U 5 4 0.654 0.654 0.624 0.654 0.624 0.689 0.689 0.624 0.689 0.624

V 1 5 1 1 1 1 1 1 1 1 1 1

W 2 5 0.895 0.895 0.895 0.619 0.619 0.846 0.846 0.846 0.619 0.619

X 3 5 0.836 0.836 0.725 0.836 0.725 0.881 0.881 0.725 0.881 0.725

Y 4 5 0.516 0.516 0.516 0.384 0.384 0.387 0.387 0.387 0.384 0.384

Z 5 5 0.867 0.867 0.867 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Geometric mean 0.796 0.828 0.800 0.763 0.737 0.751 0.814 0.762 0.788 0.737
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

6.3.1 Inputs Not Strongly Disposable

If inputs are not strongly disposable, then the coefficients of the input variables in
(6.1) and (6.6) are unsigned. In this case, the multiplier form of the output-oriented
DEA model becomes

min
αit ,δit ,βit ,γit

{
αit + δ′

itzit + β ′
itxit : γit ≥ 0, δit ≥ 0, γ ′

itqit = 1,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.33)
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The dual (or envelopment) form of this problem is

max
μ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr = xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.34)

On the input side, the multiplier form of the input-oriented DEA model becomes

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : ξit ≥ 0, κit ≥ 0, θ ′
itxit = 1,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.35)

The dual (or envelopment) form of this problem is

min
μ,λ11,...,λIt

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

μxit =
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.36)

Again, if the data are cross-section data, then all references to time periods can
be deleted. If there is no environmental change, then the constraint involving the
environmental variables can be deleted. If the data are cross-section data and there
is no environmental change, then problem (6.36) reduces to problem (3) in Cooper
et al. (2000, p. 5).

6.3.2 Outputs Not Strongly Disposable

If outputs are not strongly disposable, then the coefficients of the output variables in
(6.1) and (6.6) are unsigned. In this case, the multiplier form of the output-oriented
DEA model becomes

min
αit ,δit ,βit ,γit

{
αit + δ′

itzit + β ′
itxit : δit ≥ 0, βit ≥ 0, γ ′

itqit = 1,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.37)
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The dual (or envelopment) form of this problem is

max
μ,λ11,...,λIt

{
μ : μqit =

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.38)

Again, if the data are cross-section data, then all references to time periods can
be deleted. If there is no environmental change, then the constraint involving the
environmental variables can be deleted. If the data are cross-section data and there
is no environmental change, then problem (6.38) reduces to problem (9.4) in Zhu
(2009, p. 188).

On the input side, if outputs are not strongly disposable, then the multiplier form
of the input-oriented DEA model becomes

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : κit ≥ 0, θit ≥ 0, θ ′
itxit = 1,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.39)

The dual (or envelopment) form of this problem is

min
μ,λ11,...,λIt

{
μ :

I∑
h=1

t∑
r=1

λhrqhr = qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

μxit ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.40)

6.3.3 Environmental Variables Not Strongly Disposable

If environmental variables are not strongly disposable, then the coefficients of the
environmental variables in (6.1) and (6.6) are unsigned. In this case, the multiplier
form of the output-oriented DEA model becomes

min
αit ,δit ,βit ,γit

{
αit + δ′

itzit + β ′
itxit : γit ≥ 0, βit ≥ 0, γ ′

itqit = 1,

αit + δ′
itzhr + β ′

itxhr − γ ′
itqhr ≥ 0 for all h ≤ I and r ≤ t

}
. (6.41)
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The dual (or envelopment) form of this problem is

max
μ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr = zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.42)

On the input side, the multiplier form of the input-oriented DEA model becomes

max
ξit ,κit ,φit ,θit

{
ξ ′
itqit − κ ′

itzit − φit : ξit ≥ 0, θit ≥ 0, θ ′
itxit = 1,

ξ ′
itqhr − κ ′

itzhr − φit − θ ′
itxhr ≤ 0 for all h ≤ I and r ≤ t

}
. (6.43)

The dual (or envelopment) form of this problem is

min
μ,λ11,...,λIt

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr = zit,

μxit ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
.

(6.44)

Again, if the data are cross-section data, then all references to time periods can be
deleted. In this case, problem (6.44) reduces to problem (7.8) in Coelli et al. (2005,
p. 193).

6.3.4 Production Possibilities Sets Not Convex

If production possibilities sets are not convex, then there is no LP duality theory to
link the multiplier and envelopment forms of PFMs. In the efficiency literature, re-
searchers have focused on the envelopment forms. If production possibilities sets are
not convex, then the envelopment form of the output-oriented DEA model becomes

max
μ,ρ,λ11,...,λIt

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

I∑
h=1

t∑
r=1

λhrxhr ≤ xit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ∈ {0, 1} for all h and r
}
. (6.45)
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If there is no environmental change, then the constraint involving the environmental
variables can be deleted. In this case, problem (6.45) reduces to problem 1.2 in
Tulkens and Vanden Eeckaut (1995, p. 481). In the efficiency literature, these types
of models are known as free disposal hull (FDH) models. This terminology derives
from the fact that, aside from PF1 to PF3, the only assumption that is being made is
that inputs, outputs and environmental variables are strongly (or freely) disposable.

On the input side, if production possibilities sets are not convex, then the envel-
opment form of the input-oriented DEA model becomes

min
μ,λ11,...,λIt

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit,
I∑

h=1

t∑
r=1

λhrzhr ≤ zit,

μxit ≥
I∑

h=1

t∑
r=1

λhrxhr,
I∑

h=1

t∑
r=1

λhr = 1, λhr ∈ {0, 1} for all h and r
}
.

(6.46)

Again, if there is no environmental change, then the constraint involving the envi-
ronmental variables can be deleted. In this case, problem (6.46) reduces to problem
1.1 in Tulkens and Vanden Eeckaut (1995, p. 481). If the data are cross-section data
and there is only one input, then the Tulkens and Vanden Eeckaut (1995) problem is
equivalent to problem (12) in Deprins et al. (1984, p. 296).

6.3.5 Toy Example

Reconsider the output and input quantity data reported earlier in Table 1.1. Some
associated estimates of OTE and ITE are reported in Table 6.10. In this table, the
estimates reported in the columns labelled PF4 have been obtained under the as-
sumption that inputs, outputs and environmental variables are strongly disposable;
these are the estimates reported earlier in Tables 6.1 and 6.2. The estimates reported
in the columns labelled XNSD, QNSD and ZNSD have been obtained under the
assumption that inputs, outputs and environmental variables are not strongly dispos-
able (respectively). The estimates reported in the FDH columns have been obtained
under the assumption that production possibilities sets are not convex. By construc-
tion, the estimates obtained under assumption PF4 are no greater than the XNSD,
QNSD, ZNSD and FDH estimates.

6.4 Inference

If the assumptions underpinning PFMs are true, then, under weak regularity condi-
tions concerning the probability density functions (PDFs) of the (in)efficiency effects
(e.g., that they are monotonic), piecewise frontier estimators for (in)efficiency are
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Table 6.10 DEA estimates of OTE and ITE under relatively weak assumptionsa

OTE ITE

Row Firm Period PF4 XNSD QNSD ZNSD FDH PF4 XNSD QNSD ZNSD FDH

A 1 1 0.422 0.422 0.422 0.422 0.422 0.56 0.56 0.56 0.56 0.56

B 2 1 1 1 1 1 1 1 1 1 1 1

C 3 1 1 1 1 1 1 1 1 1 1 1

D 4 1 1 1 1 1 1 1 1 1 1 1

E 5 1 1 1 1 1 1 1 1 1 1 1

F 1 2 0.865 0.865 1 1 1 0.954 0.954 1 1 1

G 2 2 1 1 1 1 1 1 1 1 1 1

H 3 2 1 1 1 1 1 1 1 1 1 1

I 4 2 0.871 1 0.871 1 1 0.955 0.955 1 1 0.979

J 5 2 1 1 1 1 1 1 1 1 1 1

K 1 3 1 1 1 1 1 1 1 1 1 1

L 2 3 1 1 1 1 1 1 1 1 1 1

M 3 3 0.653 1 0.653 0.653 0.724 0.604 0.604 0.612 0.604 0.775

N 4 3 1 1 1 1 1 1 1 1 1 1

O 5 3 0.844 0.844 0.844 1 0.844 0.777 0.777 0.777 1 1

P 1 4 0.594 0.594 0.594 0.594 1 0.551 0.551 0.551 0.551 1

R 2 4 0.671 0.671 0.671 0.671 0.724 0.657 0.657 0.657 0.657 1

S 3 4 0.583 0.583 0.612 0.833 1 0.669 0.669 0.705 0.947 1

T 4 4 1 1 1 1 1 1 1 1 1 1

U 5 4 0.654 0.654 0.656 0.654 1 0.689 0.689 0.692 0.689 1

V 1 5 1 1 1 1 1 1 1 1 1 1

W 2 5 0.895 0.895 0.895 1 1 0.846 0.846 0.846 1 1

X 3 5 0.836 0.836 0.894 1 1 0.881 0.881 0.928 1 1

Y 4 5 0.516 0.516 0.516 0.516 1 0.387 0.387 0.387 0.387 0.757

Z 5 5 0.867 1 0.867 0.867 1 0.5 0.5 0.5 0.5 0.5

Geometric mean 0.828 0.852 0.837 0.865 0.935 0.814 0.814 0.821 0.846 0.930
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

consistent.3 This provides a basis for conducting basic asymptotic inference (i.e.,
constructing confidence intervals and testing hypotheses in large samples). For no-
tational simplicity, let Eit denote a measure of the efficiency of manager i in period t.
An associated measure of inefficiency is uit ≡ − lnEit ≥ 0. In practice, the methods
used to conduct inference depend on whether the PDFs of Eit and uit are known.

3In this context, ‘consistent’ means that the sampling distributions of the estimators collapse to the
true levels of (in)efficiency as the numbers of firms used to estimate production frontiers become
infinitely large.
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6.4.1 PDFs Known

If the PDFs of Eit and uit are known, then standard statistical methods can be used to
conduct asymptotic inference. This section considers methods for (a) constructing
confidence intervals for measures of efficiency, (b) testing for differences in average
efficiency, and (c) testing assumptions about production technologies.

6.4.1.1 Confidence Intervals for Measures of Efficiency

Suppose we are interested in constructing a 100(1 − α)% confidence interval for
Eit = exp(−uit). The choice of confidence interval formula depends on the PDF of
uit . For example, if uit is an independent exponential random variable with scale
parameter σt > 0, then a 100(1 − α)% confidence interval for Eit is4

(α/2)σ̂t ≤ Eit ≤ (1 − α/2)σ̂t (6.47)

where σ̂t denotes a consistent estimator for σt . If there are It firms in the dataset in
period t, then a consistent estimator for σt is σ̂t = ∑It

i=1 ûit/It where ûit denotes a
consistent estimator for uit . The validity of this procedure depends on It being large.

For a numerical example, reconsider the toy data reported in Table 1.1. Suppose
we are interested in constructing 95% confidence intervals for measures of OTE. For
purposes of illustration, andbearing inmind that the numbers of firmsused to estimate
production frontiers need to be large, let us treat the observations in the dataset
as observations on twenty-five firms in a single time period; this implies that all
references to time periods can be deleted. Let us also assume that ui is an independent
exponential random variable with scale parameter σ > 0. DEA estimates of Ei and
ui are reported in Table 6.11 (the efficiency estimates are the OTE estimates reported
earlier in the NTC column of Table 6.9). The estimate of the scale parameter is
σ̂ = 0.228. The associated 95% confidence interval is 0.432 ≤ Ei ≤ 0.994.

6.4.1.2 Testing for Differences in Average Efficiency

Suppose that all the observations in the dataset can be classified into two or more
groups (e.g., by type of environment). Let Sgt (resp. Igt) denote the set (resp. number)
of firms in group g in period t. Suppose that E(uit) = μg if i ∈ Sgt . Also suppose
we are interested in testing H0 : μ1 ≤ μ2 against H1 : μ1 > μ2. The choice of test
statistic depends on the PDF of uit . For example, if uit is an independent exponential
random variable, then the test statistic is

4This formula is based on the result that if uit is an independent exponential random variable with
scale parameter σt > 0, then P[−σt ln(1 − α/2) ≤ uit ≤ −σt ln(α/2)] = 1 − α ⇒ P[(α/2)σt ≤
exp(−uit) ≤ (1 − α/2)σt ] = 1 − α.
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Table 6.11 Estimates of efficiency and inefficiencya

Firm Ei ui

A 0.422 0.863

B 0.610 0.495

C 1 0

D 0.949 0.052

E 1 0

F 0.614 0.488

G 1 0

H 1 0

I 0.871 0.139

J 1 0

K 1 0

L 0.933 0.070

M 0.643 0.441

N 1 0

O 0.844 0.170

P 0.594 0.521

R 0.671 0.399

S 0.583 0.540

T 1 0

U 0.654 0.424

V 1 0

W 0.895 0.111

X 0.836 0.179

Y 0.516 0.662

Z 0.867 0.143
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

F =
∑

t

∑
i∈S1t ûit/

∑
t I1t∑

t

∑
i∈S2t ûit/

∑
t I2t

. (6.48)

If the null hypothesis is true, then this statistic has an F distribution with 2
∑

t I1t
numerator and 2

∑
t I2t denominator degrees of freedom. Thus, we should reject the

null hypothesis at the α level of significance if F > F(1−α,2
∑

t I1t ,2
∑

t I2t). As another
example, if uit is an independent half-normal random variable, then the test statistic is

F =
∑

t

∑
i∈S1t û

2
it/

∑
t I1t∑

t

∑
i∈S2t û

2
it/

∑
t I2t

. (6.49)
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If the null hypothesis is true, then this statistic has an F distribution with
∑

t I1t
numerator and

∑
t I2t denominator degrees of freedom. Thus, we should reject the

null hypothesis at the α level of significance if F > F(1−α,
∑

t I1t ,
∑

t I2t). If the data
are cross-section data, then these tests are equivalent to tests proposed by Banker
(1993). The validity of both tests depends on

∑
g

∑
t Igt being large. However, neither∑

t I1t nor
∑

t I2t need to be large (Banker 1993, p. 1272). Moreover, the assumption
made about the PDF of uit (i.e., exponential or half-normal) need only be true for
i ∈ S1t ∪ S2t (Banker 1993, fn. 8).

For a numerical example, reconsider the toy data reported in Table 1.1. Suppose
we are interested in testing the null hypothesis that the average output-oriented tech-
nical inefficiency of firms operating in environment 1 is no greater than the average
output-oriented technical inefficiency of firms operating in environment 2. Again,
for purposes of illustration, let us treat the observations in the dataset as observations
on twenty-five firms in a single time period; this implies that all references to time
periods can be deleted. In this case, S1 = {A, B, C, D, E, H, J, K, L, M, N, P, R, U,
V, Y, Z}, S2 = {F, G, I, O, S, T, W, X}, I1 = 17 and I2 = 8. DEA estimates of Ei and
ui were reported earlier in Table 6.11. If ui is an independent exponential random
variable, then the test statistic takes the value F = (4.069/17)/(1.627/8) = 1.177.
The critical value at the α = 0.05 level of significance is F(0.95,34,16) = 2.174. The
value of the test statistic is less than this critical value, so we should not reject the
null hypothesis (at the 5% level of significance).

6.4.1.3 Testing Assumptions About Production Technologies

Suppose we are interested in testing a null hypothesis concerning the technologies
that exist in period t (e.g., the null hypothesis that the period-t production frontier
exhibits CRS, or the null hypothesis that the period-t production possibilities set is
convex). Again, the choice of test statistic depends on the PDF of uit . For example,
if there are It firms in the dataset in period t and uit is an independent exponential
random variable, then the test statistic is

F =
∑It

i=1 û
r
it∑It

i=1 û
u
it

(6.50)

where ûrit and ûuit denote restricted and unrestricted estimators for uit (i.e., the es-
timators used under the null and alternative hypotheses). If the null hypothesis is
true, then this statistic has a half-F distribution with 2It numerator and 2It denomi-
nator degrees of freedom. Thus, we should reject the null hypothesis at the α level
of significance if F > F(1−α/2,2It ,2It).

5 As another example, if uit is an independent
half-normal random variable, then the test statistic is

5Consider anF distributionwith the numerator degrees of freedom equal to the denominator degrees
of freedom. A half-F distribution is such a distribution truncated from below at 1. The critical value
that leaves an area of α in the right-hand tail of a half-F distribution is the value that leaves an area
of α/2 in the right-hand tail of the corresponding untruncated F distribution.
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F =
∑It

i=1(û
r
it)

2

∑It
i=1(û

u
it)

2
. (6.51)

If the null hypothesis is true, then this statistic has a half-F distribution with It
numerator and It denominator degrees of freedom. Thus, we should reject the null
hypothesis at the α level of significance ifF > F(1−α/2,It ,It). The validity of these tests
depends on It being large. Both tests are also underpinned by the assumption that the
inefficiency effects are independent randomvariables. This suggests that independent
random samples should be used to estimate the inefficiency effects under the null
and alternative hypotheses. In practice, random sampling without replacement can
be used to divide the sample into two groups of equal size. One sub-sample can then
be used to estimate uit under the null hypothesis. The other sub-sample can be used
to estimate uit under the alternative hypothesis.

For a numerical example, reconsider the toy data reported in Table 1.1. Again, for
purposes of illustration, let us treat the observations in the dataset as observations
on twenty-five firms in a single time period; this implies that all references to time
periods can be deleted. Suppose we are interested in testing the null hypothesis that
the production frontier exhibits CRS. For this particular numerical example, random
sampling without replacement was used to select two groups of size 12 from the 25
observations. The first group comprised firms B, E, F, H, I, L, M, O, R, S, V and Y.
The second group comprised firms A, C, D, G, J, K, N, P, U, W, X and Z. Data from
the first (resp. second) groupwere used to estimate levels of output-oriented technical
inefficiency under a VRS (resp. CRS) assumption. If ui is an independent exponential
randomvariable, then the test statistic takes the valueF = 2.726/1.663 = 1.639. The
critical value at the α = 0.05 level of significance is F(0.975,24,24) = 2.269. The value
of the test statistic is less than this critical value, so we should not reject the null
hypothesis (at the 5% level of significance).

6.4.2 PDFs Unknown

If the PDFs of Eit and uit are unknown, then bootstrapping methods can be used to
conduct asymptotic inference. This section considers bootstrapping methods for (a)
constructing confidence intervals for measures of efficiency, (b) testing for differ-
ences in average efficiency, and (c) bias correction.

6.4.2.1 Confidence Intervals for Measures of Efficiency

Suppose we are interested in constructing a 100(1 − α)% confidence interval for Eit .
In this context, bootstrapping involves using the data to somehow generateB artificial
samples of observations. Each so-called bootstrap sample is then used to compute
an estimate of Eit . If B is sufficiently large, then the distribution of these computed
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estimates can be used as an estimate of the distribution of Eit . Thus, constructing a
bootstrap confidence interval for Eit involves the following steps:

1. Specify a data generating process (DGP) and set b = 1.
2. Use the DGP to generate a bootstrap sample of observations that includes data

on firm i in period t.
3. Use the bootstrap sample to compute an estimate of Eit , denoted Êb

it .
4. If b < B, then set b = b + 1 and return to step 2. Otherwise, stop.

After completing these steps, the 100(1 − α)% confidence interval limits are given
by the α/2-th percentile and the (1 − α/2)-th percentile of the set {Ê1

it, . . . , Ê
B
it }.

These confidence interval limits may be sensitive to the DGP.
For a numerical example, reconsider the toy data reported inTable 1.1. Supposewe

are interested in constructing 95% confidence intervals for measures of OTE. Again,
for purposes of illustration, let us treat the observations in the dataset as observations
on twenty-five firms in a single time period. For this particular numerical example,
the dea.boot function in Bogetoft and Otto (2015) was used to generate B = 2000
bootstrap samples and associated 95% confidence interval limits. These limits are
reported in Table 6.12.

6.4.2.2 Testing for Differences in Average Efficiency

Suppose that all the observations in the dataset can be classified into two or more
groups, and that we are interested in testing the null hypothesis from Sect. 6.4.1.2. If
the probability distribution of uit is unknown, then the probability distributions of the
test statistics (6.48) and (6.49) are also unknown. However, they can be estimated
using bootstrapping. In this context, bootstrapping still involves using the data to
somehow generateB bootstrap samples. However, each bootstrap sample is now used
to compute a value of a test statistic. If B is sufficiently large, then the distribution
of these computed values can be used as an estimate of the probability distribution
of the test statistic. Thus, a bootstrap test of the type of null hypothesis discussed in
Sect. 6.4.1.2 involves the following steps:

1. Specify a DGP and set b = 1.
2. Use the DGP to generate a bootstrap sample of observations.
3. Use the bootstrap sample to compute the value of the test statistic, denoted Fb.
4. If b < B, then set b = b + 1 and return to step 2. Otherwise, stop.

After completing these steps, we should reject the null hypothesis at the α level of
significance if the value of the test statistic computed from the original sample is
greater than the (1 − α)-th percentile of the set {F1, . . . ,FB}. Again, test outcomes
may be sensitive to the DGP.

For a numerical example, reconsider the toy data reported in Table 1.1. Suppose
we are interested in testing the null hypothesis that the average output-oriented tech-
nical inefficiency of firms operating in environment 1 is no greater than the average
output-oriented technical inefficiency of firms operating in environment 2. Again,
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Table 6.12 CI limits Firm 2.5% 97.5%

A 0.340 0.420

B 0.506 0.605

C 0.807 0.996

D 0.797 0.942

E 0.801 0.992

F 0.505 0.609

G 0.767 0.992

H 0.636 0.990

I 0.621 0.867

J 0.644 0.991

K 0.801 0.991

L 0.727 0.928

M 0.533 0.639

N 0.644 0.989

O 0.715 0.841

P 0.487 0.590

R 0.549 0.665

S 0.467 0.579

T 0.847 0.990

U 0.524 0.648

V 0.778 0.990

W 0.766 0.890

X 0.675 0.831

Y 0.433 0.512

Z 0.727 0.860

for purposes of illustration, let us treat the observations in the dataset as observations
on twenty-five firms in a single time period. Recall from the example in Sect. 6.4.1.2
that the test statistic (6.48) took the value F = 1.177. To find the critical value at the
α = 0.05 level of significance, the dea.boot function in Bogetoft and Otto (2015)
was used to generate B = 2000 bootstrap samples and associated values of the test
statistic. The 95-th percentile of these values (i.e., the critical value) was 2.973. The
value of the F statistic is less than this critical value, so we should not reject the null
hypothesis (at the 5% level of significance).
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6.4.2.3 Bias Correction

Let Êit denote a piecewise frontier estimator for Eit . If Eit is a measure of technical
efficiency, then Êit is upwardly biased. Correcting for this bias involves the following
bootstrap steps:

1. Specify a DGP and set b = 1.
2. Use the DGP to generate a bootstrap sample of observations that includes data

on firm i in period t.
3. Use the bootstrap sample to compute an estimate of Eit , denoted Êb

it .
4. If b < B, then set b = b + 1 and return to step 2. Otherwise, stop.

Note that these are the same steps that were followed in Sect. 6.4.2.1. After complet-
ing these steps, an estimator for the bias is

b̂it = ĒB
it − Êit (6.52)

where ĒB
it = ∑

b Ê
b
it/B. A bias-corrected estimator for Eit is

Ẽit = Êit − b̂it = Êit − (ĒB
it − Êit) = 2Êit − ĒB

it . (6.53)

For more details, see Simar and Wilson (1998, p. 51). In practice, it is possible that
ĒB
it > 2Êit , implying that Ẽit < 0. Such a result indicates that either the frontiermodel

is misspecified or the bootstrap procedure has failed.
For a numerical example, reconsider the toy data reported in Table 1.1. Suppose

we want to compute bias-corrected estimates of OTE. Again, for purposes of illustra-
tion, let us treat the observations in the dataset as observations on twenty-five firms
in a single time period. For this particular numerical example, the dea.boot func-
tion in Bogetoft and Otto (2015) was used to generate B = 2000 bootstrap samples
and associated estimates of bias. The estimates of bias are reported in Table 6.13.
This table also reports associated estimates of efficiency. The efficiency estimates
in column E are the (uncorrected) estimates reported earlier in Table 6.11. The esti-
mates reported in column BCE are bias-corrected estimates. Only the bias-corrected
estimates lie within the confidence interval limits reported earlier in Table 6.12.

6.5 Productivity Analysis

Productivity analysis involves both measuring and explaining changes in productiv-
ity. This section focuses on measuring and explaining changes in TFP. Methods for
measuring and explaining changes in MFP and PFP can be handled as special cases
in which one or more inputs are assigned a value (or weight) of zero.



254 6 Piecewise Frontier Analysis

Table 6.13 Estimates of efficiencya

Firm E bias BCE

A 0.422 0.038 0.383

B 0.610 0.050 0.560

C 1 0.091 0.909

D 0.949 0.080 0.870

E 1 0.120 0.880

F 0.614 0.057 0.557

G 1 0.137 0.863

H 1 0.182 0.818

I 0.871 0.102 0.769

J 1 0.180 0.820

K 1 0.096 0.904

L 0.933 0.090 0.843

M 0.643 0.050 0.594

N 1 0.178 0.822

O 0.844 0.056 0.788

P 0.594 0.058 0.536

R 0.671 0.058 0.613

S 0.583 0.057 0.526

T 1 0.085 0.915

U 0.654 0.067 0.587

V 1 0.110 0.890

W 0.895 0.055 0.840

X 0.836 0.080 0.756

Y 0.516 0.039 0.477

Z 0.867 0.067 0.800
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

6.5.1 Measuring Changes in TFP

Measuring changes in TFP involves computing proper TFP index (TFPI) numbers.
Except in restrictive special cases, PFMs cannot be used to compute primal or dual
TFPI numbers.6 However, they can be used to compute additive and multiplicative
TFPI numbers. Additive TFPI numbers can be computed by using average estimated
normalised shadow prices as weights in Eq. (3.41).7 If the output and input distance

6Primal and dual indices are only proper indices if the parameters of distance, revenue and cost
functions do not vary across observations. Except in restrictive special cases (e.g., there is only
one input and one output, there is no environmental change, and production frontiers exhibit CRS),
PFMs are underpinned by functions with parameters that do vary across observations.
7Additive TFPI numbers can also be computed using estimated representative normalised shadow
prices as weights. The DPIN software of O’Donnell (2010a) computes so-called ‘Färe-Primont’
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functions take the form of (6.1) and (6.6), then the n-th normalised shadow output
price and the m-th normalised shadow input price are

pitn (xit, qit, zit) = γnit/(αit + δ′
itzit + β ′

itxit) (6.54)

and wit
m(xit, qit, zit) = θmit/(ξ

′
itqit − κ ′

itzit − φit). (6.55)

Multiplicative TFPI numbers can be computed by using average estimated shadow
value shares as weights in Eq. (3.42).8 If the output and input distance functions take
the form of (6.1) and (6.6), then the n-th shadow revenue share and the m-th shadow
cost share are

ritn (xit, qit, zit) = γnitqnit/γ
′
itqit (6.56)

and sitm(xit, qit, zit) = θmitxmit/θ
′
itxit . (6.57)

Estimates of the unknown parameters in Eqs. (6.54)–(6.57) (and therefore estimates
of normalised shadow prices and shadow value shares) can be obtained by solving
the multiplier forms of the output- and input-oriented models described in Sects.
6.1.1 and 6.1.2.

To illustrate, reconsider the output and input quantity data reported earlier in Table
1.1. AssociatedDEAestimates of normalised shadowprices and shadowvalue shares
are reported in Table 6.14. The arithmetic averages reported in the last row of this
table were used to compute the additive and multiplicative TFPI numbers reported in
Table 6.15. These index numbers are proper in the sense that they have been obtained
by dividing proper output index numbers by proper input index numbers. They are
also consistent with measurement theory. Observe, for example, that (a) the output
vector in row O is twice as big as the output vector in row A, (b) the input vector in
row O is the same as the input vector in row A, and (c) the index numbers in row O
are twice as big as the numbers in row A.

6.5.2 Explaining Changes in TFP

Explaining changes in TFP generally involves decomposing proper TFPI numbers
into measures of environmental change, technical change, and efficiency change.
This section focuses on productivity-, output- and input-oriented decompositions.

TFPI numbers in thisway. If average estimated normalised shadowprices are proportional to average
observed prices, then the associated additive index numbers are equal to Lowe index numbers.
8If average estimated shadow value shares are equal to average observed value shares, then the
associated multiplicative index numbers are equal to geometric Young index numbers.
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Table 6.14 DEA estimates of normalised shadow prices and shadow value sharesa,b

Row Firm Period pit1 (.) pit2 (.) wit
1 (.) wit

2 (.) rit1 (.) rit2 (.) sit1 (.) sit2 (.)

A 1 1 0.422 0 1.786 0 1 0 1 0

B 2 1 1 0 1.786 0 1 0 1 0

C 3 1 0.422 0 1 0 1 0 1 0

D 4 1 0.474 0 0.611 0.513 1 0 0.641 0.359

E 5 1 0 0.276 0.952 0 0 1 1 0

F 1 2 0 0.865 0.155 2.829 0 1 0.147 0.853

G 2 2 0 0.285 0 1.832 0 1 0 1

H 3 2 0.808 0.238 0.158 2.882 0.776 0.224 0.003 0.997

I 4 2 0.15 0.201 0.224 2.879 1 0 0.973 0.027

J 5 2 0.15 0 0.224 2.879 1 0 0.997 0.003

K 1 3 0.15 0.168 0 1 0.207 0.793 0 1

L 2 3 0 0.208 0 1 0 1 0 1

M 3 3 0.15 0.168 0.288 1.267 0.229 0.771 0.235 0.765

N 4 3 0 1.429 0.086 6.072 0 1 0.029 0.971

O 5 3 0.422 0 0.776 0.511 1 0 0.603 0.397

P 1 4 0.459 0.135 0.789 2.705 0.772 0.228 0.286 0.714

R 2 4 0.297 0.125 0.409 1.113 0.443 0.557 0.269 0.731

S 3 4 0 0.583 0.069 4.813 0 1 0.089 0.911

T 4 4 0.317 0.104 0.684 0.316 0.611 0.389 0.684 0.316

U 5 4 0 0.654 0.032 4.581 0 1 0.022 0.978

V 1 5 0 0.194 0 1 0 1 0 1

W 2 5 0.345 0.102 0.776 0.511 0.772 0.228 0.603 0.397

X 3 5 0 0.836 0.069 4.813 0 1 0.088 0.912

Y 4 5 0.398 0.117 0.789 2.705 0.772 0.228 0.226 0.774

Z 5 5 0.15 0.165 0 1.429 0.312 0.688 0 1

Arithmetic mean 0.245 0.274 0.466 1.906 0.476 0.524 0.396 0.604
apitn (.) = n-th estimated normalised shadow output price;wit

m(.) =m-th estimated normalised shadow
input price; ritn (.) = n-th estimated shadow revenue share; sitm(.) = m-th estimated shadow cost share
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

6.5.2.1 Productivity-Oriented Decompositions

Productivity-oriented decompositions of TFPI numbers tend to be most relevant in
situationswheremanagers have placed nonnegative values on outputs and inputs, and
where they have chosen at least one output and one input freely (i.e., situations where
productivity-oriented measures of efficiency are most relevant). In these situations,
arguably the easiest way to proceed is to rewrite (5.32) asTFP(xit, qit) = TFPt(zit) ×
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Table 6.15 Additive and multiplicative TFPI numbersa,b

Row Firm Period q1 q2 x1 x2 A M

A 1 1 1 1 1 1 1 1

B 2 1 1 1 0.56 0.56 1.786 1.786

C 3 1 2.37 2.37 1 1 2.37 2.37

D 4 1 2.11 2.11 1.05 0.7 2.744 2.567

E 5 1 1.81 3.62 1.05 0.7 3.599 3.167

F 1 2 1 1 0.996 0.316 2.224 2.009

G 2 2 1.777 3.503 1.472 0.546 3.694 3.137

H 3 2 0.96 0.94 0.017 0.346 3.375 9.042

I 4 2 5.82 0.001 4.545 0.01 3.044 0.549

J 5 2 6.685 0.001 4.45 0.001 3.600 2.378

K 1 3 1.381 4.732 1 1 3.152 2.634

L 2 3 0.566 4.818 1 1 2.813 1.739

M 3 3 1 3 1.354 1 1.923 1.578

N 4 3 0.7 0.7 0.33 0.16 3.619 3.285

O 5 3 2 2 1 1 2 2

P 1 4 1 1 0.657 0.479 1.946 1.842

R 2 4 1 3 1 1 2.057 1.779

S 3 4 1 1 1.933 0.283 1.646 1.652

T 4 4 1.925 3.722 1 1 2.875 2.72

U 5 4 1 1 1 0.31 2.244 2.029

V 1 5 1 5.166 1 1 3.202 2.365

W 2 5 2 2 0.919 0.919 2.176 2.176

X 3 5 1 1 1.464 0.215 2.171 2.177

Y 4 5 1 1 0.74 0.74 1.351 1.351

Z 5 5 1.81 3.62 2.1 1.4 1.799 1.584
aA = additive index with averages of DEA estimates of normalised shadow prices used as weights;
M = multiplicative index with averages of DEA estimates of shadow value shares used as weights.
Some index numbers may be incoherent at the third decimal place due to rounding (e.g., the number
in row Z of column A is not exactly half as big as the number in row E of column A due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

TSMEt(xit, qit, zit). A similar equation holds for firm k in period s. Substituting these
equations into (3.40) yields

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× TSMEt(xit, qit, zit)/TSMEs(xks, qks, zks). (6.58)

This equation appears in O’Donnell et al. (2017, Eq. 12). The first ratio on the right-
hand side is an environment and technology index (ETI) (i.e., a combined measure of
environmental and technical change). The second ratio is a technical, scale and mix
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efficiency index (TSMEI). For a finer decomposition, Eq. (5.34) can be rewritten as
TSMEt(xit, qit, zit) = TSEt(xit, qit, zit) × RMEt(xit, qit, zit). A similar equation holds
for firm k in period s. Substituting these equations into (6.58) yields

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× TSEt(xit, qit, zit)/TSE
s(xks, qks, zks)

× RMEt(xit, qit, zit)/RMEs(xks, qks, zks). (6.59)

Thefirst ratio on the right-hand side is theETI in (6.58). The second ratio is a technical
and scale efficiency index (TSEI). The last ratio is a residual mix efficiency index
(RMEI). In practice, estimates of the TSMEI and TSEI can be obtained by solving
(6.15) and (6.16). Estimates of the other components can be obtained as residuals.

For a numerical example, reconsider the Lowe TFPI numbers reported earlier in
column L of Table 3.5. Two productivity-oriented decompositions of these index
numbers are reported in Table 6.16. The TSMEI, TSEI and RMEI numbers in this
table were obtained by dividing the TSME, TSE and RME estimates in each row of
Table 6.6 by the corresponding estimates for firm 1 in period 1. The ETI numbers
were then obtained as residuals (i.e., ETI = TFPI/TSMEI).

6.5.2.2 Output-Oriented Decompositions

Output-oriented decompositions of TFPI numbers tend to be most relevant in situa-
tions where managers have placed nonnegative values on outputs, and where inputs
have been predetermined (i.e., situations where output-oriented measures of effi-
ciency are most relevant). In these situations, arguably the easiest way to proceed is
to rewrite (5.38) as TSMEt(xit, qit, zit) = OTEt(xit, qit, zit) × OSMEt(xit, qit, zit). A
similar equation holds for firm k in period s. Substituting these equations into (6.58)
yields

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× OTEt(xit, qit, zit)/OTE
s(xks, qks, zks)

× OSMEt(xit, qit, zit)/OSMEs(xks, qks, zks). (6.60)

If there is no environmental change, then this equation is equivalent to equation
(11) in O’Donnell (2012, p. 881). The first ratio on the right-hand side is the
ETI in (6.58). The second ratio is an output-oriented technical efficiency index
(OTEI). The last ratio is an output-oriented scale and mix efficiency index (OS-
MEI). For a finer decomposition, Eq. (5.40) can be rewritten asOSMEt(xit, qit, zit) =
OMEt(xit, qit, zit) × ROSEt(xit, qit, zit). A similar equation holds for firm k in period
s. Substituting these equations into (6.60) yields
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Table 6.16 Productivity-oriented decompositions of Lowe TFPI numbersa,b

Row Firm Period TFPI ETI TSMEI ETI TSEI RMEI

A 1 1 1 1 1 1 1 1

B 2 1 1.786 1 1.786 1 1.786 1

C 3 1 2.37 1 2.37 1 2.37 1

D 4 1 2.703 1 2.703 1 2.37 1.141

E 5 1 3.516 1 3.516 1 2.37 1.483

F 1 2 2.117 1 2.117 1 1.459 1.451

G 2 2 3.515 1 3.515 1 2.37 1.483

H 3 2 3.513 1 3.513 1 2.37 1.482

I 4 2 2.675 1 2.675 1 2.013 1.329

J 5 2 3.159 1 3.159 1 2.37 1.333

K 1 3 3.110 1.000 3.110 1.000 2.37 1.312

L 2 3 2.760 1.000 2.760 1.000 2.37 1.165

M 3 3 1.879 1.000 1.879 1.000 1.403 1.339

N 4 3 3.516 1.000 3.516 1.000 2.37 1.483

O 5 3 2 1.000 2.000 1.000 1.349 1.483

P 1 4 1.923 1.000 1.923 1.000 1.297 1.483

R 2 4 2.032 1.000 2.032 1.000 1.521 1.336

S 3 4 1.509 1.000 1.509 1.000 1.306 1.156

T 4 4 2.852 1.000 2.852 1.000 1.987 1.435

U 5 4 2.134 1.000 2.133 1.000 1.479 1.443

V 1 5 3.150 1.000 3.149 1.000 2.37 1.329

W 2 5 2.176 1.000 2.176 1.000 1.467 1.483

X 3 5 1.991 1.000 1.991 1.000 1.719 1.158

Y 4 5 1.351 1.000 1.351 1.000 0.911 1.483

Z 5 5 1.758 1.000 1.758 1.000 1.185 1.483

Geometric mean 2.306 1.000 2.305 1.000 1.747 1.320
aTFPI = ETI × TSMEI = ETI × TSEI × RMEI. Some index numbers may be incoherent at the
third decimal place due to rounding (e.g., in any given row, the product of the ETI and TSMEI
numbers may not be exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× OTEt(xit, qit, zit)/OTE
s(xks, qks, zks)

× OMEt(xit, qit, zit)/OMEs(xks, qks, zks)

× ROSEt(xit, qit, zit)/ROSE
s(xks, qks, zks). (6.61)

If there is no environmental change, then this equation is equivalent to the first part
of equation (4.2) in O’Donnell (2010b, p. 537). The first two ratios on the right-
hand side are the ETI and OTEI in (6.60). The third ratio is an output-oriented mix
efficiency index (OMEI). The last ratio is a residual output-oriented scale efficiency
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index (ROSEI). For an alternative decomposition, equation (5.36) can be rewritten as
TSEt(xit, qit, zit) = OTEt(xit, qit, zit) × OSEt(xit, qit, zit). A similar equation holds
for firm k in period s. Substituting these equations into (6.59) yields

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× OTEt(xit, qit, zit)/OTE
s(xks, qks, zks)

× OSEt(xit, qit, zit)/OSE
s(xks, qks, zks)

× RMEt(xit, qit, zit)/RMEs(xks, qks, zks). (6.62)

If there is no environmental change, then this equation is equivalent to the second part
of equation (4.2) in O’Donnell (2010b, p. 537). The first two ratios on the right-hand
side are the ETI and OTEI in (6.60) and (6.61). The third ratio is an output-oriented
scale efficiency index (OSEI). The last ratio is the RMEI in (6.59).

For a numerical example, reconsider the Lowe TFPI numbers reported earlier in
columnL of Table 3.5. Three output-oriented decompositions of these index numbers
are reported in Table 6.17. The OTEI, OSMEI, OMEI, ROSEI, OSEI and RMEI
numbers in this table were obtained by dividing the OTE, OSME, OME, ROSE,
OSE and RME estimates in each row of Table 6.7 by the corresponding estimates for
firm 1 in period 1. The ETI numbers are the index numbers reported in Table 6.16.

