




Statistics for Industry and Technology

Series Editor

N. Balakrishnan
McMaster University
Department of Mathematics and Statistics
1280 Main Street West
Hamilton, Ontario L8S 4K1
Canada

Editorial Advisory Board

Max Engelhardt
EG&G Idaho, Inc.
Idaho Falls, ID 83415

Harry F. Martz
Group A-1 MS F600
Los Alamos National Laboratory
Los Alamos, NM 87545

Gary C. McDonald
NAO Research & Development Center
30500 Mound Road
Box 9055
Warren, MI 48090-9055

Peter R. Nelson
Department of Mathematical Sciences
Clemson University
Martin Hall
Box 341907
Clemson, SC 29634-1907

Kazuyuki Suzuki
Communication & Systems Engineering Department
University of Electro Communications
1-5-1 Chofugaoka
Chofu-shi
Tokyo 182
Japan

For additional information on this series, go to
www.springer.com/series/4982



Mathematical and Statistical
Models and Methods
in Reliability

Applications to Medicine, Finance,
and Quality Control

V.V. Rykov
N. Balakrishnan
M.S. Nikulin
Editors



Editors
V.V. Rykov
Department of Applied Mathematics
Gubkin Russian State University of Oil and Gas
Leninskii Prospekt 65
117917 Moskva
Russia
vladimir rykov@mail.ru

M.S. Nikulin
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Preface

The contributions in this volume were all presented as invited papers at the Sixth In-
ternational Conference on Mathematical Methods in Reliability: Theory, Methods, Ap-
plications (MMR 2009), which was held at Gubkin Russian State University of Oil and
Gas (Gubkin University, Moscow, Russia) during June 22–26, 2009. The International
Organizing Committee of this conference included organizers of the previous confer-
ences, namely, Professors Nikolaos Limnios (France), Mikhail Nikulin (France, Russia),
Bo Lindqwist (Norway), Sally McNulty (USA), Tim Bedford (UK), and Vladimir Rykov
(Russia). In addition to Gubkin University, the Peoples Friendship University of Russia
(PFUR), and the University of Bordeaux-2 (France) participated in the meeting’s or-
ganization.

Reliability theory is a multidisciplinary science aiming to provide complex technical,
computer, and informational systems and processes that are resistant to failure. Catas-
trophic events of the recent past, such as the explosion of the 4th block of Chernobyl’s
nuclear power station in April 1986, the failure of the blocking system that switched
out 21 United States electrical stations in August 2003, and the 2009 breakdown of a
turbine in the Sayano-Shushenskaya electrical station, show the necessity for the scien-
tific community to pay more serious attention to reliability problems. Although human
error played an important role in most of these events, mathematical modeling and
careful investigation into causes of failure are nevertheless very important.

During the early stages of research on reliability theory, the primary focus was on
developing mathematical terminology and formalism. These rudiments were established
in works such as B. V. Gnedenko, Yu. K. Belyaev, A. D. Solov’ev’s Mathematical
Methods in Reliability Theory and R. E. Barlow F. Proschan’s Mathematical Theory
of Reliability. More modern developments and practical problems began to receive
attention at the end of the last century, when the First International Conference on
Mathematical Methods in Reliability Theory (MMR 1997) was organized in Bucharest
in 1997. Since then, six more conferences have been undertaken as part of the MMR
series:

the second, in Bordeaux (France, 2000);
the third, in Trondheim (Norway, 2002);
the fourth, in Stanta Fe (New Mexico, USA, 2004);
the fifth, in Glasgow (Scotland, UK, 2007);
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the sixth, in Moscow (Russia, 2009, based on which this volume is being prepared);
and

the seventh, in Beijing (China, planned for 2011).

More than 200 people from 35 countries participated in the sixth conference and
presented a total of 167 talks. Ten plenary talks (1 hour) were also presented; most
appear in this volume. All the talks given at the conference were broadly classified
according to the following topics: “Mathematical models and methods in reliability
theory” (22 sessions), “Statistical methods in reliability theory” (10 sessions), “Com-
puter tools and support of reliability problems solution” (3 sessions), “Applications of
reliability theory in industry, medicine, power stations, transport and other spheres”
(9 sessions). Accordingly, these topics are well represented in the present collection.

It is worth noting that the conference also included a “round table discussion” de-
voted to the memory of one of the field’s greatest pioneers, B. V. Gnedenko. Professors
V. Korolyuk, Yu. Belyaev, I. Ushakov, I. Kovalenko, and D. B. Gnedenko (B.V.’s son)
all discussed their memories and experiences with this remarkable scientist and man.
Further information on this and other conference events can be found at http://mmr.
gubkin.ru.

We would like to thank the Russian Foundation of Fundamental Investigation and
the open joint-stock company “Gasprom. Promgas” for their financial support of the
conference. Our final thanks go to Mr. Tom Grasso (Editor, Birkhäuser, Boston) for
his support and encouragement in producing this book, and to Mrs. Debbie Iscoe for
her fine work on the entire manuscript.

Moscow, Russia V.V. Rykov
Hamilton, Canada N. Balakrishnan
Bordeaux Cedex, France M.S. Nikulin
June 2010
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Vilnius University, Vilnius, Lithuania
imasiulaityte@gmail.com

Mattheou Kyriacos
Department of Mathematics and
Statistics,
University of Cyprus, Cyprus

Meeker William Q.
Department of Statistics, Iowa State
University, Ames, IA, 50011
wqmeeker@iastate.edu

Mesbah Mounir
University Pierre et Marie Curie, Paris 6
mounir.mesbah@upmc.fr

Musal R. Muzaffer
Texas State University, San Marcos,
TX 78666, USA
rm84@txstate.edu

Newby Martin
City University, London, UK
n.j.newby@city.ac.uk

Nikulin Mikhail
IMB, Victor Segalen University,
Bordeaux, France
mikhail.nikouline@u-bordeaux2.fr

Panayiotou Panayiotis
Department of Mathematics and
Statistics,
University of Cyprus, Cyprus

Postovalov Sergey N.
Novosibirsk State Technical University,
Novosibirsk, Russia
Postovalov@ngs.ru



XX List of Contributors

Ramadan Ayad
University of Potsdam,
Institute of Mathematics ayad
math@yahoo.com

Rogozhnikov Andrey P.
Novosibirsk State Technical University,
Novosibirsk, Russia
rogozhnikov.andrey@gmail.com

Rosner Bernard
Harvard Medical School, Boston, MA,
USA
Stbar@channing.harvard.edu

Rykov Vladimir
Dept. of Probability Theory
and Mathematical Statistics,
Peoples’ Friendship University of Russia,
Ordzhonikidze st., 3, Moscow 117198,
Russia
vladimir rykov@mail.ru

Saaidia Noureddine
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Reliability of Semi-Markov Systems with

Asymptotic Merging Phase Space

V.S. Koroliuk1 and N. Limnios2∗

1 Institute of Mathematics, Ukrainian National Academy of Science, Kiev, Ukraine
2 Laboratoire de Mathématiques Appliquées, Université de Technologie de Compiègne,

France

Abstract: The aim of this chapter is to present, under an unified framework,
asymptotic merging of phase state space of complex systems in reliability. Such
simplification methods are important in reliability since the most system have very
large phase spaces and it is almost impossible to handle them by usual analytical meth-
ods. Results presented here are of averaging type and obtained by weak convergence
techniques. Nevertheless, a result of diffusion approximation is also given.

Keywords and phrases: Reliability, Semi-Markov process, Renewal process, Markov
process, Merging, Random evolution, Weak convergence, Singular perturbation

1.1 Introduction

Modeling reliability of real systems is often hard, or impossible to handle by direct
analytical-numerical methods, due essentially to the very large number of components.
For example, a system of twenty binary components (yet a small system for real prob-
lems) gives a phase (state) space of more than one million of states which is almost
impossible to handle by the usual analytical-numerical methods.

A common point of methods developed in order to handle such systems is the
reduction of the number of states called aggregation or merging of phase space methods.
Of course, in such methods the merging system has to keep the essential characteristics
of the original system in regards of reliability.

The exact aggregation is a natural candidate method to this end. This method, in
the case of a system described by a Markov process, x(t), t ≥ 0, with (a large) phase
space, E, is to consider another Markov process, x̂(t), t ≥ 0, with (a much smaller)
state space, ̂E. This means that there exists a (merging) function v : E → ̂E such that

Q(f ◦ v) = ( ̂Qf) ◦ v,

for any bounded and measurable function f on ̂E; where Q and ̂Q are the generators
of the Markov processes x and x̂, respectively.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 3
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 1, c© Springer Science+Business Media, LLC 2010
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Unfortunately, the exact aggregation method usually does not work for reliability
problems, essentially, due to the fact that failure rate and repair rates values are
of different magnitudes. So, there is need to provide approximation methods for ag-
gregation. The method that seems to give interesting results for merging the phase
space is the method of (functional) asymptotic merging by means of weak convergence
techniques, (see, e.g., [KL05a,b, KT93, KS95, A08, SV79, SK89, SHS02, S04, LS]).
The most known are average, diffusion and Poisson approximation methods (see, e.g.,
[KL05a,b, K90, LO01]).

We are proposed here to present some kind of asymptotic methods in the case where
the temporal behavior of the system is described by a semi-Markov process which is the
most general process encountered in the literature of reliability modeling. The problem
here can be formulated as follows. Given a family of semi-Markov processes in series
scheme, that is, for ε > 0, the process xε(t), t ≥ 0, is a semi-Markov process, we have

v(xε(t)) =⇒ x̂(t), ε→ 0,
where the limit process x̂(t) is a Markov process. So, in this way, we not only reduce
the initial phase space to a simpler one, but also we get a Markov process instead of
the initial semi-Markov one.

The asymptotic considered here is of functional type in series scheme where the
considered systems are indexed by a series parameter ε > 0 in a weak convergence
framework. Average and diffusion approximations are considered.

This article is a continuation of our work presented in the MMR2000 [KL00,KL04]
where we presented asymptotic methods in the particular case of Markov switching
stochastic systems. We present here, asymptotic results for semi-Markov systems, under
a unified framework for reliability problems.

The particular systems studied here are: the semi-Markov process in merging phase
space, the integral functional, the dynamical system, and an heuristic principle for
superposed renewal processes.

This chapter is organized as follows. Section 1.2 presents a short review of some
asymptotic results. Section 1.3 presents an asymptotic merging result for the support-
ing semi-Markov process and some additional results especially for the failure time.
Section 1.4 presents reward functional asymptotic results. Section 1.5 presents dynami-
cal system asymptotic merging results, and fluctuations of such functionals in Sect. 1.6.
Section 1.7 presents a heuristic method for superposition of two renewal processes.
Finally, Sect. 1.8 presents results of the stationary phase merging

1.2 Reliability of the Renewal System

Let us review here some results on repairable systems with two identical components
where they are solved by a renewal process approach and a generalization to semi-
Markov process approach (Gnedenko [G64a,b, GS74], Soloviev [SL64, SL71], and Ko-
rolyuk [K89]). In both cases, their solution is based on the solution of a singular per-
turbation problem for reducible-invertible operators.

1. Renewal duplicated system. Let us consider a two component cold standby system.
The lifetimes of which are iid, with common distribution F ; and their repair
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(or replacement) times are also iid with common distribution function G and moreover
they are independent of the lifetimes. Denote by α the lifetime and by β the repair
time. Thus, we have F (t) = P(α ≤ t) and G(t) = P(β ≤ t).

The system fails at time τ when the working component fails while the repaired
component is still under repair. So, the reliability problem consists to find the distri-
bution function Φ(t) = P(τ ≤ t). The solution of this problem is given by Gnedenko
[G64a] in terms of Laplace transforms as follows

ϕ(s) =
ψ(s)

1 − g(s)
, (1.1)

where:

ϕ(s) := Ee−sτ =
∫ ∞

0

e−stdΦ(t),

ψ(s) :=
∫ ∞

0

e−stG(t)dF (t),

g(s) :=
∫ ∞

0

e−stG(t)dF (t),

with G(t) := 1 −G(t).
We denote by q := ψ(0) =

∫∞
0
G(t)dF (t) = P(β > α) which is the probability of

failure of the system on every working interval. This is also called the terminating prob-
ability in Feller [F66] in the case of a terminating renewal process, where q represents
the defect of the distribution in the renewal process.

An obvious view of solution (1.1) gives possibility to get a limit result as q → 0
(Soloviev [SL64]), that is

lim
q→0

P(qτ > t) = e−t/a, a = Eα. (1.2)

The proof of the limit result (1.2) is based on the asymptotic representation of
functions ψ and g in the formula (1.1), as q → 0, namely:

ψ(qs) = q + o(q), 1 − g(qs) = q(1 + as) + o(q). (1.3)

The problem of reliability of the duplicated system is generalized in the case of
different distributions of working times and renewal times (Gnedenko [G64a]).

Now working times αk and renewal times βk, k = 1, 2 have different distribution
functions:

Fk(t) = P(αk ≤ t), Gk(t) = P(βk ≤ t), k = 1, 2.

Working times to the first failure of the system τk, k = 1, 2 also depend on the
number of initial working components. For the Laplace transform functions of working
times up to failure, that is,

ϕk(s) = Ee−sτk =
∫ ∞

0

e−stdΦk(t), k = 1, 2

may be obtained a system of algebraic equations

Q(s)ϕ(s) = ψ(s), (1.4)
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where ϕ(s) = (ϕ1(s), ϕ2(s)), ψ(s) = (ψ1(s), ψ2(s)), and the matrix Q is

Q(s) =
[

1 −g1(s)
−g2(s) 1

]

(1.5)

with
g1(s) =

∫ ∞

0

e−stG2(t)dF1(t), g2(s) =
∫ ∞

0

e−stG1(t)dF2(t).

System (1.4) is obtained from stochastic relations between unknown working times
τk, k = 1, 2 :

τ1
d= α1 + I(β2 ≤ α1)τ2,

τ2
d= α2 + I(β1 ≤ α2)τ1,

(1.6)

where equality ξ d= ζ means equality of the distribution functions of random variables
ξ and ζ; and the indicator function of event A, that is, I(A) = 1 if A is realized and
I(A) = 0 otherwise.

2. The singular perturbation problem. We set a small parameter of series ε→ 0 (ε > 0)
so that the following conditions are true:
C1: ψεk(s) =

∫∞
0

e−stG
ε

k′(t)dFk(t) = εqk + o(ε), k = 1, 2, k′ = 2, 1;
C2: 1 − f εk(s) = s

∫∞
0

e−stF
ε

k(t)dt = εsak + o(ε), k = 1, 2.
Then the matrix of the system (1.4) in a series scheme has asymptotic representation

Qε(s) = Q0 + εQ1(s) + o(ε), (1.7)

where

Q0 =
[

1 −1
−1 1

]

, Q1 =
[

0 q1 + sa1

q2 + sa2 0

]

. (1.8)

The singularity of matrix Q0 (that is, det Q0 = 0) means singularity of the system
(1.4) in the series scheme:

Qε(s)ϕε(s) = ψε(s). (1.9)

3. Renewal systems in series scheme. A two component system with two different
workings components may be described by a semi-Markov process (Korolyuk [Chap. 2,
K89]) in a phase space E = {1, 2, 0}, in which states 1 and 2 are working, and state 0 is
absorbing. Times of staying in the working states are given by working times of devices
α1 and α2. Embedded Markov chain xn, n ≥ 0 is given by transition probability matrix

P =

⎡

⎣

0 1 − q1 q1
1 − q2 0 q2

0 0 1

⎤

⎦ ,

here qk = P (βk′ > αk) =
∫∞
0 Gk′(t)dFk(t), k = 1, 2, k′ = 2, 1.

Now the system lifetime is determined by the time of staying of semi-Markov process
in the subset of the working states E0 = {1, 2} before absorption in state 0.
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We now set the small series parameter ε → 0 (ε > 0) to transition probability
matrix of embedded Markov chain:

P ε =
[

0 1 − εq1
1 − εq2 0

]

= P − εP1, (1.10)

where

P =
[

0 1
1 0

]

, and P1 =
[

0 q1
q1 0

]

.

It is worth noticing that the transition probability matrix is restricted only on the
working states 1 and 2.

Let us rewrite the equality (1.10) with the generator of embedded Markov chain
Qε := I − P ε:

Qε = Q0 + εP1, Q0 =
[

1 −1
−1 1

]

. (1.11)

Representation (1.11) is analog of (1.7)–(1.8).
In the asymptotic problem of calculation of holding (sojourn) time of semi-Markov

process in the subset of the states until absorption appears a problem of singular
perturbation of the operator Q0, that defines a supporting Markov chain (Koroliuk
[K65,K69]). Naturally that now the phase space of “working” states may be arbitrary
it is only required that the generator Q0 defines ergodic (supporting) Markov chain
(Koroliuk [Chap. 3, [K89]]).

We will notice that in the series scheme, given by formula (11), rather difficult
analytical problem of asymptotic analysis of characteristics under conditions C1–C2
disappeared. Substantial results in this problem are obtained by Gnedenko [G64a] and
Soloviev [SL71,SL64].

Thus, from one side representation (1.11) generalizes the problem of reliability of
renewal systems, and on the other side it simplifies analytical problem of research of
concrete characteristics of renewal systems.

Generalization of the problem about reliability of renewal system resulted in
creation of a new direction of reliability theory of stochastic systems, based on the
method of phase merging of the states of Markov and semi-Markov processes with
the use of solution of singular perturbation problem for reducible-invertible operators
(Koroliuk [KK99,KT82,K89]).

1.3 Absorbing Time of Semi-Markov Process

The semi-Markov process x(t), t ≥ 0 on the standard (Polish) phase space (E,E) is
given by the semi-Markov kernel

Q(x,B, t) = P(xn+1 ∈ B, θn+1 ≤ t|xn = x) = P (x,B)Fx(t), (1.12)

where x ∈ E,B ∈ E, t ≥ 0.
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The stochastic kernel P (x,B) defines the transition probabilities of embedded
Markov chain xn, n ≥ 0:

P (x,B) = P(xn+1 ∈ B|xn = x). (1.13)

The family of distribution functions Fx(t), t ≥ 0, x ∈ E gives the sojourn times
θx, x ∈ E:

Fx(t) = P(θn+1 ≤ t|xn = x) =: P(θx ≤ t). (1.14)

The jump times of the semi-Markov process are

τn+1 = τn + θn+1, n ≥ 0, and τ0 = 0. (1.15)

The counting process which counts the jumps of the semi-Markov process in the
time interval (0, t], is

ν(t) = max{n : τn ≤ t}, t ≥ 0.

The semi-Markov process is connected to the embedded Markov chain by the fol-
lowing relation

x(t) = xν(t), t ≥ 0.

Let us now consider a family of semi-Markov processes xε(t), t ≥ 0, indexed by the
small parameter ε > 0, ε → 0, and semi-Markov kernels Qε. Absorbing time of semi-
Markov process xε(t), t ≥ 0 is considered in the series scheme with the parameter series
ε→ 0(ε > 0) on the split phase space

E0 = E ∪ {0}, E =
N
⋃

k=1

Ek, Ek ∩ Ek′ = Ø, k 
= k′ (1.16)

with absorbing state 0 (see Fig. 1.1).
The main assumptions are:

MA1: The semi-Markov kernel is dependent on the series parameter ε as follows:

Qε(x,B, t) = P ε(x,B)Fx(t),
P ε(x,B) = P (x,B) + εP1(x,B). (1.17)

E1

0

E2

�

�

�

1

2

0

(a) (b)

Figure 1.1. A merged system with N = 2: (a) initial system and (b) merged system
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The stochastic kernel P (x,B) is coordinated with the split phase space (1.16) as
follows:

P (x,Ek) =
{

1, x ∈ Ek,
0, x /∈ Ek,

, k ∈ ̂E := {1, 2, ..., N} (1.18)

and defines the supporting Markov chain x0
n, n ≥ 0 on E, which is uniformly ergodic

in every class Ek with the stationary distributions ρk(B), k ∈ ̂E.

MA2: The perturbing kernel P1(x,B) satisfies the following absorption condition:

max
k∈ ̂E

pk0 > 0, pk0 := −
∫

Ek

ρk(dx)P1(x,E), k ∈ ̂E. (1.19)

Note that, according to (1.17)–(1.18),

εP1(x,E) = P ε(x,E) − 1 = −P ε(x, 0)

are the absorbing probabilities.

Theorem 1. ([KL05a,b], Theorem 4.2) Under Assumptions MA1–MA2 the weak
convergence

v(xε(t/ε)) ⇒ x̂(t), ε→ 0

takes place (v(x) = k, x ∈ Ek).
The limit Markov process x̂(t), t ≥ 0 on the merging phase space ̂E0 = ̂E ∪ {0} is

defined by the generating matrix

̂Q =
(

q̂kr ; k, r ∈ ̂E0
)

, (1.20)

q̂kr = qkpkr , pkr =
∫

Ek

ρk(dx)P1(x,Er), k, r ∈ ̂E, (1.21)

qk = 1/mk, mk =
∫

Ek

ρk(dx)m(x), m(x) := Eθx =
∫ ∞

0

Fx(t)dt. (1.22)

Corollary 1. The transition intensities q̂kr are represented as follows:

q̂kr = q̂k p̂kr ,

where the intensities of sojourn times are given by

q̂k = qkpk, pk = −
∫

Ek

ρk(dx)P1(x,Ek),

the transition probabilities are given by

p̂kr = pkr/pk, k, r ∈ ̂E,

and the absorption probabilities by

p̂k0 = pk0/pk, pk0 := −
∫

Ek

ρk(dx)P1(x,E).
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The following relations are obvious

∑

r �=k
pkr =

∫

Ek

ρk(dx)P1(x,E \ Ek) =
∫

Ek

ρk(dx)P1(x,E) −
∫

Ek

ρk(dx)P1(x,Ek).

Hence
∑

r∈ ̂E0

p̂kr = 1.

Remark 1. The intensities of sojourn times q̂k = qkpk, k ∈ ̂E are constructed according
to the stoppage principle for a renewal process: the intensity of stoppage time q̂ is a
product of the intensity of renewal time q and the stoppage probability p.

Corollary 2. In the main applicable case in reliability of N = 1 (with one class of
working states), the limit Markov process with absorbing state ̂E0 = {1, 0} is given by
the renewal process with the exponentially distributed renewal time θ with the intensity
q = 1/m,m =

∫

E
ρ(dx)m(x) and with the stoppage probability p = 1−∫

E
ρ(dx)P1(x,E).

That is, the series parameter ε.
The common working time is exponentially distributed random variable ζ:

P (ζ > t) = exp(−Λt),
where:

Λ = qp, q =
∫

E

π(dx)q(x), q(x) = 1/m(x).

Remark 2. Theorem 1 is used in analysis of reliability of the stochastic system with
some classes of working states used during long time almost separately. The simplified
stochastic system is described by the Markov process with the finite state space and
with absorbing state. The common working time is defined by the Laplace transform
of the distribution function satisfies the linear equation. So, the working time has the
Erlang distribution. By Theorem 1 the distribution of working time of the semi-Markov
stochastic system can be approximated by the Erlang distribution.

Remark 3. The simplification formulae in Theorem 1 are natural from heuristic point
of view. Indeed, having the stationary distributions ρk(B), k ∈ ̂E of the support em-
bedded Markov chains x(k)

n , n ≥ 0, k ∈ ̂E the merging transition probabilities are given
as follows (k 
= r):

p̂kr =
∫

Ek

ρk(dx)P1(x,Er)/
[

1 −
∫

Ek

ρk(dx)P1(x,Ek)
]

and the merging absorbing probabilities are

p̂k0 =
[

1 −
∫

Ek

ρk(dx)P1(x,E)
]

/

[

1 −
∫

Ek

ρk(dx)P1(x,Ek)
]

.

The main problem is to get the stationary probabilities ρk(B), k ∈ ̂E of the ideal
stochastic system without absorption.
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The parameter series ε disappeared in the last two formulae, but the real value of
ε is given by the formula:

pk = 1 −
∫

Ek

ρk(dx)P1(x,Ek), k ∈ ̂E

that are the probabilities of leaving the class Ek, k ∈ ̂E.

Remark 4. The phase merging algorithm provides an estimation of its application
effectiveness. That is the methodological principle of the applied mathematics.

1.4 Reward Functional in the Semi-Markov Environment

Integral functional with semi-Markov switching is represented by

Aε(t) =
∫ t

0

a(xε(s/ε))ds, t ≥ 0,

with given bounded real-valued function a(x), x ∈ E0, E0 = E ∪ {0}, and a(x) ∈
R
d, d ≥ 1.

The semi-Markov switching process xε(t), t ≥ 0, ε > 0 in the series scheme with the
series parameter ε→ 0(ε > 0) is given on the phase space E0 with absorbing state {0}
and set of working states E by the semi-Markov kernel (1.17) and (1.18).

Theorem 2. ([KL05a,b], Corollary 4.3) Under Assumptions MA1-MA2 the weak
convergence

Aε(t) ⇒ A0(t), ε→ 0

takes place.
The limit functional

A0(t) =
∫ t∧ζ

0

â(x̂(s))ds, t ≥ 0

is defined by the average rate of reward

â(k) = qk

∫

Ek

ρk(dx)a(x), k ∈ ̂E.

The limit merged Markov process x̂(t), t ≥ 0, defined on the merged phase space
̂E0 = ̂E ∪ {0}, ̂E = {1, 2, ..., N}, with absorbing state {0}, is given by the Markov
matrix (1.20).

Corollary 3. In the particular case of N = 1, the limit reward functional is represented
as follows:

A0(t) = â(t ∧ ̂ζ), â = q

∫

E

ρ(dx)a(x).
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The stoppage time ̂ζ has the exponential distribution:

P(̂ζ > t) = e− ̂Λt, ̂Λ = qp, p = 1 −
∫

E

ρ(dx)P1(x,E)

q =
∫

E

π(dx)q(x), q(x) = 1/m(x), m(x) =
∫ ∞

0

F x(t)dt.

Remark 5. The phase merging scheme gives the most simplified model for the reward
functional in a semi-Markov environment.

Remark 6. Of particular interest is the case when a(x) = 1A(x), x ∈ E where A ⊂ E.
In that case Aε(t) is the holding time of process in A in the time interval [0, t] (see
[KKL]). If A is the subset of working states of E, then EA(t)/t is the mean availability
of system in the time interval [0, t] which is equal to reliability at time t.

1.5 Dynamic Reward Functional

The dynamic reward functional in the semi-Markov medium is defined by a solution of
the evolutionary equation

d
dt
uε(t) = C(uε(t);xε(t/ε)), uε(0) = u ∈ R

d.

As in previous section, the semi-Markov switching process xε(t), t ≥ 0, ε > 0 in the
series scheme is considered on the split phase space E0 = E ∪{0} with absorbing state
{0} and set of working states E given by the semi-Markov kernel (1.17)–(1.18).

Theorem 3. ([KL05a,b], Theorem 4.5) Under the merging conditions MA1–MA2 the
weak convergence

uε(t) ⇒ u0(t), ε→ 0

takes place.
The limit functional u0(t), t ≥ 0 defined by a solution of the average evolutionary

equation
d
dt
u0(t) = ̂C(u0(t); x̂(t)), u0(0) = u0

on the time interval 0 ≤ t ≤ ζ with the stoppage time ζ of the merged phase space
̂E0 = ̂E ∪ {0}, ̂E = {1, 2, ..., N}.

The average velocity in state k is

̂C(u; k) =
∫

Ek

πk(dx)C(u;x), k ∈ ̂E.

The stationary distributions πk(dx), 1 ≤ k ≤ N are defined by the relations:

πk(dx)q(x) = qρk(dx), 1 ≤ k ≤ N.
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1.6 Fluctuations of the Reward Functional

In this section we present a diffusion approximation result on the fluctuation of reward
functional. The method represented in our book [KL05a,b] can be applied to investi-
gation of the fluctuation

Bε(t) = [Aε(t) −A0(t)]/ε, t ≥ 0.

Here, for simplicity N = 1. The integral functional is defined now as follows

Aε(t) =
∫ t

0

a(xε(s/ε2))ds, t ≥ 0,

where the time is scaled by ε−2.

Theorem 4. Under Assumptions MA1-MA2 the weak convergence

Bε(t) ⇒ B0(t ∧ ̂ζ), ε→ 0

takes place.
The limit diffusion process B0(t), t ≥ 0 is the Wiener process with the variance

coefficient

σ2 = 2
∫

E

π(dx)b(x)R0b(x) + σμ, σμ :=
∫

E

π(dx)μ(x)b2(x),

μ(x) := [m2(x) − 2m2(x)]/m(x), m2(x) := Eθ2x, b(x) := a(x) − â.

Remark 7. The fluctuation is considered as follows

Bε(t) = ε−1

∫ t

0

b(xε(s/ε2))ds.

Note that the function b(x) satisfies the balance condition

Πb(x) =
∫

π(dx)b(x) = 0.

According to Theorem 3.3, [KL05a,b] we get σ2 = ΠbR0bΠ + σμ.

1.7 Heuristic Phase Merging

The phase merging principles can be formulated as an heuristic phase merging based
on the renewal theorem (see, e.g., [Chap. 5, KL05a,b]).
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Figure 1.2. Double renewal system

The limit distribution of remaining waiting time α∗ for the renewal process given
by the distribution function F (t) = P{α ≤ t}, t ≥ 0 is defined by the formula

P(α∗ ≤ t) =
∫ t

0

F (s)ds/a, a = Eα. (1.23)

The double renewal system (Fig. 1.2) is defined by the superposition of two alternat-
ing renewal processes given by the distribution functions Fk(t) = P(αk ≤ t), k = 1, 2
of working times and Gk(t) = P(βk ≤ t), k = 1, 2 of renewal times. The stoppage mo-
ment τ is defined when both of renewal processes are in renewal states. The heuristic
principle means that the remaining working time α∗ of every renewal process in the
stationary regime is defined by the stationary distribution (1.23).

Now the stoppage probabilities for every renewal process are defined by the
relations:

q1 = P(α∗
1 < β2) =

∫∞
0
G1(t)F 2(t)dt/a1

q2 = P(α∗
2 < β1) =

∫∞
0 G2(t)F 1(t)dt/a2.

or, in the equivalent form

q1 = E(α2 ∧ β1)/a2, q2 = E(α1 ∧ β2)/a1.

According to the heuristic principle of stoppage (see [K89]) the intensity of stoppage
time for double renewal system is defined by the following relation:

Λ = q1λ1 + q2λ2, λk = 1/ak, ak = Eαk,

or, in the equivalent form

Λ = [E(α2 ∧ β1) + E(α1 ∧ β2)]/Eα1Eα2.

1.8 Stationary Phase Merging Scheme

Let us consider a system which temporal evolution is described by a semi-Markov
process x(t), t ≥ 0, defined on the following split phase space, given by the semi-Markov
kernel Q(x,B, t):

E =
N
⋃

k=1

Ek, Ek ∩ Ek′ = Ø, k 
= k′. (1.24)
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The phase merging scheme (PMS) is realized on the merged phase space

Ê = {1, 2, ..., N}. (1.25)

In the discrete case we note Qkr(t) instead of Q(k, {r}, t), and Pkr instead of
P (k, {r}).

The main assumption is that the embedded Markov chain xn, n ≥ 0 is ergodic with
stationary distribution ρ(B), B ∈ E, which satisfies the following condition:

C1: ρk := ρ(Ek) > 0, 1 ≤ k ≤ N .

Definition 1. The stationary merged MRP, say x̃n, τ̃n, n ≥ 0, on the merged phase
space Ê is determined by the merged semi-Markov kernel

Q̃kr(t) =
∫

Ek

ρ(dx)Q(x,Er , t)/ρk =
∫

Ek

ρk(dx)Q(x,Er , t), k, r ∈ Ê. (1.26)

The transition probabilities of the merged embedded Markov chain x̃n, n ≥ 0, are
defined by

P̃kr =
∫

Ek

ρ(dx)P (x,Er)/ρk, k, r ∈ Ê, (1.27)

and the distribution function of the sojourn time θ̃k, k ∈ Ê, are defined by

F̃k(t) =
∫

Ek

ρ(dx)Fx(t)/ρk, k ∈ Ê. (1.28)

Remark 8. The stationary merged embedded Markov chain x̃n, n ≥ 0, has the sta-
tionary distribution ρk, k ∈ Ê.

Remark 9. The stationary merged MRP x̃n, θ̃n, n ≥ 0, has virtual transitions with
probabilities P̃kk, k ∈ Ê. Without virtual transition the MRP x̃0

n, θ̃
0
n, n ≥ 0, can be

constructed by the following known way:

P̃ 0
kr = P̃kr/(1 − P̃kk) =

∫

Ek

ρ(dx)P (x,Er)/
∫

Ek

ρ(dx)P (x,E \ Ek), (1.29)

F̃ 0
k (t) = P(θ̃0k ≤ t), θ̃0k =

νk
∑

�=1

θ̃
(�)
k , (1.30)

where θ̃(�)
k , � ≥ 1, are iid random variables with common distribution function F̃k(t); the

integer valued random variable νk, k ∈ Ê are geometric distributed with parameter Pkk :

P(νk = n) = (1 − P̃kk)P̃n−1
kk , n ≥ 1. (1.31)

It is worth noticing that the distribution functions F̃ 0
k (t) are defined by the Laplace

transform

f̄0
k (λ) =

∫ ∞

0

e−λtF̃ 0
k (dt) = P̃kk f̃k(λ)/[1 − (1 − P̃kk)f̃k(λ)], (1.32)
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where
f̃k(λ) =

∫ ∞

0

e−λtF̃k(dt). (1.33)

The stationary merged stochastic system S̃ is defined by the semi-Markov process
x̃(t), t ≥ 0, on the merged phase space Ê by the merged semi-Markov kernel (1.26).

Relation between the initial semi-Markov process x(t), t ≥ 0, on the phase space
(E,E) and the stationary merged semi-Markov process x̃(t), t ≥ 0, on the merged phase
space Ê = {1, 2, ..., N} is described in Theorem 5 below.

Define the entrance moments into subset Ek, k ∈ Ê:

τ
(k)
m+1 := inf{n > τ (k)

m : xn ∈ Ek}, m ≥ 1, τ0 = 0, (1.34)

and the renewal processes

x̃(k)
m := x

τ
(k)
m +1

, θ̃(k)m := θ
τ
(k)
m +1

, m ≥ 0. (1.35)

Theorem 5. ([AK80]) Let the embedded Markov chain xn, n ≥ 0, defined by the
stochastic kernel P (x,B) be ergodic, with the stationary distribution ρ(B), B ∈ E, that
satisfies Condition C1. Then the following convergence takes place:

lim
m→∞P(x̃(k)

m ∈ Er, θ̃
(k)
m ≤ t) = Q̃kr(t), k, r ∈ Ê. (1.36)

Particularly,
lim
m→∞P(x̃(k)

m ∈ Er) = P̃kr, k, r ∈ Ê, (1.37)

and
lim
m→∞P(θ̃(k)m ≤ t) = F̃k(t), k ∈ Ê. (1.38)

That is, the stationary merged semi-Markov kernel (1.26) determines the transition
probabilities of the renewal process (1.35) on the merged phase space Ê in the stationary
regime.

Let us now consider a stationary phase merging in series scheme. The stationary
merged MRP x̃εn, θ̃

ε
n, n ≥ 0, now is considered in the series scheme given by the semi-

Markov kernel

Q̃εkr(t) =
{

εP̃krF̃k(t/ε), k, r ∈ Ê, k 
= r

(1 − εP̃kk)F̃k(t/ε), k, r ∈ Ê, k = r.
(1.39)

The stationary merged MRP in series scheme without virtual transitions x̃0
n, θ̃

0
n,

n ≥ 0, is determined by the semi-Markov kernel

Q̃0ε
kr(t) = P̃krF̃

0ε
k (t/ε), k, r ∈ Ê, k 
= r, (1.40)

P̃ 0
kr = Pkr/[1 − P̃kk], k, r ∈ Ê.

The distribution functions F̃ 0ε
k (t) are determined by the Laplace transform

f̄0ε
k (λ) :=

∫ ∞

0

e−λtF̃ 0ε
k (dt) = εP̃kkf̃k(ελ)/[1 − (1 − εP̃kk)f̃k(ελ)]. (1.41)
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Theorem 6. Let the supporting EMC x0
n, n ≥ 0, is uniformly ergodic with the

stationary distributions ρk(B), B ∈ Ek, k ∈ Ê, and the merged exit probabilities

q̂k :=
∫

Ek

ρk(dx)P1(x,E \ Ek) > 0, k ∈ Ê, (1.42)

and,
max

1≤k≤N
mk ≤M < +∞, (1.43)

and moreover the functions ¯̃Fk(t) := 1 − F̃k(t), k ∈ Ê, are uniformly integrable, then
the following weak convergence takes place

x̃0
ε(t) =⇒ x̂(t), ε→ 0.

We have
f̄0ε
k (λ) −→ Λk

λ+ Λk
, ε→ 0,

where Λk = P̃kk/mk, and mk = Eθk =
∫∞
0
F̄k(t)dt.

Convergence of sojourn times distributions of finite state space MRP is equivalent
to the convergence of compensating operator to the limit Markov process generator,
with the same embedded Markov chain kernel [S86, S98]. For more details and proofs
on this topic see [KL05a,b, KM03, M04].
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Abstract: This paper is a survey of results presented in the recent book Gyllenberg
and Silvestrov [GS08].1 This book is devoted to studies of quasi-stationary phenomena
for nonlinearly perturbed stochastic processes and systems. New methods of asymptotic
analysis for nonlinearly perturbed stochastic processes based on asymptotic expansions
for perturbed renewal equation and recurrence algorithms for construction of asymp-
totic expansions for Markov type processes with absorption are presented. Asymptotic
expansions are given in mixed ergodic (for processes) and large deviation theorems
(for absorption times) for nonlinearly perturbed regenerative processes, semi-Markov
processes, and Markov chains. Applications to analysis of quasi-stationary phenomena
in nonlinearly perturbed queueing systems, population dynamics and epidemic models,
and for risk processes are presented. The book also contains an extended bibliography
of works in the area.
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2.1 Introduction

The book mentioned above presents new methods of asymptotic analysis of nonlinearly
perturbed stochastic processes and systems with random lifetimes.

1 Gyllenberg, M., Silvestrov, D.S.: Quasi-Stationary Phenomena in Nonlinearly Perturbed
Stochastic Systems. De Gruyter Expositions in Mathematics, 44, Walter de Gruyter, Berlin,
XII + 579 pp. (2008)

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 19
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 2, c© Springer Science+Business Media, LLC 2010
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Usually the behaviour of a stochastic system can be described in terms of some
Markov type stochastic process η(ε)(t) and its lifetime defined to be the time μ(ε) at
which the process η(ε)(t) hits a special absorption subset of the phase space of this pro-
cess for the first time. A typical situation is when the process η(ε)(t) and the absorption
time μ(ε) depend on a small parameter ε≥ 0 in the sense that some of their local “tran-
sition” characteristics depend on the parameter ε. The parameter ε is involved in the
model in such a way that the corresponding local characteristics are continuous at the
point ε= 0, if regarded as functions of ε. These continuity conditions permit to consider
the process η(ε)(t), for ε > 0, as a perturbed version of the process η(0)(t).

The object of interest is the joint distribution of the process η(ε)(t) subject to
a condition of non-absorption of the process up to a moment t, i.e., the probabilities
P{η(ε)(t)∈A, μ(ε)>t}. In models with perturbations, it is natural to study the asymp-
totic behaviour of these probabilities when the time t → ∞ and the perturbation
parameter ε → 0 simultaneously. The corresponding asymptotic results describe so-
called quasi-stationary and pseudo-stationary phenomena for processes η(ε)(t). These
phenomena differ by the asymptotic behaviour of the absorption times μ(ε). These ran-
dom variables are stochastically bounded or unbounded as ε → 0, respectively, in the
quasi-stationary and pseudo-stationary cases.

The principal novelty of results presented in book [GS08] is that the models with
nonlinear perturbations are studied. Local transition characteristics that were men-
tioned above are usually some scalar or vector moment functionals p(ε) of local tran-
sition probabilities for the corresponding processes. By a nonlinear perturbation we
mean that these characteristics are nonlinear functions of the perturbation parameter
ε and that the assumptions made imply that the characteristics can be expanded in
an asymptotic power series with respect to ε up to and including some order k, i.e.,
p(ε) = p(0) + p[1]ε + · · · + p[k]εk + o(εk). The case k = 1 corresponds to models with
usual linear perturbations while the cases k > 1 correspond to models with nonlinear
perturbations.

The classes of processes for which this program is realised include nonlinearly
perturbed regenerative processes, semi-Markov processes, and continuous time Markov
chains with absorption. The approach is based on advanced techniques, developed in
the book, of nonlinearly perturbed renewal equations. Applications to the analysis
of quasi-stationary phenomena in models of nonlinearly perturbed stochastic systems
considered in the book pertain to models of highly reliable queueing systems, M/G
queueing systems with quick service, stochastic systems of birth–death type, includ-
ing epidemic and population dynamics models, metapopulation dynamic models, and
perturbed risk processes.

The book [GS08] contains an extended introduction, where the main problems,
methods, and algorithms that constitute the content of the book are presented in in-
formal form. In Chaps. 1 and 2, results which deal with a generalisation of the classical
renewal theorem to a model of the perturbed renewal equation are presented. These
results are interesting by their own and, as we think, can find various applications
beyond the areas mentioned in the book. In Chaps. 3–5 quasi- and pseudo-stationary
asymptotics is studied for nonlinearly perturbed regenerative processes, semi-Markov
processes, and continuous time Markov chains with absorption. Chapters 6 and 7 are
devoted to applications of the theoretical results to studies of quasi-stationary phe-
nomena for various nonlinearly perturbed models of stochastic systems. In Chap. 6,
quasi-stationary phenomena are studied for highly reliable queueing systems, M/G



2 Nonlinearly Perturbed Stochastic Processes and Systems 21

queueing systems with quick service, stochastic systems of birth–death type, includ-
ing epidemic and population dynamics models, and metapopulation dynamic models;
Chap. 7 deals with perturbed risk processes. Finally, Chap. 8 contains three supple-
ments. The first one gives some basic operation formulas for scalar and matrix asymp-
totic expansions. In the second supplement, some new prospective directions for future
research in the area are discussed. In the last supplement, bibliographical remarks to
the bibliography that includes more than 1000 references are given.

2.2 Nonlinearly Perturbed Renewal Equation

Let us consider the family of renewal equations,

x(ε)(t) = q(ε)(t) +
∫ t

0

x(ε)(t− s)F (ε)(ds), t ≥ 0, (2.1)

where, for every ε ≥ 0, we have the following: (a) q(ε)(t) is a real-valued function
on [0,∞) that is Borel measurable and locally bounded, i.e., bounded on every finite
interval, and (b) F (ε)(s) is a distribution function on [0,∞) which is not concentrated
at 0 but can be improper, i.e., F (ε)(∞) ≤ 1.

As well known, there exists the unique Borel measurable and bounded on every
finite interval solution x(ε)(t) of (2.1).

In the model of perturbed renewal, the forcing function q(ε)(t) and distribution
F (ε)(s) depend on some perturbation parameter ε ≥ 0 and converge in some sense to
q(0)(t) and F (0)(s) as ε→ 0.

The fundamental fact of the renewal theory connected with this equation is the
renewal theorem given in its final form by Feller [Fel66]. This theorem describes the
asymptotic behavior of solution in the form of asymptotic relation x(0)(t) → x(0)(∞)
as t→ ∞ for non-perturbed renewal equation.

The renewal theorem is a very powerful tool for proving ergodic theorems for regen-
erative stochastic processes. This class of processes is very broad. It includes Markov
processes with discrete phase space. Moreover, Markov processes with a general phase
space can be included, under some minor conditions, in a model of regenerative pro-
cesses with the help of the procedure of artificial regeneration.

Applying the renewal theorem to ergodic theorems for regenerative type processes is
based on the well known fact that the distribution of a regenerative process at a moment
t satisfies a renewal equation. This makes it possible to apply the renewal theorem and
to describe the asymptotic behaviour of the distribution of the regenerative process as
t→ ∞.

Theorems that generalise the classical renewal theorem to a model of the perturbed
renewal equation was proved in papers Silvestrov [Sil76,Sil78,Sil79]. These results are
presented in Chap. 1 of De Gruyter Expositions in Mathematics [GS08].

As usual the symbol F (ε)(·) ⇒ F (0)(·) as ε → 0 means weak convergence of the
distribution functions that is, the pointwise convergence in each point of continuity of
the limiting distribution function.
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Further, the following notations are used,

f (ε) = 1 − F (ε)(∞), m(ε)
n =

∫ ∞

0

snF (ε)(ds), n ≥ 1.

