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Preface 

The development and use of models of various objects is becoming a more 
common practice in recent days. This is due to the ease with which models can be 
developed and examined through the use of computers and appropriate software. 
Of those two, the former - high-speed computers - are easily accessible nowadays, 
and the latter - existing programs - are being updated almost continuously, and at 
the same time new powerful software is being developed.   

Usually a model represents correlations between some processes and their 
interactions, with better or worse quality of representation.  It details and 
characterizes a part of the real world taking into account a structure of phenomena, 
as well as quantitative and qualitative relations. There are a great variety of models. 
Modelling is carried out in many diverse fields. All types of natural phenomena in 
the area of biology, ecology and medicine are possible subjects for modelling.  
Models stand for and represent technical objects in physics, chemistry, engineering, 
social events and behaviours in sociology, financial matters, investments and stock 
markets in economy, strategy and tactics, defence, security and safety in military 
fields.  There is one common point for all models.  We expect them to fulfil the 
validity of prediction.  It means that through the analysis of models it is possible to 
predict phenomena, which may occur in a fragment of the real world represented by 
a given model.  We also expect to be able to predict future reactions to signals from 
the outside world. 

There are many ways of the describing a system or its events, which means many 
ways of constructing  a model.  We may use words, drawings, graphs, charts, tables, 
physical models, computer programs, equations and mathematical formulae. In other 
words, for modelling we can use various methods applying them individually or in 
parallel.  If models are developed by the use of words and descriptions, then the link 
between cause-and-effect is usually of qualitative character only.  Such models are 
not fully satisfying as the quantitative part of the analysis is missing.  A necessary 
supplement of modelling is the identification of parameters and methods of their 
measurement. A comprehensive model that includes all these parameters in a 
numerical form will help us explain the reactions and the behaviours of the objects 
that are of interest.  The model must also enable us to predict the progression of  
events in the future.  Obviously, all those features are linked directly to the accuracy 
of the model, which in turn depends on the construction of the model and its 
verifications. 



PrefaceVI 

The most common and basic approach to modelling is the identification 
approach.  When using it, we observe actual inputs and outputs and try to fit a 
model to the observations. In other words, models and their parameters are 
identified through experiments.  

Two methods of identification can be distinguished, namely the active and 
passive, the latter usually less accurate 

The identification experiment lasts a certain period of time.  The object under 
test is excited by the input signal, usually a standard one, and the output is 
observed. Then we try to fit a model to the observations. That is followed by an 
estimation of parameters. At this point model quality is verified, and checked 
whether it satisfies a requirement. If not, we repeat the process taking a more 
complex model structure into consideration and adjusting its parameters. The 
model’s quality is verified again and again until the result is satisfactory.  

In such modelling, difficulties can be expected in two areas and can be related 
to model structure and parameter estimation. One potential problem is non-
linearity of elements or environment during dynamic operation. This can increase 
the number of difficulties in the development of a model’s structure. An 
estimation of parameters can also be difficult, usually burdened with errors related 
to interference and random noise in the experiment. 

In this book, for modelling we will be using mathematics, especially equations, 
leading to mathematical models. We will concentrate on models of objects applied 
and utilized in technology. The described reality and phenomena occurring in it 
are of analogue character.  Their mathematical representation is usually given by 
a set of equations containing variables, their derivatives and integrals. Having a set 
with one variable and differentiating it, we can eliminate integrals.  The result of 
this operation is a set of differential equations having one independent variable. 
Very often time is that independent variable. Such being the case, it is quite 
convenient to express equations as state equations or transfer functions. Both 
methods are quite common particularly in the area of technology.  

Most commonly, models are sets of linear equations. Their linearity is based on 
the assumption that either they represent linear objects or that nonlinearities are so 
small that they can be neglected and the object can be described by linear equations. 
Such an approach is good enough and well based in many practical cases, and the 
resulting model accuracy confirmed by verification is satisfactory. Usually 
verification is carried out for a certain operation mode of a system described by the 
model. If this mode changes dynamically and is not fixed precisely, model 
verification may be difficult. In this case verification of the model can be related to 
signals generating maximum errors. The sense of it is such that the error produced 
by the application of those signals will always be greater, or at most equal, to the 
error generated by any other signal. At this point the question must be answered 
whether signals maximizing chosen error criteria exist and are available during the 
specific period of time. In such cases, the accuracy of the model should be presented 
by the following characteristic - maximum error vs. time of input signal duration. 

Approximation methods are another popular way of mathematical representation. 
In this case a model is shown in the form of algebraic polynomials, often orthogonal. 
These can be transformed into state equations or transfer functions.  



Preface VII 

The construction of a model is based on experimental data. To obtain data, 
measurements are carried out, usually supported by personal computer based data 
acquisition systems or computer aided measuring systems. Dedicated software 
controls these. Appropriate programs process acquired data. A data acquisition 
card, which is a part of the system, must be plugged-in into a USB or PCI slots. 
A computer structure, its elements and operation are presented in Chapters 1 and 
2. Quite often signals measured are distorted by noise. Problems related to noise 
reduction are discussed in Chapter 3. In Chapter 4, a number of mathematical 
methods for modelling are presented and discussed. The application of the 
powerful graphical programming LabVIEW software for models development and 
analysis is also included in the chapter. Finally, in the same Chapter 4 the use of 
the MATLAB package for the black-box type and Monte-Carlo method of 
identification is discussed. The last chapter covers the problems of model accuracy 
for some difficult cases, when input signals are dynamically varying and are of 
undetermined and unpredictable shapes. A solution to these problems is based on 
the maximum errors theory. Particularly, this theory creates a possibility for 
elaborating and establishing the calibration methods and hierarchies of accuracy 
for dynamic measuring systems, which have not been worked out so far. For 
a detailed consideration the examples of the integral-squared error and the 
absolute value of error are discussed and explained in details.  

This book is directed towards students as well as industrial engineers and 
scientists of many engineering disciplines who use measurements, mathematical 
modelling techniques and computer simulation in their research. The authors hope 
that this book may be an inspiration for further projects related to modelling and 
model verification and application. 
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Chapter 1 
Introduction to Measuring Systems 

 
 
 
 
 
 
 
 
 

 
 
 
A development of mathematical models is based, among others, on some data. 
These can be more or less reliable. In general, their verification can only be 
carried out when the model quality is checked up. If it comes to the point that the 
quality of the model developed does not satisfy the requirements, i.e. that there is 
a significant difference between the model and the part of reality represented by it, 
then the data applied for modeling are incorrect or incomplete. In practice, data for 
the model development originate from measurements of some signals involved. 
Such measurements are usually carried out with the use of special measuring 
systems. In general, such systems can be quite similar to each other or have some 
differences at some points; all depend on application. However, it can be noticed 
that modern systems have many common elements and components. Starting from 
the input signal element i.e. a sensor first of all, we can further list components of 
digital processing and signal conditioning, recording components, output elements 
and storage devices. These elements and components can be identified in 
measuring systems that process and measure very different signals of various 
amplitudes, dynamic properties, forms of energy transferred or various transmitted 
frequency bands.  

A measured quantity which is acting on the sensor, is of the analogue form like 
all other phenomena in the real world surrounding us. Since computer-aided  
measuring systems operate using discrete signals only, hence analogue input 
signals to these systems must be in the first place converted into discrete signals.  

A basic measuring system is shown in Fig. 1.1. It includes the conversion of an 
analogue signal into the digital one, mathematical processing of the signal and its 
recording. These basic blocks of operation can be seen in all types of measuring 
systems. Hence, their construction, principle of operation, purpose and application 
are discussed further in the text. Having been acquainted with them, the reader can 
make a correct synthesis of basically any measuring system, which carries out 
various measurements, data collection and recording, also for other aims than the 
modelling and model development. 
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Fig. 1.1 Block diagram of a basic measuring system 
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1.1   Sensor 

A sensor is a device that detects a change in an analogue quantity, which is to be 
measured, and turns into another physical quantity. This one in turns is converted 
usually into current or voltage by a transducer. 

We can distinguish parametric and self-generating sensors. In case of the 
former, change of the measured quantity is followed by a change of a parameter of 
electric circuit, for example resistance, capacitance, self-inductance or mutual 
inductance. In case of self-generating sensors, a measured quantity is usually 
changed directly into voltage, current or electric charge. 

There are also coding sensors. Their digitized output goes directly towards the 
digital channel of a measuring system. 

1.2   Transducer 

The type of a transducer depends on the kind of the output signal from a sensor. 
Most often bridge circuits or half-bridge circuits are applied for this purpose. They 
operate in connection with parametric sensors, for example strain gauges that are 
used for the measurement of dynamically changing strain. Other types of 
transducer measuring circuits are applied in connection with capacitive and 
inductive transducers that are used for a measurement of pressure difference and 
linear displacement.  

1.3   Matching Circuit 

A matching circuit is applied for adjusting the range of measuring channel and its 
input impedance. Its key element is the amplifier. A very high value of the 
amplifier input impedance protects the sensor from loading. The adjustable gain 
makes possible to select a required range appropriate for a measured signal. There 
are three most important groups of these amplifiers:  
 

− non-programmable amplifiers with the gain adjustable by a change of feedback 

loop parameters 
− programmable amplifiers with the digitally programmable gain controlled and 

adjustable by a control system 
− amplifiers with optocouplers, having isolated circuit’s output from its input.  

1.4   Anti-aliasing Filter 

The forth block of the measuring system (Fig. 1.1) is a low-pass anti-aliasing 
filter. It removes all harmonics of the measured signal that exceed the Nyquist 
frequency. An aliasing error is produced when the sampling frequency is not at 
least twice as high as the highest measured signal frequency and the overlap 
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between those frequencies appears. Fig. 1.2 shows spectrum diagrams explaining 
the overlap and the causes of aliasing error. 

 
 

 
Fig. 1.2 Illustration of the aliasing phenomenon 

 
The anti-aliasing filter should have the following properties: flat passband, 

sharp cut-off characteristic and low distortion in the passband. 
Filter are characterized by their frequency response characteristic ).(ωK  

Butterworth and Tchebychev low-pass filters are commonly used as anti-aliasing 
filter. Frequency response characteristic )(ωK of Butterworth low-pass filter is 

given by  
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where ckn ω,,  are order, gain and cut-off frequency of the filter, ., ℜ∈nn ba   
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According to Shannon theorem, the relation between highest frequencies in the 
analogue signal being sampled and the sampling frequency should be as follows  

)analogue(2 maxsample ff ≥  (1.3)

If the analogue signal containing a spectrum of different frequency components is 
sampled, we obtain a series of impulses modulated in amplitude. In the frequency 
domain it corresponds to a spectrum of harmonic, as shown in Fig. 1.3. 

 

 
 

Fig. 1.3  Illustration of the sampling process 

 
If the maximum frequency )analogue(maxf  of a signal increases, the individual 

spectra will widen and begin to overlap. In effect, the original signal cannot be 
accurately reproduced. Thus, for accurate reproduction of a signal containing the 
frequency up to )analogue(maxf  the sampling rate must be grater than, or equal to 

.2 )analogue(maxf  The condition can be achieved by sufficiently increasing the 

sampling frequency. Unfortunately, the maximum of this frequency is usually 
limited by the performance of the A/D converter, which is the block next in line in 
the measuring system discussed. If sampling frequency cannot be adequately 
increased, a low-pass anti-aliasing filter must be used in order to truncate the 
signal spectrum to the desired value of )analogue(maxf  for a given sample 

frequency.  
A conversion of a continuous analogue signal consists of three steps, namely: 

sampling, quantization (to digitize the value of a signal) and coding of the 
resulting signal. 

Sampling is a digital process carried on in time and related to the argument of 
the input signal. Samples of the input signal values are collected in clearly defined 
intervals. 
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Quantization is a process of assigning a finite number of magnitude levels to 
each sample of the converted signal. Each magnitude is denoted by some digital 
numbers, from zero to the maximum value of conversion range.  

Coding simply means the representation of quantized value of the signal by 
a selected code, most often a natural binary one or Gray code. 

1.5   Multiplexers/Demultiplexers 

A digital multiplexer is a multi-input and single-output switch, which selects one 
of many data inputs ,...,,, 110 −kDDD  and sends it to the single output Y.  

A multiplexer has k data inputs, n address inputs ,,...,, 110 −nAAA  usually 

,2nk =  one output and one enable (strobe) control input .E  Fig. 1.4 shows the 
input8 −  digital multiplexer as an example. 

 

 
 

Fig. 1.4  Logic circuit of digital multiplexer 
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If there is the zero logic signal at the enable input, then the output Y receives 
particular logic state (usually zero), which is independent from the input states D 
and A. The binary coded address determines which input signal will appear at the 
output line. This signal is divided into segments, which are kept at the output as 
long as the input address will not be changed. However, the input addresses 
change in a rotating, repeating sequence most often. Multiplexers have usually 4, 
8, or 16 parallel inputs. The logic circuit of the demultiplexer is shown in Fig. 1.5 

 
 

 
 

Fig. 1.5  Logic circuit of digital demultiplexer 
 
 
Analogue multiplexers/demultiplexers Fig.−  1.6 are made by replacing the 

AND gates through the digitally controlled analogue gates made e.g. in CMOS 
technology, as shown in Fig. 1.7. Analogue switches are based on field-effect 
transistors with CMOS insulated gates. They make possible the bidirectional 
operation and they switch analogue voltages of the peak-to-peak value up to 15V. 
Analogue switches have a small resistance, if control input is high, and a very high 
resistance, if this input is low. 
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Fig. 1.6  Logic circuit of analogue multiplexer/demultiplexer 
 
 

 
 

Fig. 1.7  CMOS analogue switch 

1.6   Sample-and-Hold Circuit 

A sample-and-hold circuit (S/H) samples and temporarily stores the value of an 
analogue signal for subsequent processing. After filtering and sampling, the 
sampled level of the signal must be frozen until the A/D converter digitizes it and 
the next sampling occurs. For this reason, the S/H circuit is switched on for a short 
period, first into the sample mode and then into the hold mode. This switching is 
controlled by the voltage control controlV  in a following way 

hold1if)()(

sample0if)()(

1/0 ⇔==
⇔==

controlinout

controlinout

VtVtV

VtVtV  (1.4)
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The sample-and-hold operation results in a stairs waveform that approximates 
the analogue signal. Fig. 1.8 shows a sample-and-hold operation while its circuit is 
shown in Fig. 1.9. 

 

 
 

Fig. 1.8  Sample-and-hold operation 
 

 

When 0=controlV  the capacitor is charged and the interval is known as the 

acquisition period or ‘aperture time’. Its value is of the order of 205.0 − μs 
varying for different types of the S/H circuit. It depends upon the magnitude of the 
input voltage. When controlV  is switched to 1, the S/H circuit is put on hold and 

the output signal )(tVout equals to the input signal .)( 1/0tVin  

The output voltage is digitized by the A/D converter. When digitized, the 
charge of the hold-capacitor begins to decay causing the drift in the S/H’s output 
voltage. The use of the large hold-capacitors will minimize the output voltage drift 
and extend the acquisition time. In practice, inclusion of high resistance input 
amplifiers, which reduce discharge of the capacitors, can make an improvement.  

 

 

 
 

Fig. 1.9 Sample-and-hold circuit a) Terminals notation b) Principle of operation c) Exemplary 
signals 
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1.7   Analogue-to-Digital Conversion 

Analogue-to-digital conversion is the process of converting the analogue voltage 
output to a series of binary codes that represent the magnitude of this voltage at 
each of the sample times. The principle of operation of A/D conversion is shown 
in Fig. 1.10. 

 

 
 

Fig. 1.10  A/D conversion 

1.7.1   A/D Converter with Parallel Comparison 
Converters of this type are based on the direct comparison of the analogue voltage 

with one of n2  reference sectors. Fig. 1.11 presents the logic circuit of an example 
of the bit−n  A/D converter with parallel comparison.  

 

Fig. 1.11  Logic circuit of bit−n  A/D converter with direct parallel comparison 
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The reference voltage rV  of this converter is connected to the inverting inputs 

of 12 −n  comparators through the resistor voltage divider. In general, 12 −n  
comparators are required for conversion and recording of unknown voltage inV  

into a bit−n  word in binary code. 
Non-inverting inputs of the comparators are connected to the analogue voltage 

inV  from the S/H circuit. Since all the divider resistors are equal, the voltage at the 

lowest comparator is .
2

1
rn

V  The maximum voltage at the highest comparator is 

.
2

12
rn

n
V

−
 The voltage inV  compared with the fraction of the voltage rV  

determines the output. The relation between inV  and rV  causes the outputs of 

comparators to generate the temperature code. The example of the temperature 
code for 3=n  is shown below. 

0000000125.0

0000001250.0125.0

0000011375.0250.0

0000111500.0375.0

0001111625.0500.0

0011111750.0625.0

0111111875.0750.0

1111111000.1875.0

OutputInput

rin

rinr

rinr

rinr

rinr

rinr

rinr

rinr

VV

VVV

VVV

VVV

VVV

VVV

VVV

VVV

<
<≤
<≤
<≤
<≤
<≤
<≤
<≤

 (1.5)

The conversion of the temperature code into the Gray code and natural binary 
code, for n = 3 bits is shown in Fig. 1.12  

 

 

Fig. 1.12  The conversion of  temperature code into Gray code and natural binary code 
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An example of the logic gate network of bit3 −  A/D converter, with the output 
signal in the Gray code, is shown in Fig 1.13. 

The relations between the temperature code at the output of comparators, and 
the Gray code at the output of converter are as follows 

45 KY =  

624 KKY ⊕=  

753175313 KKKKKKKKY ⊕⊕⊕=⊕+⊕=  
(1.6)

The K0 comparator does not take part in the conversion process (see Fig. 1.12), 
hence it is not included and not shown in Fig. 1.13. 
 