6.5.2.3 Input-Oriented Decompositions

Input-oriented decompositions of TFPI numbers tend to bemost relevant in situations
where managers have placed nonnegative values on inputs, and where outputs have
been predetermined (i.e., situations where input-oriented measures of efficiency are
most relevant). In these situations, an easy way to proceed is to rewrite (5.44) as
TSMEt(xit, qit, zit) = ITEt(xit, qit, zit) × ISMEt(xit, qit, zit). A similar equation holds
for firm k in period s. Substituting these equations into (6.58) yields

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× ITEt(xit, qit, zit)/ITE
s(xks, qks, zks)

× ISMEt(xit, qit, zit)/ISMEs(xks, qks, zks). (6.63)

If there is no technical change, then this equation is equivalent to equation (12)
in O’Donnell and Nguyen (2013, p. 326). The first ratio on the right-hand side is
the ETI in (6.58). The second ratio is an input-oriented technical efficiency index
(ITEI). The last ratio is an input-oriented scale and mix efficiency index (ISMEI).
For a finer decomposition, equation (5.46) can be rewritten as ISMEt(xit, qit, zit) =
IMEt(xit, qit, zit) × RISEt(xit, qit, zit). A similar equation holds for firm k in period
s. Substituting these equations into (6.63) yields
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TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× ITEt(xit, qit, zit)/ITE
s(xks, qks, zks)

× IMEt(xit, qit, zit)/IMEs(xks, qks, zks)

× RISEt(xit, qit, zit)/RISE
s(xks, qks, zks). (6.64)

The first two ratios on the right-hand side are the ETI and ITEI in (6.63). The third
ratio is an input-orientedmix efficiency index (IMEI). The last ratio is a residual input-
oriented scale efficiency index (RISEI). For an alternative decomposition, equation
(5.42) can be rewritten as TSEt(xit, qit, zit) = ITEt(xit, qit, zit) × ISEt(xit, qit, zit). A
similar equation holds for firm k in period s. Substituting these equations into (6.59)
yields

TFPI(xks, qks, xit, qit) = TFPt(zit)/TFP
s(zks)

× ITEt(xit, qit, zit)/ITE
s(xks, qks, zks)

× ISEt(xit, qit, zit)/ISE
s(xks, qks, zks)

× RMEt(xit, qit, zit)/RMEs(xks, qks, zks). (6.65)

The first two ratios on the right-hand side are the ETI and ITEI in (6.63) and (6.64).
The third ratio is an input-oriented scale efficiency index (ISEI). The last ratio is the
RMEI in (6.59).

For a numerical example, reconsider the Lowe TFPI numbers reported earlier in
column L of Table 3.5. Three input-oriented decompositions of these index numbers
are reported in Table 6.17. The ITEI, ISMEI, IMEI, RISEI, ISEI and RMEI numbers
in this table were obtained by dividing the ITE, ISME, IME, RISE, ISE and RME
estimates in each row of Table 6.8 by the corresponding estimates for firm 1 in period
1. The ETI numbers are the index numbers reported in Table 6.16.

6.5.2.4 Other Decompositions

There are many TFPI numbers that are not proper in the sense that they cannot
generally be written as proper output index numbers divided by proper input index
numbers. If decision makers view measures of productivity change as measures of
output quantity change divided by measures of input quantity change, then it is not
clear why they would want to decompose TFPI numbers of this type. Putting this
issue to one side, one way of decomposing TFPI numbers that are not proper is to
explicitly allow for statistical noise.

In this book, statistical noise is viewed as a combination of four errors: functional
form errors (e.g., when translog revenue and cost functions are used to compute dual
indices), measurement errors (e.g., when aggregator functions are not linearly homo-
geneous), omitted variable errors (e.g., when labour productivity indices are used as
measures of TFP change), and included variable errors (e.g., when personal attributes
of the manager are treated as environmental variables). One way of decomposing
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TFPI numbers that are not proper is to first write them as the product of proper
TFPI numbers and statistical noise index (SNI) numbers. Subsequently, the proper
TFPI numbers can be decomposed into measures of technical change, environmental
change and various measures of efficiency change.

For a numerical example, reconsider the EKS TFPI numbers reported earlier in
Table 3.6. Two decompositions of these numbers are reported in Table 6.19. EKS
TFPI numbers are closely related to Lowe TFPI numbers (if observed output and
input prices are firm- and time-invariant, then they are equal). Output- and input-
oriented decompositions of the Lowe TFPI numbers were presented earlier in Tables
6.17 and 6.18. The ETI, OTEI, OSMEI, ITEI and ISMEI numbers in those tables
are now reported in Table 6.19. The numbers in the SNI columns in Table 6.19 were
obtained by dividing the EKS TFPI numbers by the Lowe TFPI numbers. In this
context, the SNI can be viewed as an output price index divided by an input price
index; if output and input prices had been firm- and time-invariant, then all the SNI
numbers would have been equal one.

6.6 Other Models

Other PFMs include models that can be used to explain variations in metafrontiers
and inefficiency.

6.6.1 Metafrontier Models

Metafrontier models are used in situations where firmmanagers can be classified into
two or more groups, and where managers in different groups choose input-output
combinations from potentially different production possibilities sets. To illustrate,
this section considers situations where firm managers can be classified into two or
more groups according to the technologies they use. To avoid repetition, attention
is restricted to the estimation of output-oriented metafrontier models; the estimation
of input-, revenue-, cost-, profit- and productivity-oriented metafrontier models is
analogous to the estimation of output-oriented models.

If we observe the technologies used by firm managers, then output-oriented
metafrontier models can be used to estimate the output-oriented metatechnology
ratio (OMR) defined by (5.47), the measure of output-oriented technical efficiency
(OTE) defined by (5.1), and the measure of residual output-oriented technical effi-
ciency (ROTE) defined by (5.48). If assumptions PF1 to PF5 are true, then this can
be done in three steps. The first step is to estimate the measure of OTE defined by
(5.1). The second step is to estimate the measure of ROTE defined by (5.48). The
final step is to use equation (5.49) to estimate the OMR defined by (5.47).

The output-oriented LP problems presented in Sect. 6.1.1 are only suitable for
estimating OTE when the technologies used by managers are not observed. In such
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cases, the OTE of manager i in period t should be estimated using observations on
all managers in all periods up to and including period t. However, if the technologies
used by managers are observed, then the OTE of manager i in period t should be
estimated using observations on all managers who used a technology that existed in
period t. If, for example, there are I firms in the dataset, then the envelopment form
of the basic DEA estimation problem is

max
μ,λ11,...,λIT

{
μ : μqit ≤

I∑
h=1

T∑
r=1

λhrdhrtqhr,
I∑

h=1

T∑
r=1

λhrdhrtzhr ≤ zit,

I∑
h=1

T∑
r=1

λhrdhrtxhr ≤ xit,
I∑

h=1

T∑
r=1

λhrdhrt = 1,

λhr ≥ 0 for all h and r
}

(6.66)

where dhrt = I(ghr ∈ Gt) is a dummy variable that takes the value 1 if, in period r,
the manager of firm h used a technology that existed in period t (and 0 otherwise).
This dummy variable effectively deletes from the dataset any observations on any
firms in any periods when the manager did not use a technology that existed in period
t. Problem (6.66) can be found in O’Donnell et al. (2017, Eq. 20). The value of μ

at the optimum is an estimate of the reciprocal of OTEt(xit, qit, zit). If assumptions
PF1 to PF5 are true, then the value of μ that solves problem (6.66) is a more reliable
estimate of the reciprocal ofOTEt(xit, qit, zit) than the value ofμ that solves problem
(6.4).

Estimating the measure of ROTE defined by (5.48) involves estimating the git-th
technology-and-environment-specific output distance function. If assumptions PF1
to PF3 are true, then this function takes the form dgit

O (xit, qit, zit) = (γ ′
itqit)/(αit +

δ′
itzit + β ′

itxit) where γit , αit , δit and βit are unknown parameters to be estimated. If
PF4 and PF5 are also true, then the envelopment form of the estimation problem is

max
μ,λ11,...,λIT

{
μ : μqit ≤

I∑
h=1

T∑
r=1

λhrdhritqhr,
I∑

h=1

T∑
r=1

λhrdhritzhr ≤ zit,

I∑
h=1

T∑
r=1

λhrdhritxhr ≤ xit,
I∑

h=1

T∑
r=1

λhrdhrit = 1,

λhr ≥ 0 for all h and r
}

(6.67)

where dhrit = I(ghr = git) is a dummy variable that takes the value 1 if the manager
of firm h used technology git in period r (and 0 otherwise). This dummy variable
effectively deletes from the dataset any observations on any firms in any periods
when the manager did not use the technology that manager i used in period t. The
value of the objective function at the optimum is an estimate of the reciprocal of
ROTEgit (xit, qit, zit). This problem can be found in O’Donnell et al. (2017, Eq. 21).
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If there is no environmental change, then it is equivalent to problem (17) in Battese
et al. (2004, p. 238).

For a numerical example, reconsider the toy data reported in Table 1.1. For pur-
poses of this example, suppose that (a) technologies 1 and 2 existed in each period,
(b) no other technologies existed in any period, (c) the managers of firms 1, 2 and
3 always used technology 1, and (d) the managers of firms 4 and 5 always used
technology 2. Associated estimates of OTE, ROTE and the OMRs are reported in
Table 6.20. The OTE estimates are the estimates reported earlier in the NTC column
of Table 6.9. The ROTE estimates were obtained by solving problem (6.67) for each
firm/manager in each period. The OMRs were obtained by dividing the OTE esti-
mates by the ROTE estimates (i.e., the OMRs were obtained as residuals). Among
other things, the estimates in this table indicate that the manager of firm 1 chose the
right technology in period 1 but did not use it properly (i.e., he/she ‘chose the right
book’ but ‘did not follow the instructions’).

6.6.2 Inefficiency Models

Measures of efficiency can be viewed as measures of how well firm managers have
solved different optimisation problems. It is common to assume that the underlying
causes of optimisation errors are known. For example, theories of bounded rationality
tell us that managers make optimisation errors due to lack of knowledge, training
and/or experience (see Sect. 4.7.6). Let ait be a vector of predetermined personal
attributes (e.g., education, training and/or experience) that affect the optimisation
errors that manager i makes in period t. The relationship between these attributes
and the estimated inefficiency of the manager can be written as

ûit = gt(ait) + vit (6.68)

where ûit ≥ 0 is an estimator for inefficiency, gt(.) is an approximating function
chosen by the researcher, and vit denotes a measure of statistical noise. The unknown
parameters of the approximating function can be estimated within a truncated re-
gression framework. In the productivity literature, this modelling approach is often
referred to as a two-stage DEA (TSDEA) approach (in the first stage, DEA is used
to estimate uit ; in the second stage, the relationship between ûit and ait is estimated
within a truncated regression framework). More details on TSDEA estimation can
be accessed from Ray (1988), Hoff (2007), Simar and Wilson (2007, 2011b), Mc-
Donald (2009), Zelenyuk (2009) and Johnson and Kuosmanen (2011, 2012). It is
worth noting that many of these authors implicitly define measures of efficiency in
a way that is fundamentally different to the way they are defined in this book. For
example, many authors omit characteristics of the production environment from the
first stage of the TSDEA estimation procedure. Thus, they implicitly define tech-
nical (in)efficiency as a measure of the distance from an observed point to a point
on a period-specific frontier. In this book, technical (in)efficiency is instead defined
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Table 6.20 DEA estimates of OTE, ROTE and OMRsa,b

Row Firm Period OTE OMR ROTE

A 1 1 0.422 1 0.422

B 2 1 0.610 0.864 0.706

C 3 1 1 1 1

D 4 1 0.949 0.949 1

E 5 1 1 1 1

F 1 2 0.614 0.690 0.889

G 2 2 1 1 1

H 3 2 1 1 1

I 4 2 0.871 1 0.871

J 5 2 1 1 1

K 1 3 1 1 1

L 2 3 0.933 1 0.933

M 3 3 0.643 0.959 0.671

N 4 3 1 1 1

O 5 3 0.844 0.849 0.994

P 1 4 0.594 0.738 0.805

R 2 4 0.671 1 0.671

S 3 4 0.583 0.676 0.862

T 4 4 1 1 1

U 5 4 0.654 1 0.654

V 1 5 1 1 1

W 2 5 0.895 0.988 0.905

X 3 5 0.836 0.836 1

Y 4 5 0.516 0.775 0.665

Z 5 5 0.867 0.867 1

Geometric mean 0.796 0.921 0.865
aOTE = OMR × ROTE. Some estimates may be incoherent at the third decimal place due to round-
ing (e.g., in any given row, the product of the OMR and ROTE estimates may not be exactly equal
to the OTE estimate due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

as a measure of the distance from an observed point to a point on a period-and-
environment-specific frontier. The practical implications are profound: if (a) there
are any environmental variables involved in the production process, and (b) tech-
nical (in)efficiency is defined as a measure of the distance from an observed point
to a point on a period-specific frontier, then managers will be held responsible for
variables that are outside their control (e.g., good crop farmers will be labelled as
technically inefficient when relatively low yields are due to low rainfall).
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6.7 Summary and Further Reading

The most common piecewise frontier models (PFMs) are underpinned by five as-
sumptions: assumption PF1 says that production possibilities sets can be represented
by distance, revenue, cost and/or profit functions; assumption PF2 says that all rele-
vant quantities, prices and environmental variables are observed and measured with-
out error; assumption PF3 says that production frontiers are piecewise linear; as-
sumption PF4 says that outputs, inputs and environmental variables are strongly
disposable; and assumption PF5 says that production possibilities sets are convex. If
these assumptions are true, then production frontiers andmost measures of efficiency
can be estimated using linear programming (LP). The associated models are com-
monly known as data envelopment analysis (DEA) models. The idea behind DEA
can be traced back at least as far as Farrell (1957) and Farrell and Fieldhouse (1962).
According to Färe et al. (1994, p. 12), the formulation of DEA estimation problems
as LP problems is due to Boles (1966), Bressler (1966), Seitz (1966) and Sitorus
(1966). For more details on the origins of DEA, see Forsund and Sarafoglou (2002).
This chapter has focused on relatively simple PFMs that can be used to estimate the
measures of efficiency defined in Chap. 5.

Output-oriented PFMs are mainly used to estimate measures of output-oriented
technical efficiency (OTE), output-oriented technical and mix efficiency (OTME),
and output-oriented mix efficiency (OME). If assumptions PF1 to PF5 are true, then
estimates of OTE can be obtained by solving problem (19) in O’Donnell et al. (2017).
If the data are cross-section data and there are no environmental variables involved in
the production process (i.e., if there is no environmental change), then that particular
problem reduces to a problem that can be found in Färe et al. (1994, p. 103). PFMs for
estimating OTME can be traced back to O’Donnell (2010b, p. 560). Piecewise fron-
tier estimates of OME can be obtained by dividing estimates of OTME by estimates
of OTE (i.e., OME estimates can be obtained as residuals). For empirical applica-
tions of output-oriented PFMs to macroeconomic data (i.e., to data that have been
aggregated to the industry or total economy level), see, for example, Burley (1980),
Färe et al. (2001), Kumar and Russell (2002), Milner and Weyman-Jones (2003),
Färe et al. (2004a), Demchuk and Zelenyuk (2009) and Shiu and Zelenyuk (2012);
for an application to crop farms, see Tozer and Villano (2013); for an application to
banks, see Curi et al. (2013); for an application to electric utilities, see Färe et al.
(1989); for an application to nursing homes, see Chattopadhyay and Heffley (1994).

Input-oriented PFMs are mainly used to estimate measures of input-oriented tech-
nical efficiency (ITE), input-oriented technical andmix efficiency (ITME), and input-
oriented mix efficiency (IME). If assumptions PF1 to PF5 are true, then estimates
of ITE can be obtained by solving problem (A9) in O’Donnell et al. (2017). If the
data are cross-section data and there is no environmental change, then that particular
problem reduces to problem (19) in Banker et al. (1984). PFMs for estimating ITME
can be traced back to O’Donnell (2010b, Eq. 6.15). Piecewise frontier estimates of
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IME can be obtained by dividing estimates of ITME by estimates of ITE (i.e., IME
estimates can be obtained as residuals).

Revenue-oriented PFMs are mainly used to estimate measures of revenue effi-
ciency (RE) and output-oriented allocative efficiency (OAE). Estimating RE involves
estimating the maximum revenue that can be obtained using given inputs in given
periods in given production environments. Estimates of RE can then be obtained by
dividing observed revenues by estimates of maximum revenue. PFMs for estimating
maximum revenue can traced back at least as far as Färe et al. (1985, Eq. 4.7.7).
If firms are price takers in output markets and estimates of OTE are available, then
estimates of OAE can be obtained by dividing estimates of RE by estimates of OTE.

Cost-oriented PFMs are mainly used to estimate measures of cost efficiency (CE)
and input-oriented allocative efficiency (IAE). Estimating CE involves estimating
the minimum cost of producing given outputs in given periods in given production
environments. Estimates of CE can then be obtained by dividing estimates of min-
imum cost by observed costs. PFMs for estimating minimum cost can traced back
at least as far as Färe et al. (1985, Eq. 3.7.5). If estimates of ITE are available, then
estimates of IAE can be obtained by dividing estimates of CE by estimates of ITE.

Profit-oriented PFMs are mainly used to estimate measures of profit efficiency
(PE). This involves estimating the maximum profit that can be obtained in given
periods in given production environments. Estimates of PE can then be obtained
by dividing observed profits by estimates of maximum profit. PFMs for estimating
maximum profit can traced back at least as far as Färe et al. (1990). If firms are price
takers in output and input markets, then estimates of PE and OTE can be used to
obtain estimates of output-oriented scale and allocative efficiency (OSAE). On the
input side, if firms are price takers in output and input markets, then estimates of
PE and ITE can be used to obtain estimates of input-oriented scale and allocative
efficiency (ISAE). For an empirical application of profit-oriented PFMs to airlines,
see Coelli et al. (2002); for an application to crop farms, see Färe et al. (1990); for
applications to banks, see Färe et al. (2004b), Portela and Thanassoulis (2005) and
Koutsomanoli-Filippaki et al. (2012); for applications to pulp and paper mills, see
Brännlund et al. (1995) and Brännlund et al. (1998).

Productivity-oriented PFMs are mainly used to estimate measures of technical,
scale andmix efficiency (TSME). They can also be used to estimatemeasures of tech-
nical and scale efficiency (TSE). Estimating measures of TSME involves estimating
the maximum TFP possible in given periods in given production environments. Esti-
mates of TSME can then be obtained by dividing observed levels of TFP by estimates
of maximum TFP. Estimating measures of TSE involves estimating the maximum
TFP possible when using scalar multiples of given input vectors to produce scalar
multiples of given output vectors in given periods in given production environments.
Again, estimates of TSE can then be obtained by dividing observed levels of TFP by
estimates of maximum TFP. PFMs for estimating maximum TFP can traced back at
least as far as O’Donnell (2010b). Piecewise frontier estimates of residual mix effi-
ciency (RME) can be obtained by dividing estimates of TSME by estimates of TSE
(i.e., RME estimates can be obtained as residuals). If estimates of OTE are available,
then estimates of output-oriented scale efficiency (OSE) can be obtained by dividing
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estimates of TSE by estimates of OTE (i.e., OSE estimates can be obtained as residu-
als). If estimates of ITE are available, then estimates of input-oriented scale efficiency
(ISE) can be obtained by dividing estimates of TSE by estimates of ITE (i.e., ISE
estimates can also be obtained as residuals).

It is possible to relax assumptions PF2 to PF5. Models that relax PF2 include the
semiparametric stochastic frontier models of Fan et al. (1996), Huang and Fu (1999),
Kumbhakar et al. (2007) and Kuosmanen and Kortelainen (2012). Models that relax
PF3 include the piecewise double-log frontier model of Banker et al. (1981). Models
that relax PF4 include the models of ‘input congestion’ discussed by Färe et al.
(1983), Färe and Grosskopf (1998, 2000, 2001), Cooper et al. (2000, 2001), Zhu
(2009, Ch. 9) and Briec et al. (2016, 2018). Models that relax PF5 are known as
free disposal hull (FDH) models; these models can be traced back to Deprins et al.
(1984).

In practice, it is more common to estimate PFMs under stronger assumptions than
PF1 to PF5. For example, the popular output-oriented DEA model of Charnes et al.
(1978, Eq. 3) is based on the additional assumption that production frontiers exhibit
CRS. The input-oriented DEA model of Banker et al. (1984, Eq. 9) is also based on
the assumption that production frontiers exhibit CRS. Seiford and Thrall (1990, p.
15) present DEA models that are based on the assumption that production frontiers
exhibit either NDRS or NIRS; Kerstens and Vanden Eeckaut (1999) present FDH
models that are based on these alternative returns to scale assumptions. Finally, if
assumption PF4 is true, then the slope coefficients in output distance functions must
be nonnegative. It is possible to strengthen PF4 by requiring these coefficients to
lie within certain bounds. Models with so-called weight restrictions can be accessed
fromAllen et al. (1997), Podinovski (2004a, b, 2007) and Podinovski and Bouzdine-
Chameeva (2013).

If the assumptions underpinning PFMs are true, then, under weak regularity con-
ditions concerning the probability density functions (PDFs) of the (in)efficiency
effects, piecewise frontier estimators for (in)efficiency are consistent. Results of this
type can be found in Banker (1993), Korostelev et al. (1995), Kneip et al. (1998,
2015), Gijbels et al. (1999), Park et al. (2000) and Simar and Wilson (2013, Sect.
2.5). These results provide a basis for conducting asymptotic inference. If the PDFs
of measures of inefficiency are known, then we can use standard statistical meth-
ods for this purpose. If the PDFs of measures of inefficiency are not known, then
we can use bootstrapping methods. In this chapter, the focus has been on methods
for (a) constructing confidence intervals for measures of efficiency, (b) testing for
differences in average efficiency, and (c) testing assumptions about production tech-
nologies. Several other asymptotic hypothesis testing procedures can be found in
the literature. For example, if the PDFs of measures of inefficiency are not known,
then it is possible to test for differences in PDFs across groups using nonparametric
tests proposed by Li (1996, 1999) and bootstrapping tests proposed by Li (1999)
and Simar and Zelenyuk (2006). For historical background on using PFMs for in-
ference, see Grosskopf (1996). For more details on asymptotic test procedures, see
Banker (1996). For more details on bootstrap procedures, see Kneip et al. (2008,
2011, 2015) and Simar and Wilson (1998, 2000, 2013, 2011a, 2015).
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PFMscanbeused to bothmeasure and explain changes inTFP.Measuring changes
in TFP involves computing proper TFP index (TFPI) numbers. PFMs cannot gener-
ally be used to compute primal or dual index numbers. However, they can be used to
compute additive and multiplicative index numbers. Explaining changes in TFP gen-
erally involves decomposing proper TFPI numbers into measures of environmental
change, technical change, and efficiency change. Several decompositions are avail-
able.Productivity-oriented decompositions involve decomposing TFPI numbers into
measures of environmental change, technical change and productivity-oriented mea-
sures of efficiency change (i.e., changes in TSME, TSE and RME). Output-oriented
decompositions involve decomposing TFPI numbers intomeasures of environmental
change, technical change and output-oriented measures of efficiency change (i.e.,
changes in OTE, OTME, OSME, OME, OSE and ROSE). Input-oriented decompo-
sitions involve decomposing TFPI numbers into measures of environmental change,
technical change and input-oriented measures of efficiency change (i.e., changes in
ITE, ITME, ISME, IME, ISE and RISE). In principle, PFMs can be used to decom-
pose any proper TFPI numbers into these different measures. However, to avoid the
need to solve nonlinear programming problems, they are mainly used to decom-
pose additive TFPI numbers: for an empirical application involving macroeconomic
data, see Laurenceson and O’Donnell (2014); for applications in agriculture, see
O’Donnell (2012), Rahman and Salim (2013), Tozer and Villano (2013), Islam et al.
(2014), Khan et al. (2015), Temoso et al. (2015), Baležentis (2015), Mugera et al.
(2016), Anik et al. (2017) and Baráth and Fertö (2017); for applications to banks,
see Mohammad (2015) and Nguyen and Simioni (2015); for an application to uni-
versities, see Carrington et al. (2016); for an application to ports, see Kumtong et al.
(2017).

There are many TFPI numbers that are not proper in the sense that they cannot
generally be written as proper output index numbers divided by proper input index
numbers. Examples include Fisher, Törnqvist, Hicks-Moorsteen, Malmquist, EKS
and CCDTFPI numbers. If decisionmakers viewmeasures of productivity change as
measures of output quantity change divided by measures of input quantity change,
then it is not clear why they would be interested in TFPI numbers of this type.
Putting this issue to one side, one way of decomposing such numbers is to first
write them as the product of proper TFPI numbers and statistical noise index (SNI)
numbers. Subsequently, PFMs can be used to decompose the proper TFPI numbers
into measures of technical change, environmental change and various measures of
efficiency change. For alternative decomposition methodologies that involve PFMs
but do not explicitly involve SNI numbers, see, for example, Färe et al. (1994),
Suhariyanto and Thirtle (2001), Kuosmanen and Sipiläinen (2009), Pastor et al.
(2011) and Afsharian and Ahn (2015).

Other models that are widely used in the piecewise frontier literature include
metafrontier models and inefficiency-effects models. Metafrontier models are used
in situations where firm managers can be classified into two or more groups, and
where managers in different groups choose input-output combinations from poten-
tially different production possibilities sets. Estimation of basic piecewise metafron-
tiermodels can be traced back toCharnes et al. (1981). For a discussion of assumption
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PF5 (convexity) in a metafrontier context, see Kerstens et al. (2015) and Afsharian
and Podinovski (2018). For empirical applications of piecewise metafrontier models
in agriculture, see O’Donnell et al. (2008) and Beltran-Esteve et al. (2014); for appli-
cations to banks, see Casu et al. (2013), Johnes et al. (2014) and Huang et al. (2015);
for an application to schools, see Charnes et al. (1981); for an application to electric-
ity generators, see Zhang et al. (2013); for an application to highway maintenance
contractors, see O’Donnell et al. (2017). Finally, inefficiency-effects models are re-
gression models that can be used to explain variations in estimates of inefficiency.
In the productivity literature, inefficiency-effects models are generally estimated
within a two-stage DEA (TSDEA) framework (in the first stage, piecewise frontier
estimators are used to estimate inefficiency; in the second stage, the relationship
between inefficiency and its determinants is estimated within a truncated regression
framework). For an empirical application of TSDEA methodology to universities,
see Carrington et al. (2005).
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Chapter 7
Deterministic Frontier Analysis

Production frontiers are often represented by distance, revenue, cost and/or profit
functions. These functions can sometimes bewritten in the form of regressionmodels
in which the explanatory variables are deterministic (i.e., not random). This chapter
explains how to estimate and draw inferences concerning the unknown parameters in
so-called deterministic frontier models (DFMs). It then explains how the estimated
parameters can be used to predict levels of efficiency and analyse productivity change.
The focus is on least squares estimators and predictors. The idea behind least squares
estimation of DFMs can be traced back to Winsten (1957).

7.1 Basic Models

DFMs are underpinned by the following assumptions:

DF1 production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

DF2 all relevant quantities, prices and environmental variables are observed and
measured without error; and

DF3 the functional forms of relevant functions are known.

If these assumptions are true, then production frontiers can be estimated using single-
equation regression models with error terms representing inefficiency.

7.1.1 Output-Oriented Models

Output-oriented DFMs are mainly used to estimate the measure of OTE defined by
(5.1). They can also be used to estimate the measures of OTME and OME defined
by (5.2) and (5.3).
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Estimating themeasure ofOTEdefined by (5.1) involves estimating the output dis-
tance function. If they exist, then output distance functions are linearly homogeneous
in outputs. This implies thatDt

O(xit, qit, zit) = q1itDt
O(xit, q∗

it, zit)where q
∗
it ≡ qit/q1it

denotes a vector of normalised outputs (the choice of the first output as the normal-
ising output is arbitrary). Equivalently,

ln q1it = − lnDt
O(xit, q

∗
it, zit) − uit (7.1)

where uit ≡ − lnOTEt(xit, qit, zit) ≥ 0 denotes an output-oriented technical ineffi-
ciency effect. OTE is a relevant measure of managerial performance in situations
where inputs and output mixes have been predetermined. If environmental variables
have also been predetermined, then uit is uncorrelated with xit , q∗

it and zit .
AssumptionDF3 says the functional formsof output distance functions are known.

In the efficiency literature, it is common1 to assume they are either translog or double-
log functions. If outputs and inputs are strongly disposable, then they cannot be
translog functions.2 If there is more than one output and output sets are bounded, then
they cannot be double-log functions.3 If outputs and inputs are strongly disposable
and output sets are bounded, then the class of possible output distance functions
includes (2.9). The output-oriented DFM associated with (2.9) is

ln q1it = α(t) +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − 1

τ
ln

(
N∑

n=1

γnq
∗τ
nit

)
− uit (7.2)

where α(t) ≡ lnA(t). This model is nonlinear in the unknown parameters. However,
if γ1, . . . , γN and τ are known, then it can be rewritten as

lnQ(qit) = α(t) +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − uit (7.3)

1See, for example, Greene (1980b, Eq. 1), Färe et al. (1993, Eq. 14), Grosskopf et al. (1995, Eq. 11),
Coelli and Perelman (1999, Eq. 5), Ray (1998, Eq. 21), Fuentes et al. (2001, Eq. 3), Orea (2002,
Eq. 5), Reig-Martinez et al. (2001, Eq. 13), O’Donnell and Coelli (2005, Eq. 5), Vardanyan and
Noh (2006, Eq. 3.1), Ferrari (2006, Eq. 2), Zhang and Garvey (2008, Eq. 9) and Diewert and Fox
(2010, p. 82).
2If outputs and inputs are strongly disposable, then the output distance function is nondecreasing in
outputs and nonincreasing in inputs for all feasible input-output combinations. If the output distance
function is a translog function, then it is possible to find feasible input-output combinations where
these monotonicity properties do not hold. Ergo, the output distance function cannot be a translog
function. If there is more than one output and the output distance function is a translog function,
then there exists a feasible input-output combination where at least one shadow revenue share lies
outside the unit interval.
3If there is more than one output and the output distance function is a double-log function, then
output sets are unbounded (O’Donnell 2016, p. 330).
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where Q(qit) =
(∑N

n=1 γnqτ
nit

)1/τ
is an aggregate output. This model is linear in the

parameters. In thismodel,α(t) is an output-orientedmeasure of technical progress, δ j

is an unsigned elasticity that measures the percent change in the aggregate output due
to a one percent increase in the j-th environmental variable, and βm is a nonnegative
elasticity that measures the percent increase in the aggregate output due to a one
percent increase in the m-th input. If there is no technical progress, then α(t) does
not, in fact, vary with t. If there are no environmental variables involved in the
production process (i.e., if there is no environmental change), then the term involving
the environmental variables can be deleted. If there is no technical progress and no
environmental change, then (7.3) reduces to a DFM that has the same structure as
the models of Richmond (1974, p. 517) and Schmidt (1976, Eq. 2). If there are only
two inputs, then the Richmond and Schmidt models reduce to the model of Aigner
and Chu (1968, Eqs. 3.4, 3.5).

Finally, output-oriented DFMs can also be used to estimate measures of OTME
and OME. Whether this can be done analytically, rather than numerically, depends
on the output aggregator function and the output distance function. If, for example,
the output aggregator function is a linear function and the output distance function
is given by (2.9), then measures of OTME and OME can be estimated using the
analytical results presented in Sect. 5.1.4.

7.1.2 Input-Oriented Models

Input-oriented DFMs are mainly used to estimate the measure of ITE defined by
(5.8). They can also be used to estimate the measures of ITME and IME defined by
(5.9) and (5.10).

Estimating the measure of ITE defined by (5.8) involves estimating the input dis-
tance function. If they exist, then input distance functions are linearly homogeneous
in inputs. This implies that Dt

I (xit, qit, zit) = x1itDt
I (x

∗
it, qit, zit) where x∗

it ≡ xit/x1it
denotes a vector of normalised inputs (the choice of the first input as the normalising
input is arbitrary). Equivalently, after some simple algebra,

− ln x1it = lnDt
I (x

∗
it, qit, zit) − uit (7.4)

where, in a slight abuse of notation, uit ≡ − ln ITEt(xit, qit, zit) ≥ 0 now denotes an
input-oriented technical inefficiency effect. ITE is a relevant measure of managerial
performance in situations where outputs and input mixes have been predetermined.
If environmental variables have also been predetermined, then uit is uncorrelated
with x∗

it , qit and zit .
Again, assumption DF3 says the functional forms of input distance functions

are known. Again, it is common4 to assume they are either translog or double-log

4See, for example, Diewert (1980, p. 462), Deprins et al. (1984, p. 292), Althin et al. (1996, Eq.
2.1), Coelli and Perelman (1999, Eq. 10), Coelli et al. (2003, p. 44), Tsekouras et al. (2004, p. 98),
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functions. If outputs and inputs are strongly disposable, then they cannot be translog
functions.5 If there is more than one output and output sets are bounded, then they
cannot be double-log functions.6 If outputs and inputs are strongly disposable and
output sets are bounded, then the class of possible input distance functions includes
(2.13). The input-oriented DFM associated with (2.13) is

− ln x1it = ξ(t) +
J∑

j=1

κ j ln z jit +
M∑

m=1

λm ln x∗
mit −

1

τη
ln

(
N∑

n=1

γnq
τ
nit

)
− uit (7.5)

where ξ(t) ≡ lnB(t). This model is nonlinear in the unknown parameters. However,
if γ1, . . . , γN and τ are known, then it can be rewritten as

− ln x1it = ξ(t) +
J∑

j=1

κ j ln z jit +
M∑

m=2

λm ln x∗
mit − ψ lnQ(qit) − uit (7.6)

whereQ(qit) =
(∑N

n=1 γnqτ
nit

)1/τ
is an aggregate output andψ ≡ 1/η is the recipro-

cal of the elasticity of scale. This model is linear in the parameters. In this model, ξ(t)
is an input-oriented measure of technical progress, κ j is an unsigned elasticity that
measures the percent change in all inputs due to a one percent increase in the j-th en-
vironmental variable, andλm is a shadowcost share that lies in the closed unit interval.
If there is no technical progress, then ξ(t) is time-invariant. If there is no environ-
mental change, then the term involving the environmental variables can be deleted.

Finally, input-oriented DFMs can also be used to estimate measures of ITME and
IME. Whether this can be done analytically, rather than numerically, depends on the
input distance function and the input aggregator function. If, for example, the input
distance function is given by (2.13) and the input aggregator function is a linear
function with positive weights, then measures of ITME and IME can be estimated
using the analytical results presented in Sect. 5.2.4.

Hajargasht et al. (2008, Eq. 9), Stern (2010, p. 351), Das and Kumbhakar (2012, p. 211) and Coelli
et al. (2013, Eq. 3).
5If outputs and inputs are strongly disposable, then the input distance function is nonincreasing in
outputs and nondecreasing in inputs for all feasible input-output combinations. If the input distance
function is a translog function, then it is possible to find feasible input-output combinations where
these monotonicity properties do not hold. Ergo, the input distance function cannot be a translog
function. If there is more than one input and the input distance function is a translog function, then
there exists a feasible input-output combination where at least one shadow cost share lies outside
the unit interval.
6If the input distance function is a double-log function, then the output distance function is also a
double-log function. If there is more than one output and the output distance function is a double-log
function, then output sets are unbounded (O’Donnell 2016, p. 330).
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7.1.3 Revenue-Oriented Models

Revenue-oriented DFMs are mainly used to estimate the measure of RE defined by
(5.15). This involves estimating the revenue function. The particular revenue func-
tion in (5.15) is linearly homogeneous in prices. This implies that Rt(xit, pit, zit) =
p1itRt(xit, p∗

it, zit) where p∗
it ≡ pit/p1it denotes a vector of normalised output prices

(the choice of the first price as the normalising price is arbitrary). Equivalently, after
some simple algebra,

ln(Rit/p1it) = lnRt(xit, p
∗
it, zit) − uit (7.7)

where uit ≡ − lnREt(xit, pit, qit, zit) ≥ 0 now denotes a revenue inefficiency effect.
Themeasure ofREdefined by (5.15) is a relevantmeasure ofmanagerial performance
in situations where firms are price takers in output markets and inputs have been
predetermined. If environmental variables have also been predetermined, then uit is
uncorrelated with xit , p∗

it and zit .
Again, assumptionDF3 says the functional forms of revenue functions are known.

Again, it is common7 to assume they are either translog or double-log functions. If
firms are price takers in output markets, then they cannot be translog functions.8 If
(a) firms are price takers in output markets, (b) there is more than one output, and
(c) output sets are bounded, then they cannot be double-log functions.9 If firms are
price takers in output markets and output sets are bounded, then the class of possible
revenue functions includes (2.17). The revenue-oriented DFM associated with (2.17)
is

ln(Rit/p1it) = α(t) +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit

+ 1

1 − σ
ln

(
N∑

n=1

γ σ
n p

∗1−σ
nit

)
− uit (7.8)

where α(t) ≡ lnA(t). This model is nonlinear in the unknown parameters. However,
if γ1, . . . , γN and σ are known, then it can be rewritten as

7See, for example, Banker et al. (2003, Eq. 5).
8If firms are price takers in output markets, then the revenue function is nondecreasing in p for all
nonnegative x. If the revenue function is a translog function, then there exists a nonnegative p and
a nonnegative x where this monotonicity property does not hold. Ergo, the revenue function cannot
be a translog function. If (a) firms are price takers in output markets, (b) there is more than one
output, and (c) the revenue function is a translog function, then there exists a nonnegative p and a
nonnegative x where at least one revenue-maximising revenue share lies outside the unit interval.
9If firms are price takers in output markets and the revenue function is a double-log function, then
the output distance function is also a double-log function. If there is more than one output and the
output distance function is a double-log function, then output sets are unbounded (O’Donnell 2016,
p. 330).

https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
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ln(Rit/P(pit)) = α(t) +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − uit (7.9)

where P(pit) =
(∑N

n=1 γ σ
n p

1−σ
nit

)1/(1−σ)

is an aggregate output price. This model is

linear in the parameters. In thismodel,α(t) is a revenue-orientedmeasure of technical
progress, δ j is an unsigned elasticity that measures the percent change in normalised
revenue due to a one percent increase in the j-th environmental variable, and βm is a
nonnegative elasticity that measures the percent increase in normalised revenue due
to a one percent increase in them-th input. If there is no technical progress, then α(t)
is time-invariant. If there is no environmental change, then the term involving the
environmental variables can be deleted.

7.1.4 Cost-Oriented Models

Cost-orientedDFMs aremainly used to estimate themeasure ofCEdefined by (5.20).
This involves estimating the cost function. The particular cost function in (5.20) is lin-
early homogeneous in prices. This implies that Ct(wit, qit, zit) = w1itCt(w∗

it, qit, zit)
where w∗

it ≡ wit/w1it denotes a vector of normalised input prices (the choice of the
first price as the normalising price is arbitrary). Equivalently, after some simple
algebra,

− ln(Cit/w1it) = − lnCt(w∗
it, qit, zit) − uit (7.10)

where uit ≡ − lnCEt(wit, xit, qit, zit) ≥ 0 now denotes a cost inefficiency effect. The
measure of CE defined by (5.20) is a relevant measure of managerial performance
in situations where firms are price takers in input markets and outputs have been
predetermined. If environmental variables have also been predetermined, then uit is
uncorrelated with w∗

it , qit and zit .
Again, assumption DF3 says the functional forms of cost functions are known.

Again, it is common10 to assume they are either translog or double-log functions.
If firms are price takers in input markets, then they cannot be translog functions.11

If (a) firms are price takers in input markets, (b) there is more than one output, and

10See, for example, Greene (1980b, Eq. 3), Kopp and Diewert (1982, p. 328), Banker et al. (1986,
Eq. 1), Baltagi and Griffin (1988, Eq. 4), Kumbhakar (1997, Eq. 11), Nadiri and Nandi (1999, p.
489), Kumbhakar and Lovell (2000, Eq. 4.2.27) and Zheng and Bloch (2014, p. 207).
11If firms are price takers in input markets, then the cost function is nondecreasing in w for all
producible q. If the cost function is a translog function, then there exists a nonnegative w and a
producible q where this monotonicity property does not hold. Ergo, the cost function cannot be a
translog function. If (a) firms are price takers in input markets, (b) there is more than one input,
and (c) the cost function is a translog function, then there exists a nonnegative w and a producible
q where at least one cost-minimising cost share lies outside the unit interval.

https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_5


7.1 Basic Models 287

(c) output sets are bounded, then they cannot be double-log functions.12 If firms are
price takers in input markets and output sets are bounded, then the class of possible
cost functions includes (2.22). The cost-oriented DFM associated with (2.22) is

− ln(Cit/w1it) = θ(t) +
J∑

j=1

κ j ln z jit −
M∑

m=1

λm lnw∗
mit

− 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)
− uit (7.11)

where θ(t) ≡ lnB(t) + ∑
m λm ln λm. This model is nonlinear in the unknown pa-

rameters. However, if γ1, . . . , γN and τ are known, then it can be rewritten as

− ln(Cit/w1it) = θ(t) +
J∑

j=1

κ j ln z jit −
M∑

m=1

λm lnw∗
mit − ψ lnQ(qit) − uit (7.12)

where Q(qit) =
(∑N

n=1 γnqτ
nit

)1/τ
is an aggregate output and ψ ≡ 1/η is the recip-

rocal of the elasticity of scale. This model is linear in the parameters. In this model,
θ(t) can be interpreted as a cost-oriented measure of technical progress, κ j is an
unsigned elasticity that measures the percent change in normalised cost due to a
one percent increase in the j-th environmental variable, and λm is a nonnegative
elasticity that measures the percent increase in normalised cost due to a one percent
increase in the m-th normalised input price. If there is no technical progress, then
θ(t) is time-invariant. If there is no environmental change, then the term involving
the environmental variables can be deleted.