We assume that the functions q(ε)(t) and the distributions F (ε)(s) satisfy the
following continuity conditions at the point ε = 0, if regarded as functions of ε:

D1:F (ε)(·) ⇒ F (0)(·) as ε → 0, where F (0)(s) is a proper non-arithmetic distribution
function;

M1: m(ε)
1 → m

(0)
1 <∞ as ε→ 0;

and

F1: (a) limu→0 lim0≤ε→0 sup|v|≤u |q(ε)(t + v) − q(0)(t)| = 0 almost everywhere with
respect to the Lebesgue measure on [0,∞);

(b) lim0≤ε→0 sup0≤t≤T |q(ε)(t)| <∞ for every T ≥ 0;
(c) limT→∞ lim0≤ε→0h

∑

r≥T/h suprh≤t≤(r+1)h |q(ε)(t)| = 0 for some h > 0.

It is easy to show that, under conditions D1, f (ε) → f (0) = 0 as ε→ 0.
Let also assume the following condition that balances the rate at which time t(ε)

approaches infinity, and the convergence rate of the defect f (ε) to zero as ε→ 0:

B: 0 ≤ t(ε) → ∞ and f (ε) → 0 as ε → 0 in such a way that f (ε)t(ε) → λ, where
0 ≤ λ ≤ ∞.

The starting point for the research studies presented in book [GS08] is the following
theorem (Silvestrov [Sil76,Sil78,Sil79]).

Theorem 1. Let conditions D1, M1, F1, and B hold. Then,

xε(tε) → e−λ/m
(0)
1

∫ ∞
0 q(0)(s)ds

m
(0)
1

as ε→ 0. (2.2)

Remark 1. It is worth to note that this theorem reduces to the classical renewal
theorem in the case of non-perturbed renewal equation, i.e., where the forcing functions
q(ε)(t) ≡ q(0)(t) and distribution functions F (ε)(s) ≡ F (0)(s) do not depend on ε.
In particular, condition D1 reduces to the assumption that F (0)(s) is a proper non-
arithmetic distribution function; M1 to the assumption that the expectation m

(0)
1 is

finite; and F1 to the assumption that the function q(0)(t) is directly Riemann integrable
on [0,∞).

In this case, the defect f (ε) ≡ 0 and the balancing condition B holds for any
t(ε) → ∞ as ε→ 0 with the parameter λ = 0.

Note that condition D1 does not require and does not provide that the pre-limit
(ε> 0) distribution functions F (ε)(s) are non-arithmetic.

Also, condition F1 does not provide that the pre-limit (ε > 0) forcing functions
q(ε)(t) are directly Riemann integrable on [0,∞). However, this condition does imply
that the limit forcing functions q(0)(t) has this property.

In the general case, the balancing condition B restrict the rate of growth for time
t(ε). This restriction becomes unnecessary if an additional Cramér type condition is
imposed on the distributions Fε(s).
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In this case, one can also weaken condition D1 and accept also the possibility for
the limit distribution be improper:

D2: (a) F (ε)(·) ⇒ F (0)(·) as ε → 0, where F (0)(t) is a non-arithmetic distribution
function (possibly improper);

(b) f (ε) → f (0) ∈ [0, 1) as ε→ 0.

The Cramér type condition mentioned above takes the following form:

C1: There exists δ > 0 such that:
(a) lim0≤ε→0

∫ ∞
0 eδsF (ε)(ds) <∞;

(b)
∫ ∞
0

eδsF (0)(ds) > 1.

Let us introduce the moment generation function,

φ(ε)(ρ) =
∫ ∞

0

eρsF (ε)(ds), ρ ≥ 0.

Consider the following characteristic equation,

φ(ε)(ρ) = 1. (2.3)

Under conditions D2 and C1, there exists ε1 > 0 such that φ(ε)(δ) ∈ (1,∞), and,
therefore, (2.3) has a unique non-negative root ρ(ε) and ρ(ε) ≤ δ, for every ε ≤ ε1. Also,
ρ(ε) → ρ(0) as ε→ 0.

Note also that (a) ρ(0) = 0 if and only if f (0) = 0 and (b) ρ(0) > 0 if and only if
f (0) > 0.

In this case, condition F1 takes the following modified form:

F2: (a) limu→0 lim0≤ε→0 sup|v|≤u |q(ε)(t + v) − q(0)(t)| = 0 almost everywhere with
respect to the Lebesgue measure on [0,∞);

(b) lim0≤ε→0 sup0≤t≤T |q(ε)(t)| <∞ for every T ≥ 0;
(c) limT→∞ lim0≤ε→0h

∑

r≥T/h suprh≤t≤(r+1)h eγt|q(ε)(t)| = 0 for some h > 0 and
γ > ρ(0).

Let us denote,

x̃(ε)(∞) =

∫ ∞
0

eρ
(ε)sq(ε)(s)m(ds)

∫ ∞
0
seρ(ε)sF (ε)(ds)

,

where m(ds) is the Lebesgue measure on a real line.
Conditions D2, C1, and F2 imply, due to relation ρ(ε) → ρ(0) as ε→ 0, that there

exists 0 < ε2 ≤ ε1 such that ρ(ε) < γ and
∫ ∞
0

eρ
(ε)s|q(ε)(s)|m(ds) < ∞ for ε ≤ ε2.

Thus, the functional x̃(ε)(∞) is well defined for ε ≤ ε2.
The following theorem was also proved in Silvestrov [Sil76,Sil78,Sil79].

Theorem 2. Let conditions D2, C1, and F2 hold. Then,

x(ε)(t(ε))
e−ρ(ε)t(ε) → x̃(0)(∞) as ε→ 0. (2.4)

The asymptotic relation (2.4) given in Theorem 2 should be compared with the
asymptotic relation (2.2) given in Theorem 1, in the case where ρ(0) = 0.
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Indeed, relation (2.2) can be re-written in the form given in (2.4), with coefficients
ρ(ε) = f (ε)/m

(ε)
1 . The Cramér type condition C1 makes it possible to use in (2.4)

an alternative coefficients ρ(ε) defined as the solution of the characteristic equation
(2.3). The latter coefficients provide better fitting of the corresponding exponential
approximation for solution of renewal equation. That is why the asymptotic relation
(2.4) does not restrict the rate of growth for time t(ε) while the asymptotic relation
(2.2) does impose such restriction.

Remark 2. It is worth to note that this theorem reduces to the variant of renewal
theorem for improper renewal equation in the case of non-perturbed renewal equation,
also given in Feller [Fel66]. Condition D2 reduces to the assumption that F (0)(s) is a
non-arithmetic distribution function with defect f (0) ∈ [0, 1); C1 to the assumption
that the exponential moment φ(0)(δ) ∈ (1,∞); and F2 to the assumption that the
function eγtq(0)(t) is directly Riemann integrable on [0,∞) for some γ > ρ(0).

The results formulated in Theorems 1 and 2 created the base for further research
studies in the area. For example, Shurenkov [Shu80a,Shu80b] generalised the results of
these theorems to the case of perturbed matrix renewal equation using possibility of
imbedding the matrix model to the scalar model considered in Theorems 1 and 2.

A new improvement was achieved in the paper Silvestrov [Sil95] and then in the pa-
pers Gyllenberg and Silvestrov [GS99a,GS00a]. Under natural additional perturbation
conditions, which assume that the defect f (ε) and the corresponding moments of the
distribution F (ε)(s) can be expanded in power series with respect to ε up to and includ-
ing an order k, explicit expansions for the corresponding characteristic roots were given,
and the corresponding exponential expansions were obtained for solutions of nonlinearly
perturbed renewal equations. In [Sil95], the case with asymptotically proper distribu-
tions F (ε)(s) was considered, while, in Gyllenberg and Silvestrov [GS99a, GS00a], the
case with asymptotically improper distributions F (ε)(s) was investigated. These results
are presented in Chap. 2 of De Gruyter Expositions in Mathematics [GS08].

Let us introduce the mixed power-exponential moment generating functions,

φ(ε)(ρ, n) =
∫ ∞

0

sneρsF (ε)(ds), ρ ≥ 0, n = 0, 1, . . . .

Note that by the definition φ(ε)(ρ, 0) = φ(ε)(ρ). Under conditions D2 and C1, for
any 0 < δ′ < δ, there exists 0 < ε3 < ε2 such that φ(ε)(δ′, n) < ∞ for n = 0, 1, . . .
and ε ≤ ε3. Also, φ(ε)(ρ, n) → φ(0)(ρ, n) as ε → 0 for n = 0, 1, . . . and ρ ≤ δ′. Let δ′

is chosen such that φ(0)(δ′) ∈ (1,∞). In this case, the characteristic root ρ(0) < δ′ and
also there exists 0 < ε4 < ε3, such that the characteristic roots ρ(ε) < δ′ for ε ≤ ε4.

The basic role plays the following nonlinear perturbation condition:

P(k)
1 : φ(ε)(ρ(0), n) = φ(0)(ρ(0), n) + b1,nε+ · · · + bk−n,nεk−n + o(εk−n) for n = 0, . . . , k,

where |bi,n| <∞, i = 1, . . . , k − n, n = 0, . . . , k.

It is convenient to define b0,n = φ(0)(ρ(0), n), n = 0, 1, . . .. From the definition of
ρ(0) it is clear that b0,0 = φ(0)(ρ(0), 0) = 1.

It should be noted that, in the case f (0) = 0, where characteristic root ρ(0) = 0,
the perturbation condition P(k)

1 involves usual power moments of distributions F (ε)(s).
While in the case f (0) > 0, where characteristic root ρ(0) > 0, the perturbation condi-
tion involves mixed power-exponential moments of distributions F (ε)(s).
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Let us also formulate the following condition that balances the rate at which time
t(ε) approaches infinity and the convergence rate of perturbation in different asymptotic
zones, for 1 ≤ r ≤ k:

B(r): 0 ≤ t(ε) → ∞ in such a way that εrt(ε) → λr, where 0 ≤ λr <∞.

The following theorem is given in Silvestrov [Sil95] and Gyllenberg and Silvestrov
[GS99a,GS00a,GS08].

Theorem 3. Let conditions D2, C1, and P(k)
1 hold. Then,

(i) The root ρ(ε) of (2.3) has the asymptotic expansion

ρ(ε) = ρ(0) + a1ε+ · · · + akε
k + o(εk), (2.5)

where the coefficients an are given by the recurrence formulas a1 = −b1,0/b0,1 and,
in general, for n = 1, . . . , k,

an = − b−1
0,1(bn,0 +

n−1
∑

q=1

bn−q,1aq

+
∑

2≤m≤n

n
∑

q=m

bn−q,m ·
∑

n1,...,nq−1∈Dm,q

q−1
∏

p=1

anp
p /np!), (2.6)

where Dm,q, for every 2 ≤ m ≤ q < ∞, is the set of all nonnegative, integer
solutions of the system

n1 + · · · + nq−1 = m, n1 + · · · + (q − 1)nq−1 = q. (2.7)

(ii) If bi,0 = 0, i = 1, . . . , n, for some 1 ≤ n ≤ k, then a1, . . . , an = 0. If bi,0 = 0,
i = 1, . . . , n− 1 but bn,0 < 0, for some 1 ≤ n ≤ k, then a1, . . . , an−1 = 0 but
an > 0.

(iii) If, additionally, conditions B(r), for some 1 ≤ r ≤ k, and F2 hold, then the
following asymptotic relation holds:

x(ε)(t(ε))
exp{−(ρ(0) + a1ε+ · · · + ar−1εr−1)t(ε)} → e−λrar x̃(0)(∞) as ε→ 0. (2.8)

The asymptotic relation (2.8) given in Theorem 3 should be compared with the
asymptotic relation (2.4) given in Theorem 2.

The asymptotic relation (2.4) looks nicely but has actually a serious drawback.
Indeed, the exponential normalisation with the coefficient ρ(ε) is not so effective because
of this coefficient is given us only as the root of the nonlinear equation (2.3), for
every ε ≥ 0.

Relation (2.8) essentially improves the asymptotic relation (2.4) replacing this sim-
ple convergence relation by the corresponding asymptotic expansion. The exponential
normalisation with the coefficient ρ(0) + a1ε + · · · + ar−1 er−1 involves the root ρ(0).
To find it one should solve only one nonlinear equation (2.3), for the case ε = 0. As far
as the coefficients a1, . . . , ar are concerned, they are given in the explicit algebraic
recurrence form.
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Moreover, the root ρ(0) = 0 in the most interesting case, where f (0) = 0, i.e., the
limit renewal equation is proper. Here, the non-linear step connected with finding of
the root of (2.3) can be omitted.

If there exist 0 < ε′ ≤ e5 such that the conditions listed in Remark 2 holds for
the distribution function F (ε)(s) and the forcing function q(ε)(t) for every ε ≤ ε′, then
according to Theorem 2, the following asymptotic relation holds for every ε ≤ ε′,

x(ε)(t)
e−ρ(ε)t

→ x̃(ε)(∞) as t→ ∞. (2.9)

Let us now define mixed power-exponential moment functionals for the forcing
functions,

ω(ε)(ρ, n) =
∫ ∞

0

sneρsq(ε)(s)m(ds), ρ ≥ 0, n = 0, 1, . . . .

Under conditions C1 and F2, for any 0 < γ′ < γ, there exists 0 < ε6 < ε5 such
that ω̄(ε)(γ′, n) =

∫ ∞
0
sneγ

′s|q(ε)(s)|m(ds) < ∞ for n = 0, 1, . . . and ε ≤ ε6. Also,
ω(ε)(ρ, n) → ω(0)(ρ, n) as ε → 0 for n = 0, 1, . . . and ρ ≤ γ′. Let γ′ is chosen such
that ρ(0) < γ′. In this case, there exists 0 < ε7 < ε6 such that the characteristic roots
ρ(ε) < γ′ for ε ≤ ε7.

Note that the renewal limit x̃(ε)(∞) is well defined for ε ≤ ε7 even without the
non-arithmetic assumption made above in order to provide asymptotic relation (2.9)
and, moreover,

x̃(ε)(∞) =
ω(ε)(ρ(ε), 0)
φ(ε)(ρ(ε), 1)

. (2.10)

Let us now formulate a perturbation condition for mixed power-exponential moment
functionals for the forcing functions:

P(k)
2 : ω(ε)(ρ(0), n) = ω(0)(ρ(0), n) + c1,nε+ · · ·+ ck−n,nεk−n + o(εk−n) for n = 0, . . . , k,

where |ci,n| <∞, i = 1, . . . , k − n, n = 0, . . . , k.

It is convenient to set c0,n = ω(0)(ρ(0), n), n = 0, 1, . . . .
The following theorem supplements Theorem 3.

Theorem 4. Let conditions D2, C1, F2, P(k+1)
1 , and P(k)

2 hold. Then the functional
x̃(ε)(∞) has the following asymptotic expansions:

x̃(ε)(∞) =
ω(0)(ρ(0), 0) + f ′

1ε+ · · · + f ′
kε
k + o(εk)

φ(0)(ρ(0), 1) + f ′′
1 ε+ · · · + f ′′

k ε
k + o(εk)

= x̃(0)(∞) + f1ε + · · · + fkε
k + o(εk), (2.11)

where the coefficients f ′
n, f

′′
n are given by the formulas f ′0 = ω(0)(ρ(0), 0) = c0,0,

f ′1 = c1,0 + c0,1a1, f ′′
0 = φ(0)(ρ(0), 1) = b0,1, f

′′
1 = b1,1 + b0,2a1, and in general for

n = 0, . . . , k,

f ′
n = cn,0 +

n
∑

q=1

cn−q,1aq

+
∑

2≤m≤n

n
∑

q=m

cn−q,m ·
∑

n1,...,nq−1∈Dm,q

q−1
∏

p=1

anp
p /np!, (2.12)
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and

f ′′n = bn,1 +
n

∑

q=1

bn−q,2aq

+
∑

2≤m≤n

n
∑

q=m

bn−q,m+1 ·
∑

n1,...,nq−1∈Dm,q

q−1
∏

p=1

anp
p /np!, (2.13)

and the coefficients fn are given by the recurrence formulas f0 = x̃(0)(∞) = f ′0/f
′′
0 and

in general for n = 0, . . . , k,

fn = (f ′
n −

n−1
∑

q=0

f ′′
n−qfq)/f

′′
0 . (2.14)

It should be noted that the perturbation condition P(k+1)
1 stronger than P(k)

1 is required
in Theorem 4. This is because of the former condition is needed to get the corresponding
expansion for φ(ε)(ρ(ε), 1) in an asymptotic power series with respect to ε up to and
including the order k.

Chapter 2 of De Gruyter Expositions in Mathematics [GS08] also contains asymp-
totic results based on more general perturbation conditions.

It worth to mention that discrete time analogues of some of the results presented
above are given in papers by Englund and Silvestrov [ES97], Englund [Eng00,Eng01],
and Silvestrov [Sil00b]. Also, exponential asymptotic expansions for renewal equation
with non-polynomial perturbations are studied in papers Englund and Silvestrov [ES97,
Eng01], and Ni, Silvestrov and Malyarenko [NSM08].

2.3 Nonlinearly Perturbed Regenerative Processes

Method of asymptotic analysis of nonlinearly perturbed renewal equation can be di-
rectly used in studies of quasi- and pseudo-stationary asymptotics for nonlinearly per-
turbed regenerative processes. The corresponding results are presented in Chap. 3 of
De Gruyter Expositions in Mathematics [GS08]. This chapter is partly based on the
results of the papers Gyllenberg and Silvestrov [GS99a,GS00b].

Let ξ(ε)(t), t ≥ 0 be a regenerative process with a measurable phase space X and
regeneration times τ (ε)

n , n = 1, 2, . . . , and μ(ε) be a regenerative stopping time that
regenerates jointly with the process ξ(ε)(t), at times τ (ε)

n .
Both the regenerative process ξ(ε)(t) and the regenerative stopping time μ(ε) are

assumed to depend on a small perturbation parameter ε ≥ 0. The processes ξ(ε)(t), for
ε > 0 are considered as a perturbation of the process ξ(0)(t), and therefore we assume
some weak continuity conditions for certain characteristic quantities of these processes
regarded as functions of ε at point ε = 0.

As far as the regenerative stopping times are concerned, we consider two cases. The
first one is a pseudo-stationary case, where the random variables μ(ε) are stochastically
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unbounded, i.e., μ(ε) tend to ∞ in probability as ε → 0. The second one is the
quasi-stationary case, where the random variables μ(ε) are stochastically bounded
as ε→ 0.

The object of studies is the probabilities P (ε)(t, A) = P{ξ(ε)(t) ∈ A, μ(ε) > t}.
These probabilities satisfy the following renewal equation,

P (ε)(t, A) = q(ε)(t, A) +
∫ ∞

0

P (ε)(t− s,A)F (ε)(ds), t ≥ 0, (2.15)

where the forcing function q(ε)(t, A) = P{ξ(ε)(t) ∈ A, τ
(ε)
1 ∧ μ(ε) > t} and distribution

function F (ε)(s) = P{τ (ε)
1 ≤ s, μ(ε) ≥ τ

(ε)
1 }.

Note that the distribution F (ε)(s) has the defect f (ε) = P{μ(ε) < τ
(ε)
1 }.

In this case, the mixed power-exponential moment generating function φ(ε)(ρ, n) =
E(τ (ε)

1 )neρτ
(ε)
1 χ(μ(ε) ≥ τ

(ε)
1 ) and the characteristic equation (2.3) takes the form

φ(ε)(ρ, 0) = 1.
The corresponding perturbation condition assumes that function φ(ε)(ρ, n) (taken

in point ρ(0) which is the root of the limit characteristic equation) can be expanded in a
power series with respect to ε up to and including the order k−n for every n = 0, . . . , k.

The relationship between the rate with which ε tends to zero and the time t tends
to infinity has a delicate influence upon the results. The balance between the rate of
perturbation and the rate of growth of time is characterized by the following asymptotic
relation εrt(ε) → λr <∞ as ε→ 0 that is assumed to hold for some 1 ≤ r ≤ k.

The direct application of Theorem 3 to the renewal equation (2.15) yields, under
the corresponding conditions, the following exponential asymptotic expansion,

P{ξ(ε)(t(ε)) ∈ A, μ(ε) > t(ε)}
exp{−(ρ0 + a1ε+ · · · + ar−1εr−1)t(ε)} → π̃(0)(A)e−λrar as ε→ 0, (2.16)

where

π̃(ε)(A) =

∫ ∞
0

eρ
(ε)sq(ε)(s,A)m(ds)

∫ ∞
0
seρ(ε)sF (ε)(ds)

.

Also, Theorem 4, applied to the renewal equation (2.15), yields, under the corre-
sponding conditions, the asymptotic expansions for the renewal limits π̃(ε)(A) and then
the following asymptotic expansion for the quasi-stationary distributions π(ε)(A) =
π̃(ε)(A)/π̃(ε)(X),

π(ε)(A) = π(0)(A) + g1(A)ε + · · · + gk(A)εk + o(εk). (2.17)

Both asymptotic expansions (2.16) and (2.17) are provided by the explicit algo-
rithms for calculating the coefficients in these expansions as rational functions of the
coefficients in the expansions involved in the initial perturbation conditions.

The case ρ0 = 0 corresponds to a model with stochastically unbounded random vari-
ables μ(ε), while the case ρ0 > 0 corresponds to a model with stochastically bounded
random variables μ(ε). The asymptotic relation (2.16) describes in these cases, respec-
tively, pseudo-stationary and quasi-stationary phenomena for perturbed regenerative
processes.
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To clarify the meaning of the asymptotic relation (2.16) let us consider the
pseudo-stationary case, where ρ0 = 0. Note that in this case π̃(0)(X) = 1 and, therefore,
π̃(0)(A) = π(0)(A).

If k = 1, then the only case r = 1 is possible for the above balancing condition for
the rate of perturbation and the rate of growth of time. In this case, the asymptotic
relation (2.16) is equivalent to the asymptotic relation P{ξ(ε)(t(ε)) ∈ A, μ(ε) > t(ε)} →
π(0)(A)e−λ1a1 as ε → 0. It shows that the position of the regenerative process ξ(t(ε))
and the normalised regenerative stopping time εμ(ε) are asymptotically independent
and have, in the limit, a stationary distribution and an exponential distribution, re-
spectively. This can be interpreted as a mixed ergodic theorem (for the regenerative
processes) and a limit theorem (for regenerative stopping times).

If k = 2, then two cases, r = 1 and r = 2, are possible for the balancing condition.
The case r = 1 was already commented and interpreted above. In this case, relation

(2.16) can be given in the equivalent alternative form, P{ξ(ε)(t(ε))∈A,μ(ε)>t(ε)}
π(0)(A) exp{−a1εt(ε)} → 1 as

ε→ 0, for non-zero sets such that π(0)(A) 
= 0. It shows that probability P{ξ(ε)(t(ε)) ∈
A, μ(ε) > t(ε)} can be approximated by the exponential type mixed tail probability
π(0)(A) exp{−a1εt

(ε)}, with the zero asymptotic relative error, in every asymptotic
time zone which is determined by the relation εt(ε) → λ1 as ε→ 0, where 0 ≤ λ1 <∞.

In the case r = 2, the asymptotic relation (2.16) reduces to the asymptotic relation
P{ξ(ε)(t(ε))∈A,μ(ε)>t(ε)}
π(0)(A) exp{−a1εt(ε)} → e−a2λ2 as ε → 0. It shows that probability P{ξ(ε)(t(ε)) ∈

A, μ(ε) > t(ε)} can be approximated by the the exponential type mixed tail probability
π(0)(A) exp{−a1εt

(ε)} as ε→ 0, with the asymptotic relative error 1− e−a2λ2 , in every
asymptotic time zone which is determined by the relation ε2t(ε) → λ2 as ε→ 0, where
0 ≤ λ2 <∞.

If λ2 = 0, then εt(ε) = o(ε−1) and the asymptotic relative error is 0. Note that
this case also covers the situation where εt(ε) is bounded, which corresponds to the
asymptotic relation (2.16) with k = 1. This is already an extension of this asymptotic
result since it is possible that εt(ε) → ∞.

If λ2 > 0, then εt(ε) = O(ε−1), and the asymptotic relative error is 1 − e−λ2a2 . It
differs from 0. Therefore, o(ε−1) is an asymptotic bound for the large deviation zone
with the asymptotic relative error 0.

To get the approximation with zero asymptotic relative error in the asymptotic
time zone which are determined by the relation ε2t(ε) → λ2 one should approximate
the mixed tail probabilities P{ξ(ε)(t(ε)) ∈ A, μ(ε) > t(ε)} by the exponential type mixed
tail probabilities π(0)(A)e−(a1ε+a2ε

2)t(ε) ∼ π(0)(A)e−a1εt
(ε)−a2λ2 , i.e., to introduce the

corresponding corrections for the parameters in the exponents.
The comments above let one interpret relation (2.16) in the case r = 2 as a new

type of mixed ergodic and large deviation theorem for the nonlinearly perturbed process
η(ε)(t) and the lifetime μ(ε)

0 .
A similar interpretation can be made for the asymptotic relation (2.16) if k > 2

and in the quasi-stationary case, where ρ(0) > 0.
Finally, the above asymptotic results is expanded to the model of nonlinearly per-

turbed regenerative processes with transition period.
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2.4 Nonlinearly Perturbed Semi-Markov Processes

The asymptotic results obtained in Chaps. 1–3 play the key role in further studies. In
Chaps. 4 and 5 of De Gruyter Expositions in Mathematics [GS08], they are applied to
analysis of pseudo- and quasi-stationary phenomena for perturbed semi-Markov pro-
cesses with a finite set of states. The results presented in this chapter are partly based
on papers Gyllenberg and Silvestrov [GS99a,GS00a] and Silvestrov [Sil07a,Sil07b].

A semi-Markov process η(ε)(t), t ≥ 0, with a phase space X = {0, . . . , N} and
transition probabilities Q(ε)

ij (u) is considered. The first hitting time μ(ε)
0 to the state 0

plays the role of an absorption time. Asymptotic behaviour of probabilities P (ε)
ij (t) =

Pi{η(ε)(t) = j, μ
(ε)
0 > t} is an object of studies.

This can be done by using the facts that a semi-Markov process can be considered as
a regenerative process with regeneration times which are subsequent return moments to
any fixed state j 
= 0 and the first hitting time to the absorption state 0 is a regenerative
stopping time. The asymptotic results mentioned above are obtained by applying the
corresponding results for regenerative processes given in Chap. 3.

Not only the generic case, where the limiting semi-Markov process has one com-
munication class of recurrent-without absorption states, is considered in details, but
also the case, where the limiting semi-Markov process has one communication class
of recurrent-without absorption states and, additionally, the class of non-recurrent-
without absorption states. The latter model covers a significant part of applications.

In this case, the distribution function 0G
(ε)
jj (t) of the return-without absorption

time in a state j 
= 0 generates the renewal equation. The corresponding characteristic
equation takes the form

∫ ∞
0

eρs 0G
(ε)
jj (ds) = 1. It is shown that the characteristic root

ρ(ε) of this equation does not depend on the choice of a recurrent-without absorption
state j 
= 0.

It is natural to formulate the perturbation conditions in terms of transition proba-
bilities Q(ε)

ij (u). In particular, nonlinear perturbation conditions are imposed on these
transition probabilities, which assume that mixed power-exponential moment genera-
tion functions p(ε)

ij [ρ, n] =
∫ ∞
0
sneρsQ(ε)

ij (ds), i 
= 0, j ∈ X (taken in point ρ(0) which is
the root of the corresponding characteristic equation for the limit case ε = 0) can be
expanded in a power series with respect to ε up to and including the order k − n for
every n = 1, . . . , k.

Conditions and expansions formulated for regenerative processes are specified in
terms of expansions for the moments of regeneration times. As was pointed above
the return times play the role of regeneration moments for semi-Markov processes.
Therefore, the corresponding asymptotic expansions for absorption probabilities and
the moments of return and hitting times for perturbed semi-Markov processes must be
derived from the nonlinear perturbation conditions imposed on transition probabilities
Q

(ε)
ij (u). Then, the corresponding asymptotic results for regenerative processes can be

applied.
Thus, as the first step, asymptotic expansions for hitting probabilities, power and

mixed power-exponential moments of hitting times are constructed using a procedure
that is based on recursive systems of linear equations for hitting probabilities and
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moments of hitting times. These moments satisfy recurrence systems of linear equations
with the same perturbed coefficient matrix and the free terms connected by special re-
currence systems of relations. In these relations, the free terms for the moments of a
given order are given as polynomial functions of moments of lower orders. This permits
to build an effective recurrence algorithm for constructing the corresponding asymp-
totic expansions. Each sub-step in this recurrence algorithm is of a matrix but linear
type, where the solution of the system of linear equations with nonlinearly perturbed
coefficients and free terms should be expanded in asymptotic series. These expansions
are also provided with a detailed analysis of their pivotal properties. These results have
their own values and possible applications beyond the problems studied in the book.

As soon as asymptotic expansions for moments of return-without absorption times
are constructed, the second nonlinear but scalar step of construction asymptotic ex-
pansions expansions for the characteristic root ρ(ε) can be realised.

The separation of two steps described above, the first one matrix and recurrence
but linear and the second one nonlinear but scalar, significantly simplify the whole
algorithm.

The asymptotic expansions for the quasi-stationary distributions require two more
steps, which are needed for constructing asymptotic expansions at the point ρ(ε) for
the corresponding moment generation functions, giving expressions for quasi-stationary
probabilities in the quotient form, and for transforming the corresponding asymptotic
quotient expressions to the form of power asymptotic expansions.

As a result, one get an effective algorithm for a construction of the asymptotic
expansions given in relations (2.16) and (2.17). It seems, that the method used for
obtaining the expansions mentioned above has its own value and great potential for
future studies.

As a particular but important example, the model of nonlinearly perturbed con-
tinuous time Markov chains with absorption is also considered. In this case, it is more
natural to formulate the perturbation conditions in terms of generators of the perturbed
Markov chains. Here, an additional step in the algorithms is needed, since the initial
perturbation conditions for generators must be expressed in terms of the moments
for the corresponding semi-Markov transition probabilities. Then, the basic algorithms
obtained for nonlinearly perturbed semi-Markov processes can be applied.

Chapters 1–5 present a theory that can be applied in studies of pseudo- and quasi-
stationary phenomena in nonlinearly perturbed stochastic systems.

2.5 Nonlinearly Perturbed Stochastic Systems

Chapter 6 of book [GS08] deals with applications of the results obtained in Chaps. 1–5
to an analysis of pseudo- and quasi-stationary phenomena in nonlinearly perturbed
stochastic systems. This chapter is partly based on the results of the papers Gyllenberg
and Silvestrov [GS94,GS99a,GS00a].

Examples of stochastic systems under consideration are queueing systems, epidemic,
and population dynamics models with finite lifetimes. In queueing systems, the lifetime
is usually the time at which some kind of a fatal failure occurs in the system. In epidemic
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models, the time of extinction of the epidemic in the population plays the role of the
lifetime, while in population dynamics models, the lifetime is usually the extinction
time for the corresponding population.

Several classical models being the subject of long term research studies were se-
lected. These models serve nowadays mainly as platforms for demonstration of new
methods and innovation results. Our goal also is to show what kind of new types re-
sults related to quasi-stationary asymptotics can be obtained for such models with
nonlinearly perturbed parameters.

As the first example, a M/M queueing system with highly reliable main servers is
considered. This queueing system is our first choice because of its function can be de-
scribed by some nonlinearly perturbed continuous time Markov chains with absorption.
Here, all conditions take a very explicit and clear form.

Also a M/G queueing system with quick service and a bounded queue buffer is
considered. In this case, the perturbed stochastic processes, which describe the dy-
namics of the queue in the system, belong to the class of so-called stochastic processes
with semi-Markov modulation. These processes admit a construction of imbedded semi-
Markov processes and are more general than semi-Markov processes. This example was
chosen because it shows in which way the main results obtained in the book can be
applied to stochastic processes more general than semi-Markov processes, in particular,
to stochastic processes with semi-Markov modulation.

The next example is based on classical semi-Markov and Markov birth-and-death
type processes. Some classical models of queueing systems, epidemic or population
dynamic models can be described with the use of such processes. We show in which
way nonlinear perturbation conditions should be used and what form will take advanced
quasi- and pseudo-stationary asymptotics developed in Chaps. 1–5.

Finally, an example of nonlinearly perturbed metapopulation model is considered.
This example is interesting since it brings, for the first time, the discussion on advanced
quasi- and pseudo-stationary asymptotics in this actual area of research in mathemat-
ical biology.

2.6 Nonlinearly Perturbed Risk Processes

The classical risk processes are still the object of intensive research studies as show, for
example, references given in the bibliography of De Gruyter Expositions in Mathematics
[GS08]. Of course, the purpose of these studies is not any more to derive formulas
relevant for field applications. These studies intend to illustrate new methods and
types of results that can later be expanded to more complex models. The same approach
was used by us when choosing this model. The aim was to show that the innovative
methods of analysis for nonlinearly perturbed processes developed in the book can yield
new results for this classical models.

Chapter 7 of De Gruyter Expositions in Mathematics [GS08] contains results that
extend the classical Cramér–Lundberg and diffusion approximations for the ruin prob-
abilities to a model of nonlinearly perturbed risk processes. Both approximations
are presented in a unified way using the techniques of perturbed renewal equations
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developed in Chaps. 1 and 2. This chapter is partly based on the results of the papers
Gyllenberg and Silvestrov [GS99a,GS99b,GS00b] and Silvestrov [Sil00a,Sil07b].

The main new element in the results presented in Chap. 7 is a high order expo-
nential asymptotic expansion in these approximations for nonlinearly perturbed risk
processes. Correction terms are obtained for the Cramér-Lundberg and diffusion type
approximations, which provide the right asymptotic behaviour of relative errors in the
perturbed model. We study the dependence of these correction terms on the relations
between the rate of perturbation and the rate of growth of the initial capital.

Also, various variants of the diffusion type approximation, including the asymptotics
for increments and derivatives of the ruin probabilities are given.

Finally, we give asymptotic expansions in the Cramér–Lundberg and diffusion type
approximations for distribution of the capital surplus prior and at ruin for nonlinearly
perturbed risk processes.

It seems to us that results presented in Chaps. 6 and 7 illustrate well a potential
of asymptotic methods developed in the book.

The works of Englund [Eng99a,Eng99b,Eng01] and Ni, Silvesxtrov, and Malyarenko
[NSM08] may also be mentioned. They also deal with applications of methods based
on perturbed renewal to asymptotic analysis of nonlinearly perturbed queuing systems
and nonlinearly perturbed risk processes, but for models with non-polynomial nonlinear
perturbations.

2.7 Conclusion

The last Chap. 8 of De Gruyter Expositions in Mathematics [GS08] contains three
supplements.

The first supplement presents some basic arithmetic operation formulas for scalar
and matrix asymptotic expansions.

In the second supplement, some new directions in the research concerned pseudo-
and quasi-stationary phenomena for perturbed stochastic processes and systems that
relate to the theory developed in this book are discussed and commented on. There is
a hope that this discussion will be especially useful for young researchers and stimulate
their interest to research studies in these areas. The corresponding extended comments
can also be found in Silvestrov [Sil08].

The third supplement in Chap. 8 contains the brief bibliographical remarks.
The extended and carefully gathered bibliography has more than 1000 references

to works in related areas, dealing with ergodic and quasi-ergodic theorems, stability
theorems, limit and large deviation theorems for lifetime-type functionals and asymp-
totic aggregation theorems for regenerative, Markov, and semi-Markov type processes,
as well as applications of such theorems to queueing systems, models of population
dynamics, epidemic models, and other stochastic systems.

Here, we would like to point some originating and survey papers and books re-
lated to perturbation problems for stochastic processes. These are Vere-Jones [Ver62],
Hanen [Han63], Kingman [Kin63], Kato [Kat66], Korolyuk and Turbin [KT76], [KT78],
Wentzell and Freidlin [WF79], Silvestrov [Sil80], Seneta [Sen81], Solov’ev [Sol83],
Asmussen [Asm87], [Asm00], Kalashnikov and Rachev [KR88], Stewart and Sun Ji
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Guang [SS90], Ho and Cao [HC91], Meyn and Tweedie [MT93], Kalashnikov [Kal94],
[Kal97], Kovalenko [Kov94], Kartashov [Kar96], Embrechts, Klüppelberg, and Mikosch
[EKM97], Kijima [Kij97], Kovalenko, Kuznetsov, and Pegg [KKP97], Borovkov [Bor98],
Stewart [Ste98], [Ste01], Yin and Zhang [YZ98], Korolyuk V.S. and Korolyuk, V.V.
[KK99], Latouche and Ramaswami [LR99], Bening and Korolev [BK02], Whitt [Whi02],
Silvestrov [Sil04], Koroliuk and Limnios [KL05], Anisimov [Ani08], and Gyllenberg and
Silvestrov [GS08].

Quasi-stationary phenomena and related problems are a subject of intensive studies
during several decades. However, the development of theory of quasi-stationary phe-
nomena is still far from its completion. The part of the theory related to conditions of
existence of quasi-stationary distributions is comparatively well developed while com-
putational aspects of the theory are underdeveloped. The content of the book [18] is
concentrated in this area. The book presents new effective methods for asymptotic anal-
ysis of pseudo- and quasi-stationary phenomena for nonlinearly perturbed stochastic
processes and systems. Moreover, the results presented in the book unite, for the first
time, research studies of pseudo- and quasi-stationary phenomena in the frame of one
theory. Methods of asymptotic analysis for nonlinearly perturbed stochastic processes
and systems developed in the book have their own values and possible applications
beyond the problems studied in the book.

The results presented in the book will be interesting to specialists, who work in such
areas of the theory of stochastic processes as ergodic, limit, and large deviation theo-
rems, analytical and computational methods for Markov chains, regenerative, Markov,
semi-Markov, risk and other classes of stochastic processes, renewal theory, and their
queueing, reliability, population dynamics, and other applications. There is a hope that
the book will also attract attention of those researchers, who are interested in new ana-
lytical methods of analysis for nonlinearly perturbed stochastic processes and systems,
especially those who like serious analytical work.
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On a Copula for Failure Times of System Elements

Alexander Andronov

Riga Technical University, Riga, Latvia Aleksandrs.Andronovs@rtu.lv

Abstract: A considered reliability system consists from n identical elements. Each
element can be available or failed. A failure rate of element equals λ/i, where i is a
number of available elements. A time till a failure of an element has an exponential
distribution. Independence property has place too. Therefore, a total failure rate is the
constant λ, until at least one element is available. Initially, all elements are available.
The main aim of the paper is to determine a joint cumulative distribution function of
the available time for all elements, as well as a corresponding copula. It allows us to
generalize the received results on a nonexponential case.

Keywords and phrases: Multicomponent system, Reliability function, Copula

3.1 Introduction

Usually, reliability systems described in the literature are considered under supposi-
tion that system’s elements fail independently [Ger00, LN00]. However, often a case
takes place when some element failure increases a load on worked elements, so element
available times are dependent random variables. In connection with that a problem of
choosing a corresponding multidimensional distribution to fit the given statistical data
is urgent.

In econometrics, such problem’s solution often uses the so-called copulas [Nel06,
Emb]. Lately, the copulas have been used widely in the reliability theory [AN08,BMN07,
Spi07, Spi09]. Joint distribution function C(u1, u2, ..., un) = P{U1 ≤ u1, U2 ≤ u2,
..., Un ≤ un} is called a copula if the marginal distributions of all components
U1, U2, ..., Un are uniform on [0, 1]. The following fact is basic [Skl59]: any multi-
variate continuous distribution function G(x1, x2, ..., xn) = P{X1 ≤ x1, X2 ≤ x2,
..., Xn ≤ xn} can be presented uniquely via cumulative distribution function of its
component Fi(xi) = P{Xi ≤ xi} by corresponding copula C: G(x1, x2, ..., xn) =
C(F1(x1), F2(x2), ..., Fn(xn)).

An aim of the current paper is using a copula-based approach to a description of
a reliability function of the system that elements have dependent available times.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 39
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 3, c© Springer Science+Business Media, LLC 2010
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We consider a concrete system of such a sort and derive corresponding copula
C(u1, u2, ..., un). Then we can use this copula with various marginal distributions
of components getting a distribution family for fitting aim.

Let us describe a considered system. The one consists of n elements. Each element
can be in two states: available or failed. A failure rate for each element is λ/i, where
i is a number of available elements, with that corresponding time till a failure has
an exponential distribution. Independence property has place too. Therefore a total
failure rate is constant λ, until at least one element is available.

We would like to answer the following questions:

1. What is a distribution of time moment T when the last element fails?
2. What is a marginal distribution of available time X for a fixed element?
3. What is an joint distribution of available times for two and more fixed elements?
4. What is a corresponding copula?

To get answers to the first two questions, we should have in mind the following. (1)
A failure flow is a Poisson process with intensity λ, till such a time moment when the
last element fails. (2) The time moment of the i-th failure has an Erlang distribution
with parameters λ and i [Ros96]. (3) Each such moment is a failure time moment of
some element. The fixed element fails as i-th in succession to probability 1/n.

Time moment T distribution when the last element fails. Here, we have the Erlang
distribution [Ros96] with parameters λ and n:

R{T ≤ t} = 1 −
n−1
∑

i=0

(λt)i

i!
e−λt, t > 0. (3.1)

The marginal probability density function for available time X of a fixed element.
Here, we have such an expression:

pλ(x) =
1
n

n
∑

i=1

λ
(λx)i−1

(i− 1)!
e−λx, x ≥ 0. (3.2)

A corresponding cumulative distribution function is

Pλ(x) = P{X ≤ x} =

x
∫

0

pλ(z)dz =
1
n

n
∑

i=1

⎛

⎝1 −
i−1
∑

j=0

(λx)j

j!
e−λx

⎞

⎠

= 1 − 1
n

n−1
∑

j=0

n
∑

i=j+1

(λx)j

j!
e−λx

= 1 − 1
n

n−1
∑

j=0

(n− j)
(λx)j

j!
e−λx

= 1 − (λx)n−1 1
(n− 1)!

e−λx

−
(

1 − λx

n

) n−2
∑

i=0

(λx)i

i!
e−λx, x ≥ 0. (3.3)
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Further, we consider multidimensional distribution, marginal bivariate distribution and
corresponding copula. Numerical example and final remarks conclude the paper.

3.2 Multidimensional Distribution

A joint probability density function for X1, X2, ..., Xn obviously is

g(x1, x2, ..., xn) =
1
n
x
−(n−1)
i∗

1
(n− 1)!

λ(λxi∗ )n−1e−λxi∗ =
1
n!
λne−λxi∗ , ∀ 0 ≤ xi ≤ xi∗ ,

(3.4)
where xi∗ = max{x1, x2, ..., xn}.

Let us verify the normalization condition. For i∗ = 1 we have

∞
∫

0

z
∫

0

...

z
∫

0

g(z, x2, ..., xn)dx2...dxndz =

∞
∫

0

zn−1 1
n!
λne−λzdz =

1
n
.

This result can be multiplying by n because full integral contains possibilities that max-
imal component can take any place from n ones (i∗ = 1, 2, ..., n). So the normalization
condition is fulfilled.

One can get that an joint probability density function for X1, X2, ..., Xk, 1 < k ≤ n,
has the following form:

g(x1, x2, ..., xk) =
1
n
x
−(k−1)
i∗

n
∑

i=k

(i− 1)(i− 2)...(i− k + 1)
(n− 1)(n− 2)...(n− k + 1)!

1
(i− 1)!

λ(λxi∗ )i−1e−λxi∗ ,

(3.5)
where xi∗ = max{x1, x2, ..., xk}.

The last expression is valid for k = 1 too, if we set (i − 1)(i − 2)...i = 1, and
(n− 1)(n− 2)...n = 1.