 

 
 

Fig. 1.13  Logic circuit of bit3 −  A/D converter generating output signal in Gray code  
 

1.7.2   A/D Converter with Successive Approximation 

The method of successive approximation is based on comparison of the unknown 
voltage inV  with a sequence of precise voltages generated by a controlled D/A 

converter. There are two basic forms of this type A/D converters, namely with 
successive approximation and with uniform approximation. The block diagram of 
a successive approximation method is shown in Fig. 1.14. The corresponding 
graphs of the clock-generator signal and the voltage under measurement are 
shown in Fig. 1.15. 
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In this converter, the register is resetting before a conversion is started (time 

0t ). As a result, the output voltage of the D/A converter is set to zero. The 

operation is managed, like any other in the converter, by the control system. The 
clock generates impulses of voltage ,gV  which are fed into the system. Each clock 

impulse causes voltage dV  to change i.e. the voltage dV  jumps to another value. 

Each jump of voltage dV  is twice smaller than the previous one. The measuring 

cycle contains n steps of comparison, which are written into the register. 
 

 

Fig 1.14  A/D converter with successive approximation 
 
 

 

Fig. 1.15  Signal of clock-generator and voltage under measurement 
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During the first approximation (time 1t ), voltage inV  is compared with voltage 

.1dV  This voltage is given by  

r
n

d VV 1
1 2 −=  (1.7)

and rV  denotes the value of the reference voltage related to the least significant 

bit (LSB).  
If a voltage comparison shows ,1 ind VV > which means that the first 

approximation overestimates ,inV  then the most significant bit (MSB) is locked at 

zero. The value 01 =a  will be recorded accordingly in the register. However, if 

,1 ind VV <  then the value 11 =a  will be recorded in MSB of the register.  

During the second approximation (time 2t ) inV  is compared with ,2dV  where 

r
nn

d VaV )22( 2
1

1
2

−− +=  (1.8)

If ,2 ind VV > then the value 02 =a  will be recorded in the next in turn bit of 

the register. However, if ind VV <2  then .12 =a  

For the third approximation (time 3t ), 3dV  is given by 

r
nnn

d VaaV )222( 3
2

2
1

1
3

−−− ++=  (1.9)

The value 3a  recorded in the consecutive bit of the register will either be 

03 =a  for ind VV >3  or 13 =a  if .3 ind VV <  

For the thn −  approximation (time nt ) dnV  is given by  

rn
nn

dn VaaaV )22...22( 0
1

1
2

2
1

1 ++++= −
−−  (1.10)

and 0=na  if indn VV >  or 1=na  if .indn VV <   

The result of the voltage inV  measurement is the binary sequence naaa ...,,, 21  

recorded and saved in the register. The full cycle of voltage compensation is 
relatively short in this converter. It is due to the fact that the jumps of voltage Vd 
are non-uniform and large during the initial part of the measurement process. 

High accuracy of measurements and high speed of response are both the 
advantages of the converter. However, its complex structure and sensitivity to the 
external interference and noise are definite disadvantages. In reference to the 
complexity, the point is that the converter requires high precision voltage 
dividers. 

The converter with uniform compensation, also named staircase-ramp converter, 
is another type of the successive approximation A/D converter. Fig. 1.16 shows its 
block diagram and its time-voltage graphs are shown in Fig. 1.17. 
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In this type of the converter, the voltage dV  is a staircase digital representation, 

made up of equally increasing steps .dVΔ  Each input signal is equivalent in value 

to the least significant bit. Clock impulses are fed into the counter. After 
converting its content into an analogue signal it becomes the voltage .dV  

 

 
 

Fig. 1.16  Block diagram of uniform compensation method 
 
 

 
 

Fig. 1.17  Graphs of time-voltage signals 
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At first the counter is resetting before a conversion is started. It is controlled by 
the impulse from the control system. Then the control system starts the count after 
passing the logic 1 (high level of sV ) into the gate G. The count continues until 

the generated staircase ramp of the voltage dV  exceeds the measured voltage .inV  

At this moment the comparator goes to logic zero, the gate G is closed, and it 
stops the count. The counter output is, at this time, the digital equivalent of the 
voltage .inV  

The time of conversion varies and depends on the value of measured voltage. 
This is a principal disadvantage of the converter with uniform compensation. For 
this reason, a modified version of this converter is more often in use, with the 
reversible counter included into the structure. Such a solution is a significant 
change in the operation of the converter. The sense of it lies in the fact that each 
new measuring cycle does not start from zero. After reaching the value of 
measured voltage, the compensating voltage dV  is tracking further changes of the 

voltage under measurement, or in other words operates in the follow-up mode. 
The reverse counter counts up for +cV  and counts down for .−cV  

The converter with the reversible counter is often called a follow-up converter. 
The block diagram of the follow-up A/D converter is shown in Fig. 1.18. 

 

 
 

Fig. 1.18  Block diagram of the follow-up A/D converter 
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1.7.3   Integrating A/D Converters 

Analogue-to-digital conversion by integration is based on counting clock 
impulses, which means the conversion is done indirectly. The operation is 
completed in two steps. During the first step, the measured voltage is converted 
into the frequency or time. In the second step, a counting of clock impulses is 
carried out. 

Integrating A/D converters can be divided in two main groups. There are 
converters with the single integration, in which frequency is used as indirect 
quantity and converters with the multiple integration, in which time is used as 
indirect quantity. The block diagram of the A/D converter with the single 
integration is shown in Fig. 1.19 while Fig. 1.20 shows graphs of the reference 
voltage and measuring signals at various points of this converter. 

There are two main blocks in the A/D converter with the single integration. 
In the first block, a converter expresses the voltage in terms of the frequency of  
impulses. The second block is the digital meter of frequency. The main control 
system controls the whole operation and directly controls start/stop action of 
individual elements. It determines the conversion cycles of the measured 
voltage .inV  

 

 

Fig. 1.19  Block diagram of A/D converter with single integration  

At the beginning of each measuring cycle, the counter is reset to zero. The 
generator of reference voltage is turned on and switches on the voltage rV  to the 

comparator. Then the switch 1P  is closed, and the current proportional to the 

voltage inV  charges a capacitor until the comparator indicates equality of the 

voltage iV  and .rV  The moment is denoted by int  and at this time the main 
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control system opens 1P  and closes .2P  The capacitor is discharged through the 

resistor Ru and the discharge time is denoted .ut  When the time ut  is over, the 

main control system opens the switch 2P  and closes again the switch .1P  The last 

action means the start of a new measuring cycle. 
 

 

 

Fig. 1.20  Graphs of time-voltage signals at various points of A/D converter with single 
integration 

 

The output voltage of the integrator is given by  

tV
RC

V ini
1=  (1.11)

hence, after time int  when ,ri VV =  the Eq. (1.11) changes into  

ininri tV
RC

VV
1==  (1.12)

Rearranging the equation yields  

in

r
in V

RCV
t =  (1.13)

Assuming that ut  is very small in comparison to int  and can be neglected, the 

frequency of the discharge impulses is 

in
rin

in V
RCVt

f
11 ==  (1.14)

Denoting by 

RCV
k

r
f

1=  (1.15)
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the frequency inf equals finally  

infin Vkf =  (1.16)

From the Eq. (1.16) it can be seen that the voltage inV  to be converted is 

proportional to .inf  The frequency is measured by the frequency digital meter. 

The measurement is carried out while the gate G is open. The gate G is controlled 
by the voltage signal TsV . The voltage TsV  in turn, and its duration, are both 

generated and controlled by the generator of standard time interval. The 
measurement is carried out through the counting of impulses inN   

infsinsin VkTfTN ==  (1.17)

Substituting Eq. (1.15) into Eq. (1.17) and rearranging, the value of measured 
voltage is 

in
s

r

sf

in
in N

T

RCV

Tk

N
V ==  (1.18)

The A/D converter with the single integration presented above is not often in use. 
It is due to the non-linearity in the first part of the integrator characteristic. 
However, its principle of operation is widely applied to structures of other 
converters, like A/D converters with the multiple integration or sigma delta A/D 
converters.  

Fig. 1.21 shows the block diagram of the A/D converters with the double 
integration. 

 

 

Fig. 1.21  Block diagram of A/D converter with double integration 
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Graphs of the reference voltage and measuring signals, taken at selected points 
of the block diagram, are shown in Fig. 1.22. 

 

 
 

Fig. 1.22  Graphs of time-voltage signals at various points of A/D converter with double 
integration 

 
The A/D converter with the double integration expresses the value of measured 

voltage in terms of clock impulses. The conversion, carried out by the A/D 
converter shown in Fig. 1.21, is completed in two steps. These are defined by the 
on-off state of the switches 1P  and .2P  When the switch 1P  is closed, the 

measured voltage inV  is applied to the integrator. When the switch 2P  is closed, 

the input to the integrator is switched from inV  to a reference voltage rV  of 

opposite polarity.  
The whole operation is controlled by the main control system. At the beginning 

of the measuring cycle, the counter is reset to zero. Then the switch P1 is closed 
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and integration of the voltage inV  begins. The gate G is open. The generator of 

standard time interval produces an impulses sequence during time .sT  Through 

the open gate G, the impulses are passed on to the counter, and a counting starts. It 
goes on until the counter is overflowed at N0 impulses. At this moment the system 
turns off the switch 1P  and turns on ,2P  resetting the counter at the same time. 

Counting of impulses starts all over again. The generator of standard time interval 
produces the impulses sequence and the counter counts down the impulses starting 
from zero. The output voltage iV  of the integrator decreases down to zero. At this 

point the gate G is closed and the number of impulses counted down is N. 
The first step of conversion is completed during the time inT  

win TNT 0=  (1.19)

where wT  is duration of the impulses.  

The output voltage of the integrator during the first step is expressed by  

in
w

inin

inT

ini V
RC

TN
VT

RC
dtV

RC
V 0

0
1

11 =∫ ==  (1.20)

In the second step of conversion cycle, integration is completed at the time rT  

wr NTT =  (1.21) 

and the output voltage of the integrator at this time is given by  

r
w

r

rT

i V
RC

NT
VT

RC
dtV

RC
V

−=−
∫ =−= 0
0

02
11

 (1.22) 

The output voltage of the integrator equals zero at the end of the second step.  
Hence, the sum of 1iV  and 2iV equals zero 

00 =−= r
w

in
w

i V
RC

NT
V

RC

TN
V  (1.23) 

After rearrangement and simplification we have 

in
r

V
V

N
N 0=  (1.24) 

The number of impulses N  counted down by the counter is proportional to the 
voltage .inV  It also depends on reference voltage rV  and the value of .0N   

Rearranging and substituting Eq. (1.19), (1.21) and (1.24) we finally obtain  

r
in

r
in V

T

T
V =  (1.25) 
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1.7.4   Sigma Delta A/D Converter  

A sigma delta converter belongs to the group of converters with the frequency 
conversion. A classical delta modulator and an adder system are within its 
structure. The most important advantage of this type of converters is high 
resolution, up to 24 bits.  

Fig. 1.23 shows the block diagram of the sigma delta converter. 

 

 
 

Fig. 1.23  Block diagram of sigma delta converter 

 
Graphs of measuring signals, taken at selected points of this converter, are 

shown in Fig. 1.24. 
Within the sigma delta modulator, the measured voltage inV  is added to the 

output voltage 1V  of the −one bit D/A converter. The summation is done by a 

summer and the resulting voltage is denoted .2V  The next block is the integrator, 

in which the voltage 2V  is integrated. At the output of the integrator voltage 3V  

has a shape of saw-toothed curve. It is, in turn, changed into the impulse sequence 

4V  by the comparator. The number the output impulses from the comparator is in 

the direct relation to the value of the converted voltage .inV  

The voltage 4V  is switched on to the input of the D latch. The latch is 

synchronized and controlled by the generator of standard impulses connected to 
the input C, and a impulse sequence 5V  appears at the latch output. At the same 

time 5V  is the input signal to the D/A converter. 
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Fig. 1.24  Graphs of time-voltage signals at various points of sigma delta converter 

The modulator and the decimator are two main systems within the structure of 
the sigma delta converter. The decimator changes the serial flow of impulses 5V  

into parallel sequences. The first element of the decimator is the gate .1G The 

high-level output signal from the generator of standard impulses enables the 
transmission of 5V  through the gate. 
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The 1G  output signal is the impulse sequence denoted .6V  The impulse 

duration of 6V  is only a half of the duration of .5V  The second element of the 

decimator is the gate .2G  The input signals of the gate 2G  are 6V  and ,7V  with 

6V  discussed above and 7V  coming as the output signal from the formatting 

system block.  
The frequency sf  of signals from the generator of standard impulses is divided 

by the number k in the frequency divider, where .Nk ∈  The divided frequency 
kfs /  is processed by the formatting system block and the result is the output 

signal .7V  The output signal of the gate 2G  is the impulse sequence ,N  which is 

counted down by the counter. The period cT  during which the impulses N  are 

counted, equals half of the period of the signal 7V  and is 

sc kTT =  (1.26) 

and sT  is the period of signals from the generator of standard impulses. 

For the period ,cT  it can be shown that 

∫ =∫−
cT sT

rin dtV
R

NdtV
R 0 021

0
11

 (1.27) 

The Eq. (1.27) expresses the final result of charging and discharging the 
capacitor C during this time, i.e. the total charge being zero. 

Rearranging Eq. (1.27) yields 

N
TR

TVR
V

c

sr
in

2

1=  (1.28) 

After including Eq. (1.26), the voltage inV  is 

N
kR

VR
V r

in
2

1=  (1.29) 

Eq. (1.29) indicates that the voltage under conversion is proportional to the 
number of impulses .N  

1.8   Input Register 

Registers are used to store and manipulate the information data. They store bits of 
information and, upon an external command, shift those bits one position right or 
left. The time of storing corresponds to the conversion time of D/A converter. This 
way registers fulfill the role similar to the sample-and-hold circuits cooperating 
with A/D converters. Registers are classified according to the method of storing 
and retrieving information bits. In a serial register, bits are stored or retrieved one 
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at a time. In a parallel register, all bits of the word are simultaneously stored or 
retrieved.  

Fig. 1.25 presents exemplary logic circuit of parallel register. 

 

 

Fig. 1.25  Logic circuit of parallel register 

1.9   Digital-to-Analogue Conversion 

A D/A conversion is the process of converting input voltage impulses, coming 
from the output of the DSP, to an analogue voltage. The example of bit−n  
binary-weighted D/A converter is shown in Fig. 1.26 while the example of bit−n  

RR 2/  ladder D/A converter is presented in Fig. 1.27. 
The binary-weighted D/A converter uses a resistor network with resistance 

values that represent the binary weights of the binary code. The resistor connected 
to the MSB has a value of .R  Each lower-order bit is connected to the resistor 
which is higher by power of 2. The analogue output is obtained at the junction of 
the binary weighted resistors. In this type of D/A converter, a number of different 
value resistors is its disadvantage. For example, the bit8 −  converter uses eight 
different resistors. If MSB 0a  is connected to R, LSB 7a  is connected to .128R   

 

 
 

Fig. 1.26  bit−n  binary-weighted D/A converter 
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Fig. 1.27  bit−n  binary-ladder D/A converter  
 
The alternative method of D/A conversion is the R/2R ladder network. It 

contains two types of resistors only, regardless of the number of bits, and one 
resistor is twice as large as the other. The value of ladder resistors connected to 
register bits is ,2R  and the value of resistors connected between nodes is .R  It is 
easy to check that the resistance, looking from any node towards terminating 
resistor, is .2R  The output voltage outV  equals to  

)2...22( 2
2

1
1

n
nruout aaaVkV −−− +++=  (1.30) 

and rV  is given by 

n
rV 2= [V] (1.31) 

were in (1.30) uk  is amplification of operational amplifier. 

1.10   Reconstruction Filter 

Fig. 1.28 shows the signal obtained at the output of D/A converter. 

 

 
 

Fig. 1.28  Output signal from D/A converter  
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The reconstruction filter is used for smoothing and tapering of the stairs 
waveform. In result, the analogue signal is obtained. Fig 1.29 shows the signal 
from D/A converter after reconstruction. 

 

 
 

Fig. 1.29  Output signal from A/D converter after reconstruction 

1.11   DSP 

Digital signal processor can read, write and manipulate digital signals only. The 
signals converted into the digital form are stored within DSP as binary numbers, 
usually in the form of combination of 8, 16 or 32 bits. DSP can perform various 
operations on the incoming data such as removing unwanted interference, 
increasing some signal frequencies and reducing others, detecting and correcting 
errors in transmitted codes etc. Its task is to handle data according to the assumed 
calculation algorithms.  

The successive samples of signals are processed using the algorithms with the 
appropriately selected mathematical operations and with the use of digital filters. 
The application of the digital filters also enables a change of the DSP setup, 
followed by an optional change of its frequency characteristics. 

Two types of digital filters can be distinguished: 
 

initeF−  Impulse Response, abbr. FIR 

Infinite−  Impulse Response, abbr. IIR. 
 
There are some important differences between these filters. In the case of FIR, 

the calculations related to a consecutive sample are based on the samples, which 
have earlier been digitally filtered, and the current sample. The number of the 
samples filtered earlier and taken into calculations depends on the filter grade. In 
the case of IIR, all samples filtered earlier are taken into account. The FIR filters 
are the elements having good stability. Due to this, it can be assumed that their 
phase characteristic is exactly linear. FIR filters can be used for design and all 
applications where such a linear characteristic is required or a full control of the 
system phase response is recommended. 
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Properties of IIR filters are different. Their phase response is much worse than 
in the case of FIR filters. It is due to some non-linearity at the edges of bands. 
However, IIR filters are much faster in applications of calculation algorithms. 

Another important application of DSP is the fast spectroanalysis FFT. 

1. 12   Control System 

The control system has several tasks. These include: 
 

generation−  of the start signal for sample-and-hold  

generation−  of the start signal for A/D conversion 

control−  of address inputs of multiplexers/demultiplexers 

control−  of register and D/A converter. 
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Chapter 2 
Sensors 

 

2.1   Strain Gauge Sensors 

Strain gauge sensors are the fundamental sensing elements for many types of 
sensors e.g. force sensors, torque sensors, pressure sensors, acceleration sensors, 
etc. They are applied to measure strain. Having strain measured and using 
Young’s modulus E  and geometric sizes, stress can be calculated. Finally, from 
these calculations an unknown and investigated quantity can be found, which is 
applied and acts on an object under test. Strain gauge principal of operation takes 
advantage of the physical property of the variety of changes of electrical resistance 
resulting from its elongation or shortening. If a strip of conductive material is 
stretched, it becomes skinnier and longer resulting in an increase of its resistance 

,R  while if it is compressed, it becomes shorten and broaden resulting in decrease 
of its resistance. The principle of operation of a common metallic strain gauges is 
based on a change of a conductor resistance. Let us present the resistance of 
electrical conductor in the following form 

S

l
R ρ=  (2.1) 

hence, a relative increment of R equals 

l

l

SR

R Δ=Δ ρ
     and     

S

S

l

l Δ>>Δ
 (2.2) 

where SlR ,,, ρ  are resistance, resistivity, length and cross section of an 

electrical conductor, respectively. 
Strain gauges are arranged in a wide choice of shapes and sizes depending on 

variety of application.  
Most often however, they are made as a long, thin conductive strip in a zigzag 

pattern of parallel lines.  