7.1.5 Profit-Oriented Models

Profit-oriented DFMs are mainly used to estimate the measure of PE defined by
(5.27). This involves estimating the profit function. The particular profit function
in (5.27) is linearly homogeneous in prices. This implies that �t(wit, pit, zit) =
p1it�t(w∗

it, p
∗
it, zit) where w

∗
it ≡ wit/p1it denotes a vector of normalised input prices

and p∗
it ≡ pit/p1it denotes a vector of normalised output prices (the choice of the first

output price as the normalising price is arbitrary). If firmsmake positive profits, then,
after some simple algebra, this relationship can be rewritten as

ln(�it/p1it) = ln�t(w∗
it, p

∗
it, zit) − uit (7.13)

12If firms are price takers in input markets and the cost function is a double-log function, then the
output distance function is also a double-log function. If there is more than one output and the
output distance function is a double-log function, then output sets are unbounded (O’Donnell 2016,
p. 330).

https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_5
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where uit ≡ − lnPEt(wit, xit, pit, qit, zit) ≥ 0 nowdenotes a profit inefficiency effect.
Themeasure of PE defined by (5.27) is a relevantmeasure ofmanagerial performance
in situations where firms are price takers in output and input markets. If firms are
price takers in output and input markets and environmental variables have been
predetermined, then uit is uncorrelated with w∗

it , p
∗
it and zit .

Again, DF3 says the functional forms of profit functions are known. Again, it is
common13 to assume that profit functions are either translog or double-log functions.
If firms are price takers in output and input markets, then they cannot be translog
functions.14 In these cases, the class of possible profit functions includes (2.27). The
profit-oriented DFM associated with (2.27) is

ln(�it/p1it) = φ(t) + 1

(1 − η)

⎛

⎝
J∑

j=1

δ j ln z jit −
M∑

m=1

βm lnw∗
mit

⎞

⎠

+ 1

(1 − σ)(1 − η)
ln

(
N∑

n=1

γ σ
n (p∗

nit)
1−σ

)
− uit (7.14)

where φ(t) ≡ ln(1 − η) + (lnA(t) + ∑
m βm ln βm)/(1 − η). This model is nonlin-

ear in the unknown parameters. However, if γ1, . . . , γN and σ are known, then it can
be rewritten as

ln(�it/p1it) = φ(t) +
J∑

j=1

δ∗
j ln z jit −

M∑

m=1

β∗
m lnw∗

mit + ψ∗ lnP(p∗
it) − uit (7.15)

where P(p∗
it) =

(∑N
n=1 γ σ

n (p∗
nit)

1−σ
)1/(1−σ)

is a normalised aggregate output price,

δ∗
j ≡ δ j/(1 − η) is an unsigned elasticity that measures the percent change in nor-

malised profit due to a one percent increase in the j-th environmental variable,
β∗
m ≡ βm/(1 − η) is a nonnegative elasticity that measures the percent decrease in

normalised profit due to a one percent increase in the m-th normalised input price,
and ψ∗ ≡ 1/(1 − η) is a nonnegative elasticity that measures the percent increase in
normalised profit due to a one percent increase in the normalised aggregate output
price. This model is linear in the parameters. In this model, φ(t) can be viewed as a
profit-oriented measure of technical progress. If there is no technical progress, then
φ(t) is time-invariant. If there is no environmental change, then the term involving
the environmental variables can be deleted.

13See, for example, Diewert (1980, Eq. 8), Kumbhakar and Bhattacharyya (1992, Eq. 8), Chaudhary
et al. (1999, Eq. 1), Kumbhakar (2001, Eqs. 7, 8) and Kumbhakar (2006, p. 254).
14If firms are price takers in output and input markets, then profit functions are nondecreasing in p
for all nonnegative w. If the profit function is a translog function, then there exists a nonnegative
w where this monotonicity property does not hold. Ergo, the profit function cannot be a translog
function. If (a) firms are price takers in output and input markets, (b) there is more than one output,
and (c) the profit function is a translog function, then there exists a nonnegative w where at least
one profit-maximising revenue share lies outside the unit interval.

https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
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7.2 Growth Accounting Estimation

Growth accounting (GA) ‘estimation’ typically involves making enough restrictive
assumptions about production technologies and managerial behaviour to allow most
of the unknown parameters in DFMs to be identified. The basic idea can be traced
back at least as far as Solow (1957).

7.2.1 Assumptions

It is common15 to assume that

GA1 output and input sets are homothetic,
GA2 technical change is Hicks-neutral,
GA3 production frontiers exhibit constant returns to scale,
GA4 inputs are strongly disposable,
GA5 firms are price takers in input markets,
GA6 input prices are strictly positive, and
GA7 firm managers successfully minimise cost.

If these assumptions are true, then the slope parameters in production functions can
usually be estimated using differential calculus. The associated estimates/predictions
of technical and cost efficiency are equal to one.

7.2.2 Estimation

If DF1 to DF3 and GA1 to GA4 are true, then Q(qit) = At(zit)F(xit)Dt
O(xit, qit, zit)

whereQ(qit) can be viewed as an aggregate output,At(zit) can be viewed as ameasure
of technical and environmental change, F(xit) can be viewed as an aggregate input,
and Dt

O(xit, qit, zit) is a measure of technical efficiency.16 If GA5 to GA7 are also
true, then Dt

O(xit, qit, zit) = 1.17 Thus, DF1 to DF3 and GA1 to GA7 together imply
that

Q(qit) = At(zit)F(xit). (7.16)

15Some authors make these assumptions implicitly. For example, Hsieh and Klenow (2009, Eq. 4)
assume that production functions are double-log functions with observation-invariant slope coeffi-
cients that are positive and sum to one. This implies GA1 to GA4.
16GA1 to GA3 imply that Q(qit) = At(zit)F(xit)Dt

O(xit, qit, zit) where F(.) is a nonnegative„
linearly-homogenous, scalar-valued function (see Proposition 17 in Appendix A.1). GA4 implies
that F(.) is also nondecreasing. Thus, it can be viewed as an aggregate input.
17GA5 to GA7 imply that Dt

I (xit, qit, zit) = 1 (see Sect. 4.4.2). GA3 implies that Dt
O(xit, qit, zit) =

1/Dt
I (xit, qit, zit) (see the discussion of O10 and DO10 in Sects. 2.1.1 and 2.4.1).

https://doi.org/10.1007/978-981-13-2984-5
https://doi.org/10.1007/978-981-13-2984-5_4
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
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If there is no environmental change, then zit can be deleted. In this case, (7.16)
reduces to a DFM that has the same basic structure, but not necessarily the same
interpretation,18 as the ‘production function’ of Solow (1957, Eq. 1a). In practice,
our ability to estimate the components on the right-hand side of (7.16) depends on
the (known) functional form of the output distance function. If the output distance
function is given by (2.9), for example, then

Q(qit) = At(zit)
M∏

m=1

xβm
mit (7.17)

where
∑

m βm = 1. In this case, differential calculus can be used to show thatβm = sm
where sm is the m-th cost-minimising cost share. Assumption GA7 implies that
observed cost shares are equal to cost-minimising cost shares. This means that the
input component in (7.17) can be computed as a GY input index that compares
xit with a vector of ones. If the aggregate output is observed, then the technical
and environmental change component can be computed as a residual. Measures of
technical and environmental change that have been computed in this way are often
referred to as ‘Solow residuals’. If DF1 to DF3 and GA1 to GA7 are all true, then
Solow residuals can be viewed as measures of TFP. If any input cost shares are firm-
or time-varying, then DF1 to DF3 and GA1 to GA7 cannot all be true.

7.2.3 Toy Example

Reconsider the toy input quantity and price data reported earlier in Tables 1.1 and
1.5. Associated input cost shares are reported in Table 7.1. The fact that these shares
vary across firms and over time implies that DF1 to DF3 and GA1 to GA7 cannot all
be true. Thus, these data cannot be properly analysed in a GA framework.

7.3 Least Squares Estimation

Least squares (LS) estimation of DFMs involves choosing the unknown parameters
to minimise the sum of squared inefficiency effects. The idea can be traced back at
least as far as Winsten (1957). For simplicity, this section considers estimation of the
following output-oriented model:

18If there is no environmental change, then At(zit) reduces to a measure of technical change only.
In this book, the term ‘technical change’ refers to the discovery of new technologies. In contrast,
Solow (1957) uses the term ‘technical change’ “as a shorthand expression for any kind of shift in
the production function. Thus, slowdowns, speedups, improvements in the education of the labor
force, and all sorts of things will appear as [technical change]” (p. 312).

https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
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Table 7.1 Input cost shares

Row Firm Period s1 s2

A 1 1 0.128 0.872

B 2 1 0.275 0.725

C 3 1 0.128 0.872

D 4 1 0.369 0.631

E 5 1 0.093 0.907

F 1 2 0.723 0.277

G 2 2 0.729 0.271

H 3 2 0.012 0.988

I 4 2 0.997 0.003

J 5 2 0.999 0.001

K 1 3 0.128 0.872

L 2 3 0.273 0.727

M 3 3 0.226 0.774

N 4 3 0.177 0.823

O 5 3 0.615 0.385

P 1 4 0.369 0.631

R 2 4 0.421 0.579

S 3 4 0.677 0.323

T 4 4 0.395 0.605

U 5 4 0.489 0.511

V 1 5 0.271 0.729

W 2 5 0.325 0.675

X 3 5 0.822 0.178

Y 4 5 0.250 0.750

Z 5 5 0.679 0.321

yit = α + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − uit (7.18)

where yit denotes the logarithm of an aggregate output and uit denotes an output-
oriented technical inefficiency effect. This equation can be viewed as a special case
of (7.3) corresponding to α(t) = α + λt. To estimate the unknown parameters, we
need to make some assumptions about the inefficiency effects.
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7.3.1 Assumptions

It is common to assume that uit is a random variable with the following properties:

LS1 E(uit) = μ ≥ 0 for all i and t,
LS2 var(uit) ∝ σ 2

u for all i and t,
LS3 cov(uit, uks) = 0 if i �= k or t �= s, and
LS4 uit is uncorrelated with the explanatory variables.

LS1 says the inefficiency effects have the samemean. LS2 says they are homoskedas-
tic. LS3 says they are serially and spatially uncorrelated. LS4 is self-explanatory.

7.3.2 Estimation

If LS1 is true, then (7.18) can be rewritten as

yit = α∗ + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + eit (7.19)

where α∗ = α − μ is a fixed parameter and eit = μ − uit is a random variable with
a mean of zero. This equation has the same basic structure as the multiple regression
model discussed in introductory econometrics textbooks. If LS1 to LS4 are true,
then the ordinary least squares (OLS) estimators for α∗ and the slope parameters are
unbiased and consistent.A consistent estimator forα is α̂ = α̂∗ + μ̂where α̂∗ denotes
the OLS estimator for α∗ and μ̂ denotes the maximum of the OLS residuals. In this
book, α̂ and the OLS estimators for the slope parameters are collectively referred
to as corrected ordinary least squares (COLS) estimators.19 The idea behind COLS
estimation is illustrated in Fig. 7.1. The dots in this figure represent the logarithms
of a set of simulated input-output combinations. The dotted line is the OLS line of
best fit; it passes through the centre of the scatterplot. The solid line is the COLS
estimate of the production frontier; by design, it runs parallel to the OLS line of best
fit and envelops all the points in the scatterplot.

It is common to impose linear equality restrictions on the parameters in models
such as (7.18). If the restrictions (andLS1 toLS4) are true, then restricted least squares
(RLS) estimators for the slope parameters are consistent. Again, a consistent estima-
tor for the intercept can be obtained by adjusting (or correcting) the RLS estimator

19Elsewhere in the deterministic frontier literature, the term ‘COLS’ is often used to refer to slightly
different estimators. These alternative estimators involve adjusting α∗ upwards by an amount that
depends on the probability distributions of the inefficiency effects. In this book, these alternative
estimators are referred to as modified ordinary least squares (MOLS) estimators. The idea behind
MOLS estimation of DFMs can be traced back at least as far as Richmond (1974). A problem with
MOLS estimators is that some observations may lie above the estimated frontier. For more details,
see Førsund et al. (1980, p. 12).
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Fig. 7.1 COLS estimation

for the intercept by an amount equal to the maximum of the RLS residuals. In this
book, the associated estimators are collectively referred to as corrected restricted
least squares (CRLS) estimators.

Finally, Eq. (7.18) is linear in the unknown parameters. SomeDFMs are nonlinear
in the unknown parameters. If such a model contains an intercept term and LS1 to
LS4 are true, then nonlinear least squares (NLS) estimators for the slope parameters
are consistent.20 Again, a consistent estimator for the intercept can be obtained by
adjusting the NLS estimator for the intercept by an amount equal to the maximum
of the NLS residuals. In this book, the associated estimators are collectively referred
to as corrected nonlinear least squares (CNLS) estimators.

7.3.3 Prediction

We have been using uit to denote the inefficiency of firm i in period t. The associated
measure of efficiency is exp(−uit). A common predictor for uit is ûit = μ̂ − êit where
êit is the it-th OLS residual. The associated predictor for exp(−uit) is exp(−ûit).
Amsler et al. (2013) show that if uit is an independent exponential random vari-
able, then it is possible to conduct exact finite-sample inference concerning uit and
exp(−uit). If the distribution of uit is unknown, then it may still be possible to conduct
asymptotically-valid inference using subsampling.

20For more details concerning the properties of NLS estimators, see, for example, Hill et al. (2011,
p. 362).
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7.3.4 Hypothesis Tests

It is common to test hypotheses about characteristics of production technologies by
testing hypotheses about the parameters in DFMs. It is also common to test some or
all of assumptions LS1 to LS4; tests of these assumptions are tests for fixed effects,
heteroskedasticity, autocorrelation and endogeneity (respectively). If the data are
time-series or panel data, then it is advisable to test whether any of the explanatory
variables in the model are difference-stationary. If so, then it is advisable to test
whether the dependent and explanatory variables are cointegrated.

7.3.4.1 Parameters

Suppose, for example, that we use a sample of size N to estimate the K intercept
and slope parameters in (7.19). If LS1 to LS4 are true, then t and F tests concerning
these parameters are asymptotically valid. If, for example, we want to conduct a t
test of the null hypothesis that βm = c, then we must compute the following statistic:

t = bm − c

se(bm)
(7.20)

where bm denotes the LS estimator for βm and se(bm) denotes its standard error. If the
null hypothesis is true, then this statistic is asymptotically distributed as a standard
normal random variable. The decision rule depends on the form of the alternative
hypothesis: if the alternative hypothesis isβm �= c, for example, thenwe should reject
the null hypothesis at the α level of significance if N is large and |t| > z(1−α/2).

To conduct anF test of the null hypothesis that J independent equality restrictions
concerning the parameters are true against the alternative that at least one restriction
is not true, we must compute the following statistic:

F = (SSER − SSEU )/J

SSEU/(N − K)
(7.21)

where SSER denotes the restricted sum of squared errors (obtained by estimating
the parameters subject to the restrictions specified under the null hypothesis) and
SSEU denotes the unrestricted sum of squared errors (obtained by estimating the
parameters without any restrictions). If the null hypothesis is true, then this statistic
is asymptotically distributed as a chi-squared random variable with J degrees of
freedom. Thus, we should reject the null hypothesis at the α level of significance if
N is large and F > χ2

(1−α,J ).
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7.3.4.2 Fixed Effects

Assumption LS1 says that the inefficiency effects have the same mean. Different
tests of this assumption are distinguished by the form of the alternative hypothesis.
A common alternative hypothesis is that, for all i, E(uit) = μi ≥ 0 for all t. If this is
true, then (7.18) can be rewritten as

yit = α∗
i + λt +

J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + eit (7.22)

where α∗
i = α − μi is a firm-specific fixed effect and eit = μi − uit is a random

variable with a mean of zero. This equation has the same basic structure as the
standard fixed effects model discussed in introductory econometrics textbooks; see,
for example, Hill et al. (2011, Eq. 15.8). If there are I firms in the dataset, then the
unknown parameters in (7.22) can be estimated by replacing α∗ in (7.19) with I firm-
specific dummy variables. A test of the null hypothesis that all the dummy variable
coefficients are equal to each other is equivalent to a test of the null hypothesis that
LS1 is true. If LS2 to LS4 are true, then an F test of this hypothesis is asymptotically
valid.

7.3.4.3 Heteroskedasticity

Assumption LS2 says that the inefficiency effects have the same variance. If LS2
is not true then the inefficiency effects are heteroskedastic. In this case, the COLS
estimators are inefficient and their variances are not given by the usual OLS for-
mulas. Again, different tests of LS2 are distinguished by the form of the alternative
hypothesis (i.e., the form of heteroskedasticity). The type of heteroskedasticity that
is typically discussed in econometrics textbooks is one in which the error terms have
the same mean but different variances. There are not many ways in which this type
of heteroskedasticity can arise in a DFM.21 Tests that can be used in these rare cases
include well-known tests developed by Glesjer (1969), Goldfeld and Quandt (1972),
Godfrey (1978b), Breusch and Pagan (1979) (hereafter BP) and White (1980). Most
of these tests involve regressing even functions22 of LS residuals on transformations
of the regressors. Koenker and Bassett (1982) find that these tests perform poorly
under certain departures from normality. They propose an alternative test that rejects
the null hypothesis of homokedasticity if estimates of the slope coefficients differ
significantly at different percentiles. A similar test has been proposed by Newey and
Powell (1987). The idea behind these percentile-based tests is illustrated in Fig. 7.2.

21This type of heteroskedasticity can arisewhen the inefficiency effects are gamma randomvariables
and the scale parameters are the reciprocals of the shape parameters. It is also possible to imagine
some types of group heteroskedasticity where the inefficiency effects have the same mean.
22A function f (.) is even if f (x) = f (−x) for all x and−x in the domain of f (.). Examples include
f (x) = |x| and f (x) = x2.
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Fig. 7.2 Using quantile
regression to detect
heteroskedasticity

The dots in this figure represent the logarithms of a set of simulated input-output
combinations. The three lines are quantile regression (QR) estimates of the frontier
at the 10-th, 25-th and 90-th percentiles. The fanlike pattern in this figure is an indica-
tion that the inefficiency effects are heteroskedastic. In practice, very few efficiency
researchers test for heteroskedasticity; the modern approach is to use the COLS
estimators and simply compute robust (i.e., heteroskedasticity-consistent) standard
errors.

7.3.4.4 Autocorrelation

Assumption LS3 says that the inefficiency effects are serially and spatially uncorre-
lated. If LS3 is not true, then the inefficiency effects are said to be autocorrelated.
In this case, the COLS estimators are again inefficient and their variances are not
given by the usual OLS formulas. Again, different tests of LS3 are distinguished
by the form of the alternative hypothesis. Well-known tests for serial correlation
in time-series models include tests developed by Durbin and Watson (1950, 1951)
(hereafter DW), Breusch (1978), Breusch and Pagan (1980) and Godfrey (1978a). A
DW-type test for serial correlation in panel data models has been developed by Bhar-
gava et al. (1982). Tests for cross-section dependence in panel data models have been
developed by Pesaran (2004). Again, in practice, very few efficiency researchers test
for autocorrelation; the modern approach is to use the COLS estimators and simply
compute robust (i.e., autocorrelation-consistent) standard errors.

7.3.4.5 Endogeneity

Assumption LS4 says that the inefficiency effects are uncorrelated with the explana-
tory variables. If this assumption is not true, then the explanatory variables are said to
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be endogenous. If the explanatory variables are endogenous, then, unless the depen-
dent and explanatory variables in the model are cointegrated, the COLS estimators
are biased and inconsistent.

If we suspect that B explanatory variables in the model are endogenous, then we
should try and find at least B variables that (a) do not have a direct effect on the
dependent variable, (b) are correlated with the B suspicious explanatory variables,
and (c) are not correlated with the inefficiency effects. Such variables are called
instrumental variables (or simply ‘instruments’). If we can find enough instruments,
then we can conduct a Hausman test for endogeneity. The idea behind a Hausman
test is to find an estimator for the slope parameters that is consistent under the null
hypothesis but not under the alternative (e.g., OLS), and a second estimator that
is consistent under both the null and the alternative (e.g., the IV/TSLS estimator
discussed immediately below). If the two estimators yield very different estimates
of the slope parameters, then the null hypothesis is likely to be false. In the present
context, an easy way to conduct a Hausman test is to complete the following steps:

1. Use OLS to regress each endogenous explanatory variable on all available in-
struments and exogenous explanatory variables. Save the residuals from each
regression.

2. Add the residuals from step 1 to the original model and estimate the resulting
artificial model by OLS.

3. Use an F test to test the null hypothesis that the coefficients of the residuals in
the artificial model are all zero (against the alternative that at least one of them is
not zero).

The test in step 3 is equivalent to a test of LS4. If we reject LS4, then one approach
to estimating the parameters is to repeat step 1 and save the predictions from each
regression. We can then replace the endogenous variables in the original model with
the predictions and estimate the new model using OLS. This two-stage estimation
procedure is known as an instrumental variables (IV) or two-stage least squares
(TSLS) estimation. If the instruments are not correlated with the inefficiency effects
(and LS1 to LS3 are true), then the IV/TSLS estimators for the parameters in (7.19)
are consistent. The variances of the IV/TSLS estimators are messy nonincreasing
functions of the squared correlations between the instruments and the endogenous
variables. In practice, the estimated variances and standard errors are best computed
using purpose-built IV/TSLS commands in econometrics software packages.

Two other hypothesis tests are relevant in this context. First, if the instruments
are not correlated with the inefficiency effects, then they are said to be valid. A test
of the null hypothesis that all available instruments are valid (against the alternative
that at least one of them is not) is known as a test for overidentifying restrictions.
If there are L available instruments and N observations in the dataset, then we can
conduct the test using the following steps:

1. Use the IV/TSLS estimator (and all L instruments) to estimate the model and save
the residuals.

2. Regress the residuals on the L instruments (only) and use the R2 from this regres-
sion to compute LM = N × R2.
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3. Reject the null hypothesis at the α level of significance if LM > χ2
(1−α,L−B).

Second, if the instruments are strongly (resp. weakly) correlated with the endoge-
nous variables, then they are said to be strong (resp. weak). If there is only one
endogenous variable in the model, then we can assess the strength of the available
instruments using the following steps:

1. Use OLS to regress the endogenous explanatory variable on all available instru-
ments and exogenous explanatory variables (this is the same regression we would
run if we were completing step 1 of a Hausman test).

2. Use an F test to test the null hypothesis that the coefficients of the instruments
are zero (against the alternative that at least one of them is not zero).

The test in step 2 is equivalent to a test of the null hypothesis that all available
instruments are weak (against the alternative that at least one of them is strong).
With one endogenous variable, we only need one strong instrument. With this in
mind, it is common to use a low level of significance (⇒ a high critical value); a
common23 rule of thumb is to reject the null hypothesis if the F statistic takes a value
greater than 10. If there is more than one endogenous variable in the model, then
this F test is no longer valid. In this case, we can assess the strength of the available
instruments using a test proposed by Cragg and Donald (1993). For more details on
tests for weak instruments, see, for example, Hill et al. (2011, pp. 434ff).

7.3.4.6 Stationarity

The concept of stationarity is only meaningful in a time-series or panel data context.
A time series is said to be stationary if the mean, variance and covariances of the
series are all finite and do not depend on t. If the time series are long enough, then
evidence of nonstationarity can usually be seen in time-series plots. A nonstationary
process is said to be trend-stationary if it can be made stationary by detrending. A
nonstationary process is said to be difference-stationary if it can be made stationary
by differencing but cannot be made stationary by detrending. Difference-stationary
processes are also known as unit root processes.

If a model contains a linear trend and all the remaining explanatory variables are
either stationary or trend-stationary, then theOLS estimators for the slope parameters
are consistent. However, if any explanatory variables are difference-stationary, then,
unless the dependent and explanatory variables are cointegrated, the properties of
the OLS estimators are unknown. Moreover, t and F statistics do not have well-
defined distributions, well-known measures of goodness-of-fit are totally unreliable,
and the DW statistic tends to zero. The associated regression is known as a spurious
regression.

If there is evidence that a process is nonstationary, then we can test the null
hypothesis that it is difference-stationary using a unit root test. Well-known unit root
tests include Dickey-Fuller (DF), augmented Dickey-Fuller (ADF), Phillips-Perron

23See, for example, Hill et al. (2011, p. 414).



7.3 Least Squares Estimation 299

(PP) and Kwaitkowski-Phillips-Schmidt-Shin (KPSS) tests. For details concerning
these and related tests, see Enders (2004, Chap. 4). If there is evidence that a process
is nonstationary and we reject the null hypothesis that it is difference-stationary, then
we should conclude that it is trend-stationary and include a time trend in the model.
If we do not reject the null hypothesis, then we should test whether the dependent
and explanatory variables in the model are cointegrated.

7.3.4.7 Cointegration

If a difference-stationary process can be made stationary by differencing only once,
then it is said to be integrated of order one, or I(1). Stationary series are said to be
integrated of order zero, or I(0). Linear combinations of I(1) variables are usually also
I(1). However, sometimes linear combinations of I(1) variables are I(0). In such cases,
the variables are said to be cointegrated. If the dependent and explanatory variables
in a DFM are cointegrated, then the OLS estimators for the slope coefficients are
consistent,24 even if the explanatory variables are endogenous. Engle and Granger
(1987) describe a simple test for cointegration in time-series models. The so-called
Engle-Granger methodology involves estimating the model using OLS, then using a
DF test to determine whether the OLS residuals are I(0). Because this test is based
on residuals, the critical values for the test should be taken from Table 2 in Engle and
Yoo (1987, p. 157). If any explanatory variables in a DFM are difference-stationary
and we reject the null hypothesis that the dependent and explanatory variables are
cointegrated, then we should estimate the model in either first-difference or error-
correction form. For more details, see Enders (2004, Ch. 6).

7.3.5 Toy Example

Reconsider the toy data reported earlier in Tables 1.1 and 1.2. These data have been
used to obtain COLS and CRLS estimates of the parameters in (7.18). The estimates
are reported in Table 7.2. Both sets of estimates were obtained under assumptions
LS1 to LS4. The CRLS estimates were obtained by restricting λ ≥ 0 (⇒ there is no
technical regress). Both sets of estimates have been used to predict levels of output-
oriented technical efficiency (OTE). The predictions are reported in Table 7.3.

The restrictedmodel has been used to conduct several hypothesis tests. The results
are summarised in Table 7.4. All tests were conducted at the 5% level of significance.
The CRS test was a test of the null hypothesis that β1 + β2 = 1. The test of LS1
was a test for time-invariant fixed effects (i.e., the alternative hypothesis was that
the mean of the inefficiency effects varied across firms but not over time). The
test of LS2 was a BP test; the variance function used to implement this test was

24They are, in fact, super-consistent. This means that, as the sample size increases, the distributions
of the OLS estimators collapse around the true parameter values even faster than usual.

https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
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Table 7.2 LS parameter estimates

Parameter COLS CRLS

Est. St. err. t Est. St. err. t

α 1.348 0.253 5.326∗∗∗ 1.174 0.129 9.088∗∗∗

λ −0.040 0.071 −0.564 0.000 0.000 NaN

δ1 −0.151 0.314 −0.481 −0.182 0.304 −0.598

β1 0.281 0.107 2.628∗∗∗ 0.274 0.105 2.621∗∗∗

β2 0.043 0.066 0.645 0.034 0.063 0.533
∗∗∗, ∗∗ and ∗ indicate significance at the 1, 5 and 10% levels

Table 7.3 LS predictions of OTE

Row Firm Period COLS CRLS

A 1 1 0.270 0.309

B 2 1 0.326 0.370

C 3 1 0.641 0.733

D 4 1 0.571 0.651

E 5 1 0.743 0.847

F 1 2 0.329 0.365

G 2 2 0.767 0.859

H 3 2 0.881 0.929

I 4 2 0.700 0.762

J 5 2 0.804 0.839

K 1 3 0.911 0.961

L 2 3 0.809 0.853

M 3 3 0.547 0.578

N 4 3 0.303 0.312

O 5 3 0.651 0.701

P 1 4 0.354 0.356

R 2 4 0.620 0.628

S 3 4 0.297 0.305

T 4 4 0.966 1

U 5 4 0.321 0.322

V 1 5 1 0.974

W 2 5 0.725 0.720

X 3 5 0.338 0.333

Y 4 5 0.350 0.339

Z 5 5 0.697 0.684

Geometric mean 0.547 0.577
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Table 7.4 Hypothesis tests

Null hypothesis Test statistic Critical value(s) Decision

CRS F = 25.27 χ2
(0.95,1) = 3.841 Reject

LS1 (no fixed effects) F = 0.255 χ2
(0.95,4) = 9.488 Do not reject

LS2 (homoskedasticity) BP = 1.720 χ2
(0.95,3) = 7.815 Do not reject

LS3 (no autocorelation) CD = −0.426 ±z(0.95) = ±1.96 Do not reject

LS4 (no endogeneity) H = 0.589 χ2
(0.95,2) = 5.991 Do not reject

σ 2
uit ∝ h(α1 + α2 ln zit + α3 ln x1it + α4 ln x2it). The test of LS3 was the Pesaran CD

test for spatial correlation in panels. The test of LS4 was a Hausman test of the
null hypothesis that the inefficiency effects are uncorrelated with the log-inputs; the
two instruments used to implement this test were the logarithms of the input prices
reported earlier in Table 1.5. Unfortunately, the number of observations in the toy
dataset is not large enough for any of these tests to be considered valid.

7.4 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation of DFMs involves choosing the unknown
parameters to maximise the joint density (or ‘likelihood’) of the observed data. The
idea can be traced back at least as far as Afriat (1972, Sect. 3). For simplicity, this
section considers estimation of the following output-oriented model:

yit = lnFt(xit, zit) − uit (7.23)

where yit denotes the logarithm of an aggregate output, Ft(.) can be viewed as a
production function, and uit denotes an output-oriented technical inefficiency effect.
To estimate the unknown parameters in Ft(.), we once again need to make some
assumptions about the inefficiency effects.

7.4.1 Assumptions

It is common to assume that either

ML1 uit is an independent N+(0, σ 2
u ) random variable, or

ML2 uit is an independent G(P, σu) random variable.

In this context, the term ‘independent’ means that the inefficiency effects are neither
with each other nor correlated with the explanatory variables (i.e., the inefficiency
effects and the explanatory variables are mutually independent). ML1 says that uit

https://doi.org/10.1007/978-981-13-2984-5_1
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is an independent half-normal random variable obtained by lower-truncating the
N (0, σ 2

u ) distribution at zero; this assumption can be traced back to Schmidt (1976).
ML2 says that uit is an independent gamma random variable with shape parameter P
and scale parameter σu; this assumption can be traced back to Afriat (1972, p. 581).
If P = 1, then the gamma distribution collapses to an exponential distribution; this
assumption can be traced back to Schmidt (1976). If ML2 is true and P > 2, then the
associated ML estimators for the model parameters are consistent, asymptotically
efficient and asymptotically normal (Greene 1980a). In all other cases (i.e., half-
normal, or gamma with P ≤ 2), the properties of the ML estimators are unknown.

7.4.2 Estimation

The likelihood function is a function that expresses the joint density of the observed
data as a function of the unknown parameters. Finding the parameter values that
maximise the likelihood function is equivalent to finding the parameter values that
maximise the logarithm of the likelihood function. If, for example, ML2 is true, then
the so-called log-likelihood function is

ln L(y|X , θ) = −NP ln σu + (P − 1)
T∑

t=1

It∑

i=1

ln[lnFt(xit, zit) − yit]

− σ−1
u

T∑

t=1

It∑

i=1

[lnFt(xit, zit) − yit] − N lnΓ (P) (7.24)

where It denotes the number of firms in the dataset in period t, N ≡ ∑
t It denotes

the total number of observations in the dataset, y denotes a vector containing all the
observations on yit , X denotes a matrix containing all the observations on xit and
zit , and θ is a vector containing P, σu and all the unknown parameters in Ft(.). In
practice, ML estimates of the parameters are invariably obtained by maximising the
log-likelihood function numerically. This involves systematically evaluating the log-
likelihood function at different values of the parameters until the maximum value is
found. For details on numerical maximisation algorithms, see, for example, Greene
(2008, Appendix E). Following estimation, ML estimates of E(uit) and E(exp[−uit])
can be obtained by using the ML estimates of P and σu to evaluate

E(uit) = Pσu (7.25)

and E(exp[−uit]) = (1 + σu)
−P. (7.26)
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7.4.3 Prediction

The ML predictor for uit is ũit = ln F̃ t(xit, zit) − yit where F̃ t(.) is obtained by re-
placing the unknown parameters in Ft(.) with their ML estimators. The associated
predictor for exp(−uit) is exp(−ũit). If ML2 is true and P > 2, then these predictors
are consistent. In all other cases, their properties are unknown.

7.4.4 Hypothesis Tests

It is advisable to test the null hypothesis that ML2 is true. A well-known test that can
be used for this purpose is the Kolmogorov-Smirnov (KS) test. Alternatives include
tests proposed by Bickel and Rosenblatt (1973), Rosenblatt (1975) and Fan (1994).
For more details, see Pagan and Ullah (1999, Sect. 2.9.1).

If ML2 is true and P > 2, then t and F tests concerning the parameters in Ft(.)

are asymptotically valid. Standard likelihood ratio (LR) tests concerning these pa-
rameters are also asymptotically valid. To conduct an LR test of the null hypothesis
that J independent equality restrictions concerning the parameters in Ft(.) are true
against the alternative that at least one restriction is not true, we must compute the
following statistic:

LR = 2(LLFU − LLFR) (7.27)

where LLFR denotes the value of the restricted log-likelihood function (obtained by
estimating the parameters subject to the restrictions specified under the null hypothe-
sis) and LLFU denotes the value of the unrestricted log-likelihood function (obtained
by estimating the parameters without any restrictions). If the null hypothesis is true,
then this statistic is asymptotically distributed as a chi-square random variable with
J degrees of freedom. Thus, we should reject the null hypothesis at the α level of
significance if the sample size is large and LR > χ2

(1−α,J ).

7.4.5 Toy Example

Reconsider the toy data reported earlier in Tables 1.1 and 1.2. These data have
been used to obtain ML and restricted ML (RML) estimates of the parameters in
(7.18). The estimates are reported in Table 7.5. Both sets of estimates were obtained
under assumption ML2. The RML estimates were obtained by restricting λ ≥ 0 and
P ≥ 2.001. Both sets of estimates have been used to predict levels of output-oriented
technical efficiency (OTE). The predictions are reported in Table 7.6. The restricted
model was used to conduct a Kolmogorov-Smirnov (KS) test of the null hypothesis
that ML2 is true. The null hypothesis was not rejected at the 5% level of significance
(the KS test statistic was D = 0.2086; the two-sided p-value was 0.1967).

https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
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Table 7.5 ML parameter estimates

Parameter ML RML

Est. St. err. t Est. St. err. t

α 1.340 n.a. n.a. 1.182 21.75 0.054

λ −0.039 n.a. n.a. 0.017 75.001 0.000

δ1 −0.199 n.a. n.a. −0.153 8.782 −0.017

β1 0.279 n.a. n.a. 0.251 22.321 0.011

β2 0.044 n.a. n.a. 0.035 42.723 0.001

σu 0.649 n.a. n.a. 0.307 23.023 0.013

P 0.909 n.a. n.a. 2.001 4.014 0.498

n.a. = not available (or useful)

Table 7.6 ML predictions of OTE

Row Firm Period ML RML

A 1 1 0.272 0.302

B 2 1 0.328 0.356

C 3 1 0.645 0.715

D 4 1 0.575 0.636

E 5 1 0.748 0.828

F 1 2 0.342 0.344

G 2 2 0.798 0.815

H 3 2 0.876 0.814

I 4 2 0.733 0.745

J 5 2 0.816 0.838

K 1 3 0.914 0.907

L 2 3 0.811 0.805

M 3 3 0.549 0.549

N 4 3 0.304 0.288

O 5 3 0.675 0.649

P 1 4 0.355 0.327

R 2 4 0.621 0.583

S 3 4 0.308 0.282

T 4 4 1 0.910

U 5 4 0.322 0.299

V 1 5 1.000 0.889

W 2 5 0.749 0.643

X 3 5 0.350 0.301

Y 4 5 0.350 0.308

Z 5 5 0.698 0.635

Geometric mean 0.555 0.541
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7.5 Productivity Analysis

Productivity analysis involves both measuring and explaining changes in productiv-
ity. For purposes of comparison with Sect. 6.5, this section again focuses on measur-
ing and explaining changes in TFP. Again, methods for measuring and explaining
changes inMFP and PFP can be handled as special cases in which one or more inputs
are assigned a weight of zero.

7.5.1 Measuring Changes in TFP

DFMs can be used to compute additive, multiplicative, primal and dual TFPI num-
bers. Again, additive TFPI numbers can be computed by using average estimated
normalised shadow prices as weights in Eq. (3.41). These index numbers ultimately
depend on the output and input distance functions. If the output distance function is
given by (2.9), for example, then the input distance function is given by (2.13). In
this case, the n-th normalised shadow output price and the m-th normalised shadow
input price are

ptn(xit, qit, zit) = γnq
τ−1
nit

(
N∑

k=1

γkq
τ
kit

)−1

Dt
O(xit, qit, zit) (7.28)

and wt
m(xit, qit, zit) = λmD

t
I (xit, qit, zit)/xmit . (7.29)

Multiplicative TFPI numbers can be computed by using average estimated shadow
value shares as weights in equation (3.42). If the output and input distance functions
are given by (2.9) and (2.13), then the n-th shadow revenue share and them-th shadow
cost share are

rn(qit) = γnq
τ
nit

(
N∑

k=1

γkq
τ
kit

)−1

(7.30)

and sm = λm. (7.31)

Primal and dual TFPI numbers can be computed by evaluating (3.44) and (3.46). If the
output and input distance functions are given by (2.9) and (2.13), then the primal and
dual TFPIs are both given by (3.45). Estimates of the unknown parameters in (3.45)
[and (7.28) to (7.31)] can be obtained using the LS and ML estimators described in
Sects. 7.3 and 7.4.

