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Preface

The development and use of models of various objects is becoming a more
common practice in recent days. This is due to the ease with which models can be
developed and examined through the use of computers and appropriate software.
Of those two, the former - high-speed computers - are easily accessible nowadays,
and the latter - existing programs - are being updated almost continuously, and at
the same time new powerful software is being developed.

Usually a model represents correlations between some processes and their
interactions, with better or worse quality of representation. It details and
characterizes a part of the real world taking into account a structure of phenomena,
as well as quantitative and qualitative relations. There are a great variety of models.
Modelling is carried out in many diverse fields. All types of natural phenomena in
the area of biology, ecology and medicine are possible subjects for modelling.
Models stand for and represent technical objects in physics, chemistry, engineering,
social events and behaviours in sociology, financial matters, investments and stock
markets in economy, strategy and tactics, defence, security and safety in military
fields. There is one common point for all models. We expect them to fulfil the
validity of prediction. It means that through the analysis of models it is possible to
predict phenomena, which may occur in a fragment of the real world represented by
a given model. We also expect to be able to predict future reactions to signals from
the outside world.

There are many ways of the describing a system or its events, which means many
ways of constructing a model. We may use words, drawings, graphs, charts, tables,
physical models, computer programs, equations and mathematical formulae. In other
words, for modelling we can use various methods applying them individually or in
parallel. If models are developed by the use of words and descriptions, then the link
between cause-and-effect is usually of qualitative character only. Such models are
not fully satisfying as the quantitative part of the analysis is missing. A necessary
supplement of modelling is the identification of parameters and methods of their
measurement. A comprehensive model that includes all these parameters in a
numerical form will help us explain the reactions and the behaviours of the objects
that are of interest. The model must also enable us to predict the progression of
events in the future. Obviously, all those features are linked directly to the accuracy
of the model, which in turn depends on the construction of the model and its
verifications.
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The most common and basic approach to modelling is the identification
approach. When using it, we observe actual inputs and outputs and try to fit a
model to the observations. In other words, models and their parameters are
identified through experiments.

Two methods of identification can be distinguished, namely the active and
passive, the latter usually less accurate

The identification experiment lasts a certain period of time. The object under
test is excited by the input signal, usually a standard one, and the output is
observed. Then we try to fit a model to the observations. That is followed by an
estimation of parameters. At this point model quality is verified, and checked
whether it satisfies a requirement. If not, we repeat the process taking a more
complex model structure into consideration and adjusting its parameters. The
model’s quality is verified again and again until the result is satisfactory.

In such modelling, difficulties can be expected in two areas and can be related
to model structure and parameter estimation. One potential problem is non-
linearity of elements or environment during dynamic operation. This can increase
the number of difficulties in the development of a model’s structure. An
estimation of parameters can also be difficult, usually burdened with errors related
to interference and random noise in the experiment.

In this book, for modelling we will be using mathematics, especially equations,
leading to mathematical models. We will concentrate on models of objects applied
and utilized in technology. The described reality and phenomena occurring in it
are of analogue character. Their mathematical representation is usually given by
a set of equations containing variables, their derivatives and integrals. Having a set
with one variable and differentiating it, we can eliminate integrals. The result of
this operation is a set of differential equations having one independent variable.
Very often time is that independent variable. Such being the case, it is quite
convenient to express equations as state equations or transfer functions. Both
methods are quite common particularly in the area of technology.

Most commonly, models are sets of linear equations. Their linearity is based on
the assumption that either they represent linear objects or that nonlinearities are so
small that they can be neglected and the object can be described by linear equations.
Such an approach is good enough and well based in many practical cases, and the
resulting model accuracy confirmed by verification is satisfactory. Usually
verification is carried out for a certain operation mode of a system described by the
model. If this mode changes dynamically and is not fixed precisely, model
verification may be difficult. In this case verification of the model can be related to
signals generating maximum errors. The sense of it is such that the error produced
by the application of those signals will always be greater, or at most equal, to the
error generated by any other signal. At this point the question must be answered
whether signals maximizing chosen error criteria exist and are available during the
specific period of time. In such cases, the accuracy of the model should be presented
by the following characteristic - maximum error vs. time of input signal duration.

Approximation methods are another popular way of mathematical representation.
In this case a model is shown in the form of algebraic polynomials, often orthogonal.
These can be transformed into state equations or transfer functions.
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The construction of a model is based on experimental data. To obtain data,
measurements are carried out, usually supported by personal computer based data
acquisition systems or computer aided measuring systems. Dedicated software
controls these. Appropriate programs process acquired data. A data acquisition
card, which is a part of the system, must be plugged-in into a USB or PCI slots.
A computer structure, its elements and operation are presented in Chapters 1 and
2. Quite often signals measured are distorted by noise. Problems related to noise
reduction are discussed in Chapter 3. In Chapter 4, a number of mathematical
methods for modelling are presented and discussed. The application of the
powerful graphical programming LabVIEW software for models development and
analysis is also included in the chapter. Finally, in the same Chapter 4 the use of
the MATLAB package for the black-box type and Monte-Carlo method of
identification is discussed. The last chapter covers the problems of model accuracy
for some difficult cases, when input signals are dynamically varying and are of
undetermined and unpredictable shapes. A solution to these problems is based on
the maximum errors theory. Particularly, this theory creates a possibility for
elaborating and establishing the calibration methods and hierarchies of accuracy
for dynamic measuring systems, which have not been worked out so far. For
a detailed consideration the examples of the integral-squared error and the
absolute value of error are discussed and explained in details.

This book is directed towards students as well as industrial engineers and
scientists of many engineering disciplines who use measurements, mathematical
modelling techniques and computer simulation in their research. The authors hope
that this book may be an inspiration for further projects related to modelling and
model verification and application.
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Chapter 1
Introduction to Measuring Systems

A development of mathematical models is based, among others, on some data.
These can be more or less reliable. In general, their verification can only be
carried out when the model quality is checked up. If it comes to the point that the
quality of the model developed does not satisfy the requirements, i.e. that there is
a significant difference between the model and the part of reality represented by it,
then the data applied for modeling are incorrect or incomplete. In practice, data for
the model development originate from measurements of some signals involved.
Such measurements are usually carried out with the use of special measuring
systems. In general, such systems can be quite similar to each other or have some
differences at some points; all depend on application. However, it can be noticed
that modern systems have many common elements and components. Starting from
the input signal element i.e. a sensor first of all, we can further list components of
digital processing and signal conditioning, recording components, output elements
and storage devices. These elements and components can be identified in
measuring systems that process and measure very different signals of various
amplitudes, dynamic properties, forms of energy transferred or various transmitted
frequency bands.

A measured quantity which is acting on the sensor, is of the analogue form like
all other phenomena in the real world surrounding us. Since computer-aided
measuring systems operate using discrete signals only, hence analogue input
signals to these systems must be in the first place converted into discrete signals.

A basic measuring system is shown in Fig. 1.1. It includes the conversion of an
analogue signal into the digital one, mathematical processing of the signal and its
recording. These basic blocks of operation can be seen in all types of measuring
systems. Hence, their construction, principle of operation, purpose and application
are discussed further in the text. Having been acquainted with them, the reader can
make a correct synthesis of basically any measuring system, which carries out
various measurements, data collection and recording, also for other aims than the
modelling and model development.
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Fig. 1.1 Block diagram of a basic measuring system
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1.1 Sensor

A sensor is a device that detects a change in an analogue quantity, which is to be
measured, and turns into another physical quantity. This one in turns is converted
usually into current or voltage by a transducer.

We can distinguish parametric and self-generating sensors. In case of the
former, change of the measured quantity is followed by a change of a parameter of
electric circuit, for example resistance, capacitance, self-inductance or mutual
inductance. In case of self-generating sensors, a measured quantity is usually
changed directly into voltage, current or electric charge.

There are also coding sensors. Their digitized output goes directly towards the
digital channel of a measuring system.

1.2 Transducer

The type of a transducer depends on the kind of the output signal from a sensor.
Most often bridge circuits or half-bridge circuits are applied for this purpose. They
operate in connection with parametric sensors, for example strain gauges that are
used for the measurement of dynamically changing strain. Other types of
transducer measuring circuits are applied in connection with capacitive and
inductive transducers that are used for a measurement of pressure difference and
linear displacement.

1.3 Matching Circuit

A matching circuit is applied for adjusting the range of measuring channel and its
input impedance. Its key element is the amplifier. A very high value of the
amplifier input impedance protects the sensor from loading. The adjustable gain
makes possible to select a required range appropriate for a measured signal. There
are three most important groups of these amplifiers:

— non-programmable amplifiers with the gain adjustable by a change of feedback

loop parameters
— programmable amplifiers with the digitally programmable gain controlled and

adjustable by a control system
— amplifiers with optocouplers, having isolated circuit’s output from its input.

1.4 Anti-aliasing Filter

The forth block of the measuring system (Fig. 1.1) is a low-pass anti-aliasing
filter. It removes all harmonics of the measured signal that exceed the Nyquist
frequency. An aliasing error is produced when the sampling frequency is not at
least twice as high as the highest measured signal frequency and the overlap
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between those frequencies appears. Fig. 1.2 shows spectrum diagrams explaining
the overlap and the causes of aliasing error.

A Unfiltered
frequency spectrum Sampling frequency
spectrum
: | f‘-"
QOverlap causes fsamme
aliasing error
" Filtered
frequency spectrum Sampling frequency
spectrum
] f"
f sample

Fig. 1.2 Illustration of the aliasing phenomenon

The anti-aliasing filter should have the following properties: flat passband,
sharp cut-off characteristic and low distortion in the passband.

Filter are characterized by their frequency response characteristic K(w).
Butterworth and Tchebychev low-pass filters are commonly used as anti-aliasing
filter. Frequency response characteristic K (@) of Butterworth low-pass filter is

given by

(1.1

while for Tchebychev filter we have

272 2
1.2
I 1_]9”((0] +a,21(wJ (1.2)
n @, ,

where n, k, @, are order, gain and cut-off frequency of the filter, a,,, b,, € R.

Ko =
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According to Shannon theorem, the relation between highest frequencies in the
analogue signal being sampled and the sampling frequency should be as follows

fsample 2 2fma}c(amalogue) (1 ~3)

If the analogue signal containing a spectrum of different frequency components is
sampled, we obtain a series of impulses modulated in amplitude. In the frequency
domain it corresponds to a spectrum of harmonic, as shown in Fig. 1.3.

Analogue
input
signal l

Sampling ‘ | ‘ ‘ ‘ ‘ | ‘ Sampling
impulses circuit

soms | ‘ nin
version of .
signal

Fig. 1.3 Illustration of the sampling process

If the maximum frequency f,,,x(analogue) ©f @ signal increases, the individual

spectra will widen and begin to overlap. In effect, the original signal cannot be
accurately reproduced. Thus, for accurate reproduction of a signal containing the
frequency up 0 fy4x(analogue) the sampling rate must be grater than, or equal to

2 finax(analogue)- The condition can be achieved by sufficiently increasing the

sampling frequency. Unfortunately, the maximum of this frequency is usually
limited by the performance of the A/D converter, which is the block next in line in
the measuring system discussed. If sampling frequency cannot be adequately
increased, a low-pass anti-aliasing filter must be used in order to truncate the
signal spectrum to the desired value of f,x(analogue) fOr a given sample

frequency.

A conversion of a continuous analogue signal consists of three steps, namely:
sampling, quantization (to digitize the value of a signal) and coding of the
resulting signal.

Sampling is a digital process carried on in time and related to the argument of
the input signal. Samples of the input signal values are collected in clearly defined
intervals.
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Quantization is a process of assigning a finite number of magnitude levels to
each sample of the converted signal. Each magnitude is denoted by some digital
numbers, from zero to the maximum value of conversion range.

Coding simply means the representation of quantized value of the signal by
a selected code, most often a natural binary one or Gray code.

1.5 Multiplexers/Demultiplexers

A digital multiplexer is a multi-input and single-output switch, which selects one
of many data inputs Dy, Dy, ..., Dy _;, and sends it to the single output Y.

A multiplexer has k data inputs, n address inputs Ay, A4, ...,A,_;, usually

k=2", one output and one enable (strobe) control input E. Fig. 1.4 shows the
8 —input digital multiplexer as an example.

Enable E iy
input L

- D? :
DS |
S oy
Dy f
]
0, I
Data |
inputs
D.
: | Digital
output
D, ]
=5
D, |
=l J—
Dy
= { )
S
Address
inputs Ay [
Ay [

Fig. 1.4 Logic circuit of digital multiplexer
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If there is the zero logic signal at the enable input, then the output Y receives
particular logic state (usually zero), which is independent from the input states D
and A. The binary coded address determines which input signal will appear at the
output line. This signal is divided into segments, which are kept at the output as
long as the input address will not be changed. However, the input addresses
change in a rotating, repeating sequence most often. Multiplexers have usually 4,
8, or 16 parallel inputs. The logic circuit of the demultiplexer is shown in Fig. 1.5

Enable E T~
input e
| ) o,
{ D,
— 8
L ) p)
5
Y i } D
PE—— 1 7 4
Data Digital
input ] G outputs
1 Iy Dy
E } o,
I ) o,
1) 0,
Address
inputs Ay [
s

Fig. 1.5 Logic circuit of digital demultiplexer

Analogue multiplexers/demultiplexers —Fig. 1.6 are made by replacing the

AND gates through the digitally controlled analogue gates made e.g. in CMOS
technology, as shown in Fig. 1.7. Analogue switches are based on field-effect
transistors with CMOS insulated gates. They make possible the bidirectional
operation and they switch analogue voltages of the peak-to-peak value up to 15V.
Analogue switches have a small resistance, if control input is high, and a very high
resistance, if this input is low.



8 1 Introduction to Measuring Systems

Analogue
switches

1-0f-8 decoder

o— A, Cr----1 ki T e e v e S e i
Address | !
inpu!,s O_AI cs. ______ it pindien

o— Ay Caf=-—-1 T e R F Analogue
output
Enableimpute—d & I 1T I mmmmemmmmmmmm o s e o 7

4

Ch----1 e I B e

|
1
|
SRS Ry W R E———

Analogue inputs

Fig. 1.6 Logic circuit of analogue multiplexer/demultiplexer

Signal
input or output

-
High level

Control input
(from decoder output)

Signal
input or cutput
———o

{>
Fig. 1.7 CMOS analogue switch

1.6 Sample-and-Hold Circuit

A sample-and-hold circuit (S/H) samples and temporarily stores the value of an
analogue signal for subsequent processing. After filtering and sampling, the
sampled level of the signal must be frozen until the A/D converter digitizes it and
the next sampling occurs. For this reason, the S/H circuit is switched on for a short
period, first into the sample mode and then into the hold mode. This switching is
controlled by the voltage control V., in a following way

Vour )=V (1) if Veontro =0 < sample

. (1.4)
Vour )=Vin(to/1) it Veonyor =1 < hold
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The sample-and-hold operation results in a stairs waveform that approximates

the analogue signal. Fig. 1.8 shows a sample-and-hold operation while its circuit is
shown in Fig. 1.9.

Sampled version of input signal

Analogue signal -—‘_S;lple”— Hold H—_.

Sampling impulses

‘ l ‘ ‘ _J Sample and hold approximation of input signal

Fig. 1.8 Sample-and-hold operation

When V,,.;,,;=0 the capacitor is charged and the interval is known as the
acquisition period or ‘aperture time’. Its value is of the order of 0.5—-20pus
varying for different types of the S/H circuit. It depends upon the magnitude of the
input voltage. When V,,,;,,; 1s switched to 1, the S/H circuit is put on hold and

the output signal V,,,,(¢) equals to the input signal V;, (ty,1).

The output voltage is digitized by the A/D converter. When digitized, the
charge of the hold-capacitor begins to decay causing the drift in the S/H’s output
voltage. The use of the large hold-capacitors will minimize the output voltage drift
and extend the acquisition time. In practice, inclusion of high resistance input
amplifiers, which reduce discharge of the capacitors, can make an improvement.

a) ©)
vfn
Vi T T Vout v /
1 J' 1 in
T Vconrm! VDUt
sl
t
b) . Hold
o—T Sample Veontrol
v, Hold
v c Ve —
control T measur. I out Sample t

Fig. 1.9 Sample-and-hold circuit a) Terminals notation b) Principle of operation c¢) Exemplary
signals
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1.7 Analogue-to-Digital Conversion

Analogue-to-digital conversion is the process of converting the analogue voltage
output to a series of binary codes that represent the magnitude of this voltage at
each of the sample times. The principle of operation of A/D conversion is shown
in Fig. 1.10.

A Quantization level

7

6_(0110) |

5.

[ : ] ) :

% ,,,,,,, . y sty i Sample

s .- = intervals
0 )

Fig. 1.10 A/D conversion

1.7.1 A/D Converter with Parallel Comparison

Converters of this type are based on the direct comparison of the analogue voltage

with one of 2" reference sectors. Fig. 1.11 presents the logic circuit of an example
of the n—Dbit A/D converter with parallel comparison.

= b4

Code
converter

Fig. 1.11 Logic circuit of n—bit A/D converter with direct parallel comparison
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The reference voltage V, of this converter is connected to the inverting inputs
of 2" —1 comparators through the resistor voltage divider. In general, 2" —1
comparators are required for conversion and recording of unknown voltage V;,

into a n—bit word in binary code.
Non-inverting inputs of the comparators are connected to the analogue voltage
V;, from the S/H circuit. Since all the divider resistors are equal, the voltage at the

o1 . . .
lowest comparator is —nVr. The maximum voltage at the highest comparator is
2

2" —1

21’1

V.. The voltage V;, compared with the fraction of the voltage V,

determines the output. The relation between V;, and V, causes the outputs of

comparators to generate the temperature code. The example of the temperature
code for n =3 is shown below.

Input Output
0.875V,. <V, <1.000V, 1111111
0.750V,. <V,, <0875V, 0111111
0.625V,. <V, <0.750 V, 0011111
0.500V,. <V;, <0.625V, 0001111 (1.5)
0.375v,. <V, <0.500 V, 0000111
0.250v,. <V;, <0375V, 0000011
0.125Vv,. <V,, <0.250 V, 0000001
Vin <0.125V, 0000000

The conversion of the temperature code into the Gray code and natural binary
code, for n = 3 bits is shown in Fig. 1.12

Natural
4 3 2 1 0 Gray code binary code
0 Ko 0 0 0 0 0 0
1| K 0 o1 o o[ 1]
0 1 K, o Bl 0 ' |0
1 Ka 0|10 o[RSl
1 Ka 1]11]0 1 0|0
1 1 Ks 1 R 1 0[]
1 Ks 1101 1 [1]o
1 1 1 1 1 1 1]K 1 0]0 1 1 |
Yo Yo Yi Y. Y1 Yo

Fig. 1.12 The conversion of temperature code into Gray code and natural binary code
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An example of the logic gate network of 3 —bit A/D converter, with the output
signal in the Gray code, is shown in Fig 1.13.

The relations between the temperature code at the output of comparators, and
the Gray code at the output of converter are as follows

Y. 5= K 4

Yy=K, ®Kg (1.6)

Y3=K1 @K3 +K5 @K7 =K1 @K3 @KS @K7

The K, comparator does not take part in the conversion process (see Fig. 1.12),
hence it is not included and not shown in Fig. 1.13.

v,

95'_{

Fig. 1.13 Logic circuit of 3—bit A/D converter generating output signal in Gray code

1.7.2 A/D Converter with Successive Approximation

The method of successive approximation is based on comparison of the unknown
voltage V;, with a sequence of precise voltages generated by a controlled D/A
converter. There are two basic forms of this type A/D converters, namely with
successive approximation and with uniform approximation. The block diagram of
a successive approximation method is shown in Fig. 1.14. The corresponding
graphs of the clock-generator signal and the voltage under measurement are
shown in Fig. 1.15.
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In this converter, the register is resetting before a conversion is started (time
tg)- As a result, the output voltage of the D/A converter is set to zero. The

operation is managed, like any other in the converter, by the control system. The
clock generates impulses of voltage V,, which are fed into the system. Each clock
impulse causes voltage V,; to change i.e. the voltage V,; jumps to another value.
Each jump of voltage V,; is twice smaller than the previous one. The measuring

cycle contains n steps of comparison, which are written into the register.

Start
Comparator l
vﬁn
* Control Clock
system generator
Register
Digital
) output
v v —
g DIA conventer}_.r_ Source of
reference voltage

Fig 1.14 A/D converter with successive approximation

Yy
[ ] f
h & & & &y thq t,
Vg :
Vit
L Ve
I e P Vg Van
v, —_— Vi
a,=0 a,=1 a;=0 a,=1 a, =0 a=1
t

Fig. 1.15 Signal of clock-generator and voltage under measurement
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During the first approximation (time #; ), voltage V;

n 1s compared with voltage

V1. This voltage is given by
vV, =2"1y, (1.7)

and V, denotes the value of the reference voltage related to the least significant
bit (LSB).

If a voltage comparison shows V;; >V, , which means that the first

approximation overestimates V;,, then the most significant bit (MSB) is locked at
zero. The value a; =0 will be recorded accordingly in the register. However, if
V41 <Vi,, then the value a; =1 will be recorded in MSB of the register.

During the second approximation (time ¢, ) V;, is compared with V;,, where
de — (211—1a1 + 211—2)Vr (18)

If V;p >V,

in»then the value a, =0 will be recorded in the next in turn bit of

the register. However, if V;, <V;, then a, =1.
For the third approximation (time #5), V;3 is given by

Vs =" ey 42" 20, + 273V,

(1.9)

The value a; recorded in the consecutive bit of the register will either be
as =0 for Vd3 >Vin or as =1if Vd3 <Vin'
For the n—th approximation (time ¢,,) V, is given by

V=" gy +2" 20y .42, +20)V, (1.10)

and a, =0 if Vg, >V, or a,=1if V,, <V,,.
The result of the voltage V;

:, measurement is the binary sequence ay,a;,...,a,
recorded and saved in the register. The full cycle of voltage compensation is
relatively short in this converter. It is due to the fact that the jumps of voltage V,
are non-uniform and large during the initial part of the measurement process.

High accuracy of measurements and high speed of response are both the
advantages of the converter. However, its complex structure and sensitivity to the
external interference and noise are definite disadvantages. In reference to the
complexity, the point is that the converter requires high precision voltage
dividers.

The converter with uniform compensation, also named staircase-ramp converter,
is another type of the successive approximation A/D converter. Fig. 1.16 shows its
block diagram and its time-voltage graphs are shown in Fig. 1.17.
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In this type of the converter, the voltage V; is a staircase digital representation,

made up of equally increasing steps AV,;. Each input signal is equivalent in value
to the least significant bit. Clock impulses are fed into the counter. After
converting its content into an analogue signal it becomes the voltage V.

Start
Clock Control
v Comparator generator system
n
oj+ Vs I
VC
Counter
Digital
J output
% v
1 DIA corwerter}—r Saurce of
reference voltage

Fig. 1.16 Block diagram of uniform compensation method

Vy

t

Fig. 1.17 Graphs of time-voltage signals
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At first the counter is resetting before a conversion is started. It is controlled by
the impulse from the control system. Then the control system starts the count after
passing the logic 1 (high level of V) into the gate G. The count continues until

the generated staircase ramp of the voltage V,; exceeds the measured voltage V;,.