 

Fig. 2.1 Strain gauge 
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The strain gauges are glued, usually to a much larger object under test, by 
means of a special glue. Through the glue, the strain is transferred from the object 
under test to the strain gauge. In this way, the strain ε  of object under test is equal 
to the strain of gauges. Therefore, for the strain gauge we can write 

εε k
R

=  (2.3) 

where  

R

R
R

Δ=ε is the relative increment of strain gauge resistance, the strain
l

lΔ=ε  is 

the relative increment of strain gauge length, −k strain gauge constant. 
In the measuring circuit, strain gauges work in a full bridge configuration with 

a combination of four active gauges shown in Fig. 2.2a, or in half a bridge with 
two active gauges. In this second case, half a bridge is completed with two 
precision resistors 3R  and 4R  Fig.− 2.2b. 

 

 
 

Fig. 2.2  A strain gauge bridge circuits:  a) full bridge,  b) half a bridge 

Assume that the object under test is subjected to a strain. Let us determine 
increment outVΔ  of the output voltage of the bridge effected by increment of all 

strain gauges resistors ,Δ TiTiTi RRR +⇒ .41÷=i  For the sake of simplification, 

let us assume that the strain gauges are arranged in a full bridge configuration, the 
source inV  supplying the bridge has the internal resistance equals zero and the 

output denoted outV  is unloaded as it is connected to the amplifier of infinite 

resistance. So we have 
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After easy rearrangement, we get 
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(2.6) 

The increment of resistance in elastic limits of the gauge material and of the object 
under test may change only a fraction of a percent. Because of it, we can assume that  
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and finally Eq. (2.6) can be simplified to the form   
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or 
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where strain gauge constant .2≈k  

2.1.1   Temperature Compensation 

Strain gauges should be glued in to an object under test, and connected in a bridge 
circuit, in a special way indicated by Eq. (2.9). If the strains 1ε  and ,

4
ε  related to 

the gauges RT1 and RT4 of the bridge shown in Fig. 2.2a, are positive, then the 
strains 2ε  and 3ε  of the gauges 2TR  and 3TR  should be negative. This way the 

strains add together and the output voltage has a maximum value. At the same 
time, such a connection makes possible the compensation of thermal effect. The 
temperature effect causes a change of strain in each of the strain gauges involved. 
The change denoted Tε+  is due to thermal expansion of the object under test. 

Including this effect into Eq. (2.9), we can write 
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Examining the Eq. (2.10), it is easy to notice that the influence of temperature 
in such a circuit is compensated. The same reasoning can be applied to the half 
a bridge circuit and the connection of strain gauges into it. They should be 
connected e.g. in the branch 1TR  for 1ε+  and the branch 2TR  for .

2
ε−  It renders 

certain the temperature compensation because 
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However, the sensitivity of the arrangement is twice lower. If the temperature 
compensation is not possible through the appropriate arrangement and connection of 
active strain gauges, dummy gauges are applied. In Figs. 7.23.2 −  the diagram 
shows the force F and its components xF  and yF  acting on a beam. The beam is 

bent as the result of action. The aim is to measure the forces using strain gauges in 
various configurations, and include the temperature compensation for the bent beam. 

 

   

Fig. 2.3  Measurement of the component xF  using full bridge −32 , TT RR dummy gauges 

 

 

Fig. 2.4  Measurement of the component yF  using full bridge 

 

Fig. 2.5 Concurrent measurement of the components xF  and yF  using full bridge 
−32 , TT RR dummy gauges 
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Fig. 2.6  Measurement of the component yF  using half a bridge 

             

 

Fig. 2.7 Concurrent measurement of the components xF  and yF  using half a bridge  
−2TR dummy gauge 

2.1.2   Lead Wires Effect 

Lead wires are part of a gauge installation. Their resistance may have an important 
influence during measurements with the use of strain gauges. The voltage drop 
due to this resistance could impair the performance and decrease sensitivity of the 
measuring strain gauge system. Hence, the resistance should always be taken into 
account, particularly in case of longer lead wires. 

We shall now consider the setup shown in Fig. 2.8. Let us assume that all the 
strain gauges connected in the bridge have the same resistance, the fact that should 
always be a good practice, i.e. TTi RR =  for .41÷=i  Power is supplied to the 

bridge by the lead wires of the resistance .r  It is easy to derive the expression for 

the voltage '
inV  connected directly to the bridge and to note that it is smaller than 

the voltage inV  across the lead wire terminals 

 

Fig. 2.8 Full bridge and lead wires 
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Fig. 2.9  Half a bridge and lead wires 
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For the half a bridge shown in Fig. 2.9, such a voltage is given by  
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Substituting the voltage '
inV instead of inV  into Eq. (2.10) and (2.11), we get  
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for the full bridge, and 
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for half a bridge. 
 

Let us examine the Eq. (2.14) and (2.15). If the resistance r2  in the case of 
(2.14), and the resistance r  in (2.15), are equal to the resistance of the strain 
gauge ,TR then the sensitivity of the setup drops by half. 

2.1.3   Force Measurement 

During force measurements, for uniaxial stresses the following relations hold 

E

σε =      and     
S

F=σ  (2.16) 

where σ  is the stress, E  is Young’s modulus for steel, S  is a cross-sectional 
area and F  is a force applied to the object under test. 
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2.1.4   Torque Measurement 

Torsional moment of the shaft can be measured directly by means of the 
appropriate location of strain gauges. The gauges are glued in along the main 
stress axes, where the strains have opposite signs. 

Fig. 2.10 shows how the strain gauges are glued to the surface for the 
measurement of torsional moment. 

 
 

Fig. 2.10  Location of strain gauges for the torque measurement 

For torque measurements of shafts, the following relations hold  
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while for a tube 
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where G  is Kirchhoff’s modulus, Poisson’s ratio for steel is ,3.0≈ν  M is the 

torque, α  is the angle of shaft torsion, the shaft diameter is D  and its length ,l  

and d  is the inside diameter of tube. 

2.1.5   Pressure Measurement 

Steel diaphragms with pressure gauges glued in on them can be used for pressure 
measurement. Fig. 2.11 shows the diaphragm pressure gauges. The circular 
diaphragm fixed in the enclosure is shown in Fig. 2.12. The extended connector 
pipe of the enclosure is screwed in into a pressure conduit, in which the pressure is 
to be measured. 

Pressure to be measured causes a deflection of steel diaphragm, which leads to 
development of stresses in it. During the pressure measurement, a radial stress 
and, perpendicular to it, a tangential stress are both utilized. 
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Fig. 2.11  Diaphragms pressure gauges 

 

Fig. 2.12  Circular diaphragm fixed in the enclosure 

Radial stress rσ  equals   
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while tangential stress tσ  is 
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Relations between radial and tangential stresses tr σσ ,  and radial and 

tangential strains tr εε ,  for biaxial state of stresses are as follows 
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E
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r
σνσε −=  (2.21) 

and  

E
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σνσε −=  (2.22) 

Substituting (2.19) and (2.20) into (2.21) and (2.22) gives finally 
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and  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

222
1

)1(

8

3

R

r

h

R

E
pt

νε  (2.24) 

 

Examination of the Eq. (2.23) and (2.24) makes possible to indicate places in 
which maximum strain occurs, and where gauges should be glued in. For the 
strain ,rε  it is the peripheral edge of diaphragm .Rr =  The corresponding 

expression for rεmax  is 
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For the strain ,tε  it is the centre of diaphragm ,0=r  and 
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It is not allowed to glue gauges to the places where the radial strain rε  and 

tangential one tε  equal zero. These places are for the radial strain 

Rrr 3

3
for0 ==ε  (2.27) 

and for the tangential strain 

Rrt == for0ε  (2.28) 

Fig. 2.13 shows characteristics of the stress rσ  and tσ  as a function of the 

diaphragm radius ,r  while Fig. 2.14 shows characteristics of strains rε  and tε . 
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Fig. 2.13 Characteristics rσ and tσ , ( )ν+⎟
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Fig. 2.14 Characteristics rε and tε , 
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2.2   Capacitive Sensors 
A capacitive sensor for pressure measurements is based on a capacitor of varying 
capacity related to measured quantity. Fig. 2.15 shows a capacitive pressure sensor 
that has a fixed plate and a movable one. The movable plate is a circular flat 
diaphragm, and the other one is a metal housing. When the pressure is applied to 
the diaphragm, its motion is a measure of applied pressure. The motion of the 
diaphragm changes the distance between the diaphragm and the fixed plate. The  
capacitance of the sensor increases to CC Δ+  and the output of the sensor is the 
change in capacitance .CΔ  The new value of capacitance CC Δ+  is 
 

 
Fig. 2.15 Capacitive sensor with circular flat diaphragm 
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where C  is the capacitance before the diaphragm sagging. 
Let us derive the relation between the change of capacitance and the pressure to 

be measured. At first, for the sake of simplification, let us note that for the small 
value of the ratio ,/ dy  we have 
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Substituting (2.30) into (2.29), we get 
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The diaphragm sag y at the radius r (Fig. 2.15) is  
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Substituting (2.32) into (2.31), we get 
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After integration and simplification, we obtain 
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It can be easily noticed, that the capacitance of the sensor, before the diaphragm 
sag, is given by the first term of the sum (2.34) 
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hence the absolute value of the capacitance increment is 
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and the relative value is 
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From Eq. (2.37), it can be seen that the relative value of the capacitance 
increment is directly proportional to the measured pressure. 
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Usually, the capacitive sensors are components of A.C. bridge dedicated for 
capacitance measurement, for example the Wien’s bridge. 

2.3   Inductive Sensors  

Inductive sensors are inductive devices for the measurement of small 
displacements. In inductive sensors, the principle of operation is based on the 
relations between their magnetic and electric circuits. More specifically, the 
change of the reluctance of the magnetic circuit leads to the change of the 
impedance in the electric circuit. 

Fig. 2.16 shows the inductive sensor with the magnetic circuit consisting of the 
fixed iron core, the movable armature and the variable air gap. 
 

 

Fig. 2.16  Inductive sensor 
 

The current in the setup shown in Fig. 2.16 is 
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where L  is the circuit inductance 
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(2.39) 

and R  is the equivalent resistance of the winding circuit ,cur  outR  and FeR  

Feoutcu RRrR ++=  (2.40) 

where  

ehFe RRR +=  (2.41) 
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The resistance FeR  is related to iron loss in the core, i.e. the power dissipated 

as heat, and is a sum of the resistances hR  and .eR  The resistance hR  is related to 

hysteresis loss 

2BfmP hh σ=  (2.42) 

and the resistance eR  is related to eddy current loss 

22BfmP ee σ=  (2.43) 

Symbols and notations used in the Eq. (2.38) till (2.43) have the following 
meaning: 
 

airμ−  and Feμ  are magnetic permeabilities of air and iron  

hσ−  and eσ  are loss coefficients for hysteresis and eddy currents  

B−  is a flux density in the iron core 

airl−  and Fel  are the lengths of the air gap and the iron core  

airS−  and FeS  are the cross-sectional areas of the air gap and the iron core 

m−  is the mass of the iron.  
 

After examination of the Eq. (2.38) and (2.39), it is easy to reach the conclusion 
that the current in the sensor coil is related to the changes of air gap length. It 
makes possible to measure the air gap length indirectly, through the measurement 
of the voltage outV  across the resistor outR  
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Quite often, inductive sensors are connected into bridge circuits, for instance in 
the Maxwell or Maxwell-Wien bridges. Such an arrangement generates the 
problem of the phase shift ϕ  between current and voltage, which for  = const. 

should also be constant 

R
Larctg   (2.45) 

It can be achieved on condition that the relative increments of inductance and 
resistance are equal  
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Assuming the identity of the cross-sectional areas ,SSS airFe ==  let us 

calculate the derivatives shown in Eq. (2.46). For the left side of the equation, we get 
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In order to calculate the derivative of the right side of Eq. (2.46), the details of 

FeR  must be considered. The total power loss in this resistance is 
22 )( BfmfRi ehFe σσ +=  (2.48) 

The equation for the flux density is 
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Substituting (2.49) into (2.48), we get 
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Finally 
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Returning to Eq. (2.46) and substituting Eq. (2.51) into it, we get 

2

2

2

2

)(

)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+++

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+++

=

air

air

Fe

Fe

ehoutcu

air

air

Fe

Fe

ehoutcu
air

air

ll

z
mffRr

ll

z
mffRr

dl

d

R

dl

dR

μμ

σσ

μμ

σσ

 
(2.52) 
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The constant phase shift condition (2.46) can be now expressed in the form 
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(2.53) 

It is easy to prove that the condition is satisfied, if 

Fecu
Rr =  (2.54) 

Additionally, outR is selected in such a way, that  

cuout rR <<  (2.55) 

Since FeR  is a function of ,airl  so the fulfillment of the condition (2.54) can be 

achieved through the use of the appropriate air gap. It is called the critical air gap 
,crl  and the length can be found from (2.51) and (2.54) 

2

2
)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=

air

air

Fe

Fe

ehcu
ll

z
fmfr

μμ

σσ  (2.56) 

 

Fig. 2.17  Measuring system arranged as bridge circuit, with inductive sensors in two arms 
and the common armature 
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and from it 
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Eq. (2.57) indicates that proper value of the critical length can be obtained through 
the changes of the number of turns in the coil or mass of the iron circuit. 

The measuring system arranged as the bridge, with the inductive sensors in two 
arms, is shown in Fig. 2.17. The magnetic circuit has the common armature. Before 
any measurement starts, the armature is in the symmetrical position at the centre. 
The air gap should be equal to .crl  The armature displacement, one way or the 

other, results in a push-pull change of magnetic circuit parameters. The balance is 
distorted and the unbalance voltage outV  appears across the output terminals.  

The measuring system of four inductive sensors, arranged as the bridge and 
assigned for the measurement of small angles, is shown in Fig. 2.18. A clockwise 
turn of the armature makes the impedances 1Z  and 4Z  to decrease, and at the 

same time to increase the impedances 2Z  and .3Z  The balance is distorted, and 

the voltage outV  appears across the output terminals. The systems of inductive 

sensors presented and discussed so far are applied to the measurements of the very 
small displacements within a few millimetres. 

Fig. 2.19 shows the most popular variable-inductance sensor, with the movable 
core, applied for the larger linear-displacement measurements. It is commonly 
known as the linear variable differential transformer (LVDT).  

An LVDT consists of a movable core of magnetic material and three coils, the 
primary coil and two equal secondaries. The secondary windings are wired in and  
connected series opposing. Before any measurements start, the core is in 
a symmetrical position at the centre and the voltages induced in the secondary  
 

 

Fig. 2.18 Measuring system containing four inductive sensors and designed for measurement 
of small angles 
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Fig. 2.19  Linear variable differential transformer 

coils are equal but out of phase by 180 deg. Since the secondaries are in series 
opposition, the voltages 1V  and 2V  in the two coils cancel and the output 
voltage is zero. The displacement of the core leads to an imbalance in mutual 
inductance between the primary and secondary coils and results in an output 
voltage development being the difference between 1V  and .2V  Quite often this 
voltage is applied to the input of the differential amplifier. For the current 
output we have 
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After simple transformation we obtain 
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2.4   Temperature Sensors 

Several temperature sensors are used for temperature measurements, for example 
liquid sensors, dilatation sensors, bimetal sensors, manometer sensors, 
semiconductor-based temperature sensors, thermocouples, and resistance devices. 
However, the emphasis is on thermocouples and resistance devices. They are used 
very often in all those systems arrangements where temperature is proportional to 
an electric current or voltage. 
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A thermoelectric effect, known also as the Seebeck effect, is practically used in 
thermocouples. A thermocouple is the electric circuit that consist of two dissimilar 
metals in thermal contact, also called a junction. A thermocouple junction and 
free, not connected ends of thermocouple wires are maintained at two different 
temperatures. Generated at the ends of thermocouple a thermal electromotive 
force (TEF) is proportional to the difference of temperatures. A stability of the 
reference temperature is a necessary condition of the correct thermocouple 
operation. To satisfy this condition, lead wires are used for extension of 
thermocouple wires to the point of the constant temperature. Lead wires should be 
fabricated from the same pair of metals that are used in the thermocouple. In such 
a case, no any thermal TEF is generated at the new junctions. If thermocouple 
wires are produced of different materials, then the new junctions should be 
maintained at the same temperature.  

A thermocouple with lead wires is shown in Fig. 2.20. 

 

Fig. 2.20 Basic thermocouple circuit −A positive thermocouple wire, −B negative 
thermocouple wire, −C junction 

A large number of materials are suitable for use in thermocouples. Among 
others, the following pairs are popular combinations of metals to manufacture 
thermocouples: 
 

iron−  vs  constantan 

copper−  vs  constantan 

copper−  vs  copper-nickel 

nickel−  vs  chromium-nickel 

nickel−  vs  chromium-constantan 

platinum−  vs  rhodium-platinum. 
 

They are used for a very wide range of temperatures. The thermocouple  
platinum/rhodium-platinum has some interesting properties. It generates the 

thermal TEF of 0V between junctions at .C0 0  

Resistance temperature detectors (RTD) are simply resistive elements of which 
resistance increases with temperature. In practice, the widely used RTDs are 
metallic resistors of platinum, nickel and copper. 