Now we intend to obtain an expression for joint cumulative distribution function
G(x1, x2, ..., xn) = P{X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn}. At first we consider a case
x1 < x2 < · · · < xn. The event {X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn} consists of n disjoint
events, when the random variable Xi, i = 1, 2, ..., n, takes the maximal value. If we
denote this maximal value by z then

G(x1, x2, ..., xn)

=

x1
∫

0

z
∫

0

...

z
∫

0

g(z, ν2, ..., νn)dνn...dν2dz

+
n
∑

i=2

{
x1
∫

0

z
∫

0

...

z
∫

0

g(ν1, ν2, ..., νi−1, z, νi+1, ..., νn)dνndνn−1...dνi+1dνi−1...dν1dz

+

x2
∫

x1

x1
∫

0

z
∫

0

...

z
∫

0

g(ν1, ν2, ..., νi−1, z, νi+1, ..., νn)dνndνn−1...dνi+1dνi−1...dν1dz+ · · ·
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+

x3
∫

x2

x1
∫

0

x2
∫

0

z
∫

0

...

z
∫

0

g(ν1, ν2, ..., νi−1, z, νi+1, ..., νn)dνndνn−1...dνi+1dνi−1...dν1dz + · · ·

· · · +
xi
∫

xi−1

x1
∫

0

...

xi−1
∫

0

z
∫

0

...

z
∫

0

g(ν1, ν2, ..., νi−1, z, νi+1, ..., νn)dνndνn−1

...dνi+1dνi−1...dν1dz

}

.

A substitution (3.4) in the integral gives the following expression:

G(x1, x2, ..., xn) =
1
n

⎛

⎝1 −
n−1
∑

j=0

1
j!

(λx1)je−λx1

⎞

⎠+
n
∑

i=2

⎧

⎨

⎩

1
n

⎛

⎝1 −
n−1
∑

j=0

1
j!

(λx1)je−λx1

⎞

⎠

+

x2
∫

x1

x1
∫

0

zn−2λ
n

n!
e−λzdν1dz +

x3
∫

x2

x1
∫

0

x2
∫

0

zn−3λ
n

n!
e−λzdν2dν1dz + · · ·

· · · +

xi
∫

xi−1

x1
∫

0

...

xi−1
∫

0

zn−i
λn

n!
e−λzdνi−1...dν1dz

⎫

⎬

⎭

= 1 −
n−1
∑

j=0

1
j!

(λx1)je−λx1 +
n
∑

i=2

⎧

⎨

⎩

x1
λ

n(n− 1)

⎡

⎣

n−2
∑

j=0

(xj1e−λx1 − xj2e−λx2)
λj

j!

⎤

⎦

+x1x2
λ2

n(n− 1)(n− 2)

⎡

⎣

n−3
∑

j=0

(xj2e−λx2 − xj3e−λx3)
λj

j!

⎤

⎦+ · · ·

· · · + x1x2...xi−1
λi−1

n(n− 1)...(n− i+ 1)

⎡

⎣

n−i
∑

j=0

(xji−1e−λxi−1 − xji e
−λxi)

λj

j!

⎤

⎦

⎫

⎬

⎭

.

A final formula has the following view:

G(x1, x2, ..., xn) = 1 −
n−1
∑

j=0

1
j!

(λx1)je−λx1

+
n
∑

i=2

x1x2...xi−1
λi−1

n(n− 1)...(n− i+ 2)

×
n−i
∑

j=0

(

xji−1e−λxi−1 − xji e
−λxi

) λj

j!
. (3.6)

Now we consider a case when the sequence x1, x2, ..., xn is not ordered. We should
have in mind that gotten distribution is exchangeable [Nel06, p. 38]. Let π =
(π(1), π(2), ..., π(n)) be a permutation of {1, 2, ..., n}. We consider π(i) as a number



3 On a Copula for Failure Times of System Elements 43

of the element xπ(i) that take i-th place in the ordered sequence x(1) < x(2) < · · · <
x(n) : xπ(i) = x(i). Then the previous formula takes place if we change the index i by
π(i). So we have

G(x1, x2, ..., xn) = 1 −
n−1
∑

j=0

1
j!

(λxπ(1))je−λxπ(1)

+
n
∑

i=2

xπ(1)xπ(2)...xπ(i−1)
λi−1

n(n− 1)...(n− i+ 2)

×
n−i
∑

j=0

(

xjπ(i−1)e
−λxπ(i−1) − xjπ(i)e

−λxπ(i)

) λj

j!
.

In fact, to calculate the distribution function G(x1, x2, ..., xn) for arbitrary order of
x1, x2, ..., xn, we must range this sequence, get ordered one x(1) < x(2) < · · · < x(n),
and use formula (3.6) for xi = x(i).

3.3 Different Properties

In this section, we discuss different properties of the distribution (3.6), namely the
marginal bivariate distribution, the covariance Cov of available times X and X ′ for two
fixed different components and maximum and minimum distributions are considered.

3.3.1 Marginal Bivariate Distribution

Bivariate cumulative distribution function F (x1, x2) = P{x ≤ x1, X
′ ≤ x2} of the

available times X and X ′ for two fixed different components is calculated from (3.6).
Setting x3 = · · · = xn = ∞, x(1) = min{x1, x2}, x(2) = max{x1, x2}, we have for
0 ≤ x(1) ≤ x(2):

F (x1, x2) = 1 −
n−1
∑

i=0

(λx(1))i

i!
e−λx

(1)

+
1
n
λx(1)

n−2
∑

j=0

{

[λx(1)]j

j!
e−λx

(1) − [λx(2)]j

j!
e−λx

(2)
}

+
1

n(n− 1)
λ2x(1)x(2)

n−3
∑

j=0

{

[λx(2)]j

j!
e−λx

(2)
}

= 1 −
n−1
∑

i=0

(λx(1))i

i!
e−λx

(1)
[

1 − i

n

]

− 1
n
λx(1)

n−2
∑

j=0

[λx(2)]j

j!
e−λx

(2)
[

1 − j

n− 1

]

. (3.7)
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Now it is possible to calculate corresponding probability density function for 0 ≤
x(1) ≤ x(2):

∂2

∂x(1)∂x(2)
F (x(1)x(2))

= − 1
n
λ2

n−2
∑

j=0

[

(λx(2))j−1

(j − 1)!
− (λx(2))j

j!

]

e−λx
(2)
[

1 − j

n− 1

]

+
1
n
λ2e−λx

(2)

= −λ
2

n

(

1 − (λx(2))n−2

(n− 2)!

)

e−λx
(2)

+
λ2

n(n− 1)

n−2
∑

j=1

[

(λx(2))j−1

(j − 1)!
j − (λx(2))j

(j − 1)!

]

e−λx
(2)

+
1
n
λ2e−λx

(2)

=
1
n
λ2 (λx(2))n−2

(n− 2)!
e−λx

(2)
+

1
n(n− 1)

λ2
n−2
∑

j=1

[

j − λx(2)
] (λx(2))j−1

(j − 1)!
e−λx

(2)
. (3.8)

A view of the cumulative distribution function (3.7) says that one can contain a singular
component [ MO67, Nel06, KG10] concentrated on the line x(1) = x(2). To verify such
a possibility we must calculate a full probabilistic mass of the absolutely continuous
component (3.8). With that end in view let us calculate a two-dimensional integral of
(3.8) on the triangle with vertices (0, 0), (0,∞), (∞,∞) where x(1) ≤ x(2). This integral
gets a half of the full mass of (3.8). If it equals 1/2 then the distribution (3.7), (3.8) is
an absolutely continuous one. The Appendix contains a proof of this fact.

3.3.2 Covariance

Now we wish to calculate the covariance Cov of available times X and X ′ for two fixed
different components. As a corresponding bivariate distribution is absolutely continu-
ous, the standard formulas can be applied. Unfortunately, such a way is too long. We
prefer a probabilistic reasoning.

Let X (1) < X (2) < · · · < X(n) is an ordered sequence of X1, X2 < · · · < Xn. Then
for the unordered pair (X,X ′) for k < m:

P{X = X(k), X ′ = X(m)} =
2

n(n− 1)
.

In this case, X = Z1 + · · ·+Zk, X ′ = X+Zk+1 + · · ·+Zm where {Zi} are independent
identically and exponentially distributed with parameter λ random variables. As here
we have the Erlang distributions then (see, e.g., [Sle06, p. 254])

E
(

X |X = X(k)
)

=
k

λ
, E

(

X2|X=X(k)
)

=k(k + 1)
1
λ2
, E(Zk+1 + · · · + Zm)=

m− k

λ
.

Therefore,

E(XX ′|X = Xk, X = X(m))
= E(X(X + Zk+1 + · · · + Zm)|X = X (k), X = X(m))
= E(X2|X = X(k)) + E(X |X = X(k))E(Zk+1 + · · · + Zm)

=
1
λ2
k(k + 1) +

1
λ2
k(m− k) =

1
λ2
k(m+ 1).



3 On a Copula for Failure Times of System Elements 45

Further, the following equations will be used:

n
∑

i=1

i2 =
1
6
n(n+ 1)(2n+ 1),

n
∑

i=1

i3 =
1
4

(n(n+ 1))2.

Now we have

E(XX ′) =
n
∑

m=2

m−1
∑

k=1

P{X = X(k), X ′ = X(m)}E(XX ′|X = X(k), X ′ = X(m))

=
2

n(n− 1)

n
∑

m=2

m−1
∑

k=1

1
λ2
k(m+ 1)

=
2

n(n− 1)λ2

n
∑

m=2

(m+ 1)
1
2

(m− 1)m

=
1

n(n− 1)λ2

[

n
∑

m=2

m3 −
n
∑

m=2

m

]

=
1

n(n− 1)λ2

[

1
4

(n(n+ 1))2 − 1 − 1
2

(n− 1)(n+ 2)
]

=
1

4λ2
(n+ 1)(n+ 2).

Mean, second moment and variance for the distribution (3.2) are:

E(X) =
1
n

n
∑

i=1

1
λ
i =

1
2λn

n(n+ 1) =
1

2λ
(n+ 1),

E(X2) =
1
n

n
∑

i=1

1
λ2
i(i+ 1) =

1
n

n
∑

i=1

1
λ2
i2 +

1
2λ2

(n+ 1)

=
1

2λ2
(n+ 1) +

1
nλ2

1
6
n(n+ 1)(2n+ 1) =

1
3λ2

(n+ 1)(n+ 2),

Var(X) = E(X2) − E(X)2 =
1

12λ2
(n+ 1)(n+ 5).

Finally, the following equations for the covariance and correlation coefficient take place:

Cov = E(XX ′) − E(X)2 =
1

4λ2
(n+ 1)(n+ 2) − 1

4λ2
(n+ 1)2 =

1
4λ2

(n+ 1), (3.9)

ρ(X) =
Cov

Var(X)
=

3
n+ 5

.

3.3.3 Maximum and Minimum Distributions

Let us find distributions of the maximum X∗ = max{X,X ′} and minimum X∗ =
min{X,X ′} of available times X and X ′ for two fixed different components with joint
distribution (3.7). For X∗ we have:



46 A. Andronov

P{X∗ ≤ x}

= F (x, x) = 1 −
n−1
∑

i=0

(λx)i

i!
e−λx

[

1 − i

n

]

− 1
n
λx

n−2
∑

j=0

[λx]j

j!
e−λx

[

1 − j

n− 1

]

= 1 −
n−1
∑

i=0

(λx)i

i!
e−λx +

1
n

n−1
∑

i=1

(λx)i

(i− 1)!
e−λx − 1

n

n−2
∑

j=0

[λx]j+1

j!
e−λx

+
1

n(n− 1)

n−2
∑

j=1

[λx]j+1

(j − 1)!
e−λx

= 1 − (λx)n−1

(n− 1)!
e−λx − (λx)n−2

(n− 2)!
e−λx −

(

1 − 1
n(n− 1)

(λx)2
) n−2
∑

j=1

(λx)j−1

(j − 1)!
e−λx.

For X∗ the following result takes place:

P{X∗ ≤ x}
= P{X ≤ x} + P{X ′ ≤ x} − P{X∗ ≤ x} = 2P{X ≤ x} − P{X∗ ≤ x}

= 2

⎛

⎝1 −
n−1
∑

j=0

(λx)j

j!
e−λx +

n−1
∑

j=1

1
n

(λx)j

(j − 1)!
e−λx

⎞

⎠− P{X∗ ≤ x}

= 1 −
n−1
∑

j=0

(λx)j

j!
e−λx +

1
n

(

2 − λx

n− 1

) n−2
∑

j=1

(λx)j

(j − 1)!
e−λx + 2

(λx)n−1

n(n− 2)!
e−λx.

3.4 Copula

Our last aim is to find an expression for a copula corresponding to the joint distribution
(3.8). Let q(p) > 0 be the root of the equation

p = 1 − 1
n

n−1
∑

j=0

(n− j)
1
j!
xje−x, 0 < p < 1. (3.10)

Obviously, it is the p-quantile of the distribution (3.3) for λ = 1:

P1(q(p)) = 1 − 1
n

n−1
∑

j=0

(n− j)
1
j!
q(p)je−q(p) = p, 0 < p < 1.

Substituting p = Pλ(x) gives

P1(q(Pλ(x))) = 1 − 1
n

n−1
∑

j=0

(n− j)
1
j!
q(Pλ(x))je−q(Pλ(x)) = Pλ(x) x > 0.
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By a comparison with (3.3) we get

λx = q(Pλ(x)).

It allows us to represent (3.6) for x1 < x2 < · · · < xn by such a way:

G(x1, x2, ..., xn) = 1 −
n−1
∑

j=0

1
j!
q(Pλ(x1))je−q(Pλ(x1)) +

n
∑

i=2

q(Pλ(x1))...q(Pλ(xi−1))

× 1
n(n− 1)...(n− i+ 2)

n−i
∑

j=0

(

q(Pλ(xi−1))je−q(Pλ(xi−1)) − q(Pλ(xi))je−q(Pλ(xi))
) 1
j!
.

(3.11)

Therefore, a copula of interest for 0 < u1 < u2 < · · · < un < 1 has the following form:

C(u1, u2, ..., un) = 1 −
n−1
∑

j=0

1
j!
q(u1)je−q(u1))

+
n
∑

i=2

q(u1)...q(ui−1)
1

n(n− 1)...(n− i+ 2)

×
n−i
∑

j=0

(q(ui−1)je−q(ui−1) − q(ui)je−q(ui))
1
j!
. (3.12)

Using this formula, one can represent the joint distribution (3.6) for x1 < x2 < · · · < xn
in the form

G(x1, x2, ..., xn) = C(Pλ(x1), Pλ(x2), ..., Pλ(xn)),

where Pλ(xi) is calculated by (3.3).
Now we are able to generalize our results and consider a family of reliability func-

tions of the system for x1 < x2 < · · · < xn as

R(x1, x2, ..., xn) = C(F (x1), F (x2), ..., F (xn)),

where F (x) is an arbitrary reliability function of elements.
Note a case of unordered sequence x1, x2, ..., xn is considered as earlier.

3.5 Example

We consider our basic model for the following data: n = 4, λ = 2. Therefore, for
initial failure rate λ/n = 0.5, a fixed element has the following values of the mean μ
and the standard deviation σ of a time till a failure: μ = σ = n/λ = 2. The table
contains values of the joint distribution function (3.6) for different values of argument
x = (x1 x2 x3 x4)T .
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Now we show how the same copula (3.12) can be used for another marginal distri-
butions F (x). As the last uniform distribution U(x) and lognormal distribution L(x)
are chosen:

U(x) =

⎧

⎨

⎩

0 if x < 0,
x
2μ if 0 < x < 2μ,
1 if x > 2μ,

L(x) =

{

0 if x < 0,
Φ
(

ln(x)−a
s

)

if x > 0,

where Φ(z) is the cumulative distribution function of the standard normal distribution,
a and s > 0 are parameters of lognormal distribution.

The parameters of both distribution U(x) and L(x) were chosen in such a way
that expectation μ coincide for all three distributions. For the lognormal distribution
standard deviation σ coincides too. Let us remember [see, e.g., Sle06 p. 305] that μ
and σ of the lognormal distribution are calculated with respect to formulas

μ = exp
(

a+
1
2
s2
)

, σ2 = (exp(s2) − 1)exp(2a+ s2).

For our numerical data a = 0.3464 and s = 0.8326.
The corresponding values of the joint cumulative distribution functions GU(x) and

GL(x) are represented in the table too (Table 3.1). A comparison of all three distri-
butions shows that the considered copula (3.12) generates different distributions. It
allows us to suggest using the considered model for a description of complex systems
reliability.

Table 3.1. Values of the joint distribution functions

x =

⎛

⎜

⎜

⎝

x1

x2

x3

x4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0.5
1

1.5
2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0.5
1.5
2
3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1.5
3

3.5

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
2
3

3.5

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

2
2
2
2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1.5
2.5
3.5
4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

2
3

3.5
4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

3
3
3
3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

3
3.5
4
4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

6
6.5
6.5
6.5

⎞

⎟

⎟

⎠

G(x) 0.122 0.185 0.363 0.415 0.567 0.621 0.767 0.849 0.912 0.999
GU(x) 0.021 0.047 0.107 0.136 0.159 0.264 0.400 0.473 0.690 1.000
GL(x) 0.032 0.060 0.198 0.236 0.341 0.410 0.534 0589 0677 0.904

3.6 Conclusion

In the paper, a new family of multivariate distribution functions for nonnegative
random variables has been suggested. All distributions have the same copula and differ
from one another by marginal distributions. The last allows choosing a multivariate
distribution that in best way fits the given data of system reliability.
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3.7 Appendix

For the probability density function (3.8) we have:

∞
∫

0

x(2)
∫

0

∂2

∂x(1)∂x(2)
F (x(1), x(2))dx(1)dx(2)

=

∞
∫

0

x(2)

[

1
n
λ2 (λx(2))n−2

(n− 2)!
e−λx

(2)

+
1

n(n− 1)
λ2

n−2
∑

j=1

[j − λx(2)]
(λx(2))j−1

(j − 1)!
e−λx

(2)
]

dx(2)

=

∞
∫

0

(n− 1)
[

1
n
λ

(λx(2))n−1

(n− 1)!
e−λx

(2)
]

dx(2)

+

∞
∫

0

⎡

⎣

1
n(n− 1)

λ

n−2
∑

j=1

j2
(λx(2))j

j!
e−λx

(2)

⎤

⎦dx(2)

−
∞
∫

0

⎡

⎣

1
n(n− 1)

λ

n−1
∑

j=2

j(j − 1)
(λx(2))j

j!
e−λx

(2)

⎤

⎦dx(2)

=

∞
∫

0

(n− 1)
[

1
n
λ

(λx(2))n−1

(n− 1)!
e−λx

(2)
]

dx(2)

+

∞
∫

0

[

1
n(n− 1)

λ2x(2)e−λx
(2)
]

dx(2)

−
∞
∫

0

[

1
n(n− 1)

λ(n− 1)2
(λx(2))n−1

(n− 1)!
e−λx

(2)
]

dx(2)

+

∞
∫

0

⎡

⎣

1
n(n− 1)

λ

n−1
∑

j=2

j
(λx(2))j

j!
e−λx

(2)

⎤

⎦ dx(2)

=

∞
∫

0

[

1
n(n− 1)

λ2x(2)e−λx
(2)
]

dx(2) +
1

n(n− 1)

n−1
∑

j=2

j

=
1

n(n− 1)

[

1 +
1
2

(n− 2)(n+ 1)
]

=
2 + n2 + n− 2n− 2

2n(n− 1)
=

1
2
.
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On One Method of Reliability Coefficients

Calculation for Objects in Non-Homogeneous
Event Flows

Alexander Antonov∗, Kristina Belova, and Valeriy Chepurko

Obninsk State Technical University for Nuclear Power Engineering (INPE), Obninsk,
Russia, antonov@iate.obninsk.ru

Abstract: The paper considers a new mathematical model for calculating reliability
coefficients of the systems (or elements) which probabilistic characteristics can vary
in time. The systems with the operable state and the down state are considered. The
new mathematical model can take into account possible “distortions” of an event flows
by means of a normalizing flow function Ψ. The normalizing flow function model is
presented. The equations for failure flow parameter, distribution density of operating
time between failures, resource reliability characteristics, and availability function are
deduced.

Keywords and phrases: Failure and repair flows, Failure flow parameter, Joint
failure–repair flow, Leading flow function, Non-homogeneity process, Normalizing flow
function model

4.1 Introduction

Functioning process of a technical equipment can be divided into three operating
periods. There are a burn-in period, a normal life or useful life period and an age-
ing period. Reliability coefficients of equipment and a methods for their calculating
depend on the operating period. The failure flow parameter is relatively constant on
the useful life period. But we should take into consideration the burn-in period with a
decreasing failure flow parameter and the ageing period that exhibits an increasing fail-
ure flow parameter. In general, more complex time dependences can take place. Let’s
consider a repair time (a repair of system elements or a system repair). We can assume
that the repair flow consists of the “non-homogeneous” (concerning a distribution) re-
pair time. For instance, a mean time to repair can gradually rise since an equipment
ages and a fault location time and a repair complication rise.

The aim of this paper is to develop the new mathematical model that can take
into account possible “distortions” of an event flows and allow to calculate reliability
coefficients of the systems, where probabilistic characteristics can vary in time.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 51
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 4, c© Springer Science+Business Media, LLC 2010
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4.2 General Concepts

Let μi, i = 1, 2, . . . , n be the random instant of event occurrence. Let’s consider the

stochastic process that consists of a sequence
{

μi
}

, i = 1, 2, . . . , n.
Let ξi = μi − μi−1, i = 1, 2, . . . , μ0 = 0 be the interval between μi and μi−1. Now

we introduce the following notions. The stochastic process is called the homogeneous
event flow in time if the following conditions hold:

• ξi, i = 1, 2, . . . , n – independent identically distributed random variables, i.e.

P (ξ1 < x1; ξ2 < x2; ...; ξn < xn) =
n
∏

i=1

P (ξi < xi) , n ≥ 2

• The distribution function for ξi, i = 1, 2, . . . , n is defined as

Fi(x) = P (ξi < x) = F (x),

We prefer the notion “homogeneous event flow” though the conditions given above
define a recurrent flow. Statistical characteristics of the process did’t change in time, if
the process is homogeneous. And characteristics of the process depend on an observa-
tion period location on the time base, if the process is non-homogeneous. In this cases
the notions “stationary event flow” and “non-stationary event flow” are mostly used.
Nevertheless, we assume the notions “homogeneous event flow” and “non-homogeneous
event flow” (in time) more convenient. The latter notion is explained by the follow-
ing example. Points of failure instants on the burn-in period are depleted and at the
system ageing stage are thickened. Considering the useful life period, “exhaustion”
or “thickening” ranges will absence in a failure flow. Hence, the failure flow is sup-
posed homogeneous. In the general case, an event flow non-homogeneity nature can be
arbitrary.

4.3 Review of Models Taking into Account Non-Homogeneity

One of the methods for taking into account a non-homogeneity of failure and repair
flows was proposed in the paper [Sae94]. Let’s consider the event flow (see the Fig. 4.1)
that consists of failure and repair events. By ξ0 denote the operating time between
failures and by ξ1 denote the repair time.

Suppose that the random quantities ξ0i , i = 1, 2, . . . are independent and the ran-
dom variables ξ1i , i = 1, 2, . . . are also independent.

The basic assumption of this model is

ξ0n+1
d= γnξ01 , ξ

1
n+1

d= βnξ11 ,

where by d= denote identically distributed random quantities (equality by distribution),
γ ∈ (0; 1) is an ageing factor (each sequential operating time between failures ξ0n+1
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Figure 4.1. Failure and repair flow

becomes stochastically smaller than preceding ξ0n by means of the ageing factor),
β ∈ (1;∞) – a repair incompleteness factor (each sequential repair time ξ1n+1 becomes
stochastically greater than preceding ξ1n). In the paper, the new type integral equa-
tions with “advanced argument” are presented. This equations establish the relations
between an availability function of the system P1(t) and an inverse Laplace transform
L−1 of two variables function.

P1(t) = 1 − F (t) +

t
∫

0

L−1
(

P̂2(s; s)
)

dt,

where F (t) is the distribution function ξ01 , P2(x; y) is the solution of equation with
“advanced argument”:

P2(x; y) = ϕ(x; y) +

x
∫

0

y
∫

0

1
γ β
P2

(

x− u1

γ
;
y − u2

β

)

f(u1)g(u2)du1du2,

ϕ(x; y) =

⎛

⎝f(x) − 1
γ

x
∫

0

f

(

x− u

γ

)

f(u)du

⎞

⎠ g(y),

where f(x) and g(y) – the distribution density of the operating time between failures
ξ01 and the repair time ξ11 , respectively.

If the operating times between failures and the repair times have exponential distri-
bution, the recurrent algorithm for solving this equations was proposed. The author of
the paper was noted, that Laplace transform finding for more complicated distribution
law is incorrect problem.

Mention the other models presented in the papers [BF88,Ven91,Max01]. The rates of
failure and repair flows are arbitrary functions in these models. Considering a thinning
event flow the particular case of such models can be obtained. The thinning event flow
consist of events that can occur with some probability. Flow events occur more rarely
if the probability decreases. Thus, the system behaviour at the ageing period can be
simulated.

4.4 Normalizing Flow Function Model

The basic point of the normalizing flow function model is that the continuous strictly
monotone increasing mapping Ψ of an abstract recurrent (or homogeneous) event flow
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into a “real” (or non-homogeneous) event flow is constructed (see the papers [VC02,
NC04,AKC06,SOC07,Che07,IC09,SC09,Ski09]). Note that the abstract event flow has
the dimension of function Ψ−1(t), where t is time.

Let us suppose a system repair occurs immediately (i.e. the repair time may be
considered the negligible quantity against the operating time between failures). By μk

denote the instant of kth event occurrence of the abstract event flow. Than μk =
k
∑

i=1
ξi,

where ξi is the interval between consistent events of the failure flow (the operating
time between failures). Considering one (recurrent) failure flow all ξi, i = 1, 2, . . . are
independent, identically distributed random variables.

“Real” event flow instants are defined by the formula

μ̃n = Ψ

(

n
∑

i=1

ξi

)

= Ψ (μn) ; n = 1, 2, . . . ; μ0 = 0,

where Ψ (·) is the continuously differentiable strictly monotone increasing on the inter-
val [0;∞) function and Ψ(0) = 0.

Then the ith operating time between failures is

ζi = μ̃i − μ̃i−1 = Ψ (μi) − Ψ
(

μi−1

)

, (4.1)

the variables ζ1, ζ2, . . . are dependent if Ψ(x) �= const · x.
Denote by ζi, i = 1, 2, . . . , n the system operation cycle time or the operability

cycle, i.e. the distance between consistent system failures.
The conversion homogeneous event flow into “arbitrary” flow by means of function

Ψ(t) is represented on the Fig. 4.2. The instants of homogeneous event flow μi are
depicted on the abscissa. The instants of non-homogeneous event flow μ̃i are depicted
on the ordinate axis.

Figure 4.2. Conversion homogeneous event flow into “arbitrary” event flow
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4.5 Leading Flow Function and Failure Flow Parameter

Let N(t) be the number of flow events that have occurred up to time t (starting from
time 0). Then the leading flow function, denoted by Ω(t), is the expected value of N(t)
or EN(t). Consider the following theorem.

Theorem 1.
Ω(t) = ν

(

Ψ−1(t)
)

, (4.2)

where ν(t) is the solution of renewal equation

ν(t) = Fξ(t) +

t
∫

0

ν(t− τ)fξ(τ)dτ,

where Fξ(t) and fξ(t) are the distribution function and the distribution density of ran-
dom quantity ξ, respectively.

Let lim
t→∞ Ψ−1(t) = ∞ then

lim
t→∞

Ω(t)
Ψ−1(t)

=
1
Eξ
, (4.3)

i.e. Ω(t) ∼ Ψ−1(t)
Eξ .

The proof of Theorem 1 will be given in Appendix. Note the asymptotic behaviour
of an average failure number is non-linearly and is defined by the normalizing flow
function. This means that we have an ample opportunities for real process simulating.

Derivative of leading flow function (4.2) or the failure flow parameter ω(t) is de-
fined as

ω(t) = Ω′(t) =
[

Ψ−1(t)
]′ ν′ (Ψ−1(t)

)

=
[

Ψ−1(t)
]′
υ
(

Ψ−1(t)
)

,

where υ(t) is the solution of renewal equation

υ(t) = fξ(t) +

t
∫

0

υ(t− τ)fξ(τ)dτ.

We can obtain the equation similar to (4.3) for the failure flow parameter

lim
t→∞

ω(t)
[Ψ−1(t)]′

=
1
Eξ
.

Example 1. Let the abstract homogeneous failure flow be the simplest flow with
the rate λ. In this case ν(t) = t

Eξ = λt and Ω(t) = λΨ−1(t).

If Ψ(t) = αtγ, then Ω(t) = λ
(

t
α

) 1
γ and ω(t) = λ

αγ

(

t
α

)
1−γ

γ .
It may be concluded, analysing the last equations, that the failure flow parameter

increases by power law if γ ∈ (0; 1). Hence, it can expected that an ageing type system
is observed.

Failure flow parameter decreases by power law if γ > 1. This parameter behaviour
is common to the systems on burn-in period.
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4.6 Getting of Distribution Law for the Operability Cycle

Suppose the distribution density fξ(t) (therefore the distribution function Fξ(t)) of
random quantity ξ and the normalizing flow function Ψ(t) are known. Let’s find the
distribution law for the ith operability cycle ζi. Then (4.1) can be written as

ζi = Ψ
(

μi−1 + ξi
)− Ψ

(

μi−1

)

.

The equation for the distribution law of random quantity ζ1 is defined as

Fζ1(t) = P (Ψ (ξ1) < t) = Fξ
(

Ψ−1(t)
)

.

By definition for independent random variables the distribution law of random
quantity ζi is defined as

Fζi(t) = P
(

Ψ
(

μi−1 + ξi
)− Ψ

(

μi−1

)

< t
)

,

The last formula can be rewritten as

Fζi (t) =
∫∫

Ψ(u+v)+Ψ(v)<t

fμi−1
(u)fξ(v)dudv.

Integrating with respect to v we get

Fζi(t) =

∞
∫

0

fμi−1
(u)Fξ

(

Ψ−1 (t+ Ψ(u)) − u
)

du, (4.4)

where the distribution density fμi−1
(t) is defined as

fμi−1
(t) =

t
∫

0

fμi−2
(t− u)fξ(u)du,

since μi−1 = μi−2 + ξi−1.
Example 2. Let fξ(t) be the uniform on [0;T ] law density

fξ(t) =
{

1
T
, 0 ≤ t ≤ T

0, t < 0 or t > T

Suppose that Ψ (t) = αtγ. The system type, which we simulate, will depends on
quantity γ. Consider two special cases for normalizing function power index: γ = 0.5
(ageing system) and γ = 2 (“rejuvenescent” system). Let’s find the distribution den-
sity for random quantities ζ1 and ζ2 analytically. Omitting intermediate computations
finally we obtain the following equations.
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If γ = 0.5, then

fζ1(t) =
{

2t
α2T , 0 < t ≤ α

√
T ;

0, t < 0 or t > α
√
T .

fζ2(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2t
α2T + 4

3α2
√
T
, 0 < t ≤ α

√
T
(√

2 − 1
)

;
(α2T−t2)2

α4T 2 ·
(

1
2t + α2T−t2

6t3

)

, α
√
T (

√
2 − 1) < t ≤ α

√
T ;

0, t < 0 or t > α
√
T .

If γ = 2, then

fζ1(t) =
{ 1

2
√

αtT , 0 < t ≤ αT 2;
0, t < 0 t > αT 2.

fζ2(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ln(√αT+
√

αT 2+t)−0.5 ln(t)

2αT2 , 0 < t ≤ αT 2;
ln(√αT+

√
αT 2+t)−ln

(

t√
αT

)

2αT2 , αT 2 < t ≤ 3αT 2;
0, t < 0 or t > 3αT 2.

The Fig. 4.3 illustrates the distribution density curves for the first and the second
operability cycles when γ = 0.5 (right figure) and γ = 2 (left figure). Note that for
“rejuvenescent” system the density function support expands and the second oper-
ating time between failures ζ2 is stochastically greater than ζ1. The tendency for an
ageing system is opposite, i.e. the density function support compresses and the second
operating time between failures is stochastically less than the first one.

Example 3. Let fξ(t) be the exponential law density with rate λ. Then the quanti-
ties μi have the gamma distribution with the shape parameter i and the scale parameter
λ as is well known.

Let Ψ(t) = α ln (1 + βt), assuming α, β > 0. In this case, the ageing system is
simulated. Then inverse normalizing flow function Ψ−1(t) is defined as

Ψ−1(t) =
1
β

(

e
t
α − 1

)

, Ψ−1 (t+ Ψ(u)) − u = κ(t)
(

u+
1
β

)

,

where κ(t) =
(

e
t
α − 1

)

.

Figure 4.3. Distribution density change for operability cycles
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Substituting in (4.4), we get

Fζi(t) = 1 − 1

(κ(t) + 1)i−1
e−

λκ(t)
β = 1 − exp

(

−λ
β

(

e
t
α − 1

)

− t(i− 1)
α

)

.

Consider the ratio of survival functions on two successive operability cycles

F̄ζi+1(t)
F̄ζi(t)

=
1 − Fζi+1(t)
1 − Fζi(t)

=
1

κ+ 1
= e−

t
α < 1, i = 1, 2, . . .

if t �= 0. Therefore, simulated system belong to the ageing system class.

4.7 Getting of Resource Reliability Characteristics

The back residual time and the straight residual time presented in [BF88] are employed
as resource reliability characteristics. The back residual time Rt is the system operation
time from system operation commencement or system operation resumption after the
last repair to time t. The straight residual time Vt is the system operation time from
time t, in which the system is operable, to the next failure.

The subscript t denotes the time dependence for convenience.
As before suppose that the system repair occurs immediately. And let N(t) be the

the number of repairs (failures) that have occurred up to time t. By μ̃k denote the
instant of kth event occurrence of non-homogeneous repair (failure) flow.

Then the back residual time is defined as

Rt = t− μ̃N(t);

And the straight residual time is defined as

Vt = μ̃N(t)+1 − t;

Figure 4.4 illustrates the aforesaid.
Let us introduce the index Zt that characterizes the system operation cycle time

on time t. Is is defined as

Zt = Rt + Vt.

Figure 4.4. Resource reliability characteristics
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Theorem 2. Distribution function for the back residual time is defined as

FRt(x) =

⎧

⎪

⎨

⎪

⎩

Ψ−1(t)
∫

Ψ−1(t−x)
υ(u)F̄ ξ

(

Ψ−1(t) − u
)

du, x < t

1, x ≥ t.

Distribution function for the straight residual time is defined as

FVt(x) = Fξ
(

Ψ−1(t+ x)
)−

Ψ−1(t)
∫

0

υ(u)F̄ξ
(

Ψ−1(t+ x) − u
)

du.

The proof of Theorem 2 will be given in Appendix.
Let us define the average back and straight residual times in the following theorem.

Theorem 3. The average back residual time is defined as

ERt = tF̄ξ
(

Ψ−1(t)
)

+

∞
∫

0

gR(x; t)fξ(x)dx,

where gR(x; t) =
Ψ−1(t)
∫

(Ψ−1(t)−x)∨0

(t− Ψ(τ)) υ(τ)dτ.

The average straight residual time is defined as

EVt =

∞
∫

Ψ−1(t)

(Ψ(x) − t)fξ(x)dx +

∞
∫

0

gV (x; t)fξ(x)dx,

where gV (x; t) =
Ψ−1(t)
∫

(Ψ−1(t)−x)∨0

(Ψ(τ + x) − t) υ(τ)dτ.

Example 4. Let fξ(t) be the exponential law density with the rate λ. Let Ψ(x) =
α
√
λx. In this case, υ(t) = λ and

FRt(x) =

{

1 − exp
(

x2−2tx
α2

)

, x < t;
1, x ≥ t.

ERt = t+ αe−( t
α )2

γ

(

3
2

;−
(

t

α

)2
)

,

where γ(a;x) is incomplete gamma-function.

FVt (x) = 1 − exp
(−2tx− x2

α2

)

.

EVt =
√

π
2

α exp
(

t

α

)2

erfc
(

t

α

)

.
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Figure 4.5. Average straight and back residual times

It can be shown that asymptotically as t→ ∞

EVt ∼ α2

2t
, ERt ∼ α2

2t
.

The curves for average residual times and their asymptotic value are shown in
Fig. 4.5 (left figure for the average back residual times and right figure for the average
straight residual times). If the failure flow is homogeneous, the average back and straight
residual times tend to the constant asymptotically. In our case, both characteristics tend
to 0 as t→ ∞. It is typical for ageing system.

4.8 Availability Function Calculation

In this section, we develop a mathematical model for calculating availability function
provided that the autonomous failure and repair flows are the mappings of two abstract
independent recurrent flows.

Consider the process with alternate intervals of operability and repair. Suppose the
system is operational during the random time ζ0

i . Then the system fail and the system
repair last the random time ζ1

i and so on.
Let μ̃0

i = Ψ0

(

μ0
i

)

, i = 0, 1, . . . be the autonomous failure flow. And denote by
μ̃1
i = Ψ1

(

μ1
i

)

, i = 0, 1, . . . the autonomous repair flow. By
{

μ0
i

}

and
{

μ1
i

}

, i = 0, 1, . . .
denote the abstract independent recurrent (homogeneous) flows of failures and repairs,
respectively. The functions Ψ0 (x) and Ψ1 (x) satisfy the conditions:

• Ψi (0) = 0, i = 0, 1;
• Ψi (x) ∈ C1

(0;∞), moreover Ψ′
i (x) > 0, i = 0, 1.

The availability function is defined as

P1 (t) = P
(

Q+ 
 t
)

=
∞
∑

i=0

P
(

τ1
i ≤ t < τ0

i+1

)

,
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where Q+ is the union of operability intervals, τ0
i = μ̃0

i + μ̃1
i−1 is the ith failure instant,

τ1
i = μ̃0

i + μ̃1
i is the ith repair instant, μ̃1

i = Ψ

(

i
∑

j=1
ξ1j

)

, μ̃0
i = Ψ

(

i
∑

j=1
ξ0j

)

, i = 1, 2, . . . ,
(

μ̃1
0 = μ̃0

0 = 0
)

– the instants of event occurrence of autonomous flows, i.e. either only

repair flow
{

μ̃1
i

}

or only failure flow
{

μ̃0
i

}

.
Then the equations for availability function can be rewritten as

P1 (t) =
∞
∑

i=0

Fτ1i (t) −
∞
∑

i=0

Fτ0i+1
(t) .

Consider the new flow characteristics below. The leading function of joint failure–
repair flow with equal number of failures and repairs Ω+ (t0; t1) is defined as

Ω+ (t0; t1) =
∞
∑

i=0

P
(

μ̃0
i ≤ t0; μ̃1

i ≤ t1

)

=
∞
∑

i=0

Fμ̃0
i ;μ̃1

i
(t0; t1) . (4.5)

And the leading function of joint failure–repair flow with failure number greater than
repair number by 1 is defined as

Ω− (t0; t1) =
∞
∑

i=0

P
(

μ̃0
i+1 ≤ t0; μ̃1

i ≤ t1

)

=
∞
∑

i=0

Fμ̃0
i+1;μ̃

1
i

(t0; t1)

As a matter of fact (4.5) is the average number of pairs
(

μ̃0
i ; μ̃1

i

)

=

=

(

i
∑

j=1

ξ0j ;
i
∑

j=1

ξ1j

)

, that satisfy the inequality set μ̃0
i ≤ t0; μ̃1

i ≤ t1 (see the Fig. 4.6).

In the figure the number of pairs that satisfy the inequalities equals 3. These pairs is
depicted by solid line. The fourth pair depicted dash line is ignored since μ̃1

3 > t1.
If the necessary derivatives exist, then the failure–repair flow parameter with equal

number of failures and repairs is defined as

ω+ (t0; t1) =
d2Ω+ (t0; t1)

dt0dt1
=

∞
∑

i=0

fμ̃0
i ;μ̃1

i
(t0; t1) (4.6)

and the failure–repair flow parameter with failure number greater than repair number
by 1 is defined as

Figure 4.6. Joint failure–repair flow
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ω− (t0; t1) =
d2Ω− (t0; t1)

dt0dt1
=

∞
∑

i=0

fμ̃0
i+1;μ̃

1
i

(t0; t1) (4.7)

Consider the properties of characteristics for joint event flow.
1. Ω+ (t0; t1), Ω− (t0; t1) – nondecreasing functions with respect to each arguments

(identically cumulative distribution function property);
2. Limit properties:

a. lim
t0→∞ Ω+ (t0; t1) = lim

t0→∞ Ω− (t0; t1) = Ωμ̃1 (t1) =
∞
∑

i=0

Fμ̃1
i

(t1), where Fμ̃1
i

(t1) is

the leading function of autonomous repair flow;

b. lim
t1→∞ Ω+ (t0; t1) = Ωμ0 (t0) =

∞
∑

i=0

Fμ̃0
i

(t1), where Fμ̃0
i

(t1) is the leading function

of autonomous failure flow, including zero instant;

c. lim
t1→∞ Ω− (t0; t1) = Ωμ̃0

i+1
(t0) =

∞
∑

i=0
Fμ̃0

i+1
(t1), where Fμ̃0

i+1
(t1) is the leading

function of autonomous failure flow, excepting zero instant;
3. Boundary conditions:

a. Ω+ (0; t1) = Ω+ (t0; 0) = 1;
b. Ω− (0; t1) = 0;
c. Ω− (t0; 0) = Fμ̃0

1
(t0).

Theorem 4. The availability function is defined as

P1 (t) =
∫

Ψ0(x1)+Ψ1(x2)≤t

[ω+ (x1;x2) − ω− (x1;x2)] dx1dx2. (4.8)

If the failure and repair flows are homogeneous, i.e. Ψ0(x) = Ψ1(x) = x, then the
last equation may be rewritten as

P1 (t) =

t
∫

0

t−x1
∫

0

[ω+ (x1;x2) − ω− (x1;x2)] dx2dx1. (4.9)

4. Let us obtain the renewal equation analogue for introduced characteristic, if event
flows are homogeneous. Then Ψj(x) = x, i.e. μ̃ji = μji , i = 0, 1, . . . , j = 0, 1.

Let us execute double integral Laplace transform for (4.6) with respect to variables
t0 and t1:

ω+ (p0; p1) =

∞
∫

0

∞
∫

0

exp (−p0t0 − p1t1)ω+ (t0; t1) dt0dt1 =
∞
∑

i=0

fμ0
i ;μ1

i
(p0; p1) .

After simple transformations we get the renewal equation analogue in images

ω+ (p0; p1) =
1

1 − f ξ0;ξ1 (p0; p1)
.
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Passing to originals, we obtain the two-dimensional integral Volterra equations of
the second kind:

ω+ (t0; t1) = δ (t0) δ (t1) +

t0
∫

0

t1
∫

0

fξ0;ξ1 (t0 − x0; t1 − x1)ω+ (x0;x1) dx0dx1, (4.10)

Ω+ (t0; t1) = H (t0) H (t1) +

t0
∫

0

t1
∫

0

fξ0;ξ1 (t0 − x0; t1 − x1) Ω+ (x0;x1) dx0dx1. (4.11)

Executing analogous calculations for (4.7), we get

ω− (t0; t1) = fξ0 (t0) δ (t1) +

t0
∫

0

t1
∫

0

fξ0;ξ1 (t0 − x0; t1 − x1)ω− (x0;x1) dx0dx1, (4.12)

Ω− (t0; t1) = Fξ0 (t0) H (t1) +

t0
∫

0

t1
∫

0

fξ0;ξ1 (t0 − x0; t1 − x1) Ω− (x0;x1) dx0dx1. (4.13)

Remarks: In (4.10)–(4.13), by δ (t) denote the generalised Dirac delta function and
by H (t) denote the Heaviside function.

Example 5. Let ξ0 and ξ1 be the exponential distributed random variables with
the rates λ0 and λ1, respectively. Suppose the event flows are homogeneous.

Then

ω+ (p0; p1) =
(p0 + λ0) (p1 + λ1)
p0p1 + λ0p1 + λ1p0

= 1 +
λ0λ1

p1 + λ1

1
p0 + λ0p1

p1+λ1

and
ω+ (t0; t1) = δ (t0) δ (t1) + λ0λ1 exp [−λ0t0 − λ1t1] I0

(

2
√

λ0λ1t0t1
)

,

where I0 (x) is the modified zero-order Bessel function.
We can similarly get that

ω− (t0; t1) = λ0 exp (−λ0t0 − λ1t1)

[

δ (t1) +
√

λ0λ1t0
t1

I1

(

2
√

λ0λ1t0t1

)

]

,

where I1 (x) is modified Bessel functions of the first kind.
Then

Ω+ (t0; t1) = H (t0) H (t1) +

λ0t0
∫

0

λ1t1
∫

0

e−x0−x1I0 (2
√
x0x1) dx0dx1

= H (t0) H (t1) + λ1t1
(

1 − e−λ0t0
)

+

λ1t1
∫

0

e−λ0t0−x (λ1t1 − x)

√

λ0t0
x

I1

(

2
√

λ0x0x
)

dx.
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Ω− (t0; t1) =
(

1 − e−λ0t0
)

H (t1) +

λ0t0
∫

0

λ1t1
∫

0

e−x0−x1I0 (2
√
x0x1) dx0dx1

=
(

1 − e−λ0t0
)

(H (t1) + λ1t1) +

λ1t1
∫

0

e−λ0t0−x (λ1t1 − x)

√

λ0t0
x

I1

(

2
√

λ0x0x
)

dx.