At this moment the comparator goes to logic zero, the gate G is closed, and it
stops the count. The counter output is, at this time, the digital equivalent of the
voltage V.

The time of conversion varies and depends on the value of measured voltage.
This is a principal disadvantage of the converter with uniform compensation. For
this reason, a modified version of this converter is more often in use, with the
reversible counter included into the structure. Such a solution is a significant
change in the operation of the converter. The sense of it lies in the fact that each
new measuring cycle does not start from zero. After reaching the value of

measured voltage, the compensating voltage V; is tracking further changes of the
voltage under measurement, or in other words operates in the follow-up mode.
The reverse counter counts up for V., and counts down for V,._.

The converter with the reversible counter is often called a follow-up converter.
The block diagram of the follow-up A/D converter is shown in Fig. 1.18.

Start
Clock Control
F—
V Comparator generator system
in I VS
G, G,
VC" VC"
Reverse
counter
, Digital
output

¥ D/A conveﬂer}—ti; Source of
reference voltage

Fig. 1.18 Block diagram of the follow-up A/D converter
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1.7.3 Integrating A/D Converters

Analogue-to-digital conversion by integration is based on counting clock
impulses, which means the conversion is done indirectly. The operation is
completed in two steps. During the first step, the measured voltage is converted
into the frequency or time. In the second step, a counting of clock impulses is
carried out.

Integrating A/D converters can be divided in two main groups. There are
converters with the single integration, in which frequency is used as indirect
quantity and converters with the multiple integration, in which time is used as
indirect quantity. The block diagram of the A/D converter with the single
integration is shown in Fig. 1.19 while Fig. 1.20 shows graphs of the reference
voltage and measuring signals at various points of this converter.

There are two main blocks in the A/D converter with the single integration.
In the first block, a converter expresses the voltage in terms of the frequency of
impulses. The second block is the digital meter of frequency. The main control
system controls the whole operation and directly controls start/stop action of
individual elements. It determines the conversion cycles of the measured
voltage V;,.

Integrator Digital
c : output
P ——
lk‘ll’r.l] 1 R
Generator of T. Control Main
standard system of control  —
time interval gate system
Generator of
reference
voltage
VC

Fig. 1.19 Block diagram of A/D converter with single integration

At the beginning of each measuring cycle, the counter is reset to zero. The
generator of reference voltage is turned on and switches on the voltage V, to the

comparator. Then the switch P, is closed, and the current proportional to the
voltage V;, charges a capacitor until the comparator indicates equality of the

voltage V; and V,. The moment is denoted by #;, and at this time the main
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control system opens P, and closes P,. The capacitor is discharged through the
resistor R, and the discharge time is denoted #,. When the time 7, is over, the
main control system opens the switch P, and closes again the switch P;. The last
action means the start of a new measuring cycle.

I
RN f

Fig. 1.20 Graphs of time-voltage signals at various points of A/D converter with single
integration

The output voltage of the integrator is given by

1

hence, after time ¢;,, when V; =V, the Eq. (1.11) changes into

1
Vi=V, ZEVintin (1.12)
Rearranging the equation yields
V.RC
lin = B (1.13)

1

Assuming that ¢, is very small in comparison to ¢;, and can be neglected, the
frequency of the discharge impulses is
1 1

V. RC in (1.14)

Denoting by

1
V,RC

(1.15)

kfz
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the frequency f;, equals finally
Jin=kzVin (1.16)

From the Eq. (1.16) it can be seen that the voltage V;, to be converted is
proportional to f;,. The frequency is measured by the frequency digital meter.

The measurement is carried out while the gate G is open. The gate G is controlled
by the voltage signal V.. The voltage V, in turn, and its duration, are both

generated and controlled by the generator of standard time interval. The
measurement is carried out through the counting of impulses N,

Nip =T fin =T kain (1.17)

Substituting Eq. (1.15) into Eq. (1.17) and rearranging, the value of measured
voltage is

_V,RC

Vi =—22 Niy (1.18)

N

The A/D converter with the single integration presented above is not often in use.
It is due to the non-linearity in the first part of the integrator characteristic.
However, its principle of operation is widely applied to structures of other
converters, like A/D converters with the multiple integration or sigma delta A/D
converters.

Fig. 1.21 shows the block diagram of the A/D converters with the double
integration.

Integrator

Comparator Digital
P output
Wk
Ve, : Startl Stop
Main Control Coiifiter
control : system of
system i gate
v N
Generator of | v, L9
standard G
time interval ’—J—/

Digital time measurement 5

Fig. 1.21 Block diagram of A/D converter with double integration
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Graphs of the reference voltage and measuring signals, taken at selected points
of the block diagram, are shown in Fig. 1.22.

Vrs

\\\\ii\\\\\\\\\\\\HEHHHEHHHHHH r

w

V,

cl

Veo

Impulsés

i No N
I :

Countér

Fig. 1.22 Graphs of time-voltage signals at various points of A/D converter with double
integration

The A/D converter with the double integration expresses the value of measured
voltage in terms of clock impulses. The conversion, carried out by the A/D
converter shown in Fig. 1.21, is completed in two steps. These are defined by the
on-off state of the switches P, and P,. When the switch P, is closed, the

measured voltage V;, is applied to the integrator. When the switch P, is closed,
the input to the integrator is switched from V;, to a reference voltage V, of
opposite polarity.

The whole operation is controlled by the main control system. At the beginning
of the measuring cycle, the counter is reset to zero. Then the switch P; is closed
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and integration of the voltage V;, begins. The gate G is open. The generator of
standard time interval produces an impulses sequence during time 7. Through
the open gate G, the impulses are passed on to the counter, and a counting starts. It
goes on until the counter is overflowed at N, impulses. At this moment the system
turns off the switch P, and turns on P,, resetting the counter at the same time.
Counting of impulses starts all over again. The generator of standard time interval
produces the impulses sequence and the counter counts down the impulses starting
from zero. The output voltage V; of the integrator decreases down to zero. At this
point the gate G is closed and the number of impulses counted down is N.
The first step of conversion is completed during the time T,

T;y = NoT,,, (1.19)

where T, is duration of the impulses.
The output voltage of the integrator during the first step is expressed by

Tin T
Vﬂ:L [Vv; dt:LT»V _No wy.
RC

in RC in'in — RC in (1~20)

In the second step of conversion cycle, integration is completed at the time 7',
T, =NT, (1.21)

and the output voltage of the integrator at this time is given by

1 Ir -1 —NT
Vi =—— [=Vodt =—T.V, = L2 1.22
i2 RC(I) 0 rC 0 RC T (1.22)

The output voltage of the integrator equals zero at the end of the second step.
Hence, the sum of V;; and V;, equals zero
NoT,, NT,,

V; ==y, -

RC RC

V,.=0 (1.23)
After rearrangement and simplification we have

No
N:V_Vin (1.24)

r

The number of impulses N counted down by the counter is proportional to the
voltage V;,. It also depends on reference voltage V, and the value of N,.
Rearranging and substituting Eq. (1.19), (1.21) and (1.24) we finally obtain

T,
Vig =22V, (1.25)
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1.7.4 Sigma Delta A/D Converter

A sigma delta converter belongs to the group of converters with the frequency
conversion. A classical delta modulator and an adder system are within its
structure. The most important advantage of this type of converters is high
resolution, up to 24 bits.

Fig. 1.23 shows the block diagram of the sigma delta converter.

Decimator
Generator of | 7, [
standard  [—¢ of FFSEfjgcy
impulses |
i fJdk
Formattin

+ Counter

Digital
output
1 bit D/A converter

Vi Q”é-.

Fig. 1.23 Block diagram of sigma delta converter

Graphs of measuring signals, taken at selected points of this converter, are
shown in Fig. 1.24.
Within the sigma delta modulator, the measured voltage V;, is added to the

output voltage V; of the one—bit D/A converter. The summation is done by a
summer and the resulting voltage is denoted V,. The next block is the integrator,
in which the voltage V, is integrated. At the output of the integrator voltage V;

has a shape of saw-toothed curve. It is, in turn, changed into the impulse sequence
V4 by the comparator. The number the output impulses from the comparator is in

the direct relation to the value of the converted voltage V;,,.
The voltage V, is switched on to the input of the D latch. The latch is

synchronized and controlled by the generator of standard impulses connected to
the input C, and a impulse sequence V5 appears at the latch output. At the same

time Vs is the input signal to the D/A converter.
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Standard impulses

Fig. 1.24 Graphs of time-voltage signals at various points of sigma delta converter

The modulator and the decimator are two main systems within the structure of
the sigma delta converter. The decimator changes the serial flow of impulses Vj
into parallel sequences. The first element of the decimator is the gate Gj.The

high-level output signal from the generator of standard impulses enables the
transmission of V5 through the gate.
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The G; output signal is the impulse sequence denoted Vi. The impulse
duration of Vg is only a half of the duration of V5. The second element of the
decimator is the gate G,. The input signals of the gate G, are Vg and V5, with
Ve discussed above and V; coming as the output signal from the formatting

system block.
The frequency f; of signals from the generator of standard impulses is divided

by the number k in the frequency divider, where k€ N. The divided frequency
fs/k is processed by the formatting system block and the result is the output

signal V5. The output signal of the gate G, is the impulse sequence N, which is
counted down by the counter. The period 7, during which the impulses N are

counted, equals half of the period of the signal V; and is
T, =kT; (1.26)

and T is the period of signals from the generator of standard impulses.

For the period T, it can be shown that

1 TCV d N—1 TSVd 0 1.27
R, (f) " R, (f) ! (1.27)

The Eq. (1.27) expresses the final result of charging and discharging the
capacitor C during this time, i.e. the total charge being zero.
Rearranging Eq. (1.27) yields
RV, T

Vi =T’TSN (1.28)
c

After including Eq. (1.26), the voltage V;, is

RV
Vi, =—=XN
i Rk (1.29)
Eq. (1.29) indicates that the voltage under conversion is proportional to the
number of impulses N.

1.8 Input Register

Registers are used to store and manipulate the information data. They store bits of
information and, upon an external command, shift those bits one position right or
left. The time of storing corresponds to the conversion time of D/A converter. This
way registers fulfill the role similar to the sample-and-hold circuits cooperating
with A/D converters. Registers are classified according to the method of storing
and retrieving information bits. In a serial register, bits are stored or retrieved one
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at a time. In a parallel register, all bits of the word are simultaneously stored or
retrieved.
Fig. 1.25 presents exemplary logic circuit of parallel register.

Dn-l Dz Dl D':)

le [pa_ Lz

e
il

Qi Q. Q, Q

[]]

Clock

Fig. 1.25 Logic circuit of parallel register

1.9 Digital-to-Analogue Conversion

A D/A conversion is the process of converting input voltage impulses, coming
from the output of the DSP, to an analogue voltage. The example of n— bit
binary-weighted D/A converter is shown in Fig. 1.26 while the example of n — bit
R /2R ladder D/A converter is presented in Fig. 1.27.

The binary-weighted D/A converter uses a resistor network with resistance
values that represent the binary weights of the binary code. The resistor connected
to the MSB has a value of R. Each lower-order bit is connected to the resistor
which is higher by power of 2. The analogue output is obtained at the junction of
the binary weighted resistors. In this type of D/A converter, a number of different
value resistors is its disadvantage. For example, the 8 —bit converter uses eight
different resistors. If MSB ay, is connected to R, LSB a5 is connected to 128R.

MSB

ap R R;
. : —

a 2R =
L o~—1

a. 4R -
DS %—o Vout
i LSB . | =

lgr?-1 2 R
b

?vr

Fig. 1.26 n—bit binary-weighted D/A converter
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26
Re=R
2R R R R
— 1 -
+ VGU!
2R 2R 2R 2R
LSB \ a4 ap2 a, MSB \ a

.
b

Fig. 1.27 n-bit binary-ladder D/A converter

The alternative method of D/A conversion is the R/2R ladder network. It
contains two types of resistors only, regardless of the number of bits, and one
resistor is twice as large as the other. The value of ladder resistors connected to

register bits is 2R, and the value of resistors connected between nodes is R. It is
easy to check that the resistance, looking from any node towards terminating

resistor, is 2R. The output voltage V,,; equals to
(1.30)

Vo =k (a2 +ay27 +.. +a,2™")

and V, is given by
V. =2"[V] (1.31)

were in (1.30) k, is amplification of operational amplifier.

1.10 Reconstruction Filter

Fig. 1.28 shows the signal obtained at the output of D/A converter.

Signal from D/A converter

Fig. 1.28 Output signal from D/A converter
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The reconstruction filter is used for smoothing and tapering of the stairs
waveform. In result, the analogue signal is obtained. Fig 1.29 shows the signal
from D/A converter after reconstruction.

Reconstructed signal

Fig. 1.29 Output signal from A/D converter after reconstruction

1.11 DSP

Digital signal processor can read, write and manipulate digital signals only. The
signals converted into the digital form are stored within DSP as binary numbers,
usually in the form of combination of 8, 16 or 32 bits. DSP can perform various
operations on the incoming data such as removing unwanted interference,
increasing some signal frequencies and reducing others, detecting and correcting
errors in transmitted codes etc. Its task is to handle data according to the assumed
calculation algorithms.

The successive samples of signals are processed using the algorithms with the
appropriately selected mathematical operations and with the use of digital filters.
The application of the digital filters also enables a change of the DSP setup,
followed by an optional change of its frequency characteristics.

Two types of digital filters can be distinguished:

— Finite Impulse Response, abbr. FIR
— Infinite Impulse Response, abbr. IIR.

There are some important differences between these filters. In the case of FIR,
the calculations related to a consecutive sample are based on the samples, which
have earlier been digitally filtered, and the current sample. The number of the
samples filtered earlier and taken into calculations depends on the filter grade. In
the case of IIR, all samples filtered earlier are taken into account. The FIR filters
are the elements having good stability. Due to this, it can be assumed that their
phase characteristic is exactly linear. FIR filters can be used for design and all
applications where such a linear characteristic is required or a full control of the
system phase response is recommended.
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Properties of IIR filters are different. Their phase response is much worse than
in the case of FIR filters. It is due to some non-linearity at the edges of bands.
However, IIR filters are much faster in applications of calculation algorithms.

Another important application of DSP is the fast spectroanalysis FFT.

1. 12 Control System

The control system has several tasks. These include:

— generation of the start signal for sample-and-hold
— generation of the start signal for A/D conversion
— control of address inputs of multiplexers/demultiplexers

— control of register and D/A converter.
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Chapter 2
Sensors

2.1 Strain Gauge Sensors

Strain gauge sensors are the fundamental sensing elements for many types of
sensors e.g. force sensors, torque sensors, pressure sensors, acceleration sensors,
etc. They are applied to measure strain. Having strain measured and using
Young’s modulus E and geometric sizes, stress can be calculated. Finally, from
these calculations an unknown and investigated quantity can be found, which is
applied and acts on an object under test. Strain gauge principal of operation takes
advantage of the physical property of the variety of changes of electrical resistance
resulting from its elongation or shortening. If a strip of conductive material is
stretched, it becomes skinnier and longer resulting in an increase of its resistance
R, while if it is compressed, it becomes shorten and broaden resulting in decrease
of its resistance. The principle of operation of a common metallic strain gauges is
based on a change of a conductor resistance. Let us present the resistance of
electrical conductor in the following form

l
R=p— 2.1
P (2.1)
hence, a relative increment of R equals
AR _pAL g ALUAS 2.2)
R S 1 l S

where R, p, [, S are resistance, resistivity, length and cross section of an

electrical conductor, respectively.

Strain gauges are arranged in a wide choice of shapes and sizes depending on
variety of application.

Most often however, they are made as a long, thin conductive strip in a zigzag
pattern of parallel lines.

Compression causes | Tension causes
resistance decrease b resistance increase

Fig. 2.1 Strain gauge
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The strain gauges are glued, usually to a much larger object under test, by
means of a special glue. Through the glue, the strain is transferred from the object
under test to the strain gauge. In this way, the strain £ of object under test is equal
to the strain of gauges. Therefore, for the strain gauge we can write

Ep=ke (2.3)
where

AR . L . . . Al .
ER = T is the relative increment of strain gauge resistance, the strain £ = T I

the relative increment of strain gauge length, k — strain gauge constant.

In the measuring circuit, strain gauges work in a full bridge configuration with
a combination of four active gauges shown in Fig. 2.2a, or in half a bridge with
two active gauges. In this second case, half a bridge is completed with two
precision resistors R; and R, —Fig.2.2b.

Fig. 2.2 A strain gauge bridge circuits: a) full bridge, b) half a bridge

Assume that the object under test is subjected to a strain. Let us determine
increment AV, of the output voltage of the bridge effected by increment of all

strain gauges resistors Ry; = Rp; + ARypy, i =1+4. For the sake of simplification,

let us assume that the strain gauges are arranged in a full bridge configuration, the
source V;, supplying the bridge has the internal resistance equals zero and the

output denoted V,,, is unloaded as it is connected to the amplifier of infinite

resistance. So we have

Vour _ _ RriRrsa — RroRy3

2.4
Vin  (Rp1+ Rpo)(Rps + Rry) )
and
AV _ (Rpy + ARy ) (Rypg +ARpy) +...
Vi (Rry + AR )(Rp3 + ARp3) + (Rpp + ARy )(Rp3 + ARp3) + ...
2.5)

.= (Rpp + ARy )(Rr3 + ARp3)
oot (Rpp + ARy )(Rpg + ARpy) + (Rpy + ARy )(Rpg + ARpy)
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After easy rearrangement, we get

AVour _ €ritEre "ER2 "¢R3
Vin 4+2(ART1 L ARps  ARp +ART4J (2.6)
Rry Rrs Rry Rpy

The increment of resistance in elastic limits of the gauge material and of the object
under test may change only a fraction of a percent. Because of it, we can assume that

AR AR AR AR
2( n, -, 12, " 14 ] <4 2.7
Rry Rps Rpp Rpy

and finally Eq. (2.6) can be simplified to the form

AV 1
V—.OW =—(ER1 T ERa —ER2 —ER3) (2.8)
L
or
AV, k
— M = (g +E1—E)— &) 2.9
v Jatéa-a=4 (2.9)

where strain gauge constant k = 2.

2.1.1 Temperature Compensation

Strain gauges should be glued in to an object under test, and connected in a bridge
circuit, in a special way indicated by Eq. (2.9). If the strains £ and € 4 related to
the gauges Ry and Ry of the bridge shown in Fig. 2.2a, are positive, then the
strains £, and &3 of the gauges Ry, and Ry3 should be negative. This way the
strains add together and the output voltage has a maximum value. At the same
time, such a connection makes possible the compensation of thermal effect. The
temperature effect causes a change of strain in each of the strain gauges involved.
The change denoted +é&p is due to thermal expansion of the object under test.

Including this effect into Eq. (2.9), we can write

AV k
V.out =—[(gtéer)t (g +ep)—(gg+ep)—(e3+€7)]

in ) (2.10)
=Z(81 +E4—E—&3)

Examining the Eq. (2.10), it is easy to notice that the influence of temperature
in such a circuit is compensated. The same reasoning can be applied to the half
a bridge circuit and the connection of strain gauges into it. They should be
connected e.g. in the branch Ry for +&; and the branch Ry, for —€,. It renders

certain the temperature compensation because
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AV _k k
—V."”’ :Z[(El +er)— (& +ep)l =Z(€1 —&) 2.1D)

1

However, the sensitivity of the arrangement is twice lower. If the temperature
compensation is not possible through the appropriate arrangement and connection of
active strain gauges, dummy gauges are applied. In Figs. 2.3—-2.7 the diagram

shows the force F and its components F, and F acting on a beam. The beam is

bent as the result of action. The aim is to measure the forces using strain gauges in
various configurations, and include the temperature compensation for the bent beam.

£y = +E, +fy +er

\ F

Lgi=ibey Fy F
£3 =*er
£y :+EX_E},+£T

Fig. 2.3 Measurement of the component F, using full bridge Ry, Ry3 —dummy gauges

£y = +Ey +Ey T
E4 =+Ey +Ey FET

g =+ex—gy ver Fy
£3 :+EX _Ey+ET

Fig. 2.4 Measurement of the component F, using full bridge

£ = t&y +Ey ter

Ey = tE, +Ey +Er

Ry Rrz R R

= =
&3 =*er
&3 =ter

Fig. 2.5 Concurrent measurement of the components F, and F, using full bridge
Rr2,R73 —dummy gauges
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g1 =Fe teE, FET

\' Fx

= F F
Ep =ty —E, teET Uy

Fig. 2.6 Measurement of the component F y using half a bridge

&9 :+EX +£,V +ET

AN

£z = ey

Fig. 2.7 Concurrent measurement of the components F, and Fy using half a bridge
Ryp —dummy gauge

2.1.2 Lead Wires Effect

Lead wires are part of a gauge installation. Their resistance may have an important
influence during measurements with the use of strain gauges. The voltage drop
due to this resistance could impair the performance and decrease sensitivity of the
measuring strain gauge system. Hence, the resistance should always be taken into
account, particularly in case of longer lead wires.

We shall now consider the setup shown in Fig. 2.8. Let us assume that all the
strain gauges connected in the bridge have the same resistance, the fact that should
always be a good practice, i.e. Ry; =Ry for i=1+4. Power is supplied to the

bridge by the lead wires of the resistance r. It is easy to derive the expression for
the voltage ‘/i;1 connected directly to the bridge and to note that it is smaller than

the voltage V;, across the lead wire terminals

out

Fig. 2.8 Full bridge and lead wires
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VOM
r R,
!
R, EE—
Vj'n
Fig. 2.9 Half a bridge and lead wires
. Ry
V. =y, — T
n=Vin oy (2.12)
For the half a bridge shown in Fig. 2.9, such a voltage is given by
) Ry
Vin =Vin Rpir (2.13)

Substituting the voltage Vm instead of V;, into Eq. (2.10) and (2.11), we get

AVout k RT
=— E1+E4—&)—€
v 4RT+2r(1 4~ &) —&3) (2.14)
for the full bridge, and
AVout k RT
=— &g —¢€
Vi A Rpar T 15

for half a bridge.

Let us examine the Eq. (2.14) and (2.15). If the resistance 2r in the case of
(2.14), and the resistance r in (2.15), are equal to the resistance of the strain

gauge Ry, then the sensitivity of the setup drops by half.

2.1.3 Force Measurement

During force measurements, for uniaxial stresses the following relations hold
e=— and oO=— (2.16)

where o is the stress, E is Young’s modulus for steel, S is a cross-sectional
area and F is a force applied to the object under test.
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2.1.4 Torque Measurement

Torsional moment of the shaft can be measured directly by means of the
appropriate location of strain gauges. The gauges are glued in along the main
stress axes, where the strains have opposite signs.

Fig. 2.10 shows how the strain gauges are glued to the surface for the
measurement of torsional moment.