Semiconductor resistors, also known under the name thermistors, are widely 
applied for temperature measurements as well. They are fabricated from 
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semiconductor materials such as oxides of iron, manganese, nickel and lithium and 
their temperature sensitivity is almost 10 times that of the RTDs. The disadvantage 
of thermistors is a substantial nonlinearity of characteristics and a significant spread 
of parameters. It makes the exchange of thermistors difficult in measuring systems, 
and it is also a reason for a low repeatability of measuring results. 

In measurements, the most important are platinum RTDs. Platinum is the 
superior material for precision thermometry. Platinum RTDs have their 
mechanical and electrical properties and parameters very stable, and nonlinearity 
of characteristics is minimal. For this reason, they are used as temperature 

standards. The usual range of application is up to ,C1000 0  since above this point 

the resistance of platinum wire changes due to sublimation. 
The upper limit of the application of nickel RTDs is determined by the bend of 

their temperature characteristics, which is around .C300 0  Copper RTDs are 

prone to oxidization. They are used mainly in the refrigerating engineering and in 
the temperature measurements close to ambient temperatures. 

Temperature sensors must be protected against mechanical or chemical 
damages, which may occur during measurements particularly in the industrial 
environment. For this reason, they are protected through placing them in a 
thermometer well, which is usually a pipe with a head. Most often, the 
thermometer wells are fabricated out of cast iron, steel, heat-resisting alloys or 
ceramic materials, and for obvious reasons they worsen dynamic properties of 
temperature sensors. 

Let us consider the properties of a temperature sensor placed in a single 
thermometer well, i.e. protected by a single cover. It is shown in Fig. 2.21. 

 

Fig. 2.21 Temperature sensor in a single well 

The equation of heat balance is given below 

21 dQdQdQ +=  (2.62) 
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where dQ  is the amount of heat that penetrate the device through the well during 

time dt  
dtkdQ 110 )( ϑϑ −=  (2.63) 

A part of the total heat dQ  is accumulated in the well 

1111 ϑdcmdQ =  (2.64) 

The remaining part is accumulated in the sensor 

2222 ϑdcmdQ =  (2.65) 

Substituting )65.2()63.2( −  into (2.62), we get 
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and from that 
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At the same time, the amount of heat transferred from the well to the sensor is 

dtkdQ 2212 )( ϑϑ −=  (2.68) 

Substituting (2.65) into (2.68), we get 
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where in )71.2()62.2( −  denotes: −)(tQ the amount of heat penetrating the 

device, −)(1 tQ the amount of heat warming up the well, −)(2 tQ the amount of 

heat warming up the sensor, −0ϑ the measured temperature, −1ϑ the temperature 

of the well, −2ϑ the temperature of the sensor, −11cm the heat capacity of the 

well, −22cm the heat capacity of the sensor, −1k the heat transfer coefficient of 

the well, −2k the heat transfer coefficient from the well to the sensor. 

Insertion of (2.70) and (2.71) in (2.67) yields 
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Denoting in (2.72)  
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and Laplace transforming both sides of Eq. (2.72), we obtain the transfer function 
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which has two real and positive poles. They correspond to the time constants 1T  

and 2T  of the temperature-measuring device. 
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Since RTD is a resistive element, the basic circuit for its measurement is a 
bridge. It can be a full bridge or half a bridge circuit, balanced or unbalanced 
arrangement. Fig. 2.22 shows an example of the full bridge circuit for the 
temperature measurements. 

Before any measurements, the bridge must be balanced through the appropriate 
adjustment of the resistor .2R  The resistance of terR  changes together with 

varying temperature. It causes the bridge to lose the balance. The voltage outV  of 

the unbalance appears across the output terminals. It can be applied to the input of  

either the current amplifier or the voltage amplifier. In the case of the current 
amplifier with the adjustable gain, the rated range of the output current is  
 

mA.200 −  The gain of the amplifier should be adjusted in such a way that the 
output voltage of the measuring circuits, related to the range of measured 
temperatures, is within V100 −  range. Nonlinearity of the system characteristics 
is corrected through the use of the programmable amplifier and appropriate 
programs. The amplifier cooperates with the output of the bridge.  

 

 
Fig. 2.22  An example of full bridge arranged for temperature measurements 
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The system works well provided that before a measurement 
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32
cwcter RR

R

RR
R +−=  (2.76) 

where −terR thermometer resistance, −cR compensating resistance, −cwR lead 

wire resistance and 
const.==+ ncwc RRR  (2.77) 

where −nR nominal resistance equals 10 .Ω  

If the lead wire resistance cwR  changes together with the temperature, −3 wires 

asymmetrical balance bridge will be applied. The bridge is shown in Fig. 2.23. 

 

 

Fig. 2.23  −3 lead wires asymmetrical balance bridge 

 
For this bridge in balance state we have 
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For equal resistance of wires  

cwcwcw RRR == 21  (2.79) 

Eq. (2.78) becomes 
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The selection of resistors in the bridge should be such that  

13 RR =  (2.81) 
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then final result given by Eq. (2.80) is as follows 

2RRter =  (2.82) 

Since a RTD is a resistive element, the basic circuit for its measurements is 
a bridge. However, during temperature measurements with the use of RTDs, other 
methods are also used. Quite often the resistance of a RTD can be supplied 
directly with a constant-current drive. The voltage across terR  is, in such a case, 

proportional to the resistance value. Nonlinearity of a temperature characteristic is 
corrected by appropriate software. 

2.5   Vibration Sensors 

2.5.1   Accelerometer 

Sensors intended for measurement of vibration are usually constructed in a form 
of the damped spring-seismic mass system with a single-degree-of-freedom. Such 
a seismic sensor model is shown in Fig. 2.24. It can measure either the  
acceleration or the vibration depending on relations between the seismic mass, 
damping and the stiffness of the spring. 
 

 

Fig. 2.24 Model of seismic sensor  

The model shown in Fig. 2.24 can be described by the equation of motion 
through the classical second-order differential equation. Using the equation of 
moments, we can write 
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where  

−−
2

2 )(

dt

tyd
m the moment of inertia  

−−
dt

tdu
c

)(
the moment of dumping 

−− )(tku the moment of elasticity  

−− )(tu the relative mass displacement (relative output)  
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−− )(ty the absolute mass displacement (absolute output)  

−− m the seismic mass  

−− c dumping coefficient 

−− k spring constant.  
 

For the acceleration measurements, the input is the second derivative of absolute 

displacement  ,
)(

2

2

dt

txd
 and the output is the absolute mass displacement ).(ty  

From Fig. 2.24, it can be seen that 

)()()( txtuty +=  (2.84) 

Substituting (2.84) into (2.83) gives  
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where in (2.86) 
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−0ω undamped natural frequency. 

Applying Laplace transform to (2.86), we obtain  
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The acceleration )(2 sXs  is the input signal in s-domain and )(sU  is the 

output. Hence the transfer function )(sKacc  of the low-pass accelerometer is 
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The amplitude-frequency characteristic of the transfer function (2.89) is given by 
Eq. (2.90) and shown in Fig. 2.25 

2

0

2

2
0

2

2
0

2
1

1

)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

ω
ω

ω
ω

ωω
D

Kacc  
(2.90) 



2.5   Vibration Sensors 53
 

 

 
Fig. 2.25 Amplitude-frequency characteristic of accelerometer  

The graph presents the amplitude-frequency characteristic of the accelerometer 
and its operating range. All important harmonics of the measured quantity should 
be within the range. In practice, the highest frequency value of the operating range 
should not exceed 33% of the resonance frequency value .

r
ω  

Examination of Eq. (2.90) indicates that the accelerometer will have a constant 
gain during the operation when 
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and then  
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Finally 
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The condition indicated by (2.91) can be achieved through keeping the mass of the 
accelerometer low and the stiffness of the spring high. For ,75.06.0 −=D  the 
range of the constant gain has the maximum value. 

Regarding the construction, one of possible solutions are accelerometers, the 
construction of which follows horizontal pendulum kinematics. Their structure 
includes the mass located on the spring with the strain gauges as the 
output .26.2Fig.−  The strain gauges located inside the accelerometer are 
connected into bridges or half a bridges outside the sensor. The accelerometer 
output signal is the voltage of unbalance in the bridges. Damping is achieved by 
immersing the system in oil. 
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Fig. 2.26 Construction of accelerometer 

2.5.2   Vibrometer 

The input signal of vibrometers in s-domain is the absolute input ).(sX  Hence the 

transfer function of the high-pass system is given by  
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The amplitude-frequency characteristic of the transfer function (2.94) is given by 
Eq. (2.95) and shown in Fig. 2.27. 
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Examination of Eq. (2.95) indicates that the vibrometer will have a constant 
gain during the operation when 

0ωω >>  (2.96) 

and then 
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Finally 
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Fig. 2.27 Amplitude-frequency characteristic of vibrometer 

It means that the vibrator output is equal to its input. The condition indicated by 
(2.98) can be achieved through the appropriate design of the vibrator i.e. with soft 
springs and a relatively large mass, and also with a very small damping. 

In practical solutions, a magnetic damping is applied to vibrometers as shown 
in Fig. 2.28. 

 

 

 

Fig. 2.28 Construction of vibrometer 

Two coils are wound up on a bobbin tube, which is mechanically connected to 
the mass. During vibrations, the coils move into the range of the magnetic field, 
which exists due to the permanent magnet. A required damping is produced by the 
coil, which has the adjustable resistor R  connected to its output. The voltage 

induced in the other coil is proportional to .
)(

dt

tdu
It can be used for velocity 

measurements or, after integration, it is the output signal of vibrometer. 
For both accelerometers and vibrometers, calibration is a process where their 

amplitude-frequency characteristics are determined. Calibration is carried out 
using a vibration table with the adjustable amplitude and frequency of vibrations. 
The high-class frequency generator controls the table. A spiral microscope is the 
best instrument to determine the amplitude. 
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2.6   Piezoelectric Sensors 

Most piezoelectric sensors are fabricated from quartz crystals SiO2. There are 
many advantages of this material. It is very cheap and it exhibits excellent 
mechanical and electrical properties, high mechanical strength. Its resistivity is 
high. The influence of temperature variation on the piezoelectric effect in quartz 
crystals is small.  

 
 

 

Fig. 2.29 Structure of −2SiO silicon dioxide crystal 

Fig. 2.29 shows the structure of a silicon dioxide crystal, which is a tetrahedron. 
A quadrivalent silicon atom Si is inside it and bivalent oxygen atoms O2 are on the 
four vertices. 

Silicon dioxide crystals interconnect and integrate into monocrystals. These are 
used as the fundamental material, and plates are cut out from monocrystals. Plates 
are the basic element for the fabrication of quartz sensors. They are cut out in 
precise orientation to the crystals axes as shown in Fig. 2.30. 

 

 

Fig. 2.30  a) Quartz monocrystals SiO2   b) Preferred axes and orientation of cuts for quartz 
plates 
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In the quartz monocrystals, there are three electrical axes, three mechanical 
ones and one optical axis. The three electrical axes−x  cross the monocrystals 
edges and are perpendicular to the optical axis. The three neutral mechanical 

axes−y  are perpendicular to the crystal facets. The direction of the optical 

axis−z  is such that there is no double refraction for a ray of light along axis.−z  
A piezoelectric material produces an electric charge when it is subjected to 

a force or pressure. The main point of piezoelectric effect is that when pressure is  
applied, or a force causing stretching or compression, the crystal deforms. The 
deformation produces electric charges on the external surfaces of the crystal and 
on the metallic electrodes connected to these surfaces. The charges are 
proportional to the force, which causes the crystal deformation, and they decay 
when the force is removed 

)()( tFktQ p=  (2.99) 

where 
N

As
103.2 12−⋅=pk  is the piezoelectric constant. 

 

Fig. 2.31  Construction of piezoelectric accelerometer 

Fig. 2.31 shows the construction of piezoelectric accelerometer while the 
circuit diagram of a measuring system with a piezoelectric sensor and a charge 
amplifier is shown in Fig. 2.32. 

 

Fig. 2.32  Measuring circuit with piezoelectric sensor −1 transducer, −2 charge amplifier, 
−sC sensor capacitance, −sR sensor resistance, −Q charge generator, −cC  capacitance 

of lead wires, −cR leakance of lead wires 
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The piezoelectric sensor acts as a charge generator. The charge amplifier 
consists of a high-gain voltage amplifier with FET at its input for high insulation 
resistance. 

 

 

Fig. 2.33 Simplified diagram of a measuring system with a piezoelectric sensor 

Fig. 2.33 shows the piezoelectric transducer subjected to a force F that changes 
sinusoidally. The transducer generates the voltage, which is the input voltage of 
the amplifier. Let us determine this voltage. For the derivation, C  denotes the 
equivalent capacitance of the transducer and lead wires, and R  denotes the 
equivalent resistance of the same. 

Hence we have 
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and 
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Laplace transforming Eq. (2.103) results in  
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The solution of Eq. (2.104) in time-domain is 
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Eq. (2.105) can be simplified to  
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After simple trigonometric transformations and taking (2.101) into account, we get 
finally 
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Examination of Eq. (2.107) indicates that once the transients have died away the 

steady-state output signal is the sinusoid with amplitude 
2221 CR

R
Fk mp

ω

ω

+
 and 

phase shift angle .)(
2

⎟
⎠
⎞

⎜
⎝
⎛ − RCarctg ωπ

 

In the measurements and instrumentation field, the main application of 
piezoelectric sensors is in construction of piezoelectric quartz accelerometers. In 
these instruments, the relations between mass m  and acceleration a  are put to use 

maktFktQ pp == )()(  (2.108) 

2.7   Binary-Coded Sensors 

The heart of the device is the coded transparent disk. A binary-coded sensor 
consists of a number of concentric tracks of different diameters. The tracks have 
a binary coded opaque and transparent pattern. The light source and transducers 
are perpendicular to the disk. Light generated by photodiodes is detected by 
photocells, which form a matrix detector. Light passing through a transparent 
portion is received by a photocell, whereas light blocked by an opaque portion is 
not received. 

Fig. 2.34 presents an example of binary-coded sensors with the binary code and 
the Gray code. The Gray code is very popular. It shows only a single bit change 
between adjacent numbers. As a result, the maximum error never exceeds the 
value of the least significant bit. The advantage of binary-coded sensors is that 
they are fairly immune from electrical interference. However, they require 
n  tracks for a measurement with the accuracy of −n bits, and this is their 

disadvantage. Most often binary-coded sensors are used for the measurement of 
angular shaft position. 

Incremental angular encoders are another application of this type of sensors. 
They count segments of a circular graduation and the resulting number denotes 
a displacement by a specified value. A schematic diagram of the incremental 
angular encoder is shown in Fig. 2.35. 
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Fig. 2.34  An example of binary-coded sensors with a) binary code  and b) Gray code 

 

 
 

Fig. 2.35 Incremental angular encoder 

Opaque and transparent portions are marked along the circumference of the 
disk, in equal distances from each other. The size of both opaque and transparent 
portions should be the same. A light source and photodetectors are placed on both 
sides of the disk, facing one another. Photodetectors measure light intensity of the 
flux transmitted through the disk. 

The system for counting signals is shown in Fig. 2.36. The detector output 
signal is amplified and modified to TTL standard through the formatting system.  

The next intermediate stage is the logic gate G  with two inputs, the amplified 
signal from the detector and the standard generator signal. The standard generator 
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enables or inhibits, logic 1 or 0, the passage of the detector signals through the 
gate .G  The counter counts the detector impulses, they are decoded in the decoder 
and finally displayed in a display unit. 

 

 

Fig. 2.36 Block diagram of binary-coded transducer 

 
 

Fig. 2.37 Arrangement of detectors and their output signals 

The counted number of impulses is proportional to the rotational speed of the 
disk. The angular velocity of the disk is given by  

T

k

T

n θω ==  (2.109) 

where −n rotational speed of the disk, −T time of counting, −θ angle related to 

one impulse, −k number of impulses. 
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Two detectors are used to determine the direction of rotations. They are 
positioned in such a way that the signals generated by them are displaced one 
towards the other by 900. In other words, there is a 900 phase−  angle between 

them, lagging or leading. Fig. 2.37 shows the arrangement of the detectors and 
their output signals. When the disk rotates to the right, the counter is counting up, 
while during the rotations to the left, it is counting down. 

Relations between the detector impulses and the direction of disk rotations: 

AB  --- 11, 10, 00, 01, 11  ---  rotations to the right 
AB  --- 11, 01, 00, 10, 11  ---  rotations to the left 
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Chapter 3  
Methods of Noise Reduction  

 
 
 
 
 
A noise is any unwanted signal mixed in with the desired signal at the output. 
Noise in a measurement may be from undesired external inputs or generated 
internally. In some instances, it is very difficult to separate the noise from the 
measured signal. The error produced by noise can be so significant, in comparison 
with the measurement signal, that makes the measurement impossible. In 
particular, it happens in all these cases when the output is the derivative of signals. 
In case of differentiation of signals, noise is differentiated as well. Due to this it 
becomes much stronger. Noise reduction by means of filtering, with the use of the 
weighted mean method, will be discussed in the following subchapters. Especially 
the Nuttall window, the triangular window and the Kalman filter method will be 
taken under consideration. In reference to the first case, the analysis of the 
relations between averaging process and signal distortion will be reviewed as well 
as the analysis of filtering efficiency in the case of the second-order and third-
order objects.  

3.1   Weighted Mean Method 

Let us consider the object described by the following differential equation  

∑ =
=

m

k

k
k tutya

0

)( )()(  (3.1) 

where )(tu  is the input signal, )()( ty k  is thk −  derivative of the output signal, 

ka  is thk −  constant coefficient. The problem to be examined is the 

determination of the unknown input signal )(tu  through the evaluation of the 

existing signal ),(tyn  which is noisy signal. 