The last integrals are evaluated by means of numerical methods. The calculation
results of availability function by (4.9) agree with results obtained by well-known
equation

P1 (t) =
λ1

λ0 + λ1
+

λ0

λ0 + λ1
e−(λ0+λ1)t

for exponential distributed operating and repair times (see [BF88,Ven91,Max01]).
The availability function may be calculated by (4.8) for a wide class of distributions.

However, the main advantage of the joint flow model is that the availability function
can be assessed in case of non-homogeneous failure and repair flows.

Example 6. Suppose that the failure and repair flows are regular, i.e. the random
variables ξ0 and ξ1 are degenerate. Then executing the simple transformation we get

P1 (t) =
∞
∑

k=0

[

H
(

t− Ψ0

(

kξ0
)− Ψ1

(

kξ1
))− H

(

t− Ψ0

(

(k + 1) ξ0
)

+ Ψ1

(

kξ1
))]

.

4.9 Numerical Computation of Availability Function

Consider the following example. Let us calculate the availability function if
non-homogeneity is given by power function Ψi(t) = tγi , γi > 0, i = 0, 1. Denote
by ξ0j and ξ1j the intervals between two successive events of recurrent (homogeneous)
failure flow

{

μ0
i

}

and repair flow
{

μ1
i

}

, respectively. The random variables ξ0j and ξ1j
are distributed by Weibull law with the shape parameters m0 = m1 = 2, the scale
parameters θ0 = 5, θ1 = 2. In this case, Eξ0 = 4.43 and Eξ1 = 1.77.

Consider the following variants:
1. Event flows are not “distorted”: γ0 = 1, γ1 = 1.
2. Failure flow is depleted (failures occur more rarely), repair flow is homogeneous:

γ0 = 1.2, γ1 = 1.
3. Failure flow is thickened (failures become more frequent), repair flow is

homogeneous:
a. γ0 = 0.8, γ1 = 1;
b. γ0 = 0.5, γ1 = 1.

4. Failure flow is thickened (failures become more frequent), repair flow is depleted
(repairs occur more rarely): γ0 = 0.8, γ1 = 1.2.

The curves of availability function for variants 1–4 are presented in the Fig. 4.7.
The curve 1 display the situation when the event flow are not “distortion”. The

curve 2 of availability function lies above the curve 1, since in case 2 failure flow is
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Figure 4.7. The availability function for variants 1–4

depleted. Consider the curves 3a and 3b. The parameter γ0 in case 3b is smaller then
the γ0 in case 3a, i.e. failure flow in case 3b becomes more frequent. Hence, the curve
3b of availability function lies below the curve 3a. The local extremums of the curve
3b are due to specific Weibull distribution shape at given parameters. So the local
minimum point (approximately equal 3) correspond to the most probable instant of
the first failure and the local maximum point (approximately equal 4.5) correspond to
the most probable instant of the first repair.
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Appendix

Proof of Theorem 1.

The leading flow function Ω(t) = EN(t) =
∞
∑

i=1
P (μ̃i ≤ t) =

∞
∑

i=1
Fμ̃i

(t). Then Ω (Ψ(t)) =

ν(t) =
∞
∑

i=1

Fμi
(t).

The integral renewal equation holds for ν(t) . Furthermore, elementary renewal
theorem is satisfied, i.e., lim

t→∞
ν(t)
t

= 1
Eξ .

Proof of Theorem 2.

Using the total probability formula, let us find the distribution function of back residual
time

FRt(x) = P
(

μ̃N(t) > t− x
)

=
∞
∑

k=0

P (μ̃k > t− x; N(t) = k)

=
∞
∑

k=0

P
(

Ψ−1(t− x) < μk ≤ Ψ−1(t) < μk + ξk+1

)

.

The summand corresponding k = 0 equals H(x − t)F
(

Ψ−1(t)
)

, where H(x) is
Heaviside function.
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Finding the probabilities expressed in terms of integrals, we get

FRt(x) = H(x − t)F
(

Ψ−1(t)
)

+
∞
∑

k=1

Ψ−1(t)
∫

0∨(Ψ−1(t−x))

fμk
(u)F

(

Ψ−1(t) − u
)

du

= H(x − t)F
(

Ψ−1(t)
)

+

Ψ−1(t)
∫

0∨(Ψ−1(t−x))

υ(u)F
(

Ψ−1(t) − u
)

du,

where a ∨ b = max(a; b).

If x ≥ t then FRt(x) = F ξ (z) +
z
∫

0

υ(u)F (z − u) du, where z = Ψ−1(t).

Using Laplace transform with respect to z on the right side , we obtain

F̂Rt(p) =
1 − f̂(p)

p
+

f̂(p)

1 − f̂(p)
· 1 − f̂(p)

p
=

1
p
.

The original of obtained equation equals 1.
The straight residual time distribution function can be fined by a similar way.

Proof of Theorem 4.

Let us derive the equation for availability function calculation.

P1 (t) =
∞
∑

i=0

Fτ1i (t) −
∞
∑

i=0

Fτ0i+1(t)

=
∞
∑

i=0

[

P
(

Ψ0

(

μ0
i

)

+ Ψ1

(

μ1
i

) ≤ t
)− P

(

Ψ0

(

μ0
i+1

)

+ Ψ1

(

μ1
i

) ≤ t
)]

=
∞
∑

i=0

⎡

⎢

⎣

∫

Ψ0(x1)+Ψ1(x2)≤t

fμ0
i ;μ1

i
(x1;x2) −

∫

Ψ0(x1)+Ψ1(x2)≤t

fμ0
i+1;μ

1
i

(x1;x2)

⎤

⎥

⎦dx1dx2.

Swapping summation and integration (suppose that this mathematical operation is
possible) and using independent property, we get which required to be proved.

The equations for availability function in case of homogeneous flow is obtained by
the substitution of Ψi(x) for x.
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Abstract: In this paper, we present an optimal-control-based framework for
deteriorating systems that are subject to repair and inspection. The model is based
on two common assumptions that include the maintenance process is adapted to
partial information including history of inspection events, and inspections do not
impact on the failure characteristics of components. The latter means, at inspection
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(repair), an evolution of optimal control process which is solution of Hamilton–Jacobi
equations is derived. To tackle the maintenance optimization problem numerically, an
example is given. Provided optimal control process, a sequence of optimal inspection
times and corresponding inspection intensity and conditional survival function of the
system are obtained. Also, to predict the system failure, conditional mean times to
failure (CMTTF) of the system indexed by inspection events are derived. Finally, a
failure intensity based optimal stopping rule to replace the system is proposed.

Keywords and phrases: Control process, Cox process, Degradation model, Filtering
theorem, Hamilton–Jacobi equation, Inspection intensity, Intensity control model,
Maintenance, Mean residual, Minor failure, Non-homogeneous Markov process, Opti-
mal inspection time, Optimization, Partial information, Proportional intensity model

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 69
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 5, c© Springer Science+Business Media, LLC 2010



70 R. Ahmadi and M. Newby

5.1 Introduction

For systems (e.g., manufacturing systems) which resulting output (revenue) depend on
the system performance, an optimal inspection policy and also an ideal adjustment
of health state are of the essence. On one hand, insufficient inspection leads to some
system malfunction and the complete breakdown of the system. On the other hand
frequent inspections of system to rectify defects results in more inspection costs. So,
to maximize the revenue from the system which is in continuous operation, in addition
to optimal control of the system state, an inspection strategy to give a correct balance
between frequency and time of system inspections, and the resulting output (revenue)
is required.

The literature on the optimal inspection problem is vast. Barlow et al. [BHP63]
under some assumptions presents an optimal inspection policy for systems which are
subject to non-self announced failure. Based on Barlow’s maintenance model, inspec-
tions don’t affect on the failure characteristics, inspection ceases upon detection of
failure and at inspection times no repair takes place. Given above assumptions it is
shown that optimal inspection times are the solution of system of equations remarked
by BHP algorithm. The extreme sensitivity of the algorithm to initial value t1 (first in-
spection time) is termed as the major problem of the Barlow et al. model. Keller [K74],
and Kaio and Osaki [KO84] model the optimum inspection problem with respect to the
inspection density that measures the number of checks per unit of time. Both Keller’s
model and the method of Kaio and Osaki to evaluate the inspection time sequence use
the assumption that the time between the failure and its detection is half of the inspec-
tion interval. Lack of required accuracy resulting from the assumption is termed as both
models problem. Munford and Shahani [MS74] define an inspection sequence charac-
terized by the conditional failure probability of the system. The sequence of inspection
times is optimized by minimizing the expected total cost. Chelbi and Ait-Kad [CA99]
introduce an improved inspection model that the conditional failure probability should
be an increasing function of the inspection number. To consider the appropriateness of
optimum inspection models above, Jiang and Jardine [JJ05] present two optimization
models. They show that optimal inspection time sequence derived from the proposed
models is relatively accurate and computationally simple.

Following by taking advantages of optimal intensity control [B81], a new mainte-
nance optimization model subject to revenue is proposed. The model presented here in
preference to typical inspection models has potential not only to tackle optimal inspec-
tion problem but also to optimally drive the flow of revenue over inter-arrival times of
inspection. The latter results from adjusting the state of the system. The model is based
on a set of assumptions that include inspections do not impact on the systems failure
characteristics. That means, at inspection time the detected defect of component is
rectified by minimal repair that brings the component back to the operating condition
just previous to failure (as-bad-as-old) otherwise the operating component with slight
overhaul is left to continue to operate. Also, it is assumed that the maintenance model
is given partial information FNt (t ≥ 0) including just the history of inspection times.
To model the evolution of the system failure influenced by environmental factors, the
proportional intensity model (PIM) which is a generalized case of the proportional haz-
ard model (PHM) [JM92] is applied. Also, the effect of environmental factors referred
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by damage process is described by the non-homogeneous Markov process Xt(t ≥ 0).
Using the same approach as Jensen [JG93], the intensity of inspections or equivalently
the inspection frequency of system is modelled by a stochastic measure characterized
by the Markov process Xt. To evaluate the sequence of inspection times we apply the
Cox process [DJ03] driven by the stochastic process Xt. By bringing the filtering the-
orem [B81] to bear given partial information an explicit solution to the estimation of
the underlying process Xt is derived. It is shown above solution which is an extended
version of the Jensen model’s [JG93] transforms the inspection problem into the model
adapted to the observable history FNt . To represent the maintenance model in an inten-
sity control-based framework, the transition rate of Markov process driven by control
process u is addressed as a measure to control not only intensity of inspection, but
also the flow of revenue associated with the damage process. To adjust the state of the
system and give a correct balance between frequency of inspections and the resulting
output (revenue), an optimal control strategy by the Deterministic Hamilton–Jacobi
equations is obtained.

The paper is organized as follows. Section 2 deals with modelling damage and
inspection process. By using filtering theorem an estimation of the underlying process
Xt given observable history FNt is derived. The section ends with modelling failure
of the system through proportional intensity process. The next section is devoted to
modelling intensity control adapted to partial information. In Sect. 4 to numerically
tackle the optimal intensity control problem an example is given. At the end some
approaches to extend the maintenance optimization are proposed.

5.2 Model

5.2.1 Damage and Inspection Process Modelling

To model system’s deteriorating process, let the effect of operating environment on the
system be described by a (damage) process (Xt), (t ∈ R+) with the state space S =
{1, 2} (X can be the level of metal particle in engine oil, vibration level, or temperature).
It is assumed that the transition between states is controlled by the non-homogeneous
Markov process with time dependent transition probability and intensity matrix P (t) =
(pij(t)) and Q(t) = (qij(t)), (i, j ∈ S), respectively, that for s < t

qij(t) = limt→s
pij(s,t)
t−s , i, j ∈ S

and qi(t) = −qii(t) =
∑

i�=j qij(t).
Clearly, in terms of q12(t) the waiting time distribution in state one can be written as

S(s, t) = exp
{

−
∫ t

s

q12(v)dv
}

, s < t (5.1)

To model inspection process of the system which is subject to the random environment,
let the counting process (Nt), (t ∈ R+), Nt =

∑

n≥1 I{Tn≤t} defined on a measurable
space (Ω,F) where T1 < T2 < ..., limn→∞Tn = ∞ (nonexplosive) imply the sequence
of inspection times. To consider the effect of environmental factors on inspections
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frequency of the system, using the same approach as Jensen [JG93], let the intensity of
inspections be linked by the F-adapted state process (Xt). More precisely, it is assumed
that (Nt) admits the following semimartingale representation:

Nt =
∫ t

0

γXsds+Mt, (t ∈ R+),M ∈ M0 (5.2)

Where 0 < γ1 < γ2 < ∞, γXt , (t ∈ R+) is F-progressive and M0 refers to the class of
F-martingales with paths which are right-continuous and left-limited (with M0 = 0).
Note that the condition γ1 < γ2 assures that the inspections frequency of the system
with raising damage level (state of the process) increases.

In the rest of section, we focus on modelling maintenance process through
alternative definition of doubly stochastic poisson process (Cox process) [B81]. To
model the sequence of inspection times, let F̄n(v), (n ∈ N0) be the regular conditional
distribution of the inter-arrival times Vn+1 = Tn+1 − Tn, (T0 = 0). By using the Cox
process which is subject to FNt -adapted measure γ̂(n, t) =

∑

i∈S γiϕ̂(n, t; i), F̄n(v) is
given by

F̄n(v) = p[Vn+1 ≥ v|γ̂t(n)]

= exp

(

−
∫ Tn+v

Tn

∑

i∈S
γiϕ̂(n, t; i)dt

)

(5.3)

Where Tn ≤ t < Tn+1, FNt refers to the partial information including observed history
of inspection events that is FNt = σ {Ns : 0 ≤ s ≤ t}, γ̂(n, t) = γ̂t(n) and ϕ̂(n, t) denote
the intensity of inspection and the probability measure of the state of the process X
(see Sect. 1.2.2) at time t following nth inspection respectively.

In the special case when n = 0, then (5.3) reduces to the first inspection time law.
That is,

F̄0(v) = p[V1 ≥ v|γ̂t(0)]

= exp

(

−
∫ v

0

∑

i∈S
γiϕ̂(n, t; i)dt

)

(5.4)

Where (5.4) can be considered as the probability measure of the random time V1

to the occurrence of the first non-homogeneous Poisson event. In the sequel, let ηn+1

denote the expected value of (n + 1)th inter-arrival inspection time. Then by using
(5.3) we have

ηn+1 =
∫ ∞

0

F̄n(v)dv

=
∫ ∞

0

exp

(

−
∫ Tn+v

Tn

∑

i∈S
γiϕ̂(n, t; i)dt

)

dv
(5.5)
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Clearly, in light of the fact that above integral term depends on the inspection time
Tn(n ≥ 0), ηn+1 is a random measure. To settle this problem, an estimated version of
ηn+1 is applied. In other words,

η̂n+1 =
∫ ∞

0

ˆ̄Fn(v)dv

=
∫ ∞

0

exp

(

−
∫ μn+v

μn

∑

i∈S
γiϕ̂(n, t; i)dt

)

dv
(5.6)

For n ≥ 1, and

μ̂1 =
∫ ∞

0

ˆ̄F0(v)dv

=
∫ ∞

0

exp

(

−
∫ v

0

∑

i∈S
γiϕ̂(n, t; i)dt

)

dv
(5.7)

where μn+1 is the (n + 1)th expected inspection times, i.e., μn+1 = E(Tn+1) =
∑n+1

k=1 η̂n+1.
Following section is devoted to the estimation of the underlying process Xt through

the filtering theorem [B81].

5.2.2 Partial Information Based Estimation of the Underlying Process Xt

To get an evolution of environmental factors represented by the stochastic process Xt,
let ϕ̂t(i) (i ∈ S) denote the stochastic indicator function of Xt, i.e., ϕt(i) = I(Xt = i).
From filtering theorem and given the partial information FNt it can be shown that

ϕ̂t(j) = ϕ̂0(j)

+
∫ t

0

(

∑

i∈S
ϕ̂s(i) {qij(s) + ϕ̂s(j)(γi − γj)}

)

ds

+
∑

n≥1

(

−ϕ̂T−
n

(j) +
γjϕ̂T−

n
(j)

∑m
i=1 γiϕ̂T−

n
(i)
I{Tn≥t}

)

,

(5.8)

Or, equivalently, over inter-arrival inspection times: Tn ≤ t < Tn+1,

ϕ̂(n, t; j) = ϕ̂(n, Tn; j)

+
∫ t

Tn

(

∑

i∈S
ϕ̂(n, s; i) {qij(s) + ϕ̂(n, s; j)(γi − γj)}

)

ds
(5.9)

and at inspection times,

ϕ̂Tn(j) =
γjϕ̂T−

n
(j)

∑

i∈S γiϕ̂T−
n

(i)
, j ∈ S, (5.10)

where ϕ̂t−(j) refers to the left limit.
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In the sequel, to get an explicit solution of ϕ̂t(i) let Q(t) =
(−q1(t) q12(t)

0 0

)

where

q12(t) is an increasing function of t, i.e., over time the sojourn time rate in the state
one decreases. From (5.9) and using the differential equation an explicit solution of
ϕ̂(n, t; 2) is given by

ϕ̂(n, t; 2) = 1 −
{

exp
(− ∫

(γ̄ + q1(t)) dt
)

|t=Tn

1 − ϕ̂Tn (2)

−
∫ t

Tn

γ̄ exp
(

−
∫ u

0

(γ̄ + q1(v)) dv
)

du

}−1

× exp
(

−
∫

(γ̄ + q1(t))dt
)

(5.11)

where γ̄ = γ1 − γ2.
Now in the sense that the transition between states is controlled by homogeneous

Markov process, i.e., q12(t) = q12, ∀t ≥ 0, then (5.11) reduces to the probability measure
introduced in Jensen model [JG93]. To get a immediate solution for above measure,
assume that q12(t) = t for t ≥ 0. So, from (5.1), the waiting time distribution in the
state one is given by

S(0, t) = S(t) = exp
(

− t
2

2

)

, (5.12)

On the other hand, the other measure which can lend itself beautifully to describe the
effect of the system’s age on the deterioration of the system is mean residual time in
the state one. So, if m(t), t ≥ 0 is treated as the mean residual time in state one, then
it follows

m(t) =
√

2π exp
(

t2

2

)

[1 − φ(t)], (5.13)

and φ(t), t ∈ R+ denotes the standardized normal density. Moreover, from (5.11) it is
easy to show that the probability measure ϕ̂(n, t; 2) is represented as

ϕ̂(n, t; 2) = 1 −
⎧

⎨

⎩

exp
(

−(γ̄Tn + T2
n

2

)

)

1 − ϕ̂Tn (2)

−
√

2πγ̄ exp(
γ̄2

2
)[φ(t+ γ̄) − φ(Tn + γ̄)]

⎫

⎬

⎭

−1

× exp
(

−(γ̄ +
t2

2
)

)

(5.14)

The next section is devoted to evaluating both survival and conditional survival
function of the system subject to inspection. To tackle this problem, the proportional
intensity process is used as a tool to measure the failure rate of the system.
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5.2.3 Failure Modelling

To model the effect of the damage process Xt (t ≥ 0) on failure rate, we address
Ft-adapted proportional intensity model (PIM) which is widely used in survival analy-
sis. It is assumed that the failure rate is the product of a baseline failure rate dependent
only on the age of the system and a positive function ψ dependent on the value of the
state of the F-adapted process X . In other words,

λ(t,Xt) = λ0(t)ψ(Xt), t ∈ R+ (5.15)

where both the baseline intensity λ0(t) and ψ(x) are bounded and increasing so that the
system deteriorates with age and increases in the state Xt. More precisely, it is supposed
that I(ξ ≤ t), the indicator process of the system lifetime, admits the semimartingale
representation:

I(ξ ≤ t) =
∫ t

0

I(ξ > s)λsds+Mλ
t , t ∈ R+ (5.16)

where (λt), t ∈ R+ is a progressively measurable with respect to the filtration Ft with
E
[

∫ t

0
|λs|ds

]

<∞ for all t ∈ R+ and Mλ = (Mλ
t ) ∈ M0.

Now to predict the failure of the system adapted to the partial information F0
t =

σ {T1 ∧ t} = σ {I(T1 > s), 0 ≤ s ≤ t}, let R(0, t) (0 ≤ t < T1) denotes the survival
function of the system up to the first inspection time. Using the projection theorem
[JG93] from (5.16) we obtain

E[Zt|F0
t ] = 1 −R(0, t) =

∫ t

0

R(0, s)λ̂s(0)ds+ M̄λ
t , (5.17)

where λt(0) = λ(0, t) and S(0, t) denote the failure rate and the survival function of
the system at time t (0 ≤ t ≤ T1) adapted to the filtration F0

t ,

S(0, t) = E[I(ξ > t)|F0
t ] = P (ξ > t|F0

t ),

and M̄λ
t is an F0

t martingale.
By using the fact that S(0, t) over interval [0, T1) has continuous paths of bounded

variation, then the martingale term M̄λ
t is identically 0 and solution of the resulting

integral equation (5.17) is

S(0, t) = exp

(

−
∫ t

0

∑

i∈S
λ(s, i)ϕ̂(0, s; i)ds

)

0 ≤ t < T1. (5.18)

where ϕ̂(0, t; i) = E[ϕ(0, t; i)|F0
t ] (i ∈ S) represents the probability measure of the state

of the process given the filtration F0
t .

In the sequel, let S(n, t) denote the survival function of the system following nth
(n > 0) inspection event at time t (0 ≤ t < Tn+1 − Tn). It can be easily shown that,

S(n, t) = R(n, t)
n
∏

i=1

R(i− 1, Ti − Ti−1)
∏

0<s≤t+Tn

exp
(−Δλ̂s), (5.19)
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where ΔLs = Ls − Ls− denotes the jump height at time s caused by jumps of the
martingale part of the state of the process X adapted to observable history FNt
(see (5.17)) and R(n, t) refers to the conditional survival function of the system at
time t (0 ≤ t < Tn+1 − Tn) following nth (n ≥ 0) inspection. In other words,

R(n, t) = P
(

ξ > t+ Tn|ξ > Tn,F
N
Tn

)

=
P
(

ξ > t+ Tn|FNTn
)

P
(

ξ > Tn|FNTn
)

=
S(n, t)
S(n, 0)

= exp

(

−
∫ Tn+t

Tn

λ̂(n, s)ds

)

= exp

(

−
∫ Tn+t

Tn

λ0(s)
∑

i∈S
ψ(i)ϕ̂(n, s, ; i)ds

)

(5.20)

So, R(n, t) condition on subfiltration FNTn
gives the probability of surviving the system

beyond (t+ Tn) (n ≥ 0) provided that the system at nth inspection time has been in
operating state.

Next section describes the modelling intensity control of inspection times provided
the partial information which is the history of the inspection events. Also, the mean
residual waiting time mu(t) and the probability measure ϕ̂u(0, t; 1) are addressed as
measures to show how the flow of the FN -adapted damage process X is influenced by
control process.

5.3 Modelling Intensity Control Given Partial Information

Before introducing the modelling intensity control formally, consider an example on
evolution of both mean residual waiting time and waiting time distribution influenced
by the control measure ut (t ≥ 0). The following example shows how the process ut
through the FNt -adapted measure ϕ̂t plays a main role to control the state of the process
and inspection frequency.

Example 1. Suppose that q1(t) = u.t and Su(t), mu(t) denote the waiting time
distribution and mean residual waiting time in the state one associated with the
control process ut. Clearly,

mu(t) =

∫∞
t Su(v)dv
Su(t)

=

√

2π
u

exp
(

ut2

2

)

[1 − φ(
√
ut)],

(5.21)

By using (5.21) an evolution of mu(t) is illustrated (see Fig. 5.1). As shown at fixed time
t with increasing the control value u the mean residual waiting time in the state one
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Figure 5.1. An evolution of the mean residual waiting times in the state one given qu
1 (t) = u.t

and control values u = 0.1, 0.5, 1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

P
ro

ba
bi

lit
y 

of
 th

e 
st

at
e 

on
e 

of
 th

e 
pr

oc
es

s u=1
u=0.5
u=0.1

Figure 5.2. An evolution of the probability of the state one of the process given qu
1 (t) = u.t,

λ21 = 1 and the control values u=0.1,0.5,1

decreases that means larger value of the control process ut, the more deterioration of
the system. Also, if ϕ̂u(0, t; 1) refers to the probability of the system state one indexed
by the control process ut by applying (5.14) it is easy to show that

ϕ̂u(0, t; 1) =

{

1 − γ̄

√

2π
u

exp(
γ̄2

2u
)
[

φ
(√

u(t+
γ̄

u
)
)

− φ

(

γ̄√
u

)]

}−1

× exp
(

−(γ̄t+
ut2

2
)

)

, 0 ≤ t < T1

(5.22)

where T1 is the time to the first inspection. As shown (see Fig. 5.2) with increasing
the intensity of leaving the state one controlled by u the deterioration process of the
system intensifies.

Now to represent the inspection model in a intensity control set up and optimize
the maintenance process, assume that U is the set of R+-valued measurable control
processes of the form ut = u(t,Nt(ω)) where for each n ∈ N+, the mapping t→ u(t, n)
is FNt -predictable and ut ∈ U, t ≥ 0, ω ∈ Ω. To each control u ∈ U we associate a
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probability measure (control dynamics) Pu, u ∈ U on (Ω,F). To control the occurrence
of repairs over time, it is assumed that Nt through transition rate q1(t) admits a
(Pu,FNt )-intensity γt(u) of the form

γt(ω, u) = γ(t,Nt(ω), ut(ω)), (5.23)

so that qu1 (t) = q1(t, u).
Thus, qu1 (t) can be regarded as a key tool to turn the maintenance template into the

intensity control model. In other words, the complete-information maintenance model
by means of the probability measure ϕ̂ut regulated by the control process ut reduces to
the intensity control pattern given partial information. In addition, to each u ∈ U we
correspond a nonnegative measure J(u):

J(u) = Eu

[

∫ T

0

(

μuXt
− kε(t, u)

)−
∑

n>0

kTn (u) − φuXT

]

<∞ (5.24)

That T is a positive time, μuXt
is a nonnegative FNt -progressive process and kTn (u), φuXT

are nonnegative FNt predictable, and FT -measurable random variable respectively. The
measure J(u) associated to u is the value function, μuXt

, indexed by the system state,
denotes the reward per unit of time such that (μ2 < μ1). That means with raising the
wear level of the system the revenue obtained over inter-arrival time decreases. The
term kε(t, u) = ε(1 − u)t with scale parameter ε (ε > 0) denotes the cost per unit of
time to adjust the deterioration level of the system through the control process u ∈ U.
As shown given the control value u, with process of time the repair cost increases.
On the other hand, at any fixed time 0 < t < T , with decreasing control process u,
kε(t, u) increases. In special case, if the control process u takes the value 1, that is,
the system is left to operate without repair and maintenance action, then kε(t, u) = 0.
Also, kTn(u) represents the inspection cost at nth inspection action time and φuXT

is
the final cost for replacement, and inspection at terminal time T . On the other hand,
since Nt admits FNt -intensity γt and kut = k(t,Nt, u) is FNt -predictable process, then
the traditional definition of the stochastic intensity [AJ98] follows

J(u) = Eu

[

∫ T

0

(

μuXt
− kε(t, u) − k(t,Nt, u)γt(u)

)

dt− φuXT

]

(5.25)

Finally, to meet the control problem assumptions, let the above adjusted value function
be converted into the FNt -adapted measure. By projection on the observed history of
the process FNt -adapted version of Ĵ(u) is

Ĵ(u) = Eu

[

∫ T

0

(

∑

i∈I
μiϕ̂

u
t (i) − kε(t, u) − k(t,Nt, u)γt(u)

)

dt−
∑

i∈S
φui ϕ̂T (i)

]

= Eu

[

∫ T

0

(

∑

i∈S
μiϕ̂

u
t (i) − kε(t, u) − k(t,Nt, u)

∑

i∈S
γiϕ̂

u
t (i)dt−

∑

i∈S
φui ϕ̂T (i)

)]

(5.26)
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As seen, the intensity control problem is subject to Markovian Controls [B81]. More
precisely, J(u)(∀u ∈ U) is characterized just with respect to FNt -adapted measure ϕ̂t,
or equivalently Nt. That means the history of the process (ω ∈ Ω) doesn’t play a pure
role in the equation.

In the following, we restrict ourselves to solving the optimal control problem over a
finite horizon in a Markovian Control manner. To achieve this aim which by selecting
an optimum strategy {u∗t ≡ u∗t (t, n) : u∗t ∈ U}:

Ĵ(u∗) = supu∈U Ĵ(u)

the Deterministic Hamilton–Jacobi equations [B81] is employed.

Corollary 1. Let for the measures γ̂(t, n, u), ϕ̂ut (i) = ϕ̂(t, n, u)(i), and k(t, n, u) where
are independent of ω there exists for each n ∈ N+ a function V (t, n) such that

∂V (t, n)
∂t

+ Supu∈Ut {γ̂(t, n, u) [V (t, n) − V (t, n− 1)

−k(t, n, u)] +
∑

i∈S
μiϕ̂(t, n, u)(i) − kε(t, u)

}

= 0,

V (T, n) = inf
u∈U

φ(T, n, u)

(5.27)

where

φ(T, n, u) =
∑

i∈S φiϕ̂
u
T (i).

Suppose also that there exists for each n ∈ N+ a measurable R+−valued function
u∗(t, n) such that

u∗(t, n) ∈ U, t ∈ [0, T ],

and

u∗(t, n) = argmaxu∈Ut {γ̂(t, n, u) [V (t, n) − V (t, n− 1)

−k(t, n, u)] +
∑

i∈S
μiϕ̂(t, n, u)(i) − kε(t, u)

}

,
(5.28)

Then u∗t defined by
u∗t (ω) = u∗(t,Nt(ω)) (5.29)

for ω ∈ FNt is an optimal solution.

In the next section, a numerical example to solve above optimal intensity control
is given. With respect to the cost structure (5.24), it is shown how the solution of
Hamilton–Jacobi equation (5.27) subject to control process u ∈ U provides an optimal
policy not only to control frequency of inspections, but also to optimally derive the flow
of revenue over consecutive inspection times. Also, given the optimal control process
u∗, an optimal stopping rule to replace the system is obtained.
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5.4 Numerical Example

To obtain an optimal control solution for the deteriorating model presented above, it
is assumed q1(t) = t and the inspection cost is linked by the probability measure of the
system state as k(t, n, u) = K −Cϕ̂(t, n, u)(1) (0 < C < K). It means with raising the
impairment level of the system, the inspection cost decreases.

Thus, on the basis of theses measures the Hamilton–Jacobi equation [B81] reduces to

∂V

∂t
(t, n) + sup

u∈Ut

{

Cγ̄(ϕ̂(t, n, u)(1))2

+ ϕ̂(t, n, u)(1) [(μ1 − μ2) + Cγ2 + (V (t, n) − V (t, n− 1) −K) γ̄]

+λ2 (V (t, n) − V (t, n− 1) −K) − kε(t, u) + μ2} = 0,

(5.30)

and the optimal control process u∗(t, n) is given by

u∗(t, n) = argmaxu∈Ut

{

Cγ̄ (ϕ̂(t, n, u)(1))2 + ϕ̂(t, n, u)(1) [((μ1 − μ2) + Cγ2) (V (t, n) − V (t, n− 1)

−K) γ̄] +λ2 (V (t, n) − V (t, n− 1) −K) − kε(t, u) + μ2}

(5.31)

To solve the ordinary differential equation (5.30) subject to optimal expected
revenue V (t, n) and corresponding optimal control process u∗(t,n), t ∈ [Tn, 15] and
(n ≥ 0), let K = 2, C = 1, μ1 = 2, μ2 = 1, γ2 = 2, γ1 = 1, α = 2, β =

√
2,

φ1 = 1, φ2 = 2 and ε = 0.15. By taking advantages of (5.6) and the Euler method with
step size h = 0.1 an evolution of the optimal expected revenue V (t, n) for 0 ≤ n ≤ 12 is
derived. As illustrated in Fig. 5.3, the optimal expected revenue V (t, n) for t ∈ [0, 8.6.3]
is non-decreasing in the number of inspections, at 11th inspection the revenue reaches
to the maximum value, then for t ∈ (8.63, 15] it follows a decreasing trend.
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Figure 5.3. An evolution of the optimal expected revenue V (t, n), t ∈ [0, 15], (0 ≤ n ≤ 12)
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Also, corresponding to nth inspection event (n = 0, 1, 2, ...12), the following table
illustrates a sequence of the expected revenue V ∗

n , expected inspection times μ̂n, mean
time between inspections (MTBI) Δμ̂n, and the optimal control process u∗(t,n) where

V ∗
n = maxμ̂n≤t≤15 V (t, n), 0 ≤ n ≤ 12

As seen, the optimal control sequence u∗(t,n) for n = 0, 1, ... , 4 take the bound-
ary values {0.1, 1} of the constraint set [0.1, 1], and from fifth inspection on, i.e.,
(5 ≤ n ≤ 12), u∗(t,n) chooses just the upper endpoint 1. The second row of the table
describes an evolution of the expected revenue V ∗

n which is concave in the number of
inspections n. As shown, V ∗

n achieves to its maximum value at 11th inspection, that
is, V ∗ = maxn V ∗

n = 14.8487 ∀n ≥ 0, then for (n ≥ 12) follows an decreasing trend.
So, the sequence of V ∗

n not only gives us a solution to the optimal control process u∗t
and optimal inspection problem which is the optimum number of inspections, but also
provides a solution to the optimal replacement problem. More precisely, the optimum
maintenance policy includes an optimal stopping time to replace the system at 11th

inspection event which is T ∗ = μ̂11 = 8.63 and a sequence of the optimal inspection
times μ̂n for n = 1, 2, ... , 11 driven by the optimal control process u∗t , t ∈ [0, 8, 63] which
is bang-bang in the sense that it takes the boundary values {0.1, 1} that is

u∗t = 0.1I(0 ≤ t ≤ 7.9) + I(7.9 < t ≤ 8.63).

Also, a sequence of the mean time between inspections Δμ̂n = μ̂n − μ̂n−1 (0 ≤ n ≤ 12)
(μ̂0 = 0) is shown (see Fig. 5.5). As expected, mean time between inspections decreases
as the number of inspections increases. This results from control process dependent
inspection intensity γ̂(n, t, u∗) being increasing in the number of inspections n and
time t (see Fig. 5.4).

n V ∗
n μ̂n Δμ̂n u∗(t,n)

0 1.5 0 − 0.1I(0 ≤ t < 8.8) + I(8.8 ≤ t < 15)
1 3 1.36 1.36 0.1I(1.36 ≤ t < 8.4) + I(8.4 ≤ t < 15)
2 4.4998 2.63 1.269 0.1I(2.63 ≤ t < 8.4) + I(8.4 ≤ t < 15)
3 5.9992 3.79 1.165 0.1I(3.79 ≤ t < 8.3) + I(8.3 ≤ t < 15)
4 7.4974 4.87 1.081 0.1I(4.87 ≤ t < 7.9) + I(7.9 ≤ t < 15)
5 8.9937 5.88 1.017 I(5.88 ≤ t < 15)
6 10.4878 6.36 0.48 I(6.36 ≤ t < 15)
7 10.9757 6.83 0.452 I(6.83 ≤ t < 15)
8 11.9662 7.28 0.451 I(7.28 ≤ t < 15)
9 13.3437 7.73 0.451 I(7.73 ≤ t < 15)
10 13.8464 8.18 0.451 I(8.18 ≤ t < 15)
11 14.4887 8.63 0.451 I(8.63 ≤ t < 15)
12 14.2907 9.087 0.45 I(9.08 ≤ t < 15)

To have a realization of the prediction of the system failure, let ψ(x) = x and the
baseline function be distributed Weibull with intensity function

λ0(t) = αtα−1

βα t ≥ 0
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Figure 5.4. An evolution of the inspection intensity γ̂(n, t, u∗) given the optimal control
process u∗
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Figure 5.5. An evolution of the mean time between inspections (MTBI) given the optimal
control process u∗

t

By applying (5.10) an evolution of the conditional survival function of the system
(see Figs. 5.5–5.7) and a decreasing sequence of corresponding conditional mean time
to failure (CMTTF) (see the following table) are illustrated. For example, at initial
time t = 0, it is predicted after t = 1.22 unit of time the system fails. In addition, given
that the system is in operating state at inspection time μ̂1 = 1.36, it is expected after
0.491 unit of time the system is in failure state.

n 0 1 2 3 4 5 6 7 8 9 10

CMTTF 1.22 0.491 0.262 0.166 0.118 0.090 0.073 0.067 0.063 0.059 0.055
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Figure 5.6. An evolution of conditional survival function given the optimal control process u∗
t

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of inter−arrival times of inspections

C
M

T
T

F

Figure 5.7. An evolution of conditional mean time to failure (CMTTF) given the optimal
control process u∗

t

Finally, Fig. 5.8 beautifully give us a rule to optimal replacement of the system
based on the failure intensity λ̂(n, t, u∗) that is

T ∗ = inf
{

t ≥ 0 : λ̂(n, t, u∗) ≥ c, μ̂n ≤ t < μ̂n+1

}

, (n ≥ 0), (5.32)

where c denotes the optimum threshold deterioration level at which the system is
replaced. Subject to the optimal replacement time T ∗ = 8.63, the threshold level is
given by

c = λ̂(10, 8.63, u∗) = 17.26.

5.4.1 Perspectives

In this paper, we presented an optimal-control-based framework to the adjustment of
the damage process and the determination of optimal inspection time sequence for
systems which are subject to repair and inspection. The model rests on two common
assumptions which are inspections do not impact on the failure characteristics and the
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Figure 5.8. An evolution of failure intensity λ̂(n, t, u∗) given the optimal control process u∗
t

process is adapted to partial information including evolution of inspection events. To
optimize the damage process based maintenance process, the intensity control model
was employed as a key tool not only to adjust the FN -adapted state of the process over
inter-arrival times of inspections (repair), but also to optimally control the frequency
of inspections.

To numerically solve the maintenance optimization problem an example with
realistic results on scheduling optimal inspection times was given. In addition, to get
an insight into prediction of system failure an evolution of conditional survival function
and conditional mean time to failure of the system were provided. Also, an optimal
stopping rule to replace the system was obtained.

The maintenance optimization model presented here has potential to consider the
optimal inspection problem of a variety of systems which are subject to repair and
inspections. In such a case, the problem of controlling the intensity of point process
Nt is generalized to multivariate point process case, i.e.,

(

N1(t), N2(t), ... , Nk(t)
)

which
Ni(t) (i = 1, 2, ..., k) refers to the number of inspections of system type i. Also, it is
anticipated the optimal control model discussed here in the same approach as Davis
model [D93] can be extended to the case that the repair and maintenance action at
intervention times is not restricted to minimal repairs. In the generalized case, the flow
of the process which will consist of random jumps resulting from repair and maintenance
action, and continuous motion between consecutive jumps is controlled in such away
that the maximum expected value including continuous revenue, jump and terminal
cost is derived. Besides, to reflect the degree of repairs, virtual age (VA) processes
(see [LBJ04,K89]) as age reduction factors can be considered as a key tool. In this way,
VA process is beautifully reflected in the FN -adapted damage process ϕ̂t through a
change of the time origin.
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Abstract: In this chapter, we introduce a class of longitudinal latent processes where,
at any time, the latent variable is assumed to be indirectly observable, through a set of
categorical binary variables (items). We assume that the measurement model relating
the observed items and the latent variable, at each time, is a Rasch model. Besides
the description of these models, the objective aimed in this work, is the estimation of
the parameters of the model by maximum likelihood method via an EM algorithm.
We consider more deeply two classes of distribution for the longitudinal latent process:
(1) the General Latent Markov process and a special case, (2) the latent autoregressive
process of order one.
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process, EM algorithm, Marginal likelihood, Quality of life, Unobserved process, Latent
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6.1 Introduction

In this paper, we present the class of latent processes in general and latent Markov
processes and latent autoregressive processes in particular. The latter can be regarded
like a particular case of the class of latent Markov processes. Latent processes has been
considered extensively in the past [WIG73,VER86,BAR06,LAN94,POL86] in various
fields of application and for various purposes. For instance, in psychology, measure
of the latent ability of individual in educational context is crucial. In Health Related
Quality of Life Research, one use questionnaires to assess various latent trait, in ret-
rospective as well in prospective (i.e., longitudinal) studies [MES09]. One of the basic
hypotheses of the latent models is local independence. This hypothesis postulates that
the observed variables used to measure a specific latent variable of interest, are inde-
pendent conditionally that latent variable. This condition is generally assumed in all
latent variable models. It is also included in the Rasch model [ADM06, FIS95], which
is the most popular Item Response Theory (IRT) model. This model possesses some
interesting properties and permits an explicit expression of the likelihood function of
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observations. This paper includes a summary description of latent process models in
general and of latent Rasch model in particular. Then, one focuses our work to the
case of Rasch Latent Markov processes and Rasch Latent autoregressive models un-
der the hypothesis of the local independence. For each model, we derive the likelihood
function and solve the problem of parameter estimation by the method of maximum
likelihood using an EM algorithm. Feddag and Mesbah (2005) [FED05] have considered
similar situation in a more limited context with only few times of observation (no more
than three). They used GEE methods to estimate item as well as latent distribution
parameters. In Sect. 6.2, the general form of our longitudinal process is presented, in-
cluding its Rasch measurement part, and the probability law of the observed responses
is given. Section 6.3 is devoted to the presentation of an application of our method to
two important classes of latent processes: a General First Order Markov Latent pro-
cess and a First Order Autoregressive Latent process (AR(1) Latent process). Latent
parameters Estimation is considered in Sect. 6.4, while its application to our specific
Rasch Latent process is detailed in Sect. 6.5.

6.2 Description of the Latent Process

The model consists of a finite trajectory of a multivariate process:

(Xi,k(t), Θi(t)) : 1 ≤ k ≤ q, 1 ≤ i ≤ n, 1 ≤ t ≤ T

where (Xi,k(t)) is the longitudinal process of observations, assumed with a finite
support and, for all i, (Θi(t)) is an unobservable (latent) process. The variable Xi,k(t)
represents the response at the instant t of the person i to the item k.

In most applications, the q variables Xi,1(t), Xi,2(t), ..., Xi,q(t) are, for every
occasion t, the responses of the individual i to a dichotomous questionnaire including
q−items (questions). The same questionnaire is submitted on different opportunities
to the same individuals. A characteristic of these models is that, whatever the value of
k, every response variable Xi,k(t)} depends only on the corresponding latent individual
variable Θi(t).

First, let’s determine the law of the latent process (Θi(t)) in view of a finite trajec-
tory of the observation process (Xi,k(t)). In our context, the model can be represented
at all times t by

{X1,1 (t) ... X1,q (t)}
︸ ︷︷ ︸

. . . {Xn,1 (t) ... Xn,q (t)}
︸ ︷︷ ︸

↑ . . . ↑
Θ1 (t) . . . Θn (t)

The process of observations {Xi,k(t)}} have values in {0, 1}, where value 1
corresponds to a correct (or a positive) answer of the i individual to the k item.
The word “correct” is used in the context of education, while the word “positive” can
be used in more general context like Quality of Life, or any other Psychological, Soci-
ological context. The latent variable Θi(t) depends only on the individual i. It can be
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interpreted as a measure of his ability, in the context of education, and more generally
as a measure of his position in a scalar axis corresponding to the latent unidimensional
trait measured by the questionnaire.

We note Xi(t) = (Xi,1(t), ..., Xi,q(t))′ the response vector of the individual i at
the instant t and by π(xi,k/θi(t)) the conditional probability P(Xi,k(t) = xi,k/Θi(t) =
θi(t)), with i = 1, n, k = 1, q and t = 1, T . The probability distribution of the response
vector of the individual i, in view of the observation xi = (xi(1), ...,xi(T )) of Xi =
(Xi(1), ...,Xi(T )) during the whole period {1, ..., T}, can be written:

p(xi) =
∫

...