Fig. 2.10 Location of strain gauges for the torque measurement

For torque measurements of shafts, the following relations hold

&M D E

=—a and G-=
ﬂGD3 4] 2(1+v) (2.17)

&1 ==& =

while for a tube

8MD

g =—&=—TFT—F+
7G(D* —a%)

(2.18)

where G is Kirchhoff’s modulus, Poisson’s ratio for steel is v = 0.3, M is the
torque, « is the angle of shaft torsion, the shaft diameter is D and its length [,
and d is the inside diameter of tube.

2.1.5 Pressure Measurement

Steel diaphragms with pressure gauges glued in on them can be used for pressure
measurement. Fig. 2.11 shows the diaphragm pressure gauges. The circular
diaphragm fixed in the enclosure is shown in Fig. 2.12. The extended connector
pipe of the enclosure is screwed in into a pressure conduit, in which the pressure is
to be measured.

Pressure to be measured causes a deflection of steel diaphragm, which leads to
development of stresses in it. During the pressure measurement, a radial stress
and, perpendicular to it, a tangential stress are both utilized.
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®» O

Fig. 2.11 Diaphragms pressure gauges

>

Fig. 2.12 Circular diaphragm fixed in the enclosure

Radial stress o, equals

2 2
3 (R r
o 3o( & [oon-aonf2]] 219)
while tangential stress o; is
2 2
3 (R r
o —Sp(hj [(1+V)—(3V+1)(Rj ] (2.20)

Relations between radial and tangential stresses ©,, o, and radial and

tangential strains &,., &, for biaxial state of stresses are as follows
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o, —VO,
&, ZVTI (2.21)
and
O, —VO
g =t (2.22)

Substituting (2.19) and (2.20) into (2.21) and (2.22) gives finally

2 2 2
il e

3 (1-v?)(R)? 2
8t=§p( g )(;j [1—(%) } (2.24)

Examination of the Eq. (2.23) and (2.24) makes possible to indicate places in
which maximum strain occurs, and where gauges should be glued in. For the
strain &,, it is the peripheral edge of diaphragm r=R. The corresponding

and

expression for max &, is

2 2
max e = _3,4=v0) [5] (2.25)

4 E h

For the strain &;, itis the centre of diaphragm r =0, and

2
3 (1-v>)(R
G =P )

It is not allowed to glue gauges to the places where the radial strain &, and

tangential one &, equal zero. These places are for the radial strain

NG

£ =0 for r="-R (2.27)

and for the tangential strain

& =0 for r=R (2.28)

Fig. 2.13 shows characteristics of the stress ¢, and o, as a function of the

diaphragm radius r, while Fig. 2.14 shows characteristics of strains &, and &;.
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g, o

¢, | maxao, max gy

¥ =

2
Fig. 2.13 Characteristics o, and oy, ¢| = % p [%] (1+V)

£ L g
maxg | ¢,
R /\ R r R R r
AL B A
iy = s
maxfr‘ -2¢, T | maxé&,
2 2
. 3 (RY (d-v
Fig. 2.14 Characteristics €, and &, ¢y = 3 p(;j (—E)

2.2 Capacitive Sensors

A capacitive sensor for pressure measurements is based on a capacitor of varying
capacity related to measured quantity. Fig. 2.15 shows a capacitive pressure sensor
that has a fixed plate and a movable one. The movable plate is a circular flat
diaphragm, and the other one is a metal housing. When the pressure is applied to
the diaphragm, its motion is a measure of applied pressure. The motion of the
diaphragm changes the distance between the diaphragm and the fixed plate. The
capacitance of the sensor increases to C +AC and the output of the sensor is the
change in capacitance AC. The new value of capacitance C + AC is

Ny
m

A J

UL

Fig. 2.15 Capacitive sensor with circular flat diaphragm
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R R
C+AC=[dC=]eg 2" ar (2.29)
o o d-Vy
where C is the capacitance before the diaphragm sagging.
Let us derive the relation between the change of capacitance and the pressure to
be measured. At first, for the sake of simplification, let us note that for the small

value of the ratio y/d, we have

Lzl(ul) it 2<<1 (2.30)
d-y d\ d d
Substituting (2.30) into (2.29), we get
2 R
C+AC:7Z—SOI(1+§)MV 2.31)
0

The diaphragm sag y at the radius r (Fig. 2.15) is

_3p(-v)(R*=r*)?

(2.32)
16 E h®
Substituting (2.32) into (2.31), we get
R _ R R R
crac=2"% jrdr+w [R*r dr—2[ R®3dr + | rdr (2.33)
d o 16 Eh’d \ o 0 0
After integration and simplification, we obtain
2re 2 1-v)R®
crac=2"E0|R% p A=VIRT (2.34)
d | 2 216Er%d

It can be easily noticed, that the capacitance of the sensor, before the diaphragm
sag, is given by the first term of the sum (2.34)

2
c="Ré& (2.35)
d
hence the absolute value of the capacitance increment is
_megp (1-v) RO

AC
d*> 16Eh°

(2.36)

and the relative value is
AC  (1-v)R*
—=p— (2.37)
C 16ER>d

From Eq. (2.37), it can be seen that the relative value of the capacitance
increment is directly proportional to the measured pressure.
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Usually, the capacitive sensors are components of A.C. bridge dedicated for
capacitance measurement, for example the Wien’s bridge.

2.3 Inductive Sensors

Inductive sensors are inductive devices for the measurement of small
displacements. In inductive sensors, the principle of operation is based on the
relations between their magnetic and electric circuits. More specifically, the
change of the reluctance of the magnetic circuit leads to the change of the
impedance in the electric circuit.

Fig. 2.16 shows the inductive sensor with the magnetic circuit consisting of the
fixed iron core, the movable armature and the variable air gap.

Vv,

in

In ’ ' L)
L L

|~ La

Fig. 2.16 Inductive sensor

The current in the setup shown in Fig. 2.16 is

__Vin  _ Vin
_R+ij_R+j 7> (2.38)
Rype + Ryqir
where L is the circuit inductance
- i _ Z2 _ Z2
R, Rype+ Ry lre ,  lair (2.39)
HFeSre  Mair Sair
and R is the equivalent resistance of the winding circuit r,,, R, and Rp,
R=1. + Ry + Rpe (2.40)

where

Rp, =Ry, + R, (2.41)
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The resistance Rp, is related to iron loss in the core, i.e. the power dissipated
as heat, and is a sum of the resistances R; and R,. The resistance R;, is related to
hysteresis loss

P,=0,mf B (2.42)

and the resistance R, is related to eddy current loss

P,=c,mf’B? (2.43)
Symbols and notations used in the Eq. (2.38) till (2.43) have the following

meaning:

— M, and g, are magnetic permeabilities of air and iron
— 0y, and g, are loss coefficients for hysteresis and eddy currents
— B is a flux density in the iron core

- lair
— S, and Sp, are the cross-sectional areas of the air gap and the iron core

and [, are the lengths of the air gap and the iron core

— m is the mass of the iron.

After examination of the Eq. (2.38) and (2.39), it is easy to reach the conclusion
that the current in the sensor coil is related to the changes of air gap length. It
makes possible to measure the air gap length indirectly, through the measurement
of the voltage V,,,, across the resistor R,

Vv,

0

ur =R

out

wz? (2.44)
lFe Lair
/uFeSFe :uairSair

Quite often, inductive sensors are connected into bridge circuits, for instance in
the Maxwell or Maxwell-Wien bridges. Such an arrangement generates the
problem of the phase shift ¢ between current and voltage, which for @ = const.

should also be constant
oL
Q= a"Cng (2.45)

It can be achieved on condition that the relative increments of inductance and
resistance are equal

dL dR
dlair dlair

L R

(2.46)
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=S, let us
calculate the derivatives shown in Eq. (2.46). For the left side of the equation, we get

Assuming the identity of the cross-sectional areas Sp, =S,

d 2
dL  dlgy | lre  lair
dlair _ /uFeSFe :uairSair — -1 (2~47)
L z2 i 1,
l ; ;uair( Fe + Lair
Fe + air Hre  Hair

auFeSFe HairSair

In order to calculate the derivative of the right side of Eq. (2.46), the details of
Ry, must be considered. The total power loss in this resistance is

i’Rp, = (0, +0,f)m f B (2.48)

The equation for the flux density is
B=— (2.49)

Substituting (2.49) into (2.48), we get

2 2
. 1 Z
i’Rpe = (0 + 0, f)mf S 250
52 ll) (2.50)
;uFeS /uairS
Finally
Z2
RFe:(O-h +O'ef)mf 5
%+m] (2.51)
HFEe Hair

Returning to Eq. (2.46) and substituting Eq. (2.51) into it, we get

2
Z
] Teu + Roys + (O + 0o f) mf 3
dR ar lFe + Lair ]
dlair _ Hre  Hair

R 22
Teu ¥ Roys + (0 + 0, f)mf —
lFe lair J

(2.52)

+ L L
Hre  Hair
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—2Rp,

B lp, 1y
Mair(roy + Ry + RE, )(e+“”]
air \'cu out e /,lFe ﬂal’r

The constant phase shift condition (2.46) can be now expressed in the form

1 _ 2Rp,
:uair( ke + IW] Hair (Fey + Ry + RFe)(lFe + ZWJ 2.53)
Hpe  Hair Hpe  Hair

It is easy to prove that the condition is satisfied, if

Teu =R (2.54)
Additionally, R, is selected in such a way, that

Rour <<Tey (2.55)
Since Rp, is a function of /,;,, so the fulfillment of the condition (2.54) can be

achieved through the use of the appropriate air gap. It is called the critical air gap

l.., and the length can be found from (2.51) and (2.54)
22
Teu = Oy + O f)m f 5 (2.56)
lFe + lair J
Hre  Hair

Vi
| S T
Vi

Fig. 2.17 Measuring system arranged as bridge circuit, with inductive sensors in two arms
and the common armature
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and from it

(O +o.Imfz> g,

Teu HFe

l

(2.57)

air = ler = Hair

Eq. (2.57) indicates that proper value of the critical length can be obtained through
the changes of the number of turns in the coil or mass of the iron circuit.

The measuring system arranged as the bridge, with the inductive sensors in two
arms, is shown in Fig. 2.17. The magnetic circuit has the common armature. Before
any measurement starts, the armature is in the symmetrical position at the centre.
The air gap should be equal to /... The armature displacement, one way or the
other, results in a push-pull change of magnetic circuit parameters. The balance is
distorted and the unbalance voltage V,,,, appears across the output terminals.

The measuring system of four inductive sensors, arranged as the bridge and
assigned for the measurement of small angles, is shown in Fig. 2.18. A clockwise
turn of the armature makes the impedances Z; and Z, to decrease, and at the

same time to increase the impedances Z, and Zs. The balance is distorted, and
the voltage V,,,, appears across the output terminals. The systems of inductive

sensors presented and discussed so far are applied to the measurements of the very
small displacements within a few millimetres.

Fig. 2.19 shows the most popular variable-inductance sensor, with the movable
core, applied for the larger linear-displacement measurements. It is commonly
known as the linear variable differential transformer (LVDT).

An LVDT consists of a movable core of magnetic material and three coils, the
primary coil and two equal secondaries. The secondary windings are wired in and
connected series opposing. Before any measurements start, the core is in
a symmetrical position at the centre and the voltages induced in the secondary

Fig. 2.18 Measuring system containing four inductive sensors and designed for measurement
of small angles
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Core connecting
rod

\ e

-

R
M, 1 () M, Movable
magnetic core

Fig. 2.19 Linear variable differential transformer

coils are equal but out of phase by 180 deg. Since the secondaries are in series
opposition, the voltages V; and V, in the two coils cancel and the output
voltage is zero. The displacement of the core leads to an imbalance in mutual
inductance between the primary and secondary coils and results in an output
voltage development being the difference between V; and V,. Quite often this
voltage is applied to the input of the differential amplifier. For the current
output we have

Uiy =i (R + joL)) + joiy (M3 —M5) (2.58)
and
i (R+ joly)+ jwiy (M3 —M5)=0 (2.59)
where
R=Ry+ Ry (2.60)

After simple transformation we obtain

OMp —My3)

i =AU, | 2.61)
\/[RRI + (M12 M13) - LllQ] "r‘[a)(Rle + RLI)]

2.4 Temperature Sensors

Several temperature sensors are used for temperature measurements, for example
liquid sensors, dilatation sensors, bimetal sensors, manometer sensors,
semiconductor-based temperature sensors, thermocouples, and resistance devices.
However, the emphasis is on thermocouples and resistance devices. They are used
very often in all those systems arrangements where temperature is proportional to
an electric current or voltage.



46 2 Sensors

A thermoelectric effect, known also as the Seebeck effect, is practically used in
thermocouples. A thermocouple is the electric circuit that consist of two dissimilar
metals in thermal contact, also called a junction. A thermocouple junction and
free, not connected ends of thermocouple wires are maintained at two different
temperatures. Generated at the ends of thermocouple a thermal electromotive
force (TEF) is proportional to the difference of temperatures. A stability of the
reference temperature is a necessary condition of the correct thermocouple
operation. To satisfy this condition, lead wires are used for extension of
thermocouple wires to the point of the constant temperature. Lead wires should be
fabricated from the same pair of metals that are used in the thermocouple. In such
a case, no any thermal TEF is generated at the new junctions. If thermocouple
wires are produced of different materials, then the new junctions should be
maintained at the same temperature.

A thermocouple with lead wires is shown in Fig. 2.20.

Thermoelement

Junction box
A
O
TEF
B
O

Fig. 2.20 Basic thermocouple circuit A— positive thermocouple wire, B— negative
thermocouple wire, C— junction

A large number of materials are suitable for use in thermocouples. Among
others, the following pairs are popular combinations of metals to manufacture
thermocouples:

— iron vs constantan

— copper vs constantan

— copper vs copper-nickel

— nickel vs chromium-nickel

— nickel vs chromium-constantan

— platinum vs rhodium-platinum.

They are used for a very wide range of temperatures. The thermocouple
platinum/rhodium-platinum has some interesting properties. It generates the
thermal TEF of OV between junctions at 0 oc.

Resistance temperature detectors (RTD) are simply resistive elements of which
resistance increases with temperature. In practice, the widely used RTDs are
metallic resistors of platinum, nickel and copper.

Semiconductor resistors, also known under the name thermistors, are widely
applied for temperature measurements as well. They are fabricated from
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semiconductor materials such as oxides of iron, manganese, nickel and lithium and
their temperature sensitivity is almost 10 times that of the RTDs. The disadvantage
of thermistors is a substantial nonlinearity of characteristics and a significant spread
of parameters. It makes the exchange of thermistors difficult in measuring systems,
and it is also a reason for a low repeatability of measuring results.

In measurements, the most important are platinum RTDs. Platinum is the
superior material for precision thermometry. Platinum RTDs have their
mechanical and electrical properties and parameters very stable, and nonlinearity
of characteristics is minimal. For this reason, they are used as temperature

standards. The usual range of application is up to 1000 OC, since above this point

the resistance of platinum wire changes due to sublimation.

The upper limit of the application of nickel RTDs is determined by the bend of
their temperature characteristics, which is around 300 oc. Copper RTDs are
prone to oxidization. They are used mainly in the refrigerating engineering and in
the temperature measurements close to ambient temperatures.

Temperature sensors must be protected against mechanical or chemical
damages, which may occur during measurements particularly in the industrial
environment. For this reason, they are protected through placing them in a
thermometer well, which is usually a pipe with a head. Most often, the
thermometer wells are fabricated out of cast iron, steel, heat-resisting alloys or
ceramic materials, and for obvious reasons they worsen dynamic properties of
temperature sensors.

Let us consider the properties of a temperature sensor placed in a single
thermometer well, i.e. protected by a single cover. It is shown in Fig. 2.21.

R
-

717
sy | V)
3,/ v ’g / \%161
‘9|| 02/
\“/:'“;52
Q,

Fig. 2.21 Temperature sensor in a single well

The equation of heat balance is given below

dQ = dQ, +dQ, (2.62)
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where dQ is the amount of heat that penetrate the device through the well during
time dt
dQ = (190 - 191 )kl df (263)

A part of the total heat dQ is accumulated in the well
dQ; = myc,dd, (2.64)
The remaining part is accumulated in the sensor
dQ, =mycyd, (2.65)
Substituting (2.63) —(2.65) into (2.62), we get
(B —)kdt = myc;dd) + mycrddh, (2.66)
and from that

mycy d7.91 myCy dlsz
= 4+t —=_ =
Z% 191 kl dt kl dt (267)

At the same time, the amount of heat transferred from the well to the sensor is
dQy = () — h)kydt (2.68)

Substituting (2.65) into (2.68), we get

Mycy At = (B — b ko dt (2.69)
then
myCo dﬁz
= +—-=
=0 K dt (2.70)
and

49 _dv,  myc, d*0
dt dt ky  dr?

2.71)

where in (2.62)—(2.71) denotes: Q(t)—the amount of heat penetrating the
device, Q;(t)—the amount of heat warming up the well, Q,(f)— the amount of
heat warming up the sensor, ¢} —the measured temperature, ¢} — the temperature
of the well, ¢ —the temperature of the sensor, mjc;—the heat capacity of the
well, m,c, —the heat capacity of the sensor, k;—the heat transfer coefficient of

the well, k, — the heat transfer coefficient from the well to the sensor.
Insertion of (2.70) and (2.71) in (2.67) yields

(2.72)

2
B = mycy mycy dty L mer | macy | macy dv, 0,
kl k2 dtz kl k2 kl d[
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Denoting in (2.72)
mlcl m202 m202 mlcl m2c2
+ + =a and ———===q 2.73
ki ko ky ! ki ko 2 @73

and Laplace transforming both sides of Eq. (2.72), we obtain the transfer function

5y(s) _ 1
B(s) a2s2 +aps+1

aj,aye R (2.74)

which has two real and positive poles. They correspond to the time constants 7

and 7, of the temperature-measuring device.

U(s) _ 1
Hh(s)  (+sT)A+sTy)

Since RTD is a resistive element, the basic circuit for its measurement is a
bridge. It can be a full bridge or half a bridge circuit, balanced or unbalanced
arrangement. Fig. 2.22 shows an example of the full bridge circuit for the
temperature measurements.

Before any measurements, the bridge must be balanced through the appropriate
adjustment of the resistor R,. The resistance of R, changes together with

T, e R (2.75)

varying temperature. It causes the bridge to lose the balance. The voltage V,,,; of
the unbalance appears across the output terminals. It can be applied to the input of
either the current amplifier or the voltage amplifier. In the case of the current
amplifier with the adjustable gain, the rated range of the output current is
0—20mA. The gain of the amplifier should be adjusted in such a way that the
output voltage of the measuring circuits, related to the range of measured
temperatures, is within 0—10V range. Nonlinearity of the system characteristics
is corrected through the use of the programmable amplifier and appropriate
programs. The amplifier cooperates with the output of the bridge.

R

tar

Fig. 2.22 An example of full bridge arranged for temperature measurements
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The system works well provided that before a measurement
RyR
Rier = ?? : —(R. +R,)
1

where R
wire resistance and
R.+ R, =R, =const.

where R, —nominal resistance equals 10 €2.

2 Sensors

(2.76)

- — thermometer resistance, R.—compensating resistance, R, —lead

(2.77)

If the lead wire resistance R, changes together with the temperature, 3— wires
asymmetrical balance bridge will be applied. The bridge is shown in Fig. 2.23.

Fig. 2.23 3—lead wires asymmetrical balance bridge

For this bridge in balance state we have

RyRy Ry
Rier = R—] + R_l Ry = Re

For equal resistance of wires
Reyt = Rewa = Reyy
Eq. (2.78) becomes

RyR; R; — R
R, = +R,.,| ——
ter R, cw( R,

The selection of resistors in the bridge should be such that

R3 =R,

(2.78)

(2.79)

(2.80)

2.81)
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then final result given by Eq. (2.80) is as follows

Rier =Ry (2.82)

Since a RTD is a resistive element, the basic circuit for its measurements is
a bridge. However, during temperature measurements with the use of RTDs, other
methods are also used. Quite often the resistance of a RTD can be supplied
directly with a constant-current drive. The voltage across R,,, is, in such a case,

proportional to the resistance value. Nonlinearity of a temperature characteristic is
corrected by appropriate software.

2.5 Vibration Sensors
2.5.1 Accelerometer

Sensors intended for measurement of vibration are usually constructed in a form
of the damped spring-seismic mass system with a single-degree-of-freedom. Such
a seismic sensor model is shown in Fig. 2.24. It can measure either the
acceleration or the vibration depending on relations between the seismic mass,
damping and the stiffness of the spring.

7 e, T (!)
X

/Z VAP T rrr 77 VAP i rrrr 77

Fig. 2.24 Model of seismic sensor

The model shown in Fig. 2.24 can be described by the equation of motion
through the classical second-order differential equation. Using the equation of
moments, we can write

d*y() | du(r)

m 5 tc +ku(t)=0 (2.83)
dt
where
2
-m 4”@ —the moment of inertia
dt?
- db:iit) — the moment of dumping

— ku(t)— the moment of elasticity

— u(t)— the relative mass displacement (relative output)
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— y(#)— the absolute mass displacement (absolute output)
— m— the seismic mass
— ¢ —dumping coefficient

— k — spring constant.

For the acceleration measurements, the input is the second derivative of absolute

2
displacement sz(t), and the output is the absolute mass displacement y(z).
dt
From Fig. 2.24, it can be seen that

y(t) = u(t) + x(t) (2.84)
Substituting (2.84) into (2.83) gives

2 2
msz(t)JrcMwu(t) =—md—xz(’) (2.85)
dt dt dt
and
1 d?u(t) 2D du(t 1 d%x(t
— ”2( ) 2D du( )+u(t)=——2 xz() (2.86)
) dt 2 dt (O dt
where in (2.86)
. m a 2P_c
a)g A o K (2.87)
@) — undamped natural frequency.
Applying Laplace transform to (2.86), we obtain
LzszU(s)+2—DsU(s)+U(s)=—L2s2X(s) (2.88)
20 “o 20

The acceleration s>X (s) is the input signal in s-domain and U(s) is the

output. Hence the transfer function K,..(s) of the low-pass accelerometer is

1

K o U® &
e T (2.89)

@y @

The amplitude-frequency characteristic of the transfer function (2.89) is given by
Eq. (2.90) and shown in Fig. 2.25

K ace (@)= (2.90)
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[K oe(w)l

)

.

Operating w,=wg\1—202
range

Ele

Fig. 2.25 Amplitude-frequency characteristic of accelerometer

The graph presents the amplitude-frequency characteristic of the accelerometer
and its operating range. All important harmonics of the measured quantity should
be within the range. In practice, the highest frequency value of the operating range
should not exceed 33% of the resonance frequency value .

Examination of Eq. (2.90) indicates that the accelerometer will have a constant
gain during the operation when

<< (29D
and then
2 2Dw 2
Yol and (—J <«<1 (2.92)
) 2))
Finally

|
|Kacc(a))| — —5 =const. (2.93)

The condition indicated by (2.91) can be achieved through keeping the mass of the
accelerometer low and the stiffness of the spring high. For D =0.6—-0.75, the
range of the constant gain has the maximum value.