 

Fig. 3.1 Schematic diagram of weighted mean method 
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The output signal has two parts. The part desired is due to the unknown input 
signal )(tu  and the undesired part due to all noise inputs  

)()()( tntytyn +=  (3.2) 

In order to determine the input signal ),(tu  the measured output signal )(ty  

must be k  times differentiated, according to (3.1). The noise output would also be 
k  times differentiated, and as a result the noise would increase significantly. For 
this reason, the noise should be reduced by filtering before the analogue-to-digital 
conversion of the signal. Good results of filtering are provided by the weighted 
mean method that is based on the determination of )(ty  function  
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where )(ty  is the weighted mean, )( tτg −  is the weight function, δ2  is the 

width of the intervals of averaging. 
The properties of averaging depend on the width of the interval δ2  and on the 

form of the function ).( tτg −  Aiming at filtration, the function )( tτg −  and its 

successive derivatives with respect to τ  should be equal to zero at the ends of the 
averaging intervals ),( δ−t  )( δ+t   

...,2,1,00)()( )()( ==+=− ktgtg kk δδ  (3.4) 

and reach the maximum value in the middle of them.  
In order to simplify calculations, it is convenient to normalize the denominator 

of Eq. (3.3). Let  
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then the normalized weighted mean is given as 
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It is easy to check, that the th−k  derivative of )(ty  is given by the following 

equation 
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Substituting (3.2) into (3.7) we have 
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in which the differentiation of )(τn  has been transferred to the function of weight.  

Let us estimate the second integral in (3.8) 
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Assuming that )(τn  is the random signal changing quickly its value and the sign 

with respect to ),()( tg k −τ  we get  
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which means noise reduction. The weighted mean of the noise output signal is 
thus represented by the approximate relation 
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3.2   Windows 

The requirements with respect to the function )( tg −τ  for which successive 

derivatives should be equal to zero at the ends of the averaging intervals  and 
reach the maximum value in the middle of them are well fulfilled by Nuttall 
window and triangular window. The Nuttall window has the form  
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and is shown in Fig. 3.2. 

 

 

Fig. 3.2 Nuttall windows ⎥⎦
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Table 3.1 presents d  values (3.5) of this window. 

Table 3.1 Values d of Nuttall window  
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The triangular window has the form 

...,3,2,11)( =⎥
⎦

⎤
⎢
⎣

⎡ −−=− p
t

tg
p

δ
ττ  (3.13) 

and is shown in Fig. 3.3. 
 

 

Fig. 3.3  Triangular windows 
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Table 3.2 presents d values (3.5) of this window. 
 

Table 3.2 Values d of  triangular window 
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Table 3.2 (continued) 
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3.3   Effect of Averaging Process on Signal Distortion 

We will consider the effect of an averaging process on signal distortion, while the 
windows presented above are applied. Errors generated by the use of windows in 
the filtering process will also be discussed. 

Let us examine the expansion of the continuous signal )(tf  into Maclaurin series 
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The weighted mean )(tf  of the signal )(tf  is  
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and after simplification it can be written as follows 
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Using a Nuttall window, we calculate )(tf  assuming 2=p  as an example  
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2
cos)( 2 ttg τ

δ
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and determine the differences between successive coefficients of the weighted 

mean )(tf (3.16) and the function )(tf  (3.14). 

For the zero-order derivative ( 0=k ), we get 

)0()( ftf =  (3.18) 

For the first-order derivative and ,1=k  we calculate the integral  
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hence the first term of series is not burdened with error. 
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For the second-order derivative and ,2=k  we calculate the integral  
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It can be seen that the second term of series is burdened with error 
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The successive terms of  series (3.16) and the values of error are shown in Table 3.3. 

 
Table 3.3  Successive terms of Maclaurin series and the values of error for Nuttall window, 
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Table 3.3 (continued) 
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Fig. 3.4 shows the total error ),( δtENuttall  equal to the sum of error components 

),(, δtE kNuttall  listed in Table 3.3. 
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Fig. 3.4  Total error ),( δtENuttall  for Nuttall window 
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The value of error and the successive terms of series (3.16) for the triangular 
window for 

2

1)( ⎥
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⎤
⎢
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and 6...,,2,1=k  are shown in Table 3.4. 

Table 3.4  Successive terms of Maclaurin series for triangular window, 6...,,2,1=k  
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Fig. 3.5 shows the total error ),( δtETriangular  equal to the sum of error 

components ),(, δtE kTriangular  listed in Table 3.4. 
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Fig. 3.5 Total error ),( δtETriangular  for triangular window 

 

Fig. 3.6 shows a comparison of errors from Fig. 3.4 and Fig. 3.5. 

0 0.05 0.1 0.15 0.2
-1

0

1
-1

-0.5

0

0.5

1
 

    total error

                     Nuttall              
                window        

Triangular 
       window        

 

t

δ

  

Fig. 3.6  Comparison of sum of errors for Nuttall window  and triangular window 

The maximum values of errors for the Nuttall window Fig. 3.4 and the 
triangular window Fig. 3.5 are as follows 

181.0),(sup
,

=δ
δ

tENuttall
t

     for     ]1,1[−∈t , ]1,1[−∈δ  

138.0),(sup
,

=δ
δ
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t

     for     ]1,1[−∈t , ]1,1[−∈δ  

 
The comparison of these results indicates that errors generated during the 

averaging process are smaller in the case of the triangular windows than in the 
Nuttall windows. 
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3.4   Efficiency Analysis of Noise Reduction by Means of 
Filtering 

The noise reduction efficiency when using filtering will be analysed on the 
examples of the second and third-order objects as well as Nuttall and triangular 
windows.  

Let the second order object be given in the following form 

)()()()( 0
'

1
''

2 tutyatyatya =++  (3.23) 

where )(tu  is the input and )(ty  the output signal as mentioned in (3.1). Let the 

output signal be the sinusoid 

)sin()( νω += tYty  (3.24) 

After substitution of (3.24) into (3.23) and simple calculations of derivatives, we get  

)sin()cos()sin()( 2
210 νωωνωωνω +−+++= tYatYatYatu  (3.25) 

If the output signal )(ty  is mixed with noise, we will use the weighted mean 

)(tu  instead of ).(tu  Replacing )(ty  by )(tu  and substituting (3.23) into (3.6), 

we get 
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It can be shown as the three separate integrals 
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Transferring the respective derivatives from )(τy ′′  and )(τy ′  to the weight 

functions )( tg −′′ τ  and )( tg −′ τ , we have 
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Applying Nuttall window (3.12), let us recalculate (3.28). The successive 
derivatives for Nuttall window  
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are as follows 
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Substituting )31.3()29.3( −  into (3.28) gives 
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Considering (3.24), we have  
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Calculating the integrals in (3.33), for 2=p  and 
δ
11 =−d  as an example, we 

get finally  
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Fig. 3.7  Filtering efficiency of Nuttall window for second-order object 

It is easy to see the difference between signals (3.25) and (3.34). For 
constω δ =  magnitude of the signal )(tu  is multiplied by the constant coefficient, 

in comparison with the signal ).(tu  The value of this coefficient decreases to zero, 

if ωδ  tends to infinity. Fig. 3.7 presents the diagrams of signal )(tu  and )(tu . 

Let us repeat the similar analysis for the triangular window. Substituting the 
weight function (3.13), its respective derivatives ),( tg −′ τ  )( tg −′′ τ  and the 
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(3.35) 

Substituting 2=p  and 
δ2

31 =−d  into (3.35) and integrating, we finally have 
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Fig. 3.8  Filtering efficiency of triangular window for second-order object 

Fig. 3.8. presents the diagrams of the signals )(tu  and ).(tu  In this case, the 

difference between the signals refers both to the magnitude and phase 
displacement. The latter one equals π  rad. 

Let us check now the efficiency of filtering in the case of Nuttall and triangular 
window application to a third-order object. Let this object be given in the 
following form 
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The output signal is the same as given by Eq (3.24). Substituting (3.24) into (3.37) 
yields 

)sin()cos(

)sin()cos()(

01

2
2

3
3

νωνωω
νωωνωω

++++
+−+−=

tYatYa

tYatYatu  (3.38) 

For the third-order object (3.37) the weighted mean )(tu  has the following form  
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Taking Nuttall window (3.12) under consideration and calculating the respective 
derivatives of (3.39), we get  
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From the expression (3.40), for 3=p  and ,
8
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π=−d  we get  
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The results of the calculations are shown in a form of diagrams in Fig 3.9. 
 

 
 

Fig. 3.9 Filtering efficiency of Nuttall window for third-order object 
 

When comparing the latter and the former results, it is evident that the ratio of 
the voltage )(tu  and )(tu  magnitudes depends on the order of object. 
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For triangular window (3.13) and the third-order object, Eq (3.39) takes the form 
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Substituting 3=p  and 
δ
21 =−d , we finally get  
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Fig. 3.10  Filtering efficiency of triangular window for third-order object 
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The phase displacement of the signals )(tu  and )(tu  is π  rad, likewise in the 

second-order object. The ratio of voltage magnitudes depends on the order of 
object, in a similar way like in the case of Nuttall window. 

3.5   Kalman Filter 

So far the reduction of noise by filtering, with the application of the weighted 
mean methods, has been discussed. Kalman filter method is another quite popular 
way, often used in practice, to achieve this aim. It is applied to a linear discrete 
dynamic object. For such a object, the recurrent algorithm of minimum variance 
estimator of the state vector is being developed. This aim is achieved through the 
use of the output of dynamic object given by the discrete state equations 

...,2,1,0)()()()()()(

)()()()()()1(

=++=
++=+

kkkkkkk

kkkkkk

vuDxCy

wuBxAx
  (3.44) 

For Kalman filter, it is assumed that both the measurement and the conversion 
process inside the object are burdened with an error described by the standardized 
normal distribution. Fig. 3.11 shows the block diagram of the object represented 
by Eq. (3.44) 

 

 
 

Fig. 3.11  Block diagram of discrete dynamic object 
 

−)(ku vector of input signal of m  dimension, )(kx  and −+ )1(kx state vectors of 
n  dimension at time k  and ,1+k −)(ky vector of output signal of p  dimension, 

vector)( −kw  of object noise of n dimension, −)(kv measurement noise vector of 
p  dimension, −nxnk)(A state matrix, −nxmk)(B input matrix, −pxnk)(C output matrix, 

−pxmk)(D direct transmission matrix 

 
The following assumptions are introduced for the synthesis of Kalman filter: 

1. The deterministic component of the input signal )(ku  equals zero 

2. In case of control lack, the state variable oscillates around zero 

0)]([ =kE x  (3.45) 
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3. Noises )(kw  and )(kv  both have properties of discrete white noise. It means 

they are not correlated, their expected value is zero and their covariance is 
constant 
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where )(kR  and )(kQ  are the covariance matrices of noise. 
 

4. The state errors and the measurement errors are not correlated 

0)]()([ =kkE Twv  (3.48) 

5. The estimation errors do not depend on measurements  

0)]())(ˆ)([( =− kkkE Tvxx  (3.49) 

It means that the vector )(ˆ kx  depends on the observation vector at random. The 

relation holds until 1−k  step. 
6. The matrix 0)( =kD  

Such assumption enables to modify the state equation (3.44) to the following 
form 

)()()()(

)()()()()1(

kkkk

kkkkk

vxCy

uBxAx

+=
+=+

 (3.50) 

The block diagram related to the above equation is shown in Fig. 3.12. 

 

 
 

Fig. 3.12  Schematic diagram of Kalman filtering 
 

The idea of Kalman filter is based on the assumption that the linear state 
estimator )1,1(ˆ −− kkx  and the covariance )1,1( −− kkP  can be obtained through 

1−k  observations of the object output at the discrete instant .1−k  The next step 
is prediction of the values of both the estimator )1,(ˆ −kkx  and the covariance 
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),1,( −kkP  the latter tied in with the former, at the time instant .k  If there is 

a difference between the obtained results and those predicted during the previous 
step, a correction must be made to the prediction for the instant 1+k . The 
correction is carried out at the time instant .k  

Kalman filter equations are based on these assumptions. They are divided into 
two categories (i) and (ii), described below in details. 

(i) Equations of time updating 
On the basis of the estimation at the instant ,1−k  the prediction is done at the 

discrete instant .k  The time updating equations enable the prediction. The 
following algorithm complete the task: 

1. Project the state ahead  

)1()()1,1(ˆ)()1,(ˆ −+−−=− kkkkkkk uBxAx  (3.51) 

where )1,1(ˆ −− kkx  and )1,(ˆ −kkx  are the corresponding estimations of the state 

vector before and after the measurement 

2. Project the error covariance ahead 

)()()1,1()()1,( kkkkkkk T RAPAP +−−=−  (3.52) 

where 

)]1,1()1,1([)1,1( −−−−=−− kkkkkk TeeEP  (3.53) 

is the covariance matrix of the a priori error vector 

)1,1(ˆ)1()1,1( −−−−=−− kkkkk xxe  (3.54) 

and 

)]1,()1,([)1,( −−=− kkkkekk TeEP  (3.55) 

where 

)1,(ˆ)()1,( −−=− kkkkk xxe  (3.56) 

is the covariance matrix of the a posteriori error vector. 
The difference between the real value of the state vector and its estimation is 

presented by the vectors (3.54) and (3.56). This difference is a good measure of 
the error of the state vector assessment. 

(ii) Equations of measurements updating  
On the basis of the actual observation data, the prediction is a corrected by the 

measurement updating equations. The algorithm of procedure is as follows: 

1. Compute the Kalman gain 

1)]()1,()()()[()1,()( −−+−= kkkkkkkkk TT CPCQCPK  (3.57) 
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2. Update the estimate with measurement )(ky  

)]1,(ˆ)()()[,()1,(ˆ)(ˆ −−+−= kkkkkkkkk xCyKxx  (3.58) 

3. Update the error covariance 

)1,()](),([)( −−= kkkkkk PCKIP  (3.59) 

The algorithm presenting the whole action and operation of Kalman filter, 
following the equations (3.51) to (3.59), is shown in Fig. 3.13. 

 

 

Fig. 3.13 Algorithm of Kalman filter operation 

During the operation of Kalman filter, the equations of updating time and of 
measurements work in cycles, in the successive instants k  between one action and 
another. It makes possible to estimate the process of )(ˆ kx  according to the 

minimum of mean-square error.  
For numerical calculations, the initial parameters should be taken under 

considerations. Either there is some preliminary information about the process or 
the assumption must be made about zero initial conditions. The latter case refers to 
the state vector estimate. Additionally, the covariance matrix )1,1( −− kkP  

should have large value elements. If too small values of matrix elements are 
assumed, it will results in the gain matrix )(kK  being small in the consecutive 

steps, and the estimates )(ˆ kx  will be close to the initial values. Further 

consequence of such an approach is that the optimum solution will only be 
obtained after a significant increase of the number of iteration steps. On the other 
hand, if too large values of the covariance matrix elements are assumed, the 
estimate )(ˆ kx  will change quickly in reference to its initial value. It will be seen 

in the form of a significant overshoot during the initial step of estimation. 
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Chapter 4 
Model Development  

 
 
 
 
 
 
 
 
 
 
 
Selected methods of development of various time-invariant models are presented 
in the chapter.  

Using algebraic polynomials, approximation methods are reviewed. The 
polynomials of Lagrange, Tchebychev, Legendre and Hermite are studied in 
detail. These methods are used quite often provided that the number of data points 
is not too large. That is because the order of the polynomial is equal to the number 
of data. Too large number of data results in an equally high number of the 
polynomial order.  

When the approximations of functions having irregular waveforms are 
considered, it is convenient to apply the cubic splines approximation method. It is 
based on splitting the given interval into a collection of subintervals, followed by  
the approximation of the data at each subinterval by means of the cubic order 
polynomial. The method is described in the following parts of the chapter in 
detail.  

Another method, which is discussed in the chapter, makes possible a derivation 
of a relatively low degree polynomial, which will pass “near” the measured data 
points instead of passing through them. It is the least squares approximation 
method for which the error being a sum of squares of the differences between the 
values of the approximation line and the measured data is at minimum. 
Approximation by means of power series, with the use of Maclaurin series, is 
presented in the next part of this chapter. This method is particularly useful in the 
case of models in dynamic state because Maclaurin series describes a function 
near the origin. There is also an additional advantage of the method. Coefficients 
of the series can be transformed directly into state equations coefficients or 
coefficients of Laplace transfer functions. These two forms are applied most often 
in modelling various objects of electrical and control engineering. There are 
a couple of other methods, which are discussed in the following parts of the 
chapter. The standard nets method, which allows for an easy the determination of 
the order of a modelled object, and the optimization method based on Levenberg-
Marguardt algorithm with LabVIEW program application, are presented. Finally, 
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the black-box identification for discrete models in the form of ARX with the 
MATLAB program application and the Monte Carlo method are also considered. 

4.1   Lagrange Polynomials 

Let us consider the polynomial )(xL  

)(...)()()()( 11221100 xLaxLaxLaxLaxL nn −−++++=  (4.1) 

If in (4.1) 

1...,,1,0,)( −== nkxxL k
k  (4.2) 

then )(xL  is called the Lagrange interpolating polynomial. Polynomial )(xL  at 

each measuring point kx  fulfills the condition 

)()( kkk xfxL =  (4.3) 

where )( kxf  presents measuring data in .kx Six graphs of the first consecutive 

polynomials )(xLk  are shown in Fig. 4.1 

 

 
 

Fig. 4.1  The first six Lagrange polynomials 

In order to determine unknown coefficients 110 ...,,, −naaa  of the polynomial 

),(xL  let us substitute Eq. (4.3) into Eq. (4.1). Thus we have the following system 

of n linear equations  
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The system of equations (4.4) can be presented in matrix form  
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where the vector of coefficients a presents the solution. 
The matrix on the left is known as a Vandermonde matrix. It has the non-zero 

determinant, which indicates that the system (4.5) has a solution for a, and the 
solution is unique. 

Let us consider the cardinal function 
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that has the following properties 
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After a simple transformation, relation (4.6) can be presented in the form 
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also occurring in other polynomials e.g. Tchebychev, Legendre, Hermite etc. 
The interpolation polynomial ),(xL  presented by means of (4.8), takes the form 
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Fig. 4.2 shows the components of polynomial (4.9) for five exemplary 
measuring points )3,5;4,4;2,3;5,2;3,1())(,( =xfx  in the interval [1, 5]. 