∫

p((xi/(θi) × gi(θi)dθi(1) · · ·dθi(T ), (6.1)

where gi is the probability density of the latent vector (Θi(1), ..., Θi(T ))′, θi =
(θi(1), ..., θi(T ))′ and xi(t) = (xi,1(t), ..., xi,q(t))′ an observation of vector Xi(t).

In our current work, we assume that the probability distribution of the latent vari-
able belongs to a known parametric family of distributions. One of our main goal is to
estimate its unknown parameters using the observations xi,k(t) (item responses).

Assuming local independence of the items, and Rasch measurement model to relate
latent parameter to observed responses will allow us a simplification of the conditional
probabilities

p(xi(t)/θi(t)) = P (Xi(t) = xi(t)/Θi(t) = θi(t)).

Local independence of the items means that the response variables Xi,1(t), ....,
Xi,q(t) of the person i, are, conditionally to their corresponding latent variable Θi(t),
independent. It is one of the underlying Rasch model assumptions. It is also an
assumption included in all Item Response Theory family models.

This assumption will help us to simplify the writing of p(xi(t)/θi(t)) by giving us
a factorization of the likelihood which will make easier the estimation process of the
parameters.

6.2.1 The Rasch Model

The most popular measurement model, i.e., a model defining the distribution of observed
items conditional to the latent unidimensional person variable is the Rash model (Fisher
and Molenaar (1995)). This model is extensively used in various psychometric fields
such educational research, and more recently, the analysis of health related Quality of
Life [7]. Let the following assumptions:

(h1) The conditional law of Xi(t) with respect to latent variables Θi(t) : t = 1..., T,
depends only on the corresponding latent variable:

P (Xi(t) = xi(t)/Θi = θi) = P (Xi(t) = xi(t)/Θi(t) = θi(t)). (6.2)

We note p(xi(t)/θi(t)) this conditional probability. This assumption means that the
response variable at the instant t depends only on the latent variable Θ(t).

(h2) The random vectors Xi(1),Xi(2), . . . ,Xi(T ) are conditionally independents to
the latent vector {Θi(1) = θi(1), ..., Θi(T ) = θi(T )}:

p(xi(1), ...,xi(T )/θi(1), ..., θi(T )) =
T

∏

t=1

p(xi(t)/θi(t)), (6.3)
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where p(xi(1), ...,xi(T )/θi(1), ..., θi(T )) is the joint law of Xi(1),Xi(2), ...,Xi(T )
conditionally to {Θi(1) = θi(1), ..., Θi(T ) = θi(T )}. This is a longitudinal conditional
independence assumption of observed items relatively to the latent process.

(h3) The response variables X1(t), ..., Xq(t) are conditionally independent relatively
to the latent variable Θi(t):

p(xi(t)/θi(t)) =
q

∏

k=1

π(xi,k(t)/θi(t)), (6.4)

where

π(xi,k(t)/θi(t)) = P (Xi,k(t) = xi,k(t)/Θi(t) = θi(t)),

and

xi(t) = (xi,1(t), ..., xi,q(t))′ ∈ {0, 1}q.

This hypothesis corresponds to a questionnaire including q items conditionally inde-
pendent relatively to the corresponding latent variable. This is the local independence
assumption.

(h4) The conditional probabilities π(xi,k(t)/θi(t)) are given by

π(xi,k(t)/θi(t)) =
exp(xi,k(t)(θi(t) − βk))
1 + exp((θi(t) − βk))

, (6.5)

where θi(t) is the latent feature or the ability of the i individual (to measure) and βk
a real parameter called difficulty parameter tied to the k item. The introduction of the
difficulty parameter βk brings us to note this conditional law by π(xi,k(t)/θi(t), βk).
Formula (6.5) is known as the Rasch model.

On the other hand, individuals are, as usual, considered as independently sampled,
in other terms, the latent processes (Θi(t) : i = 1, n) are independents. Also, it is
sufficient in this section to describe the model and the likelihood function for only
one individual. To this end, and by convenience, we omit the relative indication to
individuals and we note by {Xt : 1 ≤ t ≤ T } a finite trajectory of the observation
process and where Xt = (X1(t), ..., Xq(t))′ is the vector of response variables at time
t relatively to only one individual and (Θ(t) : 1 ≤ t ≤ T ) the corresponding latent
process.

6.2.2 Probability Law of the Observations

Let x(1), ...,x(T ) be a trajectory of observation vectors X(1), ...,X(T ) relative to one
individual only, during the period {1, ..., T}. We have the following result:

Proposition 1. Under the hypotheses h1, h2,and h3 above, the conditional law
p(x(1), ...,x(T )) of the observations relative to one individual only, during the period
{1, ..., T}, can be written
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p(x(1), ...,x(T )) =
∫

...

∫

RT

T
∏

t=1

(1 − α1(θ(t)))q(
α1(θ(t))

1 − α1(θ(t))
)r(t)g(θ)d(θ), (6.6)

where α1(θ(t)) = π(1/θ(t)), r(t) =
∑q
k=1 xk(t) the score (number of correct responses)

of individual at the t−thopportunity and g the density of latent vector (Θ(1), ..., Θ(T ))′.

Proof. Looking at the law of (X(1), ...,X(T )) as the marginal law of the joint law
of (X(1), ...,X(T )) and the (Θ(1), ..., Θ(T )), and taking into account the hypotheses
h1, h2, we can write

p(x(1), ...,x(T )) =
∫

...

∫

RT

T
∏

t=1

p(x(t)/(Θ(t) = θ(t)))g(θ)d(θ). (6.7)

Then according to the hypothesis h3 of the local independence on the one hand, and
as π(xk(t)/θ(t)) = (1 − α1(θ(t))).[ α1(θ(t))

1−α1(θ(t)) ]xk(t) on the other hand, we deduce the
result (6.6).

The probability p(x(1), ...,x(T )) depends on the transition probabilities α(1/θ(t))
which constitute as many of parameters to estimate in order to identify the model.
Moreover, if we suppose this model satisfies the hypothesis h4 (Rasch model), then
the number of parameters can be reduced substantially and the probability of the
observation vector relative to one individual only, becomes relatively simple.

Corollary 1. If the model ((X(t), Θ(t)) : 1 ≤ t ≤ T ) is a latent Rasch model, then the
law of probability p(x(1), ...,x(T )) of observations relative to one individual only during
the period {1, ..., T}, can be written

p(x(1), ...,x(T )) =
∫

...

∫

exp(
∑T

t=1 r(t)θ(t) −
∑q

k=1 βkrk)
∏T
t=1

∏q
k=1[1 + exp((θ(t) − βk))]

g(θ)d(θ), (6.8)

where r(t) is the score at the t−th opportunity and rk =
∑T

t=1 xk(t) the number of
correct responses to the k item over the T−opportunities.

Proof. It is sufficient to replace in (6.7), π(xk(t)/θ(t)) by

exp(xk(t)(θ(t) − βk))
1 + exp((θ(i) − βk))

.

6.3 Application to Markov Latent Processes

In this section, we consider, as a direct application of the previous sections, two classes
of latent processes: a General First Order Markov Latent process and a First Order
Autoregressive Latent process (AR(1) Latent process).

6.3.1 First Order Markov Latent Process

This model consider the latent process (Θ(t) : 1 ≤ t ≤ T ) as being a Markov chain of
one order. We suppose the chain (Θ(t) : 1 ≤ t ≤ T ) has a real support, and invariant
Gaussian centered law with variance σ2 and has a kernel of transition N Gaussian of
variance σ2.
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Proposition 2. If the process {Θ(t) : 1 ≤ t ≤ T } has a real support, invariant
Gaussian centered law with variance σ2, with a kernel of transition N Gaussian of
variance σ2, then the vector (Θ(1), ..., Θ(T )) is Gaussian and has a probability density
g given by

g(θ(1), ..., θ(T )) =
1

σT
√

(2π)T
exp{− 1

2σ2
[θ(1)2 +

T
∑

t=2

(θ(t) − θ(t− 1))2]}. (6.9)

Proof. By conditionality, the joint law of variables Θ(1), ..., Θ(T ) is deduced easily:

g(θ(1), ..., θ(T )) = λ(θ(1))
T

∏

t=2

N(θ(t − 1), θ(t)), (6.10)

where λ is the invariant law of the process {Θ(t) : 1 ≤ t ≤ T }. And from here we
deduce the expression of g.

Remark. If we suppose the chain having a finite number of states θ1, ..., θm, then the
matrix of transition probabilities of P has coefficients π(θu(t)/θv(t − 1)) = P (Θ(t) =
θu(t)/Θ(t − 1) = θv(t − 1)), 1 ≤ u, v ≤ m. And so besides, we suppose that the chain
(Θ(t) : 1 ≤ t ≤ T ) is homogeneous, irreducible and possess an invariant law, then the
matrix of transition probabilities is independent of t, and the probability law of the
vector (Θ(t) : 1 ≤ t ≤ T ) can be written

P (Θ(1) = θi1 , ..., Θ(T ) = θiT ) = λ(θi1 )
T

∏

t=2

π(θit/θit−1), (6.11)

where it ∈ {1, ...,m}.
In what follows, we suppose that the chain (Θ(t)) has a real support, and is homo-

geneous and irreducible. The following result specifies the law of observations relative
to one individual only.

6.3.2 Rasch First Order Markov Latent Process

We have the following result that is deduced directly from the proposition 1, by
replacing in this relation the density g by its expression.

Corollary 2. Under the hypotheses h1, h2 and h3 above, the law of X = (X(1), ...,
X(T )) can be written in view of a trajectory x = (x(1), ...,x(T )) :

p(x) =
1

σT
√

(2π)T

∫

...

∫

RT

T
∏

t=1

[1 − α0(θ(t))]q [
α0(θ(t))

1 − α0(θ(t))
]r(t)h(θ)d(θ), (6.12)

where α0(θ(t)) = π(1/θt), h((θ) = h(θ(1), ..., θ(T )) = exp{− 1
2σ2 [θ(1)2 +

∑T
t=2(θ(t) −

θ(t− 1))2] and r(t) =
∑q

k=1 xk(t) the score obtained at the t−th occasion.

The probability p(x(1), ...,x(T )) depends on transition probabilities π(xk(t)/θ(t)),
also, if we suppose in addition that this model is a Rasch model, then we deduce from
corollary 1 and the corollary 2 above, the following result:
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Corollary 3. Under the hypothesis of latent Rasch model, the law p(x1, ...,xT ) of the
observations relative to one individual only during the period {1, ..., T}, becomes

p(x(1), ...,x(T )) =
1

σT
√

(2π)T

∫

...

∫

φ(x, θ, β)h(θ)d(θ), (6.13)

where φ(x, θ, β) = exp(
∑ T

t=1θt.r(t)−
∑q

k=1 βk.rk)
∏

T
t=1

∏q
k=1[1+exp(θit−βk)]

, rk =
∑T

t=1 xk(t), θ = (θ1 . . . , θT ) and
β = (β1 . . . , βq).

Remark. If the chain is of finite support {θ1, ..., θm}, then the law (6.13) becomes

p(x) =
m

∑

i1=1

...

m
∑

iT =1

T
∏

t=1

λ(θi1).π(θit/θit−1).[1 − α0(θit )]q.[
α0(θit)

1 − α0(θit)
]r(t), (6.14)

where α0(θit) = π(1/θit) and r(t) =
∑q
k=1 xk(t) the score obtained at the tth occasion.

And in a Rasch model this probability is written

p(x) =
m

∑

i1=1

...

m
∑

iT =1

T
∏

t=1

λ(θi1).π(θit/θit−1)
exp{∑T

t=1 θt.r(t) −
∑q
k=1 βk.rk}

∏T
t=1

∏q
k=1[1 + exp(θit − βk)]

. (6.15)

6.3.3 AR(1) Latent Process

We suppose that the latent process (Θ(t) : 1 ≤ t ≤ T ) is an autoregressive process of
one order

Θ(t) = ρΘ(t − 1) + ε(t), (6.16)

where (ε(t)) is a white Gaussian noise of variance σ2 and ρ a real constant. In order to
ensure the stationarity to the second order of the latent process (Θ(t)), it is sufficient
to consider the parameter ρ of modulus strictly lower than 1. On the other hand, it is
easy to verify that this process is Gaussian and defines a Markov chain of one order.
Concerning this last point, we can express it

Proposition 3. If the latent process (Θ(t)) is autoregressive of one order, then this
process is a Markov process of the first order. Besides, if |ρ| < 1, this process is
stationary at the second order with initial centered normal law with variance σ2

1−ρ2
and the conditional law of Θ(t) knowing Θ(t− 1) = θ0 is Gaussian with mean ρθ0 and
variance σ2.

The join law of variables (Θ(1), ..., Θ(T )) is deduced easily by conditioning

g(θ(1), ..., θ(T )) = f0(θ(1))
T

∏

t=2

fθ(t−1)(θ(t)), (6.17)

which gives

g(θ) =

√

1 − ρ2

√

(2π)TσT
exp{− 1

2σ2
[(1 − ρ2)θ2(1) +

T
∑

t=2

(θ(t) − ρθ(t− 1))2]}, (6.18)

where f0 is the density of the initial law of the chain (Θ(t)) and fθ(t−1)(θ(t)) the condi-
tional density of Θ(t) knowing Θ(t− 1). We notice again that the Markovian character
of the latent process ensures that Θ(t) is conditionally independent of Θ(t− 2), ..., Θ(1)
knowing Θ(t − 1).
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6.3.4 Rasch AR(1) Latent Process

As for the Markovian case, we deduce here once again

Corollary 4. Under the hypotheses h1, h2 and h3 above, the law of the AR(1) model
is written for one individual only in view of a trajectory x(1), ...,x(T ) of the process
(X(t) : 1 ≤ t ≤ T ):

p(x) =

√

1 − ρ2

√

(2π)T .σT

∫ +∞

−∞
...

∫ +∞

−∞
ψ(x, θ, ρ).H(x, θ)dθ(T ) · · · dθ(2)dθ(1), (6.19)

where

ψ(x, θ, ρ) = (1 − α0(θ(1)))qe−
1

2σ2 (1−ρ2)θ(1)2(
α0(θ(1))

1 − α0(θ(1))
)r(1),

H(x, θ, ρ) =
T

∏

t=2

(1 − α0(θ(t)))q(
α0(θ(t))

1 − α0(θ(t))
)r(t).e−

1
2σ2 [(θ(t)−ρθ(t−1))2],

α0(θ(t)) = π(1/θ(t)) r(t) =
q

∑

k=1

xk(t).

Proof. It is sufficient to write

p(x) =
∫

...

∫

RT

p(x/θ)g(θ)dθ(1) · · · dθ(T ), (6.20)

and taking into account the hypotheses h1 and h3, we can write

p(x) =
∫

...

∫ T

R

T
∏

t=1

p(x(t)/θ(t)).g(θ)dθ(1) · · · dθ(T ), (6.21)

which gives

p(x) = =
∫

...

∫

RT

T
∏

t=1

q
∏

k=1

π(xk(t)/θ(t))g(θ(1), ..., θ(T ))dθ(1) · · · dθ(T ), (6.22)

where considering the definition of the g density of the latent vector and that
π(xk(t)/θ(t)) = [α0(θ(t))]xk(t).[1 − α0(θ(t))]1−xk(t), the expression of the likelihood
stated.

The probability p(x1, ...,xT ) depends of the transition probabilities π(xk(t)/θ(t)),
also, if we suppose that the model is a Rasch model, then we have

Corollary 5. If the conditional probabilities π(xk(t)/θt) follow the Rasch model, then
the law of the model for one individual only, is written

p(x) =

√

1 − ρ2

√

(2π)T .σT

∫ +∞

−∞
...

∫ +∞

−∞

F (x, θ)
∏T
t=1

∏q
k=1(1 + exp(θ(t) − βk))

dθ(T ) · · · dθ(1),

(6.23)

where F (x, θ) = exp{− 1
2σ2 (1− ρ2)θ(1)2 +

∑T
t=2((θ(t)− ρθ(t− 1))2) +

∑T
t=1(θ(t).r(t)−

s(t))} and s(t) =
∑q

k=1 xk(t)βk.
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Proof. It is sufficient to replace in (6.22) the probabilities of transition π(xk(t)/θ(t)) =
[α0(θ(t))]xk(t)[1−α0(θ(t))]1−xk(t) by their equivalents of Rasch and to deduce the result.

6.4 Estimation

The two classes of models considered in this section, already defined in the previous
section, satisfy the hypotheses of the Rasch model.

We suppose that the latent process is such that (Θi(t) : 1 ≤ t ≤ T ), i = 1, n, are
independents and normally distributed with variance σ2

i .
Depending on whether the latent process is a first Order Markov process or an AR(1)

process, we want to estimate the parameter vector η =(β, σ2) (resp. η =(β, ρ, σ2)) where
β = (β1, ..., βq)′ is the vector of item difficulty parameters and σ2 = (σ2

1 , ..., σ
2
n)′ where

σ2
i is the variance of Θi(t) (resp. β = (β1, ..., βq)′ is the vector of item difficulty pa-

rameters, ρ = (ρ1, ..., ρn) the vector of autoregressive parameters and σ2 = (σ2
1 , ..., σ

2
n)′

where σ2
i the variance of the white noise (εi(t)).

6.4.1 The Marginal Likelihood

The latent Rasch model can be considered as a particular case of more general models
for incomplete data analysis. The vector xi of observations can be interpreted as incom-
plete because it misses the latent feature. This incomplete vector can be considered as
an observable function of the vector (xi, θi) of complete data (partially observed). The
likelihood function of such incomplete data, called Marginal likelihood, can be written:

p(η;x) =
n

∏

i=1

∫

...

∫

RT

p(xi/θi; ηi)gi(θi(1), ..., θi(T ))dθi(1) · · · dθi(T ), (6.24)

where θi = (θi(1), ..., θi(T ))′, gi the probability density of the latent vector Θi =
(Θi(1), ..., Θi(T ))′, x = ((x1(t), ...,xn(t))′ : 1 ≤ t ≤ T ) a realization of the observa-
tion process {(X1(t), ...,Xn(t))′ : 1 ≤ t ≤ T } and where xi = (xi(1), ...,xi(T ))′. Using
Rasch assumptions, this marginal likelihood becomes:

p(η;x) =
n

∏

i=1

∫

...

∫

RT

ψ(ηi;xi)gi(θi(1), ..., θi(T ))dθi(1) · · ·dθi(T ), (6.25)

where

ψ(ηi;xi) =
exp(

∑T
t=1 ri(t)θi(t) −

∑q
k=1 βk.ri,k)

∏T
t=1

∏q
k=1[1 + exp((θi(t) − βk))]

. (6.26)

The method that consists of estimating the parameter η in maximizing this marginal
likelihood (called Marginal Maximum Likelihood method) is computationally difficult,
also among approaches commonly used to maximize this function, the approach based
on the application of the EM algorithm [DEM77] is generally privileged. Below, this
approach is described in details.
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6.4.2 The EM Algorithm

The EM algorithm consists of maximizing iteratively, neither the log-likelihood of
incomplete data, but the mean of the log-likelihood of the complete data with re-
spect to the observations. In fact, it is about maximizing the following expression of
the log-likelihood function:

E{log[f(x, θ; η)]/x, η(p)}, (6.27)

where f(x, θ, η) =
∏n
i=1 p(xi/θi; ηi)gi(θi, ηi), θ = (θ1, ..., θn)′ and θi = (θi(1), ...,

θi(T ))′, x = (x1, ...,xn)′ and xi = (xi(1), ...,xi(T ))′. More precisely, in the stage p+ 1,
given the value η(p) of the estimate obtained at the p stage, the algorithm is as follows:

Stage E (expectation):
This stage consists of calculating the conditional mean of the complete log-likelihood

knowing the current values of the estimators

Q(η/η(p)) = E(log f(x, θ; η)/x, η(p)). (6.28)

We have the following result:

Proposition 4. The conditional mean Q(η/η(p)) is given by:

n
∑

i=1

∫

...

∫

[log{gi(θi, ηi)} + log{p(xi, θi; ηi/x, η(p))}]πi(θi/xi, η
(p))dθi, (6.29)

where

πi(θi/xi, η
(p)) ∝ p(xi, η(p)/θi(1), ..., θi(T )).gi(θi(1), ..., θi(T )/η(p)),

and

log{p(xi, θi; ηi/x, η(p))} =
T

∑

t=1

q
∑

k=1

log{π(xi,k(t)/x, θi(t), η
(p)
i )}.

Proof. We have Q(η/η(p)) =
∑n
i=1

∫

...
∫

RT [log(gi(θi, ηi)) + log[p(xi, θi, ηi/x, ηp)] ×
qi(θi/xi, ηp)]dθi where qi(θi/xi, ηp)]dθi is the conditional density of latent vector
Θi = (Θi(1), ..., Θi)(T ) knowing the observation vector X. by a standard calculation
we find that

qi(θi/xi, ηp)]dθi =
p(xi8θi, ηp)

p(x, ηp) × g(θ)i, ηp

And as

p(xi, η
(p)) =

∫ ∫ T
∏

t=1

q
∏

k=1

π(xi,k/θi(t), ηp)dθi(1)...dθi(T )

it followed that qi(θi/xi, η(p)) coincides with a nearly constant p(xi/θi(t), ηp)(θi, η(p)).
More like

log{p(x, θ, η/x, η(p))} =
n

∑

i=1

T
∑

t=1

q
∑

k=1

log{π(xi,k(t)/θi, η
p
i )πiθi/xiη(p)},

the result of the proposltion follows.
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Stage M (maximization):
This second stage consists of finding the value η(p+1) that achieves the maximum

of the quantity Q(η/η(p)):

Q(η(p+1)) = arg maxηQ(η/η(p)). (6.30)

This stage requires explicit expressions of formulas (6.25) in order to highlight the
dependence of Q(η/η(p)) as a function of the parameters model. To calculate the value
η(p+1), we apply the Newton–Raphson algorithm and the integrals are approximated
numerically using the Gauss–Hermite quadrature formulas. The E and M stages are
repeated alternately until the difference Q(ηp+1) − Q(ηp) is less than a prior fixed
quantity.

6.5 Estimation of Rasch Latent Markov Processes

We apply the results above to the cases of latent Markov processes and latent AR(1)
processes.

Rasch Latent Markov Processes

In this case, the parameter η = (β, σ2) with β = (β1, ..., βq)′ the vector of the difficulty
parameters and σ2 = (σ2

1 , ..., σ
2
n)′, with σ2

i is the variance of the Markov process Θi.
The conditional mean of the complete log likelihood knowing the current value of the
estimator η(p) is written in this case

Corollary 6. Under the hypotheses of the Rasch model, we have

Q(η/η(p)) = −T
2

n
∑

i=1

log(2πσ2
i ) +H1 +H2, (6.31)

where

H1 = −
n

∑

i=1

1
2σ2

i

∫

...

∫

[θ2
i (1) +

T
∑

t=2

(θi(t) − θi(t− 1))2]

×πi(θi/x, β(p), σ2(p))dθi(1) · · ·dθi(T ),

H2 =
n

∑

i=1

T
∑

t=1

q
∑

k=1

∫

...

∫

log{exp(xi,k(t)(θi(t) − βk))
1 + exp((θi(t) − βk))

}πi(θi/xi, η(p))dθi(1) · · ·dθi(T ),

and

πi(θi/x, , η
(p)) ∝ exp{∑ T

t=1 θi(t).ri(t)−
∑ q

k=1 β
p
k .ri(k)− 1

2σ2(pi)
[θ2i (1)+

∑T
t=2(θi(t)−θi(t−1))2]}

∏T
t=1

∏ q
k=1[1+exp(θi(t)−β(p)

k
)]

.

Proof. This comes directly from the relation (6.25) and the hypothesis of local
independence.
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The maximization with respect to the σ2
i concerns only the first two sums of this last

expression and the maximization with respect to the βk involves only the double sum
over on i and t of the last term of this same expression. Which brings us to calculate

σ
2(p+1)
i =

1
T

∫

...

∫

[θ2i (1) +
T

∑

t=2

(θi(t)− θi(t− 1))2]πi(θi/x, β
(p), σ2(p))dθi(1) · · · dθi(T ),

for all i and to resolve the q following equations

n
∑

i=1

T
∑

t=1

xi,k(t)

=
n

∑

i=1

T
∑

t=1

∫

...

∫

[1 + exp((βk − θi(t)))]−1πi(θi/x, η
(p))dθi(1) · · ·dθi(T ) 1 ≤ k ≤ q,

and the integrals are again approximated numerically using the Raphson–Newton
algorithm and the Gauss–Hermite quadrature approximation formulas.

6.5.1 Rasch Latent AR(1) Processes

In this case, we recall that the parameter is η = (β, ρ, σ2) with β = (β1, ..., βq), ρ =
(ρ1, ..., ρn), and σ2 = (σ2

1 , ..., σ
2
n).

Corollary 7. Under the hypotheses of the Rasch model, we have

Q(θ/η(p)) = −T
2

n
∑

i=1

log(2πσ2
i ) +

1
2

n
∑

i=1

log(1 − ρ2
i ) +G1 +G2, (6.32)

where

G1 = −
n

∑

i=1

1
2σ2

i

∫

...

∫

ϕ(θi, ρi)πi(θi/xi, η
(p))dθi(1) · · · dθi(T ),

G2 = +
n

∑

i=1

T
∑

t=1

q
∑

k=1

∫

...

∫

ψ(xi, θi)πi(θi/xi, η
(p))dθi(1) · · ·dθi(T )

with

ϕ(θi, ρi) = (1 − ρ2
i )θ

2
1 +

T
∑

t=2

(θi(t) − ρiθi(t− 1))2,

ψ(xi, θi) = ln
exp(xi,k(t)(θi(t) − βk))
1 + exp((θi(t) − βk))

and πi(θi/x, , η
(p)) ∝ C,

and where

C =
exp{∑ T

t=1 θi(t).ri(t)−
∑ q

k=1 β
(p)
k
.ri(k)− 1

2σ
2(p)
i

[(1−ρ2(p)
i )θ2i (1)+

∑T
t=2(θi(t)−ρ(p)

i θi(t−1))2]}
∏

T
t=1

∏q
k=1[1+exp(θi(t)−β(p)

k )]
.
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Proof. The conditional mean of the complete log-likelihood take the form (6.33) with

πi(θi/x, η
(p)) = πi((θi)/x, η(p)),

and we see that
πi(θi/x, η

(p)) ∝ C.

Here, the maximization with respect to σ2
i concerns only the first and the third term

of this last expression and the maximization with respect to ρi takes on the second
and third term of this same expression. It brings us to solve the following system of
equations:

σ
2(p+1)
i =

1
T

n
∑

i=1

∫

...

∫

[(1 − ρ2
i )θ

2
i (1) +

T
∑

t=2

(θi(t) − ρiθi(t− 1)2]

×πi(θi/x, η(p))dθi(1) · · ·dθi(T ), i = 1, ..., n,

and also

ρi
1 − ρ2

i

=
1
σ2

∫

...

∫

[ρiθ2
i (1) +

T
∑

t=2

θit− 1(θi(t) − ρiθi(t− 1))]

×πi(θi/x, β(p), ρ(p), σ2(p))dθi(1) · · ·dθi(T ), i = 1, ..., n,

and the maximization with respect to βk involves only the double sum over i and t of
the last term of this expression. That leads to solve the q following equations

n
∑

i=1

T
∑

t=1

xi,k =
n

∑

i=1

T
∑

t=1

∫

...

∫

[1 + exp((βk − θi(t)))]−1

×πi((θi)/x, η(p))dθi(1) · · ·dθi(T ), k = 1, ..., q.

In the two cases, the integrals are again approximated numerically using the Gauss–
Hermite quadrature formulas.
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Department of Mathematics, Università degli Studi di Roma “La Sapienza”,
P.le A. Moro, 2, 00185, Roma, Italy,
foschi@mat.uniroma1.it; Fabio.Spizzichino@uniroma1.it

Abstract: We consider non-negative conditionally independent and identically
distributed random variables and analyze conditions for monotonicity of survival
copulas of residual lifetimes. Concentrating attention on the bivariate copula, we com-
pare its behavior at the instant of default with its evolution between two defaults. The
assumptions for our results will be expressed in terms of conditional hazard rates.

Keywords and phrases: Survival Copulas of residual lifetimes, Default contagion,
Multivariate stochastic orders, Longitudinal observations, Posterior distributions

7.1 Introduction

Tail dependence and Default contagion emerge as two subjects of interest in
multivariate survival models and are typically related with the analysis of non-negative
random variables, that have the meaning of waiting times until top events for different
units.

An interesting fact is that such phenomena are equally relevant in the two different
fields of Reliability and Finance where, respectively, components in a system or firms
in a same market can be represented as units that are prone to default.

Tail dependence refers to those aspects of stochastic dependence (among the
different units) that are related with a high frequency of simultaneous occurrence of
extreme events for the units themselves (see e.g. [CJ06,MFE05]).

Roughly speaking, the term default contagion describes the cases when the default
of a unit causes a decrease in the joint survival probability of residual lifetimes of the
remaining units (see in particular [MFE05] and references cited therein).

Under a different language, specific notions related with such a general idea of
default contagion had already been introduced and studied, in the past, within the
frame of reliability theory (see e.g. [AN84, SSh07, SSp98], and, for the specific case of
exchangeable lifetimes, [Spi01]). One of such notions is Weakened by Failures. Such
notions were formulated in terms of different multivariate stochastic orderings and are
related to corresponding notions of positive dependence. In order to describe these
notions of dependence, it was used the term dependence of dynamic type.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 101
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 7, c© Springer Science+Business Media, LLC 2010
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One can then say that both tail dependence and default contagion are related to
stochastic dependence and to evolution of it, at certain instants. For this reason we can
expect that the two phenomena are linked together. Such links are not immediately
clear however and have not been completely investigated in the literature.

Several notions of stochastic dependence are conveniently described in terms of
copulas and, more precisely, in terms of survival copulas in the cases of non-negative
variables (see e.g. [Joe97, Nel06]). It is then interesting to analyze the time-evolution
of survival copulas under the longitudinal observation of lifetimes.

Actually, in the literature, evolution of dependence has been mostly considered in
absence of defaults (see e.g. [CJ06] and [FS08]); and tail dependence can just be seen
as a limiting concept in such a frame.

Time evolution of survival copulas can then be considered a more general topic
than tail dependence, comprehending both the behavior of copulas at default times
and, as a limiting case of their behavior between two subsequent default times, the tail
dependence.

In this paper, we present a study of the evolution of survival copulas in both the
cases characterized by the presence or absence of defaults. We aim at comparing the
two different types of analysis and at pointing out the link between them.

It will also turn out that the behavior of copulas at default times triggers properties
of default contagion.

A prime source of stochastic dependence among random variables (and, in partic-
ular, among lifetimes) is just created by the influence of common factors that are not
directly observable. In particular, a very basic case of stochastic dependence is the one
of conditional independence.

The literature about the role of conditional independence, in several different fields
of application, is huge and well-known and there is no need to refer to it, here. Let us
only mention that, in the field of reliability, the unobservable factors often have the
meaning of environmental conditions. In the field of financial risk, this type of situation
is related with the so-called information-induced dependence (see e. g. [MFE05]).

What is important to notice here is that different problems related with the analysis
of dependence take a very special and expressive form, under the assumption that
dependence is just produced by conditional independence. This circumstance especially
holds for what concerns the problem of evolution of dependence, under defaults and
survivals, that is addressed to in this paper.

For this reason, we concentrate attention on the case when the observable lifetimes
are conditionally independent and identically distributed ( = conditionally i.i.d.) given
a vector of non-negative random variables Θ ≡ (θ1, . . . , θd) .

In such a situation, the use of a Bayesian approach turns out as a completely natural
one and the evolution of the conditional density of Θ given observed histories becomes
a central object of interest.

A preliminary version of this analysis, with Θ a scalar random variable, had already
been presented in [Fos08]. We expand here the topic of the evolution of dependence and,
in particular, we point out some specific aspects of the extension to the multivariate
case.

In order to proceed with our analysis, we introduce now the following notation.
We consider non-negative random variables T1, . . . , Tn, to be seen as the waiting

times to n (stochastically dependent) top events, such as the failures of components
operating in a same system or the defaults of firms in a same market.
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We assume T1, . . . , Tn to be exchangeable and denote by

F (x1, . . . , xn) = P (T1 > x1, . . . , Tn > xn) ,

G (x) = F (x, 0, . . . , 0) = P (X > x) ,

Ĉ(u1, . . . , un) = F{G−1
(u1) , . . . , G

−1
(un)}

the corresponding joint survival function, marginal univariate survival function and
survival copula, respectively. We shall refer to F as an exchangeable survival model.

It is also natural analyzing the above model from a dynamic point of view. With
the vector (T1, . . . , Tn), we associate the counting process

Nt =
∞
∑

i=1

1{Ti≤t},

whose jump times are just the order statistics T(1), . . . , T(n) of (T1, . . . , Tn), letting
T(0) = T0 = 0 a.s..

We assume that the available observation up to a time t > 0 is an event of the form

Et ≡ {T(1) = t1, . . . , T(k) = tk, T(k+1) > t}. (7.1)

Of course such events belong to the σ-algebra Ft, where {Ft}t≥0 is the filtration rep-
resenting the internal history of the process {Nt}t≥0. Notice that the event Et implies
{Nt = k}.

Given the event Et, it is useful for our purposes to consider the ordered residual
lifetimes at time t of the surviving units, i.e. the random variables

(T(k+1) − t, . . . , T(n) − t)|Ft.

In order to deal, at any t, with exchangeable random variables, we define the fol-
lowing vector Xt ≡ (X1

t , . . . , X
n−k
t ) of exchangeable residual lifetimes.

Definition 1. The exchangeable residual lifetimes of (T1, . . . , Tn) at time t are the
exchangeable random variables X1

t , . . . , X
n−k
t admitting (T(k+1) − t, . . . , T(n) − t)|Ft as

order statistics.

Concerning the distribution of (X1
t , . . . , X

n−k
t ), we put

F t (x1, . . . , xn−k) = P
(

X1
t > x1, . . . , X

n−k
t > xn−k|Ft

)

(7.2)

Gt (x) = F t (x, 0, . . . , 0) = P
(

X1
t > x|Ft

)

Ĉt(u1, . . . , un−k) = F t{G−1

t (u1) , . . . , G
−1

t (un−k)}. (7.3)

Ĉt(u1, . . . , un−k) is the survival copula of the random vector
(

X1
t , . . . , X

n−k
t

)

.

As said before, a problem of interest is the evolution of stochastic dependence
properties of F t, as t increases. In particular, we restrict ourselves to the case when
T1, . . . , Tn are conditional independent given a random vector Θ = (Θ1, . . . , Θd).
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Furthermore, we consider the dependence between just two variables, and thus we
study the evolution of the family {Ĉ(2)

t }, where Ĉ(2)
t is the bivariate margin of the

survival copula in (7.3).
Our results will be based on some notions of multivariate stochastic ordering and

will be exposed in Sect. 7.3. Therein we study some aspects of the monotonicity be-
havior of the family {Ĉ(2)

t }, both at default times and between two subsequent default
times. More precisely, we find out conditions for stochastic dependence being decreas-
ing at default times and progressively increasing between two subsequent default times.
To this purpose we will present a preliminary result (see Proposition 1) that relates
monotonicity properties of the posterior densities of Θ to properties of hazard rates of
T1, . . . , Tn given Θ.

Section 7.2 contains some preliminary computations: namely, for the conditionally
i.i.d. case, we shall write down for F t, Gt, Ĉt some explicit expressions that will be
used in Sect. 7.3. The paper will end with a final discussion, presenting a brief summary
and a few concluding remarks, and an Appendix where we collect some needed notions
about positive dependence and multivariate stochastic orderings.

7.2 Some Basic Facts

Let Θ be a random vector with joint density π0. We denote by θ = (θ1, . . . , θd) its
realization. Let T1, . . . , Tn be conditionally i.i.d. given Θ, with conditional survival
function G(x|θ) and conditional density g(x|θ). For our purposes, our first step is the
computation of the survival copula Ĉt. To this aim, we adapt the previous formula
(7.2) for F t to the present case of conditional independence and identical distribution:

F (x1, . . . , xn) =
∫

R
d
+

G(x1|θ) · · ·G(xn|θ)π0(θ)dθ =

∫

R
d
+

∫ ∞

x1

· · ·
∫ ∞

xn

g(ξ1|θ) · · · g(ξn|θ)dξ1 · · · dξnπ0(θ)dθ.

In particular, the one-dimensional predictive survival function and probability density,
respectively, become

G(x) =
∫

R
d
+

G(x|θ)π0(θ)dθ,

g(x) =
∫

R
d
+

g(x|θ)π0(θ)dθ.

r(x) and r(x|θ), respectively, denote the predictive hazard rate of each Ti and the
conditional hazard rate, i.e.

r(x) =
g(x)
G(x)

, r(x|θ) =
g(x|θ)
G(x|θ)

.

In terms of the conditional univariate survival functions G(x|θ), we want to write down,
for any x, 2 ≤ j ≤ n− k, the joint survival function F t.
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In this respect, it is important to notice that, if T1, . . . , Tn are conditionally i.i.d.
given Θ, it can be shown that X1

t , . . . , X
n−k
t are conditionally i.i.d. given Θ as well.

In particular, each X i
t has conditional univariate survival function Gt(x|θ) (details are

given in [Fos10]).
We can now proceed with the computation of F t. For any t, conditionally on the

history Ft, Θ admits density
πt(θ) ≡ π(θ|Ft).

If the observation up to t is Et, defined in (7.1), we can write, by applying the Bayes’
formula,

πt(θ) ∝ [G(t|θ)]n−kg(t1|θ) · · · g(tk|θ)π0(θ). (7.4)

Furthermore

F t(x1, . . . , xn−k) =
∫

R
d
+

G(x1 + t|θ) · · ·G(xn−k + t|θ)
[G(t|θ)]n−k

πt(θ)dθ. (7.5)

Thus, the univariate margin becomes

Gt(x) ≡ P (X > t+ x|Ft) =

F t(x, 0, . . . , 0) =
∫

R
d
+

G(x + t|θ)
G(t|θ)

πt(θ)dθ. (7.6)

We can now write, for any t, the survival copula Ĉt. By combining (7.5) and (7.6),
we obtain

Ĉt(u1, . . . , un−k) =
∫

R
d
+

G(G
−1

t (u1) + t|θ)
G(t|θ)

· · · G(G
−1

t (un−k) + t|θ)
G(t|θ)

πt(θ)dθ. (7.7)

Notice that πt in (7.5)–(7.7) is given by (7.4).
In particular, as we have said in the Introduction, we will study the evolution of

the bivariate copulas, obtained as the bivariate margin of the copula in the previous
formula and therefore given by

Ĉt(u1, u2) =
∫

R
d
+

G(G
−1

t (u1) + t|θ)
G(t|θ)

G(G
−1

t (u2) + t|θ)
G(t|θ)

πt(θ)dθ. (7.8)

Remark 1. As to the univariate survival function, it is interesting to notice the difference
between Gt(x) in (7.6), i.e. the univariate survival function conditional on the history
up to t of all the variables in the model, and

Ht(x) ≡ P (X > t+ x|X > t) =
G(x+ t)
G(t)

,

i.e. the univariate survival function of one variable, conditional on the survival at t
of only that variable. On the other hand, since conditionally on Θ the variables are
independent, we can notice that, given Θ, conditioning on {X > t} is equivalent to
conditioning on Ft. Therefore, the two univariate conditional survival functions Gt(x|θ)
and Ht(x|θ) do coincide:

Gt(x|θ) ≡ P (X > t+ x|Ft,θ) = P (X > t+ x|X > t,θ) = Ht(x|θ).
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7.3 Monotonicity Properties of Survival Copulas

In order to analyze the evolution of dependence when t elapses, we consider, in partic-
ular, the family of survival copulas Ĉ(2)

t (u1, u2), defined in (7.8).
As declared in the Introduction, we aim at obtaining conditions for monotonicity

properties of
{

Ĉ
(2)
t

}

.
On the set of bivariate copulas the following partial order, called more PQD order

or concordance order, is defined (se e.g. [Joe97,LX06]):

Definition 2. Ĉt′′ is more PQD than Ĉt′ , written as Ĉt′ �PQD Ĉt′′ , if

Ĉt′(u1, u2) ≤ Ĉt′′(u1, u2)

for any u1, u2 ∈ [0, 1].

With respect to this order, we can define a notion of monotonicity:

Definition 3. The map t→ Ĉt is increasing (in the PQD order) if Ĉt′ �PQD Ĉt′′ for
any t′ < t′′.

Remark 2. We point out that t → Ĉt increasing means that residual lifetimes become
more and more dependent at increase of age

It is natural to split the analysis of
{

Ĉ
(2)
t

}

into two different stages, namely:

(a) at default times T(k)’s

or

(b) between two of them, i.e. within the intervals (T(k), T(k+1)), for k = 0, . . . , n− 2.

Under the hypothesis that T1, . . . , Tn are conditionally i.i.d., we obtain that the survival
copulas can be given rather explicit expression. Therefore, in the following, we can study
the monotonicity of the process

{

Ĉ
(2)
t

}

by means of direct comparisons.

In both the two cases (a) and (b), monotonicity properties of t→ Ĉ
(2)
t will be easily

achieved by imposing suitable monotonicity assumptions on the conditional hazard rate
r(t|θ).

More precisely, monotonicity properties of t → Ĉt can be obtained from mono-
tonicity properties of t → πt, as stated in Propositions 2 and 3 below. On their turn,
monotonicity properties of t → πt can be traced back to monotonicity properties of
θ → r(t|θ), as illustrated in the following Proposition 1. We also remark that this
proposition has some connections with the notion of default contagion (see Remark 4
below).

For our purposes, we need some notions about dependence and multivariate stochas-
tic orders, such as the likelihood-ratio order, the weak likelihood-ratio order, MTP2

dependence (see e.g. [SSh07]); these notions will also be recalled in the Appendix.
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Proposition 1. Let us assume the condition

(a) r(t|θ) ↑ θ.

Then we have

(b) πT(k) ≥wlr πT−
(k)

a.s.;

(c) πt′ ≥wlr πt′′ a.s., for any t′ < t′′, t′, t′′ ∈ [T(k), T(k+1)), k = 0, . . . , n− 2.

Proof. The implication (a) ⇒ (b) is obvious by taking into account (7.15) and the

identity
πT(k)(θ)
πT−

(k)
(θ)

= r(T(k)|θ).

In order to prove that (a) implies (c), we notice that

r(t|θ) ↑ θ ⇔
∫ t′′

t′
r(t|θ)dt ↑ θ ∀ t′ < t′′.

Since G(x|θ) = exp
{

−
∫ x

0

r(t|θ)dt
}

,

G(t′′|θ)
G(t′|θ)

= exp

{

−
∫ t′′

t′
r(t|θ)dt

}

↓ θ,

and the same holds for
πt′′(θ)
πt′(θ)

=
(

G(t′′|θ)
G(t′|θ)

)n−k
.

Therefore, by definition of wlr order, πt′′ ≤wlr πt′ .
Remark 3. It can also be proven, by means of technical arguments, that (b) and (c) are
equivalent (see [Fos10]).

Remark 4. It can be easily shown that the assumption (a) in the former Proposition 1
implies a condition of default contagion, in the following sense:

F
(n−k)
T−

(k)
(x1, . . . , xn−k) ≥ F

(n−k)
T(k)

(x1, . . . , xn−k), ∀ x1, . . . , xn−k ≥ 0. (7.9)

It is then interesting to notice that the assumption guaranteeing default contagion also
implies, under our conditions, a jump downward of the copulas of the surviving units,
at default times (see Proposition 3 below).

Notice that, in the proofs of Propositions 2 and 3 below, we need the assumption
πt MTP2 for any t. As a matter of fact, this hypothesis is rather strong. Sufficient
conditions for it can however be formulated in terms of r(t|θ) and G(t|θ) by taking
into account the expression (7.4) (see also [SSp98]).

However, t→ πt monotonic in the weak likelihood ratio order (as in Proposition 1)
and πt MTP2 for any t guarantees t → πt being monotonic in the likelihood ratio
order (see Lemma 1 in the Appendix). The latter condition implies the monotonicity
of t→ πt with respect to the usual stochastic order.

We are now in a position to state and prove the following results about the
monotonicity of the family

{

Ĉ
(2)
t

}

of the survival copulas.
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Proposition 2. Let r(t|θ) be monotonic w.r.t. θ, πt MTP2 for any t and

G
(

G
−1

t (u) + t|θ
)

G (t|θ)
increasing w.r.t. t.