Regarding the construction, one of possible solutions are accelerometers, the
construction of which follows horizontal pendulum kinematics. Their structure
includes the mass located on the spring with the strain gauges as the
output—Fig. 2.26. The strain gauges located inside the accelerometer are
connected into bridges or half a bridges outside the sensor. The accelerometer
output signal is the voltage of unbalance in the bridges. Damping is achieved by
immersing the system in oil.
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Fig. 2.26 Construction of accelerometer

2.5.2 Vibrometer

The input signal of vibrometers in s-domain is the absolute input X (s). Hence the

transfer function of the high-pass system is given by

st
Kypp(s) =28 = o 2.94
WO T (299
—2+—s+1
oy D

The amplitude-frequency characteristic of the transfer function (2.94) is given by
Eq. (2.95) and shown in Fig. 2.27.

[5S)

[

2)? 2
w (ZDwJ
1——2 +| ——
a @y
Examination of Eq. (2.95) indicates that the vibrometer will have a constant
gain during the operation when

[5S)

K\ ()] =

(2.95)

®>> ay (2.96)
and then
@’ ® 2Dw
— >> 1 and —>>— (2.97)
2)) (2)) @
Finally

K (@) > 1 (2.98)
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Fig. 2.27 Amplitude-frequency characteristic of vibrometer

It means that the vibrator output is equal to its input. The condition indicated by
(2.98) can be achieved through the appropriate design of the vibrator i.e. with soft
springs and a relatively large mass, and also with a very small damping.

In practical solutions, a magnetic damping is applied to vibrometers as shown
in Fig. 2.28.

ult)

Fig. 2.28 Construction of vibrometer

Two coils are wound up on a bobbin tube, which is mechanically connected to
the mass. During vibrations, the coils move into the range of the magnetic field,
which exists due to the permanent magnet. A required damping is produced by the
coil, which has the adjustable resistor R connected to its output. The voltage

du(t)
dt
measurements or, after integration, it is the output signal of vibrometer.

For both accelerometers and vibrometers, calibration is a process where their
amplitude-frequency characteristics are determined. Calibration is carried out
using a vibration table with the adjustable amplitude and frequency of vibrations.
The high-class frequency generator controls the table. A spiral microscope is the
best instrument to determine the amplitude.

induced in the other coil is proportional to .It can be used for velocity
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2.6 Piezoelectric Sensors

Most piezoelectric sensors are fabricated from quartz crystals SiO,. There are
many advantages of this material. It is very cheap and it exhibits excellent
mechanical and electrical properties, high mechanical strength. Its resistivity is
high. The influence of temperature variation on the piezoelectric effect in quartz
crystals is small.

e

o2

0,

2

Fig. 2.29 Structure of SiO, — silicon dioxide crystal

Fig. 2.29 shows the structure of a silicon dioxide crystal, which is a tetrahedron.
A quadrivalent silicon atom Si is inside it and bivalent oxygen atoms O, are on the
four vertices.

Silicon dioxide crystals interconnect and integrate into monocrystals. These are
used as the fundamental material, and plates are cut out from monocrystals. Plates
are the basic element for the fabrication of quartz sensors. They are cut out in
precise orientation to the crystals axes as shown in Fig. 2.30.

a)

b)

Fig. 2.30 a) Quartz monocrystals SiO, b) Preferred axes and orientation of cuts for quartz
plates
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In the quartz monocrystals, there are three electrical axes, three mechanical
ones and one optical axis. The three electrical x—axes cross the monocrystals
edges and are perpendicular to the optical axis. The three neutral mechanical
y—axes are perpendicular to the crystal facets. The direction of the optical

z—axis is such that there is no double refraction for a ray of light along z — axis.

A piezoelectric material produces an electric charge when it is subjected to
a force or pressure. The main point of piezoelectric effect is that when pressure is
applied, or a force causing stretching or compression, the crystal deforms. The
deformation produces electric charges on the external surfaces of the crystal and
on the metallic electrodes connected to these surfaces. The charges are
proportional to the force, which causes the crystal deformation, and they decay
when the force is removed

Q1) =k, F(1) (2.99)

12 A
where k, =2.3-10 12 WS is the piezoelectric constant.

3«
piezoelectric <
crystal

—1

W%»»WWI [~
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Fig. 2.31 Construction of piezoelectric accelerometer

Fig. 2.31 shows the construction of piezoelectric accelerometer while the
circuit diagram of a measuring system with a piezoelectric sensor and a charge
amplifier is shown in Fig. 2.32.

|
IDI
0
11
I
O
X
Il

e, [JRiv. =

Fig. 2.32 Measuring circuit with piezoelectric sensor 1— transducer, 2— charge amplifier,
C, — sensor capacitance, Rg — sensor resistance, Q — charge generator, C. — capacitance
of lead wires, R, — leakance of lead wires
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The piezoelectric sensor acts as a charge generator. The charge amplifier
consists of a high-gain voltage amplifier with FET at its input for high insulation
resistance.

\\“:IZIIQ ==C, H R, Vin

Fig. 2.33 Simplified diagram of a measuring system with a piezoelectric sensor

Fig. 2.33 shows the piezoelectric transducer subjected to a force F that changes
sinusoidally. The transducer generates the voltage, which is the input voltage of
the amplifier. Let us determine this voltage. For the derivation, C denotes the
equivalent capacitance of the transducer and lead wires, and R denotes the
equivalent resistance of the same.

Hence we have

F(t) = F,, sin(wt) (2.100)
and
0(t) =k, F,, sin(@1) = Q,, sin(@1) (2.101)
and also
do) _ ~dv@®) v (2.102)
dt dt R
Therefore
dv(t) v(t)
w ot)y=C———+— 2.103
0y, cos(w1) 7 R ( )
Laplace transforming Eq. (2.103) results in
Vi = 22 T 2.104
(s2+a)2)(s+j (2.104)
RC

The solution of Eq. (2.104) in time-domain is

v(t) =
t
@0y RC__|_ ke +l(1+ ja)RC)e*f“”l(l— JORC)e/! (2.105)
C 1+w*R*C? 2 2
Eq. (2.105) can be simplified to
v(t) =
t
_t (2.106)

_ 00 Iicz ce RC 4 DO, IZCZ ~leos(@r) + @RCsin(en)]

C 1+w°R°C C 1+w°R°C
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After simple trigonometric transformations and taking (2.101) into account, we get
finally

t
CZRz e K¢
1+w°R°C

+k,F, PR infwr+ % — arctg(@RC)]

m
1+ w?R2C?

Examination of Eq. (2.107) indicates that once the transients have died away the

steady-state output signal is the sinusoid with amplitude k ,F,, ——————= and

V1+@*R%*C?

v(t)=—kF,

p
(2.107)

phase shift angle (% —arctg(wRC )).

In the measurements and instrumentation field, the main application of
piezoelectric sensors is in construction of piezoelectric quartz accelerometers. In
these instruments, the relations between mass m and acceleration a are put to use

Ot)=k,F(t)=k,ma (2.108)

2.7 Binary-Coded Sensors

The heart of the device is the coded transparent disk. A binary-coded sensor
consists of a number of concentric tracks of different diameters. The tracks have
a binary coded opaque and transparent pattern. The light source and transducers
are perpendicular to the disk. Light generated by photodiodes is detected by
photocells, which form a matrix detector. Light passing through a transparent
portion is received by a photocell, whereas light blocked by an opaque portion is
not received.

Fig. 2.34 presents an example of binary-coded sensors with the binary code and
the Gray code. The Gray code is very popular. It shows only a single bit change
between adjacent numbers. As a result, the maximum error never exceeds the
value of the least significant bit. The advantage of binary-coded sensors is that
they are fairly immune from electrical interference. However, they require
n tracks for a measurement with the accuracy of n—bits, and this is their
disadvantage. Most often binary-coded sensors are used for the measurement of
angular shaft position.

Incremental angular encoders are another application of this type of sensors.
They count segments of a circular graduation and the resulting number denotes
a displacement by a specified value. A schematic diagram of the incremental
angular encoder is shown in Fig. 2.35.
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s |o[=|c

Fig. 2.34 An example of binary-coded sensors with a) binary code and b) Gray code

Light source

Fig. 2.35 Incremental angular encoder

Opaque and transparent portions are marked along the circumference of the
disk, in equal distances from each other. The size of both opaque and transparent
portions should be the same. A light source and photodetectors are placed on both
sides of the disk, facing one another. Photodetectors measure light intensity of the
flux transmitted through the disk.

The system for counting signals is shown in Fig. 2.36. The detector output
signal is amplified and modified to TTL standard through the formatting system.
The next intermediate stage is the logic gate G with two inputs, the amplified
signal from the detector and the standard generator signal. The standard generator
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enables or inhibits, logic 1 or 0, the passage of the detector signals through the
gate G. The counter counts the detector impulses, they are decoded in the decoder
and finally displayed in a display unit.

Amplifier
Detector and
formatting system

Generator

‘ Display H Dewder Counter

Fig. 2.36 Block diagram of binary-coded transducer

Detector Detector
A B8

ailils
11

Epipipipipinit

up : down

Fig. 2.37 Arrangement of detectors and their output signals

The counted number of impulses is proportional to the rotational speed of the
disk. The angular velocity of the disk is given by
w="29% (2.109)
T T

where n—rotational speed of the disk, 7 —time of counting, 6—angle related to

one impulse, kK —number of impulses.
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Two detectors are used to determine the direction of rotations. They are
positioned in such a way that the signals generated by them are displaced one
towards the other by 90°. In other words, there is a 90°—phase angle between

them, lagging or leading. Fig. 2.37 shows the arrangement of the detectors and
their output signals. When the disk rotates to the right, the counter is counting up,
while during the rotations to the left, it is counting down.

Relations between the detector impulses and the direction of disk rotations:

AB ---11,10,00,01, 11 --- rotations to the right
AB ---11,01, 00, 10, 11 --- rotations to the left
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Chapter 3
Methods of Noise Reduction

A noise is any unwanted signal mixed in with the desired signal at the output.
Noise in a measurement may be from undesired external inputs or generated
internally. In some instances, it is very difficult to separate the noise from the
measured signal. The error produced by noise can be so significant, in comparison
with the measurement signal, that makes the measurement impossible. In
particular, it happens in all these cases when the output is the derivative of signals.
In case of differentiation of signals, noise is differentiated as well. Due to this it
becomes much stronger. Noise reduction by means of filtering, with the use of the
weighted mean method, will be discussed in the following subchapters. Especially
the Nuttall window, the triangular window and the Kalman filter method will be
taken under consideration. In reference to the first case, the analysis of the
relations between averaging process and signal distortion will be reviewed as well
as the analysis of filtering efficiency in the case of the second-order and third-
order objects.

3.1 Weighted Mean Method

Let us consider the object described by the following differential equation
m
Y ay® @) =u) 3.1)
k=0

where u(z) is the input signal, y(k)(t) is k —th derivative of the output signal,
a; 1s k—th constant coefficient. The problem to be examined is the
determination of the unknown input signal u(#) through the evaluation of the

existing signal y, (¢), which is noisy signal.

n(t)
' - n
ult) () yalth ] i vt .
m _ : > H
——— = ZayM0 ® A
Unknown _ Noise signal Output signal

input signal

Fig. 3.1 Schematic diagram of weighted mean method



64 3 Methods of Noise Reduction

The output signal has two parts. The part desired is due to the unknown input
signal u(t) and the undesired part due to all noise inputs

Yu ()= y(1)+n(t) (3.2)
In order to determine the input signal u(z), the measured output signal y(z)

must be k times differentiated, according to (3.1). The noise output would also be
k times differentiated, and as a result the noise would increase significantly. For
this reason, the noise should be reduced by filtering before the analogue-to-digital
conversion of the signal. Good results of filtering are provided by the weighted
mean method that is based on the determination of y(¢) function

t+0
[ya(0) g(z—1)dT

(1) =19 (3.3)

t+6
[g(z-n)dt
-6

where y(¢) is the weighted mean, g(z—t) is the weight function, 29 is the
width of the intervals of averaging.

The properties of averaging depend on the width of the interval 26 and on the
form of the function g(r—¢). Aiming at filtration, the function g(r—¢) and its
successive derivatives with respect to 7 should be equal to zero at the ends of the
averaging intervals (¢ —0), (t+0)

¢Pi-85=¢g®@r+8=0 k=012,. (3.4)

and reach the maximum value in the middle of them.
In order to simplify calculations, it is convenient to normalize the denominator
of Eq. (3.3). Let

t+6
d= [g(t-tdr (3.5)
t-6

then the normalized weighted mean is given as
_ _1t+5
YOy =d— [y, (r)g(z—n)de (3.6)
=6
It is easy to check, that the k —th derivative of y(¢) is given by the following
equation

t+6
¥(6)=(~Dka™! fa (@ g®(x-1) dr 3.7)
t_

Substituting (3.2) into (3.7) we have

) )
5,0= 0 a7 T y@eP@-nde+ 0 a T nog®e-nd (3.8

-0 -0
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in which the differentiation of n(7) has been transferred to the function of weight.
Let us estimate the second integral in (3.8)

_]t+5 ) ) _]t+5
d” | n(0)gW(z-nNdr £  sup [gW(z-0]d" [n(r)de (3.9)
-8 t—-0<7<1+0 -8

Assuming that n(7) is the random signal changing quickly its value and the sign
with respect to g(k)(r —1), we get

t+0
fén(z')dz':o (3.10)
t_

which means noise reduction. The weighted mean of the noise output signal is
thus represented by the approximate relation

t+6
o= DR a™ |y g P -1ydr (3.11)
t—-0

3.2 Windows
The requirements with respect to the function g(z—¢) for which successive
derivatives should be equal to zero at the ends of the averaging intervals and

reach the maximum value in the middle of them are well fulfilled by Nuttall
window and triangular window. The Nuttall window has the form

—n=cos?| T (r— =
g(T—1)=cos {25(1 t)} p=1,2,3,.. (3.12)

and is shown in Fig. 3.2.

— — p=1

1.0 p=2

- p=3

p=4

0.8 p=5

p=6
0.6 —
0.4 —
0.2 —

T

Fig. 3.2 Nuttall windows g(7 —t) = cos? [% (- t)} for p=1,2,....6
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Table 3.1 presents d values (3.5) of this window.

Table 3.1 Values d of Nuttall window

P d
46
] R
T
2 )
. 85
kY4
) 3
4
s 320
157
) 56
8

The triangular window has the form

T—t

gw—o=P—

p
} p=12.3,.. (3.13)

and is shown in Fig. 3.3.

0.8 —
0.6 —
0.4 —

0.2 H

Fig. 3.3 Triangular windows g(7—t) = {1 -

Table 3.2 presents d values (3.5) of this window.

Table 3.2 Values d of triangular window

p d
1 o

20
2 3
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Table 3.2 (continued)

3 é
2

28

‘ 5
5 é
3

28

6 7

3.3 Effect of Averaging Process on Signal Distortion

We will consider the effect of an averaging process on signal distortion, while the
windows presented above are applied. Errors generated by the use of windows in
the filtering process will also be discussed.

Let us examine the expansion of the continuous signal f(#) into Maclaurin series
f@O=fO)+ z f<k><0)t (3.14)

The weighted mean f (t) of the signal f(¢) is

! o k) *)
| | fOs(- t)dr+2f <0) JT sr-ndz|
[g(z—ndrt! Kis :

-6

f@)=

and after simplification it can be written as follows
fi= ﬂ®+2fmw)tm (3.16)
Using a Nuttall window, we calculate £ assuming p =2 as an example

—=cos?| E(r-
g(r—1)=cos [25(1 t)} (3.17)

and determine the differences between successive coefficients of the weighted
mean f(t) (3.16) and the function f(¢) (3.14).
For the zero-order derivative (k =0), we get
F®=£0) (3.18)

For the first-order derivative and k =1, we calculate the integral

)
f1(0) 1”} |:%(T—t):|d’5=f't (3.19)

hence the first term of series is not burdened with error.
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For the second-order derivative and k =2, we calculate the integral

, s ” 202 22
f1O 1% cos{l(r—t)}dr: SO #3077 600 (3.00)
2! 5,_5 20 67

It can be seen that the second term of series is burdened with error

F70)(728% -652)
2

(3.21)
(/4

The successive terms of series (3.16) and the values of error are shown in Table 3.3.

Table 3.3 Successive terms of Maclaurin series and the values of error for Nuttall window,

k=12,..6

k
Ji @) f-t
1
ENuttall, k (t:0) 0
0 FrO)25% + 37212 —6657)
) 67[2
E Nustair, k (2,0) F1O0) 7252 -652)
67z2
2.3 2s2 2
_ o T +TC0°—60
£y
3 fk (t) 677,'2
2s2 2
” T°0° —60
ENutail, k (1:6) f (O)t—2
(/4
90 748* —207%5% +10741% 52
Z 4
Te® 2 21220” 4 4,4
(4) oy — 607776 +1206™ + 57"t
+ /(0 og
7
4
@ 0) 4% —20726% +1074% 57
ENuttail, k t.0) 1207%
+ F® 0y -60721252 +1205*
1207
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Table 3.3 (continued)

37464 —60726% +3605%

_ O -
Ji@® 3607
150 10741262 - 60721262 + 34
3607+
: f(5) Oyt 3r*6* —60725% +3605%
ENuttall, k (t,6) 36074
N f(5) ) 107252 - 6072252
3607
60y 35751462 — 4224 5% + 84072 5°
) ' 50407°
fr® 4 1O 0)= 2107462 +2520721% 6% + 21252 5%
50407°
+ 79 0) ~4207*1%6* +772°° ~50408° + z°6°
6 50407°
£ 35751462 —427* 56 + 84072 6°
50407°
ENuttall, k (1:9) 6 0) 21074482 +250072125% +2170:254
50407
6) . — 42074126 ~50405° + 2066
o 50407

69

Fig. 3.4 shows the total error Ey,,,; (#,6) equal to the sum of error components
Enunain, « (1,0) listed in Table 3.3.

total error

Fig. 3.4 Total error Epyqp (1,0) for Nuttall window



70 3 Methods of Noise Reduction

The value of error and the successive terms of series (3.16) for the triangular
window for

Tt

2
322
5 } (3.22)

g(T—t){l—

and k=1, 2,...,6 are shown in Table 3.4.

Table 3.4 Successive terms of Maclaurin series for triangular window, k =1,2,...,6

3
| Ji @) ft
ETriangular,k t,9) 0
- 1
0] — @)% +102)
20
2
ETriangular,k (, 6) L f(z) (0)52
20
fi (@ L 10 0niEs? +102)
60
3
Erviangular, k t,9) L]0(3) (0))?52
20
Ji® L@ 0)3set +21:26% + 5%
840
4
ETriangular,k(t’é) L]6(4) (0)(21t252 + 54)
840
- 1
0 w0 FO )7t +7126% + 6%
5
ETriangular,k(t’é) gimf(S)(o)t(WZé‘z + 54)
Fr @ %f@ (0)841% + 126152 +36:25% + 69)
6
Efviangular,k (t:6) %f@ 0)(126:*52 +36126% + 6%)

Fig. 3.5 shows the total error Er;,ueuq(t,6) equal to the sum of error

components  Ezy.qquiqr, i (1,6) listed in Table 3.4.
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total error

Fig. 3.5 Total error ETviangular (t:6) for triangular window

Fig. 3.6 shows a comparison of errors from Fig. 3.4 and Fig. 3.5.

total error

Fig. 3.6 Comparison of sum of errors for Nuttall window and triangular window

The maximum values of errors for the Nuttall window Fig. 3.4 and the
triangular window Fig. 3.5 are as follows

sup Enynant,0) =0.181  for  re[-1,1], Se[-1,1]
t, 0

SUp Eryianguiar(t:6) =0.138  for te[-1,1], de[-1 1]
t, 0

The comparison of these results indicates that errors generated during the
averaging process are smaller in the case of the triangular windows than in the
Nuttall windows.
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3.4 Efficiency Analysis of Noise Reduction by Means of
Filtering

The noise reduction efficiency when using filtering will be analysed on the
examples of the second and third-order objects as well as Nuttall and triangular
windows.
Let the second order object be given in the following form
ary (1) +ayy (1) +agy(t) = u(t) (3.23)
where u(t) is the input and y(¢) the output signal as mentioned in (3.1). Let the
output signal be the sinusoid
y() =Y sin(wt+V) (3.24)
After substitution of (3.24) into (3.23) and simple calculations of derivatives, we get

u(t) = apY sin(@t +v) + a;Ywcos(@t + v) — a, Yo sin(wt +v) (3.25)

If the output signal y(¢) is mixed with noise, we will use the weighted mean
u(t) instead of u(tz). Replacing y(t) by u(¢) and substituting (3.23) into (3.6),
we get

t+0 . ,
()= (Dka™ [ [ayy (@) +ayy (©)+ayy(@)g® (c-)1dr (3.26)
t—0

It can be shown as the three separate integrals
t+6 .
0= [ ay @gPc-ndr
=0

+(—1)1d‘1Hj5a g (r-nd
2 1y (g (r-vdr (3.27)

t+6
+(=D%7" [ ayy(m)g®(z-1)dr
-0
Transferring the respective derivatives from y”(z) and y'(7) to the weight

functions g”(z—t) and g’(z—1t), we have

_lz+é‘ . _lz+5 ,
u=d- [ apy(r)g t—-tdr—-d~ [ ayy(r)g (t—1)dt
t-0 -8
40 (3.28)
+d™ [agy(t)g(t—1)dt
-0

Applying Nuttall window (3.12), let us recalculate (3.28). The successive
derivatives for Nuttall window



3.4 Efficiency Analysis of Noise Reduction by Means of Filtering 73

g(rt—1) =cosp[%(r—t)} (3.29)
are as follows
ety =Pl (=)o E(r -
gr-n= 35 sm{zé‘(r t)}cos {25(1 t)} (3.30)
2
ey = P 02| () = 27 (D41
g'(t—1) 152 cos {25(7 t)}{ p+ pcos {25(1 t)}+} (3.31)

Substituting (3.29) —(3.31) into (3.28) gives

U Nustall (1) =
t+8 2
—d_lt_jaazy(r)i;cosp_z{;(r—t)}{—p+pcosz[;;(r—t)}ﬂ}dr
146 -1 3.32
+d7b | aly(r)ﬂsin{l(r—t)}cosp [l(r—t)}dr (3-32)
Vs 2528 26
d_1t+5 M J
—(r-t
+ I_jﬁaoy(r)cos {25(7 )} T
Considering (3.24), we have
UNuttall (1) =
t+6 2
a7t | azYsin(a)r+V)%cos”_2[l(r—t)}pdr
-0 40 26
t+6 2
—d7 | a2YSin(a)T+V)%COSP_2[£(Z'—t):|
) 46 20
[ (3.33)
. —(z—t)|+1|dT
{pcos L&( )} }
t+0 -1
+d7' | alein(an'+v)p—”sin{l(r—t)}cosp {l(r—t)}d‘r
s 2526 25
1t+5 y s
+d7 | aOYsin(a)T+V)Cosp{—(T—t)}df
-6 26

Calculating the integrals in (3.33), for p=2 and d -1 :é as an example, we
get finally
a1 =[agY sin(@t +v) +aYocos(@1 +v) —a, Yo sin(wt+v)]
72 sin(@d) (3.34)

) —(w8)> wo
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400 —+

200 |

-200 <

-400 . { , , , ,
0 0.4 0.8 1.2

Fig. 3.7 Filtering efficiency of Nuttall window for second-order object

It is easy to see the difference between signals (3.25) and (3.34). For
@ d = const magnitude of the signal u(¢) is multiplied by the constant coefficient,
in comparison with the signal u(¢). The value of this coefficient decreases to zero,
if wo tends to infinity. Fig. 3.7 presents the diagrams of signal u(¢) and u(¢) .