 

 

Fig. 4.2  Exemplary components of polynomial (4.9) 

4.2   Tchebychev Polynomials 

In (4.1), let us replace the polynomial )(xL  by Tchebychev polynomials )(xT  

)(...)()()()( 11221100 xTaxTaxTaxTaxT nn −−++++=  (4.10) 

For each measuring point kx  we have  

1...,,1,0),()( −== nkxfxT kkk  (4.11) 

The individual polynomials occurring in (4.10) can be determined with the use of 
the recurrence formula  
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Some of the initial Tchebychev polynomials are given by 
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and are shown in Fig. 4.3 

 

 
 

Fig. 4.3  The first six Tchebychev polynomials 

 
After substituting Eq. (4.11) into Eq. (4.10) and taking (4.12) into account, the 

system of equations (4.14) can be obtained, where the vector of coefficients 
a presents the solution 
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The interpolation points ,kx which determine the zeros of )(xTk  in the interval 

]1,1[− , form a triangular matrix called the experiment plan according to the zeros 

of the Tchebychev polynomials. For the polynomials (4.13), we have  
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The cardinal functions in the zeros of the Tchebychev polynomials have the form 
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for which the polynomial (4.10) can be presented as  
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Fig. 4.4 shows the components of (4.17) for five exemplary measuring points, 
which are determined by zeros of the fifth order polynomial and by measuring 
data )( kxf  equal 3, 5, 2, 4, 3, respectively 
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On the grounds of well-known properties of orthogonal functions, it is the 
advantage to use orthogonal polynomials in many cases of approximation. In the 
interval ],1,1[−  Tchebychev polynomials are orthogonal with the weight function 
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for which we have 
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Fig. 4.4  Exemplary components of polynomial (4.18) 
 

Assuming the interpolation points belong to the interval ],,[ ba  they can be 

transformed into the interval ]1,1[−  using the following formula 
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From (4.20), it can be easily noticed that shifted Tchebychev polynomials in the 
interval ],0[ b  are presented by  

bxxT

xT

bxTbxTbxxT kkk

/21)(

1)(

)/21()/21()/21(2)(

1

0

11

+−=
=

+−−+−+−= −+
 (4.21) 

The polynomials (4.21) are orthogonal with the weight function 
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A few shifted Tchebychev polynomials in the interval ],0[ b  are given by 
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4.3   Legendre Polynomials 

In (4.1), let us replace the polynomial )(xL  by Legendre polynomials )(xP  

)(...)()()()( 11221100 xPaxPaxPaxPaxP nn −−++++=  (4.24) 

For each measuring point ,kx  we have  

1,...,2,1),()( −== nkxfxP kkk  (4.25) 

The individual polynomials occurring in (4.24) can be determined with the use of 
the recurrence formula  
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Legendre polynomials are orthogonal in the interval ]1,1[−  with the weight 

function ,1)( =xw  and fulfill the following condition 
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Some of the initial Legendre polynomials in the interval [ ]1,1−  are given by 
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and are shown in Fig. 4.5. 
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Fig. 4.5  The first five Legendre polynomials 

 
After substituting Eq. (4.25) into Eq. (4.24) and taking (4.26) into account, the 

system of equations (4.29) can be obtained, where the vector of coefficients 
a presents the solution 
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Replacing )(xTk  in (4.16) by )(xPk  of (4.26) gives 
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for which the polynomial (4.24) can be presented as  

∑=
−

=

1

0
)()()(

n

k
kk xCxfxP  (4.31) 

Fig. 4.6 shows the components of polynomial (4.31) for five exemplary measuring 
points, which are determined by zeros of the fifth order polynomial and by 
measuring data )( kxf  equal 3, 5, 2, 4 and 3, respectively 
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Fig. 4.6  Exemplary components of polynomial (4.31) 

 

From (4.20), it can be noticed that shifted Legendre polynomials in the interval 
],0[ b  are presented by (4.32)  
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A few shifted Legendre polynomials in the interval ],0[ b  are given by  
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(4.33) 

4.4   Hermite Polynomials 

In each measuring point, Hermite polynomials )(xH  satisfy the conditions related 

to the individual measuring points and to the value of derivatives in these points 

)()(),()( iiii xf
dx

d
x

dx

dH
xfxH ==  (4.34) 

The individual Hermite polynomials can be determined with the use of the 
recurrence formula  
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)(2)(2)(

1
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11
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−= −+

nkxxH
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xkHxxHxH kkk

 (4.35) 

Some of the initial Hermite polynomials are as follows 

  1)(0 =xH  

   xxH 2)(1 =  

24)( 2
2 −= xxH  

xxxH 128)( 3
3 −=  

124816)( 24
4 +−= xxxH  

xxxxH 12016032)( 35
5 +−=  

(4.36) 

and are shown in Fig. 4.7. 
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Fig. 4.7  The first six Hermite polynomials 

 
Hermite polynomial )(xH  can be defined with a use of the cardinal functions 

)(xCk (4.8)  
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d
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where  
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It is easy to see that the functions )( ik xH  and )( ik xK fulfill the following 

relation 
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Hermite polynomials are orthogonal with the weight function 
2

)( xexw −=  

∫
⎩
⎨
⎧

=
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=
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∞−

−
nmn

nm
dxexHxH n

x
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)()(

2

π
      (4.41) 

Fig. 4.8 shows the components of polynomial (4.37) for five exemplary measuring 
points  

]3,5;4,4;2,3;5,2;3,1[)](,[ =xfx  and ]7.9;3.3;7.0;7.3;3.12[)( −−−=xf
dx

d
 

 
 

 

Fig. 4.8  Exemplary components of polynomial (4.36) 

4.5   Cubic Splines  

Cubic splines method is based on splitting  the given interval into a collection of 
subintervals and constructing different approximating polynomials )(xSk  at each 

subinterval. We use such a cubic polynomial between each successive pair of 
points, and the polynomial has the continuous first and second-order derivatives at 
these points. 

We have three types of cubic splines, and the selection depends on the value of 
the second-order derivatives )( 00 xS ′′  and )( nn xS ′′  at the end-points 0x  

and .nx   
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1. The natural spline, for which the second-order derivatives at the end-
points equal zero, i.e. 0)()( 00 =′′=′′ nn xSxS   

2. The parabolic runout spline, for which the second-order derivatives at the 
first and second point are equal, i.e. 0)()( 1100 ≠′′=′′ xSxS . Regarding 

the last and one before last point, the second-order derivatives are equal 
and different then zero, i.e. 0)()( 1 ≠′′=′′ −nn xSxS   

3. The cubic runout spline, for which the second-order derivatives at the 
end-points are different then zero and fulfill the following conditions 

 )()(2)( 221100 xSxSxS ′′−′′=′′  and ).()(2)( 2211 −−−− ′′−′′=′′ nnnnn xSxSxS  
 

The general form of cubic polynomial is as follows  

32 )()()()( kkkkkkkk xxdxxcxxbaxS −+−+−+=  (4.42) 

For each measuring points kx  we have 

1...,,1,0),()( −== nkxfxS kkk  (4.43) 

where n is the number of measuring points  
 

 

 

Fig. 4.9  Cubic splines 

For each point, except the first and the last point, the particular polynomials fulfill 
the following conditions 

)()( 1 kkkk xSxS −=  (4.44) 

)()( 1 kkkk xSxS −′=′  (4.45) 

)()( 1 kkkk xSxS −′′=′′  (4.46) 
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In order to determine unknown coefficients kkkk dcba ,,,  let us use 

).46.442.4(.Eqs −  Thus we have 

3
11

2
11111

1

)()()(

)(

−−−−−−−
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−+−+−+

=

kkkkkkkkkk

kk

xxdxxcxxba

xS
 (4.47) 

and 

)()()( 1 kkkkkk xfaxSxS === −  (4.48) 

Denoting the difference between successive points by Δ  

1−−=Δ kk xx  (4.49) 

Eq. (4.47) becomes 

)()( 3
1

2
1111 kkkkkkkk xfadcbaxS ==Δ+Δ+Δ+= −−−−−  (4.50) 

Taking Eq. (4.45) into consideration, we obtain  

2
111111 )(3)(2)( −−−−−− −+−+=′ kkkkkkkkk xxdxxcbxS  (4.51) 

and because 

kkk bxS =′ )(  (4.52) 

hence  

1
232 +=Δ+Δ+ kkkk bdcb  (4.53) 

In a similar way, on the basis of Eq. (4.46) we have 

Δ+=′′ −−− 111 62)( kkik dcxS  (4.54) 

kkk cxS 2)( =′′  (4.55) 

and 

kkk cdc 262 11 =Δ+ −−  (4.56) 

hence 

Δ
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22 1
1
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d  (4.57) 

and  

Δ
−=

Δ
−= ++

66

22 11 kkkk
k

MMcc
d  (4.58) 

where 

kk Mc =2  (4.59) 
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From Eq. (4.50), we obtain 

)(1
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k cd
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b +ΔΔ−

Δ
−= +  (4.60) 

Taking the relations (4.48) and (4.58) into account in the formula (4.60), we get 

6
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k

MMyy
b

+Δ−
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Substituting the relations (4.59) and (4.61) into Eq. (4.53), we obtain 
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(4.62) 

Eq. (4.62) can be represented by the following matrix equation 
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(4.63) 

The solution of the above equations with respect to nMM −0  enables to 

determine the unknown coefficients of the polynomial (4.42) on the basis of Eqs. 
(4.48), (4.58), (4.59) and (4.61). 

Eq. (4.63) can be reduced to the one of the three forms, in relation to the type of 
splines i.e. the natural splines, the parabolic runout splines and the cubic runout 
splines. 

For the natural splines, on the basis of Eqs. (4.55) and (4.59) we have  

01 == nMM  (4.64) 

hence, in the left hand side of Eq. (4.63), the first and last column of the matrix 
can be eliminated and the equation can be rewritten to the form 
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Fig. 4.10 shows the natural spline. Implementing the condition (4.64) in effect 
makes the cubic function outside the end-points pass into a straight line. 

 

 

Fig. 4.10  Natural spline 

For the parabolic runout spline, for which  

10 MM =  (4.66) 

1−= nn MM  (4.67) 

Eq. (4.63) can be simplified to the following form 
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(4.68) 

Fig. 4.11 presents the parabolic runout spline. Implementing the condition (4.67) 
and (4.68) in effect makes the cubic function outside the end-points pass into 
a parabola. 

For the cubic runout spline, we have  

210 2 MMM −=  (4.69) 

212 −− −= nnn MMM  (4.70) 
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Fig. 4.11  Parabolic runout spline 

 
and now Eq. (4.63) takes the form  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
+−

+−
+−
+−

Δ
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−

−

−

−

)()(2)(

)()(2)(

.

.

)()(2)(

)()(2)(

)()(2)(

6
.

6000..0000

1410..0000

0141..0000

..........

0000..1410

0000..0141

0000..0006

12

123

432

321

210

2

1

2

3

3

2

1

nnn

nnn

n

n

n

xfxfxf

xfxfxf

xfxfxf

xfxfxf

xfxfxf

M

M

M

M

M

M

 
(4.71) 

Fig. 4.12 presents the cubic runout spline, for which the cubic function outside of 
the end-points does not pass into any other function  

 

 
 

Fig. 4.12  Cubic runout spline 
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4.6   The Least-Squares Approximation 

The approximation of the measuring data by means of Lagrange, Tchebyshev, 
Legendre and Hermite polynomials leads to the derivation of a polynomial of the 
order equal to the number of approximation points. For a large number of such 
points, the derived polynomial would be then of a very high order. In such 
a situation, it is better in many cases to construct a relatively low order 
polynomial, which is passing close to the measuring data instead of cutting across 
them. In the method of the least-squares approximation, the polynomial is such 
that the sum of squares of the differences between the ordinates of the 
approximation line and the measuring points is at minimum 

[ ] .min)()(
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0
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k
kk xQxf  (4.72) 

Let the polynomial of the degree nm <  have the form 
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For a minimum (4.72) with respect to the parameters ia  for ,...,,1,0 mi =  it is 
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Let us present Eq. (4.72) as follows 
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Substituting the expression for )( kxQ  (4.73) into the left-hand side of (4.75) 

gives  
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A simple calculation of the derivatives, according to (4.74), leads (4.76) to the 
following system of equations denoted in the normal form  
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YAX =  

where 
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(4.77) 

a solution of which is given by 

YXXXA TT 1][ −=  (4.78) 

Note that the success of the approximation developed by the least squares method 
depends very much on the accuracy of all intermediate calculations. For this 
reason, the calculations should be carried out with maximum possible precision 
and the necessary rounding up should be limited to a minimum. 

4.7   Relations between Coefficients of the Models 

Let coefficients ka of the polynomial )(xM   

∑=
=

n

k

k
k xaxM

0
)(  (4.79) 

be equal to 

kk A
k

a
!

1=  (4.80) 

Let additionally kA  represents Maclaurin series coefficients, hence they are the 

successive derivatives of )(xM  for 0=x  
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The mutual relations between the coefficients kA  (4.81) and the coefficients 

110 ...,,, −naaa  and mbbb ...,,, 10  of a Laplace transfer function  
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or the state equation  
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where )(tx is the state vector, A, B and C are the real matrices of corresponding 

dimensions  
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are given by the following matrix equation  
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For the first three values of ,n  the equation (4.85) is reduced to the following 
form:  
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for 1=n  
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for 2=n  
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and for 3=n  
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The reverse relation is given by Eq. 4.89.  
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It permits to calculate the coefficients 1210 ...,,, −nAAA  of the Maclaurin series 

having knowledge of parameters .,...,,,...,,, 10110 mn bbbaaa −   

Note that the subsequent coefficients of the series ,...,,, 22122 ++ nnn AAA  of the 

first column in equation (4.89), are expressed by the coefficients 1210 ...,,, −nAAA  

preceding them. The relations between the discussed coefficients are shown below 
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for 1=n  
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for 2=n  
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and for 3=n  
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From )92.4()80.4( −  it can be seen that n2  initial coefficients of the power series 

expansion contain all the information describing polynomial ).(xM  

It is important to note that the application of the Maclaurin series allow models 
development which is particularly useful in the case of systems operating in 
dynamic states. That is because the series refers to the functions defined near the 
origin. 

4.8   Standard Nets 

When an object is under non-parametric identification procedure, in many cases it 
is essential to know the order of its model. 

During the identification procedure, we use a wide range of different methods 
selecting these, which are most suitable for the type of an object under 
identification. The lack of any universal identification method on the one hand, 
and a large variety of objects on the other implicate serious problems with 
choosing the correct method of identification. Thus a great amount of afford is 
required to obtain a correct final effect.  

As an example, let us consider the three most common groups of objects and 
the methods applied during the identification process 
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1. Inertial objects, which are identified through the analysis of the step-response 
ordinates 

2. A class of oscillatory objects, for which a number of methods is applied, like 
the two consecutive extremes method, readings of the step-response ordinates, 
the method of apparent move of zeros and poles of a transfer function 

3. Multi-inertial objects of the order denoted by the integer or fractions. These 
are identified either through the analysis of the initial interval of the step-
response or by means of the finite difference method with the use of the 
auxiliary function to determine a rank and type of inertia. Using one of these 
two methods, it is possible to reduce the transfer function of multi-inertial 
objects to the Strejc model. The latter is particularly useful to present object 
dynamics with step characteristics increasing monotonically. 

 
Summarizing, each group of objects is identified in a different way. A number 

of various methods can be used for this aim. In the following pages, we present 
the universal solution, to some degree, of the parametric identification problem. It 
is based on the standard nets method and computer math-programs like 
MATLAB, Maple, MathCad and LabVIEW. 

The central point of the method is a comparison of identification nets. The 
standard identification nets are compared with the identification net of an object 
under modelling. If initial parts of the nets characteristics are compatible, it 
permits to determine the type of the object model. It corresponds with the model, 
for which the standard identification net has been selected. 

The standard identification nets are determined most often for the following 13 
models presented below by the formulae )105.4()93.4( −  
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Step-responses are used for the development of standard identification nets, and 
for all listed models, they can be easily obtained applying the inverse Laplace 
transform. It is only the model (4.105), which may produce some difficulties. Its 
step-response is 
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and in the time-domain is 
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For a fractional n, this way of calculations is not possible. However, in such 
a case, the response )(th  can be determined using Gamma Euler functions 

)(nΓ and )./,( TtnΓ  Hence, we have  
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where  
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The standard identification net is obtained through the transform of )(th  response 

using the parametric equations (4.111) and (4.112), 

)( )/(),()( 1 attftX φφ=  (4.111) 

)( )/(),()( 1 attftY φφ=  (4.112) 

The coordinates )(tX (4.111) and )(tY (4.112) are calculated using any of the 

three algorithms presented by the formulae ).115.4()113.4( −  
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In Eqs. ),127.4()113.4( − a  is the parameter related to a number of samples of the 

digitized step-response )(th . The optimum solution can be obtained for .2=a  

The infinitesimal ℜ∈c  protects the denominator from being equal zero. 
It is convenient to group the standard identification nets according the class of 

objects: multi-inertial, multi-inertial with a delay and oscillatory nets.  
Fig. 4.13 and Fig. 4.14 show the initial parts of exemplary families of the 

standard identification nets, for two models (4.99) and (4.105). They are obtained 
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through the identification algorithm (4.113) for ,1=k 10 =ω  and β = 0.1, 0.3, 

0.5, 0.7, 0.9, ]15,0[∈t  for the model (4.99), and for ,2=a  ,1=k  1=T , 

,5...,,2,1=n  ]15,0[∈t  for the model (4.105). 

 

 
 

Fig. 4.13  Family of standard identification nets for model (4.99) ,2=a ,1=k ,10 =ω  

]15,0[∈t  
 

 

 
 

Fig. 4.14  Family of standard identification nets for model (4.105), ,2=a ,1=k ,1=T  

]15,0[∈t  

 
The construction of nets Fig. 4.13 and Fig. 4.14 is based on measurements and 

data of step-responses. The latter can easily be transformed into identification nets 
using the formulae ).115.4()113.4( −  The whole process can be carried out fully 
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automatically through the application of the measuring system shown in Fig.1.1, 
and additionally supported by special software tools for measurement and control. 
These requirements are satisfied in the best way by LabVIEW software. 

For inertial object of class (4.105), it is practically convenient to apply the 
graph ))(),(max( tYtX nn  shown in Fig. 4.15. This way allows for an easy 

estimation of the fractional order of inertia. For ,5...,,2,1=n  such a graph is 

shown in Fig.4.16. 