For a numerical illustration, reconsider the toy data reported in Table 1.1. These
data have been used to obtain CRLS estimates of the parameters in (7.2). The esti-
mateswere reported earlier in Table 1.11.Associated estimates of normalised shadow
prices and shadow value shares are now reported in Table 7.7. These estimates were

https://doi.org/10.1007/978-981-13-2984-5_6
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
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Table 7.7 CRLS estimates of normalised shadow prices and shadow value sharesa,b

Row Firm Period pt1(.) pt2(.) wt
1(.) wt

2(.) r1(.) r2(.) s1 s2

A 1 1 0.227 0.087 62.651 0 0.724 0.276 1 0

B 2 1 0.267 0.102 62.651 0 0.724 0.276 1 0

C 3 1 0.227 0.087 2.877 0 0.724 0.276 1 0

D 4 1 0.224 0.085 4.357 0 0.724 0.276 1 0

E 5 1 0.224 0.085 3.156 0 0.568 0.432 1 0

F 1 2 0.236 0.090 54.561 0 0.724 0.276 1 0

G 2 2 0.212 0.081 3.001 0 0.571 0.429 1 0

H 3 2 0.711 0.271 73.988 0 0.728 0.272 1 0

I 4 2 0.155 0.059 0.321 0 1 0 1 0

J 5 2 0.150 0.057 0.225 0 1 0 1 0

K 1 3 0.227 0.087 3.175 0 0.434 0.566 1 0

L 2 3 0.227 0.087 8.686 0 0.236 0.764 1 0

M 3 3 0.209 0.080 13.049 0 0.467 0.533 1 0

N 4 3 0.310 0.118 223.849 0 0.724 0.276 1 0

O 5 3 0.236 0.090 4.594 0 0.724 0.276 1 0

P 1 4 0.256 0.097 62.651 0 0.724 0.276 1 0

R 2 4 0.227 0.087 13.049 0 0.467 0.533 1 0

S 3 4 0.196 0.075 54.561 0 0.724 0.276 1 0

T 4 4 0.236 0.090 2.323 0 0.576 0.424 1 0

U 5 4 0.227 0.087 62.651 0 0.724 0.276 1 0

V 1 5 0.227 0.087 4.078 0 0.337 0.663 1 0

W 2 5 0.242 0.092 4.594 0 0.724 0.276 1 0

X 3 5 0.212 0.081 54.561 0 0.724 0.276 1 0

Y 4 5 0.247 0.094 62.651 0 0.724 0.276 1 0

Z 5 5 0.185 0.070 3.156 0 0.568 0.432 1 0

Arithmetic mean 0.244 0.093 33.817 0 0.655 0.345 1 0
aptn(.) = n-th estimated normalised shadow output price;wt

m(.) =m-th estimated normalised shadow
input price; rn(.) = n-th estimated shadow revenue share; sm = m-th estimated shadow cost share
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

obtained by using the CRLS estimates to evaluate (7.28)–(7.31). Associated addi-
tive, multiplicative and primal TFPI numbers are reported in Table 7.8. The additive
and multiplicative numbers were obtained by using the arithmetic averages reported
at the bottom of Table 7.7 as weights in Eqs. (3.41) and (3.42). The primal index
numbers were obtained by evaluating (3.45). All of the index numbers in Table 7.8
are proper in the sense that they have been obtained by dividing proper output index
numbers by proper input index numbers. They are also consistent with measurement
theory. Observe, for example, that (a) the output vector in row Z is the same as the

https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
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Table 7.8 Additive, multiplicative and primal TFP index numbersa,b

Row Firm Period q1 q2 x1 x2 A M P

A 1 1 1 1 1 1 1 1 1

B 2 1 1 1 0.56 0.56 1.786 1.786 1.786

C 3 1 2.37 2.37 1 1 2.37 2.37 2.37

D 4 1 2.11 2.11 1.05 0.7 2.010 2.010 2.010

E 5 1 1.81 3.62 1.05 0.7 2.199 2.190 2.199

F 1 2 1 1 0.996 0.316 1.004 1.004 1.004

G 2 2 1.777 3.503 1.472 0.546 1.531 1.526 1.531

H 3 2 0.96 0.94 0.017 0.346 56.146 56.061 56.146

I 4 2 5.82 0.001 4.545 0.01 0.927 0.064 0.927

J 5 2 6.685 0.001 4.45 0.001 1.088 0.072 1.088

K 1 3 1.381 4.732 1 1 2.306 2.113 2.306

L 2 3 0.566 4.818 1 1 1.739 1.186 1.739

M 3 3 1 3 1.354 1 1.146 1.080 1.146

N 4 3 0.7 0.7 0.33 0.16 2.121 2.121 2.121

O 5 3 2 2 1 1 2 2 2

P 1 4 1 1 0.657 0.479 1.522 1.522 1.522

R 2 4 1 3 1 1 1.552 1.462 1.552

S 3 4 1 1 1.933 0.283 0.517 0.517 0.517

T 4 4 1.925 3.722 1 1 2.421 2.417 2.421

U 5 4 1 1 1 0.31 1.000 1.000 1.000

V 1 5 1 5.166 1 1 2.149 1.764 2.149

W 2 5 2 2 0.919 0.919 2.176 2.176 2.176

X 3 5 1 1 1.464 0.215 0.683 0.683 0.683

Y 4 5 1 1 0.74 0.74 1.351 1.351 1.351

Z 5 5 1.81 3.62 2.1 1.4 1.100 1.095 1.100
aA = additive index obtained using averages of CRLS estimates of normalised shadow prices as
weights; M = multiplicative index obtained using averages of CRLS estimates of shadow value
shares as weights; P = primal index numbers obtained using CRLS estimates of the parameters of
output and input distance functions. Some index numbers may be incoherent at the third decimal
place due to rounding (e.g., the number in row Z of column A is not exactly half as big as the
number in row E of column A due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

output vector in row E, (b) the input vector in row Z is twice as big as the input vector
in row A, and (c) the TFPI numbers in row Z are half as big as the numbers in row
E. Also observe that the TFPI numbers in rows A, B, C, O, W and Y are the same as
the TFPI numbers reported in the corresponding rows of Tables 3.5 and 6.15.

https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_6
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7.5.2 Explaining Changes in TFP

Explaining changes in TFP generally involves decomposing proper TFPI numbers
into measures of environmental change, technical change, and efficiency change.
This section focuses on output- and input-oriented decompositions.

7.5.2.1 Output-Oriented Decompositions

Output-oriented decompositions of TFPI numbers tend to be most relevant in situa-
tions where managers have placed nonnegative values on outputs, and where inputs
have been predetermined (i.e., situations where output-oriented measures of effi-
ciency are most relevant). In these situations, a relatively easy way to proceed is to
write TFP(xit, qit) = TFP(xit, qit) exp(−uit)/Dt

O(xit, qit, zit) where uit denotes the
output-oriented technical inefficiency effect in (7.1). A similar equation holds for
firm k in period s. Substituting these equations into (3.40) yields

TFPI(xks, qks, xit, qit) =
[
TFPI(xks, qks, xit, qit)

Ds
O(xks, qks, zks)

Dt
O(xit, qit, zit)

]

×
[
exp(−uit)

exp(−uks)

]
. (7.32)

Thefirst termon the right-hand side is as an output-oriented environment, technology,
and scale and mix efficiency index (OETSMEI). The second term is an output-
oriented technical efficiency index (OTEI).

Whether a finer decomposition is possible (and economically meaningful) de-
pends on both the output distance function and the TFPI. If, for example, the output
distance function is given by (2.9), then (7.32) takes the following form:

TFPI(xks, qks, xit, qit) =
[
A(t)

A(s)

] ⎡

⎣
J∏

j=1

(
z jit
z jks

)δ j

⎤

⎦

×
[
TFPI(xks, qks, xit, qit)

M∏

m=1

(
xmit
xmks

)βm
(∑

n γnqτ
nks∑

n γnqτ
nit

)1/τ
]

×
[
exp(−uit)

exp(−uks)

]
. (7.33)

Thefirst termon the right-hand side is anoutput-oriented technology index (OTI) (i.e.,
a measure of technical change). The second term is an output-oriented environment
index (OEI) (i.e., a measure of environmental change). The third term is an output-
oriented scale andmix efficiency index (OSMEI). The last term is the OTEI in (7.32).
If τ > 1 and the TFPI is the additive index defined by (3.41), then Eq. (5.6) can be
used to decompose the OSMEI into the product of an output-oriented mix efficiency
index (OMEI) and a residual output-oriented scale efficiency index (ROSEI); the

https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_5
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algebra is left as an exercise for the reader. If the TFPI is the primal index defined by
(3.45), then there is no mix inefficiency and the OSMEI is, in fact, an output-oriented
scale efficiency index (OSEI). If production frontiers exhibit CRS and the TFPI is
the primal index defined by (3.45), then the OSMEI vanishes. If A(t) ∝ exp(λt) and
the TFPI is the primal index defined by (3.45), then (7.33) reduces to Eq. (6) in
O’Donnell (2016).

For a numerical example, reconsider the GY TFPI numbers reported earlier in
Table 3.5. An output-oriented decomposition of these numbers is now reported in
Table 7.9. TheOTI,OEI, andOSMEI numbers in this tablewere obtained by using the
CRLS estimates reported in Table 1.11 to evaluate the relevant terms in (7.33). The
OTEInumberswere obtained as residuals (i.e.,OTEI=TFPI/(OTI×OEI×OSMEI)).
The OTI, OEI and OTEI numbers in Table 7.9 are the same as the OTI, OEI and OTE
numbers reported earlier in Table 1.13.

7.5.2.2 Input-Oriented Decompositions

Input-oriented decompositions of TFPI numbers tend to be most relevant in situ-
ations where managers have placed nonnegative values on inputs, and where out-
puts have been predetermined (i.e., situations where input-oriented measures of ef-
ficiency are most relevant). In these situations, a relatively easy way to proceed is
to write TFP(xit, qit) = TFP(xit, qit)Dt

I (xit, qit, zit) exp(−uit) where uit now denotes
the input-oriented technical inefficiency effect in (7.4). A similar equation holds for
firm k in period s. Substituting these equations into (3.40) yields

TFPI(xks, qks, xit, qit) =
[
TFPI(xks, qks, xit, qit)

Dt
I (xit, qit, zit)

Ds
I (xks, qks, zks)

]

×
[
exp(−uit)

exp(−uks)

]
. (7.34)

The first term on the right-hand side is an input-oriented environment, technology,
and scale and mix efficiency index (IETSMEI). The other term is an input-oriented
technical efficiency index (ITEI).

Again, whether a finer decomposition is possible (and economically meaningful)
depends on both the distance function and theTFPI. If, for example, the input distance
function is given by (2.13), then (7.34) takes the following form:

TFPI(xks, qks, xit, qit) =
[
B(t)

B(s)

] ⎡

⎣
J∏

j=1

(
z jit
z jks

)κ j

⎤

⎦

×
[
TFPI(xks, qks, xit, qit)

M∏

m=1

(
xmit
xmks

)λm
(∑

n γnqτ
nks∑

n γnqτ
nit

)1/(τη)
]

×
[
exp(−uit)

exp(−uks)

]
. (7.35)

https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_2
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Table 7.9 An output-oriented decomposition of GY TFPI numbers using CRLSa,b

Row Firm Period TFPI OTI OEI OTEI OSMEI

A 1 1 1 1 1 1 1

B 2 1 1.786 1 1 1.176 1.518

C 3 1 2.37 1 1 2.37 1

D 4 1 2.539 1 1 2.081 1.220

E 5 1 3.133 1 1 2.278 1.375

F 1 2 1.948 1 0.962 1.041 1.945

G 2 2 3.054 1 0.962 2.102 1.511

H 3 2 9.811 1 1 2.988 3.283

I 4 2 0.464 1 0.962 2.867 0.168

J 5 2 1.890 1 1 3.186 0.593

K 1 3 2.634 1 1 2.306 1.143

L 2 3 1.740 1 1 1.739 1.000

M 3 3 1.565 1 1 1.426 1.098

N 4 3 3.221 1 1 0.955 3.373

O 5 3 2 1 0.962 2.079 1.000

P 1 4 1.827 1 1 1.125 1.624

R 2 4 1.779 1 1 1.552 1.146

S 3 4 1.568 1 0.962 0.864 1.886

T 4 4 2.720 1 0.962 2.516 1.124

U 5 4 1.966 1 1 1 1.966

V 1 5 2.366 1 1 2.149 1.101

W 2 5 2.176 1 0.962 2.129 1.063

X 3 5 2.067 1 0.962 0.934 2.300

Y 4 5 1.351 1 1 1.088 1.242

Z 5 5 1.567 1 1 1.876 0.835

Geometric mean 2.030 1 0.988 1.655 1.242
aTFPI = OTI × OEI × OTEI × OSMEI. Some index numbers may be incoherent at the third dec-
imal place due to rounding (e.g., in any given row, the product of the OTI, OEI, OTEI and OSMEI
numbers may not be exactly equal to the TFPI numbers due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

The first term on the right-hand side is an input-oriented technology index (ITI).
The second term is an input-oriented environment index (IEI). The third term is an
input-oriented scale and mix efficiency index (ISMEI). The last term is the ITEI in
(7.34). If the TFPI is the additive index defined by (3.41), then Eq. (5.13) can be
used to decompose the ISMEI into the product of an input-oriented mix efficiency
index (IMEI) and a residual input-oriented scale efficiency index (RISEI); again, the
algebra is left as an exercise for the reader. If the TFPI is the primal index defined
by (3.45), then there is no mix inefficiency and the ISMEI is an input-oriented scale

https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_3
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efficiency index (ISEI). If production frontiers exhibit CRS and the TFPI is the primal
index defined by (3.45), then the ISMEI vanishes.

For a numerical example, reconsider the GY TFPI numbers reported earlier in
Table 3.5. An input-oriented decomposition of these numbers is now reported in
Table 7.10. The ITI, IEI, and ISMEI numbers in this table were obtained by using the
CRLS estimates reported in Table 1.11 to evaluate the relevant terms in (7.35). The
ITEI numbers were obtained as residuals (i.e., ITEI = TFPI/(ITI×IEI×ISMEI)).
The ITI, IEI and ITEI numbers in Table 7.10 are the same as the ITI, IEI and ITEI
numbers reported earlier in Table 1.13.

Table 7.10 An input-oriented decomposition of GY TFPI numbers using CRLSa,b

Row Firm Period TFPI ITI IEI ITEI ISMEI

A 1 1 1 1 1 1 1

B 2 1 1.786 1 1 1.786 1

C 3 1 2.37 1 1 21.773 0.109

D 4 1 2.539 1 1 13.695 0.185

E 5 1 3.133 1 1 18.905 0.166

F 1 2 1.948 1 0.871 1.153 1.940

G 2 2 3.054 1 0.871 14.181 0.247

H 3 2 9.811 1 1 49.810 0.197

I 4 2 0.464 1 0.871 42.949 0.012

J 5 2 1.890 1 1 62.651 0.030

K 1 3 2.634 1 1 19.734 0.133

L 2 3 1.740 1 1 7.213 0.241

M 3 3 1.565 1 1 3.546 0.441

N 4 3 3.221 1 1 0.848 3.798

O 5 3 2 1 0.871 13.639 0.168

P 1 4 1.827 1 1 1.522 1.200

R 2 4 1.779 1 1 4.801 0.371

S 3 4 1.568 1 0.871 0.594 3.031

T 4 4 2.720 1 0.871 26.969 0.116

U 5 4 1.966 1 1 1 1.966

V 1 5 2.366 1 1 15.363 0.154

W 2 5 2.176 1 0.871 14.841 0.168

X 3 5 2.067 1 0.871 0.784 3.026

Y 4 5 1.351 1 1 1.351 1

Z 5 5 1.567 1 1 9.453 0.166

Geometric mean 2.030 1 0.957 6.046 0.351
aTFPI = ITI × IEI × ITEI × ISMEI. Some index numbers may be incoherent at the third decimal
place due to rounding (e.g., in any given row, the product of the ITI, IEI, ITEI and ISMEI numbers
may not be exactly equal to the TFPI numbers due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_1
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7.5.2.3 Other Decompositions

There are many TFPI numbers that are not proper in the sense that they cannot
generally be written as proper output index numbers divided by proper input index
numbers. As we saw in Sect. 6.5.2.4, one way of decomposing such numbers to first
write them as the product of proper TFPI numbers and statistical noise index (SNI)
numbers. Subsequently, the proper TFPI numbers can be decomposed into mea-
sures of technical change, environmental change and various measures of efficiency
change.

For a numerical example, reconsider the CCD TFPI numbers reported earlier in
Table 3.6. Two decompositions of these numbers are reported in Table 7.11. CCD
TFPI numbers are closely related to GY TFPI numbers (if observed revenue and cost
shares are firm- and time-invariant, then they are equal). Output- and input-oriented
decompositions of the GY TFPI numbers were presented earlier in Tables 7.9 and
7.10. The OTI, OEI, OTEI, OSMEI, ITI, OEI, ITEI and ISMEI numbers in those
tables are now reported in Table 7.11. The numbers in the SNI columns in Table
7.11 were obtained by dividing the CCD TFPI numbers by the GY TFPI numbers. In
this context, the SNI can be viewed as a revenue share index divided by a cost share
index; if revenue and cost shares had been firm- and time-invariant, then all the SNI
numbers would have been equal one.

7.6 Other Models

Other DFMs include various systems of equations. This section discusses systems
of equations that can be used to explain variations in metafrontiers, output supplies
and input demands.

7.6.1 Metafrontier Models

Metafrontier models are used in situations where firmmanagers can be classified into
two or more groups, and where managers in different groups choose input-output
combinations from potentially different production possibilities sets. For purposes of
comparison with Sect. 6.6.1, this section considers situations where firm managers
can be classified into two or more groups according to the technologies they use.
Again, attention is restricted to the estimationof output-orientedmetafrontiermodels;
the estimation of input-, revenue-, cost-, and profit-oriented metafrontier models is
analogous to the estimation of output-oriented models.

If we observe the technologies used by firm managers, then output-oriented
metafrontier models can be used to predict the output-oriented metatechnology ratio
(OMR) defined by (5.47), the measure of output-oriented technical efficiency (OTE)
defined by (5.1), and the measure of residual output-oriented technical efficiency

https://doi.org/10.1007/978-981-13-2984-5_6
https://doi.org/10.1007/978-981-13-2984-5_3
https://doi.org/10.1007/978-981-13-2984-5_6
https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_5
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(ROTE) defined by (5.48). This involves estimating a system of technology-and-
environment-specific output distance functions. These functions are linearly ho-
mogeneous in outputs. This implies that dg

O(xit, qit, zit) = q1itd
g
O(xit, q∗

it, zit) where
q∗
it = qit/q1it denotes a vector of normalised outputs. If there are T time periods
represented in the dataset, then the associated metafrontier system can be written as

ln q1it = − ln dg
O(xit, q

∗
it, zit) − ugit for all g ∈ GT , (7.36)

where ugit ≡ − ln dg
O(xit, qit, zit) denotes a residual output-oriented technical ineffi-

ciency effect and GT denotes the set of technologies that existed in period T .
Let git denote the technology used by manager i in period t. The ROTE of the

manager is exp(−ugitit ). TheOTEof themanager is exp(−uit)whereuit = maxg∈Gt u
g
it .

The OMR of the manager is exp(−mgit
it ) where mgit

it = uit − ugitit . The first step in
predicting these quantities is to estimate the parameters in the system defined by
(7.36). The second step is to use these parameter estimates to predict exp(−ugitit ),
exp(−uit) and exp(−mgit

it ).
To estimate the parameters in the system defined by (7.36), we need to make some

assumptions about the inefficiency effects. If there are no cross-equation restrictions
involving the parameters and the inefficiency effects are independent random vari-
ables with means and variances that only vary by group, then the g-th equation in
(7.36) can be estimated separately, using all (and only) observations on firms that
used technology g. The g-th equation in (7.36) has the same basic structure as (7.1).
This implies that the unknown parameters can be estimated using the LS and ML
estimators discussed in Sects. 7.3 and 7.4.

Let d̃ g
O(xit, q∗

it, zit) denote a consistent estimator for dg
O(xit, q∗

it, zit). An associated
predictor for ugit is ũ

g
it = − ln d̃ g

O(xit, q∗
it, zit) − ln q1it . Associated predictors for the

ROTE, OTE and OMR of manager i in period t are

ROT̃Egit (xit, qit, zit) = exp(−ũgitit ), (7.37)

OT̃Et(xit, qit, zit) = exp(−ũit) (7.38)

and OM̃Rgit t(xit, qit, zit) = exp(−m̃git
it ) (7.39)

where ũit = maxg∈Gt ũ
g
it and m̃git

it = ũit − ũgitit .
For a numerical example, reconsider the toy data reported in Table 1.1. For pur-

poses of comparison with the results reported in Table 6.20, suppose that (a) tech-
nologies 1 and 2 existed in each period, (b) no other technologies existed in any
period, (c) the managers of firms 1, 2 and 3 always used technology 1, and (d) the
managers of firms 4 and 5 always used technology 2. Also suppose that the g-th
technology-and-environment-specific output distance function is given by (2.40). In
this case, the system defined by (7.36) can be written as

https://doi.org/10.1007/978-981-13-2984-5_5
https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_6
https://doi.org/10.1007/978-981-13-2984-5_2
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Table 7.12 CRLS parameter estimates

Parameter Est. St. err. t

α1 ≡ ln a(1) 0.975 0.230 4.235∗∗∗

α2 ≡ ln a(2) 1.296 0.220 5.895∗∗∗

δ1 0.034 0.324 0.106

β1 0.250 0.112 2.239∗∗

β2 0 0.147 0

γ1 0.794 0.302 2.632∗∗∗

γ2 0.206 0.302 0.682

τ 1 1.716 0.583
∗∗∗ and ∗∗ indicate significance at the 1 and 5% levels

ln q1it =
∑

g∈Gt

αgdgit +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit

− 1

τ
ln

(
N∑

n=1

γnq
∗τ
nit

)
−

∑

g∈Gt

dgitu
g
it (7.40)

where αg ≡ ln a(g) and dgit = I(git = g) is a dummy variable that takes the value 1
if manager i used technology g in period t (and 0 otherwise). CRLS estimates of the
unknown parameters in this model are presented in Table 7.12. These estimates were
obtained by restricting β = (β1, . . . , βM )′ ≥ 0 and τ ≥ 1. Associated predictions of
OTE, ROTE and the OMRs are reported in Table 7.13. If we observe the technologies
used by firm managers, then the predictions of OTE reported in Table 7.13 are more
reliable than the CRLS predictions reported earlier in Table 7.3. Among other things,
the predictions reported in Table 7.13 indicate that the manager of firm 5 chose the
right technology in each period but only used it properly in period 2 (i.e., he/she
‘chose the right book’ but only ‘followed the instructions’ in period 2).

7.6.2 Output Supply Systems

It is often possible to write profit- and revenue-maximising output supply functions
as systems of equations in which the explanatory variables are deterministic. For any
given firm, the exact form of the system depends on the exact form of the manager’s
optimisation problem. For example, if firm i is a price taker in output markets and
all inputs and environmental variables have been predetermined, then the manager’s
period-t optimisation problem is given by (4.12). In this case, the logarithms of the
N observed outputs can be written as

ln qnit = ln q̈tn(xit, pit, zit) + unit for n = 1, . . . ,N , (7.41)

https://doi.org/10.1007/978-981-13-2984-5_4
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Table 7.13 CRLS predictions of OTE, ROTE and OMRsa,b

Row Firm Period OTE OMR ROTE

A 1 1 0.274 0.725 0.377

B 2 1 0.316 0.725 0.436

C 3 1 0.649 0.725 0.894

D 4 1 0.570 1 0.570

E 5 1 0.590 1 0.590

F 1 2 0.267 0.725 0.369

G 2 2 0.517 0.725 0.713

H 3 2 0.725 0.725 1

I 4 2 0.846 1 0.846

J 5 2 1 1 1

K 1 3 0.566 0.725 0.781

L 2 3 0.394 0.725 0.544

M 3 3 0.358 0.725 0.494

N 4 3 0.253 1 0.253

O 5 3 0.534 1 0.534

P 1 4 0.304 0.725 0.419

R 2 4 0.386 0.725 0.533

S 3 4 0.227 0.725 0.312

T 4 4 0.613 1 0.613

U 5 4 0.274 1 0.274

V 1 5 0.508 0.725 0.701

W 2 5 0.546 0.725 0.753

X 3 5 0.243 0.725 0.335

Y 4 5 0.295 1 0.295

Z 5 5 0.496 1 0.496

Geometric mean 0.432 0.825 0.524
aOTE = OMR × ROTE. Some predictions may be incoherent at the third decimal place due to
rounding (e.g., in any given row, the product of the OMR and ROTE predictions may not be exactly
equal to the OTE prediction due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

where q̈tn(xit, pit, zit) denotes the n-th revenue-maximising output supply function
and unit ≡ ln qnit − ln q̈tn(xit, pit, zit) is an unsigned variable that captures technical,
scale and allocative inefficiency. The exact form of this system depends largely on the
output distance function. For example, if output prices are positive and the output
distance function is given by (2.9) with τ > 1, then the n-th revenue-maximising
output supply function is given by (4.13). In this case, the n-th equation in the system
defined by (7.41) can be written as

https://doi.org/10.1007/978-981-13-2984-5_1
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_4
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ln qnit = αn(t) +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit

+ σ

1 − σ
ln

(
N∑

k=1

γ σ
k p

1−σ
kit

)
− σ ln pnit + unit (7.42)

where αn(t) ≡ lnA(t) + σ ln γn. This equation is nonlinear in the unknown param-
eters. However, if γ1, . . . , γN and σ are known, then it can be rewritten as

ln qnit = αn(t) +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + σ
[
lnP(pit) − ln pnit

] + unit

(7.43)

where P(pit) =
(∑N

k=1 γ σ
k p

1−σ
kit

)1/(1−σ)

is an aggregate output price. This equation

is linear in the parameters. In this equation, αn(t) can be viewed as an output-specific
measure of technical progress, δ j is an unsigned elasticity that measures the percent
change in output n due to a one percent increase in environmental variable j , βm is
a nonnegative elasticity that measures the percent increase in output n due to a one
percent increase in input m, and σ is the elasticity of transformation between any
two outputs. If there is no technical progress, then αn(t) is time-invariant. If there is
no environmental change, then the term involving the environmental variables can
be deleted.

Equation (7.41) represents a system of N seemingly unrelated regression (SUR)
equations in which each unit is uncorrelatedwith xit , pit and zit . The unknown parame-
ters in such systems can be estimated using feasible generalised least squares (FGLS)
estimators. If the output mix is predetermined, then an alternative SUR system is

ln q1it = − lnDt
O(xit, q

∗
it, zit) − uit (7.1)

and ln qnit = ln q̈tn(xit, pit, zit) + unit for n = 2, . . . ,N , (7.44)

where uit ≡ − lnOTEt(xit, qit, zit) ≥ 0 denotes an output-oriented technical ineffi-
ciency effect. If the output mix is not predetermined, then (7.1) and (7.44) represent
a system of N simultaneous equations. The unknown parameters in such systems
can be estimated using corrected two-stage least squares (CTSLS) estimators.

7.6.3 Input Demand Systems

It is often possible to write profit-maximising and cost-minimising input demand
functions as systems of equations in which the explanatory variables are
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deterministic. Again, for any given firm, the exact form of the system depends on
the exact form of the manager’s optimisation problem. For example, if firm i is a
price taker in input markets and all outputs and environmental variables have been
predetermined, then the manager’s period-t optimisation problem is given by (4.17).
In this case, the logarithms of theM observed inputs can be written as

ln xmit = ln ẍtm(wit, qit, zit) + umit for m = 1, . . . ,M , (7.45)

where ẍtm(wit, qit, zit) denotes the m-th cost-minimising input demand function and
umit ≡ ln xmit − ln ẍtm(wit, qit, zit) is an unsigned error that captures technical, scale
and allocative inefficiency. The exact form of this system depends largely on the input
distance function. For example, if input prices are positive and the input distance
function is given by (2.13), then the m-th cost-minimising input demand function is
given by (4.18). In this case, the m-th equation in the system defined by (7.45) can
be written as

ln xmit = θm(t) −
J∑

j=1

κ j ln z jit +
M∑

k=1

λk ln(wkit/wmit)

+ 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)
+ umit (7.46)

where θm(t) ≡ ln λm − lnB(t) − ∑
k λk ln λk . This equation is nonlinear in the un-

known parameters. However, if γ1, . . . , γN and τ are known, then it can be rewritten
as

ln xmit = θm(t) −
J∑

j=1

κ j ln z jit +
M∑

k=1

λk ln(wkit/wmit) + ψ lnQ(qit) + umit (7.47)

where Q(qit) =
(∑N

n=1 γnqτ
nit

)1/τ
is an aggregate output and ψ ≡ 1/η is the recip-

rocal of the elasticity of scale. This equation is linear in the parameters. In this
equation, θm(t) can be viewed as an input-specific measure of technical progress,
κ j is an unsigned elasticity that measures the percent change in demand for input m
due to a one percent increase in environmental variable j , and λk is a nonnegative
elasticity that measures the percent increase in demand for input m due to a one
percent increase in the the price of input k. If there is no technical progress, then
θm(t) is time-invariant. If there is no environmental change, then the term involving
the environmental variables can be deleted.

Equation (7.45) represents a system of SUR equations in which each umit is un-
correlated with wit , qit and zit . Again, the unknown parameters in such systems can
be estimated using FGLS estimators. If the input mix is predetermined, then an
alternative SUR system is

https://doi.org/10.1007/978-981-13-2984-5_4
https://doi.org/10.1007/978-981-13-2984-5_2
https://doi.org/10.1007/978-981-13-2984-5_4
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− ln x1it = lnDt
I (x

∗
it, qit, zit) − uit (7.4)

and ln xmit = ln ẍtm(wit, qit, zit) + umit for m = 2, . . . ,M , (7.48)

where uit ≡ − ln ITEt(xit, qit, zit) ≥ 0 denotes an input-oriented technical ineffi-
ciency effect. If the input mix is not predetermined, then (7.4) and (7.48) repre-
sent a system ofM simultaneous equations. Again, the unknown parameters in such
systems can be estimated using CTSLS estimators.

7.7 Summary and Further Reading

Deterministic frontier models (DFMs) are underpinned by three assumptions: as-
sumption DF1 says that production possibilities sets can be represented by distance,
revenue, cost and/or profit functions; assumption DF2 says that all relevant quanti-
ties, prices and environmental variables are observed and measured without error;
and assumption DF3 says the functional forms of relevant functions are known. If
these assumptions are true, then production frontiers can be estimated using single-
equation regression models with error terms representing inefficiency. The explana-
tory variables in these models are often assumed to be deterministic. The unknown
parameters in so-called DFMs can be estimated using growth accounting (GA), least
squares (LS) and maximum likelihood (ML) methods.

Most GA ‘estimators’ are underpinned by seven assumptions: assumption GA1
says that output and input sets are homothetic; assumption GA2 says that techni-
cal change is Hicks-neutral; assumption GA3 says that production frontiers exhibit
constant returns to scale; assumptionGA4 says that inputs are strongly disposable; as-
sumptionGA5 says that firms are price takers in input markets; assumptionGA6 says
that input prices are strictly positive; and assumption GA7 says that firm managers
successfully minimise cost. If these assumptions are true, then the slope parameters
in production functions can usually be estimated using differential calculus. The as-
sociated estimates/predictions of technical and cost efficiency are equal to one. If
observed cost shares are firm- and/or time-varying, then DF1 to DF3 and GA1 to
GA7 cannot all be true. The fact that all of these assumptions are rarely true has not
diminished the popularity of the GA approach: Solow (1957) has used the approach
to estimate a production frontier for the U.S. economy; Caselli and Coleman (2006)
have used the approach to estimate a world production frontier; Hsieh and Klenow
(2009) have used the approach to study resource misallocation in China, India and
the U.S.; and O’Mahony and Timmer (2009) have used the approach to estimate the
parameters of industry-level frontiers in Europe, the U.S. and Japan.

LS estimation of DFMs involves choosing the unknown parameters to minimise
the sum of squared inefficiency effects. Most models are assumed to be linear in
the unknown parameters, and the inefficiency effects are usually assumed to be
independent random variables with a commonmean and a common variance. If these
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assumptions are true, then the ordinary least squares (OLS) estimators for the slope
parameters in the model are unbiased and consistent. However, the OLS estimator
for the intercept must be adjusted (or corrected) to ensure that the estimated frontier
envelops all the observations in the dataset. The associated estimators are commonly
referred to as corrected ordinary least squares (COLS) estimators. The idea behind
COLS estimation can be traced back at least as far as Winsten (1957, p. 283). For an
empirical application, see Tsekouras et al. (2004).

ML estimation of DFMs involves choosing the unknown parameters to maximise
the joint density (or ‘likelihood’) of the observed data. Different estimators are dis-
tinguished by different assumptions concerning the distributions of the inefficiency
effects. Schmidt (1976) assumes they are either independent exponential or inde-
pendent half-normal random variables. The associated ML estimators are equivalent
to the linear programming and quadratic programming estimators of Aigner and
Chu (1968). Afriat (1972, Sect. 3) assumes the inefficiency effects are independent
gamma random variables. If the inefficiency effects are independent and identically
distributed gamma random variables with shape parameter greater than two, then the
associated ML estimators for the model parameters are consistent, asymptotically
efficient and asymptotically normal. In all other cases (i.e., half-normal, or gamma
with shape parameter less than or equal to two), the properties of the ML estimators
are unknown. For more details, see Schmidt (1976, p. 239) and Greene (1980a, Sect.
3.2).

DFMs can be used to both measure and explain changes in TFP. Measuring
changes in TFP involves computing proper TFP index (TFPI) numbers. DFMs can be
used to compute additive, multiplicative, primal and dual TFPI numbers. Explaining
changes in TFP generally involves decomposing proper TFPI numbers into measures
of environmental change, technical change, and efficiency change. Both output-
and input-oriented decompositions are available. Whether or not it is possible to
separately identify all the components of TFP change depends on the both the TFPI
and the output and input distance functions.

There are many TFPI numbers that are not proper in the sense that they cannot
generally be written as proper output index numbers divided by proper input index
numbers. One way of decomposing such numbers is to first write them as the product
of proper TFPI numbers and statistical noise index (SNI) numbers. Subsequently,
determinitic frontier models can be used to decompose the proper TFPI numbers into
measures of technical change, environmental change and efficiency change. For an
alternative decomposition methodology that involves a DFM but does not explicitly
involve SNI numbers, see Tsekouras et al. (2004).

Other DFMs that are discussed in this chapter include metafrontier models and
systems of output supply and input demand equations. Metafrontier models are used
in situations where firm managers can be classified into two or more groups, and
where managers in different groups choose input-output combinations from poten-
tially different production possibilities sets.
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Chapter 8
Stochastic Frontier Analysis

Distance, revenue, cost and profit functions can always be written in the form of
regression models with unobserved error terms representing statistical noise and
different types of inefficiency. In practice, the noise components are almost always
assumed to be random variables (i.e., stochastic). The associated frontiers are known
as stochastic frontiers. This chapter explains how to estimate and draw inferences
concerning theunknownparameters in so-called stochastic frontiermodels (SFMs). It
then explains how the estimated parameters can be used to predict levels of efficiency
and analyse productivity change. The focus is on maximum likelihood estimators
and predictors. Maximum likelihood estimation of SFMs dates back to Aigner et al.
(1977) and Meeusen and van den Broeck (1977).

8.1 Basic Models

SFMs are underpinned by only one assumption, namely that production possibilities
sets can be represented by distance, revenue, cost and/or profit functions. Each of
these functions can be written as a single-equation regression model with two error
terms, one representing statistical noise and the other representing inefficiency.

8.1.1 Output-Oriented Models

Output-oriented SFMs are mainly used to estimate the measure of OTE defined
by (5.1). This involves estimating the output distance function. If the functional
form of this function is known, then the relationship between inputs, outputs and
environmental variables can be written in the form of (7.1). If the functional form of
the output distance function is not known, then we can instead write
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ln q1it = f t(xit, q
∗
it, zit) + vit − uit (8.1)

where q∗
it ≡ qit/q1it denotes a vector of normalised outputs, f t(.) is an approxi-

mating function chosen by the researcher, vit = − lnDt
O(xit, q∗

it, zit) − f t(xit, q∗
it, zit)

represents statistical noise, and uit ≡ − lnOTEt(xit, qit, zit) ≥ 0 denotes an output-
oriented technical inefficiency effect. If statistical noise is stochastic, then frontier
outputs are generally also stochastic (hence the term ‘stochastic frontier’). If there is
no statistical noise, then (8.1) reduces to (7.1).

In this book, statistical noise is viewed as a combination of functional form errors,
measurement errors, omitted variable errors and included variable errors. In any
given output-oriented SFM, the precise nature of statistical noise depends on both
the approximating function and the output distance function. Suppose, for example,
that the approximating function is

f t(xit, q
∗
it, zit) = α + λt +

J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − lnQ(q∗
it) (8.2)

where Q(.) is a known, nonnegative, nondecreasing, linearly-homogenous function.
In this case, Eq. (8.1) can be written as

lnQ(qit) = α + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + vit − uit (8.3)

whereQ(qit) is an aggregate output. This model has the same basic structure, but not
necessarily the same interpretation,1 as the models of Meeusen and van den Broeck
(1977, p. 436), Aigner et al. (1977, Eq. 7) and Battese and Corra (1977, Eq. 1). If
the output distance function is given by (2.9), for example, then

vit = [lnA(t) − α − λt] +
[
lnQ(qit) − 1

τ
ln

(
N∑

n=1

γnq
τ
nit

)]
. (8.4)

The first term in square brackets can be viewed as a possible functional form error.
The second term can be viewed as a possible measurement error. Importantly, the
presence of statistical noise means we cannot generally interpret the parameters in
(8.3) in the same way we interpreted the parameters in (7.3). For example, unless
we know (or assume) that vit is not a function of xmit , we cannot interpret βm as
an elasticity that measures the percent change in the aggregate output due to a one
percent change in the m-th input.

1The dependent variable in the Aigner et al. (1977) model is an output, not the logarithm of an
output. The dependent variable in the Battese and Corra (1977) model is a value, not the logarithm
of a quantity. If there is no statistical noise and the dependent variable is either an output or a value,
then uit can no longer be interpreted as an output-oriented technical inefficiency effect.
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8.1.2 Input-Oriented Models

Input-oriented SFMs aremainly used to estimate themeasure of ITE defined by (5.8).
This involves estimating the input distance function. If the functional form of this
function is known, then the relationship between inputs, outputs and environmental
variables can be written in the form of (7.4). If the functional form of the input
distance function is not known, then we can instead write

− ln x1it = f t(x∗
it, qit, zit) + vit − uit (8.5)

where x∗
it ≡ xit/x1it denotes a vector of normalised inputs, f t(.) is an

approximating function chosen by the researcher, vit = lnDt
I (x

∗
it, qit, zit) −

f t(x∗
it, qit, zit) represents statistical noise, and uit ≡ ITEt(xit, qit, zit) ≥ 0 now de-

notes an input-oriented technical inefficiency effect. If statistical noise is stochastic,
then, frontier inputs are generally also stochastic. If there is no statistical noise, then
(8.5) reduces to (7.4).

In any given input-oriented SFM, the precise nature of statistical noise depends
on both the approximating function and the input distance function. Suppose, for
example, that the approximating function is

f t(x∗
it, qit, zit) = ξ +

J∑

j=1

κ j ln z jit + lnX (x∗
it) −

N∑

n=1

αn ln qnit (8.6)

where X (.) is a known, nonnegative, nondecreasing, linearly-homogenous function.
In this case, Eq. (8.5) can be written as

− lnX (xit) = ξ +
J∑

j=1

κ j ln z jit −
N∑

n=1

αn ln qnit + vit − uit (8.7)

where X (xit) is an aggregate input. This model has the same basic structure as the
input-oriented SFM of O’Donnell and Nguyen (2013, Eq. 21). If the input distance
function is given by (2.13), for example, then

vit = [ξ(t) − ξ ] +
[

M∑

m=1

λm ln xmit − lnX (xit)

]

+
[

N∑

n=1

αn ln qnit − 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)]
(8.8)

where ξ(t) ≡ lnB(t). The first term in square brackets can be viewed as an omitted
dummy variable error. The second term is a possible measurement error. The last
term is a functional form error. Again, the presence of statistical noise means we



328 8 Stochastic Frontier Analysis

cannot generally interpret the parameters in (8.7) in the same way we interpreted
the parameters in (7.6). For example, unless we know (or assume) that vit is not
a function of z jit , we cannot interpret κ j as an elasticity that measures the percent
change in the aggregate input due to a one percent change in the j-th environmental
variable. The presence of statistical noise also means it is not generally possible to
establish relationships between the parameters in (8.7) and the parameters in other
SFMs. For example, unless we know (or assume) the precise nature of statistical
noise, we cannot establish the relationship between κ j in (8.7) and δ j in (8.3).

8.1.3 Revenue-Oriented Models

Revenue-oriented SFMs are mainly used to estimate the measure of RE defined
by (5.15). This involves estimating the revenue function. If the functional form of
the revenue function is known, then the relationship between total revenue, input
quantities, output prices and environmental variables can be written in the form of
(7.7). If the functional form of the revenue function is not known, then we can instead
write

ln(Rit/p1it) = f t(xit, p
∗
it, zit) + vit − uit (8.9)

where p∗
it ≡ pit/p1it denotes a vector of normalised output prices, f t(.) is an approx-

imating function chosen by the researcher, vit = lnRt(xit, p∗
it, zit) − f t(xit, p∗

it, zit)
represents statistical noise, and uit ≡ − lnREt(xit, pit, qit, zit) ≥ 0 denotes a revenue
inefficiency effect. If statistical noise is stochastic, then maximum normalised rev-
enue is generally also stochastic. If there is no statistical noise, then (8.9) reduces to
(7.7).