Let us repeat the similar analysis for the triangular window. Substituting the
weight function (3.13), its respective derivatives g’(z—1t), g”(z—t) and the
output signal (3.24) into (3.28), we get

i U E oy P2-p)f, -1\
UTriangular () = d z_IaaZY sin(wr + v)7[1 + Tj dr

2
+0 (pz—p)(l_r—th ir

t
+d! Y sin(wr +v)-F—+>
{az ( ) ps 5

t _\p-l
—d™ | alein(wT+v)§(1+Tth dr
t-0
3.35
s Pli_T_1 p_ld o
+ ot +v) L 1-—— T
{ a1Y sin( )5( 5 j

+d_l j. . T—t P
apY sin(wr +v)| 1+ ——| dt
t-6 o

|48 r—t\’
+d7 | agY sin(wr+v)[1 —Tj dr
t
Substituting p=2 and d o % into (3.35) and integrating, we finally have

6
UTyignoular (1) = ——<[agY sin(@t +v)[@ 0 —sin(@ 8)]+ a;Ywcos(wt +Vv
i€ =—sfaqtsinfor +1) poos(ars)

(@8 —sin(08)] + a,Ya? sin(w 1 +v) sin (05)]
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— uft)
uft)

Fig. 3.8 Filtering efficiency of triangular window for second-order object

Fig. 3.8. presents the diagrams of the signals u(#) and u(#). In this case, the

difference between the signals refers both to the magnitude and phase
displacement. The latter one equals 7 rad.

Let us check now the efficiency of filtering in the case of Nuttall and triangular
window application to a third-order object. Let this object be given in the
following form

azy (D+ayy (O+ayy (1) +agy(®) =ur) (3.37)

The output signal is the same as given by Eq (3.24). Substituting (3.24) into (3.37)
yields

u(t) = —a3Yo’ cos(wi +v) — ay Yo sin(wr +v) 3.38)
+ a;Yocos(t +Vv)+ agY sin(@t +v) '

For the third-order object (3.37) the weighted mean #(¢) has the following form

t+6
() =—d7' | a3y(n)g (t-1)dt
-0
1t+5 N
+d7 [ apy(0)g (t-1)dt
t-0
_1t+5 ,
-d™ | aqyy(0)g (t—1)drt
-6
1t+5
+d™ [agy(r)g(r—-1)dr

-6

(3.39)

Taking Nuttall window (3.12) under consideration and calculating the respective
derivatives of (3.39), we get
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UNyttall () =
t+0 3 p-3
d! t _j5a3Y sin(@r +v) g ;”3 sin[z—’;(r—t)}os[%(r— t)} pldr
t+0 3 p-3
—g! t _IgaSY sin(@r +v) : ;”3 sin{z—jg(r—t)}cos[z—ig(r—t)}

2
~p2 cos[z—”é‘(z'—t)} dr

t+6

3 p=3
1 . |2 N AP T -
d7' | asYsin(@r+v) sm[—w(r I)}:o{_zs(r t)} Bp-2lar (3.40)

t—68 86>
=2 (. _
cos [25 (7 t)}

_1t+§
—d™ [ apYsin(wr+v)
t-0

.{_ b pco&[z_’;(f_t)}l}m

pr’
452

t+6 -1
+d™! t_jgalY sin(wr +v) I;—gsin{z—”g (r- I)} cos’ {2—”5 (r- I)} dr

1t+6 T
+d7 | aOYsin(m+v)cosp[2—5(r—t)}d7

-0
. 4 3z
From the expression (3.40), for p=3 and d = 35 we get
T (1) = [agY sin(@t +v) + a;Y ocos(ot +v) — a, Yo sin(@t +v)
97* cos(wd) (341)

3
—azYw’ cos(wt +v)]
0?82 (160°6% — 4072 —9r*

The results of the calculations are shown in a form of diagrams in Fig 3.9.

8000 uft)
- i)
4000 —

-4000

-8000 — MV
0 0.4 0.8 12

Fig. 3.9 Filtering efficiency of Nuttall window for third-order object

When comparing the latter and the former results, it is evident that the ratio of
the voltage u(¢) and u(f) magnitudes depends on the order of object.
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For triangular window (3.13) and the third-order object, Eq (3.39) takes the form

I’TTriangular =
t 3_,.2 _\P3
—d7' | aﬂsin(wr+v)w%+2p)[l+r—t) dr
) J° )
t+0 —
—d! | a3Ysin(a)r+V)( P +3p ZP)[ j
t
t
-1 : (>
+d™ | arYsin(wr+v)~— ( —J
t—-0 J
d_lt+5 Vo ( P- 2
+ +
{az sin(w7 +v)————~ ( ) (3.42)
t
—d7t | alein(wz'+v)£( j
t-0 J
t+0
+d7' [ aYsin(@r+v) £ (——)
P o
t
+d7' | aOYsin(a)z'+V)(1 J
=0
]t+6 T—t
+d~ I aOYsin(a)T+V)(l—7) dr
t
I 1 2 .
Substituting p=3 and d =§, we finally get
W viangutar (1) = T;{(wa) +cos(a)§)—1}a0Ysin(a)t+v)
24 (3.43)

— (aiYwsin(wt +v)[@ —sin(wd)]
+ay Yo sin(@t +v)[cos(@8) — 1]+ asY® cos(wi +v)[cos(wS ) —1])
20000 - — uft)

aft)

10000 —

-10000 -

-20000 ’ . : , .
0 0.4 08 1.2

Fig. 3.10 Filtering efficiency of triangular window for third-order object
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The phase displacement of the signals u(¢) and u(¢) is x rad, likewise in the

second-order object. The ratio of voltage magnitudes depends on the order of
object, in a similar way like in the case of Nuttall window.

3.5 Kalman Filter

So far the reduction of noise by filtering, with the application of the weighted
mean methods, has been discussed. Kalman filter method is another quite popular
way, often used in practice, to achieve this aim. It is applied to a linear discrete
dynamic object. For such a object, the recurrent algorithm of minimum variance
estimator of the state vector is being developed. This aim is achieved through the
use of the output of dynamic object given by the discrete state equations

x(k +1)= A (k) x(k) + B(k)u(k) + w(k)

y(k)=C(k)x(k)+D(k)u(k)+ v(k) k=012, (3.44)

For Kalman filter, it is assumed that both the measurement and the conversion
process inside the object are burdened with an error described by the standardized
normal distribution. Fig. 3.11 shows the block diagram of the object represented
by Eq. (3.44)

wik-1) v(k-1)

u(k-1 | % (k-1 1

Ll [ SN poray X0 ) 5@ . y(k-1)
4 A(k-1) = D(k-1)

Fig. 3.11 Block diagram of discrete dynamic object

u(k) —vector of input signal of m dimension, x(k) and x(k+1)— state vectors of
n dimension at time k and k+1, y(k)—vector of output signal of p dimension,
w(k)—vector of object noise of n dimension, v(k)— measurement noise vector of
p dimension, A(k);,;, — state matrix, B(k),,, — input matrix, C(k) y, —output matrix,
D(k) pxp, — direct transmission matrix

The following assumptions are introduced for the synthesis of Kalman filter:

1. The deterministic component of the input signal u(k) equals zero
2. In case of control lack, the state variable oscillates around zero

E[x(k)]=0 (3.45)
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3. Noises w(k) and v(k) both have properties of discrete white noise. It means

they are not correlated, their expected value is zero and their covariance is
constant

Elwlow (k1= &) 1T 1=k 3.46

R T T (3.46)
ro QU it i=k

E[v(k)v (k)]—{o ik (3.47)

where R(k) and Q(k) are the covariance matrices of noise.

4. The state errors and the measurement errors are not correlated
E[vik)w! (k)]=0 (3.48)
5. The estimation errors do not depend on measurements
E[(x(k) = (k) v" (k)] =0 (3.49)

It means that the vector X(k) depends on the observation vector at random. The

relation holds until k£ —1 step.
6. The matrix D(k) =0

Such assumption enables to modify the state equation (3.44) to the following
form

x(k +1)=A(k)x(k)+B(k)u(k)

3.50
¥ (k) =C(R)x(k)+ v(k) (3:50)

The block diagram related to the above equation is shown in Fig. 3.12.
w(k) v(k)

L x(k+1)=A KX KB ——S-2 Katman fiter | %2

u(k)

Fig. 3.12 Schematic diagram of Kalman filtering

The idea of Kalman filter is based on the assumption that the linear state
estimator X(k —1,k—1) and the covariance P(k —1,k —1) can be obtained through
k —1 observations of the object output at the discrete instant k —1. The next step
is prediction of the values of both the estimator X(k,k—1) and the covariance
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P(k,k —1), the latter tied in with the former, at the time instant k. If there is

a difference between the obtained results and those predicted during the previous
step, a correction must be made to the prediction for the instant k+1. The
correction is carried out at the time instant k.

Kalman filter equations are based on these assumptions. They are divided into
two categories (i) and (ii), described below in details.

(i) Equations of time updating
On the basis of the estimation at the instant k —1, the prediction is done at the

discrete instant k. The time updating equations enable the prediction. The
following algorithm complete the task:

1. Project the state ahead
x(k,k—D)=Ak)x(k—1Lk-1)+B(k)u(k —1) (3.51)

where x(k—1,k—1) and X(k,k—1) are the corresponding estimations of the state
vector before and after the measurement

2. Project the error covariance ahead
P(k,k-1)=A(k)P(k -1,k —DAT (k) +R(k) (3.52)
where
P(k—1,k-1)=E[e(k—1,k—1el (k—1,k—1)] (3.53)

is the covariance matrix of the a priori error vector

etk—1Lk—D=x(k-1)—x(k-1,k-1) (3.54)
and
P(k,k —1)=E[e(k,k — el (k.k -1)] (3.55)
where
e(k,k —1)=x(k)—x(k,k—1) (3.56)

is the covariance matrix of the a posteriori error vector.

The difference between the real value of the state vector and its estimation is
presented by the vectors (3.54) and (3.56). This difference is a good measure of
the error of the state vector assessment.

(ii) Equations of measurements updating
On the basis of the actual observation data, the prediction is a corrected by the
measurement updating equations. The algorithm of procedure is as follows:

1. Compute the Kalman gain

K (k) =Pk, k - )CT ()[Q(k) + C(k)P(k, k = 1)CT (k)] (3.57)
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2. Update the estimate with measurement y(k)
x(k) =x(k,k —1)+K(k,k)[y(k) — C(k)x(k,k —1)] (3.58)
3. Update the error covariance
P(k) =[I-K(k,k)C(k)]P(k,k —1) (3.59)

The algorithm presenting the whole action and operation of Kalman filter,
following the equations (3.51) to (3.59), is shown in Fig. 3.13.

AT

Time Update (Predict) Measurement Update (Correct)

1. Compute the Kalman gain
2. Update estimate with

2. Project the error covariance measurement y(k)
ahead 3. Update the error covariance

[ Poae, o

Initial estimates for
X(k=1k-1)and P(k-1.k-1)

1. Project the state ahead

Fig. 3.13 Algorithm of Kalman filter operation

During the operation of Kalman filter, the equations of updating time and of
measurements work in cycles, in the successive instants k& between one action and
another. It makes possible to estimate the process of X(k) according to the
minimum of mean-square error.

For numerical calculations, the initial parameters should be taken under
considerations. Either there is some preliminary information about the process or
the assumption must be made about zero initial conditions. The latter case refers to
the state vector estimate. Additionally, the covariance matrix P(k—1,k—1)
should have large value elements. If too small values of matrix elements are
assumed, it will results in the gain matrix K(k) being small in the consecutive

steps, and the estimates X(k) will be close to the initial values. Further

consequence of such an approach is that the optimum solution will only be
obtained after a significant increase of the number of iteration steps. On the other
hand, if too large values of the covariance matrix elements are assumed, the
estimate X(k) will change quickly in reference to its initial value. It will be seen

in the form of a significant overshoot during the initial step of estimation.
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Chapter 4
Model Development

Selected methods of development of various time-invariant models are presented
in the chapter.

Using algebraic polynomials, approximation methods are reviewed. The
polynomials of Lagrange, Tchebychev, Legendre and Hermite are studied in
detail. These methods are used quite often provided that the number of data points
is not too large. That is because the order of the polynomial is equal to the number
of data. Too large number of data results in an equally high number of the
polynomial order.

When the approximations of functions having irregular waveforms are
considered, it is convenient to apply the cubic splines approximation method. It is
based on splitting the given interval into a collection of subintervals, followed by
the approximation of the data at each subinterval by means of the cubic order
polynomial. The method is described in the following parts of the chapter in
detail.

Another method, which is discussed in the chapter, makes possible a derivation
of a relatively low degree polynomial, which will pass “near” the measured data
points instead of passing through them. It is the least squares approximation
method for which the error being a sum of squares of the differences between the
values of the approximation line and the measured data is at minimum.
Approximation by means of power series, with the use of Maclaurin series, is
presented in the next part of this chapter. This method is particularly useful in the
case of models in dynamic state because Maclaurin series describes a function
near the origin. There is also an additional advantage of the method. Coefficients
of the series can be transformed directly into state equations coefficients or
coefficients of Laplace transfer functions. These two forms are applied most often
in modelling various objects of electrical and control engineering. There are
acouple of other methods, which are discussed in the following parts of the
chapter. The standard nets method, which allows for an easy the determination of
the order of a modelled object, and the optimization method based on Levenberg-
Marguardt algorithm with LabVIEW program application, are presented. Finally,
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the black-box identification for discrete models in the form of ARX with the
MATLAB program application and the Monte Carlo method are also considered.

4.1 Lagrange Polynomials

Let us consider the polynomial L(x)
L(x) = ag Lo (x) + ay Ly (x) + ap Ly () + ...+ @y Ly (%) .1
Ifin (4.1)
L(x)=xF, k=01,...n-1 (4.2)

then L(x) is called the Lagrange interpolating polynomial. Polynomial L(x) at
each measuring point x; fulfills the condition

Ly (xg) = f(xp) (4.3)

where f(x;) presents measuring data in x;.Six graphs of the first consecutive
polynomials Z; (x) are shown in Fig. 4.1

+ LX)
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o5 /1 .
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1.0 0.5 0 0.5 1.0

Fig. 4.1 The first six Lagrange polynomials

In order to determine unknown coefficients ay,ay,...,a,_; of the polynomial
L(x), let us substitute Eq. (4.3) into Eq. (4.1). Thus we have the following system
of n linear equations
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ag +ajxg +a2x3 +,.,+an_1x871 = f(xq)

ag +apxy +ayxt + .+ a, 1 x 7 = f(x))
4.4)
2 -1
ag+ayx,_ +ax;_1+ ..t a,_1xnZ; = f(x,_1)
The system of equations (4.4) can be presented in matrix form
J x(% . x6’_1 ap S (xo)
1 x x12 . xln_l a f(xp)
= . 4.5)
_l .X'n_l )C,zl_l .. XZ:II__an—l_ _f(xn—l)_

where the vector of coefficients a presents the solution.

The matrix on the left is known as a Vandermonde matrix. It has the non-zero
determinant, which indicates that the system (4.5) has a solution for a, and the
solution is unique.

Let us consider the cardinal function

n—1
IT(x—xz)
Cr(x) = - (4.6)
(x=—xp)— IT(x—xg)

dx =0

X=Xk

that has the following properties

Cr (x;) Lok 4.7
X)) = .
0 ki @7

After a simple transformation, relation (4.6) can be presented in the form
n=l (x—x;)
Cp(x)=—*
Yo (4.8)
i#k

also occurring in other polynomials e.g. Tchebychev, Legendre, Hermite etc.
The interpolation polynomial L(x), presented by means of (4.8), takes the form

n—1
L(x) = kgof(xk)Ck (x) 4.9)
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Fig. 4.2 shows the components of polynomial (4.9) for five exemplary
measuring points (x, f(x))=(,3; 2,5; 3,2; 4,4; 5,3) in the interval [1, 5].

6.0 1 f(x)Colx) 8.0 - f(x)Cix) 6.0 4 f(x:)Calx)
.
4.0 4.0 .
2.0 - 20 4
0 0
20 20— T X

8.0 6.0 - flx)Culx) 6.0 - Lix)
.
4.0 g . 40
2.0 - . 2.0 -
2.0 o .
D 0 i T, B A SO N
20 0 20
X X X
-4.0 — 20 -4.0-

T T ~ T T T T T
0 10 20 3.0 40 50 0 10 20 3.0 40 5.0 0 10 20 3.0 40 50

Fig. 4.2 Exemplary components of polynomial (4.9)

4.2 Tchebychev Polynomials

In (4.1), let us replace the polynomial L(x) by Tchebychev polynomials 7 (x)
T(x)=aply(x)+a T (x)+ a5 (x)+...+a,_T,_;(x) (4.10)
For each measuring point x; we have
T (xp)=f(x), k=0,1...n-1 4.11)

The individual polynomials occurring in (4.10) can be determined with the use of
the recurrence formula

Tk+1 (x) = 2ka (.X) - Tk—l (.X)

To(x) =1
i(x)=x

(4.12)
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Some of the initial Tchebychev polynomials are given by
To(x)=1
i(x)=x
T,(x)=2x> -1
T5(x) = 4x3 =3x
T, (x) =8x* —8x% +1

Ts(x) =16x° —20x> +5x

(4.13)

and are shown in Fig. 4.3

1.5

10—~

0.5-‘F _’“- /\ /’\ \ f’

_075_“\ ,I)t//{ . \ \ r. I]|
IRV AN A \
el NI AN a0
-1.0 -0.5 0 0.5 1.0

Fig. 4.3 The first six Tchebychev polynomials

After substituting Eq. (4.11) into Eq. (4.10) and taking (4.12) into account, the
system of equations (4.14) can be obtained, where the vector of coefficients
a presents the solution

1 xy 2x3-1 . . 2xT, ;(x0)-T,_2(xy) | 4o f(xp)
1 x 221 . . T, (x)-T, »(x) | @ F(xp)
= . (4.14)

Uox, g 262 =1 . . 24T, (X)) =Typ Gty | @1 | | Genmy)



88 4 Model Development

The interpolation points x; , which determine the zeros of T (x) in the interval
[-1, 1], form a triangular matrix called the experiment plan according to the zeros
of the Tchebychev polynomials. For the polynomials (4.13), we have

k=1 x =0
k=2, xy=—2/2, J2/2
k=3, x3=—3/2, 0, \3/2
k=4, x,=—n2-+2, U242, Un2—v2, Unf2evz D)
k=5 x5=—1/4y10+245, —1/4410-245,
0, 1/4410-2+/5, 17410+ 245

The cardinal functions in the zeros of the Tchebychev polynomials have the form

T, (x
Cr(x) = L) 16
(r = 5T (x) (4-16)
dx X=X[
for which the polynomial (4.10) can be presented as
n—1
T(x)= 2 fx)Cr(x) (4.17)
k=0

Fig. 4.4 shows the components of (4.17) for five exemplary measuring points,
which are determined by zeros of the fifth order polynomial and by measuring
data f(x;) equal 3, 5,2, 4, 3, respectively

[x,f(x)]:[—1/4\/10+2\/§, 3 —1/4410-245,5;, 0,2
174710-24/5, 4; 174410+ 245, 3}

On the grounds of well-known properties of orthogonal functions, it is the
advantage to use orthogonal polynomials in many cases of approximation. In the
interval [-1, 1], Tchebychev polynomials are orthogonal with the weight function

w (X)

W-1, 11(x) = (4.18)

for which we have
0 if nzm
1 dx
[T, ()T, (x) ==17 if n=m=0 (4.19)
-l 1=x" \z/2 if n=m=0
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6.0 1 f(%)Colx) 6.0 - f(x)Cy(x) 6.0 - f{x)Cax)
L L]
40 - 4.0 40 .
L L]
2.0 20 20
0 0 0
20 . — % 20 2.0 — : A
-15 10 -05 0 05 10 -1 <15 10 -05 0 05 10
6.0 - f(x3)Cs(x) 6.0 6.0 1 T(x)
40 - 40 - 50
» > 4.0 -
2.0 . 2.0
3.0
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20— 7777 20+ 7777 10+——T7 T
15 10 05 0 05 1.0 15 10 05 0 05 10 15 10 05 0 05 10

Fig. 4.4 Exemplary components of polynomial (4.18)

Assuming the interpolation points belong to the interval [a, b], they can be
transformed into the interval [—1, 1] using the following formula
v 2x—a-b
X =———
b—a

From (4.20), it can be easily noticed that shifted Tchebychev polynomials in the
interval [0, b] are presented by

T () =2(=142x/b)T}, (=14 2x/b) =T} _; (=1+2x/b)

To(x) =1 4.21)

i(x)=—1+2x/b
The polynomials (4.21) are orthogonal with the weight function

1

Wio, p1(X) = W 4.22)

A few shifted Tchebychev polynomials in the interval [0, b] are given by

(4.20)

To(x) =1

Ty(x)=—1+2x/b

T, (x)=1-8x/b+8x>/b>

Ty(x)=—1+18x/b—48x% /b* +32x />

T,(x)=1-32x/b+160x> /b> —256 x> /b +128 x* / b*

Ts(x) =—1+50x/b—400x2 /b% +1120 x> /b> 1280 x* /b* +512 x° /b

(4.23)
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4.3 Legendre Polynomials
In (4.1), let us replace the polynomial L(x) by Legendre polynomials P(x)
P(x) = agPy(x)+ a P (x)+ ay Py (x) + ...+ a,_ P,_; (x) (4.24)
For each measuring point x;, we have
P (x)=f(xy), k=1,2,.,n-1 (4.25)

The individual polynomials occurring in (4.24) can be determined with the use of
the recurrence formula

Pt (x) = ﬁ[(zk F1)xP(x)— k Py (0]

Py(x) =1 (4.26)
P(x)=x

Legendre polynomials are orthogonal in the interval [-1, 1] with the weight

function w(x) =1, and fulfill the following condition

1 0 if n#m

[Py()By(0)=9 2 .
| —— if n=m

(4.27)

Some of the initial Legendre polynomials in the interval [—1, 1] are given by

Py(x)=1
B(x)=x

1

Py(x) = 5<3x2 -1

Py(x) = %(5x3 ~3x) (4.28)
Py(x) = %(35;/‘ -30x2 +3)