 

 
 

Fig. 4.15  Maximum points for model (4.105) 

 
max [X(t),Y(t)]

 
 

Fig. 4.16  Maximum of standard identification nets −n inertia order of model (4.105) 
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4.9   Levenberg-Marquardt Algorithm 

In this subchapter, we will present Levenberg-Marquardt optimization algorithm 
and discuss the potential of using it for identification. Application of this 
algorithm has many advantages in comparison with other optimization methods. It 
combines the steepest descent method with Gauss-Newton method, and operates 
correctly in search for parameters both far from and close to the optimum one. In 
the first situation the algorithm of the linear model of steepest descent is used, and 
in the second one-the squared convergence. The fast convergence is the additional 
advantage of the algorithm. 

Levenberg-Marquardt algorithm is the iterative method, in which the vector of 
unknown parameters, for the step ,1+k  is determined by the equation  
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 (4.121) 

The notations in )121.4()118.4( −  are as follows: ,...,,2,1 pk =  −p a number 

of iteration loops, Jnxm −),( xkz Jacobian matrix, Imxm unit− matrix, −kμ scalar, 

−= ]...,,,[ 21 nxxxx vector of input parameters, −= ]...,,,[ 21 nyyyy vector of 

output parameters, −= ),(φ xzy predicted model, −= ]...,,,[ 21 mzzzz unknown 

parameters. 
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Levenberg-Marquardt algorithm is used for computation in two steps: 

Step 1 
the initial values of the vector kz  

assume−  the initial value of the coefficient kμ  (e.g. kμ = 0.1) 

solve−  the matrix equations (4.120) and (4.121) 

calculate−  the value of error (4.119) 

determine−  the parameters of the vector ,1+kz  according to (4.118). 

Step 2 and further steps  

update−  the values of the parameter vector for the model y  

solve−  the matrix equations (4.120), (4.121) and (4.118) 

calculate−  the value of error (4.119) 

compare−  the values of error (4.119) for the step k  and the step .1−k   

If the result is ),,(),( 1 xx kk −≥ zz εε  multiply kμ  by the specified value ℜ∈λ  

(e.g. 10=λ ) and return to the step 2. If the result is ),(),( 1 xx kk −< zz εε  divide 

kμ  by the value λ  and return to the step 1. 

If in the consecutive steps a decreasing in the value of error (4.119) is very 
small and insignificant, we then finish the iteration process. We fix 0=kμ and 

determine the final result for the parameter vector. 
If the value of coefficient kμ  is high, it means that the solution is not 

satisfactory. The values of the parameter vector z  are not optimum ones, and the 
value of error (4.119) is not at minimum level. At this point it can be assumed 

IzJzJ kkk
T xx μ<<),(),(  (4.122) 

and this leads to the steepest descent method, for which we have 
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If the value of the coefficient kμ  is small, it means that the values of the vector 

z  parameters are close to the optimum solution,  
then 

IzJzJ kkk
T xx μ>>),(),(  (4.124) 

and Levenberg-Marquardt algorithm is reduced to Gauss-Newton method 
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The selection of the coefficient values kμ  and λ  depends on assumed programs 

and selected software. 
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4.9.1   Implementing Levenberg-Marquardt Algorithm Using 
LabVIEW  

It is convenient to deploy Levenberg-Marquardt algorithm with LabVIEW 
software. Fig. 4.17. presents the block diagram of the measuring system for 
determining any characteristics of investigated object in this program 
Measurement data given by vectors x and y are sent to the measuring system 
through its analogue output and are recorded into the text files (Write to 
Measurement File1 and Write to Measurement File2, respectively). These data are 
next in the Curve Fitting block approximated by means of Levenberg-Marquardt 
algorithm. Fig. 4.18. presents the diagram of the general data approximation 
system, while Fig. 4.19. illustrates the Curve Fitting approximation block adapted 
for the exemplary approximation of frequency characteristic of the third-order 
system (in Non-linear model window). 

 

 

Fig. 4.17  Diagram of measuring system for determination of frequency characteristics 
 

 
The approximation process is carried out for the initial value of parameters 

(Initial guesses) and number of iteration (Maximum iterations). Windows Results 
presents the value of calculated parameters and the value of mean square error 
(MSE). 
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Fig. 4.18  Diagram of measuring system for approximation of frequency characteristics in 
LabVIEW 

 

 

Fig. 4.19  Curve Fitting block (Fig. 4.18) for approximation of third-order system  
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4.10   Black-Box Identification 

In the black-box identification, the experiment is carried out using discrete 
measurement data. From among preset parametric models, being a good match for 
these data, the desired model structure is selected. The discrete model of the 
identified object, in the form of the transfer function, is taken under consideration 
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or equivalent one 
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for which a white noise ][ke  is added and the parametric model of ARX type 

(Auto Regressive with eXogenous input) is formulated.  

 

Fig. 4.20  ARX model, −)(tv noise 

Now we have 
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and from it 
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where in )132.4()127.4( −  ],[ku  ][ky  are the input and output signals at the 

discrete time ,k  ][kx  is any measurement data in k  and 1−z  is delayed at one. 

Denoting  

)(

1
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1
1

−
− =

z
z

A
H  (4.133) 

we finally have  

][)(][)(][ 11 kzkzk eHuKy −− +=  (4.134) 

Eq. (4.134) describes the ARX model shown in Fig. 4.20. Identification of the 
ARX model is based on the following assumptions 

the−  object )( 1−zK  is asymptotically stable 

the−  filter )( 1−zH is linear, asymptotically stable, minimum-phase and invertible 

the−  input signal variation ][ku  is sufficiently large  
 

and leads to a simultaneous solution of two following tasks 
 

tionidentifica−  of the object, of which the transfer function is )( 1−zK  

tionidentifica−  of the filter ).( 1−qH  

Let us present the equation (4.132) as follows 

][][][ kkk eΦzy +=  (4.135) 

where  

]][...,],[],1[...,],1[[][ mkkkkk −−−−−= uuyyz  (4.136) 

]...,,,1,...,,[ 010 mn
T bbaa −=Φ  (4.137) 

Let us also denote by p  the number of activating signals. Then Eq. (4.135) takes 

the final form  
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As the result the identification task is reduced to the determination of the estimates 
of model parameters 

)( ][],[,, kkmn yuΦ Θ=
∧

 (4.139) 
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Apart of the ARX model, there are also other structures applied quite often: 

AR−  model described by the equation 

0][)( 1 =− kz yA  (4.140) 

ARMAX−  model described by 

][)(][)(][)( 111 kznkkzkz eCuByA −−− +−=  (4.141) 

− Box-Jenkins model 
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where 

...)( 1
10

1 ++= −− zcczC  (4.143) 

...)( 1
10

1 ++= −− zddzD  (4.144) 

...)( 1
10

1 ++= −− zffzF  (4.145) 

and δ  is a number of delaying steps between the input and output. 

4.11   Implementing Black-Box Identification Using MATLAB  

One of the models listed in System Identification Toolbox library of MATLAB 
software is the model  
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Its structure is shown in Fig. 4.21. The models (4.132) and )142.4()140.4( −  are 

the special cases of (4.146). 
We apply the black-box method to the ARX model and the virtual  object 

defined by the discrete Laplace transform. Using MATLAB, the identification 
experiment is carried out in the following steps: 

In the first step the measuring system in Simulink program is set −up Fig. 4.22. 

Its Subsystem block is shown in Fig. 4.23. The Sign block executes )(xsigny =  

relation while Band-Limited White Noise is the white noise generator. Generation 
method of this signal is described in the menu under Seed. The block Transfer Fcn 
represents the digital transfer function of identified object. 
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Fig. 4.21  Model structure applied in Identification Toolbox library 

 

 

Fig. 4.22  Measuring system in Simulink program  

 

 

Fig. 4.23  Internal structure of Subsystem block 

 
In the second step by means of To Workspace block, measured data are 

transferred and read into MATLAB working environment, and recorded as the Z1 

matrix. The vectors ][ku  and ][ky  are used during identification process 
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Z1 = 
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As an example, obtained through the command  

>> idplot(Z1) 

for den = [1  4.2  0.49] and Seed = [1  2  3  1  2], data of the first measured series 
of 300 samples, are shown in Fig. 4.24. 

 

 
Fig. 4.24  Examples of data from second measuring series 

 
The second series of measurements is used for a verification of the given 

model, and is recorded in Z2 matrix. However, the setup of Seed block must be 
changed before starting these measurements. Examples of measurement results Z2  

for Seed = [4  3  4  1  2] are shown in Fig. 4.25. 
In the third step errors generated by noise and random trends are removed.  

Completing this task is possible using the trend function, for which 

>> Z11 = dtrend(Z1) 

and  

>> Z22 = dtrend(Z2) 

are corresponding matrices of processed data contained in Z1 and Z2.  The input 
and output functions, obtained through the applied dtrend function, are shown in 
Fig. 4.26 and Fig. 4.27. 
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Fig. 4.25  Examples of data from second measured series 

 

 

 

Fig. 4.26  Input and output functions obtained through  dtrend(Z1)  
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Fig. 4.27  Input and output functions obtained through  dtrend(Z2)  

 

The step four refers to the determination of model parameters. The structure of 
the model is determined using Z11 matrix, and parameters are estimated through 
the least squares estimation method. The model ARX is identified by means of the 
function 

>> th = arx(Z11,ϕ ) 

where the initial values of the vector ][ δϕ mn=  are fixed as ].111[  The 

model structure and parameters, the quality coefficient applied and the number of 
inputs and outputs of model is displayed in the matrix th. This can be achieved 
using the instruction 

>> present(th) 

The last step refers to the model verification. A response of the model is compared 
with a response of the identified object. The measured data, recorded in the Z22 

matrix, is used for it. The comparison is expressed through the value of Fit 
coefficient, and the comparing function is 

>> compare(Z22, th) 

If the value of coefficient is not satisfying the requirements, the values of vector 

ϕ  parameters should be changed. Examples of the model verification for 

]111[=ϕ  and ]133[=ϕ  are shown in Fig. 4.28 and Fig.4.29. 

 



122 4   Model Development
 

 

Fig. 4.28  Model [1, 1, 1] verification 
 

 

 

Fig. 4.29  Model  [3, 3, 1] verification 

 

In MATLAB is also available the function which allows automatically 
calculate Fit coefficient for models defined by means of vector .ϕ  It is 

>> arxstruc(Z11, Z22, ϕ max) 
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where matrix maxϕ is defined as follows 

>> maxϕ = struc )1,1,1( maxmaxmax δ÷÷÷ mn  

and  

maxϕ  = 
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 (4.148) 

4.12   Monte Carlo Method 

Using the Monte Carlo method, it can be noticed that good results of parameter 
identification can be achieved at the relatively small amount of work required. The 
Monte Carlo performance will be shown using data obtained from the measuring 
system of Fig. 4.17 as an example. A few steps of the procedure can be 
distinguished. 

At first, using data from measurements and our intuition, we decide and select 
values of the parameters’ vector 

]...,,,[ 21 naaa=W  (4.149) 

of the assumed model  

),()( WxfxY =  (4.150) 

with the defined estimate-error  

]...,,,[
2211 nn

aaa δδδ ±±±=Wδ  (4.151) 

In the second step, we select and choose a generator of pseudorandom numbers. 
The vector Wδ  will be selected at random for the intervals defined by error-
margins nδδδ ...,,, 21  (see 4.151). The user determines the number of samples. 

Usually, it is within the interval ).1010( 64 −∈K  

If the MathCad software is used, the function runif can be quoted as an example 
of sampling process discussed above. The function generates pseudorandom 
numbers of the uniform distribution. The way to use it is shown below 

),,( δδ +−= Krunifa  (4.152) 

During the third step, the matrix Φ  is determined for the discrete values ).(xY  

The values )(xY  are calculated for parameters of the vector Wδ  and for the 

thi −  value of the vector of successive measuring points 
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),...,,,( 321 mxxxx=X  (4.153) 

during the thk −  sampling 
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where ,...,,2,1 Kk =  ,...,,2,1 mi =  −m the number of measuring points.  

During the fourth step, the matrix Δ  of model error values is calculated. It is 
determined by subtracting the vector Y  from the consecutive columns of the 
matrix ,Φ  where the vector Y  is given by  

T
321

)...,,,,(
m

yyyy=Y  (4.156) 

where the vector of measuring data Y  corresponds to .X  
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In the next step, the least-squares method is used and the vector S  is determined. 
The vector S  is the sum of squared errors of each column of the matrix Δ  

∑=
i

2)(ΔS  (4.158) 

Finally, during the last step the smallest value of the vector S  is searched for. 
The parameters of model related to this smallest value are assumed to be the 
optimal ones. The corresponding number of the sampling is also established. 
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Chapter 5 
Mapping Error  

 
 
 
 
 

 
 
Mapping error of models can easily be determined, if some initial information is 
given, like mathematical description of models, an input signal and an error 
criterion. Things are more complicated, when we consider object models operating 
in the dynamic mode. Then we deal with signals, which cannot be determined and 
their shapes cannot be predicted in advance. 

As it is impossible to analyse the full range of all possible dynamic input 
signals, we have to narrow the number of signals to be considered. The immediate 
question is about criteria of signal selection, i.e. which signals should be used to 
determine mapping errors for systems with dynamic input signals of unknown 
both-shape and spectral distribution.  

The answer lies in the concept of approaching the problem in a different way. 
Instead of selecting a special group of signals, we will find out the one, which will 
represent all signals of our interest. It is the signal generating errors of maximum 
value. Any other signal of any shape will generate smaller, or equal, error. This 
way all possible input signals to a real object will be included in this special one. 

The existence and availability of signals maximizing both the integral square 
error and the absolute value of error are discussed, and the solutions are presented 
in this chapter. Constrains imposed on the input signal are also considered. These 
constraints refer to magnitude as well as to maximum rate of signal change. The 
last constraint is applied in order to match the dynamic properties of the signal to 
the dynamic properties of the object. 

5.1   General Assumption 

Let the mathematical model of a object be given by the state equation 
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 (5.1) 

and the object, which is its reference, be given by a similar equation 
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Let us introduce a new state equation  
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in which 
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where in )4.5()1.5( −  )(tu  and )(ty  are the input and output respectively, 

CBA ,,  are the real matrices of corresponding dimensions.  

5.2   Signals Maximizing the Integral Square Error  

5.2.1   Existence and Availability of Signals with Two 
Constraints 

Let us assume that U  is the set of signals )(tu  piecewise continuous over the 

interval ],,0[ T  and the error )(ty  is expressed by inner product 

UuKuKudttyuI
T

∈=∫= ),()()(
0

2  (5.5) 

where  

∫ −==
t

dutktyKu
0

)()()( τττ  (5.6) 

and  

BC AtT etk =)(  (5.7) 

Let us consider the signal Uh ∈  and let the following condition be fulfilled  

],[:0 cbhsuppUhTcb ⊂∈∃<<<∀  (5.8) 

and the positive square functional  

0)( >hI  (5.9) 

Let us define the following set U  of signals with imposed constraints on the 
magnitude a  and the rate of change ϑ   

]},0[,|)(|,|)(|,|)(|:)({ TttutuatuUtuA ∈≤≤≤∈= −+ ϑϑ  (5.10) 
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where )(tu+  and )(tu−  are increasing and decreasing derivatives of )(tu  

respectively. 
Let Utu ∈)(0  fulfills the condition 

}:)(sup{)( 0 UuuIuI ∈=  (5.11) 

then 

Theorem 

ϑϑ ===∈∀ −+ |)(||)(||)(|],0[ 000 tuortuoratuTt  (5.12) 

Proof 

Suppose that (5.12) is not true. Then 

Tcb <<<∃>∃ 0,0ε  (5.13) 

such, that 

),(,|)(|,|)(|,|)(| 000 cbttutuatu ∈−≤−≤−≤ −+ εϑεϑε  (5.14) 

Let us choose h  according to (5.8)  

0)(],,[ >⊂ hIcbhsupp  (5.15) 

then 0>∃δ  and for small ,ℜ∈d  say ),( δδ−∈d  is 

),(,0 δδ−∈∀∈+ dAdhu  (5.16) 

and from the optimal condition )(0 tu  it is evident that  

)()( 00 dhuIuI +≥  (5.17) 

hence 

),(),,(2)()()( 0
2

00 δδ−∈++≥ dKhKudhIduIuI  (5.18) 

and 

),(),,(2)(0 0
2 δδ−∈+≥ dKhKudhId  (5.19) 

However, the last inequality will never be fulfilled for ).,(,0)( δδ−∈> dhI  So, 

from this contradiction it is obvious that )( 0uI  can only fulfill the condition 

(5.11), if the input signal )(0 tu  reaches one of the constraints given in (5.12).  

Corollary 

The proof presented above reduces shapes of the signals )(0 tu  to triangles or 

trapezoids, if constraints are imposed simultaneously on the magnitude and rate of 
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change. It means that the signals )(0 tu  can only take the form of triangles with the 

slope inclination ϑ=+ |)(| 0 tu  or ,|)(| 0 ϑ=− tu  or of trapezoids with the slopes 

ϑ=+ |)(| 0 tu  ϑ=− |)(| 0 tu  and the magnitude of .a  Carrying out the proof in the 

identical way, it can be shown that if only one of the constraints is imposed on the 
signal, either on the magnitude a  or on the rate of change ,ϑ  then the functional 

)( 0uI  reaches maximum, if the signal reaches this constraint over the interval 

].,0[ T  

If the only constraint imposed on the signal )(0 tu  is the magnitude constraint, 

then it is of “bang-bang” type and it is possible to determine its switching 
moments. Below, we will present the analytical solution for determining such 
a signal. 