In any given revenue-oriented SFM, the precise nature of statistical noise depends
on both the approximating function and the revenue function. Suppose, for example,
the approximating function is

f t(xit, p
∗
it, zit) = α +

M∑

m=1

βm ln xmit +
M∑

m=1

M∑

h=m

βmh ln xmit ln xhit

+
N∑

n=1

αn ln p
∗
nit +

N∑

n=1

N∑

h=n

αnh ln p
∗
nit ln p

∗
hit

+
M∑

m=1

N∑

n=1

θmn ln xmit ln p
∗
nit (8.10)
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In this case, Eq. (8.9) takes the form

ln(Rit/p1it) = α +
M∑

m=1

βm ln xmit +
M∑

m=1

M∑

h=m

βmh ln xmit ln xhit

+
N∑

n=1

αn ln p
∗
nit +

N∑

n=1

N∑

h=n

αnh ln p
∗
nit ln p

∗
hit

+
M∑

m=1

N∑

n=1

θmn ln xmit ln p
∗
nit + vit − uit . (8.11)

This model has the same basic structure as the revenue-oriented SFM of Byma and
Tauer (2007, Eq. 18). If the revenue function is given by (2.17), for example, then,

vit = [lnA(t) − α] +
⎡

⎣
J∑

j=1

δ j ln z jit

⎤

⎦ −
[ M∑

m=1

M∑

h=m

βmh ln xmit ln xhit

+
N∑

n=1

N∑

h=n

αnh ln p
∗
nit ln p

∗
hit +

M∑

m=1

N∑

n=1

θmn ln xmit ln p
∗
nit

]

+
[

1

1 − σ
ln

(
N∑

n=1

γ σ
n p

∗1−σ
nit

)
−

N∑

n=1

αn ln p
∗
nit

]
. (8.12)

The first term in square brackets can be viewed as an omitted dummy variable error.
The second term is an omitted environmental variable error. The third term can be
viewed as an included variable error. The last term is a functional form error. Again,
the presence of statistical noise means we cannot generally interpret the parameters
in (8.11) in the same way we interpreted the parameters in (7.9). For example, unless
we know (or assume) that vit is not a function of xmit , we cannot simply differentiate
(8.11) and interpret ∂ ln(Rit/p1it)/∂ ln xmit as an elasticity that measures the percent
increase in normalised revenue due to a one percent increase in them-th input. Again,
the presence of statistical noise also means it is not generally possible to establish
relationships between the parameters in (8.11) and the parameters in other SFMs.

8.1.4 Cost-Oriented Models

Cost-oriented SFMs aremainly used to estimate themeasure of CE defined by (5.20).
This involves estimating the cost function. If the functional form of the cost function
is known, then the relationship between total cost, input prices, output quantities and
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environmental variables can be written in the form of (7.10). If the functional form
of the cost function is not known, then we can instead write

− ln(Cit/w1it) = f t(w∗
it, qit, zit) + vit − uit (8.13)

where w∗
it ≡ wit/w1it denotes a vector of normalised input prices, f t(.) is an

approximating function chosen by the researcher, vit = − lnCt(w∗
it, qit, zit)−

f t(w∗
it, qit, zit) represents statistical noise, anduit ≡ − lnCEt(wit, xit, qit, zit) ≥ 0 de-

notes a cost inefficiency effect. If statistical noise is stochastic, then minimum nor-
malised cost is generally also stochastic. If there is no statistical noise, then (8.13)
reduces to (7.10).

In any given cost-oriented SFM, the precise nature of statistical noise depends on
both the approximating function and the cost function. Suppose, for example, the
approximating function is

f t(w∗
it, qit, zit) = θ −

M∑

m=1

λm lnw∗
mit − ψ lnQ(qit)

where Q(.) is a known, nonnegative, nondecreasing, linearly-homogenous function.
In this case, Eq. (8.13) takes the form

− ln(Cit/w1it) = θ −
M∑

m=1

λm lnw∗
mit − ψ lnQ(qit) + vit − uit (8.14)

where Q(qit) is an aggregate output. This model has the same basic structure as the
cost-oriented SFM of Herr (2008, Eq. 2). If the cost function is given by (2.22), for
example, then,

vit = [θ(t) − θ ] +
⎡

⎣
J∑

j=1

κ j ln z jit

⎤

⎦ +
[
ψ lnQ(qit) − 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)]
(8.15)

where θ(t) ≡ lnB(t) + ∑
m λm ln λm. The first term in square brackets can be viewed

as an omitted dummy variable error. The second term is an omitted environmental
variable error. The last term is a possible measurement error. Again, the presence of
statistical noise means we cannot generally interpret the parameters in (8.14) in the
same way we interpreted the parameters in (7.12). For example, unless we know (or
assume) that vit is not a function of w∗

mit , we cannot interpret λm as an elasticity that
measures the percent increase in normalised cost due to a one percent increase in the
m-th normalised input price. Again, the presence of statistical noise also means it
is not generally possible to establish relationships between the parameters in (8.14)
and the parameters in other SFMs.
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8.1.5 Profit-Oriented Models

Profit-oriented SFMs are mainly used to estimate the measure of PE defined by
(5.27). This involves estimating the profit function. If the functional form of the profit
function is known, then the relationship between total profit, prices and environmental
variables can be written in the form of (7.13). If the functional form of the profit
function is not known, then we can instead write

ln(Πit/p1it) = f t(w∗
it, p

∗
it, zit) + vit − uit (8.16)

where w∗
it ≡ wit/p1it denotes a vector of normalised input prices, p∗

it ≡ pit/p1it de-
notes a vector of normalised output prices, f t(.) is an approximating function cho-
sen by the researcher, vit = lnΠ t(w∗

it, p
∗
it, zit) − f t(w∗

it, p
∗
it, zit) represents statistical

noise, and uit ≡ − lnPEt(wit, xit, pit, qit, zit) ≥ 0 denotes a profit inefficiency effect.
If statistical noise is stochastic, then maximum normalised profit is generally also
stochastic. If there is no statistical noise, then (8.16) reduces to (7.13).

In any given profit-oriented SFM, the precise nature of statistical noise depends
on both the approximating function and the profit function. Suppose, for example,
the approximating function is

f t(w∗
it, p

∗
it, zit) = φ +

J∑

j=1

δ∗
j ln z jit −

M∑

m=1

β∗
m lnw∗

mit +
N∑

n=1

αn ln p
∗
nit

In this case, Eq. (8.16) takes the form

ln(Πit/p1it) = φ +
J∑

j=1

δ∗
j ln z jit −

M∑

m=1

β∗
m lnw∗

mit +
N∑

n=1

αn ln p
∗
nit + vit − uit .

(8.17)

If the profit function is given by (2.27), for example, then

vit = [φ(t) − φ] +
[

1

(1 − σ)(1 − η)
ln

(
N∑

n=1

γ σ
n p

∗1−σ
nit

)
−

N∑

n=1

αn ln p
∗
nit

]
(8.18)

where φ(t) ≡ ln(1 − η) + (lnA(t) + ∑
m βm ln βm)/(1− η). The first term in square

brackets can be viewed as an omitted dummy variable error. The second term can be
viewed as a functional form error. Again, the presence of statistical noise means we
cannot generally interpret the parameters in (8.17) in the same way we interpreted
the parameters in (7.15). For example, unless we know (or assume) that vit is not a
function of w∗

mit , we cannot interpret β∗
m as an elasticity that measures the percent

decrease in normalised profit due to a one percent increase in the m-th normalised
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input price. Again, the presence of statistical noise also means it is not generally pos-
sible to establish relationships between the parameters in (8.17) and the parameters
in other SFMs.

8.2 Least Squares Estimation

Least squares (LS) estimation of SFMs involves choosing the unknown parameters
to minimise the sum of squared noise and inefficiency effects. For simplicity, this
section considers estimation of the output-oriented model defined by (8.3). This
model can be written more compactly as

yit = α + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + εit (8.19)

where yit = lnQ(qit) is the logarithm of the aggregate output and εit ≡ vit − uit is
a composite error representing statistical noise and output-oriented technical inef-
ficiency. To estimate the unknown parameters, we need to make some assumptions
about this composite error.

8.2.1 Assumptions

It is common to assume that εit is a random variable with the following properties:

LS5 E(εit) = −μ ≤ 0 for all i and t,
LS6 var(εit) = σ 2

ε for all i and t,
LS7 cov(εit, εks) = 0 if i �= k or t �= s, and
LS8 εit is uncorrelated with the explanatory variables.

LS5 says that the composite errors have the same mean. LS6 says they are ho-
moskedastic. LS7 says they are serially and spatially uncorrelated. LS8 is self-
explanatory.

8.2.2 Estimation

If LS5 is true, then (8.19) can be rewritten as

yit = α∗ + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + eit (8.20)
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where α∗ ≡ α − μ is a fixed parameter and eit ≡ vit − uit + μ is a random variable
with a mean of zero. This equation has the same structure, but not the same inter-
pretation,2 as (7.19). If LS5 and LS8 are true, then the ordinary least squares (OLS)
estimators for α∗ and the slope parameters are unbiased and consistent. Consistent
estimators forμ and α are also available, but only by making additional assumptions
concerning the noise and inefficiency effects. In the efficiency literature, it is com-
mon to assume that vit is a normal random variable and uit is a half-normal random
variable. In this case, a consistent estimator for μ is μ̂ = [2s3/(π − 4)]1/3 where s3
denotes the third moment of the OLS residuals.3 The associated estimator for α is
α̂ = α̂∗ + μ̂ where α̂∗ denotes the OLS estimator for α∗. In this book,4 α̂ and the
OLS estimators for the slope parameters are collectively referred to as modified ordi-
nary least squares (MOLS) estimators. MOLS estimators are rarely used in practice
because they are less efficient than maximum likelihood (ML) estimators.

It is common to impose linear equality restrictions on the parameters in models
such as (8.20). If the restrictions (and LS5 and LS8) are true, then restricted least
squares (RLS) estimators for the slope parameters are consistent. Again, a consistent
estimator for the intercept can be obtained by modifying the RLS estimator for the
intercept by an amount that depends on the distributions of the noise and inefficiency
effects. In this book, the associated estimators are collectively referred to as modified
restricted least squares (MRLS) estimators. Again, MRLS estimators are rarely used
in practice because they are less efficient than ML estimators.

Finally, Eq. (8.20) is linear in the unknown parameters. Some SFMs are nonlinear
in the unknown parameters. If such a model contains an intercept term and LS5 and
LS8 are true, then nonlinear least squares (NLS) estimators for the slope parameters
are consistent; for details, see Meesters (2013). Again, a consistent estimator for
the intercept can be obtained by modifying the NLS estimator for the intercept by
an amount that depends on the distributions of the noise and inefficiency effects. In
this book, the associated estimators are collectively referred to as modified nonlinear
least squares (MNLS) estimators. Again,MNLS estimators are rarely used in practice
because they are less efficient than ML estimators.

8.2.3 Prediction

We have been using uit to denote the inefficiency of firm i in period t. The associated
measure of efficiency is exp(−uit). LS predictors for these variables are available,
but only under stronger assumptions than LS5 to LS8. In the efficiency literature, it

2The error term in (7.19) is a mean-corrected inefficiency effect, whereas the error term in (8.20)
is a mean-corrected noise and inefficiency effect.
3The n-th moment of the OLS residuals is sn = ∑T

t
∑It

i ênit/
∑T

t It where êit denotes the it-th
residual and It is the number of firms in the dataset in period t.
4Elsewhere, these estimators are sometimes referred to as corrected ordinary least squares (COLS)
estimators; see, for example, Horrace and Schmidt (1996, p. 260). In this book, the term COLS is
reserved for LS estimators for the parameters in deterministic frontier models.
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is common to assume that vit is an independent N (0, σ 2
v ) random variable and uit is

an independent N+(0, σ 2
u ) random variable. If these assumptions are true, then LS

predictors for uit and exp(−uit) can be obtained by substituting the LS estimators
into the following:

E(uit |εit) = μ∗
it + σ∗

(
φ(μ∗

it/σ∗)
Φ(μ∗

it/σ∗)

)
(8.21)

and E(exp(−uit)|εit) = exp
(
σ 2

∗ /2 − μ∗
it

) (
Φ(μ∗

it/σ∗ − σ∗)
Φ(μ∗

it/σ∗)

)
(8.22)

where μ∗
it ≡ (−εitσ

2
u )/(σ 2

v + σ 2
u ) and σ 2∗ ≡ σ 2

v σ 2
u /(σ 2

v + σ 2
u ). These predictors are

rarely used in practice, for three main reasons. First, the LS estimator for σ 2
u is

σ̂ 2
u =

(π

2

)1/3
(

πs3
π − 4

)2/3

where s3 is the third moment of the LS residuals. If s3 > 0, then σ̂ 2
u is not mathe-

matically well-defined. In such cases, it is common5 to set σ 2
u = 0 and estimate a

standard multiple regression model. Second, the LS estimator for σ 2
v is

σ̂ 2
v = s2 −

(
π − 2

π

)
σ̂ 2
u

where s2 is the second moment of the LS residuals. If σ̂ 2
u is sufficiently large, then

σ̂ 2
v < 0. This is theoretically implausible (variances cannot be negative). In such

cases, it would be reasonable to set σ 2
v = 0 and estimate a deterministic frontier

model. Finally, if the probability distributions of the noise and inefficiency effects
are known, then LS predictors are less efficient than ML predictors.

8.2.4 Hypothesis Tests

Even though they cannot generally be given an economic interpretation, it is common
to test hypotheses concerning the slope parameters in SFMs. It is also common to
test some or all of assumptions LS5 to LS8; tests of these assumptions are tests for
fixed effects, heteroskedasticity, autocorrelation and endogeneity (respectively). If
the data are time-series or panel data, then it is advisable to test whether any of the
explanatory variables in the model are difference-stationary. If so, then it is advisable
to test whether the dependent and explanatory variables are cointegrated. All of these
tests can be conducted using LS residuals and the testing procedures described in

5See, for example, Coelli (1995, p. 250).
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Sect. 7.3.4. Other hypothesis tests that can be conducted using LS residuals include
tests for skewness and tests for random effects.

8.2.4.1 Skewness

If the distribution of vit is symmetric anduit > 0, then the distribution of εit ≡ vit − uit
is left-skewed (⇒ it has a relatively long left-hand tail and the mean is less than the
mode). A test of the null hypothesis that the distribution of εit is symmetric against
the alternative that it is left-skewed (or ‘negatively-skewed’) can be viewed as a test
of the null hypothesis that there are no inefficiency effects. Tests for skewness can
be found in Schmidt and Lin (1984, p. 351),6 Coelli (1995, p. 253), Kuosmanen and
Fosgerau (2009) and Henderson and Parmeter (2015).

8.2.4.2 Random Effects

When using panel data, it is common to test for firm- and/or time-invariant random
effects. To illustrate the main idea, suppose that vit = v∗

it + wi where v∗
it is a random

variable with a mean of zero and wi is an independent random variable with a mean
of zero and a variance of σ 2

w. If this is true, and if LS5 is also true, then (8.20) can be
rewritten as

yit = α∗ + wi + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit + e∗
it (8.23)

where α∗ ≡ α − μ is a fixed parameter and e∗
it ≡ v∗

it − uit + μ is a random variable
with a mean of zero. If σ 2

w = 0, then wi = 0 and (8.23) reduces to (8.20). Equation
(8.23) has the same basic structure as the standard random effects model discussed in
introductory econometrics textbooks; see, for example, Hill et al. (2011, Sect. 15.4).
In the efficiency literature, it is commonly referred to as a ‘true’ random effects
(TRE) model; this terminology can be traced back to Greene (2005, p. 11). A test of
the null hypothesis that σ 2

w = 0 against the alternative that σ 2
w > 0 is known as a test

for (time-invariant) random effects. A Lagrange multiplier test of this null against
this alternative can be found in Hill et al. (2011, p. 554).

8.2.5 Toy Example

Reconsider the toy data reported earlier in Tables1.1 and 1.2. These data have been
used to obtain MOLS and MRLS estimates of the parameters in (8.3). The estimates

6Schmidt and Lin (1984) describe their test as a ‘test of the existence of a frontier’.
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Table 8.1 LS parameter estimates

MOLS MRLS

Parameter Est. St. err. t Est. St. err. t

α 1.130 0.253 4.464∗∗∗ 1.026 0.129 7.941∗∗∗

λ −0.040 0.071 −0.564 0.000 0.000 NaN

δ1 −0.151 0.314 −0.481 −0.182 0.304 −0.598

β1 0.281 0.107 2.628∗∗∗ 0.274 0.105 2.621∗∗∗

β2 0.043 0.066 0.645 0.034 0.063 0.533
∗∗∗, ∗∗ and ∗ indicate significance at the 1, 5 and 10% levels

Table 8.2 LS predictions of OTE

Row Firm Period MOLS MRLS

A 1 1 0.482 0.489

B 2 1 0.547 0.553

C 3 1 0.769 0.784

D 4 1 0.738 0.752

E 5 1 0.804 0.817

F 1 2 0.549 0.549

G 2 2 0.810 0.820

H 3 2 0.836 0.835

I 4 2 0.791 0.793

J 5 2 0.820 0.815

K 1 3 0.842 0.841

L 2 3 0.821 0.818

M 3 3 0.724 0.715

N 4 3 0.521 0.492

O 5 3 0.773 0.773

P 1 4 0.576 0.539

R 2 4 0.760 0.741

S 3 4 0.514 0.485

T 4 4 0.851 0.847

U 5 4 0.541 0.503

V 1 5 0.856 0.843

W 2 5 0.798 0.779

X 3 5 0.559 0.515

Y 4 5 0.572 0.522

Z 5 5 0.789 0.766

Geometric mean 0.693 0.680
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are reported in Table 8.1. Both sets of estimates were obtained under the assump-
tion that vit is an independent N (0, σ 2

v ) random variable and uit is an independent
N+(0, σ 2

u ) random variable. The MRLS estimates were obtained by imposing the
restriction that λ ≥ 0. Both sets of estimates have been used to predict levels of
output-oriented technical efficiency (OTE). The predictions are reported in Table
8.2. The presence of statistical noise means it is not possible to use the parameter
estimates reported in Table 8.1 to predict levels of input-oriented technical efficiency
(ITE).

8.3 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation of SFMs involves choosing the unknown
parameters to maximise the joint density (or ‘likelihood’) of the observed data. For
simplicity, this section considers estimation of the following output-oriented model:

yit = α + f t(xit, zit) + vit − uit (8.24)

where yit denotes the logarithm of an aggregate output, f t(.) is a known approxi-
mating function, vit represents statistical noise, and uit denotes an output-oriented
technical inefficiency effect. The joint density of the observed data depends on the
assumed probability distributions of the noise and inefficiency effects.

8.3.1 Assumptions

It is common7 to assume that

ML3 vit is an independent N (0, σ 2
v ) random variable, and

ML4 uit is an independent N+(μ, σ 2
u ) random variable.

In this context, the term ‘independent’ means that the noise and inefficiency effects
are neither correlated with each other nor correlated with the explanatory variables
(i.e., all these variables are mutually independent). ML3 says that vit is an indepen-
dent normal random variable. ML4 says that uit is an independent truncated-normal
random variable obtained by lower-truncating the N (μ, σ 2

u ) distribution at zero. So-
called normal-truncated-normalmodels can be traced back at least as far as Stevenson
(1980). If μ = 0, then the truncated-normal distribution collapses to a half-normal
distribution. So-called normal-half-normal models can be traced back to Aigner et al.
(1977). If ML3 and ML4 are true, then ML estimators for the model parameters are
consistent, asymptotically efficient and asymptotically normal.

7See, for example, Stevenson (1980), Battese and Coelli (1995) and Salas-Velasco (2018).
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8.3.2 Estimation

Finding the parameter values that maximise the likelihood function is equivalent to
finding the parameter values that maximise the logarithm of the likelihood function.
If, for example, ML3 and ML4 are true, then the so-called log-likelihood function is

ln L(y|X , θ) = N ln

(
2√
2πσ 2

)
− 1

2

T∑

t=1

It∑

i=1

(
εit + μ

σ

)2

+
T∑

t=1

It∑

i=1

lnΦ

(
μ

σλ
− λεit

σ

)
(8.25)

where It denotes the number of firms in the dataset in period t, N ≡ ∑
t It denotes

the total number of observations in the dataset, εit ≡ yit − α − f t(xit, zit) can be
viewed a composite error representing statistical noise and inefficiency, y denotes a
vector containing all the observations on yit , X denotes a matrix containing all the
observations on xit and zit , Φ(.) denotes the standard normal cumulative distribution
function (CDF), and θ denotes a vector containing α, μ, σ 2 ≡ σ 2

u + σ 2
v , λ ≡ σu/σv,

and all the unknown parameters in f t(.). In practice, ML estimates of the unknown
parameters are invariably obtained by maximising the log-likelihood function nu-
merically. Following estimation, ML estimates of E(uit) and E(exp[−uit]) can be
obtained by using the ML estimates of μ and σu to evaluate the following:

E(uit) = μ + σu

(
φ(μ/σu)

Φ(μ/σu)

)
(8.26)

and E(exp[−uit]) = exp
(
σ 2
u /2 − μ

) (
Φ(μ/σu − σu)

Φ(μ/σu)

)
(8.27)

whereφ(.) denotes the standard normal probability density function (PDF). Ifμ = 0,
then E(uit) = σu

√
2/π ≈ 0.79788σu and E(exp[−uit]) = 2Φ(−σu) exp(σ 2

u /2).

8.3.3 Prediction

Let μ∗
it ≡ (μσ 2

v − εitσ
2
u )/(σ 2

v + σ 2
u ) and σ 2∗ ≡ σ 2

v σ 2
u /(σ 2

v + σ 2
u ). If ML3 and ML4

are true, then the conditional distribution of uit given εit is that of an N+(μ∗
it, σ

2∗ )

random variable (Battese and Coelli 1993, Eq. A.9). It follows that8

8These equations follow from (A.48) and (A.51) in Appendix A.7. If the data are cross-section data
and μ = 0, then (8.28) reduces to equation (2) in Jondrow et al. (1982).
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E(uit |εit) = μ∗
it + σ∗

(
φ(μ∗

it/σ∗)
Φ(μ∗

it/σ∗)

)
(8.28)

and E(exp(−uit)|εit) = exp
(
σ 2

∗ /2 − μ∗
it

) (
Φ(μ∗

it/σ∗ − σ∗)
Φ(μ∗

it/σ∗)

)
. (8.29)

ML predictions of uit and exp(−uit) are usually obtained by using the ML parameter
estimates to evaluate these two equations. Jondrow et al. (1982, p. 235) observe that
the variance of uit conditional on εit does not go to zero as the sample size becomes
infinitely large. Consequently, these ML predictors are inconsistent.

8.3.4 Hypothesis Tests

Even though they cannot generally be given an economic interpretation, it is common
to test hypotheses concerning the parameters in SFMs. It is also common to test for
fixed effects, heteroskedasticity, autocorrelation, endogeneity, unit roots, cointegra-
tion, skewness and various random effects. As we have seen, all of these tests can be
conducted using LS residuals. If distributional assumptions like ML3 and ML4 are
true, then many of them can also be conducted using likelihood ratio (LR) tests.

8.3.4.1 Parameters

Let θ denote a vector containing all the unknown parameters in the SFM, and let
g(θ) be a vector of J independent functions of θ . To conduct an LR test of the null
hypothesis that g(θ) = 0 against the alternative that g(θ) �= 0, we must compute the
following statistic:

LR = 2(LLFU − LLFR) (8.30)

where LLFR denotes the value of the restricted log-likelihood function (obtained by
estimating the parameters subject to the restrictions specified under the null hypothe-
sis) and LLFU denotes the value of the unrestricted log-likelihood function (obtained
by estimating the parameters without any restrictions). If the null hypothesis is true,
then this statistic is asymptotically distributed as a chi-square random variable with
J degrees of freedom. Thus, we should reject the null hypothesis at the α level of
significance if the sample size is large and LR > χ2

(1−α,J ).
The two-sided alternative hypotheses g(θ) �= 0 is not generally relevant when

testing restrictions concerning variances (variances cannot be negative). To test the
null hypothesis that a variance parameter is equal to zero against the alternative that
it is nonnegative, we can still compute the LR statistic given by (8.30). However,
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according to Coelli (1995, p. 252),9 the asymptotic distribution of this statistic is
now a mixture of chi-squared distributions. In this case, we should reject the null
hypothesis at the α level of significance if the sample size is large and LR > χ2

(1−2α,1).

8.3.4.2 Fixed Effects

AssumptionML3 implies that the noise effects have amean of zero. Different tests of
this assumption are distinguished by the form of the alternative hypothesis. Several
alternative hypotheses have been considered in the literature. A relatively flexible
alternative hypothesis is that, for all i and t, E(vit) = δi + λt . If this is true, then
(8.24) can be rewritten as

yit = αi + λt + f t(xit, zit) + v∗
it − uit (8.31)

where αi = α + δi is a firm-specific fixed effect, λt is a period-specific fixed effect,
and v∗

it = vit − δi − λt is a random variable with a mean of zero. This equation has
the same basic structure as the SFM of Kumbhakar (1991, Eqs. 1, 2). If λt = 0 for
all t, then it reduces to a model that has the same basic structure as the true fixed
effects (TFE) model of Greene (2004, p. 277; 2005, p. 11). If the dataset contains
observations on I firms over T periods, then the unknown parameters in (8.31) can be
estimated by replacing α in (8.24) with I + T − 1 firm- and period-specific dummy
variables. A test of the null hypothesis that all the dummy variable coefficients are
equal to each other can be viewed as a test of the null hypothesis that the noise effects
have a mean of zero. If standard regularity conditions hold, then a likelihood ratio
test of this hypothesis is asymptotically valid.

8.3.4.3 Heteroskedasticity

Assumptions ML3 and ML4 imply that the noise and inefficiency effects are ho-
moskedastic. Again, different tests of this assumption are distinguished by the form
of the alternative hypothesis. Again, several alternative hypotheses have been con-
sidered in the literature. For example, Caudill and Ford (1993) consider a normal-
half-normal cross-section data model in which the pre-truncation variance of the
inefficiency effects is a nonlinear function of inputs. This assumption implies that
mean inefficiency also varies with inputs. This form of heteroskedasticity is quite
unlike the type of heteroskedasticity that is typically discussed in econometric text-
books (i.e., error terms with the same mean but different variances). A form of
heteroskedasticity where the composite error terms have the same mean but different
variances could be accommodated by assuming the noise effects are heteroskedastic
and the inefficiency effects are homoskedastic.

9Coelli (1995) attributes this result to Gouriéroux et al. (1982). Those authors derive their results
in the context of a linear regression model with a normally distributed error term. It is not obvious
that their results carry over to the case of a (composite) error term that is not normally distributed.
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8.3.4.4 Autocorrelation

Assumptions ML3 and ML4 imply that the noise and inefficiency effects are serially
and spatially uncorrelated. Again, different tests of these assumptions are distin-
guished by the form of the alternative hypothesis. A limited number of alternative
hypotheses have been considered in the literature. Recently, Huang et al. (2018) con-
sider a panel data model with firm-specific random effects and a normal-half-normal
composite error term that is assumed to follow an autoregressive moving average
(ARMA) process. Lai and Kumbhakar (2018) consider a normal-half-normal panel
data model in which the inefficiency effects are assumed to follow an autoregressive
(AR) process of order one.

8.3.4.5 Random Effects

Suppose that vit = v∗
it + wi where v∗

it is a random variable with a mean of zero and
wi is an independent random variable with a mean of zero and a variance of σ 2

w. If
this is true, and if ML4 is also true, then (8.24) can be rewritten as

yit = α∗ + wi + f t(xit, zit) + e∗
it (8.32)

where α∗ ≡ α − μ is a fixed parameter and e∗
it ≡ v∗

it − uit + μ is a random variable
with a mean of zero. This equation has the same basic structure as the TRE model
defined by (8.23). Again, a test of the null hypothesis that σ 2

w = 0 against the alter-
native that σ 2

w > 0 is known as a test for (time-invariant) random effects. Again, if
standard regularity conditions hold, then a likelihood ratio test of this hypothesis is
asymptotically valid.

8.3.5 Toy Example

Reconsider the toy data reported earlier in Tables1.1 and 1.2. These data have been
used to obtain ML and restricted ML (RML) estimates of the parameters in (8.19).
The estimates are reported in Table 8.3. Both sets of estimates were obtained under
assumptionsML3 andML4. The RML estimates were obtained by restricting λ = 0.
Both sets of estimates have been used to predict levels of OTE. The predictions are
reported in Table 8.4.

The presence of statistical noise means it is not possible to use the parameter
estimates reported in Table 8.3 to predict levels of input-oriented technical efficiency
(ITE). To predict levels of ITE, we must estimate an input-oriented SFM. The toy
data in Tables1.1 and 1.2 have been used to obtain ML and RML estimates of the
parameters in the input-oriented model defined by (8.7). The estimates are reported
in Table 8.5. Again, both sets of estimates were obtained under assumptions ML3
and ML4. The RML estimates were obtained by restricting α1 + α2 = 1. Both sets
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Table 8.3 ML parameter estimates

ML RML

Parameter Est. St. err. t Est. St. err. t

α 1.040 0.756 1.376 1.165 0.497 2.345∗

λ 0.035 0.146 0.242 0 0 NaN

δ1 −0.184 0.274 −0.671 −0.182 0.860 −0.212

β1 0.145 0.230 0.631 0.244 0.812 0.301

β2 0.019 0.118 0.163 0.041 0.532 0.078

σ 2 ≡ σ 2
u + σ 2

v 0.501 0.332 1.508 0.475 1.000 0.475

γ ≡ σ 2
u /σ 2 1.000 1.0E−7 6.8E+3∗∗∗ 0.998 0.267 3.733∗∗∗

μ −0.080 0.492 −0.162 0.000 0.999 0.000
∗∗∗, ∗∗ and ∗ indicate significance at the 1, 5 and 10% levels

Table 8.4 ML predictions of OTE

Row Firm Period ML RML

A 1 1 0.341 0.313

B 2 1 0.376 0.369

C 3 1 0.809 0.740

D 4 1 0.720 0.661

E 5 1 0.936 0.859

F 1 2 0.383 0.372

G 2 2 0.955 0.882

H 3 2 0.577 0.837

I 4 2 0.925 0.834

J 5 2 0.980 0.933

K 1 3 0.989 0.963

L 2 3 0.878 0.861

M 3 3 0.619 0.589

N 4 3 0.271 0.309

O 5 3 0.723 0.709

P 1 4 0.331 0.357

R 2 4 0.624 0.635

S 3 4 0.325 0.318

T 4 4 0.995 0.980

U 5 4 0.314 0.328

V 1 5 0.934 0.970

W 2 5 0.683 0.726

X 3 5 0.328 0.344

Y 4 5 0.312 0.341

Z 5 5 0.726 0.705

Geometric mean 0.583 0.585
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Table 8.5 ML parameter estimates

ML RML

Parameter Est. St. err. t Est. St. err. t

ξ 0.504 0.777 0.649 0.549 1.661 0.331

κ1 0.154 0.233 0.662 0.196 0.219 0.895

α1 0.688 0.176 3.909∗∗∗ 0.846 0.029 29.396∗∗∗

α2 0.121 0.045 2.698∗∗∗ 0.154 0.029 5.344∗∗∗

σ 2 ≡ σ 2
u + σ 2

v 0.128 0.055 2.319∗∗ 0.133 0.123 1.075

γ ≡ σ 2
u /σ 2 0.005 0.431 0.011 0.004 0.923 0.005

μ −0.050 1.186 −0.042 −0.049 1.893 −0.026
∗∗∗, ∗∗ and ∗ indicate significance at the 1, 5 and 10% levels

of estimates have been used to predict levels of ITE. The predictions are reported in
Table 8.6.

8.4 Bayesian Estimation

Bayesian estimation of SFMs involves summarising sample and non-sample infor-
mation about the unknown parameters in terms of a posterior probability density
function (PDF). One of the advantages of the Bayesian approach is that it provides
a formal mechanism for incorporating almost any type of non-sample information
into the estimation process; this mechanism comes in the form of Bayes’s theorem.
Another advantage of the approach is that it is possible to draw exact finite-sample
inferences concerning nonlinear functions of the unknown model parameters (e.g.,
measures of efficiency). For simplicity, this section considers estimation of the fol-
lowing output-oriented model:

yit = x′
itβ + vit − uit (8.33)

where yit denotes the logarithm of an aggregate output, xit denotes a K × 1 vector
of nonstochastic explanatory variables, β = (β1, . . . , βK )′ is an associated vector
of unknown parameters, vit represents statistical noise, and uit denotes an output-
oriented technical inefficiency effect. If the dataset contains N observations, then it
is convenient to write

y = X ′β + v − u (8.34)

where y denotes anN × 1 vector containing all the observations on yit ,X is anN × K
design matrix containing all the observations on xit , v denotes an N × 1 vector of
noise components, and u denotes an N × 1 vector of inefficiency effects.
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Table 8.6 ML predictions of ITE

Row Firm Period ML RML

A 1 1 0.990 0.991

B 2 1 0.991 0.991

C 3 1 0.991 0.991

D 4 1 0.991 0.991

E 5 1 0.991 0.991

F 1 2 0.991 0.991

G 2 2 0.991 0.991

H 3 2 0.991 0.991

I 4 2 0.991 0.991

J 5 2 0.991 0.991

K 1 3 0.991 0.991

L 2 3 0.990 0.991

M 3 3 0.990 0.991

N 4 3 0.991 0.991

O 5 3 0.991 0.991

P 1 4 0.991 0.991

R 2 4 0.991 0.991

S 3 4 0.991 0.991

T 4 4 0.991 0.991

U 5 4 0.991 0.991

V 1 5 0.991 0.991

W 2 5 0.991 0.991

X 3 5 0.991 0.991

Y 4 5 0.991 0.991

Z 5 5 0.990 0.991

Geometric mean 0.991 0.991

8.4.1 Bayes’s Theorem

Let θ denote a vector of unknown model parameters. Bayes’s theorem says that10

p(θ |y) = p(y|θ)p(θ)

p(y)
. (8.35)

The term p(θ) is known as the prior PDF; it summarises what we know about the
unknown parameters before we observe the data. The term p(y|θ) is the usual likeli-

10In the present context, Bayes’s theorem actually says that p(θ |X , y) = p(y|X , θ)p(θ |X )/p(y|X ).
However, it is notationally convenient, and common practice, to suppress the X .
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hood function. The term p(θ |y) is known as the posterior PDF; it summarises what
we know about the unknown parameters after we observe the data. The term p(y) is
known as the marginal likelihood. Since the data are observed, the marginal likeli-
hood is a constant that can generally be ignored (it merely ensures that the posterior
PDF integrates to one). Indeed, Bayes’s theorem is often stated as

p(θ |y) ∝ p(y|θ)p(θ). (8.36)

This says “the posterior is proportional to the likelihood times the prior”. Bayes’s
theorem can be viewed as an updating rule that tells us how to use data to update
our prior views about the unknown parameters. To use Bayes’s theorem, we must
specify both the likelihood function and the prior PDF.

8.4.2 The Likelihood Function

Consider the model given by (8.34). As usual, the form of the likelihood function
depends on our assumptions concerning the noise and inefficiency effects. It is com-
mon to assume that the noise effects are independent N (0, h−1) random variables. In
the Bayesian stochastic frontier literature, it is also common to treat the inefficiency
effects as unknown parameters. In this case, the likelihood function is given by

p(y|β, h, u) = fN (y|X ′β − u, h−1IN ) (8.37)

where IN denotes an N × N identity matrix.

8.4.3 The Prior PDF

Prior PDFs can take any form. A noninformative (or diffuse or vague) prior is one
that conveys no information about any of the unknown parameters. An informative
prior conveys information about at least one parameter (e.g., that a slope parameter
is nonnegative). A proper prior is one that integrates to one over the admissible
range of the unknown parameters. An improper prior is one that does not integrate
to one (noninformative priors are often improper). Fernandez et al. (1997) show that
proper priors on the unknown parameters of SFMs are generally needed to ensure
the existence of the posterior PDF. In the stochastic frontier literature, it is common
to use a proper prior of the form

p(β, h, u) = p(β)p(h)p(u|λ)p(λ) (8.38)

where each of the component priors is proper. For example, it is common to use
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p(β) ∝ fN (β|a,B)I(β ∈ R), (8.39)

p(h) = fG(h|1, k), (8.40)

p(u|λ) =
I∏

i=1

T∏

t=1

fG(uit |1, λ) (8.41)

and p(λ) = fG(λ|1,− ln τ) (8.42)

where I(.) is an indicator function that takes the value one if the argument is true
(and 0 otherwise), R denotes the admissible range of β, and a, B, k and τ are prior
hyperparameters chosen by the researcher. In practice, it is common to set B and k to
large values (⇒ the priors for β and h are relatively noninformative) and set τ equal
to a prior estimate of the average level of efficiency.

Equation (8.41) implies that uit is an independent exponential random variable
with rate (or inverse scale) parameter λ. Several alternative assumptions concerning
the inefficiency effects can be found in the Bayesian stochastic frontier literature.
For example, Tsionas (2007) assumes the inefficiency effects are Weibull random
variables. Tsionas (2006) considers a panel data model in which the logarithm of
inefficiency is assumed to follow a first-order autoregressive (AR) process. Emval-
omatis (2012) considers a panel data model in which a log-odds-type function of
efficiency is assumed to follow an AR process. Assaf et al. (2014) consider a panel
data model in which the logarithm of inefficiency and a variable representing price
distortions are assumed to follow a vector autoregressive (VAR) scheme.

8.4.4 Marginal Posterior PDFs

Combining (8.37) and (8.38) yields the following joint posterior PDF:

p(β, h, u|y) ∝ p(y|β, h, u)p(β, h, u). (8.43)

In practice, interest usually centres onmarginal posterior PDFs. Finding themarginal
posterior PDF for any subset of parameters involves integration. For example, the
marginal posterior PDFs for β, h and u are given by

p(β|y) =
∫ ∫

p(β, h, u|y) dh du (8.44)

p(h|y) =
∫ ∫

p(β, h, u|y) dβ du (8.45)

and p(u|y) =
∫ ∫

p(β, h, u|y) dβ dh. (8.46)

These marginal PDFs are averages. For example, the marginal PDF defined by (8.44)
is an average of p(β, h, u|y) over all possible values of h and u. Further averag-
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ing/integration of p(β|y) and p(u|y) can be used to obtain marginal posterior PDFs
for particular elements of β and u. For example, the marginal posterior PDF for β1

is given by

p(β1|y) =
∫

. . .

∫
p(β|y) dβ2 . . . dβK . (8.47)

8.4.5 Point Estimation

Bayesian point estimators are chosen based on their ability to minimise expected
loss. For a simple example, let bk denote an estimator for βk . A loss function is
a function that measures the loss associated with an estimation error: a quadratic
loss function takes the form L(bk , βk) = (bk − βk)

2; an absolute loss function takes
the form L(bk , βk) = |bk − βk |; a zero-one loss function takes the form L(bk , βk) =
I(bk �= βk). The estimators that minimise the (posterior) expected values of these
three loss functions are the mean, median and mode of the marginal posterior PDF
of βk (respectively).

8.4.6 Interval Estimation

The marginal posterior PDF for a given parameter can be used to calculate the
posterior probability that the parameter lies in a given interval. More commonly,
Bayesians like to specify the interval in which “most of the distribution lies”. Such
an interval, known as a highest posterior density interval (HPDI), is the Bayesian
counterpart to a confidence interval. A 100(1 − α)%HPDI is the interval of shortest
length that contains 100(1 − α)% of the area under the marginal posterior PDF.

8.4.7 Assessing Alternative Hypotheses

Bayesians assess alternative hypotheses by calculating odds ratios. For a simple
example, consider the hypotheses H0 : β ∈ R0 and H1 : β ∈ R1 where R0 and R1 are
mutually exclusive, but not necessarily exhaustive, regions of the parameter space.
Let p(Hj ) denote the prior probability assigned to hypothesis j . The prior odds
ratio is P01 = p(H0)/p(H1). If P01 > 1, then H0 is a priori more likely than H1. The
posterior probability of hypothesis j is

p(Hj |y) =
∫

Rj

p(β|y) dβ. (8.48)
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The posterior odds ratio isK01 = p(H0|y)/p(H1|y). IfK01 > 1, thenwe should favour
H0 over H1. The ratio of the posterior odds to the prior odds is B01 = K01/P01. This
ratio is known as the Bayes factor. It can be interpreted as the odds in favour of H0

that are implied by the data. The Bayes factor may not be well defined unless the
prior PDF is proper.

8.4.8 Simulation

In the present context, most of the quantities an analyst would want to estimate can
be written in the following form11:

E{g(θ)|y} =
∫

g(θ)p(θ |y) dθ (8.49)

where θ = (β, h, u)′ and g(.) is some function of interest: to estimate the mean of
p(h|y), for example, we would set g(.) = h; to estimate the posterior probability
that βk is nonnegative, we would set g(.) = I(βk ≥ 0). Except in restrictive special
cases, the integral on the right-hand side of (8.49) cannot be evaluated analytically.
In practice, it is usually evaluated by drawing random samples (or ‘simulating’) from
p(θ |y). Let θ1, . . . , θS denote S random draws from p(θ |y). The associated estimator
for E{g(θ)|y} is

ĝ(θ) = S−1
S∑

s=1

g(θ s). (8.50)

It can be shown that this estimator converges to E{g(θ)|y} as S → ∞. Because
it involves random sampling, and because random sampling is closely associated
with the casinos of Monte Carlo, this approach to evaluating integrals is known as
Monte Carlo integration. Several Monte Carlo integration algorithms (i.e., sampling
schemes) are available. Some generate correlated chains of draws that have the prop-
erties of Markov processes. These algorithms are known as Markov Chain Monte
Carlo (MCMC) algorithms. Two of the most widely-used MCMC algorithms are the
Gibbs sampler and the Metropolis-Hastings algorithm. For more details concerning
these algorithms, see Casella and George (1992), Tierney (1994) and Robert and
Casella (2004).