Ps(x)= %(63x5 ~70x> +15x)

and are shown in Fig. 4.5.
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Pyx)
e | — k=3
| k=1 — — k=4
k=22 =vmnmw k=B
1.0 ;
| 1
-~ // .-’I[.
0.5—\ _ ;’

P _-
0.5 | -
|/ 4
‘/’ X
o171 1
10 05 0 05 1.0

Fig. 4.5 The first five Legendre polynomials

After substituting Eq. (4.25) into Eq. (4.24) and taking (4.26) into account, the
system of equations (4.29) can be obtained, where the vector of coefficients
a presents the solution

1 x %(3%2—1) .. ﬁ[(Zn—Z)xoPn_2(x0)—(n—2)Pn_3(x0)]

1 x %(3)512—1) .. ﬁ[(Zn—Z)xlPn_z(xl)—(n—Z)P,,_3(x1)]

Uty 2Ga’ =D - ——[2n=2x0 By (5y) — (1-2) By )]

- 2 n-l 1429
ag Sf(x0)
a f(xp)

ap-1 f(x,-1)
Replacing T} (x) in (4.16) by P, (x) of (4.26) gives

Py (x)

(x—xg )a Py (x)

X=Xk

Cr(x)=

(4.30)
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for which the polynomial (4.24) can be presented as
n—1
P(x) = kZOf(xk ) Cr(x) (43D
Fig. 4.6 shows the components of polynomial (4.31) for five exemplary measuring

points, which are determined by zeros of the fifth order polynomial and by
measuring data f(x;) equal 3, 5, 2, 4 and 3, respectively

5 2 5 2
=|—_.]/— _— N R — . 2.
[x, F (0] { \/9+63V70’ 3; \/9 6 V70, 5 0, 2

6.0 1 f(x)Cylx) 6.0 - 6.0 4 f(x:)Ca(x)
. 4-0 L]
4.0 4.0 *
20 - . .
2.0 0 2.0 -
2.0
0 0
4.0
20+ .0 2.0
15 -10 05 0 05 10 15 10 05 0 05 10 15 -10 05 0 05 10
6.0 | f(x3)Calx) 6.0 - flxy)Culx) 6.0 1 Plx)
L] L]
40 40 - . 40 -
2.0 .
2.0 - . 2.0 -
0
_— 0 0
X X X
-4.0 : e 2.0 : . 2.0 e '
15 1005 0 05 10 15 10 05 0 05 1.0 1.5 1.0 05 0 05 1.0

Fig. 4.6 Exemplary components of polynomial (4.31)

From (4.20), it can be noticed that shifted Legendre polynomials in the interval
[0, b] are presented by (4.32)
1 2x 2x 2x
P, =——|Qk+D)(-1+—)B,(-1+—) -k P _(-1+—
k+1(x) k+1[( )( b) k( b) k 1( b)}
Py(x)=1 4.32)

2x
P(x)=—1+=2
1(x) 5
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A few shifted Legendre polynomials in the interval [0, b] are given by

Ry(x)=1

P(x)=—1+2x/b

Py (x)=1-8x/b+18x> /b> —12x° /b

Py(x) =—16/9+16 x/b—188 x> /3 b +1160 x> /9b> — 400x* /3b* +160.x° /35>

Py(x)=—139/36+ 863/18b—4673x* /18b* +7310x° /9 b* ~14330x* 19 " (4.33)
+17360x° /9 b —3920x°/3 5% +1120x" /317

Py(x)=—1507/180 + 11677 x/90 b—27481x /30 b° + 34918 x° /9 b
—490324x* /45 b* + 21040 %/ b° —83368x° /3 b° + 23968 x” /b’
~12096 x° /6% + 2688 x° /b°

4.4 Hermite Polynomials

In each measuring point, Hermite polynomials H(x) satisfy the conditions related
to the individual measuring points and to the value of derivatives in these points

dH d
H(xp)=f(x), — () =—71(x) (4.34)
dx dx
The individual Hermite polynomials can be determined with the use of the

recurrence formula

H(x)=2xH (x)—2kH j;_; (x)
Hy(x)=1 (4.35)
H{(x)=2x, k=1,2,..,n—-1
Some of the initial Hermite polynomials are as follows
Hy(x)=1
Hi(x)=2x
Hy(x)=4x> -2
Hy(x)=8x" —12x (436)
H,(x)=16x*—48x> +12
Hs(x)=32x> —160x> +120x

and are shown in Fig. 4.7.
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Hi(x)
60 — k=0 i k=3
_____ k=1 = —_— k=4
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X
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Fig. 4.7 The first six Hermite polynomials

Hermite polynomial H(x) can be defined with a use of the cardinal functions
Cr (x) (4.8)

n—1
Hx) = "SIH, 0 f () + K (02 (0] 437)
k=0 dx
where
Hy(0) = G20 1= 21 € (= x)
k) =0 (X dx k(X WX = X (4.38)

K (x) = G2 (0)(x— xp)

It is easy to see that the functions H (x;) and K (x;) fulfill the following
relation

if i=k

d
g (x)=0 43
i itk k) (4.39)

1
Hk(xi)={0

d 1 if  i=k
dx k(x0) {O if  i#k k(i)
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2
Hermite polynomials are orthogonal with the weight function w(x) =¢™*
TH ) H. () _xzd 0 if m#n 441)
X X)e X = .
S mA V'mNr i m=n

Fig. 4.8 shows the components of polynomial (4.37) for five exemplary measuring
points

[x, f(0)]=IL3;2,5;3,2;4,4;5,3] and dif(x) =[12.3; =3.7;,-0.7; 3.3; —=9.7]
X

6.0 1 Flx)Colx) 6.0 - F(x,)Cy(x) 6.0 - Flx)Calx)
4.0 1| 40
2.0 4 2.0 -
0o 0 -
X X X
B R P PR T Ry S S s S ) e T o i R R SR PR

6.0 - F(x3)Cylx) 7.0 4 Hix)
¢ 6.0
4.0 .
5.0
2.0 4.0
3.0
0
2.0
X X
2.0 — 2.0 o 1.0

0 10 20 3.0 40 5.0 0 10 20 3.0 40 50 0 10 20 3.0 40 50

Fig. 4.8 Exemplary components of polynomial (4.36)

4.5 Cubic Splines

Cubic splines method is based on splitting the given interval into a collection of
subintervals and constructing different approximating polynomials S (x) at each
subinterval. We use such a cubic polynomial between each successive pair of
points, and the polynomial has the continuous first and second-order derivatives at
these points.

We have three types of cubic splines, and the selection depends on the value of

the second-order derivatives S3(xy) and  S,(x,) at the end-points xg

and x,,.
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1. The natural spline, for which the second-order derivatives at the end-
points equal zero, i.e. S((xp) =S, (x,)=0

2. The parabolic runout spline, for which the second-order derivatives at the
first and second point are equal, i.e. S3(xg)=S7(x;)#0. Regarding
the last and one before last point, the second-order derivatives are equal
and different then zero, i.e. S”(x,)=S"(x,_;)#0

3. The cubic runout spline, for which the second-order derivatives at the
end-points are different then zero and fulfill the following conditions

S0(x0) =287(x1)=S5(xy) and S"(x,) =28, _1(x,_1) = Sn_2(x,_2).
The general form of cubic polynomial is as follows
Se()=ap +by (x—x) + ¢ (x—x)% +di (x—x;)° (4.42)
For each measuring points x; we have
Se(x)=f(x;), k=0,1,...,n-1 (4.43)

where 7 is the number of measuring points

) | )1 )1 R o, N Fx,) x

Xa X Xz X Xpq X

Fig. 4.9 Cubic splines

For each point, except the first and the last point, the particular polynomials fulfill
the following conditions

Sk ()Ck) = Sk—l ()Ck) (444)
St (x) =S (x) (4.45)

ST (x) =St (x) (4.46)
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In order to determine unknown coefficients ay, by, ¢, d; let us use
Eqgs.(4.42—4.46). Thus we have

Si—1(xx)=

) 3 (4.47)
Ay + by (O = X))+ ¢ (g = X)) ™ + gy (O = X1)
and
Sr(x) =S 1(xp) =ai = f(xg) (4.48)
Denoting the difference between successive points by A
A= X — Xj—1 (449)
Eq. (4.47) becomes
Sk—l ()Ck ) =day_1+ bk—lA + Ck_1A2 + dk_1A3 =ap = f(xk) (4.50)
Taking Eq. (4.45) into consideration, we obtain
’ 2
Sk—1( ) =by—y + 204 (X = Xp—1) + 3y (X = Xp—1) (4.51)
and because
Si (xp) = by (4.52)
hence
by +2c,A+3d, A =by (4.53)
In a similar way, on the basis of Eq. (4.46) we have
S,:_l(xl-)=2ck_1 +6dk_1A (454)
S]:(xk)=2ck (455)
and
2Ck_1 + 6dk_1A = 2Ck (4.56)
hence
2Ck - 2Ck_1
d, ="K~ —Kk-1 (4.57)
k-1 6A
and
dy = 20k 41 =2¢, _ My — My (4.58)
6A 6A
where

2Ck = Mk (459)
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From Eq. (4.50), we obtain
by =%—A(dkA+ck) (4.60)

Taking the relations (4.48) and (4.58) into account in the formula (4.60), we get

bk:)’k+1A—)’k _AMk+1;'2Mk (4.61)

Substituting the relations (4.59) and (4.61) into Eq. (4.53), we obtain

6. .
M +4M iy +Mk+2:?[f () =2 o)+ f (x4

(4.62)
k=0,1,..,n-2
Eq. (4.62) can be represented by the following matrix equation
M 410 . .0000][My] [ feo)=2fG+fxp) ]
01 41 . .000 0| M FG)=2f () + f(x3)

0014 . .0000 M, p S(x)=2f(x3)+ f(x4)
e T e : (4.63)
A

0000 . . 410 0||M,_, .
0000 . . 1410|[M,, Fxp3) =2f Ce) + f ()
0000 . . 01 4 1] M, | L f(xp2) =2F o) + F(x) |

The solution of the above equations with respect to M,—M, enables to

determine the unknown coefficients of the polynomial (4.42) on the basis of Eqgs.
(4.48), (4.58), (4.59) and (4.61).

Eq. (4.63) can be reduced to the one of the three forms, in relation to the type of
splines i.e. the natural splines, the parabolic runout splines and the cubic runout
splines.

For the natural splines, on the basis of Egs. (4.55) and (4.59) we have

M =M, =0 (4.64)

hence, in the left hand side of Eq. (4.63), the first and last column of the matrix
can be eliminated and the equation can be rewritten to the form

(4100 . .00 0 0| M ] [ flxg)=2F(x) + f(xp)
410 . .0000|| M, S =2f(x2)+ f(x3)
01 41 . .000 0|| Mg Fx2)=2f (x3)+ f(xq)
=i (4.65)
) 0 .
0000 . . 4 0| |M,_4 )
0000 . .01 41||M,_, fxu3)=2f(x,0) + f(x,p)
0000 . . 001 4]|[M,| | o) = 2f () + f(x,) |
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Fig. 4.10 shows the natural spline. Implementing the condition (4.64) in effect
makes the cubic function outside the end-points pass into a straight line.

¥
s,
/™
I ',_
SDJI’ '\SJH
;f \ SfJ-Z/'“‘
" “Sﬂ-‘l
r. \.S* “\
o/ .
X
XID ‘;"1 )I‘IZ ka x‘n-l X‘n
Fig. 4.10 Natural spline
For the parabolic runout spline, for which
My=M, (4.66)
M,=M,_ (4.67)
Eq. (4.63) can be simplified to the following form
[5 100 . .00 0 0[] M ] [ f)=2fG) + f(x)
410 . .000 0| M, F)=2f(x)+ f(x3)
01 41 . .000 0| My ] F(x2) =2 (x3) + f(xq)
N A e . (4.68)
0000 . . 1410||m 2 .
0000 . .01 4 1||M,_, F(x3) = 2f (50) + f(Xy)
0000 . .00 1 5] |[M_| | fGu)-2fCD+f(x) |

Fig. 4.11 presents the parabolic runout spline. Implementing the condition (4.67)
and (4.68) in effect makes the cubic function outside the end-points pass into
a parabola.

For the cubic runout spline, we have

Mo =2M,-M, (4.69)

Mn = 2Mll—] - Mn_z (470)
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Fig. 4.11 Parabolic runout spline

4 Model Development

and now Eq. (4.63) takes the form

6 000 . . 000
410 . .000
o141 . .000
0000 4
0000 . .0 4
0000 . . 000

o] [ M ]
0| M,
0f| M
0 Mn—3
1 Mn—2
6] [ M, |

f(xg)=2f(xp)+ f(xp)
Jx)=2f(x) + f(x3)
F(x2)=2f(x3)+ f(xg)

f(xn—B) - 2f(xn—2) + f(xn—l)

L f(xn—Z)_zf(xn—l)+f(xn) i

4.71)

Fig. 4.12 presents the cubic runout spline, for which the cubic function outside of
the end-points does not pass into any other function

4
S,
/\ \
! .
! \
S ! }_SH P
I ) . )
! \ Sr:-2 / .\‘
_‘; ‘\ & ' Sn,'
\
(V4 '
L
L}
\
'
‘
\
i
x X
i { t | 1 t
Xo X4 Xz X Xpq Xy

Fig. 4.12 Cubic runout spline
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4.6 The Least-Squares Approximation

The approximation of the measuring data by means of Lagrange, Tchebyshev,
Legendre and Hermite polynomials leads to the derivation of a polynomial of the
order equal to the number of approximation points. For a large number of such
points, the derived polynomial would be then of a very high order. In such
a situation, it is better in many cases to construct a relatively low order
polynomial, which is passing close to the measuring data instead of cutting across
them. In the method of the least-squares approximation, the polynomial is such
that the sum of squares of the differences between the ordinates of the
approximation line and the measuring points is at minimum

2

0[f<xk)—Q(xk)] = min. (4.72)

M=

k

Let the polynomial of the degree m < n have the form
S, i
0(x)= Y a;x 4.73)
i=0

For a minimum (4.72) with respect to the parameters a; for i=0,1,...,m, it is
necessary that

00 90w _  _30w) _

0
day day da,, (4.74)
Let us present Eq. (4.72) as follows
n 2 n n 2 A
200 =2 200 )f () + 20(x;)” = min. (4.75)
k=0 k=0 k=0

Substituting the expression for Q(x;) (4.73) into the left-hand side of (4.75)
gives

2
S 0g) -2 z( aix,i)f(xkﬂ 3 (Zaix,iJ = min. (4.76)
k=0 k=0\i=0 k=0 \i=0

A simple calculation of the derivatives, according to (4.74), leads (4.76) to the
following system of equations denoted in the normal form
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XA=Y
where
[ n no no, n 7
by xl(c) 2 Xk 2 X, >
k=0 k=0 k=0 k=0
n n n n
lelc 3 x]% Zx?) D xm+l
X=| k=0 k=0 k=0 k=0
. . o -
ler(n ler(nﬂ ler(n+2 ) legm
k=0 k=0 k=0 k=0 | (4.77)
- 0_
S 2 f (o )xg
a k=0
Z 1
4 2 f (g )xk
A= Y =| k=0
a n ’
- > f o)y
Lk=0 i
a solution of which is given by
A=xX"x1"'xTy (4.78)

Note that the success of the approximation developed by the least squares method
depends very much on the accuracy of all intermediate calculations. For this
reason, the calculations should be carried out with maximum possible precision
and the necessary rounding up should be limited to a minimum.

4.7 Relations between Coefficients of the Models

Let coefficients a; of the polynomial M (x)

n
M) = Yapxt (4.79)
k=0
be equal to
—iA 4.80
T =7 (4.80)

Let additionally A, represents Maclaurin series coefficients, hence they are the

successive derivatives of M (x) for x=0
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dM (x) d*M(x)
A()=M(x)|x:0’ A =T|x:0, A2=—2|x:o,
' (4.81)
A, = d M(x)|
vy A = |x=0
ral

The mutual relations between the coefficients A; (4.81) and the coefficients

ag,ay,...,a,_1 and by, by,...,b,, of a Laplace transfer function

_Y(s) _b,s" +bm_1sm_1 +...+bs+by

K(s) = (4.82)
UGs)  s"+a, 1" +..+as+a
or the state equation
x(1) = Ax(1)+Bu(z), x(0)=0
(4.83)
y(1) = Cx(1)
where x(¢)is the state vector, A, B and C are the real matrices of corresponding
dimensions
0 1 0 . 0 0
0 0o 1 . 0 0
A= . S B=|.| C=[p, b . . b,] (4.84)
0 0 0 . 1
—-ay —a; . . —a, 1

are given by the following matrix equation

- S -1 -

b, 10000 0 0 . 0 0 Ay

By 0100 0| -4 0 . 0 0 A
00100 | -4 -4 . 0 0 A,

. 00010 . . o

bo |_J\0 000 1) (-4 45 . -4 0 . 4.85)

a,_ 0000 0y (-A_ .. -4 -4

a, 5 00000 — A, —4, -4
00000
00000

Lag | 00000 (4,5 . . =4, -A_)| |Ap]

For the first three values of n, the equation (4.85) is reduced to the following
form:
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for n=1

for n=2

and for n=3

4 Model Development

RN 39
ap] [0 -Ay] [ A4

The reverse relation is given by Eq. 4.89.

| A2yt |

1
ap-1

()

b1 1o o 074
h|_[001 =4 0 | |4 87
al 100 -4 -4 |4
a| 10 0 —A —A | | A
100 0 0 0 A
010 -4 0 0|4
001 -4 -4 0 | |4 458)
000 —A -4 -A| |4
000 A —Ay —Al| |4
0 0 0 —A; —Ay —Ay| |45
0o 0 0 - 0 0 0]Tbn,]
0 0 - 0 0 0| |b,
apy 1 0 - 0 0 0| [b,,
(4.89)
a ay az - 0 0 0 by
ay a ap - 1 0 O 0
0 ay a - a, 1 0
0 0 ay - apo ap1 1| | 0 |

It permits to calculate the coefficients Ay, A, ..., Ay, _; of the Maclaurin series

having knowledge of parameters ay, ay,....a,_1, by, by,....b,,.

Note that the subsequent coefficients of the series Ay,,, Ay 415-.., Ap,40, Of the

first column in equation (4.89), are expressed by the coefficients Ay, Ay, ..., Ay,

preceding them. The relations between the discussed coefficients are shown below
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for n=1
Ay —4
A3 —A2
A4 = —A3 a, (4.90)
for n=2
Ay -A; —A
As —-Ay A
a
A6 = _AS —A4 |: 1:| (491)
ap
and for n =3
Ag] [-As A -4
A7 |46 —As A @
AS = —A7 _A6 _AS ay (492)
o

From (4.80)—(4.92) it can be seen that 2n initial coefficients of the power series
expansion contain all the information describing polynomial M (x).

It is important to note that the application of the Maclaurin series allow models
development which is particularly useful in the case of systems operating in
dynamic states. That is because the series refers to the functions defined near the
origin.

4.8 Standard Nets

When an object is under non-parametric identification procedure, in many cases it
is essential to know the order of its model.

During the identification procedure, we use a wide range of different methods
selecting these, which are most suitable for the type of an object under
identification. The lack of any universal identification method on the one hand,
and a large variety of objects on the other implicate serious problems with
choosing the correct method of identification. Thus a great amount of afford is
required to obtain a correct final effect.

As an example, let us consider the three most common groups of objects and
the methods applied during the identification process



106 4 Model Development

1. Inertial objects, which are identified through the analysis of the step-response
ordinates

2. A class of oscillatory objects, for which a number of methods is applied, like
the two consecutive extremes method, readings of the step-response ordinates,
the method of apparent move of zeros and poles of a transfer function

3. Multi-inertial objects of the order denoted by the integer or fractions. These
are identified either through the analysis of the initial interval of the step-
response or by means of the finite difference method with the use of the
auxiliary function to determine a rank and type of inertia. Using one of these
two methods, it is possible to reduce the transfer function of multi-inertial
objects to the Strejc model. The latter is particularly useful to present object
dynamics with step characteristics increasing monotonically.

Summarizing, each group of objects is identified in a different way. A number
of various methods can be used for this aim. In the following pages, we present
the universal solution, to some degree, of the parametric identification problem. It
is based on the standard nets method and computer math-programs like
MATLAB, Maple, MathCad and LabVIEW.

The central point of the method is a comparison of identification nets. The
standard identification nets are compared with the identification net of an object
under modelling. If initial parts of the nets characteristics are compatible, it
permits to determine the type of the object model. It corresponds with the model,
for which the standard identification net has been selected.

The standard identification nets are determined most often for the following 13
models presented below by the formulae (4.93) —(4.105)

=t (4.93)
K=l
n k
K(s)= _1_11(1+—’ST_)(1+ 5T, 1) (4.94)
i L (4.95)
ko=l
i et (4.96)
K(s) i];ll (1+sTl»)(l e ")
K(s)= [T—NisT (4.97)
i=1(1+sT;)
1+ %s
K() =g (4.98)
-— .
S—z + 28 s+1

@y By
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k
w0y
K(s)=— (4.99)
S S
S +2f——+1
o) o)
K(s)=—L (4.100)
N
K(s)=—— 1 (4.101)
ST, (1+Tss)
K(s)=sT (4.102)
S
K(s)=—— 4.103
©=7 s (4.103)
K= Zk . (4.104)
(l+Ts)[S2+2ﬂs+l '
Wy Wy
k _ T
K(S)=—_n, T=— (4.105)
(1+sT) n

Step-responses are used for the development of standard identification nets, and
for all listed models, they can be easily obtained applying the inverse Laplace
transform. It is only the model (4.105), which may produce some difficulties. Its
step-response is

k
ht)= £'| ——— (4.106)
s+sT)"
and in the time-domain is
n 1 -1 (—t
h(t)=kj1- Y —————1" exp T) 4.107)
[ m=1 7" (m ~1)! \ T

For a fractional n, this way of calculations is not possible. However, in such
acase, the response Ah(f) can be determined using Gamma Euler functions

I'(n)and T'(n,¢/T). Hence, we have

(4.108)

h(t)zk(l_l“(n,t/T)J

T(n)



108 4 Model Development

where
T(n) = [¢" e di (4.109)
0
and
T(n,t/T)= Tin_le_tdt (4.110)
tiT

The standard identification net is obtained through the transform of A(¢) response
using the parametric equations (4.111) and (4.112),

X() = f,(0(1), ¢t/ a)) (4.111)
Y(0) = f,(9(0), 9(t/ a)) (4.112)

The coordinates X(¢) (4.111) and Y(¢) (4.112) are calculated using any of the
three algorithms presented by the formulae (4.113) —(4.115).