Then t �→ Ĉ
(2)
t is increasing in the intervals between two jumps.

Proof. Assume, for instance, r(t|θ) increasing in θ. The proof when r(t|θ) is decreasing
in θ is analogous. Let us denote

ρ(θ, t) =
G(G

−1

t (u1) + t|θ)
G(t|θ)

G(G
−1

t (u2) + t|θ)
G(t|θ)

. (7.10)

In view of (7.8), the condition t �→ Ĉ
(2)
t being increasing reads as

∫

R
d
+

ρ(θ, t′)πt′(θ)dθ ≤
∫

R
d
+

ρ(θ, t′′)πt′′(θ)dθ (7.11)

for any t′ ≤ t′′. Thus, we want to prove (7.11). By Proposition 1, θ → r(t|θ) increasing
implies πt′ ≥wlr πt′′ . Since πt is MTP2 for any t, by Lemma 1, πt′ ≥lr πt′′ and, therefore,
in particular, it will be πt′ ≥st πt′′ . By Proposition 1, θ → r(t|θ) increasing implies
θ → ρ(θ, t) decreasing. Therefore, by (7.14) in the Appendix, (7.11), πt′ ≥st πt′′ implies

∫

R
d
+

ρ(θ, t′)πt′ (θ)dθ ≤
∫

R
d
+

ρ(θ, t′)πt′′(θ)dθ.

Since, by hypothesis, t→ ρ(θ, t) is increasing,
∫

R
d
+

ρ(θ, t′)πt′′(θ)dθ ≤
∫

R
d
+

ρ(θ, t′′)πt′′(θ)dθ,

and therefore
∫

R
d
+

ρ(θ, t′)πt′(θ)dθ ≤
∫

R
d
+

ρ(θ, t′′)πt′′(θ)dθ,

that is the thesis.

Proposition 3. Let r(t|θ) be a monotonic function of θ and πt MTP2 for any t. Then,
with probability 1,

Ĉ
(2)
T(k)

≺PQD Ĉ
(2)

T−
(k)
,

i.e., for any u1, u2 ∈ [0, 1],

Ĉ
(2)
T(k)

(u1, u2) ≤ Ĉ
(2)

T−
(k)

(u1, u2). (7.12)

Proof. Let us define, as in (7.10),

ρ(θ, T(k)) =
G(G

−1

T(k)
(u1) + T(k)|θ)

G(T(k)|θ)

G(G
−1

T(k)
(u2) + T(k)|θ)

G(T(k)|θ)
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and

ρ(θ, T−
(k)) =

G(G
−1

T−
(k)

(u1) + T(k)|θ)

G(T(k)|θ)

G(G
−1

T−
(k)

(u2) + T(k)|θ)

G(T(k)|θ)
.

We want to prove that
∫

R
d
+

ρ(θ, T(k))πT(k)(θ)dθ ≤
∫

R
d
+

ρ(θ, T−
(k))πT−

(k)
(θ)dθ.

Assume θ → r(t|θ) to be increasing. The proof when θ → r(t|θ) is decreasing is
analogous.
By Proposition 1, πT(k) ≥wlr πT−

(k)
and then, by Lemma 1, πT(k) ≥lr πT−

(k)
holds.

On the other hand, r(t|θ) ↑ θ implies
G(x+ t|θ)
G(t|θ)

↓ θ and therefore θ → ρ(θ, t)

decreasing. We recall that

GT(k)(u) =
∫

R
d
+

G(x+ T(k)|θ)
G(T(k)|θ)

πT(k)(θ)dθ, GT−
(k)

(u) =
∫

R
d
+

G(x+ T(k)|θ)
G(T(k)|θ)

πT−
(k)

(θ)dθ.

Since πT(k) ≥lr πT−
(k)

implies πT(k) ≥st πT−
(k)

, by condition (7.14), it follows that

GT(k)(u) ≤ GT−
(k)

(u). This implies

G(G
−1

T(k)
(u) + T(k)|θ)

G(T(k)|θ)
≤
G(G

−1

T−
(k)

(u) + T(k)|θ)

G(T(k)|θ)
, (7.13)

that is ρ(θ, T(k)) ≤ ρ(θ, T−
(k)). Hence

∫

R
d
+

ρ(θ, T(k))πT(k) (θ)dθ ≤
∫

R
d
+

ρ(θ, T(k))πT−
(k)

(θ)dθ ≤
∫

R
d
+

ρ(θ, T−
(k))πT−

(k)
(θ)dθ.

Thus, we can conclude that, for any u1, u2 in [0, 1], ĈT(k)(u1, u2) ≤ Ĉ
(2)

T−
(k)

(u1, u2).

The analysis of a simple and very well known model allows us to show now an
example of application of both Proposition 2 and 3 in the case θ ∈ R+.

Example 1. Consider G(t|θ) = e−θt, so that r(t|θ) = θ (i.e. r(t|θ) is constant w.r.t. t
and increasing w.r.t. θ) and the assumptions of Proposition 2 and Proposition 3 are
satisfied. In particular, if the initial distribution of Θ is Gamma(α0, β0), then, at any
time t > 0, the conditional distribution of Θ is again Gamma and Ĉ

(2)
t is a Clayton

copula. More precisely,

πt(θ) =
βαt
t

Γ (αt)
θαt−1e−βtθ,

with αt = α0 +Nt, βt = β0 +
∑n

k=1 min(T(k), t), and

Ĉ
(2)
t (u1, u2) =

(

u
− 1

αt
1 + u

− 1
αt

2 − 1
)−αt

.

We obtain that t → Ĉ
(2)
t remains constant between two subsequent default times and

makes a jump downward at instants of default.
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7.4 Concluding Remarks

In this section, we present some remarks and comments about the results we have
obtained. As we have already said, our main results are contained in the Propositions 2
and 3.

Proposition 2 states that, if the conditional hazard rate r(t|θ) is monotonic in θ
and if the components of Θ satisfy a suitable positive dependence property, namely
MTP2, dependence among residual lifetimes continuously increases at the increase of
survival time.

In particular, since residual lifetimes become more and more dependent,
Proposition 2 gives conditions for the phenomenon of tail dependence. The latter
circumstance means that extremal events are more dependent than non-extremal ones.
In other words, we can intuitively expect that, eventually, failures will occur each close
to the other ones.

Proposition 3 states instead that, under the same conditions on r(t|θ) and on Θ,
inequality (7.12) holds, i.e. the dependence among residual lifetimes discontinuously
decreases when a failure occurs.

Notice that (7.12), i.e. ĈT(k) �PQD ĈT−
(k)

, and default contagion are two phenomena
referring to the behaviour of residual lifetimes at the instants of defaults. Actually, they
appear to be two different phenomena; they are however related in some way. More
precisely, it can be shown that r(t|θ) monotonic in θ also implies default contagion.
Still remaining in the present case of conditionally i.i.d. observations, we can however
say more: it can be shown that ĈT(k) �PQD ĈT−

(k)
implies default contagion in the sense

of (7.9) (see [Fos10] for details).
Let us now come to comment on some technical assumptions in Propositions 2

and 3.
Notice that, even if the likelihood ratio order is a very well known and most used

notion, in Proposition 1, it is sufficient requiring the weak likelihood ratio order. In

fact, as it happens in the univariate case, we actually use the condition
πt(θ)
πs(θ)

being

monotonic in θ. When θ is univariate, such a condition corresponds just to a charac-
terization of the likelihood ratio order; in the multivariate case, it gives the definition
of weak likelihood ratio order. The point is that, in order to prove Propositions 2 and
3, we need monotonicity of the family {πt} with respect to the usual stochastic order.
In the multivariate case, the usual stochastic order is implied by the likelihood ratio
order, but not by the weak likelihood ratio order. In order to retrieve the monotonicity
of the family {πt} with respect to the usual stochastic order, it is necessary imposing,
further, the condition that Θ is MTP2.

As a matter of fact, in the multivariate case, we distinguish between weak and strong
notions of a same stochastic ordering, whereas, in the univariate case, the two notions
do coincide. Adding the condition Θ MTP2 allows us to obtain, from the weaker notion
of stochastic order, the stronger one.

More in general, one could argue that MTP2, representing a strong notion of
dependence, allows us to treat the random vector Θ like a scalar random variable.
On its turn, this fact makes it possible to automatically extend many results, valid for
the case of a univariate non-observable factor, to the multivariate case.
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We assume that the reader is familiar with the most common notions about univari-
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Let U, V be two random vectors with joint survival functions FU , FV and
probability densities fU , fV respectively.

On R
d we consider the usual componentwise partial order, defined as follows: let

u = (u1, . . . , ud), v = (v1, . . . , vd) be two vectors in R
d; then we write u ≤ v if vi ≤ vi

for i = 1, . . . , d.
A set B ⊆ R

d is called an upper set if v ∈ B whenever u ≤ v and u ∈ B.
We write fU ≤st fV if P (U ∈ B) ≤ P (V ∈ B), for any upper set B ⊆ R

d; in this
case we also say that U is smaller than V in the usual stochastic order.

fU ≤st fV implies FU (t) ≤ FV (t) for any t ∈ R
d, as it is immediately seen by

letting the upper set B to be a d-rectangle. The condition FU ≤ FV is called upper
orthant order and it is denoted by fU ≤uo fV . A characterization of the usual stochastic
order, analogous to the one in the one-dimensional case, is given by the condition

∫

Rd

ρ(t)fU (t)dt ≥
∫

Rd

ρ(t)fV (t)dt (7.14)

for any decreasing function ρ : R
d → R.

We also use the symbols ∨ and ∧: u ∨ v = (u1 ∨ v1, . . . , ud ∨ vd) where ui ∨ vi ≡
max{ui, vi}; analogously u ∧ v = (u1 ∧ v1, . . . , ud ∧ vd) where ui ∧ vi ≡ min{ui, vi}.
The multivariate likelihood ratio order fU ≤lr fV is defined by means of the following
condition:

fU (u)fV (v) ≤ fU (u ∧ v)fV (u ∨ v)

for every u,v ∈ R
d.

The likelihood ratio (= lr) order fU ≤lr fV implies the so-called weak likelihood ratio
(= wlr) order. The latter notion is defined by imposing a condition that is analogous
to the characterization of the likelihood ratio order in the univariate case:

Definition 4. We say that U is smaller than V in the wlr order, and we denote it by
fU ≤wlr fV , if

fU (t)
fV (t)

↓ t. (7.15)

We recall that fU ≤lr fV implies fU ≤st fV and fU ≤wlr fV implies fU ≤uo fV ,
but fU ≤wlr fV does not imply fU ≤st fV .

We say that a function f : R
d → R is MTP2 if

f(u)f(v) ≤ f(u ∧ v)f(u ∨ v)

for any u,v ∈ R
d.

Lemma 1 ([Koc99]). If
fV (t)
fU (t)

↑ t and fU is MTP2, then fU ≤lr fV .
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Abstract: A stationary server system with observable degradation is considered.
A simple Cox model for the hazard rate dependency on degradation is used. An
optimization problem for choice of a Markov time to begin prophylactic repair of the
system is being investigated. For non-monotone processes of degradation there exists
a sequence of Markov times which some local condition of optimality is fulfilled at. In
this case the following alternative arises: either the first time of this sequence is the
best, or the global optimal time does not exist. A regenerative degradation process is
shown to illustrate this alternative.

Keywords and phrases: Degradation, Cox model, Random process, Markov time,
Repair, Hazard rate

8.1 Renewal System

This work is a supplement to the paper [RH09]. We give here additional explanations
of some aspects of the problem, e.g. a localizing Markov time, a trajectory of choice,
an alternative of choice, and show an example of the visually proven alternative for a
twice regenerative server system.

We consider a repairable server system with one channel. Its action consists of work
and repair periods. The repair periods are of two types: a repair after a failure, and a
prophylactic repair. After repair the system is as good as new. We describe this server
system as a regenerative process, generated by a sequence of i.i.d. cycles of activity
(Xn, ζn, τn,Mn, Rn)∞n=1. Elements of every cycle are

• Xn = (Xn(t)) (t ≥ 0), an one-dimensional random process which is actually
considered on a random interval [0, ζn ∧ τn);

• ζn, a random time to failure, connected with the process Xn with the help of a
hazard rate h(Xn), where h(x) (x ∈ R) is a non-decreasing positive function;

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 113
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 8, c© Springer Science+Business Media, LLC 2010
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• τn, a time of beginning of the prophylactic repair, which is a Markov time with
respect to the process Xn and the natural filtration (Ft) on the set of trajectories;

• Mn, a random duration of a repair period.
• Rn, a random value of loss due to stopping.

We interpret Xn(t) as observable degradation of the system in the n-th cycle of
regeneration. The condition survival function of ζ is

P (ζ1 > t|X1) = exp
(

−
∫ t

0

h(X1(s)) ds
)

.

Thus, the survival function is assumed to be described with Cox model, which is recently
rather popular among specialists on reliability theory; see, for example, [BN00], and
the newest one [BMN09] and [HNR09]. The prophylactic repair in the nth cycle begins
at the instant, τn, defined by an operator of the system, which have to optimize it
according to some loss function. Let Tn = ζn ∧ τn + Mn be a duration of the n-th
cycle of regeneration. We assume the system has a loss during one regeneration cycle
as follows

fn = −
ζn∧τn
∫

0

A(Xn(t)) dt+Rn,

where A(·) is a non-decreasing positive function; we interpret A(Xn(t)) dt as a use-
ful output during an infinitesimal interval dt. In what follows we use conditional
expectations:

m1 ≡ E(M1| ζ1 ≤ τ1), m2 ≡ E(M1| ζ1 > τ1),

r1 ≡ E(R1| ζ1 ≤ τ1), r2 ≡ E(R1| ζ1 > τ1),

and suppose that m1 > m2 and r1 > r2. We will use a loss function of the optimization
problem, L ≡ Lτ , coinciding with average loss of the system during a long period of
action, i.e.

L ≡ lim
t→∞

1
t

Nt
∑

k=1

fk
a.s.=

Ef1
ET1

, (8.1)

where Nt is the corresponding counting process. We have

Ef1 ≡ Yτ = −E
ζ1∧τ1
∫

0

A(X1(t)) dt + r1P (ζ1 ≤ τ1) + r2P (ζ1 > τ1),

ET1 ≡ Zτ = E(ζ1 ∧ τ1) +m1P (ζ1 ≤ τ1) +m2P (ζ1 > τ1).

Further, we will drop index 1 in denotations of random processes and values of the first
regeneration cycle if it does not lead to ambiguity, and use denotation Xt instead of
X(t), when it seems convenient.

Using positivity of ζ, we can obtain

Ef1 = −Wτ + r1 − (r1 − r2)Uτ , ET1 = Vτ + m1 − (m1 −m2)Uτ ,
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where

Uτ = E exp
(

−
∫ τ

0

h(Xs) ds
)

,

Vτ = E

∫ τ

0

exp
(

−
∫ t

0

h(Xs) ds
)

dt,

Wτ = E

∫ τ

0

A(Xt) exp
(

−
∫ t

0

h(Xs) ds
)

dt.

8.2 Optimization Problem

8.2.1 Local Optimality Equation

We will investigate a classical optimization problem to find τ∗ such that

Lτ∗ = min
τ∈T

Lτ ,

where T is the set of Markov times with respect to filtration (Ft). In [RH09], we show
that a necessary condition for a Markov time τ to be a local minimum of Lτ is the
following a.s. equation

−A(Xτ ) + (r1 − r2)h(Xτ )
1 + (m1 −m2)h(Xτ )

=
Yτ
Zτ

(τ <∞). (8.2)

Moreover, this local minimum exists any time when the left hand side of (8.2) reaches
the level, represented by the right hand side of this equation, with up-crossing this
level.

8.2.2 Localizing Markov Times

Since the left hand side of (8.2) is valid under any appropriate functions A and h, and
the right hand side is not a random value, we conclude that almost all the trajectories
of the process have identical meanings at the point τ . Thus, we consider a subclass
T′ ⊂ T with a property: (∀τ ∈ T′) (∃a ∈ R) Xτ

a.s.= a on the set {τ < ∞}. We call
T′ a class of localizing Markov times. We have T′ =

⋃

a∈R
Ta, where Ta is a subclass

of all the localizing Markov times, corresponding to the point a. Hence (8.2) can be
rewritten as

−A(a) + (r1 − r2)h(a)
1 + (m1 −m2)h(a)

=
Yτa

Zτa

(τa ∈ Ta, τa <∞). (8.3)

A trivial example of localizing Markov time for a process with a.s. continuous
trajectories and the initial point x0 < a is the first exit time from the interval
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(−∞, a) (we denote this as μa ≡ σ(−∞, a), where σΔ(ξ) = inf{t ≥ 0 : ξ(t) �∈ Δ}). In
this case, a trivial solution (if any) can be obtained as a unique solution of the equation

−A(a) + (r1 − r2)h(a)
1 + (m1 −m2)h(a)

=
Yμa

Zμa

(μa <∞).

Both parts of this equation are functions of a. A crossing point of the corresponding
graphs represents a solution of this equation. For a continuous not-decreasing process
Xt the solution of this equation coincides with the unique solution of (8.3). In case
of non-monotone process Xt a solution of this equation can be not unique. Namely,
one can construct a composition of Markov times which contains a shifted μa. Since
for τ1 ≡ τ+̇μa the identity Xτ1 = Xμa ◦ θτ = a on the set {τ1 < ∞} holds the set
of possible candidates on a role of the best solutions of (8.3) is very rich (here and in
what follows we denote τ1+̇τ2 ≡ τ1 +τ2 ◦θτ1, where θt is the shift operator on the set of
cadlag functions [Har07]). In order to find the best localizing time in [RH09] we used so
called trajectories of choice which were constructed for a sequence of levels (an) with
the help of corresponding localizing Markov times μa and νa (νa ≡ σ(a,∞)). Our aim
was to prove so called alternative of choice.

Definition 1 The following two assertions are called to be alternative of choice for a
given problem:

1. either the trivial solution is the best,
2. or the optimal solution does not exist.

It was motivated by the situation where the right hand side of (8.2) is a constant.
In [RH09a], we prove that in this case for a Markov process (Xt) this alterative is
fair. In order to prove this alternative for more general situation in [RH09], we used
representation of (8.3) in form of equality of two functions of argument a with certain
direction of varying. For example, the left hand side is decreasing function, and the right
hand side is increasing function of a, which implies existence of their unique crossing
point. Usually one part of this equality does not depend on our choice, and the other
part is rather arbitrary. This part can be chosen by the operator of the system if he
(she) hopes to decrease the loss function. This part determines so called a trajectory
of choice. There exist some properties of trajectories of choice which restrict a set of
possible solutions. In [RH09], we used a special function, G, on a set of parameters for
to prove some sufficient conditions of choice. For a process Xt of diffusion type we had
shown that if the sign of G is negative everywhere in the set of parameters the first
assertion of the alternative is true. If the sign of G is positive everywhere in the set of
parameters the second assertion of the alternative is true. Uncertainty remains when
this function changes its sign inside the set of parameters. Thus, we did not receive
the full proof of the alternative of choice for a diffusion process (Xt). In this case, the
problem requires further investigation.

8.3 Alternative of Choice for Twice Regenerative System

In this paper, we present an example where the alternative of choice is proved. In what
follows we will consider an a.s. piece-wise continuous non-decreasing process Xt with
negative jumps. Let Xt be a regenerative process. Thus, the system we investigate is



8 On Alternative of Choice for a Prophylaxis Problem 117

twice regenerative. The first order of regeneration is the system as a whole with the
infinite sequence of work–repair cycles. And the second order of regeneration is the
action period inside one cycle. This internal regenerative process is to be terminated
due to failure of the system or stopping for prophylaxis repair. An interpretation of this
second order regenerative process of degradation is discussed, for example, in [BN00].

Let (σn)∞1 be points of jumps of a homogeneous renewal process and Tn = σn −
σn−1. It means that (Tn) is a sequence of i.i.d. positive random variables. Let there
exist a value c > 0 such that on every interval (σn−1, σn) the process (Xt) increases
continually from zero to c; at points of discontinuity, σn, the process is assumed to be
right continuous. This process need not be Markov, but it is assumed to have points of
regeneration (σn). Let us denote B(Xτ ) the left hand part of (8.2):

B(a) ≡ −A(a) +Δr h(a)
1 +Δmh(a)

,

where Δr = r1 − r2, Δm = m1 − m2. Further we will assume A(0) = h(0) = 0. In
[RH09], the following equivalent form of this equation is proved.

r2 −B(Xτ )m2 = Hτ (Xτ ) (τ <∞), (8.4)

where

Hτ (a) = E

∫ τ

0

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt))(B(a) −B(Xt)) dt

(a ≥ 0). Hence, (8.3) can be represented as

r2 −B(a)m2 = Hτa(a). (8.5)

We can see, that this equation does not require restriction τa < ∞ [RH09]. Moreover,
the left hand side of this equation is a decreasing function of a, and the right hand side
of this equation is an increasing function of a if τa ≡ μa and

h′(x)
1 +Δmh(x)

≥ A′(x)
Δr +ΔmA(x)

(x > 0);

(see [RH09]). Further, we will assume that this condition is fulfilled in a strengthen
form:

h′(x)
1 +Δmh(x)

≥ A′(x)
Δr +ΔmA(x)

+
r2(1 +Δmh(x)

cm2 (Δr +ΔmA(x))
(0 < x < c). (8.6)

Since B(0) = 0, this condition follows from the restriction

(r2 −B(x)m2)′ ≤ −r2/c,

which supplies existence a point of intersection, a1 ∈ (0, c), of curves determined by
the left and right hand sides of (8.5), if τa ≡ μa.
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Let us consider trajectories of choice corresponding to the family of Markov times
τk,a = σk−1+̇μa (0 < a < c, k ≥ 1, σ0 = 0). It means we test any such a time on a role
of a solution of (8.5). There exists the first solution, μa1 , corresponding to the equation

r2 −B(a) = Hμa(a).

We have Hτ1,0(0) ≡ Hμ0(0) = 0, and for all k ≥ 2

Hτk,0(0) = Hσk−1(0) = Hσk−2(0)−

−E
∫ σk−1

σk−2

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt))B(Xt) dt ≤ Hτk−1,0(0).

On the other hand
Hτk,c−0(c) ≡ Hσk+1(c) = Hσk

(c)+

+E
∫ σk+1

σk

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt))(B(c) −B(Xt)) dt ≥ Hτk−1,c−0(c).

Since every function Hτk,a
(a) is continuous for all k ≥ 2 there exists a point of inter-

section, ak ∈ (0, c), of curves determined by the left and right hand sides of (8.5), if
τa ≡ τk,a.

Since the condition of a local minimum (8.2) can be rewritten as B(a) = Lτa and
B(a) is an increasing function we conclude that Lτk,ak

increases if the sequence (ak)
increases, and it decreases if (ak) decreases. In order to prove the alternative of choice
we can do it for the sequence (ak).

We denote Hτ (a) ≡ B(a)Sτ − Tτ , where

Sτ = E

∫ τ

0

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt)) dt,

Tτ = E

∫ τ

0

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt))B(Xt) dt.

Using the regeneration property we have

Sσk
= Sσk−1 + E

∫ σk

σk−1

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt)) dt = Sσk−1+

+E exp
(

−
∫ σk−1

0

h(Xs) ds
) ∫ σk

σk−1

exp

(

−
∫ t

σk−1

h(Xs) ds

)

(1 +Δmh(Xt)) dt =

= Sσk−1 + Uσk−1 E

∫ σ1

0

exp
(

−
∫ t

0

h(Xs) ds
)

(1 +Δmh(Xt)) dt =

= Sσk−1 + Uσk−1Sσ1 .

Since Uσk
= fk, where

f ≡ E exp
(

−
∫ σ1

0

h(Xs) ds
)

,
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we obtain

Sσk
= Sσ1(1 + f + f2 + · · · + fk−1) = Sσ1

1 − fk

1 − f
.

Similarly, we obtain

Tσk
= Tσ1

1 − fk

1 − f
.

Hence,

Hσk
(a) = (B(a)Sσ1 − Tσ1)

1 − fk

1 − f
.

Further, for k ≥ 2 we have

Hτk,a
(a) = Hσk−1(a) + fk−1Hμa(a) = (B(a)Sσ1 − Tσ1)

1 − fk−1

1 − f
+ fk−1Hμa(a).

Hence, we can rewrite (8.5) in terms of Hμa(a)

r2 −m2B(a) = (B(a)Sσ1 − Tσ1)
1 − fk−1

1 − f
+ fk−1Hμa(a),

which is equivalent to
(

r2 + Tσ1

1 − fk−1

1 − f

)

f1−k −B(a)
(

m2 + Sσ1

1 − fk−1

1 − f

)

f1−k = Hμa(a).

The left hand side of this equation is a linear function with respect to B(a) : y =
αk −B(a)βk, where

αk =
(

r2 + Tσ1

1 − fk−1

1 − f

)

f1−k,

βk =
(

m2 + Sσ1

1 − fk−1

1 − f

)

f1−k.

In order to know how the solution of this equation, ak, is situated with respect to a1,
we find a crossing point of this strait line with the line y = r2 −B(a)m2. We have

(

r2 + Tσ1

1 − fk−1

1 − f

)

f1−k − x

(

m2 + Sσ1

1 − fk−1

1 − f

)

f1−k = r2 − xm2,

hence
x =

r2 + Tσ1/(1 − f)
m2 + Sσ1/(1 − f)

.

The essence of this relation is that its right hand side does not depend on k. It is
easy to show that αk < αk+1 (k ≥ 1). Hence, the sequence B(ak) of crossing points of
lines y = αk − βkB(a) with the graph of the function Hμa(a) either increases (when
x > a1), or decreases (when x < a1) (see Fig. 8.1). In the first case, μa1 is the best
Markov time (the point of the global minimum of the loss function). In the second case,
the optimal time does not exist, since every next local minimum is less then preceding
one. It proves the alternative of choice. Thus, we have proved the theorem.
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Theorem 1 Let the server system be a twice regenerative system, where the first order
regenerative process corresponds to a sequence of i.i.d. work-repair cycles described
above. Let Xt be a regenerative process of the second order with points of regeneration
(σn), such that Xt increases continuously from zero up to c > 0 on every interval
[σn−1, σn), and let the process be right continuous at each point σn. Let the loss function
of the system be

Lτ =
−Wτ + r1 − (r1 − r2)Uτ
Vτ +m1 − (m1 −m2)Uτ

,

where

Uτ = E exp
(

−
∫ τ

0

h(Xs) ds
)

,

Vτ = E

∫ τ

0

exp
(

−
∫ t

0

h(Xs) ds
)

dt,

Wτ = E

∫ τ

0

A(Xt) exp
(

−
∫ t

0

h(Xs) ds
)

dt.

Let the inequality

h′(x)
1 +Δmh(x)

≥ A′(x)
Δr +ΔmA(x)

+
r2(1 +Δmh(x)

cm2 (Δr +ΔmA(x))
(0 < x < c).

be fulfilled. Then the alternative of choice (Definition 1) is fair.

Figure 8.1 illustrates two variants of the solution, A and B, implying two different
decisions for choice a time of switching the system to the prophylaxis repair. The lines
going through the point A one can interpret as four positions of a lever of the first
kind relative to four crossing points with the curve Hμa(a). The lines going through
the point B one can interpret as four positions of a lever of the second kind relative
to four crossing points with this curve. It is clear that x-coordinates of these crossing
points go in opposite directions from the point a1 when the ends of these levers go up
along the y-axis.

Figure 8.1. Proof of the alternative
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8.3.1 Decision Under the Alternative

In order to compare x and a1 (i.e. to choose a variant of the lever), one has to use a
more complete information on the process Xt. Let (σn) be a sequence of jump times
of a homogeneous Poisson process with the intensity λ, and let Xt be piece-wise linear
function: i.e. Xt = c (t− σn−1)/(σn − σn−1) if σn−1 ≤ t < σn. We assume A ≡ 0, and
h(x) = x (0 ≤ x ≤ c). In this case, we can use more simple form of the optimality
equation, and the corresponding trajectory of choice. One can derive from (8.3) the
equation

r2 − a(r1m2 − r2m1)
Δr

= ˜Hτa(a) ≡ aVτa + Uτa − 1. (8.7)

In this case, the function ˜H can be evaluated analytically. We obtain

˜Hμa (a) =
a√
2λc

arctan
a√
2λc

.

The time of the first local minimum is the first crossing time of the level a1, which is
found from the equation

a√
2λ c

arctan
a√
2λ c

= α+ βa, (8.8)

where

α =
r2
Δr

, β =
−r1m2 + r2m1

Δr
.

In order to decide if this is a time of the global minimum one has to check fulfillment
at least one from the following three inequalities

(1) a1 < a2,
(2) a1 < x, where x is the x-coordinate of the crossing point of left sides of all the

corresponding equations,
(3) α+ βa1 <

x√
2λ c

arctan
x√
2λ c

,

which are equivalent. For arbitrary parameters α and β an analytical solution of (8.8)
does not exist. Putting c = 1 and β = 0 and using computer we obtain partition of the
space of parameters (λ, α) on three regions:

(1) inadmissible combination of parameters,
(2) region A = {x < a1},
(3) region B = {x > a1}, see Fig. 8.2
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Figure 8.2. Regions of different prophylaxis policies
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Optimal Incomplete Maintenance for Systems

with Discrete Time-to-Failure Distribution
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Germany, waltraud.kahle@ovgu.de

Abstract: In this research, we are concerned with the statistical modeling of repairable
systems. We consider an incomplete maintenance model, that is, the impact of a main-
tenance action is not minimal (as bad as old) and not perfect (as good as new) but
lies between these boundary cases. Further, we assume that after a failure the system
is repaired minimally. Cost optimal maintenance policies for various cost functions are
considered.

Keywords and phrases: Incomplete repair, Optimal maintenance, Simulation of
failure-repair processes

9.1 Introduction

In many applications, the clock time is not the best scale in which to describe lifetimes.
As example, if a unit has a sequence of tasks to perform, then its lifetime is measured
by the number of tasks performed before its failure. In this paper, we study a failure-
repair process when the time to failure is discrete. First, we describe some discrete
distributions and introduce their failure rate and their cumulative hazard. Further, we
introduce the concept of failure rate optimal maintenance for discrete lifetime distribu-
tions, that is, a maintenance policy where the rate of occurrence of failures (ROCOF)
under preventive maintenance is constant. It is described how to simulate such failure-
repair processes and some examples for simulated data are given. In the last section,
the model with minimal repairs after a failure and block incomplete maintenance is
described.

9.2 Discrete Lifetime Distributions and Their Failure Rate

There are a number of possible for consideration discrete lifetime distributions. In this
paper, the Poisson distribution and the discrete Weibull distribution are considered.
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9.2.1 The Poisson Distribution

Let the lifetime T be shifted Poisson distributed, that is T = X + 1 where

P(X = t) =
λt

t!
e−λ , t = 0, 1, . . . . (9.1)

The failure rate for discrete distributions (and especially for the Poisson distribution)
is given by

h(t) =
P(T = t)
P(T ≥ t)

=
λt/t!

∑∞
k=t λ

k/k!
, t = 0, 1, . . . .

Since
∞
∑

k=t+1

λk

k!
=

∞
∑

k=t

λk+1

(k + 1)!
≤ λ

t+ 1

∞
∑

k=t

λk

k!
,

we get
λt/t!

∑∞
k=t λ

k/k!
≤ λt+1/(t+ 1)!

∑∞
k=t+1 λ

k/k!
,

that is, the Poisson distribution has an increasing failure rate. We use the shifted version
of this distribution, that is, the item is absolutely reliable at time 0 and the first failure
may appear at time t = 1.

9.2.2 The Discrete Weibull Distribution

There are different discrete Weibull distributions, as example introduced by Padgett,
Spurrier [PS85] or the Nakagawa–Osaki model [NO75]. In this paper, we use the
following model. Let X be Weibull distributed with density function

f(x) =
β

α
(
x

α
)β−1 exp(−(

t

α
)β), x ≥ 0 .

Now, for the discrete version we put the probability mass of the interval (t− 1, t] into
the point t, that is

P(T = t) =
∫ t

s=t−1

f(s)ds = exp(−(
t− 1
α

)β) − exp(−(
t

α
)β) , t = 1, 2, . . . . (9.2)

If β = 1, then we get the geometric distribution

P(T = t) = (exp(− 1
α

))t−1 − (exp(− 1
α

))t−1 · exp(− 1
α

) = pt−1(1 − p) .

Note that for discrete failure time distributions the failure rate is a probability
unlike for continuous distributions. Further, the cumulative hazard is

H(t) = − lnR(t) = − ln(1 − F (t)) �=
t

∑

i=1

h(t)

where F (t) and R(t) are distribution function and survival function, respectively. It is
convex if h(t) is increasing. For an other definition of failure rates for discrete distri-
butions we refer to Xie, Gaudoin, Bracquemond [XGB02] and the references given in
their paper.
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9.3 Kijima Type Repairs

Consider the impact of repairs. A system (machine) starts working with an initial
prescribed failure rate λ1(t) = λ(t). Let t1 denote the random time of the first sojourn.
At this time t1 the item will be repaired with the degree ξ1. When the system is
minimally repaired then the degree is equal to one, and if the repair makes the system
as good as new then this degree is zero. The virtual age of the system at the time
t1, following the repair, is v1 = ξ1t1, implying the age of the system is reduced by
maintenance actions. The distribution of the time until the next sojourn then has
failure intensity λ2(t) = λ(t − t1 + v1). Assume now that tk is the time of the kth

(k ≥ 1) sojourn and that ξk is the degree of repair at that time. We assume that
0 ≤ ξk ≤ 1, for k ≥ 1 (see [Kij89] and [KMS88]).
After repair the failure intensity during the (k + 1)th sojourn is determined by

λk+1(t) = λ(t− tk + vk) , tk ≤ t < tk+1, k ≥ 0,

where the virtual age vk is for Kijima’s Type II imperfect repair model

vk = ξk(vk−1 + (tk − tk−1)),

that is, the repair resets the intensity of failure proportional to the virtual age.
Kijima’s Type I imperfect repair model suggests that upon failure, the repair

undertaken could serve to reset the intensity only as far back as the virtual age at
the start of working after the last failure. That is:

vk = tk−1 + ξk(tk − tk−1).

The process defined by v(t, ξk , k = 1, 2, . . . ) = t− tk+ vk, tk ≤ t < tk+1, k ≥ 0 is called
the virtual age process (Last, Szekli [LS98]).

In Gasmi, Love, Kahle [GLK03], a generalized Kijima type model was considered,
where a major repair gives an additional impact. It was shown that the likelihood
function can be developed from the general likelihood function for observation of point
processes (Liptser and Shiryayev [LS78]). Further, the likelihood ratio statistic can be
used to find confidence estimates for the unknown parameters.

The numerical results for this data file are surprising: Under different assumptions
about the repair actions (renewals, Kijima type I or II, mixture of Kijima type repairs
and renewals in dependence on the time required for repair) a value for β was estimated
approximately to be 1, see [GLK03] and [KL03]. That is, the failure intensity is more
or less constant. But in this case the failure behavior does not depend on maintenance
actions.

The results suggest, that in practice the engineers make a good maintenance policy,
that is, they make repairs in connection with the state of the system. The idea is that
such a policy makes the apparent failure behavior of a system to be that of an expo-
nential distribution. This is consistent with our data. In Fig. 9.1, we see the cumulative
distribution function of the operating time between failures together with the fitted
CDF of an exponential distribution and the Q-Q plot (observed quantiles against the
quantiles of the exponential model). These plots suggest reasonable agreement with the
exponential model if we consider only the failure process and ignore all maintenance
events.
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Figure 9.1. Operating time between failures: CDF and exponential Q–Q plot

Definition 1. A maintenance policy is called failure rate optimal, if the state
dependent preventive maintenance actions lead to a constant ROCOF of the failure
process.

In the following, we assume that preventive maintenance actions are undertaken at
fixed times τ , 2τ , . . . . Failures between maintenances are removed by minimal repairs.
The maintenances, however, are not a renewals. After a maintenance, the virtual age
of the system is smaller than the real time, but not 0.

9.4 Optimal Maintenance as Time Scale Transformation

First, we consider failure rate optimal maintenances. Following an idea in Finkelstein
[Fin00] we assume that by repair actions, the time scale is transformed by a function
W (t). Let H0(t) be the baseline cumulative hazard function and let H1(t) = H0(W (t))
be the resulting hazard after a transformation of the time scale. For the Weibull
hazard

H0(t) = (t/α)β ,

and W (t) = t1/β we get

H1(t) = H0(t1/β) =
t

αβ
,

that is, the hazard function of an exponential distribution with parameter λ1 = 1/αβ .
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In practice, we have repair actions at discrete time points, which lead to the question
of the degrees of repair at these points. Let us consider two examples. In both examples
we assume that after a failure the system is repaired minimally. Additionally, mainte-
nance decisions were regularly carried out. We assume that maintenance actions served
to adjust the virtual age of the system in a Kijima type manner.

Example 1. Assume that the distances between maintenance actions are constant and
all repair actions follow the Kijima type I repair process. Let τ, 2τ, . . . be the time points
of maintenance actions. Then it is possible to find a discrete time transformation which
consists of different degrees of repair. Let the sequence of degrees be

ξk =
k1/β − (k − 1)1/β

τ1−1/β
.

Then the virtual age vn of the system at time tn = n · τ can be found to be

vn = τ
n

∑

k=1

ξk = τ
n

∑

k=1

k1/β − (k − 1)1/β

τ1−1/β
= (n · τ)1/β .

Example 2. Again we assume that the distances between maintenance actions are con-
stant, but now we consider the Kijima type II repair process. In this case, the appro-
priate sequence of degrees of repair is

ξk =
k1/β

(k − 1)1/β + τ1−1/β
.

In both cases, the sequence is decreasing, that is, with increasing time the repairs
must become better.

It should be noted that in case of time scale transformation it is not necessary to
make a difference between Kijima type I and II. In both examples, the virtual age at
maintenance points was reseted to those of the continuous time transformation as it is
shown in Fig. 9.2.

Figure 9.2. A discrete time transformation
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Figure 9.3. Weibull process without and with preventive maintenance actions

In Fig. 9.3, are shown the cumulative hazard functions for an Weibull process with-
out maintenance (solid line) and for maintenance actions every τ = 1, .5, .1 time units.
For this, a Weibull process with parameters α = 1 and β = 2 and 100 failures was
simulated. If the difference τ between maintenance actions is relatively small, then the
empirical cumulative hazard function of the process with preventive maintenance is
closed to that of a Poisson process. The dotted line shows the theoretical cumulative
hazard function of an homogeneous Poisson process.

There are many other possibilities for finding failure rate optimal maintenance
policies. One other very simple policy is to consider constant degrees of repair. It is
easy to see that in this case the repair actions must take place more often with
increasing time.

9.5 Simulation of Failure–Repair Processes

9.5.1 Simulation of Weibull Processes

In this section, we describe the simulation of a failure process when failures are removed
by minimal repairs and the transformation of such failure processes by preventive main-
tenance actions. First, we want simulate a so called Weibull process, that is, a non
homogeneous Poisson process with a power law mean function

H(t) = (
t

α
)β . (9.3)

For this, let be given a sequence of iid rectangular distributed random numbers
z1, z2, . . . , zn. We make use of the connection between distribution function and
cumulative hazard function

F (t) = exp(−H(t)) .
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Now, the first failure time t1 can be found to be

z1 := P(T > t1) = exp(−(
t1
α

)β), and therefore

t1 = α(− log(z1))1/β .

The time t2 of the next failure has the conditional distribution

P(T > t2|T > t1) =
P(T > t2)
P(T > t1)

Therefore, we can simulate t2 by

z2 := P(T > t2|T > t1) =
exp(−(

t2
α

)β)

exp(−(
t1
α

)β)
and it follows that

t2 = α(− log(z2) + (
t1
α

)β)1/β .

Following this procedure we get for the kth failure time

tk = α(− log(zk) + (
tk−1

α
)β)1/β . (9.4)

Remark: It is interesting, that we can get a Weibull process also by a simple time
transformation. Again, let be given a sequence of iid rectangular distributed random
numbers z1, z2, . . . , zn. Then

yk = − log(zk) and sk =
k

∑

i=1

yk

are a sequence of iid standard exponential distributed random numbers and the failure
times of an homogeneous Poisson process, respectively. The transformation

tk = α · s1/βk

leads to the described Weibull process.

9.5.2 Transformation by Maintenance Actions

Now, we assume that at some time point, say x = k · τ we make a preventive
maintenance. Let tk−1 be the last failure time before x and vk−1 the virtual age at
tk−1. Then the next failure time tk was simulated by the equation

H(tk) −H(vk−1) = − log(zk) .

Now, up to time x some part of this hazard is already used. Further, let be vx the new
virtual age after maintenance. Then the transformed failure time t∗k is found to be

H(tk) −H(vk−1) = H(x) −H(vk−1) +H(t∗k) −H(vx) .

For discrete lifetime distributions the simulation is the same. The only difference is
that we must round the times.
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9.6 Cost Optimal Maintenance

Now we consider optimal maintenance policies with respect to costs. Again, each failure
is removed by an minimal repair and at fixed times τ , 2τ , . . . preventive maintenance
actions are undertaken. In classical policies, the maintenance renews the system, then
we have a block replacement. We do not make the assumption that after maintenance
the item is as good as new. Every maintenance action leads to an (constant) age v. In
Nakagawa [Nak02] an incomplete maintenance model was considered under the follow-
ing assumptions:

• The age after the k-th pm falls to akt
• N − 1 pm’s at xi, i = 1, . . . , N − 1, renewal at xN
• Minimal repairs at failures
• Each incomplete repair has the same costs

The problem was to find the times of pm’s xi, i = 1, . . . , and the number N of preventive
maintenances with minimal costs per time.

We think that the assumption each incomplete repair has the same costs is very
restrictive and want define a cost function which describes the costs of repair actions
according to the degree of repair. Let cF and cM be the cost of a failure and the cost of
a maintenance, respectively. We do not make the assumption that after maintenance
the item is as good as new. Every maintenance action leads to an age v. Then the costs
per time unit are given by

C(v, τ) =
cF · (H(τ + v) −H(v)) + cM (v, τ)

τ
. (9.5)

This function should be minimized with respect to v and τ .

9.6.1 Costs Proportional to the Removed Hazard

The first idea is that the costs are proportional to the cumulative hazard which is
removed be the maintenance action, that is

cM(v, τ) ∼ H(τ + v) −H(v) .

In this case, the optimization problem has a trivial solution:

1. Since for distributions with increasing failure rates the cumulative hazard H(t) is
convex, C(v, τ) is increasing in v. Consequently, the pm should be a renewal.

2. If the pm renews the system, then the essential part of (9.5) is

H(τ)
τ

,

which is increasing in τ . For continuous lifetimes the problem doesn’t have a
solution. For discrete lifetimes the optimal policy is a renewal at each time.

9.6.2 Costs Proportional to the Degree of Repair

The next function, which can be good interpreted, is

cR ·
(

τ

τ + v

)δ

,
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where cR are the costs of a renewal. This function has the following properties:

• If the system is renewed (v = 0) then we get cM .
• If τ = 0 there are no costs.
• If δ < 1 then the costs of a relatively small repair are closed to that of a renewal, if

δ > 1 then the costs of a large repair are relatively small.

Note that τ/(τ + v) is 1/ξ, where ξ is the degree of repair. Then the costs per time
unit are given by

C(v, τ) =
cF · (H(τ + v) −H(v)) + cM ·

(

τ
τ+v

)δ

τ
, . (9.6)

Again, C(v, τ) is increasing in v, because of the convexity of H(t). And for v = 0 we
get the classical problem of block replacement.

9.6.3 Costs Proportional to the Impact of Repair

Last, we consider a very simple cost function

cM(v, τ) = cI
1
vδ

,

that is, for a perfect repair the costs tend to infinity. In this case, we can find
a unique optimum for both,v and τ . Figure 9.4 shows the contour lines for Weibull
distributed lifetimes with shape β = 4, scaleα = 20, and cF /cI = 2. The optimal policy
is v = 3.1, τ = 9.2, and the resulting minimal costs per time unit are 0.093.
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Figure 9.4. Contour lines of the cost function
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9.7 Conclusion

We have considered failure rate optimal maintenance under the assumption that the
maintenance action has an impact between the two extreme cases minimal repair and
renewal. For finding cost optimal maintenance it was necessary to define a cost function
which describes the costs of repair actions according to the degree of repair. There are
many other possible cost functions, which can be considered. Further we can consider
models where the repair after a failure is not minimal, but imperfect, too.
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Abstract: This paper introduces a simple index that helps to assess the degree of
aging or rejuvenation of repairable systems and non-repairable systems (components).
The index ranges from −1 to 1. It is negative for the class of decreasing failure rate
distributions and point processes with decreasing ROCOF and is positive for the in-
creasing failure rate distributions and point processes with increasing ROCOF. The
introduced index is distribution free.