5.2.2   Signals with Constraint on Magnitude 

If the only constraint applied to the input signal is the constraint of magnitude the 
problem is limited to determining its switching instants only. In order to determine 
these switchings, let us consider the equation (5.5), which can be presented as 
follows 

),(),()( * uKuKKuKuuI ==  (5.20) 

where the operator *K  is the conjugate of K  
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Let the signals Uu ∈  be limited in magnitude 

10|)(| ≤<≤ aatu  (5.22) 

From the condition of optimality (5.11), it is evident that 
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Having computed the derivative ,
)(

0uu
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 considering (5.20) and performing 

simple transformations (5.23) yields 

),(),( 000 uKuKuKuK ∗∗ ≤  (5.24) 
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in which the right-hand side presents the maximum. Left-hand side of the formula 
(5.24) reaches maximum, making both sides equal, if a signal with a maximum 
permissible magnitude  

atu =|)(| 0  (5.25) 

has the form  

)]([)()( 0
*

0 tKuKsigntutu ==  (5.26) 

After considering (5.21), we finally obtain  
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The maximum value )(max uI  generated by the signal )(0 tu  is 
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5.2.3   Algorithm for Determining Signals Maximizing the 
Integral Square Error 

From the formula (5.27), it comes that )(0 tu  is a signal of the “bang-bang” type, 

with maximum magnitude assuming the value of 1+=a  or 1−=a  by virtue of 
(5.25), and with the switching instants nttt ...,,, 21  corresponding to the 

consecutive ni ...,,2,1=  zeros of the function, occurring under the sign mark in 

the formula (5.27). In order to determine these instants, let us assume that the first 
switching of the signal )(0 tu  occurs from 1+  to 1− . It means that during the first 

time-interval of 10 tt ≤< , the signal 1)(0 +=tu  Let us also assume that we will 

search for n switchings over the interval ].,0[ T  On the basis of the formula 

(5.27), we can write n  equations with nttt ...,,, 21  as variables for those 

assumptions. It can be easily seen that the equations are described by the 
following relation  
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where τ=== ++ 110 ,,0 mn tTtt  for ,lm =  −n number of switchings.  

Solution of system equations (5.29) with respect to nttt ...,,, 21  gives the 

required switchings instants of the signal ).(0 tu  
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Between those instants, depending on the interval ,...,,, 211 Tttttttt n ≤<≤<≤  

function )...,,,( 10
*

ntttKuK  in (5.28) is determined by the system of 1+n  

following relations 
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 (5.30) 

where ttl =  for .1−= il  

The value )( 0uI  is determined by the sum of modules, which is determined by 

the formula (5.30) over all 1+n  intervals 
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Exemplary equations for 3=n  switching instants in 21, tt  and 3t  resulting 

from formulae (5.29) and (5.30) are as follows: 
From (5.29), we have three equations 
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and we have four equations resulting from (5.30): 
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for 10 tt ≤<  
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for 21 ttt ≤<  
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for 32 ttt ≤<  
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for Ttt ≤<3  
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For a higher number of switchings nttt ...,,, 21  we can set up a relevant system of 

equations in a similar way. The procedure of searching for the optimum number of 
n  switchings starts with the assumption ,1=i  the solution of equation (5.29) in 
respect of ,1t  and with checking the value )( 0uI  (5.31) corresponding to the 
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obtained solution. The procedure is repeated next for ....,3,2=i  This way the 

upper value of n is not given in advance, but is obtained through the consecutive 
increase until the ),( 0uI  resulting from the formula (5.31), reaches the maximum. 

Such a situation occurs when the value ),( 0uI  obtained for 1+n  switchings, is 

not higher than the value of the error corresponding to n  switchings, and any 
further increase of the number of switchings cannot lift it up any more. In 
consequence, the search for the optimal number of switchings will end at this 
value of .n   

5.2.4   Signals with Two Constraints 

For two constraints imposed on input signal, it seems to be impossible to find out 
an analytical solution in respect of the shape of the ),(0 tu  and of the formula 

describing the maximum value of the integral square error. Therefore, we decided 
to lower our requirements of a very precise solution through analytical ways, and 
instead of it to use modern powerful computer programs. 

Good results are achieved, if heuristic techniques of computation are applied, e.g. 
genetic algorithms. Principles of such an approach are discussed below. Fig. 5.1 
shows the diagram of computer program for determine the integral square error by 
means of the genetic algorithms if both constraints, of the magnitude and the rate of 
change, are imposed simultaneously on the input signal. 

 

 
 
Fig. 5.1  Diagram of computer program for determining the integral square error by means 
of the genetic algorithm 
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Maximum number of iterative cycles equals 

npnchN ⋅=  (5.39) 

where −nch number of chromosomes in population, −np number of generated 

populations for which the stop condition is carried out. 
A genetic algorithm generates, one by one, the switching vectors describing the 

signal ),(tui  for which the error (5.5) is determined. 

In every iterative cycle, the value of error )(uIi  is compared with the value 

)(uIh  stored in memory, which for 1=i  has the initial value equal to zero. If 

),()( uIuI hi >  then )(uIi  is assigned to )(uIh  and stored. Simultaneously with 

this operation, the vector of value signals )(tui  is saved in memory. 

For Ni =  the values )(tui  and )(uIh  are stored in memory and are assigned 

to the pair of )(0 tu  and ).(max uI  In this manner, the solution for Ni =  consists 

of two data: the vector of data, which describes signal ),(0 tu  and the error 

)()( 0max uIuI =  corresponding to this value. 

In order to determine signal ),(0 tu  it is necessary to search over a set of 

permissible input signal ).(tui  

According to specific features of genetic algorithm, determination of unknown 
signal )(0 tu  is performed in three steps: 

 

operation−  of reproduction 

operation−  of crossing 

operation−  of mutation. 
 

Fig. 5.2 presents the flowchart of genetic algorithm. 
 

 

Fig. 5.2  Flowchart of genetic algorithm 
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During the first step, the initial population composed of an even chromosomes 
number is selected at random. Each chromosome consists of detectors, the number of 
which corresponds with the interval between switching times of ).(tui  For each 

chromosome, the value of integral square error is determined −determined Table 5.1, 
and then on the basis of the obtained results and formulae (5.40) and (5.41), an 
adaptation coefficient is calculated. 

This coefficient gives a percentage share of each chromosome in total error 

ns IIIII 22322212 ... ++++=  (5.40) 

nm
I

I
I

s

m
s ...,,2,1[%]100

2

2'
2 =⋅=  (5.41) 

where sI2  is the total error, '
2sI  gives the share in percent of individual 

adaptation coefficients in the total error. 
The knowledge of adaptation coefficients is necessary for each chromosome in 

order to estimate their usefulness in population. In the case when the difference 
between the obtained values of adaptation coefficients is too small, it is necessary 
to carry out the operation of adaptation coefficient scaling. Otherwise the next 
steps of genetic algorithm would not give desirable effects.  

Table 5.1  Chromosomes population and adaptation index for each chromosome  

 
 

 
In the next step, the operation of reproduction is carried out. On the base of the 

probability calculated by means of ),41.5()40.5( −  the chromosomes, from the 

initial population, are selected at random. Depending on the value of adaptation 
coefficient, a particular chromosome has a larger or smaller chance to be found in 
the next generation. There are several ways of calculating the chances for each 
chromosome. The most common way is represented by the roulette wheel method. 
The process of random selection is carried out as many times as the number of 
chromosomes in the population. The results of random selection are rewritten to 
the new descendant population. All chromosomes have various random selection 
probabilities, proportional to the value of adaptation coefficient. As a result 
of the reproduction process, a new population composed of chromosomes 

''
2

'
1 ...,,, nppp  is obtained. 



5.2   Signals Maximizing the Integral Square Error 137
 

The next step is the crossing process. Chromosomes of ''
2

'
1 ...,,, nppp  are 

joined in pairs in a random way, and for the given crossing probability kP  the 

number from the range ]1,0[  is selected at random. If the selected number is in 

the range ],,0[ kP then the crossing process is performed. Otherwise the equivalent 

detectors of joined chromosomes are not crossed. The crossing probability kP  is 

usually established at a high level, which is about 0.9. 
The crossing process is carried out according to the following formulae: 
 

1. In the case of crossing detectors 11t  from the first chromosome, and 21t  from 

the second chromosome, we have 

2111
'
11 )1( ttt +−= α  

2111
'
21 )1( ttt αα −+=  

(5.42) 

where '
11t  is a descendant detector of the first chromosome, and '

21t  is 

a descendant detector of the second chromosome. 
The coefficient α  is selected according to the following formulae 
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(5.43) 

where 1α  and 2α  present the minimum and maximum limit of the α  coefficient 

changeability for the detector from the first chromosome, while 3α  and 4α  

present minimum and maximum limit of α  coefficient changeability for the 
detector from the second chromosome.  

The changeability range of α  is contained in the range between zero and the 
third value of 1max−α  coefficient (5.44) minus 1max−α  multiplied by the 

changeability step of t from interval [0 ,T]. 
Then the value of α  is selected at random from the above range, and is 

substituted into (5.42). 
2.  In the case of crossing of the detectors mt1  from the first chromosome and 

mt2  from the second chromosome, we have: 

mmm ttt 21
'
1 )1( +−= α  

mmm ttt 21
'
1 )1( αα −+=  

(5.44) 

where nm ...,,3,2=  and '
1mt  is the first chromosome descendant m  detector, and 

'
2mt  is the second chromosome descendant m detector. 
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The coefficient α  is selected according to the following formulae 
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(5.45) 

The operation of crossing is presented in Fig. 5.3. 
 

 

Fig. 5.3  Operation of crossing 

The crossing procedure described by formulae )46.5()43.5( −  assures that in 

the descendant chromosomes the subsequent detectors will have the value larger 
than the value of the detectors situated immediately before them. This requirement 
must be met, because individual detectors included in the chromosome contain the 
interval of switching times of the signal ).(tui  

The operation of mutation is the last step of the genetic algorithm. In the case 
of each detector included in the descendant chromosomes, we ask whether the 
mutation operation will be carried out or not. This process usually is carried out at 
small probability ).01.0( <mP  Mutation is a sort of supplement to the operation of 

crossing. There are many varieties of mutation, and the choice of relevant 
mutation depends on the algorithm application. The linear mutation described by 
formula (5.46) is often applied  

nmdddd mmmm ...,,2,1],1,0[,)( 11
'

11
'

11
'''

1 =∈+−= −−+ αα  (5.46) 

The operation of mutation is presented in Fig. 5.4. 

 

 

Fig. 5.4  Operation of mutation 
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Completing the operation of mutation, the genetic algorithm process starts 
again. It runs in a loop as shown in Fig. 5.2. The number of populations should be 
as large as possible. However, it must be noted that increasing the number of 
populations makes the time of genetic algorithm calculations longer. The time can 
be reduced significantly, if a stop condition is applied. This condition stops the 
algorithm if the value of )(uIh  stored in memory does not change. 

5.2.5   Estimation of the Maximum Value of Integral Square 
Error 

Let us assume that the upper limit of the integral in (5.5) tends to infinity ∞→T  
and let the error )(uI  be presented as follows  
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The relation between )(ty  and )( ωjY  is expressed by means of Fourier transform  

∫=
∞

∞−

j

j

tj djejY
j

ty ωω
π

ω)(
2

1
)(  (5.48) 

Changing the order of integration in (5.47), we have 
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Taking into account that 

)()()( ωωω jXjKjY =  (5.52) 

we finally have 
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where E  is the energy of the input signal. 
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Note that the estimation based on Eq. 5.54 may be many times greater than the 
value precisely calculated with the use of left hand side of Eq. 5.53. 

5.3   Signals Maximizing the Absolute Value of Error 

5.3.1   Signals with Constraint on Magnitude 

In order to determine the signal maximizing the value of absolute error, let us take 
a convolution integral (5.55) into consideration 
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],0[)()()( τττ  (5.55) 

It is obvious that the maximum )(ty  occurs for Tt =  
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if  
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where a  is the magnitude of ).(τu  

Replacing τ  by t  in (5.56), we can write  
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dttutTkTyty
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)()()()(  (5.58) 

and )(0 tu  maximizing (5.58) has now the form  

)]([)(0 tTksignatu −⋅=  (5.59) 

Substituting (5.59) into (5.58) gives finally 

dttkadttTkaTyty
T T
∫ ∫⋅=−⋅==
0 0

)()()()(max  (5.60) 

which is not difficult to compute. 

5.3.2   Shape of Signals with Two Constraints 

Let us present the signal )(tu  by means of the integral 

∫=
t

dtu
0

)()( ττϕ  (5.61) 
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and the error (5.58) in the following form 

∫ ∫−=
T t

dtdtTkTy
0 0

)()()( ττϕ  (5.62) 

The constraints (5.10), related to )(tu  for the function ),(τϕ  are as follows  

atud
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Changing the integration order in (5.62), we have 
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and after replacing τ  for ,t  we get finally 

tddTktTy
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From (5.66), it is evident that ),(tϕ  which maximizes ),(Ty  has the maximum 

magnitude ϑϕ ±=)(t  by virtue of the formula (5.64) if 

∫ −=
T

t
dTksignt ττϕ )()(  (5.67) 

and ,0)( =tϕ  in such subintervals, for which the resulting form (5.67) between the 

switching moments is 

ad
t

>∫ |)(|
0

ττϕ  (5.68) 

Using the equations ),66.5()61.5( −  we can determine signal )()( 0 tutu =  in the 

following cases 
 

First case 

If |)(|
0

0
adf

t
≠∫ ττ  for δ  varying in the intervals ],0[ ϑ+  and ],,0[ ϑ−  (Fig 5.5 

and Fig 5.6), where ϑ±=)(0 tf for ∫ +>−
T

t
dTk δττ )(  and ∫ −<−

T

t
dTk δττ )(  

respectively, than the signal )(0 tu  is determined in three following steps, 

according to Eqs. ).75.5()67.5( −  
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During the first step, the “bang-bang” functions )(1 tf  of the magnitude ϑ±  are 

determined with switching moments resulting from −)67.5( Fig.5.7 

0)(if)(

0)(if)(

1

1

<−=
>+=

ttf

ttf

ϕϑ
ϕϑ

 (5.69) 

 

 

Fig. 5.5  Exemplary function ∫ −
T

t
dTk ττ )(  

 

Fig. 5.6  Constraints resulting from ∫ +>−
T

t
dTk δττ )(  and ∫ −<−

T

t
dTk δττ )(  



5.3   Signals Maximizing the Absolute Value of Error 143
 

 

Fig. 5.7  Exemplary functions ),(tk  ∫ −
T

t
dTk ττ )(  and )(1 tf  

 

In the second step, we obtain the function )(2 tf  by integrating −)(1 tf Fig. 5.8. 

 

 

Fig. 5.8  Functions )(1 tf  and ∫=
t

dftf
0

12 )()( ττ  

 

Function )(2 tf  in particular switching intervals nttt ...,,, 21  of )(1 tf  is given 

by the following relations 
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for  1,1 =≤ ntt  

ttf ⋅= ϑ)(2  (5.70) 

for  2,21 =≤< nttt  

)()( 112 ttttf −⋅−⋅= ϑϑ  (5.71) 

for  ,,...,,3,2, 11 Ttnittt nii ==≤< ++  −n number of switchings 
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In the last step, we determine the function )(3 tf  on the basis of ).(2 tf  Relation is 

as follows 

atftf
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23

23 ϑ
 (5.73) 

Finally, we obtain the signal )()( 0 tutu =  through integration of ),(3 tf  and this is 

the aim. The operation is shown in Fig. 5.9. 
 

 

Fig. 5.9  Function )(3 tf and signal ∫=
t

dftu
0

30 )()( ττ  

During the intervals in which ,)(3 ϑ±=tf  the signal shape is triangular, with 

the slope of ϑ± . In the intervals when ,0)(3 =tf  the signal is a constant of the 

magnitude .a±   
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For n switching moments of )(3 tf the value of error is described by the 

following equations: 
 

for n = 1 
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for n ≥ 2 
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where ),(0 ii tuh =  ).(0 TuhT =   

Fig. 5.10 presents the signal )(0 tu  and the error )(ty  corresponding to it. 

 

 

Fig. 5.10  Signal )(0 tu and error )(ty  
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Second case 
If  aT ≤⋅ϑ  then the signal )(0 tu  is given directly by  

ττϑ dTksigntu
t

∫ −⋅=
0

0 )]([)(  (5.76) 

and the error equals 

τττ dutkTy
T

)()()( 0
0
∫ −=  (5.77) 

Fig. 5.11 presents the signal )(0 tu  and error )(ty  corresponding to it. 

 

 

Fig. 5.11  Signal )(0 tu  and error )(ty  

 
Third case 
If aT >⋅ϑ  then the signal )(0 tu  is determined indirectly by means of the 

functions )()( 64 tftf −  

a
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The functions )(4 tf  and )(5 tf  are shown in Fig. 5.12, while )(6 tf  and the 

signal ∫=
t

dftu
0

60 )()( ττ  in Fig. 5.13. 

 

Fig. 5.12  Functions )(4 tf  and )(5 tf  

 

Fig. 5.13  Function )(6 tf  and signal )(0 tu  
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Fig. 5.14 shows the signal )(0 tu  and the error )(ty  corresponding to it. 

 

 

Fig. 5.14  Signal )(0 tu and error )(ty  

5.4   Constraints of Signals 

Mapping errors of models are determined using precisely defined input signals. In 
our case, they are the signals maximizing the error and selected by a special 
criterion. For obvious reasons, amplitudes of such signals must always be limited. 
Signals limited in amplitude only of “bang-bang” type, may generate mapping 
errors of considerably high values, even in the situation when models are almost 
alike. This is caused by the particular dynamics of the “bang-bang” signals, which 
have derivatives of infinitely high values on the instants of switching, while 
outside these instants the values are constant. Such a dynamics of signals does not 
match the dynamics of physically existing systems, since the latter can only 
transmit signals with limited value of rate of change. Therefore apart from limiting 
the amplitude, we impose an additional constraint originating from the dynamic 
properties of the system under modelling. 

The constraint can be determined in the time or frequency domains. If we are to 
consider it in the time domain, it can be assumed that the constraint refers to the 
maximum rate of change ϑ  of the input signal. Namely, this rate is to be smaller 
or equal to the maximum rate of the step response of the modelled system.  

)(max)(max)(max tkthtu =≤=ϑ  (5.81) 

where )(th  and )(tk  denote the step and impulse responses of the system, 

respectively.  
In the frequency domain, it is a transfer band of the system under modelling, 

which imposes the constrain of .ϑ  Assuming the maximum harmonic mω  of the 

transfer band is not distorted, we get  
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m
m a

dt

td
a ωωϑ ⋅=⋅≤

)sin(
max  (5.82) 

However, the assessment of mω  value is quite arbitrary very often. 
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