$n ()=, (t/a)

X(1) = w Y() = : (4.113)

or
X“):fo{fi Y0 = lpg 1 a) @.11)

and
X () = o) —¢(t/a) Y(t) = ¢(t)+¢(t/a)2 @)

(,/¢(t/a)+,/¢(t))2+c (1/¢(t/a)+1/¢(t)) +c
where

_ @)~ h(0) 4.116
0= o) — (o) (1o
ot/ a) = "D RO (4.117)

h(=) = h(0)

In Egs. (4.113)—(4.127), a is the parameter related to a number of samples of the
digitized step-response A(¢). The optimum solution can be obtained for a =2.

The infinitesimal ¢ € R protects the denominator from being equal zero.

It is convenient to group the standard identification nets according the class of
objects: multi-inertial, multi-inertial with a delay and oscillatory nets.

Fig. 4.13 and Fig. 4.14 show the initial parts of exemplary families of the
standard identification nets, for two models (4.99) and (4.105). They are obtained
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through the identification algorithm (4.113) for k=1, @y =1 and S = 0.1, 0.3,

0.5, 0.7, 0.9, re[0,15]

for the model (4.99), and for a=2, k=1, T =1,

n=1,2,..,5 te]0,15] for the model (4.105).

0.3

0.2

0.1 +

Yp(t)

Xg(t)

0.1 0.3 0.5

Fig. 4.13 Family of standard identification nets for model (4.99) a=2, k=1, @) =1,

te[0,15]

Yit)

3 3 33 3
w w omwonwon
- N W A O

X0

T ' I ! T
01 03 0.5

Fig. 4.14 Family of standard identification nets for model (4.105), a=2, k=1, T =1,

te[0,15]

The construction of nets Fig. 4.13 and Fig. 4.14 is based on measurements and
data of step-responses. The latter can easily be transformed into identification nets
using the formulae (4.113)—(4.115). The whole process can be carried out fully
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automatically through the application of the measuring system shown in Fig.1.1,
and additionally supported by special software tools for measurement and control.
These requirements are satisfied in the best way by LabVIEW software.

For inertial object of class (4.105), it is practically convenient to apply the
in Fig. 4.15. This way allows for an easy
estimation of the fractional order of inertia. For n=1,2,...,5, such a graph is

graph max(X, (¢),Y,(t)) shown

shown in Fig.4.16.
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Fig. 4.15 Maximum points for model (4.105)
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Fig. 4.16 Maximum of standard identification nets n— inertia order of model (4.105)
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4.9 Levenberg-Marquardt Algorithm

In this subchapter, we will present Levenberg-Marquardt optimization algorithm
and discuss the potential of using it for identification. Application of this
algorithm has many advantages in comparison with other optimization methods. It
combines the steepest descent method with Gauss-Newton method, and operates
correctly in search for parameters both far from and close to the optimum one. In
the first situation the algorithm of the linear model of steepest descent is used, and
in the second one-the squared convergence. The fast convergence is the additional
advantage of the algorithm.

Levenberg-Marquardt algorithm is the iterative method, in which the vector of
unknown parameters, for the step k +1, is determined by the equation

Zpor =25 (37 (24, 03 2, ) + 17137 (2, 0082, %) (4.118)

with the approximation error

£(2,%) = Te(@, %) (4.119)
i=1
where
Y1 —#(z1,%)
(2, %) = Y2 = #(22.%) (4.120)
Y — (2, %)
_aE(Zk,xl) as(zk,xl) as(zk,xl)_
8z1 822 . aZm
as(zk,xz) as(zk,xz) 8€(zk,x2)
Jaz.n=|" o, 0z o @.121)

de(zy.x,) 0e(zy.x,)  0e(zy.x,)
dz; 0z, . 9z,

The notations in (4.118) —(4.121) are as follows: k=1,2,..., p, p—a number
of iteration loops, J.xm(Zj,x)—Jacobian matrix, Ly, —unit matrix, 4, — scalar,
X =[x,Xp,...,x, ] —vector of input parameters, y =[y,y;,...,¥,]— vector of

output parameters, y =®(z,x)— predicted model,z =[z,z5,..., z,,,] — unknown
parameters.
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Levenberg-Marquardt algorithm is used for computation in two steps:

Step 1
the initial values of the vector z

— assume the initial value of the coefficient 1, (e.g. u;=0.1)
— solve the matrix equations (4.120) and (4.121)
— calculate the value of error (4.119)

— determine the parameters of the vector z; ,;, according to (4.118).

Step 2 and further steps

— update the values of the parameter vector for the model y

— solve the matrix equations (4.120), (4.121) and (4.118)

— calculate the value of error (4.119)

— compare the values of error (4.119) for the step k and the step k —1.

If the result is &(z;,x) > £(z;_;,x), multiply i, by the specified value A€ R
(e.g. A=10) and return to the step 2. If the result is £(z;,x) < &(z;_;,x) divide

M by the value A and return to the step 1.

If in the consecutive steps a decreasing in the value of error (4.119) is very
small and insignificant, we then finish the iteration process. We fix x; =0 and
determine the final result for the parameter vector.

If the value of coefficient g 1is high, it means that the solution is not

satisfactory. The values of the parameter vector z are not optimum ones, and the
value of error (4.119) is not at minimum level. At this point it can be assumed

JT(zk,x)J(zk,x) <<y 1 (4.122)
and this leads to the steepest descent method, for which we have
1
Zpp =2 —ﬂ—JT(Zk,x)e(zk,x) (4.123)
k

If the value of the coefficient g is small, it means that the values of the vector

z parameters are close to the optimum solution,
then

JT(zk,x)J(zk,x) >> 1 (4.124)
and Levenberg-Marquardt algorithm is reduced to Gauss-Newton method
_, T T —14T
Ziy =2 —[J (2, 025, 0] T (24, 0)E(2, X) (4.125)

The selection of the coefficient values ; and A4 depends on assumed programs
and selected software.
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4.9.1 Implementing Levenberg-Marquardt Algorithm Using
LabVIEW

It is convenient to deploy Levenberg-Marquardt algorithm with LabVIEW
software. Fig. 4.17. presents the block diagram of the measuring system for
determining any characteristics of investigated object in this program
Measurement data given by vectors x and y are sent to the measuring system
through its analogue output and are recorded into the text files (Write to
Measurement Filel and Write to Measurement File2, respectively). These data are
next in the Curve Fitting block approximated by means of Levenberg-Marquardt
algorithm. Fig. 4.18. presents the diagram of the general data approximation
system, while Fig. 4.19. illustrates the Curve Fitting approximation block adapted
for the exemplary approximation of frequency characteristic of the third-order
system (in Non-linear model window).

DAQ card Amplitude Write to A

| Frequency | | Signal
value of signal generator analog output t t file
4123 ?
5 1! . .
E DAQ Assistant Amplitude and i
value of signal Simulate Signal . . Level Write To

LA

LA AR

v

2 = Measurement
Signals File

Sine
¥

el |0utput ampll‘:udel » 7
Ly IWaveformGraphI - - _M’.gfe_‘?..'i_. s S%@[s
3 i ~
Amplitude ?E s—
measurement e | IUnder test signall I mpiuae:
- - DAQ card » [ =

Write to analog output » H |
measurement file J- EIEN;
» b > ¥ M

» »)
Amplitude and =" L Select Signals £ L
pLevel : . < » v fg Amplitude and
I » Level
Measurements4 » p Ly Amplitude of
» i Measurements3
» Signals » » DAQ As;utantz under test signal L Slinals
Positive Peak PF Write To ; - Hg e
v Measurement Reference signal '@ ﬁ%a_
|
Amplitude of L File2 » ..! C | Soste]
: > v —
reference signal Si \fa” » If: Waveform Graph 2 'stop
v J B |

Fig. 4.17 Diagram of measuring system for determination of frequency characteristics

The approximation process is carried out for the initial value of parameters
(Initial guesses) and number of iteration (Maximum iterations). Windows Results
presents the value of calculated parameters and the value of mean square error
(MSE).
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Fig. 4.18 Diagram of measuring system for approximation of frequency characteristics in
LabVIEW
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Fig. 4.19 Curve Fitting block (Fig. 4.18) for approximation of third-order system
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4.10 Black-Box Identification

In the black-box identification, the experiment is carried out using discrete
measurement data. From among preset parametric models, being a good match for
these data, the desired model structure is selected. The discrete model of the
identified object, in the form of the transfer function, is taken under consideration

by +biz  +.+b, 2"
K(g)=0"2E o (4.126)
ag+aiz +..+z "

or equivalent one

A(z7"ylk] =B(z Hulk] (4.127)
where

AGC Y =ag+az " 4" (4.128)
B(z ) =by+bz  +.4b, 2" (4.129)
7 "xlk]=xlk-n], neN (4.130)

for which a white noise e[k] is added and the parametric model of ARX type
(Auto Regressive with eXogenous input) is formulated.

l elk]

ulk] } + ylK
——*| G(q)

Fig. 4.20 ARX model, v(¢) — noise

Now we have

Az7ylk] =B(z""ulk]+e[k] (4.131)
and from it
-1
y[k]=B(Z ])u[k]+ ! —elk] (4.132)
A(z) A(z)
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where in (4.127)—(4.132) u[k], y[k] are the input and output signals at the

discrete time k, x[k] is any measurement data in k and 2 !is delayed at one.
Denoting

H(z )=

A (4.133)

we finally have
ylk1=K(z Hulk]+ H(z Delk] (4.134)

Eq. (4.134) describes the ARX model shown in Fig. 4.20. Identification of the
ARX model is based on the following assumptions

— the object K(z_l) is asymptotically stable

— the filter H(z_1 ) is linear, asymptotically stable, minimum-phase and invertible

— the input signal variation u[k] is sufficiently large
and leads to a simultaneous solution of two following tasks

— identification of the object, of which the transfer function is K(z_l)

— identification of the filter H(q_l).

Let us present the equation (4.132) as follows

ylk]=1z[k] ® +e[k] (4.135)
where
o! =[ay, ...a, 1,1, by,...b, ] (4.137)

Let us also denote by p the number of activating signals. Then Eq. (4.135) takes
the final form

yolk] Zolk] eplk]
. = . @+ . (4.138)
vpalkl| | zpalkl| | e,k
As the result the identification task is reduced to the determination of the estimates
of model parameters

A

® = O(n, m, uk],y[k]) (4.139)
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Apart of the ARX model, there are also other structures applied quite often:

— AR model described by the equation
Az Hylk1=0 (4.140)
— ARMAX model described by

Az Hylk1=B(z ulk —nk]+C(z elk] (4.141)

— Box-Jenkins model

-1 -1
ik =B Dy gy SED g (4.142)
F(z) D(z™)
where
Ciz M=co+ez " +... (4.143)
Dz =dy+diz +... (4.144)
Fz = fy+ fiz " +.. (4.145)

and J is a number of delaying steps between the input and output.

4.11 Implementing Black-Box Identification Using MATLAB

One of the models listed in System Identification Toolbox library of MATLAB
software is the model

-1 -1
Ayl =2 Dufk ]+ LD o] (4.146)
F(g ) D(g )

Its structure is shown in Fig. 4.21. The models (4.132) and (4.140) —(4.142) are
the special cases of (4.146).

We apply the black-box method to the ARX model and the virtual object
defined by the discrete Laplace transform. Using MATLAB, the identification
experiment is carried out in the following steps:

In the first step the measuring system in Simulink program is set up— Fig. 4.22.

Its Subsystem block is shown in Fig. 4.23. The Sign block executes y = sign(x)

relation while Band-Limited White Noise is the white noise generator. Generation
method of this signal is described in the menu under Seed. The block Transfer Fcn
represents the digital transfer function of identified object.
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e[k]
c(q")
D(g")
v[k]
ufk] B(g) + ®+ y[K]

Flg')

L Aq")

Fig. 4.21 Model structure applied in Identification Toolbox library

Scope

Band limited
Sign
To workspace

white noise

@ - E | Subsyster

v

Fig. 4.22 Measuring system in Simulink program

Band limited
white noise Gain

Transfer Fen Add
L3+
O— = 3]
Fig. 4.23 Internal structure of Subsystem block
In the second step by means of To Workspace block, measured data are

transferred and read into MATLAB working environment, and recorded as the Z;
matrix. The vectors u[k] and y[k] are used during identification process
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yl[k] M][k[

Z,= (4.147)

Ymlk]l u, (k]
As an example, obtained through the command
>> idplot(Z,)

for den =[1 4.2 0.49] and Seed =[1 2 3 1 2], data of the first measured series
of 300 samples, are shown in Fig. 4.24.

ylk]
0.1

0.05

-0.05

015 50 100 150 200 250 300 350

ulk]
05|

-0.5

0 50 100 150 200 250 300 350
Matrix Z1

Fig. 4.24 Examples of data from second measuring series

The second series of measurements is used for a verification of the given
model, and is recorded in Z, matrix. However, the setup of Seed block must be
changed before starting these measurements. Examples of measurement results Z,
for Seed=[4 3 4 1 2] are shown in Fig. 4.25.

In the third step errors generated by noise and random trends are removed.
Completing this task is possible using the frend function, for which

>> 7 = dtrend(Zl)
and
>> Z22 = dtrend(Zz)

are corresponding matrices of processed data contained in Z; and Z,. The input
and output functions, obtained through the applied dtrend function, are shown in
Fig. 4.26 and Fig. 4.27.
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Fig. 4.25 Examples of data from second measured series

0
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0.5

-0.5
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dtrend(Z,)

Fig. 4.26 Input and output functions obtained through dtrend(Z,)
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[
0,15ry{ ]
0.1}

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
dtrend(Z,)

Fig. 4.27 Input and output functions obtained through dtrend(Z,)

The step four refers to the determination of model parameters. The structure of
the model is determined using Z;; matrix, and parameters are estimated through
the least squares estimation method. The model ARX is identified by means of the
function

>>th =arx(Zy1, @)

where the initial values of the vector @ =[n m &] are fixed as [1 1 1]. The

model structure and parameters, the quality coefficient applied and the number of
inputs and outputs of model is displayed in the matrix th. This can be achieved
using the instruction

>> present(th)

The last step refers to the model verification. A response of the model is compared
with a response of the identified object. The measured data, recorded in the Z,,
matrix, is used for it. The comparison is expressed through the value of Fir
coefficient, and the comparing function is

>> compare(Z,,, th)

If the value of coefficient is not satisfying the requirements, the values of vector
@ parameters should be changed. Examples of the model verification for

¢o=[11 1] and ¢ =[3 3 1] are shown in Fig. 4.28 and Fig.4.29.
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Fig. 4.28 Model [1, 1, 1] verification
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0.04
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Measured Output
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300 350

Fig. 4.29 Model [3, 3, 1] verification

In MATLAB is also available the function which allows automatically
calculate Fit coefficient for models defined by means of vector @. It is

>> arxstruc(Zyy, s, @ max)
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where matrix @, is defined as follows

>> Qax = struc (1+npy, 1+ mp,y, 1+5max)

and
" | _
1 1
Prax = 1 1 3 (4.148)
| "max "max 5max ]

4.12 Monte Carlo Method

Using the Monte Carlo method, it can be noticed that good results of parameter
identification can be achieved at the relatively small amount of work required. The
Monte Carlo performance will be shown using data obtained from the measuring
system of Fig. 4.17 as an example. A few steps of the procedure can be
distinguished.

At first, using data from measurements and our intuition, we decide and select
values of the parameters’ vector

W=l[q,a;,...,a,] (4.149)
of the assumed model
Y(x)=f(x,W) (4.150)
with the defined estimate-error

W6=[a1i5],a2i52,...,a i5n] (4.151)

n

In the second step, we select and choose a generator of pseudorandom numbers.
The vector Wo will be selected at random for the intervals defined by error-

margins 6y,0,,...,0, (see 4.151). The user determines the number of samples.

Usually, it is within the interval K € (1 0% - 106).

If the MathCad software is used, the function runif can be quoted as an example
of sampling process discussed above. The function generates pseudorandom
numbers of the uniform distribution. The way to use it is shown below

a = runif (K,—0,+ 0) (4.152)
During the third step, the matrix ® is determined for the discrete values Y (x).

The values Y(x) are calculated for parameters of the vector Wé and for the

i —th value of the vector of successive measuring points
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X=(x1,X3,X3,.0s Xpp,) (4.153)
during the k —th sampling

N1 Yo .- hy - hg

o1 Yoo . Y . hyg
P = ’ ’ ’ ’ (4.154)
Ym,l Ym,2 . Ym,k . Ym,K

where k=1,2, ..., K, i=1,2,..., m, m—the number of measuring points.

During the fourth step, the matrix A of model error values is calculated. It is
determined by subtracting the vector Y from the consecutive columns of the
matrix @, where the vector Y is given by

T

Y =035 9500 ) (4.156)
where the vector of measuring data Y corresponds to X.
i-m Ya-»m - Yge=n - Hg—-y
. Hi=y2 Yao=y2 - You=y2 - Hhx—» @.157)

LYm,l_ym Ym,2_ym . Ym,k_ym . Ym,K_me

In the next step, the least-squares method is used and the vector S is determined.
The vector S is the sum of squared errors of each column of the matrix A

S=Z@ﬂ (4.158)

Finally, during the last step the smallest value of the vector S is searched for.
The parameters of model related to this smallest value are assumed to be the
optimal ones. The corresponding number of the sampling is also established.
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Chapter 5
Mapping Error

Mapping error of models can easily be determined, if some initial information is
given, like mathematical description of models, an input signal and an error
criterion. Things are more complicated, when we consider object models operating
in the dynamic mode. Then we deal with signals, which cannot be determined and
their shapes cannot be predicted in advance.

As it is impossible to analyse the full range of all possible dynamic input
signals, we have to narrow the number of signals to be considered. The immediate
question is about criteria of signal selection, i.e. which signals should be used to
determine mapping errors for systems with dynamic input signals of unknown
both-shape and spectral distribution.

The answer lies in the concept of approaching the problem in a different way.
Instead of selecting a special group of signals, we will find out the one, which will
represent all signals of our interest. It is the signal generating errors of maximum
value. Any other signal of any shape will generate smaller, or equal, error. This
way all possible input signals to a real object will be included in this special one.

The existence and availability of signals maximizing both the integral square
error and the absolute value of error are discussed, and the solutions are presented
in this chapter. Constrains imposed on the input signal are also considered. These
constraints refer to magnitude as well as to maximum rate of signal change. The
last constraint is applied in order to match the dynamic properties of the signal to
the dynamic properties of the object.

5.1 General Assumption

Let the mathematical model of a object be given by the state equation

%)= A, x()+But)  x,(0)=0

(5.1
T
Ym (1) = Gy x(1)
and the object, which is its reference, be given by a similar equation
X)) =A,x(t)+B,u®) x,(0)=0 (5.2)

v, (1) =CLx(r)
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Let us introduce a new state equation
x(t) = Ax(t) +Bu(t)

¥(0) =T x(t) (53)

in which
REAV A, 0 | B, | G,
X(I)_Lm(f)} A—{ 0 A,J B —{Bm} C—Lcm} 5.4

where in (5.1)—(5.4) u(t) and y(¢f) are the input and output respectively,
A,B,C are the real matrices of corresponding dimensions.

5.2 Signals Maximizing the Integral Square Error

5.2.1 Existence and Availability of Signals with Two
Constraints

Let us assume that U is the set of signals u(¢#) piecewise continuous over the

interval [0,T], and the error y(¢) is expressed by inner product

I(u)=zy2(t)dt=(Ku,Ku) uelU (5.5)
where
Ku=y(t)= j)k(t ~T)u(r)dt (5.6)
and
k(t)=CTeA'B (5.7)

Let us consider the signal ~e U and let the following condition be fulfilled
VO<b<c<T JheU: supphclb,c] (5.8)
and the positive square functional
I(h)>0 (5.9)

Let us define the following set U of signals with imposed constraints on the
magnitude a and the rate of change o

A={u@eU:lu@®)|<a, i, (1)<, li_t)I<P, te[0,T]} (5.10)
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where u,(r) and u_(¢f) are increasing and decreasing derivatives of u(r)

respectively.
Let uy(¢t)e U fulfills the condition

I(ug) =sup{l(u): ue U}
then

Theorem

Vte[0,T] lug(®)l=a or lug, (D)1= or luy_(1)1=70

Proof
Suppose that (5.12) is not true. Then

de>0, d0<b<c<T

such, that
lug()Isa—g, lug, (DISD-¢€, luy_(1)ISP—¢, te (b,c)

Let us choose % according to (5.8)

supp h < [b,c], I1(h)>0
then 36 >0 and for small d € R, say de (-3, J) is

ug+dhe A, Vde (-9, 9)
and from the optimal condition u(¢) it is evident that
I(ug) 2 1(ug + dh)
hence
I(ug) 2 I(ug) + d*1(h) +2d(Kug, Kh), d € (=6,5)

and

02 d?I(h)+2d(Kuy, Kh), de (~6,6)

(.11

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

However, the last inequality will never be fulfilled for I(h) >0, d € (-J,0). So,

from this contradiction it is obvious that I(uy) can only fulfill the condition

(5.11), if the input signal u(¢) reaches one of the constraints given in (5.12).

Corollary

The proof presented above reduces shapes of the signals u(¢) to triangles or

trapezoids, if constraints are imposed simultaneously on the magnitude and rate of
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change. It means that the signals uq(¢) can only take the form of triangles with the
slope inclination |1 L@OI1=2 or lug_(t) 1=, or of trapezoids with the slopes
lug, (1) 1= luy_(¢)|=7 and the magnitude of a. Carrying out the proof in the

identical way, it can be shown that if only one of the constraints is imposed on the
signal, either on the magnitude a or on the rate of change o, then the functional

I(uy) reaches maximum, if the signal reaches this constraint over the interval
[0, T1.
If the only constraint imposed on the signal u(¢) is the magnitude constraint,

then it is of “bang-bang” type and it is possible to determine its switching
moments. Below, we will present the analytical solution for determining such
a signal.

5.2.2 Signals with Constraint on Magnitude

If the only constraint applied to the input signal is the constraint of magnitude the
problem is limited to determining its switching instants only. In order to determine
these switchings, let us consider the equation (5.5), which can be presented as
follows

1) = (Ku, Ku)=(K " Ku,u) (5.20)

where the operator K " is the conjugate of K

T T
(K Ku,u) = [k(t 1) [k(r=V)u(W)dvdT (5.21)
t 0
Let the signals u€ U be limited in magnitude

lu@)l<a  O<ac<l (5.22)

From the condition of optimality (5.11), it is evident that

(al(u)
ou

uy u—uojSO (5.23)

ol (u)

u

Having computed the derivative

ug considering (5.20) and performing

simple transformations (5.23) yields

(K" Kug,u) < (K" Kug,ug) (5.24)
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in which the right-hand side presents the maximum. Left-hand side of the formula
(5.24) reaches maximum, making both sides equal, if a signal with a maximum
permissible magnitude

lug(t)l=a (5.25)
has the form
u(t) = ug (1) = sign[K Kug(1)] (5.26)

After considering (5.21), we finally obtain

T
ug(t) = asign| [k(t—1) ?k(z’—v)uo(v)dv dr} (5.27)
0

t

The maximum value max /(u) generated by the signal u(¢) is

T TT
I(ug) = [| K Kug() 1dt = a® || [k(z 1) fk(r—v)uo(v)dvdﬂdt (5.28)
0 0t 0

5.2.3 Algorithm for Determining Signals Maximizing the
Integral Square Error

From the formula (5.27), it comes that u(¢) is a signal of the “bang-bang” type,
with maximum magnitude assuming the value of a=+1 or a=-1 by virtue of
(5.25), and with the switching instants #f,t,,...,t, corresponding to the
consecutive i =1,2,...,n zeros of the function, occurring under the sign mark in
the formula (5.27). In order to determine these instants, let us assume that the first
switching of the signal u,(#) occurs from +1 to —1. It means that during the first
time-interval of 0 <t <1, the signal uy(r)=+1 Let us also assume that we will
search for n switchings over the interval [0, T]. On the basis of the formula
(5.27), we can write n equations with £, t,,...,t, as variables for those
assumptions. It can be easily seen that the equations are described by the
following relation

n 141 / Im+1
Y [k(t—t;) X (1) [k(z-v)dvdr=0 i=1,2,..n (5.29)
l=itl m=0 Im

where 1, =0, t,,1 =T, t,,1 =7 for m=1[, n— number of switchings.