Keywords and phrases: Cumulative hazard function, ROCOF, Cumulative intensity
function, Aging, Rejuvenation, Improving, Deteriorating, Stochastic point process

Acronyms

CDF Cumulative distribution function
CFR Constant failure rate
CIF Cumulative intensity function
DFR Decreasing failure rate
GPR G-renewal process
HPP Homogeneous Poison process
IFR Increasing failure rate
NHPP Non-homogeneous Poison process PP point process
ROCOF Rate of occurrence of failures
RP Renewal process
TTF Time to failure

10.1 Introduction

In reliability and risk analysis, the terms aging and rejuvenation are used for describing
reliability behavior of repairable as well as non-repairable systems (components).
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The repairable systems reliability is modeled by various point processes (PP), such as
the homogeneous Poisson process (HPP), non-homogeneous Poisson process (NHPP),
renewal process (RP), G-renewal process (GRP), to name a few. Among these PP,
some special classes are introduced in order to model the so-called improving and
deteriorating systems. An improving (deteriorating) system is defined as the system
with decreasing (increasing) rate of occurrence of failures (ROCOF). It might be said
that among the point processes used as models for repairable systems, the HPP (having
a constant ROCOF) is a basic one.

Similarly, among the distributions used as models of time to failure (TTF) of
non-repairable systems (components), the exponential distribution, which is the only
distribution having a constant failure rate, plays a fundamental role. This distribution
might be considered as the limiting between the class of increasing failure rate (IFR)
distributions and the class of decreasing failure rate (DFR) distributions. The distri-
bution is closely related to the above mentioned HPP. Indeed, in the framework of the
HPP model, the distribution of the intervals between successive events observed during
a time interval [0, t] is the exponential one with parameter λ equal to parameter λ of
the respective Poisson distribution with mean λt.

In many practical situations, it is important to make an assessment how far a
given point process deviates from the HPP, which can be considered as a simple and,
therefore, strong competing model. Note that if the HPP turns out to be an adequate
model, the respective system is considered as non-aging, so that it does not need any
preventive maintenance (as opposed to the case, when a repairable system reveals
aging).

The statistical tools helping to find out if the HPP is an appropriate model are
mainly limited to statistical hypothesis testing, in which the null hypothesis is

H0 : “The times between successive events (interarrival times) are independent and
identically exponentially distributed,” and the alternative hypothesis is

H1 : “The system is either aging or improving.”

The most popular hypothesis testing procedures for the considered type of problems
are the Laplace test [RH04] and the so-called Military Handbook test [AMSAA81]. It
should be noted that these procedures do not provide a simple measure quantitatively
indicating how different the ROCOF of a given point process is, compared to the
respective constant ROCOF of the competing HPP model.

Analogously, for the non-repairable systems, some hypothesis testing procedures
can be applied to help to determine if the exponential distribution is an appropriate
TTF model. In such situations, in principle, any goodness-of-fit test procedure can be
used. Some of these tests for the null-hypothesis: ”the times to failure are independent
and identically exponentially distributed” appear to have good power against the IFR
or DFR alternatives [Law03].

Among such goodness-of-fit tests, one can mention the G-test, which is based on
the so-called Gini statistic [GG78]. In turn, the Gini statistics originates from the so-
called Gini coefficient used in macroeconomics for comparing an income distribution
of a given country with the uniform distribution covering the same income interval.
The Gini coefficient is used as a measure of income inequality [Sen97]. The coefficient
takes on the values between 0 and 1. The closer the coefficient value to zero, the closer
the distribution of interest is to the uniform one. The interested reader could find the
index values sorted by countries in [LCIE07] that includes the UN and CIA data.
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In the following sections, we first introduce a Gini-type coefficient for the repairable
systems as in The coefficient takes on the values between −1 and 1. The closer it is
to zero, the closer the PP of interest is to the HPP. A positive (negative) value of this
coefficient will indicate whether a given repairable system is deteriorating (improving).
Then, we introduce a similar coefficient for non-repairable systems. Again, the coef-
ficient takes on the values between −1 and 1. The closer the coefficient’s value is to
zero, the closer the distribution of interest is to the exponential distribution. A positive
(negative) value of the coefficient indicates an IFR (DFR) failure time distribution. For
the sake of simplicity, in the following, this Gini-type coefficient will be referred to as
GT coefficient and denoted as C.

10.2 GT Coefficient for Repairable Systems

10.2.1 Basic Definitions

A point process (PP) can be informally defined as a mathematical model for highly
localized events distributed randomly in time. The major random variable of interest
related to such processes is the number of events, N(t), observed in time interval [0, t].
Using the nondecreasing integer-valued function N(t), the point process {N(t), t ≥ 0}
is introduced as the process satisfying the following conditions:

1. N(t) ≥ 0
2. N(0) = 0
3. If t2 > t1, then N(t2) ≥ N(t1)
4. If t2 > t1, then [N(t2) − N(t1)] is the number of events occurred in the interval

(t1, t2]

The mean value E[N(t)] of the number of events N(t) observed in time interval
[0, t] is called cumulative intensity function (CIF), mean cumulative function (MCF),
or renewal function. In the following, term cumulative intensity function is used. The
CIF is usually denoted by Λ(t):

Λ(t) = E[N(t)].

Another important characteristic of point processes is the rate of occurrence of
events. In reliability context, the events are failures, and the respective rate of occur-
rence is abbreviated to ROCOF. The ROCOF is defined as the derivative of CIF with
respect to time, i.e.,

λ(t) =
dΛ(t)

dt
.

When an event is defined as a failure, the system modeled by a point process with an
increasing ROCOF is called aging (sad, unhappy, or deteriorating) system. Analogously,
the system modeled by a point process with a decreasing ROCOF is called improving
(happy or rejuvenating) system.

The distribution of time to the first event (failure) of a point process is called the
underlying distribution. For some point processes, this distribution coincides with the
distribution of time between successive events; for others it does not.
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Figure 10.1. Graphical interpretation of GT coefficient for a point process with an increasing
ROCOF

10.2.2 GT Coefficient

Consider a PP having an integrable over [0, T ] cumulative intensity function, Λ(t). It
is assumed that the respective ROCOF exists, and it is increasing function over the
same interval [0, T ], so that Λ(t) is concave upward, as illustrated by Fig. 10.1. Further
consider the HPP with CIF ΛHPP(t) = λt that coincides with Λ(t) at t = T , i.e.,
ΛHPP(T ) = Λ(T ), – see Fig. 10.1.

Then, for a given time interval [0, T ] the GT coefficient is defined as

C(T ) = 1 −

T
∫

0

Λ(t)dt

0.5TΛ(T )
= 1 −

2
T
∫

0

Λ(t)dt

TΛ(T )
. (10.1)

The smaller the absolute value of the GT coefficient, the closer the considered PP
is to the HPP; clearly, for the HPP, C(T ) = 0. GT coefficient satisfies the following
inequality: −1 < C(T ) < 1. It is obvious that for a PP with an increasing ROCOF, the
GT coefficient is positive and for a PP with a decreasing ROCOF, the coefficient is neg-
ative. One can also show that the absolute value of GT coefficient C(T ) is proportional
to the mean distance between the Λ(t) curve and the CIF of the HPP.

For the most popular NHPP model – the power law model with the underlying
Weibull CDF – the GT coefficient is expressed in a closed form:

C(T ) = 1 − 2
β + 1

, (10.2)

where β is the shape parameter of the underlying Weibull distribution.
Some examples of applying the GT coefficient to other PP commonly used in reli-

ability and risk analysis are given in Table 10.1.
Repair effectiveness factor in Table 10.1 refers to the degree of restoration upon the

failure of a repairable system; see [KS86], [KK98]. This factor equals zero for an RP:
one, for an NHPP and is greater-or-equal-to zero, for a GRP (of which the RP and the
NHPP are the particular cases).
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Table 10.1. GT coefficients of some PP over time interval [0, 2]. Weibull with scale parameter
α = 1 is used as the underlying distribution

Stochastic Shape parameter Repair GT
point of underlying effectiveness coefficient

process Weibull distribution factor

HPP 1 N/A 0

NHPP 1.1 1 0.05

NHPP 2 1 0.33

NHPP 3 1 0.50

RP 2 0 0.82

GRP 2 0.5 0.21

Note: the GT coefficient for RP and GRP was obtained using numerical techniques

10.3 GT Coefficient for Non-repairable Systems (Components)

Consider a non-repairable system (component) whose TTF distribution belongs to the
class of the IFR distributions. Denote the failure rate or the hazard function associated
with this distribution by h(t). The respective cumulative hazard function is then

H(t) =

t
∫

0

h(τ)dτ,

and is concave upward – see Fig. 10.2.
Consider time interval [0, T ]. The cumulative hazard function at T is H(T ), the

respective CDF is F (T ) and the reliability function is R(T ). Now, introduce heff , as
the failure rate of the exponential distribution with the CDF equal to the CDF of
interest at the time t = T , i.e.,

heff(T ) = − ln(1 − F (T ))
T

.

In other words, the introduced exponential distribution with parameter heff , at t = T ,
has the same value of the cumulative hazard function as the IFR distribution of interest,
see Fig. 10.2.

The GT coefficient, C(T ), is then introduced as

C(T ) = 1 −

T
∫

0

H(t)dt

0.5Theff(T )T
= 1 −

2
T
∫

0

H(t)dt

TH(T )
= 1 −

2
t
∫

0

ln(R(t))dt

T ln(R(T ))
. (10.3)

In terms of Fig. 10.2, C(T ), is defined as one minus the ratio of areas A and A+B.
It is easy to check that the above expression also holds for the decreasing failure rate
(DFR) distributions, for which H(t) is concave downward.

It is clear that C(T ) satisfies the following inequality: −1 < C(T ) < 1. The coeffi-
cient is positive for the IFR distributions, negative – for the DFR distributions and is
equal to zero for the constant failure rate (CFR), i.e., exponential distribution. Note
that the suggested coefficient is, in a sense, distribution-free.
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Figure 10.2. Graphical interpretation of the GT coefficient for an IFR distribution

Table 10.2. GT coefficient for Weibull Distribution as Function of Shape Parameter β

Shape parameter β GT coefficient TTF distribution

5 0.6(6) IFR

4 0.6 IFR

3 0.5 IFR

2 0.3(3) IFR

1 0 CFR

0.5 −0.3(3) DFR

0.3 −0.5 DFR
0.25 −0.6 DFR

0.2 −0.6(6) DFR

10.3.1 GT Coefficient for the Weibull Distribution

For some TTF distributions, the GT coefficient can be expressed in a closed form.
For example, in the most important (in the reliability context) case of the Weibull
distribution with the scale parameter α and the shape parameter β, and the CDF of
the form:

F (t) = 1 − exp

(

−
(

t

α

)β
)

,

the GT coefficient can be found as

C = 1 − 2
β + 1

. (10.4)

It’s worth noting that in this case, the GT coefficient depends neither on the scale
parameter α, nor on time interval T . Also note that (10.4) is exactly the same as (10.2).
This is because NHPP’s CIF is formally equal to the cumulative hazard function of the
underlying failure time distribution; see, e.g., [Kri07].

Interestingly, C(β) = −C
(

1
β

)

, which is illustrated by Table 10.2.
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Table 10.3. GT Coefficient for Gamma Distribution with λ = 1 and T = 1

Shape parameter k GT coefficient TTF distribution

5 0.623 IFR

4 0.543 IFR

3 0.428 IFR

2 0.258 IFR

1 0.000 CFR

0.5 −0.196 DFR

0.3 −0.285 DFR

0.25 −0.338 DFR

0.2 −0.375 DFR

10.3.2 GT Coefficient for the Gamma Distribution

Although not as popular as the Weibull distribution, the gamma distribution still has
many important reliability applications. For example, it is used to model a standby
system consisting of k identical components with exponentially distributed times to
failure; the gamma distribution is also the conjugate prior distribution in Bayesian
estimation of the exponential distribution.

Let’s consider the gamma distribution with the CDF given by

F (t) =
1

Γ (k)

λt
∫

0

τk−1e−τdτ = I(k, λt),

where k > 0 is the shape parameter, 1
λ
> 0 is the scale parameter, and I(k, x) =

x
∫

0

yk−1e−ydy is the incomplete gamma function. Similar to the Weibull distribution,

the gamma distribution has the IFR, if the shape parameter k > 1; DFR, if k < 1, and
CFR, if k = 1.

Using definition (10.3), the GT coefficient for the gamma distribution can be
written as

C(T ) = 1 −
2
T
∫

0

ln(1 − I(k, λτ))dτ

T ln(1 − I(k, λT ))
.

Table 10.3 displays C(T ) for the gamma distribution with λ = 1 evaluated at T = 1.

10.4 Conclusions

We have introduced a parsimonious index that helps to assess the degree of aging or
rejuvenation of a (non)repairable system. The index ranges from −1 to 1. It is negative
for the class of decreasing failure rate distributions and point processes with decreasing
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ROCOF and is positive for the increasing failure rate distributions and point processes
with increasing ROCOF. The index can also be found useful in hypothesis testing for
exponentiality of the TTF or failure inter-arrival times.

Acknowledgments. We would like to acknowledge Professor Igor Ushakov for the
valuable comments about the original version of the paper [KK08].
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Abstract: This paper discusses a type of redundancy that is typical in a multi-state
system. It considers two interconnected multi-state systems where one multi-state sys-
tem can satisfy its own stochastic demand and also can provide abundant resource
(performance) to another system in order to improve the assisted system reliability.
The paper also considers the financial issue for such a system where satisfied de-
mand is associated with financial benefit and unsatisfied demand is associated with
penalty. Traditional methods are usually not effective enough for such multi-state sys-
tems because of the “dimensional curse” problem. This paper presents the method for
evaluation of reliability and corresponding financial issue for multi-state system with
such kind of redundancy. The proposed method is based on the special type of univer-
sal generating function – universal generating function associated with discrete-state
continuous-time stochastic process. The numerical example is presented to illustrate
the proposed method.

Keywords and phrases: Multi-state system, Redundancy, Markov stochastic pro-
cess, Reliability, Universal generating function associated with stochastic process

11.1 Introduction

Redundancy problem in a multi-state system (MSS) is much more complex than
that in a binary-state system. Some redundancy problems for MSSs were investi-
gated in [LL03, KA03], where typical parallel connections of multi-state components,
k-out-of-n multi-state system and corresponding extensions were discussed and sum-
marized. Recent research has focused on the reliability evaluation and optimization of
MSS [YEH06, HZF03, LLBE98, TZH08]. However, for the MSS there is an important
type of redundancy that has not existed for binary-state systems and has also not been
investigated till now in the framework of MSS reliability analysis.

For MSS it is typical that after satisfying its own demand one MSS can provide its
abundant resource (performance) to another MSS directly or through the interconnec-
tion system (that can also be multi-state). In this case, the first MSS can be called as
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the reserve MSS and the second one as the main MSS. In general, case demand for the
reserve and the main MSS can also be described by two different independent stochas-
tic processes. Typical examples of such kinds of MSS include power generating systems
where one power station can assist another power station to satisfy demands, oil and
gas production and transportation systems, computing systems with distributed com-
putation resources, etc. Such multi-state structure with redundancy may be treated as
MSSs with mutual aid or structure with interconnected MSSs. This type of redundancy
is common enough for MSS. However, by using existing methods it is very difficult to
build the reliability model for a complex repairable MSS considering redundancy and
to solve it for obtaining corresponding reliability indices.

In practice, each multi-state component in a MSS can have different numbers of
performance levels. This number may be relatively large – up to ten and more [GOL06].
Even for relatively small MSSs consisting of 3-5 repairable components the number of
the entire system states will be significantly great (ten thousands or more). In gen-
eral, for a MSS consisting of n repairable components, where each component i has
ki different capacity levels, there are K =

∏n
i=1 ki system states. This number may

be very large and increase dramatically with the increased number of components. For
interconnected MSSs the problem can be more serious. For such MSS, enormous efforts
have to be performed to develop a stochastic process model and solve it (in order to
obtain corresponding reliability indices) by using traditional straightforward methods.
However, it is difficult to develop the stochastic process model for such a complex inter-
connected MSS. Determining all system states and transitions correctly is an arduous
job. Moreover, it can challenge the available computing resources. If the random pro-
cess is identified as a Markov process, the system state probabilities can be obtained
by solving K =

∏n
i=1 ki differential equations. Therefore, in practice only long-term

reliability analysis is performed to assess reliability of such systems, which is based
on steady-state probabilities. In such case instead of differential equations only alge-
braic equations will be solved. Therefore short-term transient dynamic behavior of a
MSS is out of consideration. In general case, such an approach will lead to decreased
accuracy.

In order to use multi-state models for all components and to avoid decreased
accuracy for reliability analysis, a special technique is proposed in this paper. The
technique is based on the special type of Universal Generating Function (UGF) – UGF
associated with discrete-state continuous-time stochastic processes. The UGF was pri-
marily introduced in [USH86] in order to reduce the MSS’s computational complexity
and it was associated with random variable (not with stochastic process!). The mathe-
matical foundations of the ordinary UGF associated with random variable one can find
in [GU95, USH00]. An updated comprehensive description of the ordinary UGF tech-
nique with many technical applications can be found in [LL03, LEV05]. The method
suggested in the paper for reliability assessment of interconnected repairable MSSs is
based on UGF extension – UGF associated with stochastic process. This type of UGF
was introduced in [LIS04], corresponding definitions one can also find in [LFD10]. The
proposed UGF is used to evaluate the financial issue for such a system where satisfied
demand is associated with financial benefit and unsatisfied demand is associated with
penalty.
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11.2 Problem Formulation

According to the generic MSS model any system component i in MSS can have ki
different states corresponding to the performance levels, represented by the set

gi = {gi1, . . . , giki}.
The current state of the component i and the corresponding value of the component
performance level Gi(t) at any instant t, are random variables. Gi(t) takes values from
gi: Gi(t) ∈ gi. Therefore, for the time interval [0, T ], where T is the MSS operation
period, the performance level of component i is defined as a discrete-state continuous-
time stochastic process. In the paper, only Markov processes will be considered, where
the process behavior at a future instant only depend on the current state. The general
Markov model of a multi-state component was introduced in [LL03], which considered
minor and major failures/repairs of components.

Minor failures are failures causing component transition from state j to the adjacent
state j − 1. In other words, minor failure causes minimal degradation of component
performance. The major failure is a failure that causes the components transition from
state j to state l : l < j − 1. The minor repair returns an component from state l to
state l + 1 while the major repair returns components transition from state l to state
j, where j < l + 1. In this case for each component, its performance level Gi(t) is a
discrete-state continuous-time Markov stochastic process.

General redundancy scheme for a MSS is presented in Fig. 11.1. Main multi-state
system MSSm should satisfy its demand that is presented as a discrete-state continuous
time Markov stochastic process Wm(t). MSSm consists of m multi-state components.
Performance level of each component i in MSSm at any instant t > 0 is defined by
its output Markov stochastic process Gmi(t), i = 1, . . . ,m. All m components in the
main multi-state system are composed in the technical structure according to the given
structure function ψm, which defines the main system output stochastic performance
Gm(t) over stochastic processes of the system components:

Gm(t) = ψm{Gm1(t), . . . , Gmm(t)}.
Analogously, the reserve multi-state system MSSr consists of r multi-state com-

ponents arranged in the technical structure according its structure function ψr, which
defines MSSr output stochastic performance Gr(t) based on output stochastic processes
Gri(t), i = 1, . . . , r of its components:

Gr(t) = ψr{Gr1(t), . . . , Grr(t)}.
Reserve multi-state system MSSr should also satisfy its own demand that can be

presented as a stochastic process Wr(t). If the output performance Gr(t) > Wr(t), the
abundant performance Gr(t) −Wr(t) can be delivered to the main multi-state system
MSSm through the connecting system. In this case the stochastic process Gcinp(t) that
represents an input of the connecting MSSc can be defined by the following structure
function ψcinp : Gcinp(t) = ψcinp{Gr(t)−Wr(t), 0} = max{Gr(t)−Wr(t), 0}. Structure
function ψcinp defines the reserve system obligations concerning assistance to the main
system.
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Figure 11.1. General redundancy scheme for the MSS

If the processGcinp(t) is defined by the above expression, it means that reserve MSSr
will only send its abundant performance that remains after satisfying its own demand
to the input of connecting MSSc. Generally speaking stochastic process Gcinp(t) and
function ψcinp can be defined by different ways. It will depend on the reserve system
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obligation agreement. For example, if, according to the agreement, even when Gr(t) <
Wr(t) it should be obligatory to send the specified performance gs from the reserve
system MSSr to the input of connecting system MSSc, then we have the following:

Gcinp(t) = ψcinp{Gr(t) −Wr(t), gs} = max{Gr(t) −Wr(t), gs}.

The expression indicates that the reserve system according to its obligation agree-
ment should send specified performance gs to the connecting system even in the case
when its own demand is not satisfied. When its demand is satisfied, the reserve system
should send its abundant performance to the connecting system.

The connecting system can also be a multi-state system, which is designated as a
MSSc. It consists of c multi-state components, which are composed in the technical
structure with the given structure function ψc:

Gc(t) = ψc{Gc1(t), . . . , Gcr(t)}.

In general case, such redundancy can be reversible. In other words, main MSSm can
also be used as the redundant system in order to support the MSSr.

The problem is to evaluate reliability indices for the main MSSm that characterize
the degree of satisfying demand Wm(t), such as availability, expected instantaneous
performance deficiency, expected accumulated performance deficiency, etc.

11.3 Model Descriptions

11.3.1 Main Definitions

The suggested method is based on special type of UGF–UGF associated with discrete-
state continuous-time stochastic process. Here, we remind the following definitions
[LFD10].

Definition 1. Let individual z-transforms

uXj (z) =
kj
∑

i=1

pjiz
xji , j = 1, 2, . . . , n

represent probability mass functions Pr{Xj = xji} = pji, j = 1, 2, . . . , n; i = 1, 2, . . . , kj
of n independent discrete random variables Xj. Universal Generating Operator (UGO)
or composition operator Ωf which produces z-transform for the random variable Y =
f(X1, X2, . . . , Xn) is defined by the following

Ωf{uX1(z), uX2(z), . . . , uXn(z)}

=
k1
∑

j1=1

k2
∑

j2=1

. . .

kn
∑

jn=1

(p1j1p2j2 . . . pnjn)zf(x1j1 ,x2j2 ,...,xnjn).
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Definition 2. Let two vectors {g1, g2, . . . , gK} and {p1 (ti) , p2 (ti) , . . . , pK (ti)}
represent at any time t> 0 states’ performance levels and states’ probability
distribution respectively for discrete-state continuous-time stochastic process G (t) ∈
{g1, g2, . . . , gK}. z-transform

u(z, t) = p1(t)zg1 + p2(t)zg2 + · · · + pK(t)zgK

is called as z-transform associated with stochastic process G(t).

Definition 3. If for n z-transforms uj(z, t) associated with independent stochastic
processes Gj(t), j = 1, 2, . . . , n, Universal Generating Operator (UGO) Ωf is
defined, which produces resulting z-transform for the random variable G(t) =
f(G1(t), G2(t), . . . , Gn(t)) at any time instant t > 0, then these z-transforms are
called as universal generating functions associated with corresponding discrete-states
continuous-time stochastic processes Gj(t).

11.3.2 Model for Multi-State Component

In this subsection, when dealing with a single multi-state component, we will omit the
index i for the designation of a set of the component’s performance levels. This set is
denoted as g = {g1, . . . , gk}. It is also assumed that this set is ordered so that gj+1 ≥ gj
for any j.

The state-space diagram for the general case of the repairable multi-state component
with minor and major failures and repairs is presented in Fig. 11.2. Failures cause
the component transition from the state l to the state j (l > j) with corresponding
transition intensity λlj . Repairs cause the component transition from the state j to the
state l (j < l) with corresponding transition intensity μjl.

Based on standard Markov technique the following system of differential equations
(Kolmogorov equations) can be written for the state probabilities of the component
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dpk(t)
dt

=
k−1
∑

l=1

μl,kpl(t) − pk(t)
k−1
∑

l=1

λk,l

dpj(t)
dt

=
k
∑

l=j+1

λl,jpl(t) +
j−1
∑

l=1

μl,jpl(t)

− pj(t)
(
j−1
∑

l=1

λj,l +
k
∑

l=j+1

μj,l
)

, for 1 < j < k

dp1(t)
dt

=
k
∑

l=2

λl,1pl(t) − p1(t)
k
∑

l=2

μ1,l

(11.1)

with the initial conditions pk(0) = 1, pk−1(0) = · · · = p1(0) = 0.
Solving this system of differential equations one can obtain the state probabilities

pj(t), j = 1, . . . , k, which define probabilities that at instant t > 0 the component will
be in state j.
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Figure 11.2. State-space diagram for repairable multi-state component

Based on these probabilities and given performance levels in every state j, one
obtains universal generating function associated with component’s output stochastic
performance:

u(z, t) = p1(t)zg1 + p2(t)zg2 + · · · + pk(t)zgk (11.2)

for any component at any instant t > 0.
The universal generating function (11.2) of a component is called as the individual

universal generating function associated with discrete-state continuous-time Markov
stochastic process G(t) ∈ g, which describes the component evolution in its state
space.

11.3.3 Model for Main Multi-State System and Its Demand

As stated in Sect. 11.2, main multi-state system MSSm consists of m multi-state
components. Performance of each component i in MSSm at any instant t > 0 is defined
by its output Markov stochastic process Gmi(t), i = 1, . . . ,m. For any component i
in MSSm we assume that its output performance stochastic process has k(m)

i differ-
ent states with corresponding performance levels g(m)

ij and state probabilities p(m)
ij (t),

i = 1, . . . ,m; j = 1, . . . , k(m)
i .
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After solving corresponding system of differential equation (11.1) for component i,
the following equation which defines individual UGF umi(z, t) associated with output
stochastic performance of the component i in MSSm can be written as:

umi(z, t) =
k
(m)
i
∑

j=1

p
(m)
ij (t)zg

(m)
ij , i = 1, . . . ,m. (11.3)

All m components in the main multi-state system are composed in the technical struc-
ture according to the given structure function ψm, which defines the main system
output stochastic performance Gm(t):

Gm(t) = ψm{Gm1(t), . . . , Gmm(t)},

where Gm(t) is a discrete-state continuous-time Markov stochastic process with finite
number of different performance levels.

We designate
Km – number of output performance levels for main MSSm,
p
(m)
j (t) – probability that stochastic output performance of main MSSm will be at level

g
(m)
j , j = 1, . . . ,Km at time instant t > 0.

According to the definition of UGF, Um(z, t) associated with the stochastic output
performance of the MSSm can be defined as the following format:

Um(z, t) =
Km
∑

j=1

p
(m)
j (t)zg

(m)
j . (11.4)

By using composition operator Ωψm over individual UGFs representing output per-
formance for each component, Um(z, t) for stochastic output performance of the main
system can be obtained as:

Um(z, t) =
Km
∑

j=1

p
(m)
j (t)zg

(m)
j = Ωψm{um1(z, t), . . . , umm(z, t)}. (11.5)

Taking into account (11.3) and using the general definition of composition operator,
one can obtain the following expression:

Um(z, t) = Ωψm{um1(z, t), . . . , umm(z, t)}

= Ωψm

{k
(m)
1
∑

j1=1

p
(m)
1,j1

(t)zg
(m)
1,j1 , . . . ,

k(m)
m
∑

jm=1

p
(m)
m,jm

(t)zg
(m)
m,jm

}

=
k
(m)
1
∑

j1=1

k
(m)
2
∑

j2=1

· · ·
k(m)

m
∑

jm=1

(

m
∏

i=1

p
(m)
i,ji

(t)zψm(g
(m)
1,j1

,...,g
(m)
m,jm

)

)

.

(11.6)

The procedures for computation of composition operators for major types of MSS
(parallel, series, series-parallel or bridge configurations) have been well developed
[LL03,LIS04] and provide a drastic reduction of the computational resources necessary
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to obtain the resulting UGF of a MSS. Based on these procedures the resulting UGF
(11.4), corresponding states probabilities and performance levels for the output stochas-
tic process of the MSSm can be obtained by using simple algebraic operations.

Demand Wm(t) is assumed to be a discrete-state continuous time Markov stochas-
tic process that at any instant t > 0 takes discrete values from the set wm =
{wm1, . . . , wmM} with corresponding probabilities p(w)

1 (t), . . . , p(w)
M (t). Therefore, the

UGF UWm(z, t) that corresponds to main system demand process has the following
format:

UWm(z, t) =
M
∑

l=1

p
(w)
l (t)zwml . (11.7)

We designate the UGF corresponding to Markov stochastic process Gm(t) −Wm(t) as

Um−(z, t) =
Mm−
∑

j=1

p
(m−)
j (t) · zg(m−)

j , (11.8)

where
Mm− – number of possible performance levels for stochastic process Gm(t) −Wm(t),
p
(m−)
j (t) – probability that stochastic process Gm(t) −Wm(t) will be at level g(m−)

j ,
j = 1, . . . ,Mm−, at time instant t > 0.

By using the known structure function ψm−w = Gm(t) −Wm(t), UGF Um−(z, t)
can be obtained by using the following composition operator Ωψm−w :

Um−(z, t) = Ωψm−w{Um(z, t), Uwm(z, t)}

= Ωψm−w

{

Km
∑

j=1

p
(m)
j (t)zg

(m)
j ,

M
∑

l=1

p
(w)
l (t)zwml

}

=
Km
∑

j=1

M
∑

l=1

p
(m)
j p

(w)
l zg

(m)
j −wml .

(11.9)

11.3.4 Model for Reserve Multi-State System and Its Demand

As stated in Sect. 11.2, reserve multi-state system MSSr consists of r multi-state com-
ponents. Performance of each component i in MSSr is defined by its output Markov
stochastic process Gri(t), i = 1, . . . , r. For each component i in MSSr we assume
that its stochastic process of output performance has k(r)

i different performance levels
with corresponding performance levels g(r)

ij and state probabilities p(r)
ij (t), i = 1, . . . , r;

j = 1, . . . , k(r)
i .

After solving corresponding system of differential equation (11.1) for component
i, the following equation which defines individual UGF uri(z, t) for output stochastic
performance of the component i in MSSr can be written as:

uri(z, t) =
k
(r)
i
∑

j=1

p
(r)
ij (t)zg

(r)
ij , i = 1, . . . , r. (11.10)
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All r components in a reserve multi-state system are composed in the technical
structure according to the given structure function ψr, which defines the reserve system
output stochastic performance Gr(t):

Gr(t) = ψr{Gr1(t), . . . , Grr(t)}.
Gr(t) is a discrete-state continuous-time Markov stochastic process with finite number
of different performance levels.

We designate
Kr – number of output performance levels for the reserve MSSr,
p
(r)
j (t) – probability that stochastic output performance of the reserve MSSr will be at

level g(r)
j , j = 1, . . . ,Kr, at time instant t > 0.

According to the definition of UGF, Ur(z, t) for stochastic output performance of
MSSr can be defined as the following format:

Ur(z, t) =
Kr
∑

j=1

p
(r)
j (t)zg

(r)
j . (11.11)

The resulting UGF Ur(z, t) for the reserve system output stochastic performance Gr(t)
can be obtained by using composition operator Ωψr over individual UGFs representing
output performance for each component in the reserve MSS:

Ur(z) =
Kr
∑

j=1

p
(r)
j (t)zg

(r)
j = Ωψr{ur1(z, t), . . . , urr(z, t)}. (11.12)

Taking into account expression (11.10) and using the general definition of composition
operator [LL03], we obtain the following expressions:

Ur(z, t) = Ωψr{ur1(z, t), . . . , urr(z, t)}

= Ωψr

{ k
(r)
1
∑

j1=1

p
(r)
1,j1

(t)zg
(r)
1,j1 , . . . ,

k(r)
r
∑

jr=1

p
(r)
r,jr

(t)zg
(r)
r,jr

}

=
k
(r)
1
∑

j1=1

k
(r)
2
∑

j2=1

· · ·
k(r)

r
∑

jr=1

(

r
∏

i=1

p
(r)
i,ji

(t)zψr(g
(r)
1,j1

,...,g
(r)
r,jr

)

)

.

(11.13)

Demand Wr(t) is also a discrete-state continuous time Markov stochastic process
that at any instant t > 0 takes discrete values from the set wr = {wr1, . . . , wrN} with
corresponding probabilities p(wr)

1 (t), . . . , p(wr)
N (t). Therefore, the UGF Uwr (z, t) that

corresponds to the demand process of the reserve system will be the following format:

Uwr (z, t) =
N
∑

l=1

p
(wr)
l (t)zwrl . (11.14)

We designate the UGF associated with Markov stochastic process Gr(t) −Wr(t) as

Ur−(z, t) =
Nr−
∑

j=1

p
(r−)
j zg

(r−)
j . (11.15)
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The UGF Ur−(z, t) can be obtained by the following way format:

Ur−(z, t) = Ωψr−w{Ur(z, t), Uwr(z, t)}

= Ωψr−w

{

Kr
∑

j=1

p
(r)
j (t)zg

(r)
j ,

N
∑

l=1

p
(wr)
l (t)zwrl

}

=
Kr
∑

j=1

N
∑

l=1

p
(r)
j p

(wr)
l zg

(r)
j −wrl .

(11.16)

11.3.5 Model for Reserve System Obligation and Connecting System

The reserve MSSr provides abundant resource (performance) to the main MSSm only
after satisfying its own demand. Therefore, the stochastic process Gcinp(t) that rep-
resents an input for the connecting MSSc can be defined by the following structure
function ψcinp, which defines the reserve system obligation:

Gcinp(t) = ψcinp{Gr(t) −Wr(t), 0} = max{Gr(t) −Wr(t), 0}. (11.17)

If the process Gcinp(t) is defined by expression (11.17), it indicates that reserve
MSSr will only send its abundant performance that remains after satisfying its own
demand to the input of connecting MSSc. As stated in Sect. 11.2, stochastic process
Gcinp(t) and function ψcinp are defined by the reserve system obligation agreement.

Based on (11.15), (11.16) and (11.17), UGF Ucinp(z, t) associated with Markov
stochastic process Gcinp(t) can be obtained as:

Ucinp(z, t) = Ωψcinp{Ur−(z, t), z0} = Ωψcinp

{

Nr−
∑

j=1

p
(r−)
j zg

(r−)
j , z0

}

=
Nr−
∑

j=1

p
(r−)
j zmax{g(r−)

j ,0}.

(11.18)

In general case, connecting system MSSc can also be multi-state system. Its per-
formance Gc(t) is treated as the capability to transmit certain performance g

(c)
l ,

l = 1, . . . , c from the reserve system MSSr to the main system MSSm.

Gc(t) ∈ {g(c)
1 , g

(c)
2 , . . . , g(c)

c }.

p
(c)
l (t) is defined as the probability of state l corresponding to the performance level
g
(c)
l at instant t > 0. The UGF Uc(z, t) of the MSSc corresponding to the underlying

stochastic process Gc(t) can be written as the following:

Uc(z, t) =
c
∑

l=1

p
(c)
l zg

(c)
l . (11.19)
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Output stochastic process Gcout(t) of the connecting system MSSc can be obtained
according to the following structure function:

Gcout(t) = ψcout{Gc(t), Gcinp(t)} = min{Gc(t), Gcinp(t)}. (11.20)

By using this structure function (11.20) and previously obtained UGFs Uc(z, t) and
Ucinp(z, t) ((11.18) and (11.19), respectively) one can obtain UGF Ucout(z, t) corre-
sponding to the stochastic process of the output performance Gcout(t). Gcout(t) at any
instant t > 0 is defined as the connecting system output performance that can be
provided from the connecting system MSSc to the main system:

Ucout(z, t) =
Cout
∑

k=1

p
(cout)
k (t)zg

(cout)
k

= Ωψcout

{

c
∑

l=1

p
(c)
l zg

(c)
l ,

Nr−
∑

j=1

p
(r−)
j zmax{g(r−)

j ,0}
}

=
c
∑

l=1

Nr−
∑

j=1

p
(c)
l p

(r−)
j zmin{g(c)i ,max(g

(r−)
j ,0)},

(11.21)

where Cout – number of output performance levels for discrete-state continuous-time
stochastic process Gcout(t),
p
(cout)
k (t) – probability that stochastic performance process Gcout(t) will be at level
g
(cout)
k , k = 1, . . . , Cout at time instant t > 0.

11.3.6 Model for the Entire MSS

The output performance stochastic process GMSS(t) of the entire MSS considering
redundancy is defined by the following structure function ψMSS:

GMSS(t) = ψMSS{Gm(t) −Wm(t), Gcout(t)} = Gm(t) −Wm(t) +Gcout(t). (11.22)

Based on this structure function and previously obtained Um−(z, t) and Ucout(z, t)
((11.9) and (11.21), respectively), the UGF UMSS(z, t) for the entire MSS corresponding
to the stochastic process GMSS(t) can be obtained as:

UMSS(z, t) =
MMSS
∑

j=1

p
(MSS)
j zg

(MSS)
j

= ΩψMSS{Um−(z, t), Ucout(z, t)}

= ΩψMSS

{

Mm−
∑

l=1

p
(m−)
l zg

(m−)
l ,

Cout
∑

k=1

p
(cout)
k (t)zg

(cout)
k

}

=
Mm−
∑

l=1

Cout
∑

k=1

p
(m−)
l p

(cout)
k zg

(m−)
l +g

(cout)
k ,

(11.23)

where MMSS – number of output performance levels for discrete-state continuous-time
stochastic process GMSS(t),
p
(MSS)
j (t) – probability that stochastic performance process GMSS(t) will be at level

g
(MSS)
j , j = 1, . . . ,MMSS at time instant t > 0.
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11.4 Algorithm of UGF Computation for Entire MSS

The procedure of the UGF computation for the entire MSS considering redundancy is
graphically presented in Fig. 11.3.

The procedure consists of the following steps.

1. Based on reliability data (failure and repair rates) for all components in MSSm and
MSSr, individual UGFs (11.3) and (11.10) for all components can be obtained by
solving the corresponding systems of differential equations (11.1).

2. Based on structure functions ψm, ψr and individual UGFs for all components in
MSSm and MSSr UGFs Um(z, t), Ur(z, t) corresponding to performance stochastic
processes Gm(t), Gr(t) are evaluated according to (11.6) and (11.13), respectively.

3. In this step, UGFs Um−(z, t), Ur−(z, t) should be calculated corresponding to per-
formance stochastic processes Gm(t) −Wm(t), Gr(t) −Wr(t) based on the (11.9)
and (11.16), respectively.

4. UGF Ucinp(z, t) corresponding to the stochastic processes Gcinp(t) is evaluated
according to expression (11.18), which is based on UGF Ur−(z, t) and structure
function ψcinp.

5. The UGF Uc(z, t) corresponding to stochastic processes Gc(t) is obtained according
to the (11.19) for the connecting system.

6. The UGF Ucout(z, t) corresponding to the performance stochastic process Gcout(t),
is evaluated by (11.21), which is based on UGFs Uc(z, t), Ucinp(z, t) correspond-
ing to performance stochastic processes Gc(t), Gcinp(t) respectively, and structure
functions ψcout (expression (11.20)).

Figure 11.3. Recursive procedure for resulting UGF computation for entire MSS with
redundancy
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7. Based on the structure function ψMSS and previously obtained Um−(z, t) and
Ucout(z, t) (expressions (11.9) and (11.21) respectively), the resulting UGF
UMSS(z, t) corresponding to the resulting output performance stochastic process
GMSS(t) for the entire MSS is obtained according to (11.23).

11.5 Reliability Measures Computation for Entire MSS

When the UGF (expression (11.23)) of the entire interconnected MSS is obtained, the
reliability measures for the system can be easily evaluated.

The entire MSS availability A(t) at instant t > 0 can be evaluated as:

A(t) =
MMSS
∑

j=1

p
(MSS)
j (t) 1(g(MSS)

j ≥ 0), (11.24)

where 1(True) ≡ 1, 1(False) ≡ 0.
The proposed UGF is used to evaluate the expected profit for the MSS, where sat-

isfied demand is associated with financial benefit and unsatisfied demand is associated
with penalty.

For a time period T , the system expected profit (EPROFIT (T )) can be calcu-
lated as:

EPROFIT(T ) =
∫ T

0

{

MMSS
∑

j=1

p
(MSS)
j (t) ·

{

min
(

max(g(MSS)
j , 0), wmj

)

· (λ− c)

− max
(

−g(MSS)
j , 0

)

· π
}

}

· dt

(11.25)

where wmj is the demand of the main system for the system state j, λ is the electricity
price to the customers, c is the production cost of electricity, and π is the incurred
penalty cost.

For a time period T , the system expected interruption cost (ECOST(T )) can be
calculated as:

ECOST(T ) =
∫ T

0

{

MMSS
∑

j=1

p
(MSS)
j (t) ·

{

max
(

−g(MSS)
j , 0

)

· π
}

}

· dt. (11.26)

11.6 Illustrative Example

The developed technique was used to evaluate two interconnected generation systems
[ABA86]. System A consists of one 360 MW coal unit and one 220 MW gas unit. Sys-
tem B consists of one 360 MW coal units, two 220 MW gas units, and one 220 MW oil
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Figure 11.5. The system expected interruption cost

unit respectively. The coal unit, gas unit, and oil unit have 10, 10, and 11 states, respec-
tively. The demands of system A and system B are 450 MW and 800 MW, respectively.
Suppose that system A is the main system and system B is the corresponding reserve
system. System B will provide a reserve to system A if system B can satisfy its own de-
mand. Suppose the production cost of electricity and electricity price to the customers
are set as 12$/MWh and 30$/MWh, respectively. A penalty cost (300$/MWh) will be
incurred if the customer demand has been shed. Figure 11.4 illustrated the system ex-
pected profit of the example. It can be seen from the Fig. 11.4 that the system expected
profit increases with the increasing of time. The system expected interruption cost is
shown in Fig. 11.5, which also increases with the time. Because of the high penalty
cost, the system expected interruption cost is almost the same as the system expected
profit after about 700 h.
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11.7 Conclusions

In the paper, an important type of redundancy is considered in MSS that has not
existed in binary-state systems. Traditional methods applied to reliability computation
for such systems are usually not effective enough because of dimension curse. A new ap-
proach to evaluate the dynamic reliability of MSS with such redundancy is suggested.
The approach is based on using special type of UGF–UGF associated with random
processes. The method presented in this paper is highly suitable for engineering appli-
cations since the procedure is well formalized and based on the natural decomposition
of the entire interconnected systems. By using this method the short-term and long-
term performance of multi-state systems with redundancy can be accurately predicted
as well as financial issues.
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Abstract: For modeling and analysis of the reliability of complex hierarchical partially
controllable systems the methods of decomposable semi-regenerative processes are used.
A simple example illustrates our approach.
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generative processes

12.1 Introduction and Motivation

In terms of reliability, most of technical systems and biological objects with sufficiently
high organization are complex hierarchical partially controllable systems. The fail-
ures in the systems of this type arise as a result of stress accumulation of the lowest
(elementary) level, which passes several stages before the full failure. These faults lead
to the decreasing efficiency of the system but do not lead to the full failure of the
system. The system of control (SoC) fixes these fault stages of elements and gives
the signal about the system “state of health” decreasing. According to these signals
appropriate mechanisms of self-regulation are “switched on”, and the system is self
regenerated if the process disturbing is not too deep. In the last case, some exter-
nal action is needed. It is supposed that this action being applied at time and in
needed quality and quantity turns the system after some time to the normal func-
tioning state. In the other case, the delay with maintenance of the system leads to
the system degradation and as a result it leads to the full failure of the system.
For biological systems, for instance, the neuron system plays a role of controlling
system, and it possesses high reliability. This means that biological objects can be
treated as a complex hierarchical partially controllable fault-tolerant reliability systems
[DRS02,RD02,RDG04,RDGS04]. For different technical systems there exist analogous
high reliable systems of control. These systems are special case of Multi-State Reliabil-
ity Systems [LL03]. In some previous papers we considered such type of models under
Markov assumptions [DRS02,RD02,RDG04,RDGS04].