8.4.9 Toy Example

Reconsider the toy data reported earlier in Tables1.1 and 1.2. These data have been
used to obtain unrestricted and restricted estimates of the parameters in (8.19). Both

11One exception is the marginal likelihood given by p(y) = ∫
p(y|θ)p(θ) dθ .
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Table 8.7 Bayesian parameter estimates

Unrestricted Restricted

Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

α 1.069 0.118 0.886 1.343 1.052 0.104 0.889 1.243

λ 0.039 0.035 −0.032 0.115 0.041 0.028 0.002 0.102

δ1 −0.120 0.150 −0.373 0.233 −0.145 0.130 −0.380 0.153

β1 0.191 0.092 −0.038 0.298 0.231 0.046 0.131 0.298

β2 0.001 0.044 −0.106 0.061 0.028 0.017 0.002 0.063

sets of estimates were obtained under the assumption that the noise effects are inde-
pendent N (0, h−1) random variables. Equations (8.38) to (8.42) were used as a prior.
The hyperparameters were chosen so that the prior was relatively noninformative.
The unrestricted estimates were obtained by allowing the parameters in (8.19) to
take any values; the restricted estimates were obtained by restricting all the parame-
ters in (8.19) except α and δ1 to be nonnegative. The MCMC chains were of length
S = 50,000. The parameter estimates are reported in Table 8.7. Predictions of OTE
are reported in Table 8.8. These tables report the means and standard deviations of
the relevant MCMC chains. They also report estimated 95% HPDI limits. Estimated
restricted posterior PDFs for the slope parameters and the OTE of firms 1 and 2 in
period 1 are presented in Fig. 8.1.

8.5 Productivity Analysis

Productivity analysis involves both measuring and explaining changes in productiv-
ity. For purposes of comparison with Sects. 6.5 and 7.5, this section again focuses
on measuring and explaining changes in TFP. Again, methods for measuring and
explaining changes in MFP and PFP can be handled as special cases in which one
or more inputs are assigned a weight of zero.

8.5.1 Measuring Changes in TFP

Measuring changes in TFP involves computing proper TFP index (TFPI) numbers.
Except in restrictive special cases (e.g., there is no statistical noise), SFMs cannot
be used to compute primal or dual TFPI numbers.12 However, they can be used to

12Primal and dual indices are computed using distance, revenue and cost functions. SFMs are
underpinned by the assumption that these functions exist. However, their functional forms are
generally unknown.Moreover, the variables in these functions are often unobserved and/ormeasured
with error.
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(a)  (b) 1

(a) 1 (b) 2

(a) OTE of Firm 1 in Period 1 (b) OTE of Firm 2 in Period 1

Fig. 8.1 Estimated restricted posterior PDFs
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Table 8.8 Bayesian predictions of OTE

Unrestricted Restricted

Row Firm Period Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

A 1 1 0.332 0.030 0.269 0.378 0.342 0.071 0.284 0.388

B 2 1 0.371 0.037 0.284 0.431 0.396 0.068 0.335 0.452

C 3 1 0.786 0.067 0.638 0.894 0.794 0.058 0.672 0.898

D 4 1 0.694 0.056 0.566 0.780 0.707 0.056 0.602 0.807

E 5 1 0.899 0.069 0.734 0.995 0.912 0.059 0.781 0.996

F 1 2 0.349 0.041 0.270 0.413 0.375 0.071 0.299 0.436

G 2 2 0.859 0.087 0.670 0.989 0.879 0.073 0.713 0.992

H 3 2 0.701 0.219 0.237 0.989 0.811 0.131 0.528 0.993

I 4 2 0.743 0.125 0.486 0.950 0.803 0.085 0.627 0.958

J 5 2 0.798 0.167 0.409 0.995 0.887 0.082 0.711 0.997

K 1 3 0.946 0.047 0.838 0.999 0.950 0.045 0.835 0.999

L 2 3 0.844 0.047 0.744 0.920 0.849 0.046 0.742 0.930

M 3 3 0.588 0.041 0.511 0.662 0.589 0.054 0.506 0.662

N 4 3 0.269 0.043 0.185 0.327 0.301 0.075 0.251 0.340

O 5 3 0.667 0.062 0.524 0.762 0.685 0.060 0.556 0.781

P 1 4 0.321 0.034 0.259 0.368 0.341 0.071 0.286 0.381

R 2 4 0.599 0.042 0.505 0.661 0.606 0.055 0.509 0.682

S 3 4 0.284 0.033 0.220 0.332 0.300 0.075 0.235 0.342

T 4 4 0.909 0.076 0.718 0.998 0.927 0.066 0.755 0.998

U 5 4 0.296 0.030 0.235 0.336 0.314 0.072 0.260 0.351

V 1 5 0.890 0.074 0.709 0.995 0.893 0.069 0.721 0.993

W 2 5 0.628 0.065 0.484 0.735 0.647 0.066 0.514 0.754

X 3 5 0.289 0.040 0.212 0.349 0.309 0.075 0.239 0.358

Y 4 5 0.302 0.035 0.234 0.350 0.316 0.074 0.249 0.361

Z 5 5 0.678 0.082 0.531 0.864 0.656 0.068 0.521 0.774

Geometric mean 0.549 0.057 0.412 0.639 0.572 0.067 0.466 0.648

compute additive and multiplicative TFPI numbers. Additive TFPI numbers can be
computed by using any nonnegative parameter estimates as weights in Eq. (3.41). If,
for example, estimates of the γn (resp. βm) parameters in (1.32) are all nonnegative,
then they can be used as output (resp. input) weights. Multiplicative TFPI numbers
can be computed by normalising any nonnegative parameter estimates to sum to
one, then using these normalised estimates as weights in Eq. (3.42). If, for example,
estimates of the γn (resp. βm) parameters in (1.32) are all nonnegative, then they can
be normalised to sum to one and used as output (resp. input) weights.

To illustrate, reconsider the toy data reported earlier in Table1.1. These data have
been used to obtain RML estimates of the parameters in (1.32). The estimates were
reported earlier in Table1.14. These parameter estimates have been used to compute
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Table 8.9 Additive and multiplicative TFPI numbersa,b

Row Firm Period q1 q2 x1 x2 A M

A 1 1 1 1 1 1 1 1

B 2 1 1 1 0.56 0.56 1.786 1.786

C 3 1 2.37 2.37 1 1 2.37 2.37

D 4 1 2.11 2.11 1.05 0.7 2.690 2.734

E 5 1 1.81 3.62 1.05 0.7 3.055 2.935

F 1 2 1 1 0.996 0.316 2.084 2.400

G 2 2 1.777 3.503 1.472 0.546 3.037 3.193

H 3 2 0.96 0.94 0.017 0.346 3.575 5.696

I 4 2 5.82 0.001 4.545 0.01 3.568 8.034

J 5 2 6.685 0.001 4.45 0.001 4.212 50.916

K 1 3 1.381 4.732 1 1 2.466 2.058

L 2 3 0.566 4.818 1 1 1.943 1.133

M 3 3 1 3 1.354 1 1.518 1.327

N 4 3 0.7 0.7 0.33 0.16 3.483 3.675

O 5 3 2 2 1 1 2 2

P 1 4 1 1 0.657 0.479 1.916 1.935

R 2 4 1 3 1 1 1.648 1.427

S 3 4 1 1 1.933 0.283 1.469 2.224

T 4 4 1.925 3.722 1 1 2.507 2.383

U 5 4 1 1 1 0.31 2.100 2.433

V 1 5 1 5.166 1 1 2.349 1.702

W 2 5 2 2 0.919 0.919 2.176 2.176

X 3 5 1 1 1.464 0.215 1.938 2.929

Y 4 5 1 1 0.74 0.74 1.351 1.351

Z 5 5 1.81 3.62 2.1 1.4 1.528 1.468
aA additive index with RML parameter estimates used as weights; M multiplicative index with
normalised RML parameter estimates used as weights. Some index numbers may be incoherent at
the third decimal place due to rounding (e.g., the number in row Z of column A is not exactly half
as big as the number in row E of column A due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8

the additive and multiplicative TFPI numbers reported in Table 8.9. These index
numbers are proper in the sense that they have been obtained by dividing proper
output index numbers by proper input index numbers. They are also consistent with
measurement theory. Observe, for example, that (a) the output vector in row O is
twice as big as the output vector in row A, (b) the input vector in row O is the same
as the input vector in row A, and (c) the index numbers in row O are twice as big
as the numbers in row A. Also observe that the TFPI numbers in rows A, B, C, O,
W and Y are the same as the TFPI numbers reported in the corresponding rows of
Tables3.5, 6.15 and 7.8.
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8.5.2 Explaining Changes in TFP

SFMs can be used to decompose proper TFPI numbers into measures of environ-
mental change, technical change, efficiency change and changes in statistical noise.
This section focuses on output- and input-oriented decompositions.

8.5.2.1 Output-Oriented Decompositions

Output-oriented decompositions of TFPI numbers tend to be most relevant in situa-
tions where managers have placed nonnegative values on outputs, and where inputs
have been predetermined (i.e., situations where output-oriented measures of effi-
ciency are most relevant). In these situations, a relatively easy way to proceed is to
rewrite (8.1) as

1 = q−1
1it exp

(
f t(xit, q

∗
it, zit)

)
exp(−uit) exp(vit). (8.51)

Multiplying both sides of this equation by TFP(xit, qit) yields

TFP(xit, qit) = [
TFP(xit, qit)q

−1
1it exp

(
f t(xit, q

∗
it, zit)

)]
exp(−uit) exp(vit). (8.52)

A similar equation holds for firm k in period s. Substituting these equations into
(3.40) yields

TFPI(xks, qks, xit, qit) =
[
TFPI(xks, qks, xit, qit)

(
q1ks
q1it

)
exp

(
f t(xit, q

∗
it, zit)

)

exp
(
f s(xks, q

∗
ks, zks)

)
]

×
[
exp(−uit)

exp(−uks)

] [
exp(vit)

exp(vks)

]
. (8.53)

In theory, the presence of statistical noise means we cannot interpret the first term
in this equation in the same way we interpreted the first term in (7.32). However,
in practice, this term would normally be viewed as an output-oriented environment,
technology, and scale and mix efficiency index (OETSMEI). In both theory and
practice, the second term is an output-oriented technical efficiency index (OTEI),
and the last term is a statistical noise index (SNI). If there is no statistical noise, then
(8.53) reduces to (7.32).

Whether a finer decomposition is possible (and meaningful) depends on both the
approximating function and the TFPI. If the approximating function is given by (8.2),
for example, then (8.53) takes the following form:
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TFPI(xks, qks, xit, qit) =
[
exp(λt)

exp(λs)

] ⎡

⎣
J∏

j=1

(
z jit
z jks

)δ j

⎤

⎦

×
[
TFPI(xks, qks, xit, qit)

M∏

m=1

(
xmit
xmks

)βm Q(qks)

Q(qit)

]

×
[
exp(−uit)

exp(−uks)

] [
exp(vit)

exp(vks)

]
. (8.54)

In practice, the first term on the right-hand side would normally be viewed as an
output-oriented technology index (OTI). The second termwould normally be viewed
as an output-oriented environment index (OEI). The third term would normally be
viewed as an output-oriented scale and mix efficiency index (OSMEI). The last two
terms are the OTEI and SNI in (8.53). If Q(qit) ∝ ∏

n q
γn
nit , then (8.54) reduces to

(1.40). If the TFPI is a geometric Young (GY) index, then (1.40) reduces to equation
(16) in O’Donnell (2016).

For a numerical example, reconsider the GY TFPI numbers reported earlier in
Table3.5. An output-oriented decomposition of these numbers is now reported in
Table 8.10. The OTI and OEI numbers in this table were obtained by using the
RML estimates of λ and δ1 reported in Table 8.3 to evaluate the first two terms in
(8.54). The OSMEI numbers were obtained by using the GY TFPI numbers, the
RML estimates of β1 and β2, and the aggregate outputs in Table1.2 to evaluate the
third term in (8.54). The OTEI numbers were obtained by taking ratios of the RML
predictions reported in Table 8.4. The SNI numbers were obtained as residuals (i.e.,
SNI = TFPI/(OTI×OEI×OTEI×OSMEI)).

8.5.2.2 Input-Oriented Decompositions

Input-oriented decompositions of TFPI numbers tend to bemost relevant in situations
where managers have placed nonnegative values on inputs, and where outputs have
been predetermined (i.e., situations where input-oriented measures of efficiency are
most relevant). In these situations, a relatively easy way to proceed is to rewrite (8.5)
as

1 = x1it exp
(
f t(x∗

it, qit, zit)
)
exp(−uit) exp(vit). (8.55)

Multiplying both sides of this equation by TFP(xit, qit) yields

TFP(xit, qit) = [
TFP(xit, qit)x1it exp

(
f t(x∗

it, qit, zit)
)]
exp(−uit) exp(vit). (8.56)

A similar equation holds for firm k in period s. Substituting these equations into
(3.40) yields
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Table 8.10 An output-oriented decomposition of GY TFPI numbers using RMLa,b

Row Firm Period TFPI OTI OEI OTEI OSMEI SNI

A 1 1 1 1 1 1 1 1

B 2 1 1.786 1 1 1.179 1.514 1.000

C 3 1 2.37 1 1 2.366 1.000 1.002

D 4 1 2.539 1 1 2.113 1.200 1.001

E 5 1 3.133 1 1 2.747 1.139 1.002

F 1 2 1.948 1 0.881 1.191 1.855 1.000

G 2 2 3.054 1 0.881 2.819 1.227 1.002

H 3 2 9.811 1 1 2.676 3.660 1.002

I 4 2 0.464 1 0.881 2.668 0.197 1.002

J 5 2 1.890 1 1 2.982 0.632 1.003

K 1 3 2.634 1 1 3.079 0.847 1.010

L 2 3 1.740 1 1 2.755 0.630 1.002

M 3 3 1.565 1 1 1.885 0.829 1.001

N 4 3 3.221 1 1 0.989 3.256 1.000

O 5 3 2 1 0.881 2.266 1.000 1.001

P 1 4 1.827 1 1 1.142 1.599 1.000

R 2 4 1.779 1 1 2.029 0.876 1.001

S 3 4 1.568 1 0.881 1.018 1.748 1.000

T 4 4 2.720 1 0.881 3.135 0.954 1.032

U 5 4 1.966 1 1 1.049 1.873 1.000

V 1 5 2.366 1 1 3.102 0.751 1.015

W 2 5 2.176 1 0.881 2.322 1.062 1.001

X 3 5 2.067 1 0.881 1.102 2.129 1.000

Y 4 5 1.351 1 1 1.090 1.240 1.000

Z 5 5 1.567 1 1 2.255 0.694 1.001

Geometric mean 2.030 1 0.960 1.870 1.127 1.003
aTFPI = OTI × OEI × OTEI × OSMEI × SNI. Some index numbers may be incoherent at the
third decimal place due to rounding (e.g., in any given row, the product of the OTI, OEI, OTEI,
OSMEI and SNI numbers may not be exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8

TFPI(xks, qks, xit, qit) =
[
TFPI(xks, qks, xit, qit)

(
x1it
x1ks

)
exp

(
f t(x∗it, qit, zit)

)

exp
(
f s(x∗ks, qks, zks)

)
]

×
[
exp(−uit)

exp(−uks)

] [
exp(vit)

exp(vks)

]
. (8.57)

Again, in theory, the presence of statistical noise means we cannot interpret the first
term in this equation in the samewaywe interpreted the first term in (7.34). However,
in practice, this term would normally be viewed as an input-oriented environment,
technology, and scale and mix efficiency index (IETSMEI). In both theory and prac-
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tice, the second term is an input-oriented technical efficiency index (ITEI), and the
last term is a statistical noise index (SNI). If there is no statistical noise, then (8.57)
reduces to (7.34).

Again, whether a finer decomposition is possible (and meaningful) depends on
both the approximating function and the TFPI. If the approximating function is given
by (8.6), for example, then (8.57) takes the following form:

TFPI(xks, qks, xit, qit) =
⎡

⎣
J∏

j=1

(
z jit
z jks

)κ j

⎤

⎦

×
[
TFPI(xks, qks, xit, qit)

N∏

n=1

(
qnks
qnit

)αn X (xit)

X (xks)

]

×
[
exp(−uit)

exp(−uks)

] [
exp(vit)

exp(vks)

]
. (8.58)

In practice, the first term on the right-hand side would normally be viewed as an
input-oriented environment index (IEI). The second term would normally be viewed
as an input-oriented scale and mix efficiency index (ISMEI). The last two terms are
the ITEI and SNI in (8.57).

For a numerical example, reconsider the GY TFPI numbers reported earlier in
Table3.5.An input-oriented decomposition of these numbers is now reported inTable
8.11. The IEI numbers in this table were obtained by using the RML estimate of κ1
reported in Table 8.5 to evaluate the first term in (8.58). The ISMEI numbers were
obtained by using the GY TFPI numbers, the RML estimates of α1 and α2 reported
in Table 8.5, and the aggregate inputs in Table1.2 to evaluate the second term in
(8.58). The ITEI numbers were obtained by taking ratios of the RML predictions
reported in Table 8.6. The SNI numbers were obtained as residuals (i.e., SNI =
TFPI/(IEI×ITEI×ISMEI)).

8.5.2.3 Other Decompositions

There are many TFPI numbers that are not proper in the sense that they cannot
generally be written as proper output index numbers divided by proper input index
numbers. One way of decomposing such numbers to first write them as the product
of proper TFPI numbers and SNI numbers. Subsequently, the proper TFPI numbers
can be decomposed into technology index numbers, environment index numbers,
efficiency index numbers and (more) SNI numbers.

For a numerical example, reconsider the CCD TFPI numbers reported earlier
in Table3.6. An output-oriented decomposition of these numbers is now reported in
Table 8.12. CCD TFPI numbers are closely related to GY TFPI numbers (if observed
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Table 8.11 An input-oriented decomposition of GY TFPI numbers using RMLa,b

Row Firm Period TFPI IEI ITEI ISMEI SNI

A 1 1 1 1 1 1 1

B 2 1 1.786 1 1.000 1.000 1.785

C 3 1 2.37 1 1.000 1.000 2.369

D 4 1 2.539 1 1.001 0.939 2.702

E 5 1 3.133 1 1.000 1.214 2.579

F 1 2 1.948 1.145 1.000 0.920 1.847

G 2 2 3.054 1.145 1.000 1.175 2.268

H 3 2 9.811 1 1.001 2.772 3.537

I 4 2 0.464 1.145 1.000 0.319 1.272

J 5 2 1.890 1 1.000 1.123 1.683

K 1 3 2.634 1 1.000 1.578 1.669

L 2 3 1.740 1 1.000 2.211 0.787

M 3 3 1.565 1 1.000 1.429 1.095

N 4 3 3.221 1 1.001 0.916 3.514

O 5 3 2 1.145 1.000 1.000 1.746

P 1 4 1.827 1 1.000 0.950 1.923

R 2 4 1.779 1 1.000 1.502 1.184

S 3 4 1.568 1.145 1.000 1.039 1.318

T 4 4 2.720 1.145 1.000 1.277 1.859

U 5 4 1.966 1 1.000 0.921 2.133

V 1 5 2.366 1 1.000 1.838 1.287

W 2 5 2.176 1.145 1.000 1.000 1.899

X 3 5 2.067 1.145 1.000 1.038 1.738

Y 4 5 1.351 1 1.000 1.000 1.351

Z 5 5 1.567 1 1.000 1.214 1.29

Geometric mean 2.030 1.044 1.000 1.133 1.716
aTFPI = IEI × ITEI × ISMEI × SNI. Some index numbers may be incoherent at the third decimal
place due to rounding (e.g., in any given row, the product of the IEI, ITEI, ISMEI and SNI numbers
may not be exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8

revenue and cost shares are firm- and time-invariant, then they are equal). An output-
oriented decomposition of the GYTFPI numbers was presented earlier in Table 8.10.
The OTI, OEI, OTEI and OSMEI numbers in that table are now reported in Table
8.12. The numbers in the SNI column in Table 8.12 were obtained as residuals (i.e.,
SNI = TFPI/(OTI×OEI×OTEI×OSMEI)).
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Table 8.12 An output-oriented decomposition of CCD TFPI numbers using RMLa,b

Row Firm Period TFPI OTI OEI OTEI OSMEI SNI

A 1 1 1 1 1 1 1 1

B 2 1 1.922∗ 1 1 1.179 1.514 1.076

C 3 1 2.37 1 1 2.366 1.000 1.002

D 4 1 2.870 1 1 2.113 1.200 1.132

E 5 1 3.600∗ 1 1 2.747 1.139 1.151

F 1 2 2.157 1 0.881 1.191 1.855 1.108

G 2 2 3.697 1 0.881 2.819 1.227 1.213

H 3 2 5.072 1 1 2.676 3.660 0.518

I 4 2 1.056 1 0.881 2.668 0.197 2.278

J 5 2 2.292 1 1 2.982 0.632 1.216

K 1 3 3.090 1 1 3.079 0.847 1.185

L 2 3 3.044 1 1 2.755 0.630 1.753

M 3 3 1.973 1 1 1.885 0.829 1.262

N 4 3 3.535 1 1 0.989 3.256 1.097

O 5 3 2.421∗ 1 0.881 2.266 1.000 1.212

P 1 4 2.113 1 1 1.142 1.599 1.157

R 2 4 2.366 1 1 2.029 0.876 1.332

S 3 4 1.549 1 0.881 1.018 1.748 0.988

T 4 4 3.104 1 0.881 3.135 0.954 1.178

U 5 4 2.324 1 1 1.049 1.873 1.182

V 1 5 2.418 1 1 3.102 0.751 1.038

W 2 5 2.332∗ 1 0.881 2.322 1.062 1.073

X 3 5 1.951 1 0.881 1.102 2.129 0.944

Y 4 5 1.482∗ 1 1 1.090 1.240 1.096

Z 5 5 2.154∗ 1 1 2.255 0.694 1.377

Geometric mean 2.324 1 0.960 1.870 1.127 1.148
aTFPI = OTI × OEI × OTEI × OSMEI × SNI. Some index numbers may be incoherent at the
third decimal place due to rounding (e.g., in any given row, the product of the OTI, OEI, OTEI,
OSMEI and SNI numbers may not be exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
∗Incoherent (not because of rounding)

8.6 Other Models

Other SFMs include various systems of equations. This section discusses systems
of equations that can be used to explain variations in metafrontiers, output supplies,
input demands, and inefficiency.



8.6 Other Models 359

8.6.1 Metafrontier Models

Metafrontier models are used in situations where firmmanagers can be classified into
two or more groups, and where managers in different groups choose input-output
combinations from potentially different production possibilities sets. For purposes of
comparison with Sects. 6.6.1 and 7.6.1, this section considers situations where firm
managers can be classified into two ormore groups according to the technologies they
use. Again, attention is restricted to the estimation of output-oriented metafrontier
models; the estimation of input-, revenue-, cost-, and profit-oriented metafrontier
models is analogous to the estimation of output-oriented models.

If we observe the technologies used by firm managers, then output-oriented
metafrontier models can be used to predict the output-oriented metatechnology ratio
(OMR) defined by (5.47), the measure of output-oriented technical efficiency (OTE)
defined by (5.1), and the measure of residual output-oriented technical efficiency
(ROTE) defined by (5.48). This involves estimating a system of technology-and-
environment-specific output distance functions. If there are T time periods in the
dataset and the functional forms of the output distance functions are known, then
the system can be written in the form of (7.36). If the functional forms of the output
distance functions are not known, then we can instead write

ln q1it = f g(xit, q
∗
it, zit) + vgit − ugit for all g ∈ GT , (8.59)

where GT denotes the set of technologies that existed in period T , q∗
it = qit/q1it

denotes a vector of normalised outputs, f g(.) is an approximating function cho-
sen by the researcher, vgit = − ln dg

O(xit, q∗
it, zit) − f g(xit, q∗

it, zit) represents statisti-
cal noise, and ugit ≡ − ln dg

O(xit, qit, zit) denotes a residual output-oriented technical
inefficiency effect. If there is no statistical noise, then (8.59) reduces to (7.36).

Let git denote the technology used by manager i in period t. The ROTE of the
manager is exp(−ugitit ). TheOTEof themanager is exp(−uit)whereuit = maxg∈Gt u

g
it .

TheOMRof themanager is exp(−mgit
it )wheremgit

it = uit − ugitit . Coherent predictions
of these quantities can be obtained using amethod developed byAmsler et al. (2017).
The first step is to obtain ML estimates of the parameters in the system defined by
(8.59). The second step is to use these parameter estimates to draw random samples
of observations on vgit and ugit for all g ∈ Gt . The final step is to use these random
samples to predict exp(−ugitit ), exp(−uit) and exp(−mgit

it ).
To obtain ML estimates of the parameters in the system defined by (8.59), we

need to make some assumptions about the probability distributions of the noise and
inefficiency effects. Amsler et al. (2017) assume that

MF1 ugit is an independent N+(0, σ 2
ug) random variable, and

MF2 vgit is an independent N (0, σ 2
vg) random variable.

In this context, the term ‘independent’ means that the noise and inefficiency effects
are neither correlated with each other nor correlated with the explanatory variables
(i.e., all these variables are mutually independent). If there are no cross-equation re-
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strictions involving the parameters andMF1 andMF2 are true, then the g-th equation
in (8.59) can be estimated separately, using all (and only) observations on firms that
used technology g.

Let f̃ g(.), σ̃ 2
vg and σ̃ 2

ug denote the ML estimators for f g(.), σ 2
vg and σ 2

ug . The
Amsler et al. (2017) algorithm for drawing B random samples of observations on the
noise and inefficiency effects can be summarised as follows:

1. Compute ε̃
git
it = ln q1it − f̃ git (xit, q∗

it, zit), μ̃it = ε̃
git
it σ̃ 2

vgit/(σ̃
2
vgit + σ̃ 2

ugit ) and σ̃ 2
it

= σ̃ 2
vgit σ̃

2
ugit/(σ̃

2
vgit + σ̃ 2

ugit ). Set b = 1.
2. For all g ∈ Gt , draw vgit(b) from an N (0, σ̃ 2

vg) distribution.
3. Redraw vgitit (b) from an N (μ̃it, σ̃

2
it ) distribution truncated on the left at ε̃gitit .

4. For all g ∈ Gt , compute ugit(b) = f̃ g(xit, q∗
it, zit) + vgit(b) − ln q1it .

5. Compute uit(b) = maxg∈Gt u
g
it(b) and mgit

it (b) = uit(b) − ugitit (b).
6. If b < B, then set b = b + 1 and return to step 2. Else stop.

After implementing this algorithm, the following equations can be used to predict
the ROTE, OTE and OMR of manager i in period t:

ROT̃Egit (xit, qit, zit) = B−1
B∑

b=1

exp[−ugitit (b)], (8.60)

OT̃Et(xit, qit, zit) = B−1
B∑

b=1

exp[−uit(b)] (8.61)

and OM̃Rgit t(xit, qit, zit) = B−1
B∑

b=1

exp[−mgit
it (b)]. (8.62)

For a numerical example, reconsider the toy data reported in Table1.1. For pur-
poses of comparison with the results reported in Tables6.20 and 7.13, suppose that
(a) technologies 1 and 2 existed in each period, (b) no other technologies existed in
any period, (c) the managers of firms 1, 2 and 3 always used technology 1, and (d)
the managers of firms 4 and 5 always used technology 2. Also suppose that the g-th
equation in the system defined by (8.59) takes the form

ln q1it = αg +
M∑

m=1

βmg ln xmit −
N∑

n=1

γng ln q
∗
nit + vgit − ugit . (8.63)

ML estimates of the unknown parameters in the system are presented in Table 8.13.
These estimates were obtained under assumptions MF1 and MF2. Associated pre-
dictions of OTE, ROTE and the OMRs are reported in Table 8.14. These predictions
were obtained usingB = 5000 samples.Among other things, the predictions reported
in Table 8.14 indicate that the manager of firm 5 chose the right technology in period
5 but did not use it properly (i.e., he/she ‘chose the right book’ but did not ‘follow
the instructions’).
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Table 8.13 ML parameter estimates

g = 1 g = 2

Parameter Est. St. Err. t Est. St. Err. t

αg 0.499 1.314 0.380 0.773 0.637 1.214

β1g 0.060 0.064 0.943 0.583 0.991 0.588

β2g 0.365 0.151 2.412∗∗ 0.068 0.792 0.086

γ2g 0.364 0.115 3.159∗∗∗ 0.086 0.561 0.154

σ 2
g ≡ σ 2

ug + σ 2
vg 0.068 0.025 2.676∗∗∗ 0.130 0.972 0.133

γg ≡ σ 2
ug/σ

2
g 0.000 0.068 0.000 1.000 0.853 1.172

∗∗∗, ∗∗ and ∗ indicate significance at the 1, 5 and 10% levels

Table 8.14 ML predictions of OTE, ROTE and OMRsa,b

Row Firm Period OTE OMR ROTE

A 1 1 0.462 0.462 0.999

B 2 1 0.673 0.674 0.999

C 3 1 0.999 1 0.999

D 4 1 0.964 0.994 0.970

E 5 1 0.882 0.999 0.883

F 1 2 0.500 0.501 0.999

G 2 2 0.723 0.724 0.999

H 3 2 0.999 1 0.999

I 4 2 0.662 0.919 0.720

J 5 2 0.967 1.000 0.968

K 1 3 0.709 0.710 0.999

L 2 3 0.314 0.315 0.999

M 3 3 0.425 0.426 0.999

N 4 3 0.683 0.978 0.699

O 5 3 0.907 0.982 0.923

P 1 4 0.620 0.621 0.999

R 2 4 0.507 0.508 0.999

S 3 4 0.343 0.343 0.999

T 4 4 0.938 0.997 0.941

U 5 4 0.500 0.999 0.500

V 1 5 0.532 0.532 0.999

W 2 5 0.975 0.976 0.999

X 3 5 0.410 0.411 0.999

Y 4 5 0.546 0.971 0.562

Z 5 5 0.562 1 0.562

Geometric mean 0.635 0.713 0.891
aOTE = OMR × ROTE. Some predictions may be incoherent at the third decimal place due to
rounding (e.g., in any given row, the product of the OMR and ROTE predictions may not be exactly
equal to the OTE prediction due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table1.2 on p. 8
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8.6.2 Output Supply Systems

Output supply functions can always be written as systems of equations with unob-
served error terms representing statistical noise and different types of inefficiency.
For any given firm, the exact form of the system depends on the exact form of the
manager’s optimisation problem. For example, if firm i is a price taker in output mar-
kets and all inputs and environmental variables have been predetermined, then the
manager’s period-t optimisation problem is given by (4.12). In this case, the relevant
system of equations is a system of revenue-maximising output supply functions. If
the functional forms of these supply functions are known, then the system can be
written in the form of (7.41). If the functional forms of the supply functions are not
known, then we can instead write

ln qnit = f tn(xit, pit, zit) + vnit + unit for n = 1, . . . ,N , (8.64)

where f tn(.) is a known approximating function chosen by the researcher, vnit =
ln q̈tn(xit, pit, zit) − f tn(xit, pit, zit) is an unobserved variable representing statistical
noise, and unit ≡ ln qnit − ln q̈tn(xit, pit, zit) denotes an unsigned error that captures
technical, scale and allocative inefficiency. In any given equation, the precise nature
of the statistical noise component depends on both the approximating function and
unknown revenue-maximising output supply function. Suppose, for example, that
the n-th approximating function is

f tn(xit, pit, zit) = αn + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − σ ln pnit . (8.65)

In this case, the n-th equation in (8.64) is

ln qnit = αn + λt +
J∑

j=1

δ j ln z jit +
M∑

m=1

βm ln xmit − σ ln pnit + vnit + unit . (8.66)

If then-th revenue-maximising output supply function is givenby (4.13), for example,
then

vnit = [αn(t) − αn − λt] + σ

1 − σ
ln

(
N∑

k=1

γ σ
k p

1−σ
kit

)
. (8.67)

The first term in square brackets can be viewed as a possible functional form error.
The second term is an omitted variable error. Again, the presence of statistical noise
means we cannot generally interpret the parameters in (8.66) in the same way we
interpreted the parameters in (7.43). For example, unless we know (or assume) that
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vnit is not a function of z jit , we cannot interpret δ j as an elasticity that measures the
percent change in output n due to a one percent increase in environmental variable j .

Equation (8.64) represents a system of N seemingly unrelated regression (SUR)
equations in which each unit is uncorrelated with xit , pit and zit . If the output mix is
predetermined, then an alternative SUR system is

ln q1it = f t(xit, q
∗
it, zit) + vit − uit (8.1)

and ln qnit = f tn(xit, pit, zit) + vnit + unit for n = 2, . . . ,N , (8.68)

where q∗
it ≡ qit/q1it denotes a vector of normalised outputs, f t(.) is an approximating

function chosen by the researcher, vit represents statistical noise, and uit ≥ 0 denotes
an output-oriented technical inefficiency effect. If the output mix is not predeter-
mined, then (8.1) and (8.68) represent a system of N simultaneous equations.

8.6.3 Input Demand Systems

Input demand functions can also be written as systems of equations with unobserved
error terms representing statistical noise and different types of inefficiency. Again,
for any given firm, the exact form of the system depends on the exact form of the
manager’s optimisation problem. For example, if firm i is a price taker in input
markets and all outputs and environmental variables have been predetermined, then
the manager’s period-t optimisation problem is given by (4.17). In this case, the
relevant system of equations is a system of cost-minimising input demand functions.
If the functional forms of these demand functions are known, then the system can
be written in the form of (7.45). If the functional forms of the demand functions are
not known, then we can instead write

ln xmit = f tm(wit, qit, zit) + vmit + umit for m = 1, . . . ,M , (8.69)

where f tm(.) is a known approximating function chosen by the researcher, vmit =
ln ẍtm(wit, qit, zit) − f tm(wit, qit, zit) is an unobserved variable representing statistical
noise, and umit ≡ ln xmit − ln ẍtm(wit, qit, zit) denotes an unsigned error that captures
technical, scale and allocative inefficiency. In any given equation, the precise nature
of the statistical noise component depends on both the approximating function and
unknown cost-minimising input demand function. Suppose, for example, that the
m-th approximating function is

f tm(wit, qit, zit) = θm(t) +
M∑

k=1

λk ln(wkit/wmit) + ψ lnQ(qit) (8.70)

where Q(.) is a known, nonnegative, nondecreasing, linearly-homogenous function.
In this case, the m-th equation in (8.69) is
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ln xmit = θm(t) +
M∑

k=1

λk ln(wkit/wmit) + ψ lnQ(qit) + vmit + umit (8.71)

whereQ(qit) is an aggregate output. If them-th cost-minimising input demand func-
tion is given by (4.18), for example, then

vmit =
[

1

τη
ln

(
N∑

n=1

γnq
τ
nit

)
− ψ lnQ(qit)

]
−

J∑

j=1

κ j ln z jit . (8.72)

The first term can be viewed as a possible measurement error. The second term can
be viewed as an omitted variable error. Observe that neither of these terms vary with
m. Again, the presence of statistical noise means we cannot generally interpret the
parameters in (8.71) in the same way we interpreted the parameters in (7.47). For
example, unless we know (or assume) that vmit is not a function of input prices, we
cannot interpret λk as an elasticity that measures the percent increase in the demand
for input m due to a one percent increase in the price of input k.

Equation (8.69) represents a system ofM seemingly unrelated regression (SUR)
equations in which each umit is uncorrelated with wit , qit and zit . If the input mix is
predetermined, then an alternative SUR system is

− ln x1it = f t(x∗
it, qit, zit) + vit − uit (8.5)

and ln xmit = f tm(wit, qit, zit) + vmit + umit for m = 2, . . . ,M , (8.73)

where x∗
it ≡ xit/x1it denotes a vector of normalised inputs, f t(.) is an approximating

function chosen by the researcher, vit represents statistical noise, and uit ≥ 0 denotes
an input-oriented technical inefficiency effect. If the input mix is not predetermined,
then (8.5) and (8.73) represent a system of M simultaneous equations.

In the productivity literature, some of the most widely-used systems of input
demand functions are underpinned by much more imaginative, but not necessarily
realistic, assumptions concerning production technologies andmanagerial behaviour.
For example, Olley and Pakes (1996) assume, among other things,13 that (a) there
is only one output, (b) all inputs can be classified as either labour or capital goods,
(c) the production function depends on the age of the firm, and (d) the manager
makes his/her labour and capital investment decisions to maximise the expected
discounted value of future net returns. Solving the manager’s optimisation problem
yields time-varying input demand functions for labour and capital goods. The capital
goods function, for example, expresses the demand for capital goods in period t as
a function of (a) the productivity of the manager in period t, (b) the age of the firm
in period t, and (c) the capital stock at the beginning of period t (Olley and Pakes
1996, Eq. 5). Levinsohn and Petrin (2003) modify the Olley and Pakes (1996) model
by assuming that all inputs can be classified as either labour, capital or intermediate
goods. For simplicity, they ignore the age of the firm. They find that the demand for

13For a more complete list of assumptions, see Sect. 4.7.5.
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intermediate goods in period t is a time-varying function of (a) the productivity of the
manager in period t, and (b) the capital stock at the beginning of period t (Levinsohn
and Petrin 2003, p. 322). For a related system, see Ackerberg et al. (2015).

8.6.4 Inefficiency Models

Measures of efficiency can be viewed as measures of how well firm managers have
solved different optimisation problems. Theories of bounded rationality tell us that
managers make optimisation errors due to a lack of knowledge, training and/or expe-
rience (see Sect. 4.7.6). Let ait denote a vector of predetermined personal attributes
(e.g., years of education, training and/or experience) that affect the optimisation er-
rors that manager i makes in period t. The relationship between these attributes and
the inefficiency of the manager, uit , can be written as

uit = gt(ait) + wit (8.74)

where gt(.) is an approximating function chosen by the researcher and wit denotes
a measure of statistical noise. The fact that uit is nonnegative implies that wit ≥
−gt(ait). The superscript t in (8.74) accounts the fact that technical progress (i.e.,
the discovery of new ‘books of instructions’) increases the scope for inefficiency (i.e.,
the scope for ‘choosing the wrong book’ and/or ‘failing to follow the instructions’).
If there is no technical progress, then this superscript can be deleted. If the data are
cross-section data, then all references to period t can be deleted and (8.74) takes the
form of equation (8) in Reifschneider and Stevenson (1991). If gt(ait) = a′

itδ, then
it takes the form of equation (2) in Battese and Coelli (1995).

Equation (8.74) can be combined with any one of the single-equation SFMs de-
scribed in Sect. 8.1 to form a system of two simultaneous equations. It is common
to estimate the unknown parameters in such systems using the method of maximum
likelihood. An empirical example is presented in Step 8 of Sect. 9.3. If either equation
in such a system is misspecified, then associated estimators and predictors are likely
to be biased and inconsistent.

For a classic example of a misspecified system, suppose that output sets are ho-
mothetic and technical change is implicit Hicks output neutral. In this case, the
relationship between outputs, inputs and environmental variables can be written as
yit = lnFt(xit, zit) − uit where yit denotes the logarithm of an aggregate output, Ft(.)

can be viewed as a production function, and uit ≥ 0 denotes an output-oriented tech-
nical inefficiency effect (this follows from properties DO11 andDO12 in Sect. 2.4.1).
If the functional form of the production function is unknown, then we can write

yit = f t(xit) − gt(zit) + vit − uit (8.75)
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where f t(.) and gt(.) are arbitrary approximating functions and vit = lnFt(xit, zit) −
f t(xit) + gt(zit) represents a functional form error. If the functional form of the
production function is unknown and we do not observe any environmental variables,
then we can instead write

yit = f t(xit) + vit − uit (8.76)

where vit = lnFt(xit, zit) − f t(xit) now represent a functional form error and omitted
environmental variables. On the other hand, if the functional form of the production
function is unknown and we do not observe any outputs or inputs, then we can in-
stead write

uit = gt(zit) + wit (8.77)

where wit = lnFt(xit, zit) − gt(zit) − yit represents functional form errors and omit-
ted outputs and inputs. Equations (8.76) and (8.77) have the same basic structure as
equations (1) and (2) in Battese and Coelli (1995). If we do, in fact, observe environ-
mental variables, then failure to include them in (8.76) is an omitted variable error.
If we do, in fact, observe outputs and inputs, then failure to include them in (8.77) is
another omitted variable error. If we observe outputs, inputs and environmental vari-
ables, then, to avoid omitted variable errors, we should estimate (8.75). Estimating
the misspecified system of equations defined by (8.76) and (8.77) is not equivalent
to estimating (8.75). To see this, note that if we substitute (8.77) into (8.76), then we
obtain the following reduced form equation:

yit = f t(xit) − gt(zit) + vit − wit . (8.78)

This equation appears to have the same structure as (8.75). However, uit in (8.75)
satisfies uit ≥ 0, whereas wit in (8.78) satisfies wit ≥ −gt(zit). Unless there are no
environmental variables involved in the production process, the system defined by
(8.76) and (8.77) is misspecified.