Solution of system equations (5.29) with respect to t, t,,....t, gives the

n

required switchings instants of the signal u(z).
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Between those instants, depending on the interval ¢ <t;, {; <t <t,,..., 1, <t <T,

function K*Kuo(t, f,...,t,) In (5.28) is determined by the system of n+1
following relations

n L1+l
K Kug(t, 1), ty,en 1) = Y [k(T—1) z( 1)'” jk(r v)dvdr
I=i-1 f m=0 Im (5.30)
i=1,2,...n+1

where ¢, =t for [=i-1.
The value I(ug) is determined by the sum of modules, which is determined by

the formula (5.30) over all n+1 intervals

1
Hup="51 % T k- z " "fre—v)avdr (531)

i=l I=i-1 y m= tm

Exemplary equations for n=3 switching instants in ¢, ¢, and ¢3 resulting

from formulae (5.29) and (5.30) are as follows:
From (5.29), we have three equations

jk(T tl){jk(f Vdv — jk(r v)dv}dr

1 |

3 | ¥) T
+ [k(z—1)| [k(z=v)dv—[ k(t—v)dv+ [k(T—v)dv |dT (5.32)
t 0 1 t

T 1 tn 3 7
+ jk(T—tl){jk(T—v)dv—j k(t—v)dv+ [ k(t—v)dv— jk(T—v)dv}deO
13 0 1 1 13

3 1 n T
jk(z’—tz){jk(r—v)dv —[k(r=v)dv+ [k(z- v)dv}zr
) 0 | ) (5.33)

T n
+[k(z’—t2){jk(r vydy - fk(z - v)dv+jk(z' Vdv— [k(z— v)dv}d‘t 0
3 1 n 3

T 5] n 3 T
[k(t—13 )|}k(r— v)dv—[k(t=v)dv+ [k(T—v)dv - jk(z’—v)dv]dr =0 (5.34)
13 0 1 %) 13

and we have four equations resulting from (5.30):
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for 0<r<y
1

T
K Kuy(t, 1), 1y, t3) = [k(r—0)[k(r —v)dvdT
t 0

ty 1 T
+ [ k(z=0)| [k(r—v)dv— [k(t—v)dv |dT
f 0 1

. (5.35)
3 1 D) T
+ [ k(z=0)| [k(z=v)dv— [ k(t=v)dv+ [k(t—v)dv|dT
5] 0 n (%)

T n 1) 3 T
+ jk(z‘—t)[j'k(r—v)dv— [ k(t—v)dv+ [ k(t—v)dv— [k(f—v)dv]df
13

0 1 1 3

for fy <1<ty

1 1 T
K Kug(t, 1y, 1y, 13) = jk(’[—t)[ [k(z—=v)dv— jk(z’—v)dv]dz’
t 0 1

13 1 129} T
+ [ k(z=1)| [k(T=v)dv— | k(t=v)dv+ [k(T—v)dv |dT (5.36)
) 0 1 %)

T 1] 159 13 T
+ [ k(t=1)| [k(t—=v)dv— [ k(t—=Vv)dv+ | k(T—v)dv— [k(T—V)dv [dT
3 0 1 %) 3

for t; <t <t;

‘ 3 il 5] T
K*Kuo(t, t, 1y, 13)= jk(‘r—t){jk(r—v)dv— [k(z—v)dv+ jk(T—v)dv}d‘r
t

0
! ” (5.37)
T f n 3 T
+ [k(z—1)| [k(t=v)dv— [k(t=v)dv+ | k(T —v)dv— [k(T—Vv)dv |dT
3 0 n 1 13
for t3<t<T
K" Kug(t,t;,15,13) =
(5.38)

T 1 &) 3 T
_[k(r—t){_[k(r—v)dv— [k(t=v)dv + [k(T—v)dv— fk(f—v)dv]dr

t 0 1 1 3

For a higher number of switchings ¢, f,,...,#,, we can set up a relevant system of

equations in a similar way. The procedure of searching for the optimum number of
n switchings starts with the assumption i=1, the solution of equation (5.29) in

respect of #, and with checking the value I(uy) (5.31) corresponding to the
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obtained solution. The procedure is repeated next for i=2,3,.... This way the

upper value of n is not given in advance, but is obtained through the consecutive
increase until the /(u), resulting from the formula (5.31), reaches the maximum.

Such a situation occurs when the value I(u;), obtained for n+1 switchings, is

not higher than the value of the error corresponding to n switchings, and any
further increase of the number of switchings cannot lift it up any more. In
consequence, the search for the optimal number of switchings will end at this
value of n.

5.2.4 Signals with Two Constraints

For two constraints imposed on input signal, it seems to be impossible to find out
an analytical solution in respect of the shape of the u(#), and of the formula

describing the maximum value of the integral square error. Therefore, we decided
to lower our requirements of a very precise solution through analytical ways, and
instead of it to use modern powerful computer programs.

Good results are achieved, if heuristic techniques of computation are applied, e.g.
genetic algorithms. Principles of such an approach are discussed below. Fig. 5.1
shows the diagram of computer program for determine the integral square error by
means of the genetic algorithms if both constraints, of the magnitude and the rate of
change, are imposed simultaneously on the input signal.

lu (0 vl
¥ 54 Mathematical Yll) .l'(\-.l 7
1= model of T~ / ‘\\ / f
system
Genetic *
algorithm -
{t)

Referenca ydl) |

system
v Iu)=0
e for i=1
1 y = Iu)
Switch

T,
Iy [ vy (ndt
0

Switch off Memory
&0 h(y) et
Switch on ult) | ) » Comparison
s=1 Hu), hu)
Switch 1
Switch off Hu) < Wu)
5=0
Switch on =1 Muy=hiu)
5=1
Solution
ugl)=ut) Infu)=H(u)
e ]

Fig. 5.1 Diagram of computer program for determining the integral square error by means
of the genetic algorithm
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Maximum number of iterative cycles equals
N =nch-np (5.39)

where nch—number of chromosomes in population, np —number of generated

populations for which the stop condition is carried out.
A genetic algorithm generates, one by one, the switching vectors describing the
signal u;(¢), for which the error (5.5) is determined.

In every iterative cycle, the value of error I;(u#) is compared with the value
I (u) stored in memory, which for i=1 has the initial value equal to zero. If
I;(u)>1,(u), then I;(u) is assigned to I,(u) and stored. Simultaneously with
this operation, the vector of value signals u;(¢) is saved in memory.

For i =N the values u;(t) and I,(u) are stored in memory and are assigned
to the pair of uy(f) and I,  («). In this manner, the solution for i = N consists
of two data: the vector of data, which describes signal u,(¢), and the error
I ax () = 1(ug) corresponding to this value.

In order to determine signal ug(¢), it is necessary to search over a set of
permissible input signal u; (f).

According to specific features of genetic algorithm, determination of unknown
signal uq(¢) is performed in three steps:

— operation of reproduction
— operation of crossing

— operation of mutation.

Fig. 5.2 presents the flowchart of genetic algorithm.

First population
Calculation of ¢

l Scaling of adaptation coefficient ]

| Operation of reproduction |

v

L Operation of crossing and mutation J

New population

Fig. 5.2 Flowchart of genetic algorithm
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During the first step, the initial population composed of an even chromosomes
number is selected at random. Each chromosome consists of detectors, the number of
which corresponds with the interval between switching times of u;(¢). For each

chromosome, the value of integral square error is determined determined — Table 5.1,
and then on the basis of the obtained results and formulae (5.40) and (5.41), an
adaptation coefficient is calculated.

This coefficient gives a percentage share of each chromosome in total error

12s2121+122+123+"'+12n (540)
' 1
I, =%-100[%] m=12,..n (5.41)
2s

where [,, is the total error, IVZS gives the share in percent of individual

adaptation coefficients in the total error.

The knowledge of adaptation coefficients is necessary for each chromosome in
order to estimate their usefulness in population. In the case when the difference
between the obtained values of adaptation coefficients is too small, it is necessary
to carry out the operation of adaptation coefficient scaling. Otherwise the next
steps of genetic algorithm would not give desirable effects.

Table 5.1 Chromosomes population and adaptation index for each chromosome

Chromosome Detectors Adaptation
1 2 |...| m | coefficient

P1 ty |t | ... | tim 21

P2 {21 to |...| tom 1'22

Pn {n1 an ‘s fnm "'Zl"l

In the next step, the operation of reproduction is carried out. On the base of the
probability calculated by means of (5.40)—(5.41), the chromosomes, from the

initial population, are selected at random. Depending on the value of adaptation
coefficient, a particular chromosome has a larger or smaller chance to be found in
the next generation. There are several ways of calculating the chances for each
chromosome. The most common way is represented by the roulette wheel method.
The process of random selection is carried out as many times as the number of
chromosomes in the population. The results of random selection are rewritten to
the new descendant population. All chromosomes have various random selection
probabilities, proportional to the value of adaptation coefficient. As a result
of the reproduction process, a new population composed of chromosomes

p ‘1, p '2,...,p n is obtained.
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The next step is the crossing process. Chromosomes of p '1, p '2,..., p'n are
joined in pairs in a random way, and for the given crossing probability P, the
number from the range [0, 1] is selected at random. If the selected number is in
the range [0, P, ], then the crossing process is performed. Otherwise the equivalent
detectors of joined chromosomes are not crossed. The crossing probability P is

usually established at a high level, which is about 0.9.
The crossing process is carried out according to the following formulae:

1. In the case of crossing detectors #;; from the first chromosome, and #,; from
the second chromosome, we have

t=1-a)n +1y
(5.42)
ty=ah+1-a)iy

where t;; is a descendant detector of the first chromosome, and 7, is

a descendant detector of the second chromosome.
The coefficient ¢ is selected according to the following formulae

—t 12—t
= —1u o, =271
12111 12111
(5.43)
—t 1221t
3= 121 = 1227121
1121 11121

where ¢ and «, present the minimum and maximum limit of the & coefficient
changeability for the detector from the first chromosome, while o3 and oy

present minimum and maximum limit of « coefficient changeability for the
detector from the second chromosome.

The changeability range of & is contained in the range between zero and the
third value of o, coefficient (5.44) minus o,,,_; multiplied by the
changeability step of ¢ from interval [0 ,T].

Then the value of « is selected at random from the above range, and is
substituted into (5.42).

2. In the case of crossing of the detectors t1,, from the first chromosome and

t5,, from the second chromosome, we have:

tin={0=-ao)ty, +1,
(5.44)
tip=0ot,, +1-0)ty,
where m=2,3,...,n and tim is the first chromosome descendant m detector, and

t 5,, 1s the second chromosome descendant m detector.
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The coefficient ¢ is selected according to the following formulae

alztlm—l_flm a2=f1m+1_f1m
12m~ tm 12m~ tm
(5.45)
a3=t2m—1_t2m a4=t2m+1_t2m
Hm ~t2m Hm ~2m

The operation of crossing is presented in Fig. 5.3.

| Olf‘n | f1z| I[ml T| | 0 |f11ll flzl| | flnl| T|
>
T| |0 tr] tea] [ ton]| T|

0]t |tz = [ tan

Fig. 5.3 Operation of crossing

The crossing procedure described by formulae (5.43)—(5.46) assures that in
the descendant chromosomes the subsequent detectors will have the value larger
than the value of the detectors situated immediately before them. This requirement
must be met, because individual detectors included in the chromosome contain the
interval of switching times of the signal u; (¢).

The operation of mutation is the last step of the genetic algorithm. In the case
of each detector included in the descendant chromosomes, we ask whether the
mutation operation will be carried out or not. This process usually is carried out at
small probability (B, <0.01). Mutation is a sort of supplement to the operation of
crossing. There are many varieties of mutation, and the choice of relevant
mutation depends on the algorithm application. The linear mutation described by
formula (5.46) is often applied

d ll'm: (d'1m+1 —dylm—l)a'i‘d'lm—l, e [0’ 1]’ m= 15 25""’1 (5'46)

The operation of mutation is presented in Fig. 5.4.

CHROMOSOME
BEFORE MUTATION
0 111. flzl f1nl T
i 1
Lack of mutation with ; ' Mutation
probability: 1 1 with probability
1-P, : : P
¥ ¥
[0 Ifﬁ]f'lzl ]hn ’ Tl
MUTATED
CHROMOSOME

Fig. 5.4 Operation of mutation
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Completing the operation of mutation, the genetic algorithm process starts
again. It runs in a loop as shown in Fig. 5.2. The number of populations should be
as large as possible. However, it must be noted that increasing the number of
populations makes the time of genetic algorithm calculations longer. The time can
be reduced significantly, if a stop condition is applied. This condition stops the
algorithm if the value of I (u) stored in memory does not change.

5.2.5 Estimation of the Maximum Value of Integral Square
Error

Let us assume that the upper limit of the integral in (5.5) tends to infinity 7" — oo
and let the error I(u) be presented as follows

+oo o 1 J® .
Iw= | y*(dt=[— [ Y(jw)e!” djwy(t)dt (5.47)

The relation between y(¢) and Y (jw) is expressed by means of Fourier transform
1 joo . ja)z .
Y =— [ Y(jo)e'djw (5.48)

Changing the order of integration in (5.47), we have

1 +jo ) +oo ot )
[w)=— [ Y(jo) [ y)e!* dtdjw (5.49)
27[—]'0) 0
hence
1 +ja)
Iw)=—— [Y(jo)Y(-jo)djo (5.50)
127[—]0)
and
L™ . 2
1(u)=g [[r(jo)| de (5.51)
Taking into account that
Y(jo)=K(jo) X (jo) (5.52)
we finally have
Lt 210, 2 Ll 0
Iw)=— [ |G(jo)| |X (jo) do<sup|G(jo)| — [ [X(jo)| do (5.53)
27 o ® 27 o,
and
o2 e 2 N
sup|G(jo)|"— | |X(jw)| dw = Esup|G(jw) (5.54)
o 27 o ®

where E is the energy of the input signal.
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Note that the estimation based on Eq. 5.54 may be many times greater than the
value precisely calculated with the use of left hand side of Eq. 5.53.

5.3 Signals Maximizing the Absolute Value of Error

5.3.1 Signals with Constraint on Magnitude

In order to determine the signal maximizing the value of absolute error, let us take
a convolution integral (5.55) into consideration

t
y@)=[k(t-Du(r)dr  1€[0,T] (5.55)
0
It is obvious that the maximum | y(t)| occurs for t =T

T
max|y(1)| = y(T) = [k(T - 7)u(r)dt (5.56)
0
if
u(t) = uy(7) = a-sign[k(T —17)] (5.57)

where a is the magnitude of u(7).
Replacing 7 by ¢ in (5.56), we can write

T
|y = y(T) = [K(T = tyu(r)dt (5.58)
0

and u(¢#) maximizing (5.58) has now the form
uo(t)=a-sign[k(T —1)] (5.59)

Substituting (5.59) into (5.58) gives finally
T T
max|y(t)|= y(T) =a- [[k(T —0)|dt =a- [|k(t)|dt (5.60)
0 0
which is not difficult to compute.

5.3.2 Shape of Signals with Two Constraints

Let us present the signal u(¢) by means of the integral

u(t) = }(o(r)dr (5.61)
0
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and the error (5.58) in the following form
T '

y(T)=[k(T -1)| p(r)d7 dt (5.62)
0 0

The constraints (5.10), related to u(¢) for the function ¢(7), are as follows

t
[o(t)dr
0

=lu(t)I<a (5.63)

and
L) I=lu(t) | <0 (5.64)
Changing the integration order in (5.62), we have
T T
y(T)= (j)¢(z‘)£k(T—t)dtdz’ (5.65)

and after replacing 7 for ¢, we get finally
T T
V(T =[p) [k(T —7)drdt (5.66)
0 ¢

From (5.66), it is evident that ¢(#), which maximizes y(T), has the maximum

magnitude @(¢) =17 by virtue of the formula (5.64) if

T
o) = sign [k(T —1)dt 5.67)
t

and ¢(¢) =0, in such subintervals, for which the resulting form (5.67) between the
switching moments is

t
[Jo(r)dtl>a (5.68)
0
Using the equations (5.61)—(5.66), we can determine signal u(f)=u(¢) in the
following cases
First case
t
If Iffo (r)dt #al for § varying in the intervals [0,+ ] and [0,— 9], (Fig 5.5
0
T T
and Fig 5.6), where fy(t)=10 for [k(T-7)dr>+6 and [k(T-7)dT<-0

t t
respectively, than the signal ug(f) is determined in three following steps,

according to Egs. (5.67)—(5.75).
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During the first step, the “bang-bang” functions f(¢) of the magnitude = are
determined with switching moments resulting from (5.67)—Fig.5.7
=+ if @) >0
fiO==v if @) <0

(5.69)

T

12 — !k('f - 1)dr
0.8 — 1 T — +9
1 1 1 1 I
T [} 1 1 1 I
[ | I
0.4 — [ | I
i [ | I
____I_J_j[x_l.____l_ﬂ)
0 1 1 1 1 3 L
[ — SN
=1 I 1 1
[
0.4 — [
[
7 [ T
08 o
14 f
-1.2 T | T T T T T I T
0 4.0 8.0 12.0 16.0

T
Fig. 5.5 Exemplary function [k(T —7)d7
t

IR0

T
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Fig. 5.7

R U]

—_— KT -1)dr

0 4.0 8.0 12.0 16.0

Exemplary functions k(7), [k(T —7)dz and f(t)
t

In the second step, we obtain the function f, (¢) by integrating f(¢) —Fig. 5.8.
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Fig. 5.8 Functions f)(¢) and f»(t)= [ fi(v)dt
0

Function f,(¢) in particular switching intervals #,¢, ,....t,, of fj(¢) is given

by the following relations
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for t<f, n=1
fr(@) =0t (5.70)
for 1] <t<ty, n=2
HO=0-1,-8-@-1) (5.71)
for t; <t<t;;q, i=23,...,n, t,,; =T, n—number of switchings
L =01+ 0~j§2<—1>f‘1 (tj=tj)+ (=D - =1) (5.72)

In the last step, we determine the function f5(¢) on the basis of f,(#). Relation is
as follows

f=x8 if 1f(HKa
f3(t)=0 if  1fH@0>a

Finally, we obtain the signal u(t)=u(¢) through integration of f5(¢), and this is

(5.73)

the aim. The operation is shown in Fig. 5.9.

t
Fig. 5.9 Function f3(¢) and signal ug(t) = [ f3(r)dt
0

During the intervals in which f3(f) =%}, the signal shape is triangular, with
the slope of =7 . In the intervals when f5(¢)=0, the signal is a constant of the

magnitude *a.
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For n switching moments of f3(¢) the value of error is described by the
following equations:

forn=1

t
1 _ T
y(T)zil—l [k(T-0)rdr + % [K(T=7) (=1t dT
-

o 1 5.74
. (5.74)

+h [K(T-1)dr
’1

forn>2
h gl nohi—hig 1j
yT)=— [k(T-7)rdr+ ¥ [+—— [k(T-7)(r—1t;_1)d7

o i=2 fi~liet g

gl hp—hy T
+h_ [k(T-7)dr] + —2 [k(T-7)(r—1t,)dT (5.75)

i r-t, ,
j-1 n

T
+h, [k(T-7)dt

In

where h; =u(t;), hy =uy(T).
Fig. 5.10 presents the signal u((¢) and the error y(f) corresponding to it.

+il

Fig. 5.10 Signal uq () and error y(t)
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Second case
If ¥-T <a then the signal uy(t) is given directly by

1
ug(t) =0 [ signlk(T —7)ldt (5.76)
0
and the error equals
T
y(T) = [k(t —Dug(r)dt (5.77)
0

Fig. 5.11 presents the signal uq(¢) and error y(¢f) corresponding to it.
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Fig. 5.11 Signal uq(#) and error y(¢)

Third case
If ¥-T>a then the signal uy(t) is determined indirectly by means of the

functions f4 () — f¢(#)

Ja(t) = Lo (5.78)
2a
f5(t)=a-sign[ f4(T —1)] (5.79)
fo(0) = f5(0) it <2
s (5.80)

2 . 2
f6(l)=f5(t)—f5(t—7?] if §<t<T
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The functions f,(t) and f5(¢) are shown in Fig. 5.12, while fg(¢f) and the

t
signal ug(t) = [ f¢(r)d7 inFig. 5.13.
0
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Fig. 5.13 Function fg(¢) and signal ug(r)
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Fig. 5.14 shows the signal u((r) and the error y(s) corresponding to it.

1.0

-2.0

Fig. 5.14 Signal uq(¢) and error y(t)

5.4 Constraints of Signals

Mapping errors of models are determined using precisely defined input signals. In
our case, they are the signals maximizing the error and selected by a special
criterion. For obvious reasons, amplitudes of such signals must always be limited.
Signals limited in amplitude only of “bang-bang” type, may generate mapping
errors of considerably high values, even in the situation when models are almost
alike. This is caused by the particular dynamics of the “bang-bang” signals, which
have derivatives of infinitely high values on the instants of switching, while
outside these instants the values are constant. Such a dynamics of signals does not
match the dynamics of physically existing systems, since the latter can only
transmit signals with limited value of rate of change. Therefore apart from limiting
the amplitude, we impose an additional constraint originating from the dynamic
properties of the system under modelling.

The constraint can be determined in the time or frequency domains. If we are to
consider it in the time domain, it can be assumed that the constraint refers to the
maximum rate of change ¢ of the input signal. Namely, this rate is to be smaller
or equal to the maximum rate of the step response of the modelled system.

9= maxi(1)| < max| (r)| = max| k() (5.81)

where h(r) and k(¢r) denote the step and impulse responses of the system,

respectively.
In the frequency domain, it is a transfer band of the system under modelling,
which imposes the constrain of ¢J. Assuming the maximum harmonic @,, of the

transfer band is not distorted, we get
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d sin(@;,t)

i =a- Wy (5.82)

ﬂSmaX‘a

However, the assessment of @,, value is quite arbitrary very often.
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