Several other inefficiencymodels can be found in the stochastic frontier literature.
Most of these models do not allow for omitted variable errors or other sources of
statistical noise. For this reason, they are best described as expedient: they are statisti-
cally convenient and practical, but they are possibly improper insofar as they have no
obvious connections to economic theory. For example, Pitt and Lee (1981, pp. 46, 47)
assume that uit = ui. Battese and Coelli (1992) assume that uit = exp[η(T − t)]ui
where T denotes the last period in the sample. Again, any one of these equations
can be combined with any one of the single-equation SFMs described in Sect. 8.1
to form a system of two simultaneous equations. Again, if either equation in such a
system is misspecified, then our estimators and predictors are likely to be biased and
inconsistent.
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8.7 Summary and Further Reading

Stochastic frontier models (SFMs) are underpinned by only one assumption, namely
that production possibilities sets can be represented by distance, revenue, cost and/or
profit functions. Each of these functions can be written as a single-equation regres-
sion model with two error terms, one representing statistical noise and the other
representing inefficiency. Schmidt and Lovell (1979, p. 346), Kumbhakar (1987, p.
336), Kumbhakar and Lovell (2000, pp. 3, 4) and Kumbhakar et al. (2015, p. 55) as-
sume that the noise component captures random variables that are outside the control
of the firm (i.e., random environmental variables). Hill et al. (2011, p. 48) assume it
also “captures any approximation error that arises because the …functional form we
have assumed may only be an approximation to reality”. Carta and Steel (2012, p.
3757) write that the noise effect “is usually assumed to be a symmetric measurement
error”. Asteriou and Hall (2015, p. 180) write that “one of the most common specifi-
cation errors is to estimate an equation that omits one or more influential explanatory
variables, or an equation that contains explanatory variables that do not belong to
the ‘true’ specification”. In this book, statistical noise is viewed as a combination
of all these factors: omitted variable errors (e.g., omitted environmental variables),
functional form errors (e.g., assuming the cost function is a translog function), mea-
surement errors (e.g., when changes in quantities are measured using indices that are
not compatible with measurement theory) and included variable errors (e.g., when
output prices are included in a cost function).

The unknown parameters in SFMs can be estimated using least squares (LS),
maximum likelihood (ML) or Bayesian methods. LS estimation of SFMs involves
choosing the unknown parameters to minimise the sum of squared noise and ineffi-
ciency effects. Most models are assumed to be linear in the unknown parameters, and
composite errors representing the noise and inefficiency effects are usually assumed
to be independent random variables with a commonmean and a common variance. If
these assumptions are true, then the ordinary least squares (OLS) estimators for the
slope parameters in themodel are unbiased and consistent. In the efficiency literature,
it is common tomake additional assumptions concerning the probability distributions
of the noise and inefficiency effects (e.g., that the noise effects are normal random
variables and the inefficiency effects are half-normal random variables). The OLS
estimator for the intercept can then be adjusted (or ‘modified’) to account for the fact
that the inefficiency effects have a nonnegative mean. In this book,14 the associated
estimators are referred to as modified ordinary least squares (MOLS) estimators. The
idea behind MOLS estimation of SFMs can traced back at least as far as Olson et al.
(1980). MOLS estimators are rarely used in practice because they are less efficient
than ML estimators.

ML estimation of SFMs involves choosing the unknown parameters to maximise
the joint density (or ‘likelihood’) of the observed data. Under weak regularity con-

14Olson et al. (1980) refer to these estimators as corrected ordinary least squares (COLS) estimators.
In this book, the termCOLS is reserved for LS estimators for the parameters in deterministic frontier
models.
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ditions, ML estimators are consistent, asymptotically normal and asymptotically
efficient. The exact form of the likelihood function depends on the probability dis-
tributions of the noise and inefficiency effects. It is common to assume that the noise
effects are independent normal random variables and that the inefficiency effects are
independent truncated-normal random variables. The so-called normal-truncated-
normal model can be traced back at least as far as Stevenson (1980). Several other
assumptions concerning the inefficiency effects can be found in the literature. For
example, Aigner et al. (1977) and Meeusen and van den Broeck (1977) consider
the case where the inefficiency effects are exponential random variables, Stevenson
(1980) andGreene (1990) consider the case where they are gamma random variables,
Li (1996) assumes they are uniform random variables, Hajargasht (2015) assumes
they are Rayleigh random variables, and Almanidis et al. (2014) assume they are
doubly-truncated normal random variables. The Almanidis et al. (2014) assumption
rules out the possibility that inputs can be used to produce zero output (i.e., it rules
out assumption A1 from Sect. 1.2). Ondrich and Ruggiero (2001) show that standard
ML predictors for the inefficiency effects are monotonic in the composite error if
the probability density function (PDF) of the noise component is log-concave; an
interesting implication of this result is that, irrespective of the assumed distribu-
tion of the inefficiency effects, if the noise effects are independent normal random
variables, then the rankings of the inefficiency effects are the same as the rankings
of the composite errors. Horrace and Parmeter (2018) assume the noise and inef-
ficiency effects are Laplace and truncated-Laplace random variables respectively;
an interesting feature of this model is that the conditional distribution of the ineffi-
ciency effects is constant (resp. variable) for positive (resp. negative) values of the
composite error. Several authors assume the noise effects are correlated with the
inefficiency effects: Smith (2008) models the correlation structure using copulas, Pal
and Sengupta (1999) and Bandyopadhyay and Das (2006) assume the two effects are
distributed as truncated-bivariate-normal random variables, while Gómez-Déniz and
Pérez-Rodríguez (2015) assume they are distributed as bivariate-Sarmanov random
variables. Empirical applications of thesemodels can be found in almost every area of
business and economics: for example, Lee andTyler (1978) use a normal-half-normal
model to estimate the average output-oriented technical efficiency of industrial firms
in Brazil; Burns and Weyman-Jones (1996) use a normal-half-normal model to pre-
dict the cost efficiency of electricity distributors in England and Wales; and Ali and
Flinn (1989) use a normal-half-normal model to predict the profit efficiency of rice
producers in Pakistan.

Bayesian estimation of SFMs involves summarising sample and non-sample in-
formation about the unknown model parameters in terms of a posterior PDF. One of
the advantages of the Bayesian approach is that it provides a formal mechanism for
incorporating almost any type of non-sample information into the estimation process
(e.g., inequality constraints concerning the model parameters). Another advantage is
that it is possible to draw exact finite-sample inferences concerning nonlinear func-
tions of the model parameters (e.g., measures of efficiency). Bayesian estimation of
SFMs can be traced back at least as far as van den Broeck et al. (1994).
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SFMscanbeused to bothmeasure and explain changes inTFP.Measuring changes
in TFP involves computing proper TFP index (TFPI) numbers. SFMs can be used to
compute additive and multiplicative TFPI numbers. However, they cannot generally
be used to compute primal or dual TFPI numbers. Explaining changes in TFP in-
volves breaking proper TFPI numbers into various components. SFMs can be used to
decompose proper TFPI numbers into measures of environmental change, technical
change, efficiency change and changes in statistical noise. Both output- and input-
oriented decompositions are available. Whether or not it is possible to separately
identify all the components of TFP change depends on the both the TFPI and the
SFM.

There are many TFPI numbers that are not proper in the sense that they cannot
generally be written as proper output index numbers divided by proper input index
numbers. Examples include Fisher, Törnqvist, Hicks-Moorsteen, Malmquist, EKS
and CCD TFPI numbers. If decision makers view measures of productivity change
as measures of output quantity change divided by measures of input quantity change,
then it is not clear why they would be interested in TFPI numbers of this type. Putting
this issue to one side, one way of decomposing such numbers is to first write them
as the product of proper TFPI numbers and statistical noise index (SNI) numbers.
Subsequently, the proper TFPI numbers can be decomposed into technology index
numbers, environment index numbers, efficiency index numbers and (more) SNI
numbers.

Other SFMs that are discussed in this chapter include various systemsof equations.
These systems can be used to explain variations in metafrontiers, output supplies,
input demands, and inefficiency. SFMs that are not discussed in this book include var-
ious semiparametric and nonparametricmodels. For details concerning thesemodels,
see, for example, Park and Simar (1994), Fan et al. (1996), Kneip and Simar (1996),
Park et al. (1998), Henderson and Simar (2005), Kumbhakar et al. (2007), Kuosma-
nen and Kortelainen (2012), Simar and Zelenyuk (2011), Martins-Filho et al. (2015),
Parmeter et al. (2017) and Simar et al. (2017).
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Chapter 9
Practical Considerations

This chapter considers some of the steps involved in conducting a policy-oriented
analysis of managerial performance. It also considers government policies that can
be used to target themain drivers of performance. In this book, the term ‘government’
refers to a group of people with the authority to control any variables that are not
controlled by firm managers.

9.1 The Main Steps

Policy-oriented performance analysis involves a number of steps that are best com-
pleted in a prescribed order or sequence. Themain steps are the following (immediate
predecessor steps are in parentheses):

1. Identify the manager(s).
2. Classify the variables that are physically involved in the production process (1).
3. Identify relevant measures of comparative performance (2).
4. Make assumptions about production technologies (2).
5. Assemble relevant data (3).
6. Select one or more functions to represent production possibilities sets (4, 5).
7. Choose an estimator (6).
8. Estimate the model and test the model assumptions (6, 7).
9. Check if the main results are robust to the assumptions and choices made in Steps

4, 6 and 7 (8).

Researchers with little interest in policy often complete these steps in a different
order. For example, academic researchers who are primarily interested in getting
their work published often start at Step 7 (i.e., they choose the estimation approach
first).
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Step 1. Identifying the Manager(s)

The first step in analysing managerial performance is to identify the manager(s).
A manager is a person or other accountable body responsible for controlling (or
administering) a firm. It is generally only meaningful to compare the performance of
managers of the same type. For example, it is generally only meaningful to compare
the performance of rice farmers with the performance of other rice farmers, not cattle
producers.

Step 2. Classifying the Variables

In this book, all of the possibly millions of variables that are physically involved in
production processes are classified into those that are controlled by firm managers
and those that are not. Those that are controlled managers are then further classified
into inputs and outputs. Those that are never controlled by managers are referred to
as environmental variables. Here, the term ‘environmental variable’ refers to a char-
acteristic of a production environment. When classifying variables, it is important to
distinguish between characteristics of production environments (e.g., the road net-
work in trucking) and characteristics of market and institutional environments (e.g.,
the degree of competition in output markets; regulations that govern business open-
ing hours; intellectual property regulations). It is also advisable to have a specific
manager, or group of managers, in mind. This is because a variable that is classified
one way when measuring the performance of one manager might be classified differ-
ently when measuring the performance of another manager (e.g., a tractor would be
classified as an output when measuring the performance of a tractor manufacturer,
but would be classified as an input when measuring the performance of a farmer; a
school building would be classified as an environmental variable when measuring
the performance of a classroom teacher, but would normally be classified as an input
when measuring the performance of an education minister).

Step 3. Identifying Relevant Measures of Comparative Performance

Arguably the simplest measures of comparative performance are index numbers.
Indices that are widely used to compare managerial performance include output,
input, revenue, cost, profit and productivity indices. Other measures of comparative
performance include measures of efficiency. The measures of efficiency discussed in
this book includemeasures of technical, revenue, cost, profit, scale,mix and allocative
efficiency. Most of these measures can be viewed as total factor productivity indices
(TFPIs). For example,measures of output-oriented technical efficiency can be viewed
as indices that compare observed levels of TFP with the maximum levels of TFP that
are possible when inputs and output mixes have been predetermined.

For any group of managers, the most relevant measures of comparative perfor-
mance depend on their optimisation problems. In turn, the optimisation problems
faced by managers depend on what they value, and on what they can and cannot
choose. If, for example, a firm manager places nonnegative values on outputs (not
necessarily market values) and all other variables involved in the production pro-
cess have been predetermined (i.e., determined in a previous period), then (s)he will
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generally aim to maximise a measure of total output. In these situations, the most
relevant measures of performance are output indices and output-oriented measures
of technical and mix efficiency. In practice, it is common, but often unrealistic, to
assume that all managers face the same type of optimisation problem (e.g., that they
all minimise the cost of producing predetermined outputs).

Matters are slightly different from a government perspective. For a government,
the most relevant measure of comparative performance depends on what the gov-
ernment values. If, for example, a government places nonnegative values on outputs
and inputs (again, not necessarily market values), then the most relevant measures
of performance include measures of net output and productivity. In a government
context, these measures can be viewed as measures of social welfare.

Step 4. Making Assumptions About Production Technologies

It is possible to compute many measures of comparative performance (e.g., most
index numbers) without knowing anything about production technologies. Howev-
er, to compute others (e.g., most, if not all, measures of efficiency), we need to
make some assumptions about the things that can and cannot be produced using
different production technologies. In this book, a production technology (or simply
‘technology’) is defined as a technique, method or system for transforming inputs
into outputs. For most practical purposes, it is convenient to think of a technology as
a book of instructions.

We can often identify the things that can and cannot be produced using different
technologies by thinking about the relevant science. For example, our knowledge of
agricultural science tells us that there is a limit to howmuch rice can be producedwith
a given amount of land, labour, machinery and seed (⇒ output sets are bounded),
and our knowledge of physics and chemistry tells us that it is not possible to use coal
to produce electricity without also producing greenhouse gases (⇒ outputs are not
strongly disposable). It is sometimes possible to get information about what can and
cannot be produced using different technologies by ‘reading the instructions’ (e.g.,
reading a patent, or an article in the American Journal of Experimental Agriculture).

In most empirical contexts, it is reasonable to assume that output sets are bound-
ed and both outputs and inputs are weakly disposable. If these weak assumptions
are true, then production possibilities sets can be represented by distance, revenue
and cost functions. Stronger assumptions (e.g., assumptions about returns to scale)
imply restrictions on the parameters of these functions. If the restrictions are true,
then restricted estimators of the parameters will be more efficient than unrestricted
estimators. However, if the restrictions are not true, then restricted estimators will
be biased. For this reason, we should generally avoid making unnecessary and/or
empirically-untestable assumptions about technologies.

Step 5. Assembling the Data

The type of data required to analyse managerial performance depends largely on the
measures of comparative performance identified in Step 3. For example, to compute
productivity index numbers, we only require data on output and input quantities; to
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estimate levels of technical, scale and mix efficiency, we also need data on environ-
mental variables; and to estimate levels of revenue efficiency, we generally need data
on output prices, input quantities, environmental variables and revenues.

In practice, many of the variables we require aremeasuredwith error. Tominimise
measurement errors, we must (a) recognise the difference between a quantity, a price
and a value, (b) recognise that products of different quality are, in fact, different
products (e.g., 570 horsepower tractors and 620 horsepower tractors are different
products), and (c) use proper indices to measure changes in quantities across time
and/or space. One of the most common and easily-avoidable errors made in contem-
porary performance analysis is to use quantity indices that are not compatible with
measurement theory (and therefore not proper).

In practice, data should be ‘cleaned’. Data cleaning involves identifying, and
subsequently correcting or removing, inaccurate or unreliable records in a dataset.
Such records can often be identified by examining scatter plots, box plots and/or time-
series plots of (a) variables and ratios of variables (e.g., measures of capital; capital-
to-labour ratios; productivity index numbers), (b) efficiency estimates obtained from
piecewise frontier models, and (c) residuals obtained from linear regression models.
For othermethods, see, for example, Hodge andAustin (2004) andBanker andChang
(2006).

Step 6. Selecting Functions to Represent Production Possibilities Sets

A production possibilities set is a set containing all input-output combinations that
are physically possible. If enough assumptions are made in Step 4, then production
possibilities sets can be represented by distance, revenue, cost and profit functions.
They can also be represented by input demand and output supply functions. Whether
we need to estimate the parameters of such functions depends on the measures of
comparative performance identified in Step 3. Whether it is possible to estimate the
parameters depends on the data that were assembled in Step 5. For example, if data
on inputs, outputs and environmental variables are available, thenwe are in a position
to estimate distance functions; these are the functions that should be selected if the
relevant measures of comparative performance are measures of technical efficiency.
As another example, if data on output and input prices, environmental variables and
profits are available, then we are in a position to estimate profit functions; these
are the functions that should be selected if the relevant measures of comparative
performance are measures of profit efficiency.

Step 7. Choosing an Estimator

Threemain types of estimator canbeused to estimate theparameters of the function(s)
identified in Step 6: piecewise frontier estimators, deterministic frontier estimators
and stochastic frontier estimators. The choice of estimator depends on the measures
of comparative performance identified in Step 3, the assumptions made in Step 4,
and the data assembled in Step 5. Figure 9.1 presents a decision tree that can be used
to guide the choice of estimator.
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The top section of Fig. 9.1 focuses on piecewise frontier estimators. The most
widely-used piecewise frontier estimators are underpinned by the following assump-
tions:

PF1 production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

PF2 all relevant quantities, prices and environmental variables are observed and
measured without error;

PF3 production frontiers are locally (or piecewise) linear;
PF4 inputs, outputs and environmental variables are strongly disposable; and
PF5 production possibilities sets are convex.

If these assumptions are true, then production frontiers can be estimated using linear
programming (LP). The associated models are known as data envelopment analysis
(DEA) models. In practice, it is common to relax assumption PF5. The models
obtained by relaxing this assumption are known as free disposal hull (FDH) models.
If the assumptions underpinning DEA and FDH models are true, then, under weak
regularity conditions concerning the probability density functions (PDFs) of the
inefficiency effects, associated estimators for (in)efficiency are consistent.

The middle section of Fig. 9.1 focuses deterministic frontier estimators. These
estimators are underpinned by the following assumptions:

DF1 production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

DF2 all relevant quantities, prices and environmental variables are observed and
measured without error; and

DF3 the functional forms of relevant functions are known.

Observe that assumption DF1 (resp. DF2) is the same as assumption PF1 (resp. PF2).
If assumptions DF1 to DF3 are true, then production frontiers can be estimated using
single-equation regression models with error terms representing inefficiency. This
book discusses three deterministic frontier estimators: growth accounting (GA), least
squares (LS), and maximum likelihood (ML) estimators. Most GA estimators are
underpinned by the following assumptions:

GA1 output and input sets are homothetic,
GA2 technical change is Hicks-neutral,
GA3 production frontiers exhibit constant returns to scale,
GA4 inputs are strongly disposable,
GA5 firms are price takers in input markets,
GA6 input prices are strictly positive, and
GA7 firm managers successfully minimise cost.

If these assumptions are true, then many of the parameters in production functions
can be estimated using differential calculus. The associated estimates/predictions
of technical and cost efficiency are equal to one. Let uit denote the inefficiency of
manager i in period t. The most widely-used LS estimators are underpinned by the
assumption that uit is a random variable with the following properties:
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LS1 E(uit) = μ ≥ 0 for all i and t,
LS2 var(uit) ∝ σ 2

u for all i and t,
LS3 cov(uit, uks) = 0 if i �= k or t �= s, and
LS4 uit is uncorrelated with the explanatory variables.

If these assumptions are true, then corrected ordinary least squares (COLS) estimators
for the parameters in deterministic frontier models are consistent. The most widely-
used ML estimators are underpinned by the assumption that either

ML1 uit is an independent N+(0, σ 2
u ) random variable, or

ML2 uit is an independent G(P, σu) random variable.

IfML2 is true andP > 2, then the associatedMLestimators for themodel parameters
are consistent. If ML2 is not true, or if it is true but P ≤ 2, then the properties of the
ML estimators are unknown.

The bottom section of Fig. 9.1 focuses on stochastic frontier estimators. These
estimators are underpinned by only one assumption, namely that production possi-
bilities sets can be represented by distance, revenue, cost and/or profit functions (i.e.,
PF1, which is the same as DF1). Each of these functions can be written as a single-
equation regression model with two error terms, one representing statistical noise
and the other representing inefficiency. This book discusses three stochastic frontier
estimators: least squares (LS), maximum likelihood (ML) and Bayesian estimators.
If we do not need to predict levels of inefficiency (e.g., because we are only interested
in decomposing a productivity index, and we are not interested in separating effi-
ciency change from the change in statistical noise), then the estimators that require
the weakest assumptions are LS estimators. Let εit ≡ vit − uit where vit represents
statistical noise and uit denotes a measure of inefficiency. The most widely-used LS
estimators are underpinned by the assumption that εit is a random variable with the
following properties:

LS5 E(εit) = −μ ≤ 0 for all i and t,
LS6 var(εit) = σ 2

ε for all i and t,
LS7 cov(εit, εks) = 0 if i �= k or t �= s, and
LS8 εit is uncorrelated with the explanatory variables.

If these assumptions are true, and if the stochastic frontiermodel contains an intercept,
then OLS estimators for the slope parameters are unbiased and consistent. However,
consistent estimators for the intercept and the mean level of inefficiency are only
available if additional assumptions are made about the noise and inefficiency effects.
ML estimators are typically underpinned by the following additional assumptions:

ML3 vit is an independent N (0, σ 2
v ) random variable, and

ML4 uit is an independent N+(μ, σ 2
u ) random variable.

If these assumptions are true, then ML estimators for the model parameters are con-
sistent, asymptotically efficient and asymptotically normal. Bayesian estimators are
effectively underpinned by the same assumptions as ML estimators. They are par-
ticularly useful for incorporating certain types of prior information (e.g., inequality



380 9 Practical Considerations

constraints) into the estimation process. ML estimators can be viewed as special
cases of Bayesian estimators corresponding to noninformative prior information.

In practice, stochastic frontier analysis involvesminimising functional form errors
and other sources of statistical noise. To minimise functional form errors, we should
select approximating functions that are compatible with the assumptions made in
Step 4. For example, if outputs are strongly disposable, then we should approximate
output distance functions using functions that are globally nondecreasing in outputs,
and if output sets are convex, then we should approximate revenue functions using
functions that are globally concave in inputs. Some common functions are presented
in Table 9.1. The linear function is both concave and convex in x (⇒ it is also quasi-
concave and quasiconvex in x); if α ≥ 0 and βk ≥ 0 for all k, then it is nonnegative
for all x ≥ 0; if βk ≥ 0 for all k, then it is nondecreasing in x; and if α = 0, then
it is linearly homogeneous in x. The constant elasticity of substitution (CES) func-
tion can be traced back at least as far as Arrow et al. (1961, p. 230). This function
is homogeneous of degree r in x; if βk ≥ 0 for all k, then it is nonnegative for all
x ≥ 0; if βk ≥ 0 for all k, then it is nondecreasing in x; if τ ≤ 1 and βk ≥ 0 for all
k, then it is quasiconcave in x; and if τ ≥ 1 and βk ≥ 0 for all k, then it is quasicon-
vex in x. The double-log function (often referred to as a Cobb-Douglas function) is
nonnegative and homogeneous of degree

∑
k βk in x; if βk ≥ 0 for all k, then it is

nondecreasing and quasiconcave in x; if βk ≤ 0 for all k, then it is quasiconvex in
x; if βk ≥ 0 for all k and

∑
k βk ≤ 1, then it is concave in x. The generalised linear

function is linearly homogeneous; if β jk ≥ 0 for all j and k, then it is nonnegative
for all x ≥ 0; if β jk ≥ 0 for all j and k, then it is nondecreasing and concave (⇒ it is
also quasiconcave) in x; and if β jk ≤ 0 for all j and k, then it is convex (⇒ it is also
quasiconvex) in x. The translog function can be traced back to Heady and Dillon
(1961, Eq. 6.16). This function is nonnegative; if βk ≥ 0 and β jk = 0 for all j and
k, then it is nondecreasing in x (in this case, it collapses to a double-log function);
if

∑
k βk = r and

∑
k β jk = 0 for all j , then it is homogeneous of degree r in x;

if βk ≤ 0 and β jk = 0 for all j and k, then it is quasiconvex in x (in this case, it
collapses to a double-log function); and if βk ≥ 0 for all k,

∑
k βk ≤ 1 and β jk = 0

for all j and k, then it is concave (⇒ it is also quasiconcave) in x (in this case, it again
collapses to a double-log function). Finally, if α ≥ 0, βk ≥ 0 for all k and β jk ≥ 0
for all j and k, then the quadratic function is nonnegative for all x ≥ 0; if βk ≥ 0 for
all k and β jk ≥ 0 for all j and k, then it is nondecreasing in x; if α = 0 and β jk = 0
for all j and k, then it is linearly homogeneous in x (in this case, it collapses to a
linear function); and if β jk = 0 for all j and k, then it is concave and convex (⇒
it is also quasiconcave and quasiconvex) in x (in this case, it again collapses to a
linear function). For more details on functional forms and their properties, see, for
example, Chambers (1988, Chap. 5) and Griffin et al. (1987).

Step 8. Estimation and Testing

Piecewise frontier estimators can be used to test hypotheses concerning technolo-
gies (e.g., no technical change; constant returns to scale; inputs strongly disposable;
production possibilities sets convex) and inefficiency (e.g., that average levels of
inefficiency are the same across groups). This often involves bootstrapping.



9.1 The Main Steps 381

Table 9.1 Common functions

Function Formula Restrictions

Linear f (x) = α + ∑
k βkxk

CES f (x) = (∑
k βkxτ

k

)r/τ
τ > 0, r > 0

Double-log f (x) = exp
(
α + ∑

k βk ln xk
)

Generalised
linear

f (x) = ∑
j
∑

k β jk (x j xk )1/2 β jk = βk j

Translog f (x) = exp
(
α + ∑

k βk ln xk + ∑
j
∑

k β jk ln x j ln xk
)

x > 0, β jk = βk j

Quadratic f (x) = α + ∑
k βkxk + ∑

j
∑

k β jk x j xk β jk = βk j

Deterministic frontier estimators can also be used to test hypotheses concerning
technologies and inefficiency. Tests concerning inefficiency include standard econo-
metric tests for fixed effects, heteroskedasticity, autocorrelation and endogeneity.

Stochastic frontier estimators can be used to test hypotheses concerning compos-
ite error terms representing a combination of statistical noise and inefficiency. Again,
these hypothesis tests include tests for fixed effects, heteroskedasticity, autocorrela-
tion and endogeneity. The presence of the noise component means it is not generally
possible to interpret the parameters of stochastic frontier models in the same way we
can interpret the parameters of deterministic frontier models. Consequently, it is not
generally possible to use stochastic frontier estimators to test hypotheses concerning
production technologies.

Step 9. Conducting Robustness Checks

It is good practice to examine and report information on the sensitivity of the main
results to the assumptions and choices made in Steps 4, 6 and 7. For a brief discussion
of this ‘methodology cross-checking’ principle, see Charnes (1988, p. 2) and Ferrier
and Lovell (1990, p. 230)

9.2 Government Policies

Changes in most measures of managerial performance can be attributed to four main
factors: (a) technical progress, (b) environmental change, (c) technical efficiency
change, and (d) scale, mix and/or allocative efficiency change. Different government
policies affect, and can therefore be used to target, these different components.

(a) Technical Progress

In this book, the term ‘technical progress’ refers to the discovery of new technolo-
gies (i.e., new techniques, methods and systems for transforming inputs into outputs).
Investigative activities aimed at discovering new technologies are referred to as ‘re-
search and development’ (R&D) activities. Governments can often increase rates of
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technical progress by, for example, (a) conducting their own R&D (e.g., the Aus-
tralian government conducts its own R&D through the Commonwealth Scientific
and Industrial Research Organisation), (b) directly funding others to conduct R&D
(e.g., the U.S. government funds research through the National Science Foundation
grants), and (c) providing incentives for others to conduct more R&D (e.g., Article
33s of the 1994 WTO TRIPs Agreement encourages so-called ‘private’ R&D by
strengthening intellectual property rights).1

(b) Environmental Change

In this book, the term ‘environmental change’ refers to changes in variables that are
physically involved in production processes but never controlled by firm managers.
Examples of so-called environmental variables include rainfall in crop production
and the road network in trucking. Governments can often change production environ-
ments by, for example, (a) regulating (or failing to regulate) the impact of production
processes on the natural environment (e.g., making it unlawful to discharge pollutants
from industrial plants into waterways), and (b) providing and/or decommissioning
different types of public infrastructure (e.g. building ports, railroads, bridges and
electricity distribution networks).

(c) Technical Efficiency Change

For most practical purposes, it is useful to think of a production technology as a book
of instructions, or recipe.Measures of technical efficiency can be viewed asmeasures
of how well production technologies are chosen and used (i.e., how well managers
‘choose books/recipes from the library’ and ‘follow the instructions’). Governments
can raise levels of technical efficiency by, for example, (a) removing barriers to the
adoption of particular technologies (e.g., removing financial constraints that prevent
managers from purchasing expensive ‘ingredients’; removing patent protections),
(b) providing education and training services to advise managers about the existence
and proper use of new technologies (e.g., agricultural extension programs), and (c)
ensuring that output markets are competitive (e.g., by removing barriers to entry) or
pseudo-competitive (e.g., by regulating output prices).

(d) Scale, Mix and/or Allocative Efficiency Change

Measures of scale, mix and/or allocative efficiency can be viewed asmeasures of how
well managers have captured economies of scale and substitution (i.e., the benefits
obtained by changing the scale of operations, the output mix, and the input mix).
Governments can often raise levels of scale and mix efficiency by changing the key
variables that drive managerial behaviour. If, for example, firm i is a price taker in
output and input markets, then the manager’s period-t profit-maximisation problem
can be written as

1Article 33s of the agreement provides that the term of a patent (i.e., the maximum period during
which it can be enforced) shall not be less than twenty years from the patent filing date.
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max
q,x

{p′
itq − w′

itx : Dt
O(x, q, zit) ≤ 1}.

The key variables in this problem are environmental variables and relative prices.
In this case, governments may be able to increase scale and mix efficiency by, for
example, (a) changing the production environment, (b) changing relative output and
input prices (e.g., by changingminimumwages, interest rates, taxes and/or subsidies),
and (c) placing (or removing) legal restrictions on output and input choices (e.g.,
prohibiting the use of child labour; legalising the use of medicinal cannabis).

9.3 Rice Example

To illustrate the main steps involved in managerial performance analysis, this sec-
tion analyses the performance of a group of smallholder rice farmers in the Tarlac
municipality of the Philippines.

Step 1. The Manager(s)

The managers are a group of smallholder farmers. Each farmer typically grows
rice, maize, mungbeans and/or vegetables. Most farmers also engage in off-farm
employment. In this empirical example, we are only concerned with how well each
farmer manages the rice production process (not the maize, mungbeans or vegetable
production process, nor other aspects of running the farm household).

Step 2. Classifying the Variables

The rice production system in the Tarlac municipality is a rainfed system. All fields
are planted to rice in the rainy season and either left fallow or planted to other crops
in the dry season. Outputs include different varieties of rice (e.g., traditional; IR60;
IR64). Inputs include land, different types of labour (e.g., family labour; hired labour;
specialist labour for landpreparation, transplanting, harvesting and threshing), capital
(e.g., tractors; buffalos), seed (e.g., traditional; IR60; IR64), fertilisers (e.g., nitrogen;
phosphorus; potassium), insecticides and herbicides. The production environment
is characterised by variations in altitude (e.g., upland, lowland) and weather (e.g.,
temperature; rainfall).

Step 3. Identifying Relevant Measures of Comparative Performance

The farmers in the study group are price-takers in output and input markets. At the
beginning of each production period, they choose inputs and planned outputs to
maximise expected profits in the face of uncertainty about output prices and weather
variables. During the production period, they may be able to adjust some inputs
(e.g., insecticides, labour for harvesting and threshing) as weather variables and
outcomes of earlier production stages are realised. In these situations, arguably the
most relevant measures of comparative performance are measures of partial factor
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productivity (PFP), total factor productivity (TFP) and output-oriented technical
efficiency (OTE).

Step 4. Making Assumptions About Production Technologies

Technologies for planting, growing and harvesting rice in the Philippines are de-
scribed in, for example, IRRI (2015). With these technologies,

A1 it is possible to produce no rice (i.e., inactivity is possible);
A2 there is a limit to how much rice can be produced using a finite amount of

land, labour, seed and other inputs (i.e., output sets are bounded);
A3 positive amounts of land, labour and seed are needed in order to produce a

positive amount rice (i.e., most inputs are weakly essential; there is ‘no free
lunch’);

A6s if particular inputs can be used to produce a given amount of rice, then they
can also be used to produce less rice (i.e., outputs are strongly disposable);
and

A7 if a particular amount of rice can be produced using a given input vector, then
it can also be produced using a scalar magnification of that input vector (i.e.,
inputs are weakly disposable).

The science suggests that there is a point at which increases in labour per hectare
will cause yield losses through overcrowding/congestion. Furthermore, according to
IRRI (2015, pp. 15, 19), high rates of fertiliser application may cause yield losses
through lodging (i.e., bending over of stems near ground level) and/or increased
susceptibility to pests and diseases (esp. with nitrogen fertilisers). This implies that
labour and fertiliser inputs are not strongly disposable.

Step 5. Assembling the Data

The data were originally assembled by the International Rice Research Institute (IR-
RI). A data file containing observations on key variables was made publicly available
by Coelli et al. (2005). This file2 contains observations on forty-three farmers over
the eight years from 1990 to 1997. Table 9.2 provides a brief description of the vari-
ables. Some descriptive statistics are presented in Table 9.3. In this data file, outputs
of different rice varieties have been aggregated into a single measure of rice output;
different types of labour have been aggregated into a single measure of the labour
input; inputs of nitrogen, phosphorus and potassium have been aggregated into a sin-
gle measure of the fertiliser input; and inputs of seeds, tractors, buffalos, insecticides
and herbicides have been aggregated into a single measure of other inputs. The data
file contains information on two farmer attributes, two (irrelevant) household-related
variables and one environmental variable (altitude). The data file contains no infor-
mation on weather variables. More details concerning the data can be accessed from
Pandey et al. (1999) and Coelli et al. (2005).

2The file can be accessed from http://www.uq.edu.au/economics/cepa/crob2005/software/
CROB2005.zip. The file is contained in the folder for Chap.9.

http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip
http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip
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Table 9.2 Variables in the rice dataset

Variable Description

t = YEARDUM Year index (1990=1)

i = FMERCODE Farmer code

q = PROD Output (tonnes of freshly threshed rice)

x1 = AREA Area planted (hectares)

x2 = LABOR Labour (man-days of family and hired labour)

x3 = NPK Fertiliser (kg of active ingredients)

x4 = OTHER Other inputs (Laspeyres index=100 for Firm 17 in 1991)

p = PRICE Output price (pesos per kg)

w1 = AREAP Rental price of land (pesos per hectare)

w2 = LABORP Labour price (pesos per hired man-day)

w3 = NPKP Fertiliser price (pesos per kg of active ingredient)

w4 = OTHERP Price of other inputs (implicit price index)

a1 = AGE Age of household head (years)

a2 = EDYRS Education of household head (years)

h1 = HHSIZE Household size

h2 = NADULT Number of adults in household

z = BANRAT Percentage of area classified as upland fields

Table 9.3 Descriptive statistics for selected variables

Variable Mean Std. dev. Minimum Maximum

q = PROD 6.540 5.107 0.09 31.10

x1 = AREA 2.144 1.458 0.20 7.00

x2 = LABOR 108.342 77.191 8 437

x3 = NPK 189.235 169.803 10.0 1030.9

x4 = OTHER 125.345 158.24 1.459 1083.4

a1 = AGE 49.445 11.022 25 81

a2 = EDYRS 7.244 1.910 6 14

z = BANRAT 0.734 0.293 0 1

Step 6. Selecting Functions to Represent Production Possibilities Sets

The measures of comparative performance identified in Step 3 were PFP, TFP and
OTE. To compute measures of PFP and TFP, we only need data on outputs and
inputs. These data are available. We made enough assumptions in Step 4 for produc-
tion possibilities sets to be represented by distance, revenue and cost functions. To
estimate/predict OTE, we need to estimate the output distance function. This means
we need data on outputs, inputs and environmental variables. Unfortunately, data on
some environmental variables (e.g., temperature, rainfall) are unavailable.



386 9 Practical Considerations

Step 7. Choosing an Estimator

The assumptions made in Step 4 ensure that production possibilities sets can be
represented by distance, revenue and cost functions (⇒ PF1 is true). However, many
environmental variables are unobserved, and many inputs are measured with error
(⇒ PF2 is not true). In this situation, Fig. 9.1 leads us to estimate the parameters
of a stochastic frontier model (SFM). The measures of comparative performance
identified in Step 3 include OTE. To predict OTE, we need to use ML or Bayesian
estimators.

Step 8. Estimation and Testing

A theoretically-plausible SFM that involves most of the variables in the dataset
(i.e., utilises most of the available sample information) is the following system of
simultaneous equations:

ln qit = αi + λt + δzit +
M∑

m=1

βm ln xmit + v∗
it − uit (9.1)

and uit = φ0 + φ1a1it + φ2a2it + wit (9.2)

where uit ≡ − lnOTEt(xit, qit, zit) ≥ 0 denotes an output-oriented technical ineffi-
ciency effect and v∗

it and wit represent different measures of statistical noise. Equa-
tion (9.1) can be viewed as a special case of (8.31) corresponding to f t(xit, zit) =
λt + δzit + ∑

m βm ln xmit and λt = 0. Equation (9.2) is a special case of the inef-
ficiency effects model defined by (8.74). ML estimates of the unknown parame-
ters in this system are reported in Table 9.4. These estimates were obtained under
the assumption that v∗

it is an independent N (0, σ 2
v ) random variable and wit is an

independent random variable obtained by lower-truncating the N (0, σ 2
w) distribu-

tion at Lit = −φ0 − φ1a1it − φ2a2it . Separate likelihood ratio tests were used to test
H0 : αi = α for all i andH0 : φ1 = φ2 = 0. Both hypotheses were rejected at the 1%
level of significance.

The estimate of γ reported in Table 9.4 indicates that v∗
it = 0. The estimate of λ

indicates that the rate of technical progress was 1.7% per annum. The estimate of
β1 indicates that, ceterus paribus, a one-percent increase in land area gives rise to a
0.45% increase in rice output. The estimate of φ1 indicates that technical efficiency
increases with age; this supports the hypothesis that managers ‘learn by doing’. The
estimated elasticity of scale is 0.894, indicating that the production frontier exhibits
decreasing returns to scale; this could help explain why farm sizes are relatively
small.

The measures of comparative performance identified in Step 3 include measures
of PFP and TFP. Selected PFP and TFP index numbers are reported in Table 9.5. The
numbers reported in the column labelled LND (resp. LAB) are land (resp. labour)
productivity index numbers that compare the output per unit of land (resp. labour) on
each farm in each period with the output per unit of land (resp. labour) on farm 1 in
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Table 9.4 ML parameter estimates

Parameter Est. St. err. t

α1 −0.611 0.153 −3.984***

α2 −0.279 0.167 −1.669*

α3 −0.553 0.153 −3.602***

α4 −0.181 0.129 −1.400

: : : :

α43 −0.360 0.140 −2.568***

λ 0.017 0.005 3.547***

δ 0.004 0.032 0.126

β1 0.450 0.028 15.793***

β2 0.264 0.032 8.272***

β3 0.136 0.030 4.590***

β4 0.045 0.015 2.978***

φ0 0.260 0.336 0.773

φ1 −0.014 0.005 −2.745***

φ2 −0.012 0.028 −0.444

σ 2 ≡ σ 2
u + σ 2

v 0.357 0.029 12.345***

γ ≡ σ 2
u /σ 2 1.000 1.0E−7 6.5E+5***

***, ** and * indicate significance at the 1, 5 and 10% levels

period 1. The LND (resp. LAB) index numbers should be used by decision makers
who regard land (resp. labour) as the only input of value. The numbers reported in
the columns labelled L, GY and BOD are Lowe, geometric Young and benefit-of-
the-doubt index numbers that compare the TFP of each farm(er) in each period with
the TFP of farm(er) 1 in period 1. The L (resp. GY) index numbers should be used by
decision makers who regard input prices (resp. cost shares) as appropriate measures
of relative value. The BOD index numbers should be used by decision makers who
believemeasures of relative value should vary from one input comparison to the next.

Equation (9.1) can be used to decompose any PFP or TFP index into measures
of technical progress, environmental change and efficiency change. Equation (9.2)
can be used to further decompose measures of OTE change into age and education
effects. For example, Eq. (9.1) can be used to write any TFP index as

TFPI(xks, qks, xit, qit) =
[
exp(λt)

exp(λs)

] [
exp(δzit)

exp(δzks)

]

×
[

TFPI(xks, qks, xit, qit)
M∏

m=1

(
xmit
xmks

)βm
(
qks
qit

)]

×
[
exp(−uit)

exp(−uks)

] [
exp(v∗

it + αi)

exp(v∗
ks + αk)

]

. (9.3)
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Table 9.5 Selected PFP and TFP index numbers

Firm Period LND LAB L GY BOD

1 1 1 1 1 1 1

1 2 0.912 1.064 0.919 0.898 1.013

1 3 1.133 1.303 0.910 0.578 1.135

1 4 0.929 1.178 0.772 0.493 0.973

1 5 0.958 1.064 0.785 0.507 0.952

1 6 0.573 0.750 0.488 0.305 0.618

1 7 0.617 0.721 0.466 0.294 0.613

1 8 1.074 1.709 0.952 0.643 1.230

: : : : : : :

43 1 0.379 0.421 0.394 0.409 0.468

43 2 0.371 0.398 0.380 0.424 0.389

43 3 0.861 0.840 0.856 1.083 0.975

43 4 0.526 1.011 0.737 1.243 1.205

43 5 0.891 1.195 0.863 0.629 1.248

43 6 1.412 1.641 1.380 1.147 1.497

43 7 0.672 2.163 0.975 1.345 1.944

43 8 1.228 1.952 1.520 1.892 1.876

Minimum 0.114 0.230 0.112 0.159 0.142

Geo. mean 0.918 1.176 0.913 0.923 1.193

Maximum 2.416 3.366 2.102 5.175 3.406

The first term on the right-hand side can be viewed as an output-oriented technology
index (OTI). The second term can be viewed as an output-oriented environment index
(OEI). The third term can be viewed as an output-oriented scale and mix efficiency
index (OSMEI). The last two terms are an output-oriented technical efficiency index
(OTEI) and a statistical noise index (SNI). Equation (9.2) can be used to write the
OTEI as

[
exp(−uit)

exp(−uks)

]

=
[
exp(−φ1a1it)

exp(−φ1a1ks)

] [
exp(−φ2a2it)

exp(−φ2a2ks)

] [
exp(−wit)

exp(−wks)

]

. (9.4)

In the present context, the first term on the right-hand side is an age index (AGEI).
The second term is an education index (EDUCI). The last term is (another) statistical
noise index (SNI). To illustrate, Table 9.6 reports two decompositions of the Lowe
TFPI numbers in Table 9.5. The OTI, OEI, OSMEI, AGEI and EDUCI numbers in
Table 9.6 were obtained by using the ML estimates reported in Table 9.4 to evaluate
the relevant components in (9.3) and (9.4). The OTEI numbers were obtained by
taking ratios ofMLpredictions ofOTE. The SNI numberswere obtained as residuals.
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Step 9. Conducting Robustness Checks

Robustness checking involves checking the sensitivity of the main results to the
assumptions and choicesmade in Steps 4, 6 and 7. In any given empirical analysis, the
main results typically concern themeasures of comparative performance identified in
Step 3. In the present case, these are measures of PFP, TFP and OTE. The measures
of PFP and TFP reported in Table 9.5 do not depend on any of the assumptions
or choices made in Steps 4, 6 and 7; the only results that are affected by those
choices/assumptions are the predictions of OTE.

Table 9.7 reports three sets of estimates/predictions of OTE. The estimates re-
ported in the column labelled PFM were obtained using a modified version of DEA
problem (6.4); the modification involved replacing the inequality signs in the labour,
fertiliser and environmental variable constraintswith strict equality signs (this reflect-
s the assumption that these variables are not strongly disposable). The predictions
reported in the column labelled DFM were obtained using COLS estimates of the
parameters in a noiseless version of Eq. (9.1). The predictions reported in the column
labelled SFM are the ML predictions obtained by estimating the parameters in (9.1)
and (9.2); ratios of these predictions were used earlier to compute the OTEI numbers
in Table 9.6. The estimates reported in Table 9.7 indicate that the OTE results are
sensitive to the choice of estimation framework.

Table 9.7 Estimates/predictions of OTEa

Firm Period PFM DFM SFM

1 1 1 0.555 0.994

1 2 1 0.489 0.883

1 3 0.818 0.556 0.981

1 4 0.617 0.468 0.815

1 5 0.561 0.464 0.801

1 6 0.404 0.309 0.520

1 7 0.380 0.288 0.484

1 8 0.796 0.576 0.949

: : : : :

43 1 0.308 0.229 0.292

43 2 0.282 0.213 0.274

43 3 0.630 0.488 0.589

43 4 0.740 0.408 0.532

43 5 0.702 0.554 0.690

43 6 1 0.786 0.980

43 7 1 0.512 0.652

43 8 1 0.777 0.992

Geo. Mean 0.825 0.450 0.722
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
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Appendix A

A.1 Propositions

Proposition 1 If output sets are homothetic, thenDt
O(x, q, z)=Dt

O(ι, q, z)/Gt(x, z).

Proof Let κ ≡ Gt(x, z). If output sets are homothetic, then Pt(x, z) = κPt(ι, z) ⇒
Dt

O(x, q, z) = inf{ρ > 0 : q/ρ ∈ Pt(x, z)} = inf{ρ > 0 : q/ρ ∈ κPt(ι, z)} = inf{ρ
> 0 : q/(ρκ) ∈ Pt(ι, z)} = inf{(ρκ)/κ > 0 : q/(ρκ) ∈ Pt(ι, z)} = (1/κ) inf{(ρκ)

> 0 : q/(ρκ) ∈ Pt(ι, z)} = Dt
O(ι, q, z)/κ = Dt

O(ι, q, z)/Gt(x, z). �

Proposition 2 If output sets are homothetic, then Rt(x, p, z) = Gt(x, z)Rt(ι, p, z).

Proof Let κ ≡ Gt(x, z). If output sets are homothetic, then, by Proposition 1,
Dt

O(x, q, z) = Dt
O(ι, q, z)/κ ⇒ Rt(x, p, z) = maxq{p′q : Dt

O(x, q, z) ≤ 1} = maxq
{p′q : Dt

O(ι, q, z)/κ ≤ 1} = maxq{p′q : Dt
O(ι, q/κ, z) ≤ 1} = maxq{κp′(q/κ) : Dt

O
(ι, q/κ, z) ≤ 1} = κ maxq/κ{p′(q/κ) : Dt

O(ι, q/κ, z) ≤ 1} = κRt(ι, p, z) = Gt(x, z)
Rt(ι, p, z). �

Proposition 3 If technical change is IHON, thenDt
O(x, q, z) = D1

O(x, q, ι)/Et(x, z).

Proof Let κ ≡ Et(x, z). If technical change is IHON, thenPt(x, z) = Et(x, z)P1(x, ι)
⇒ Dt

O(x, q, z) = inf{ρ > 0 : q/ρ ∈ Pt(x, z)} = inf{ρ > 0 : q/ρ ∈ κP1(x, ι)} = inf
{ρ > 0 : q/(ρκ) ∈ P1(x, ι)} = inf{(ρκ)/κ > 0 : q/(ρκ) ∈ P1(x, ι)} = (1/κ) inf
{(ρκ) > 0 : q/(ρκ) ∈ P1(x, ι)} = D1

O(x, q, ι)/κ = D1
O(x, q, ι)/Et(x, z). �

Proposition 4 If technical change is IHON, then Rt(x, p, z) = Et(x, z)R1(x, p, ι).

Proof Let κ ≡ Et(x, z). If technical change is IHON, then, by Proposition 3,
Dt

O(x, q, z) = D1
O(x, q, ι)/κ ⇒ Rt(x, p, z) = maxq{p′q : Dt

O(x, q, z) ≤ 1} = maxq
{p′q : D1

O(x, q, ι)/κ ≤ 1} = maxq{p′q : D1
O(x, q/κ, ι) ≤ 1} = maxq{κp′(q/κ) : D1

O
(x, q/κ, ι) ≤ 1} = κ maxq/κ{p′(q/κ) : D1

O(x, q/κ, ι) ≤ 1} = κR1(x, p, ι) = Et(x, z)
R1(x, p, ι). �

Proposition 5 If output sets are homothetic and technical change is IHON, then
Dt

O(x, q, z) = Q(q)/Ft(x, z) where Q(q) = D1
O(ι, q, ι) and Ft(x, z) = Et(ι, z)

Gt(x, z).
© Springer Nature Singapore Pte Ltd. 2018
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Proof If output sets are homothetic, then, byProposition1,Dt
O(x, q, z)=Dt

O(ι, q, z)/
Gt(x, z) (A). If technical change is IHON, then, by Proposition 3, Dt

O(x, q, z) =
D1

O(x, q, ι)/Et(x, z) ⇒ Dt
O(ι, q, z) = D1

O(ι, q, ι)/Et(ι, z) (B). Substituting (B) into
(A), Dt

O(x, q, z) = Q(q)/Ft(x, z) where Q(q) = D1
O(ι, q, ι) and Ft(x, z) = Et(ι, z)

Gt(x, z). �

Proposition 6 If output sets are homothetic and technical change is IHON, then
Rt(x, p, z) = P(p)Ft(x, z) where P(p) = R1(ι, p, ι) and Ft(x, z) = Et(ι, z)Gt(x, z).

Proof If output sets are homothetic, then, by Proposition 2, Rt(x, p, z) = Gt(x, z)Rt

(ι, p, z) (A). If technical change is IHON, then, by Proposition 4, Rt(x, p, z) =
Et(x, z)R1(x, p, ι) ⇒ Rt(ι, p, z) = Et(ι, z)R1(ι, p, ι) (B). Substituting (B) into (A),
Rt(x, p, z) = P(p)Ft(x, z) where P(p) = R1(ι, p, ι) and Ft(x, z) = Et(ι, z)
Gt(x, z). �

Proposition 7 If output sets are homothetic and technical change is IHON, then
QIP(qks, qit) = D1

O(ι, qit, ι)/D1
O(ι, qks, ι).

Proof If output sets are homothetic and technical change is IHON, then, by Proposi-
tion5,Dt̄

O(x̄, qit, z̄) = D1
O(ι, qit, ι)/Ft̄(x̄, z̄) andDt̄

O(x̄, qks, z̄)=D1
O(ι, qks, ι)/Ft̄(x̄, z̄)

⇒ QIP(qks, qit) ≡ Dt̄
O(x̄, qit, z̄)/Dt̄

O(x̄, qks, z̄) = D1
O(ι, qit, ι)/D1

O(ι, qks, ι). �

Proposition 8 If output sets are homothetic and technical change is IHON, then
PID(pks, pit) = R1(ι, pit, ι)/R1(ι, pks, ι).

Proof If output sets are homothetic and technical change is IHON, then, by Proposi-
tion 6,Rt̄(x̄, pit, z̄) = R1(ι, pit, ι)/Ft̄(x̄, z̄) andRt̄(x̄, pks, z̄)=R1(ι, pks, ι)/Ft̄(x̄, z̄) ⇒
PID(pks, pit) ≡ Rt̄(x̄, pit, z̄)/Rt̄(x̄, pks, z̄) = R1(ι, pit, ι)/R1(ι, pks, ι). �

Proposition 9 If input sets are homothetic, then Dt
I (x, q, z) = Dt

I (x, ι, z)/K
t(q, z).

Proof Let κ ≡ Kt(q, z). If input sets are homothetic, then Lt(q, z) = κLt(ι, z) ⇒
Dt

I (x, q, z) = sup{θ > 0 : x/θ ∈ Lt(q, z)} = sup{θ > 0 : x/θ ∈ κLt(ι, z)} = sup
{θ > 0 : x/(κθ) ∈ Lt(ι, z)} = sup{(κθ)/κ > 0 : x/(κθ) ∈ Lt(ι, z)} = (1/κ) sup
{(κθ) > 0 : x/(κθ) ∈ Lt(ι, z)} = Dt

I (x, ι, z)/κ = Dt
I (x, ι, z)/K

t(q, z). �

Proposition 10 If input sets are homothetic, then Ct(w, q, z) = Kt(q, z)Ct(w, ι, z).

Proof Let κ ≡ Kt(q, z). If input sets are homothetic, then, by Proposition 9,
Dt

I (x, q, z) = Dt
I (x, ι, z)/κ ⇒ Ct(w, q, z) = minx{w′x : Dt

I (x, q, z) ≥ 1} = minx{w′
x : Dt

I (x, ι, z)/κ ≥ 1} = minx{w′x : Dt
I (x/κ, ι, z) ≥ 1} = minx{κw′(x/κ) :Dt

I (x/κ,

ι, z) ≥ 1} = κ minx/κ{w′(x/κ) : Dt
I (x/κ, ι, z) ≥ 1} = κCt(w, ι, z) = Kt(q, z)Ct

(w, ι, z). �

Proposition 11 If technical change is IHIN, then Dt
I (x, q, z) = D1

I (x, q, ι)/J
t(q, z).

Proof Let κ ≡ J t(q, z). If technical change is IHIN, then Lt(q, z) = κL1(q, ι) ⇒
Dt

I (x, q, z) ≡ sup{θ > 0 : x/θ ∈ Lt(q, z)} = sup{θ > 0 : x/θ ∈ κL1(q, ι)} = sup{θ
> 0 : x/(κθ) ∈ L1(q, ι)} = sup{(κθ)/κ > 0 : x/(κθ) ∈ L1(q, ι)} = (1/κ) sup{(κθ)

> 0 : x/(κθ) ∈ L1(q, ι)} = D1
I (x, q, ι)/κ = D1

I (x, q, ι)/J
t(q, z). �
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Proposition 12 If technical change is IHIN, then Ct(w, q, z) = J t(q, z)C1(w, q, ι).

Proof Let κ ≡ J t(q, z). If technical change is IHIN, then, by Proposition 11,
Dt

I (x, q, z) = D1
I (x, q, ι)/κ ⇒ Ct(w, q, z) = minx{w′x : Dt

I (x, q, z) ≥ 1} = minx
{w′x : D1

I (x, q, ι)/κ ≥ 1} = minx{w′x : D1
I (x/κ, q, ι)/ ≥ 1} = minx{κw′(x/κ) : D1

I
(x/κ, q, ι) ≥ 1} = κ minx/κ{w′(x/κ) : D1

I (x/κ, q, ι) ≥ 1} = κC1(w, q, ι) = J t(q, z)
C1(w, q, ι). �

Proposition 13 If input sets are homothetic and technical change is IHIN, then
Dt

I (x, q, z) = X (x)/Ht(q, z) where X (x) = D1
I (x, ι, ι) and Ht(q, z) = J t(ι, z)

Kt(q, z).

Proof If input sets are homothetic, then, byProposition9,Dt
I (x, q, z)=Dt

I (x, ι, z)/K
t

(q, z) (A). If technical change is IHIN, then, by Proposition 11, Dt
I (x, q, z) =

D1
I (x, q, ι)/J

t(q, z) ⇒ Dt
I (x, ι, z) = D1

I (x, ι, ι)/J
t(ι, z) (B). Substituting (B) into

(A), Dt
I (x, q, z) = X (x)/Ht(q, z) where X (x) = D1

I (x, ι, ι) and Ht(q, z) = J t(ι, z)
Kt(q, z). �

Proposition 14 If input sets are homothetic and technical change is IHIN, then
Ct(w, q, z) = W (w)Ht(q, z) where W (w) = C1(w, ι, ι) and Ht(q, z) = J t(ι, z)Kt

(q, z).

Proof If input sets are homothetic, then, by Proposition 10,Ct(w, q, z) = Kt(q, z)Ct

(w, ι, z) (A). If technical change is IHIN, then, by Proposition 12, ⇒ Ct(w, q, z) =
J t(q, z)C1(w, q, ι) ⇒ Ct(w, ι, z) = J t(ι, z)C1(w, ι, ι) (B). Substituting (B) into (A),
Ct(w, q, z) = W (w)Ht(q, z) where W (w) = C1(w, ι, ι) and Ht(q, z) = J t(ι, z)Kt

(q, z). �

Proposition 15 If input sets are homothetic and technical change is IHIN, then
XIP(xks, xit) = D1

I (xit, ι, ι)/D
1
I (xks, ι, ι).

Proof If input sets are homothetic and technical change is IHIN, then, by Proposi-
tion 13,Dt̄

I (xit, q̄, z̄) = D1
I (xit, ι, ι)/H

t̄(q̄, z̄) andDt̄
I (xks, q̄, z̄)=D1

I (xks, ι, ι)/H
t̄(q̄, z̄)

⇒ XIP(xks, xit) ≡ Dt̄
I (xit, q̄, z̄)/D

t̄
I (xks, q̄, z̄) = D1

I (xit, ι, ι)/D
1
I (xks, ι, ι). �

Proposition 16 If input sets are homothetic and technical change is IHIN, then
WID(wks,wit) = C1(wit, ι, ι)/C1(wks, ι, ι).

Proof If input sets are homothetic and technical change is IHIN, then, by Proposi-
tion 14,Ct̄(wit, q̄, z̄) = C1(wit, ι, ι)Ht̄(q̄, z̄) andCt̄(wks, q̄, z̄)=C1(wks, ι, ι)Ht̄(q̄, z̄)
⇒ WID(wks,wit) ≡ Ct̄(wit, q̄, z̄)/Ct̄(wks, q̄, z̄) = C1(wit, ι, ι)/C1(wks, ι, ι). �

Proposition 17 If (a) output and input sets are homothetic, (b) technical change is
HN, and (c) production frontiers exhibit CRS, then Dt

O(x, q, z) = Q(q)/[At(z)F(x)]
where Q(q) = D1

O(ι, q, ι), At(z) = Et(ι, z) and F(x) = D1
I (x, ι, ι)/D

1
I (ι, ι, ι).
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Proof If technical change is HN, then it is both IHON and IHIN. If output sets are
homothetic and technical change is IHON, then, by Proposition 5, Dt

O(x, q, z) =
Q(q)/Ft(x, z) where Q(q) = D1

O(ι, q, ι) and Ft(x, z) = Et(ι, z)Gt(x, z). If output
sets are homothetic, then, by Proposition 1, Dt

O(x, q, z) = Dt
O(ι, q, z)/Gt(x, z) ⇒

Gt(x, z) = Dt
O(ι, q, z)/Dt

O(x, q, z) ⇒ Ft(x, z) = Et(ι, z)Dt
O(ι, q, z)/Dt

O(x, q, z). If
production frontiers exhibit CRS, then we have that Dt

O(x, q, z) = 1/Dt
I (x, q, z)⇒ Ft(x, z) = Et(ι, z)Dt

I (x, q, z)/D
t
I (ι, q, z). If input sets are homothetic and tech-

nical change is IHIN, then, by Proposition 13, Dt
I (x, q, z) = D1

I (x, ι, ι)/H
t(q, z) ⇒

Dt
I (ι, q, z) = D1

I (ι, ι, ι)/H
t(q, z) ⇒ Dt

I (x, q, z)/D
t
I (ι, q, z) = D1

I (x, ι, ι)/D
1
I (ι, ι, ι)⇒ Ft(x, z) = Et(ι, z)D1

I (x, ι, ι)/D
1
I (ι, ι, ι) = At(z)F(x) where At(z) = Et(ι, z) and

F(x) = D1
I (x, ι, ι)/D

1
I (ι, ι, ι). �

Proposition 18 If (a) output and input sets are homothetic, (b) technical change is
HN, and (c) production frontiers exhibit CRS, then Dt

I (x, q, z) = Bt(z)X (x)/H (q)
where Bt(z) = J t(ι, z), X (x) = D1

I (x, ι, ι) and H (q) = D1
O(ι, q, ι)/D1

O(ι, ι, ι).

Proof If technical change is HN, then it is both IHON and IHIN. If input sets are
homothetic and technical change is IHIN, then, by Proposition 13, Dt

I (x, q, z) =
X (x)/Ht(q, z) where X (x) = D1

I (x, ι, ι) and Ht(q, z) = J t(ι, z)Kt(q, z). If input
sets are homothetic, then, by Proposition 9, Dt

I (x, q, z) = Dt
I (x, ι, z)/K

t(q, z) ⇒
Kt(q, z) = Dt

I (x, ι, z)/D
t
I (x, q, z) ⇒ Ht(q, z) = J t(ι, z)Dt

I (x, ι, z)/D
t
I (x, q, z). If

production frontiers exhibit CRS, then Dt
I (x, q, z) = 1/Dt

O(x, q, z) ⇒ Ht(q, z) =
J t(ι, z)Dt

O(x, q, z)/ Dt
O(x, ι, z). If output sets are homothetic and technical change

is IHON, then, by Proposition 5,Dt
O(x, q, z) = D1

O(ι, q, ι)/Ft(x, z) ⇒ Dt
O(x, ι, z) =

D1
O(ι, ι, ι)/Ft(x, z) ⇒ Dt

O(x, q, z)/Dt
O(x, ι, z) = D1

O(ι, q, ι)/D1
O(ι, ι, ι) ⇒ Ht(q, z)

= J t(ι, z)D1
O(ι, q, ι)/D1

O(ι, ι, ι) = Bt(z)H (q) where Bt(z) = J t(ι, z) and H (q) =
D1

O(ι, q, ι)/D1
O(ι, ι, ι). �

Proposition 19 If (a) firms are price takers in output markets, (b) output sets are
homothetic, (c) technical change is IHON, and (d) the OAE of firm k in period s is
equal to the OAE of firm i in period t, then QIID(qks, qit, . . . ) = QIP(qks, qit).

Proof If output sets are homothetic and technical change is IHON, then, by Proposi-
tions 8 and7,PID(pks, pit)=R1(ι, pit, ι)/R1(ι, pks, ι) andQIP(qks, qit) = D1

O(ι, qit, ι)
/D1

O(ι, qks, ι) (A). If firm i is a price taker in output markets, then the OAE of firm
i in period t is OAEt(xit, pit, qit, zit) = REt(xit, pit, qit, zit)/OTEt(xit, qit, zit) where
REt(xit, pit, qit, zit) = Rit/Rt(xit, pit, zit) ⇒ OAEt(xit, pit, qit, zit) = Rit/[Rt(xit, pit,
zit) OTEt(xit, qit, zit)] (B). If output sets are homothetic and technical change is
IHON, then, by Propositions 6 and 5, Rt(xit, pit, zit) = R1(ι, pit, ι)Ft(xit, zit) and
OTEt(xit, qit, zit) = D1

O(ι, qit, ι)/Ft(xit, zit) ⇒ Rt(xit, pit, zit)OTEt(xit, qit, zit) = R1

(ι, pit, ι)D1
O(ι, qit, ι) (C). Substituting (C) into (B), the OAE of firm i in period t

is OAEt(xit, pit, qit, zit) = Rit/[R1(ι, pit, ι)D1
O(ι, qit, ι)] ⇒ D1

O(ι, qit, ι) = Rit/[R1(ι,

pit, ι)OAEt(xit, pit, qit, zit)] (D). Substituting (D) into (A) yields QIP(qks, qit) =
RI(pks, qks, pit, qit)/[PID(pks, pit) OAEt(xit, pit, qit, zit)/OAEs(xks, pks, qks, zks)]
where RI(pks, qks, pit, qit) = Rit/Rks. If OAEt(xit, pit, qit, zit) = OAEs(xks, pks, qks,
zks), then QIP(qks, qit) = RI(pks, qks, pit, qit) /PID(pks, pit) = QIID(qks, qit, . . . ). �
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Proposition 20 If (a) firms are price takers in input markets, (b) input sets are
homothetic, (c) technical change is IHIN, and (d) the IAE of firm k in period s is
equal to the IAE of firm i in period t, then XI ID(xks, xit, . . . ) = XIP(xks, xit).

Proof If input sets are homothetic and technical change is IHIN, then, by Propo-
sitions 16 and 15, WID(wks,wit) = C1(wit, ι, ι)/C1(wks, ι, ι) and XIP(xks, xit) =
D1

I (xit, ι, ι)/D
1
I (xks, ι, ι) (A). If firm i is a price taker in input markets, then the IAE

of firm i in period t is IAEt(wit, xit, qit, zit) = CEt(wit, xit, qit, zit)/ITEt(xit, qit, zit)
where CEt(wit, xit, qit, zit) = Ct(wit, qit, zit)/Cit ⇒ IAEt(wit, xit, qit, zit) = Ct(wit,

qit, zit) /[CitITEt(xit, qit, zit)] (B). If input sets are homothetic and technical change is
IHIN, then, by Propositions 14 and 13, Ct(wit, qit, zit) = C1(wit, ι, ι)Ht(qit, zit) and
ITEt(xit, qit, zit) = Ht(qit, zit)/D1

I (xit, ι, ι) ⇒ Ct(wit, qit, zit)/ITEt(xit, qit, zit) = C1

(wit, ι, ι)D1
I (xit, ι, ι) (C). Substituting (C) into (B) yields IAEt(xit, pit, qit, zit) =

C1(wit, ι, ι)D1
I (xit, ι, ι)/Cit ⇒ D1

I (xit, ι, ι) = CitIAEt(xit, pit, qit, zit)/C1(wit, ι, ι)

(D). Substituting (D) into (A) yieldsXIP(xks, xit) = CI(wks, xks,wit, xit)IAEt(wit, xit,
qit, zit) /[IAEs(wks, xks, qks, zks)WID(wks,wit)]whereCI(wks, xks,wit, xit) = Cit/Cks.
Finally, if IAEt(wit, xit, qit, zit) = IAEs(wks, xks, qks, zks), thenXIP(xks, xit) = CI(wks,

xks,wit, xit) /WID(wks,wit) = XIID(xks, xit, . . . ). �

Proposition 21 If (a) firms are price takers in output and input markets, (b) output
and input sets are homothetic, (c) technical change is HN, and (d) the OAE and
IAE of firm k in period s are equal to the OAE and IAE of firm i in period t, then
TFPIID(xks, qks, xit, qit, . . . ) = TFPIP(xks, qks, xit, qit).

Proof If firms are price takers in output markets, output sets are homothetic, tech-
nical change is IHON, and the OAE of firm k in period s is equal to the OAE
of firm i in period t, then, by Proposition 19, QIID(qks, qit, . . . ) = QIP(qks, qit). If
firms are price takers in input markets, input sets are homothetic, technical change
is IHIN, and the IAE of firm k in period s is equal to the IAE of firm i in pe-
riod t, then, by Proposition 20, XIID(xks, xit, . . . ) = XIP(xks, xit). It follows that
TFPIID(xks, qks, xit, qit, . . . ) ≡ QIID(qks, qit, . . . )/XIID(xks, xit, . . . ) = QIP(qks, qit)
/XIP(xks, xit) = TFPIP(xks, qks, xit, qit). �

A.2 Rates of Growth

Define z jt ≡ z j (t) where z j (.) is a differentiable function and t denotes time. Also
define Zt ≡ Z(zt) where zt = (z1t, . . . , zJt)′ is a J × 1 vector and Z(.) is a differ-
entiable function. The rate of growth in z jt per unit of time is ż j t ≡ dz jt/dt. The
percentage rate of growth in z jt per unit of time is ż j t/z jt = d ln z jt/dt. The rate of
growth in Zt per unit of time is Żt ≡ dZt/dt = ∑

j a jt ż j t where a jt ≡ ∂Z(zt)/∂z jt .
Thus, the rate of growth in Zt per unit of time is a weighted sum of the rates of growth
in z1t, . . . , zJt . If

∑
j a jt = 1, then Żt is an average rate of growth. The percentage

rate of growth in Zt per unit of time is Żt/Zt = d ln Zt/dt = ∑
j b jt(ż j t/z jt) where

b jt ≡ ∂ ln Z(zt)/∂ ln z jt . Thus, the percentage rate of growth in Zt per unit of time



398 Appendix A

is a weighted sum of the percentage rates of growth in z1t, . . . , zJt . If Z(.) is homo-
geneous of degree one, then

∑
j b jt = 1 and Żt/Zt is an average percentage rate of

growth.
The fact that most economic variables are measured at discrete points in time

means that the smallest measurable change1 in t is �t = 1. The associated change
in ln z jt , for example, is

� ln z jt
�t

∣
∣
∣
�t=1

= � ln z jt = ln z jt − ln z j,t−1. (A.1)

Moreover, the percentage rate of growth in z jt per unit of time is

d ln z jt
dt

= lim
�t→0

� ln z jt
�t

= � ln z jt
�t

+ e(�t)

where e(�t) is an error that goes to zero as fast as �t goes to zero.2 In practice, it is
common to ignore this error.

Researchers are often interested in measuring growth over several periods. Let
ZIst ≡ Zt/Zs denote the index that compares Zt with Zs. If the rate of growth in Zs is
a constant g percent per period, then the percentage rate of growth in Zs per period is
g = ZI1/(t−s)

st − 1. If the percentage rate of growth in Zs per period is not a constant,
then the average percentage rate of growth in Zs per period can be measured as

ḡ = 1

(t − s)

t∑

k=1

(
Zs+k − Zs+k−1

Zs+k−1

)

. (A.2)

A.3 Exponential Random Variables

An exponential random variable is a gamma random variable with shape parameter
P = 1 (see Sect. A.4). If X is an exponential random variable with scale parameter
σ > 0, then we write X ∼ EXP(σ ). The probability density function (PDF) of X is
(e.g., Larson 1982, p. 195):

fG(x|1, σ−1) = σ−1e−x/σ I(x > 0) (A.3)

1In econometrics,� usually denotes the first backward difference operator (e.g., Abadir andMagnus
2002). Thus,�z jt = z jt − z j,t−1. In this book,∇ denotes the first forward difference operator. Thus,
∇z jt = z j,t+1 − z jt . In mathematics more generally, the opposite is usually the case: � usually
denotes the forward operator and ∇ usually denotes the backward operator.
2Formally, e(�t) = O(�t) as �t → 0. In mathematics, e(h) = O(h) as h → 0 if and only if there
exist positive numbers δ and M such that |E(h)| ≤ M |h| for |h| < δ.
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Fig. A.1 Selected exponential PDFs

where I(.) is the indicator function. Several exponential PDFs are depicted inFig.A.1.
The mean, mode, variance, moment generating function (MGF) and cumulative dis-
tribution function (CDF) of X are (e.g., Larson 1982, pp. 195–196):

E(X ) = σ, (A.4)

M (X ) = 0, (A.5)

Var(X ) = σ 2, (A.6)

E(etX ) = 1/(1 − σ t) (A.7)

and P(X ≤ x) = (1 − e−x/σ )I(x > 0). (A.8)

The joint density (likelihood) of a sample of T independent exponential random
variables, x1, . . . , xT , is

L =
T∏

t=1

σ−1 exp(−xt/σ) = σ−T exp

(

−σ−1
T∑

t=1

xt

)

= σ−T exp(−T x̄/σ) (A.9)

where x̄ ≡ (1/T )
∑

t xt . It is common to parameterise the exponential distribution in
terms of the rate (or inverse scale) parameter λ ≡ σ−1. With this parameterisation,

fG(x|1, λ) = λe−λxI(x > 0), (A.10)

E(X ) = 1/λ, (A.11)

Var(X ) = 1/λ2, (A.12)

E(etX ) = λ/(λ − t), (A.13)

P(X ≤ x) = (1 − e−λx)I(x > 0) (A.14)

and L = λT exp(−Tλx̄). (A.15)
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A.4 Gamma Random Variables

IfX is a gamma random randomvariablewith shape parameterP and scale parameter
σ > 0, then we write X ∼ G(P, σ ). The PDF of X is (e.g., Larson 1982, p. 200):

fG(x|P, σ−1) = xP−1

σ PΓ (P)
e−x/σ I(x > 0) (A.16)

where I(.) is the indicator function and Γ (.) is the gamma function.3 Several gamma
PDFs are depicted in Fig. A.2. The mean, mode, variance, MGF and CDF of X are
(e.g., Larson 1982, p. 200):

E(X ) = Pσ, (A.17)

M (X ) = (P − 1)σ for P ≥ 1, (A.18)

Var(X ) = Pσ 2, (A.19)

E(etX ) = (1 − σ t)−P (A.20)

and P(X ≤ x) = γ (P, x/σ)

Γ (P)
I(x > 0) (A.21)

where γ (.) is the lower incomplete gamma function.4 If P is a positive integer, then
the gamma distribution is an Erlang distribution and (e.g., Larson 1982, p. 198):

P(X ≤ x) =
(

1 −
P−1∑

i=0

(x/σ)i

i! e−x/σ

)

I(x > 0). (A.22)

It is common to parameterise the gamma distribution in terms of the rate (or inverse
scale) parameter λ ≡ σ−1. With this parameterisation:

fG(x|P, λ) = λPxP−1

Γ (P)
e−λxI(x > 0), (A.23)

E(X ) = P/λ, (A.24)

M (X ) = (P − 1)/λ for P ≥ 1, (A.25)

Var(X ) = P/λ2, (A.26)

E(etX ) = [λ/(λ − t)]P (A.27)

and P(X ≤ x) = γ (P, λx)

Γ (P)
I(x > 0). (A.28)

3The gamma function is defined as Γ (a) = ∫ ∞
0 ta−1e−tdt. Among other things, Γ (a) = (a −

1)Γ (a − 1) for any positive real number, Γ (a) = (a − 1)! if a is a positive integer, and Γ (1/2) =
π1/2 (e.g., Larson 1982, p. 199).
4Mathematically, γ (a, b) = ∫ b

0 ta−1e−tdt. A special case is γ (1, b) = 1 − e−b.
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Fig. A.2 Selected gamma PDFs

If P is a positive integer, then

P(X ≤ x) =
(

1 −
P−1∑

i=0

(λx)i

i! e−λx

)

I(x > 0). (A.29)

If P = 1 then, the gamma distribution is an exponential distribution.

A.5 Normal Random Variables

If X is a normal random variable with mean μ and variance σ 2, then we write
X ∼ N (μ, σ 2). The PDF of X is

fN (x|μ, σ 2) = 1√
2πσ 2

exp

(

− (x − μ)2

2σ 2

)

. (A.30)

Several normal PDFs are depicted in Fig. A.3. The mode, MGF and CDF of X are

M (X ) = μ, (A.31)

E(etX ) = exp(μt + σ 2t2/2) (A.32)

and P(X ≤ x) = 1√
2π

∫ (x−μ)/σ

−∞
exp(−t2/2)dt. (A.33)

The standard normal distribution is a normal distribution with μ = 0 and σ 2 = 1.
If X ∼ N (0, 1), then the PDF and CDF are usually denoted φ(x) and Φ(x) respec-
tively. The standard normal PDF has the property φ(x) = φ(−x). The first- and
second-derivatives of the standard normal PDF are φ′(x) = −xφ(x) and φ′′(x) =
(x2 − 1)φ(x). The complement of the standard normal CDF is Q(x) = 1 − Φ(x) =
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Fig. A.3 Selected normal PDFs

Φ(−x) (sometimes known as the Q-function). Finally, if X is a K × 1 vector of nor-
mal random variables with mean vector μ and covariance matrix Σ , then we write
X ∼ N (μ,Σ). In this multivariate case, the PDF of X is

fN (x|μ,Σ) = (2π)−K/2|Σ |−1/2 exp
[−(1/2)(x − μ)′Σ−1(x − μ)

]
. (A.34)

A.6 Half-Normal Random Variables

If X is a random variable obtained by lower-truncating the N (0, σ 2) distribution at
zero, then X is a half-normal random variable. In this case, we write either X ∼
N+(0, σ 2) or X ∼ N (0, σ 2, 0,∞). The PDF of X is

fN (x|σ 2, 0,∞) = 2

σ
φ(x/σ)I(x ≥ 0) (A.35)

where I(.) is the indicator function and φ(.) is the standard normal PDF. Several
half-normal PDFs are depicted in Fig. A.4. The mean, mode, variance, MGF and
CDF of X are

E(X ) = σ
√
2/π ≈ 0.79788σ, (A.36)

M (X ) = 0, (A.37)

Var(X ) = σ 2([π − 2]/π) ≈ 0.36338σ 2, (A.38)

E(etX ) = 2Φ(σ t) exp(σ 2t2/2) (A.39)

and P(X ≤ x) = [2Φ(x/σ) − 1]I(x ≥ 0) (A.40)

where Φ(.) is the standard normal CDF.
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Fig. A.4 Selected half-normal PDFs

A.7 Truncated-Normal Random Variables

If X is a random variable obtained by truncating the N (μ, σ 2) distribution to lie in
the interval (a, b), then X is a truncated normal normal random variable and wewrite
X ∼ N (μ, σ 2, a, b). The PDF of X is

fN (x|μ, σ 2, a, b) = 1

σ

(
φ(z)

Φ(b∗) − Φ(a∗)

)

I(a ≤ x ≤ b) (A.41)

where z ≡ (x − μ)/σ , a∗ ≡ (a − μ)/σ , b∗ ≡ (b − μ)/σ and I(.) is the indicator
function. Several truncated-normal PDFs are depicted in Fig. A.5. The mean, mode,
variance, MGF and CDF of X are

E(X ) = μ + σ

(
φ(a∗) − φ(b∗)
Φ(b∗) − Φ(a∗)

)

, (A.42)

M (X ) =

⎧
⎪⎨

⎪⎩

a if μ < a,

μ if a ≤ μ ≤ b,

b if μ > b,

(A.43)

Var(X ) = σ 2

[

1 + a∗φ(a∗) − b∗φ(b∗)
Φ(b∗) − Φ(a∗)

−
(

φ(a∗) − φ(b∗)
Φ(b∗) − Φ(a∗)

)2
]

,

(A.44)

E(etX ) = exp

(

μt + σ 2t2

2

) (
Φ(b∗ − σ t) − Φ(a∗ − σ t)

Φ(b∗) − Φ(a∗)

)

(A.45)

and P(X ≤ x) =
(

Φ(z) − Φ(a∗)
Φ(b∗) − Φ(a∗)

)

I(x ≥ a). (A.46)

If Y = cX , then Y ∼ N (cμ, c2σ 2, ca, cb). If b = ∞ (no upper truncation) and a = 0
(lower truncation at zero), thenφ(a∗) = φ(μ/σ),φ(b∗) = 0,Φ(a∗) = 1 − Φ(μ/σ),
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Fig. A.5 Selected truncated-normal PDFs

(a∗ − σ t) = −[(μ/σ) + σ t], Φ(b∗) = Φ(b∗ − σ t) = 1,

fN (x|μ, σ 2, 0,∞) = 1

σ

φ(z)

Φ(μ/σ)
I(x ≥ 0), (A.47)

E(X ) = μ + σ

(
φ(μ/σ)

Φ(μ/σ)

)

, (A.48)

M (X ) =
{
0 if μ < 0,

μ otherwise ,
(A.49)

Var(X ) = σ 2

[

1 − μ

σ

φ(μ/σ)

Φ(μ/σ)
−

(
φ(μ/σ)

Φ(μ/σ)

)2
]

, (A.50)

E(etX ) = exp

(

μt + σ 2t2

2

) (
Φ[(μ/σ) + σ t]

Φ(μ/σ)

)

(A.51)

and P(X ≤ x) =
(

Φ(z) − 1

Φ(μ/σ)
+ 1

)

I(x ≥ 0). (A.52)

If a = 0, b = ∞ andμ = 0 (half-normal), then φ(μ/σ) = 1/
√
2π ,Φ(μ/σ) = 0.5,

and the PDF, mean, mode, variance,MGF and CDF of X are given by (A.35)–(A.40).

A.8 TheMaximum of Bivariate-Normal Random Variables

Let Xmax = max{X1,X2} where X1 and X2 are bivariate-normal random variables
with meansμ1 andμ2, variances σ 2

1 and σ 2
2 , and correlation coefficient ρ. If |ρ| < 1,

then the mean and variance of Xmax are (Kella 1986, p. 3271):
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E(Xmax) = μ1Φ(μ/σ) + μ2Φ(−μ/σ) + σφ(μ/σ) (A.53)

and Var(Xmax) = σ 2
1 Φ(μ/σ) + σ 2

2 Φ(−μ/σ)

+ [μΦ(μ/σ) + σφ(μ/σ)][μΦ(−μ/σ) − σφ(μ/σ)]
(A.54)

where μ ≡ μ1 − μ2 and σ 2 ≡ σ 2
1 − 2ρσ1σ2 + σ 2

2 . Finally, P(X1 ≥ X2) = Φ(μ/σ)

(Kella 1986, p. 3271).

A.9 The Maximum of Independent Normal Random
Variables

Let Xmax = max{X1, . . . ,XS} where Xs ∼ N (μ, σ 2
s ) for s = {1, . . . , S}. If the Xs are

independent, then the CDF and PDF of Xmax are5

P(Xmax ≤ x) =
S∏

s=1

P(Xs ≤ x) =
S∏

s=1

Φ (zs) (A.55)

and p(x) =
[

S∑

s=1

(
1

σs

φ (zs)

Φ (zs)

)] [
S∏

s=1

Φ (zs)

]

(A.56)

where zs ≡ (x − μ)/σs. Closed form expressions for characteristics (e.g., means and
variances) of this distribution are not generally available. However, if S = 2, then the
mean and variance are special cases of (A.53) and (A.54) corresponding to ρ = 0.
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