In general case, the life times of units as well as the repair times of failed units,
subsystem and the whole system should be considered as having general distributions.
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The respective distributions may depend on the type of the unit and also on the
entire system state. The main characteristic for biological objects and complex technical
systems are their survival functions. Thus, we focus in this paper on this function
evaluation. Therefore, in this paper we propose a general mathematical model for the
description and the survival function evaluation of complex hierarchical systems with
general distributions of units life times as well as the repair times of failed units,
subsystem and the whole system.

There are several approaches to model the reliability of systems with general
life- and repair times distributions. However, anyhow all of them are reduced to
markovization of the process that describes the system behavior. One of them was
proposed by Yu. Belyaev [Be62], and consists in construction of so-called linear-wise
Markov processes. Another approach was developed in the works of Buslenko et al.
[Bu63, Bu71, BKK73, Ka78, Ka94, Ko65, Ko76, Kov76], who proposed and elaborated
the mathematical technique for the study of so-called piecewise linear aggregative sys-
tems. The further development of this theory were done in the works [Ry75,Ry83,Ry84,
Ry96,Ry97,Ry97,RYa71,RJ81], where the notion of Decomposable Semi-Regenerative
Processes (DSRP) was proposed and methods for its investigation were developed. In
this paper these methods are applied to the investigation of the reliability of complex
hierarchical systems.

12.2 General Model

Consider a complex hierarchical multi-component system which is controlled and
managed by a high-reliable system of control (SoC), shown in Fig. 12.1. Assume that the
system is constructed from blocks and branches of several levels. Each block and the
following after branches and blocks forms a hierarchical subsystem of the same type as
the main one. The blocks of the lowest level will be referred to as units and they are
subjected to gradual failures of their own type. They can take different values, depend-
ing on their types with some exhausted value. However, these multi-states units can be
modified into the appropriate binary (i.e. with only two possible values) subsystems.
Therefore, for the simplicity we limit ourselves to the binary systems only. We will
denote by L the maximal level of units, and it is not necessary that any unit belongs
to this level. Units of different levels are possible. The reliability of each unit is par-
tially controllable. This means that after a fault it can be turned back into the normal
(working) state after some repair time.

In order to specify the description of the system’s behavior, we introduce a vector
index i = (i1, i2, . . . , iLi) which determines each unit of the system as belonging to
an appropriate chain of blocks at any level. Denote by I the set of these indices (and
appropriate units). Then the state space of the system can be represented as E = {j =
(ji : i ∈ I)}, where for any i ∈ I the binary ji represents the state of the ith unit in
sense of its reliability. To specify the subsystems of kth level we will refer to it as ik
and the states of the appropriate subsystem will be denoted by j(k)

i .
It is supposed that the life times of units as well as the repair times of failed units,

subsystems and the whole system are independent random variables (r.v.) that have
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Figure 12.1. A complex multi-level hierarchical system

general distributions, which can depend on the type of unit i and appropriate subsystem
ik. We will denote these r.v.’s by Ai and Bik and their cumulative distribution functions
(c.d.f.) by

Ai(x) = P{Ai ≤ x}, Bik (x) = P{Bik ≤ x}.
It is also supposed that these functions are differentiable, i.e. there exist appropriate
probability density functions (p.d.f.). Some additional technique allows to omit this
assumption, but we preserve them for the sake of simplicity.

12.3 Investigation of the Reliability of a General Model

According to the assumptions above we model the reliability of such a system by multi-
dimensional process

J = {Ji(t) : i ∈ I, t ≥ 0},
with the set of states E, which should be concretized for every specific system. Moreover,
for only the reliability investigation it is possible to consider the components J (k)

i of
the process J for subsystem of each level k as processes that takes only two states

J
(k)
i (t) =

{

0 if ith subsystem of kth level is working
1 if ith subsystem of kth level failed.

According to the structure function of the system, the state of its units determines
the state of appropriate subsystems and the whole system in sense of its reliability.
After the repair of failed units, subsystems or the whole system they go to the initial
states. Denote by E

(k)
i and Ē

(k)
i the sets of the working and failure states for the ith

subsystem of the kth level. Then, the working period of the whole system is given by
the relation

W (0) = inf{t : J (0)(t) ∈ Ē(0)} = inf{t : J
(1)
ij

(t) ∈ Ē
(1)
ij
, j = 1, n1}.
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Analogously for each subsystem i of any kth level one has

W
(k)
i = inf{t : t ≤W (k), J

(k)
i (t) ∈ Ē

(k)
i } =

= inf
{

t : t ≤W (k), J
(k+1)
ij

(t) ∈ Ē
(k+1)
ij

, j = 1, n(k)
i

}

.

Therefore, considering the working period distributions of some subsystem as its life
times one can investigate in the same way the reliability function of the subsystem
of the next level. However, since the initial information about system is given for the
lowest level only, the problem should be solved starting from the lowest level.

To calculate the cumulative distribution function (c.d.f.) of any subsystem ik of any
level k according to the definition of the working period as W (k)

i = inf{t : J
(k)
i (t) ∈

Ē
(k)
i } one has

W
(k)
i (t) = P{W (k)

i ≤ t} = 1 −
∏

j∈Ē
(k)
i

[1 − πj(t)],

where πj(t) is the probability distribution for the process J to be in failure state j ∈ Ē
(k)
i

at a time t. Therefore, the problem is divided into two parts:

• To investigate the process J (k)
i (t) describing behavior of any subsystem of each level

• To find the working period W (k)
i for any subsystem of each level

As the problems have identical solution for any subsystem they will be considered in
some general construction.

12.4 The Subsystems Behavior Investigation

12.4.1 General Case

For investigation of a separate subsystem denote by J(t) = {Ji(t), i = 1,m} the
binary process of its reliability, and by Ai(x), Bi(x), (i = 1,m) the c.d.f.’s of their
life and repair times. In order to use the markovization approach, denote by W the
working time of this subsystem (the time to the its first failure) and consider absorbing
(with absorbtion in the set of failure states Ē) multi-dimensional Markov process Z =
(J(t), X(t), t ≤ W ) with general states space Ê = E × Rm, where components of the
additional vector X describe the times elapsed after entering the appropriate states.
Denote by (for simplicity index W will be omitted everywhere)

πj(t; dx) = π(j1,...jm)(t; dx1, . . .dxm) = P{Ji(t) = ji, Xi(t) ∈ dxi, i = 1,m, t ≤W}
(12.1)

the probability for the process Z to be in time t during its separate working period W
at the state (j, dx). Note that under some additional conditions if these functions are
absolutely continuous with respect to Lebesgue measure they can be represented in
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terms of probability density functions (p.d.f.) πj(t, dx) = πj(t, x)dx. In order to apply
the methods of Decomposable Semi-Regenerative Processes (DSRP) denote by:

• S1, S2, . . . Sn, . . . the times of the process J jumps at separate working period W
that coincide with times of failure or renovation of elements of the subsystem (the
epochs, in which some of components of the process Z became equal zero). We will
refer to Sn as times of the kth type renovation if Xk(Sn + 0) = 0

• Jn = J(Sn + 0), Xn = X(Sn + 0), Kn = #{k : Xk(Sn + 0) = 0}
• j(k) = (j1, . . . , j̄k, . . . jm), īk = 1 − ik
• x(k) = (x1, . . . , xk−1, 0, xk+1, . . . xm)
• N = {N (k)

j (t; dx(k)) : 1 ≤ k ≤ m, j ∈ E} embedded renewal process (ERP) with

general renewal states space, which components N (k)
j (t; dx(k)) are the kth type

ERP with the set of renovation states (j, dx(k)),

N
(k)
j (t; dx(k)) =

∑

n≥0

δk,Kn1{[0,t],j,dx(k)}(Sn, Jn, Xn)

• H = {H(k)
j (t; dx(k)) : 1 ≤ k ≤ m, j ∈ E} embedded renewal function (ERF) with

general states space, which components H(k)
j (t; dx(k)) = EN (k)

j (t,dx(k)) are the
kth type renewal function with the set of renovation states (j, dx(k))

Denote also by Γjk
(x) the c.d.f. of the time duration of the jkth component of the

process Z to stay at its state and by γjk
(x) its hazard rate function (h.r.f.), which

exists under our assumption,

Γjk
(x) = δjk , 0Ak(x) + δjk, 1Bk(x), γjk

(x) =
Γ ′

jk
(x)

1 − Γjk
(x)

.

Remind also that for p.d.f. Γ (x) of any r.v. Γ and appropriate conditional distribution
it holds

Γ (x) = 1−exp

⎧

⎨

⎩

−
x
∫

0

γ(ξ)dξ

⎫

⎬

⎭

; P{Γ > y |Γ > x} =
1 − Γ (y)
1 − Γ (x)

= exp

⎧

⎨

⎩

−
y
∫

x

γ(ξ)dξ

⎫

⎬

⎭

.

In order to find the probabilities πj(t; dx) in terms of ERP let us denote by
Q

(k,l)
j (dt; x(k), dy(l)) the conditional probability measure of the following event: time

between sequential renovations belongs to the interval (t, t+ dt), and during this time
a renovation of lth type with the state (j(l),dy(l)) occurs, being the previous one of
the type k with the state (j,x(k)),

Q
(k, l)
j (dt; x(k), dy(l))

= P{Sn+1 − Sn ∈ dt, Jn+1 = j(l), Xn+1 ∈ dy(l) |Jn = j, Xn = x(k)},

and by Q̄
(k, l)
j (dt; x(k), dy) appropriate measure at the time directly before jump.

For the first renovation (for the initial state 0), the appropriate measure is denoted
by Q(l)

0 (dt; 0, dy(l)). Denote also by Q̄j(t; x, dy) the conditional probability measure
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that beginning from the state (j, x) the process does not leave it during the time t,
and therefore it occurs at the state (j,y = t1 + x),

Q̄j(t; x, dy) = P{Sn+1 − Sn > t, X(Sn + t) ∈ dy |Jn = j, Xn = x}.

With these notations the following theorem holds.

Theorem 1. The probabilities πj(t; dx) (j ∈ E) satisfy to the equalities

π0(t; dy) = Q̄0(t; 0,dy) +
∑

1≤k≤m

t
∫

0

∫

Rm−1

H
(k)
0 (du; dx(k))Q̄0(t− u; x(k), dy),

πj(t; dy) =
∑

1≤k≤m

t
∫

0

∫

Rm−1

H
(k)
j (du; dx(k))Q̄j(t− u; x(k), dy), (12.2)

Proof. Immediately follows from the Complete Probability Formulae if only remark
that in kth type renovation epoch the kth component of the vector x became equal
zero, Xk(Sn + 0) = 0.

On the other hand the theory of DSRP gives the following.

Theorem 2. The family of ERF’s H(l)
k (t; dx(k)) satisfies to the equations:

• for j ∈ E such that j(l) ∈ E

H(l)
el

(dt; dy(l)) = Q
(l)
0 (dt; 0, dy(l))

+
∑

1≤k≤m

t
∫

0

∫

Rm−1

dH(k)
0 (du, dx(k))Q(k,l)

0 (dt− u, x(k),dy(l)),

(12.3)

H
(l)
j (dt; dy(l)) =

∑

1≤k≤m

t
∫

0

∫

Rm−1

H
(k)
j (du; dx(k))Q(k, l)

j (dt− u; x(k), dy(l))

(12.4)

• and for j ∈ E such that j(l) ∈ Ē

πj(l)(dt; dy(l)) =
∑

1≤k≤m

t
∫

0

∫

Rm−1

H
(k)
j (du; dx(k))Q(k, l)

j (dt− u; x, dy) (12.5)

The representation of the functions Q̄(k, l)
j (dt; x(k), dy) and Q̄j(t; x, dy) in terms

of the model characteristics is given in the following lemma.
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Lemma 1. For the functions Q̄
(k, l)
j (dt; x(k), dy) and Q̄j(t; x, dy), the following

representations holds

Q̄
(l)
0 (dt; 0, dy) = βl(yl)

∏

1≤i≤m

exp

⎧

⎨

⎩

−
yi
∫

0

αi(ξ)dξ

⎫

⎬

⎭

δ(t− yi)dyi dt,

Q̄
(k, l)
j (dt; x(k), dy) = γjl

(yl)
∏

i�=l

exp

⎧

⎨

⎩

−
yi
∫

xi

γji(ξ)dξ

⎫

⎬

⎭

δ(t− (yi − xi))dyi dt,

Q̄j(t; x, dy) =
∏

i

exp

⎧

⎨

⎩

−
yi
∫

xi

γi(ξ)dξ

⎫

⎬

⎭

δ(t− (yl − xl))dyi. (12.6)

Proof. Indeed, for the functions Q̄(k, l)
j (dt; x(k), dy) one has

Q̄
(k, l)
j (dt; x(k), dy)

= P{Sn+1 − Sn ∈ dt, Jn+1 = j(l), Xn+1 ∈ dy |Jn = j, Xn = x(k)}
= P {Γjl

∈ dyjl
|Γjl

> xjl
}
∏

i�=l

P {Γi > yi |Γi > xi} δ(t− (yi − xi))dyi dt

=
Γ ′

jl
(yl)dyl

1 − Γjl
(xl)

∏

i�=l

1 − Γi(yi)
1 − Γi(xi)

δ(t− (yi − xi))dyi dt

=
Γ ′

jl
(yl)

1 − Γjl
(yl)

∏

1≤i≤m

1 − Γi(yi)
1 − Γi(xi)

δ(t− (yi − xi))dyi dt

= γjl
(yl)

∏

1≤i≤m

exp

⎧

⎨

⎩

−
yi
∫

xi

γji(ξ)dξ

⎫

⎬

⎭

δ(t− (yi − xi))dyi dt.

Analogously, the next formulas can be obtained.

To get appropriate expressions in terms of the Laplace transform (LT) denote by
v =

∑

1≤i≤m vi and v(k) =
∑

i�=k vi and introduce the following functions

φ0(s, v) =

∞
∫

0

exp

⎧

⎨

⎩

−(s+ v)t−
∑

1≤i≤m

t
∫

0

αi(ξ)dξ

⎫

⎬

⎭

βl(t)dt;

φj(s, x, v) =

∞
∫

0

exp

⎧

⎨

⎩

−(s+ v)t−
∑

1≤i≤m

xi+t
∫

xi

γji(ξ)dξ

⎫

⎬

⎭

γjl
(xl + t)dt;

ψj(s, x, v) =

∞
∫

0

exp

⎧

⎨

⎩

−(s+ v)t−
∑

1≤i≤m

xi+t
∫

xi

γji(ξ)dξ

⎫

⎬

⎭

dt.



166 V. Rykov and D. Kozyrev

With these notations consider the LT q
(k,l)
j (s; x(k),v(l)) and q̄j(s; x,v) of the

functions Q(k,l)
j (t; x(k),dy(l)) and Q̄j(t; x,dy),

q
(k,l)
j (s; x(k), v(l)) =

∞
∫

0

e−st

∫

Rm−1

e−v′(l)y(l)Q
(k,l)
j (t; x(k), dy(l));

q̄j(s; x, v) =

∞
∫

0

e−st

∫

Rm

e−v′yQ̄j(t; x, dy)

Lemma 2. The following expressions hold

q0(s; 0, v(l)) = φ0(s, v(l));

q
(k,l)
j (s; x(k), v(l)) = e−v′xφj(s, x, v(l));

q̄j(s; v) = e−v′xψj(s, x, v); (12.7)

Proof. Taking into account that q(k,l)
j (s; x(k), v(l)) = q̄

(k,l)
j (s; x(k), v)|vl=0 calculate

first the LT for Q̄(k,l)
j (t; x(k), dy).

q̄
(l)
0 (s; 0, v) ≡

∞
∫

0

∫

Rm

e−st−v′yQ̄
(l)
0 (dt; 0, dy)

=

∞
∫

0

∫

Rm

e−st−v′yβl(yl)
∏

1≤i≤m

exp

⎧

⎨

⎩

−
yi
∫

0

αi(ξ)dξ

⎫

⎬

⎭

δ(t− yi)dyi dt

=

∞
∫

0

exp

⎧

⎨

⎩

−(s+ v)t−
∑

1≤i≤m

t
∫

0

αi(ξ)dξ

⎫

⎬

⎭

βl(t)dt ≡ φ0(s, v);

q̄
(k,l)
j (s; x(k), v) ≡

∞
∫

0

∫

Rm

e−st−v′yQ̄
(k,l)
j (dt; x(k), dy)

=

∞
∫

0

∫

Rm

e−st−v′yγjl
(yl)

∏

1≤i≤m

exp

⎧

⎨

⎩

−
yi
∫

xi

γi(ξ)dξ

⎫

⎬

⎭

×δ(t− (yi − xi))dyi dt,

= e−v′x

∞
∫

0

exp

⎧

⎨

⎩

−(s+ v)t−
∑

1≤i≤m

xi+t
∫

xi

γji(ξ)dξ

⎫

⎬

⎭

γjl
(xl + t)dt

= e−v′xφj(s, x, v);
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q̄j(s; v) ≡
∞
∫

0

∫

Rm

e−st−v′yQ̄j(t; dy) dt

=

∞
∫

0

∫

Rm

e−st−v′y
∏

i

exp

⎧

⎨

⎩

−
yi
∫

xi

γi(ξ)dξ

⎫

⎬

⎭

δ(t− (yi − xi))dyi dt

= e−v′x

∞
∫

0

exp

⎧

⎨

⎩

−(s+ v)t−
∑

i

xi+t
∫

xi

γji (ξ)dξ

⎫

⎬

⎭

dt = e−v′xψj(s, x, v).

Substituting vl = 0 into these relations proves the lemma.

Using these results for the Laplace Transforms (LT) π̃ of the probabilities π

π̃j(s; v) ≡
∞
∫

0

∫

Rm

e−st−v′yπj(t; dy)dt

the following theorem can be proved.

Theorem 3. The LT π̃ of the probabilities π can be expressed in forms

π̃0(s; v) = ψ0(s, v) +
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−su−v′x(k)H
(k)
0 (du, dx(k))ψ0(s, x(k), v),

π̃j(s; v) =
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−su−v′x(k)H
(k)
j (du, dx(k))ψj(s, x(k), v). (12.8)

Proof. The proof could be also done by the following calculations:

π̃0(s; v) ≡
∞
∫

0

∫

Rm

e−st−v′yπ0(t; dy)dt =

∞
∫

0

∫

Rm

e−st−v′yQ̄0(t; 0, dy)dt

+
∑

1≤k≤m

∞
∫

0

∫

Rm

e−st−v′y

∞
∫

0

∫

Rm−1

H
(k)
0 (du, dx(k))Q̄0(t− u, x(k), dy)dt

= ψ0(s, v) +
∑

1≤k≤m

∞
∫

0

e−su

∫

Rm−1

H0(du, dx(k))
∫

t≥u

e−s(t−u)−v′y

×
∫

Rm

Q̄0(t− u, x(k), dy) dt

= ψ0(s, v) +
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−su−v′x(k)H
(k)
0 (du, dx(k))ψ0(s, x(k), v);
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π̃j(s; v) ≡
∞
∫

0

∫

Rm

e−st−v′yπj(t; dy)dt

=
∑

1≤k≤m

∞
∫

0

∫

Rm

e−st−v′y

∞
∫

0

∫

Rm−1

H
(k)
j (du,dx(k))Q̄j(t− u,x(k), dy)dt

=
∑

1≤k≤m

∞
∫

0

e−su

∫

Rm−1

H
(k)
j (du,dx(k))

∫

t≥u

e−s(t−u)−v′y

×
∫

Rm

Q̄j(t− u,x(k),dy)dt

=
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−su−v′x(k)H
(k)
j (du,dx(k))ψj(s,x(k), v).

Analogously for the LT

h
(l)
j (s; v(l)) ≡

∞
∫

0

∫

Rm−1

e−st−v′y(l)H
(l)
j (dt; dy(l))

of the functions H(l)
j (dt; dy(l)) the following theorem holds.

Theorem 4. The LT h
(k)
j (s; v(k)) of the embedded renewal functions H(k)

j (dt; dy(k))
can be expressed in the following forms. For j, such that j(l) ∈ E

h(l)
el

(s; v(l)) = φ0(s; v(l))

+
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
0 (du, dx(k))e−v′x(k)φ0(s; x(k), v(l)),

h
(l)
j (s; v(l)) =

∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
j (du, dx(k))e−v′x(k)φj(s; x(k), v(l)),

(12.9)

and for j ∈ E such that j(l) ∈ Ē

π̃j(s; v(l)) =
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
j (du, dx(k))e−v′x(k)φj(s; x(k), v(l)). (12.10)
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Proof. Using the formulas (12.3) one can find for j with j(l) ∈ E

h(l)
el

(s; v(l)) ≡
∞
∫

0

∫

Rm−1

e−st−v′y(l)H(l)
el

(dt; dy(l))

=

∞
∫

0

∫

Rm−1

e−st−v′y(l)Q
(l)
0 (dt; 0, dy(l))

+

∞
∫

0

∫

Rm−1

e−st−v′y(l)
∑

1≤k≤m

t
∫

0

∫

Rm−1

dH(k)
0 (du, dx(k))

×Q(l)
0 (dt− u, x(k), dy(l))

= φ0(s; v(l)) +
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
0 (du,dx(k))

∫

t≥u

e−s(t−u)−v′y(l)

×
∫

Rm−1

Q
(+)
0 (dt− u,x(k),dy(l))

= φ0(s; v(l)) +
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
0 (du,dx(k))e−v′x(k)

×φ0(s; x(k), v(l));

h
(l)
j (s; v(l)) ≡

∞
∫

0

∫

Rm−1

e−st−v′y(l)H
(l)
j (dt; dy(l))

=

∞
∫

0

∫

Rm−1

e−st−v′y(l)
∑

1≤k≤m

t
∫

0

∫

Rm−1

dH(k)
j (du, dx(k))

×Q(k,l)
j (dt− u, x(k), dy(l))

=
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
j (du, dx(k))

∫

t≥u

e−s(t−u)−v′y(l)

×
∫

Rm−1

Q
(k,l)
j (dt− u, x(k), dy(l))

=
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
j (du, dx(k))e−v′x(k)φj(s; x(k), v(l)).
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At least for j ∈ E with j(l) ∈ Ē

π̃j(l)(s; v(l)) ≡
∞
∫

0

∫

Rm−1

e−st−v′y(l)πj(l)(dt; dy(l))

=

∞
∫

0

∫

Rm−1

e−st−v′y(l)
∑

1≤k≤m

t
∫

0

∫

Rm−1

H
(k)
j (du; dx(k))

×Q(k,l)
j(l) (dt− u; x(k), dy(l))

=
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
j (du,dx(k))

∫

t≥u

e−s(t−u)−v′y(l)

×
∫

Rm−1

Q
(k,l)
j (dt− u,x(k),dy(l))

=
∑

1≤k≤m

∞
∫

0

∫

Rm−1

e−sudH(k)
j (du, dx(k))e−v′x(k)φj(s; x(k), v(l)).

Using working period of any subsystem as its life time one can calculate the working
period of subsystems of the next level etc. up to the whole (entire) system.

The results above show that to investigate the problem in general case the solution of
complex integral equations is needed. On the other hand they show that the problem
could be reduced to the investigation of the functions ψ and φ. For this numerical
analysis is needed.

Under the quick restoration condition in order to get an approximate solution it is
possible to use a phase states enlarging method. Consider the Exponential case.

12.4.2 Exponential Case

Note that under exponential distributions of the life and repair times the functions φ
and ψ do not depend on the additional variables and with γj =

∑

1≤k≤m γjk
take the

following form

φ
(l)
j (s; x, v(l)) =

γjl

s+ v(l) + γj
, ψj(s; x, v) =

1
s+ v + γj

.

This remark gives the possibility to simplify the general equations. Indeed, in this case
the (12.8) for the time dependent probabilities in terms of their LT take the form

π̃0(s; v) =
1

s+ v + γ0
+

∑

1≤k≤m

h
(k)
0 (s; v(k))

1
s + v + γ0

;

π̃j(s; v) =
∑

1≤k≤m

h
(k)
j (s; v(k))

1
s + v + γj

. (12.11)
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The (12.9) for functions h take the form: for j ∈ E

h(l)
el

(s; v(l)) =
γl

s+ v(l) + γ0
+

∑

1≤k≤m

h
(k)
0 (s; v(k))

γk

s+ v(l) + γ0
,

h
(l)
j (s; v(l)) =

∑

1≤k≤m

h
(k)
j (s; v(k))

γjk

s+ v(k) + γj(l)
, (12.12)

and for j ∈ E with j(l) ∈ Ē

π̃j(l)(s; v(l)) =
∑

1≤k≤m

h
(k)
j (s; v)

γjk

s+ v(k) + γj(l)
. (12.13)

To find the appropriate functions for macro-states (independent from x) one should
set in these relations v = 0. In this case, the (12.8) for the time dependent probabilities
in terms of their LT take the form

π̃0(s) =
1

s+ α0
+

∑

1≤k≤m

h
(k)
0 (s)

1
s+ α0

≡ (1 + h0(s))
1

s+ α0

π̃j(s) =
∑

1≤k≤m

h
(k)
j (s)

1
s+ γj

≡ hj(s)
1

s+ γj
. (12.14)

On the other hand, for the functions h(k)
j (s) from (12.12) the following system of

equations holds

h(l)
el

(s) =
βl

s+ α(l)
+

∑

1≤k≤m

h
(k)
0 (s)

βl

s+ α(l)
= (1 + h0(s))

βl

s+ α(l)

h
(l)
j (s) =

∑

1≤k≤m

h
(k)
j (s)

γjl

s+ γj(l)
= hj(s)

γjl

s+ γj(l)
. (12.15)

and for j ∈ E with j(l) ∈ Ē

π̃j(l)(s) =
∑

1≤k≤m

h
(k)
j (s)

γjl

s+ γj(l)
= hj(s)

γjl

s+ γj(l)
. (12.16)

To concretize this methodic let us consider a simple example.

12.5 An Example

Consider an example with only two elements in the system. Denote: 0 = (0, 0), 1 =
(0, 1), 2 = (1, 0), 3 = (1, 1) . With these notations one has

π̃0(s) =
1

s+ γ0
+ h

(1)
0 (s)

1
s+ γ0

+ h
(2)
0 (s)

1
s+ γ0

;

π̃k(s) = h
(k)
k (s)

1
s+ γk

(k = 1, 2);

π̃3(s) = h
(1)
1 (s)

α2

s+ γ1
+ h

(2)
2 (s)

α1

s+ γ2
,
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where the functions h(k)
j (s) satisfy to the equations

h
(k)
0 (s) = h

(k)
k (s)

βk

s+ γk
(for k = 1, k = 1, and k = 2, k = 2),

h
(k)
k (s) =

αk

s+ γ0
(1 + h

(1)
0 (s) + h

(2)
0 (s)) (for k = 1, and k = 1, k = 2, k = 2).

The solutions of these equations are (where for k = 1, k̄ = 2 = (1, 0) and for
k = 2, k̄ = 1 = (0, 1))

h
(k)
0 (s) =

βk(s+ γk̄)
(s+ γ0)(s+ γ1)(s+ γ2) − α1β1(s+ γ2) − α2β2(s+ γ1)

(k = 1, 2),

h
(k)
k (s) =

αk(s+ γ1)(s+ γ2)
(s+ γ0)(s+ γ1)(s+ γ2) − α1β1(s+ γ2) − α2β2(s+ γ1)

(k = 1, 2).

Therefore, for the LST of the working period w̃(s) =
∫∞
0

e−stW (dt) = π̃3(s) one has

π̃3(s) =
α1α2(2s+ γ1 + γ2)

(s+ γ0)(s+ γ1)(s+ γ2) − α1β1(s+ γ2) − α2β2(s+ γ1)
,

that coincides with the results obtained by classic Markov approach.
In the case of homogeneous system, when α1 = α2 = α and β1 = β2 = β we have

γ0 = 2α, γ1 = γ2 = α+ β, and the expression for π̃3(s) takes the following form

π̃3(s) =
2α2

s2 + (3α+ β)s+ 2α2
.

By splitting this expression into partial fractions and applying the inverse Laplace
transform, it’s easy to obtain the distribution function of time to first system failure.
The mean time to system failure can be obtained by differentiating π̃3(s) at point
s = 0:

EW = −π̃′
3(0) =

(

3 +
β

α

)

1
2α
,

that coincides with the results, obtained by analyzing the appropriate Markov process.
We omit the result for the case of non-homogeneous system because of its

awkwardness.

12.6 Further Problems

In a particular case, when the life times are approximately of the same magnitude
and are large enough compared to the repair times (the case of quick restoration),
it is possible to use the idea of the system phase states enlargement, proposed by
Korolyuk and Turbin [KT78] (see also [KK99]). It is well known that for the system in
parallel in the case of quick restoration the time to failure is approximately exponential
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[So70, So71] (see also [Ko80]). Therefore, in the case when all elements have the same
magnitude of life times all working states could be joined into one working state and
the probability characteristic of the system with one working state and one failure state
will be close to the initial system.

This approach could be recursively applied to the system under consideration in
order to evaluate the life time distribution of the whole system in terms of its entire
characteristics.
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Abstract: Parametric point and interval estimators of the cumulative distribution
function of redundant systems with several “warm” stand-by units are proposed. The
data are supposed to be right censored. Accuracy of interval estimators obtained from
complete data was investigated by simulation.
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13.1 Introduction

In literature on reliability (see Rausand and Hoyland [RH04], Shah and Dhillon [SD07],
Srinivasan and Subramanian [SS06], Veklerov [Vek87], Wasson [Was05]), various char-
acteristics of redundant systems with stand-by units functioning in various operating
conditions are studied from probabilistic point of view. If expressions of reliability char-
acteristics of redundant system are written as time functions depending on parameters
of the components and parameters relating the distributions of units functioning in
“warm” and “hot” operating conditions, then reliability of the system may be esti-
mated using estimators of the reliability characteristics of the components. A question
of accuracy of system reliability estimators rises.

In this paper, we consider redundant systems with one main unit andm−1 stand-by
units operating in “warm” conditions, i.e. under lower stress than the main one. The
problem is to obtain confidence intervals for the cumulative distribution functions of
redundant systems using censored failure data of two units tested in “hot” and in
“warm” conditions.

Denote by T1, F1, S1, f1 and λ1 the failure time, cumulative distribution , survival,
probability density and hazard function, respectively, of an unit functioning in “hot”
conditions. In “warm” conditions, we use the same notation using index 2 instead
of 1. We suppose that switching from “warm” to “hot” conditions does not do any
damage to units. Bagdonavičius et al. [BMN08,BMN09] give mathematical formulation

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 177
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
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of “fluent switch on” based on AFT and Sedyakin’s models (see Bagdonavičius [BAG78,
BAG90], Bagdonavičius and Nikulin [BN02], Sedyakin [Sed66]) and propose tests for
verification of this hypothesis.

In this paper, we suppose that the distribution of units functioning in “warm”
and “hot” conditions differ only in scale, i.e. F2(t) = F1(rt) for all t ≥ 0 and some
r > 0. In such a case, the c.d.f. of units functioning in “hot” and “warm” conditions
mostly belong to the same parametric classes of distributions, for example, exponential,
Weibull, loglogistic, gamma.

Denote by Kj(t) the c.d.f. of the system with one main and j − 1 stand-by units.
If the hypothesis of “fluent switch on” of stand-by units is verified (see Bagdonavičius
et al.), then this function can be commuted recurrently:

Kj(t) =
∫ t

0

F1(t+ ry − y)dKj−1(y). (13.1)

In this paper, we consider parametric point and interval estimators of the cumu-
lative distribution function Kj(t) using right censored data obtained from reliability
experiments of units in “hot” and “warm” conditions. Accuracy of interval estimators
is investigated by simulation.

13.2 Parametric Point Estimators of the c.d.f. Kj(t)

Suppose that the following data are available:
(a) Right censored sample

(X11, δ11)T , . . . , (X1n1 , δ1n1)T

of size n1; here

X1i = T1i ∧ C1i, δ1i = 1{T1i≤C1i},

T1i are failure times of units tested in “hot” conditions, C1i – censoring times;
(b) Right censored sample

(X21, δ21)T , . . . , (X2n2 , δ2n2)T

of size n2; here

X2j = T2j ∧ C2j , δ2j = 1{T2j≤C2j},

T2j are failure times of units tested in “warm” conditions, C2j – censoring times.
Suppose that in hot conditions the c.d.f F1(t; θ) is absolutely continuous and

depends on finite dimensional parameter θ ∈ Θ ⊂ Rk. Set γ = (r, θT )T .
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The maximum likelihood estimator γ∗ = (r∗, (θ∗)T )T of the parameter γ maximizes
the loglikelihood function

�(γ) =
n1
∑

i=1

δ1i lnλ1(X1i; θ) +
n1
∑

i=1

lnS1(X1i; θ) +m2 ln r+

n2
∑

j=1

δ2j lnλ1(rX2j ; θ) +
n2
∑

j=1

lnS1(rX2j ; θ); (13.2)

here m2 =
∑n2

j=1 δ2j .
The c.d.f. Kj(t) is estimated recurrently:

K̂j(t) =
∫ t

0

F1(t+ r∗y − y; θ∗)dK̂j−1(y), K̂1(t) = F1(t; θ∗). (13.3)

13.3 Asymptotic Confidence Intervals for Kj(t)

Suppose that

ni
n

= li +O(
1
n

), li ∈ (0, 1), as n = n1 + n2 → ∞.

Under classical assumptions on the family of distributions F1(t, θ)and the censoring
mechanism there exists positively definite matrix i(γ) such that

1√
n
�̇(γ) d→ V = (V1, V2)T ∼ Nk+1(0, i(γ)), − 1

n
�̈(γ∗) P→ i(γ),

√
n(γ∗ − γ) d→ Y = (Y1, Y

T
2 )T ∼ Nk+1(0, i−1(γ)).

V1 and Y1 are one-dimensional, V2 and Y2 – k-dimensional.
Set Î = −�̈(γ̂∗). We have 1

n Î
P→ i(γ).

Using delta method we obtain:

√
n(K̂2(t) −K2(t)) D→W2(t) = C2(t; γ)TY,

where

C2(t; γ) = (C21(t; γ), CT22(t; γ))T , C21(t; γ) =
∫ t

0

∂

∂r
F1(t+ ry − y; θ)dF1(y; θ),

C22(t; γ) =
∫ t

0

∂

∂θ
F1(t+ ry − y; θ)dF1(y; θ) + F1(t+ ry − y; θ)d(

∂

∂θ
F1(y; θ)).

The random variable W2(t) is linear function of Y.
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If j ≥ 2 then √
n(K̂j(t) −Kj(t))

D→Wj(t),

where the random variable Wj(t), j ≥ 2, is linear function of Y:

Wj(t) = Y TCj(t; γ), Cj(t; γ) ∈ (C[0, t])k+1.

It follows by induction:

Wj(t) = Y T (
∫ t

0

∂

∂γ
F1(t+ ry − y; θ)dKj−1(y; γ) + F1(t+ ry − y; θ)dCj−1(t; γ)).

So the variance

Var(Wj(t)) = Var(Cj(t; γ)TY ) = CTj (t; γ)i−1(γ)Cj(t; γ)

is estimated by nCT2 (t; γ̂)Î−1)Cj(t; γ̂), and the variance σ2
K̂j(t)

of the estimator K̂2(t)
is estimated by

σ̂2
K̂j(t)

= CTj (t; γ̂)I−1(γ̂)Cj(t; γ̂).

The asymptotic 1 − α confidence interval for Kj(t) is

K̂j(t) ± σ̂K̂j(t)
z1−α/2, (13.4)

or, alternatively, (Kj(t),Kj(t)), where

Kj(t) =

⎛

⎝1 +
1 − K̂j(t)
K̂j(t)

exp

⎧

⎨

⎩

σ̂K̂j
z1−α/2

√

K̂j(t)(1 − K̂j(t))

⎫

⎬

⎭

⎞

⎠

−1

,

Kj(t) =

⎛

⎝1 +
1 − K̂j(t)
K̂j(t)

exp

⎧

⎨

⎩

−
σ̂K̂j

z1−α/2
√

K̂j(t)(1 − K̂j(t))

⎫

⎬

⎭

⎞

⎠

−1

; (13.5)

here z1−α/2 is (1 − α/2) quantile of the standard normal law.

13.3.1 Exponential Distribution

Suppose that the distribution of failure times in “hot” and “warm” conditions is
exponential, i.e. S1(t) = e−λt.
The loglikelihood function has the form

l(r;λ) = m lnλ+m2 ln r − λ(
n1
∑

i=1

X1i + r

n2
∑

j=1

X2j);

here mk =
∑nk

i=1 δki, k = 1, 2, m = m1 + m2. Equating the score function to zero we
obtain the system of equations

�̇r =
∂l

∂r
=
m2

r
− λ

n2
∑

j=1

X2j = 0, �̇λ =
∂l

∂λ
=
m

λ
−

n1
∑

i=1

X1i − r

n2
∑

j=1

X2j = 0.
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So the estimators of the parameters r and λ are:

r̂ =
∑n1
i=1X1i/m1

∑n2
j=1X2j/m2

; λ̂ =
m1

∑n1
i=1 X1i

.

Second partial derivatives are

�̈r2 = −m2

r2
; �̈λ2 = −m

λ2
; �̈λr = −

n2
∑

j=1

X2j .

So

Î−1 =

(

mr̂2

m1m2
− λ̂r̂

m1

− λ̂r̂
m1

λ̂2

m1

)

.

In the case of exponential distribution, the c.d.f. of the redundant system has explicit
form

Kj(t) =
j−1
∏

i=1

(

1 +
1
ir

) j−1
∑

i=0

(−1)iCij−1

1 − e−λ(1+ir)t

1 + ir
.

So the weights Cj = (Cj1, Cj2)T are:

Cj1(t; r, λ) =
∂Kj(t)
∂r

=
j−1
∏

i=1

(

1 +
1
ir

)

[

−1
r

j−1
∑

i=1

1
1 + ir

j−1
∑

i=0

(−1)iCij−1

1 − e−λ(1+ir)t

1 + ir

+
j−1
∑

i=0

(−1)iCij−1

e−λ(1+ir)t[iλt(1 + ir) + i] − i

(1 + ir)2

]

,

Cj2(t; r, λ) =
∂Kj(t)
∂λ

= t

j−1
∏

i=1

(

1 +
1
ir

) j−1
∑

i=0

(−1)iCij−1e
−λ(1+ir)t.

The estimator of the variance σ2
K̂j(t)

of the estimator K̂j(t) is

σ̂2
K̂j(t)

= CTj (t; r̂, λ̂)Î−1Cj(t; r̂, λ̂),

and the asymptotic 1 − α confidence interval for Kj(t) has the form (13.4) or,
alternatively, (13.5).

In the case j = 2,

C2(t; r, λ) = (C21(t; r, λ), C22(t; r, λ))T

=
(

S1(t)
r2

(F2(t) − rλtS2(t)),
(1 + r)t

r
S1(t)F2(t)

)

,

σ̂2
K̂2(t)

=
Ŝ2

1(t)

ml̂1 l̂2r2

(

l̂1

[

F̂2(t) − λ̂r̂tŜ2(t)
]2

+ l̂2

[

(1 − λ̂t)F̂2(t) − λ̂r̂t
]2

)

;

here l̂i = mi/m, Ŝ1(t) = e−λ̂t, Ŝ2(t) = e−r̂λ̂t, F̂i(t) = 1 − Ŝi(t).
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Figure 13.1. Graphs of the trajectories of the parametric estimators F̂1, K̂2 (exponential
distribution)

Table 13.1. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.114 0.319 0.667 0.856 0.941 0.977
Confidence level (%) 89.9 89.4 88.9 90.2 90.0 91.5

Table 13.2. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K3(t) 0.018 0.092 0.309 0.479 0.573 0.617
Confidence level (%) 88.6 91.8 92.8 90.8 89.9 90.3

In the case of complete samples of size n1 = n2 = 100, we found by simulation
finite sample confidence levels of the intervals obtained using asymptotic formulas with
1−α = 0.9. We simulated failure times T1j and T2j from exponential distribution with
following parameters:

T1j ∼ E(λ1), T2j ∼ E(λ2), λ1 =
1

100
, λ2 =

1
300

.

The number of replications was 2,000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given in Table 13.1.

For various values of t the proportions of confidence interval realizations covering
the true value of the distributional function K3(t) are given in Table 13.2.

13.3.2 Weibull Distribution

Suppose that the distribution of failure times in “hot” and “warm” conditions is
Weibull, i.e. S1(t) = e−(t/μ)ν

.
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The loglikelihood function is

l(r; θ) = m(ln ν − ν lnμ) + νm2 ln r + (ν − 1)(
n1
∑

i=1

δ1i lnX1i +
n2
∑

j=1

δ2j lnX2j)

− 1
μν

(
n1
∑

i=1

Xν
1i + rν

n2
∑

j=1

Xν
2j).

Equating the score function to zero the following system of equations is obtained:

�̇r =
m2ν

r
− νrν−1

μν

n2
∑

j=1

Xν
2j = 0;

�̇ν =
m

ν
−m lnμ+m2 ln r +

n1
∑

i=1

δ1i lnX1i +
n2
∑

j=1

δ2j lnX2j

+
1
μν

[lnμ(
n1
∑

i=1

Xν
1i+r

ν
n2
∑

j=1

Xν
2j)−

n1
∑

i=1

Xν
1i lnX1i−rν ln r

n2
∑

j=1

Xν
2j−rν

n2
∑

j=1

Xν
2j lnX2j ] = 0;

�̇μ = −mν
μ

+
ν

μν+1
(
n1
∑

i=1

Xν
1i + rν

n2
∑

j=1

Xν
2j) = 0.

Resolving this system of equations we obtain that the estimators μ̂ and r̂ are explicit
functions of the estimator ν̂:

μ̂ =

(

1
m1

m1
∑

i=1

X ν̂
1i

)1/ν̂

, r̂ =

⎛

⎜

⎜

⎝

m2

m1

m1
∑

i=1

X ν̂
1i

m2
∑

j=1

X ν̂
2j

⎞

⎟

⎟

⎠

1/ν̂

.

The estimator ν̂ satisfies the equation

m

ν̂
+

n1
∑

i=1

δ1i lnX1i +
n2
∑

j=1

δ2j lnX2j −m1

∑n1
i=1 X

ν
1i lnX1i

∑n1
i=1X1i

− n2

∑n2
j=1 X

ν
2j lnX2j

∑n2
j=1 X2j

= 0.

Second partial derivatives of the loglikelihood function are

�̈r2 = −m2ν

r2
− ν(ν − 1)rν−2

μν

n2
∑

j=1

Xν
2j ; �̈rμ =

ν2rν−1

μν+1

n2
∑

j=1

Xν
2j ;

�̈rν =
m2

r
− rν−1 + νrν−1(ln r − lnμ)

μν

n2
∑

j=1

Xν
2j −

νrν−1

μν

n2
∑

j=1

Xν
2j lnX2j ;

�̈ν2 = −m

ν2
− 1
μν

lnμ[lnμ(
n1
∑

i=1

Xν
1i + rν

n2
∑

j=1

Xν
2jt) −

n1
∑

i=1

Xν
1i lnX1i
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−rν ln r
n2
∑

j=1

Xν
2j − rν

n2
∑

j=1

Xν
2j lnX2j ]

+
1
μν

[lnμt(
n1
∑

i=1

Xν
1i lnX1i + rν ln r

n2
∑

j=1

Xν
2j + rν

n2
∑

j=1

Xν
2j lnX2j)

−
n1
∑

i=1

Xν
1i ln2X1i − rν ln2 r

n2
∑

j=1

Xν
2j − rν ln r

n2
∑

j=1

Xν
2j lnX2j

−rν ln r
n2
∑

j=1

Xν
2j lnX2j − rν

n2
∑

j=1

Xν
2j ln2X2j ];

�̈μν = −m
μ

+
μν+1 − νμν+1 lnμ

μ2(ν+1)
(
n1
∑

i=1

Xν
1i + rν

n2
∑

j=1

Xν
2j)c

+
ν

μν+1
(
n1
∑

i=1

Xν
1i lnX1i + rν ln r

n2
∑

j=1

Xν
2j + rν

n2
∑

j=1

Xν
2j lnX2j);

�̈μ2 =
nν

μ2
− ν(ν + 1)

μν+2
(
n1
∑

i=1

Xν
1i + rν

n2
∑

j=1

Xν
2j).

The estimator of the c.d.f. K2 is

K̂2(t) = 1 − e−( t
μ̂ )ν̂ − ν̂

μ̂

∫ t

0

(

y

μ̂

)ν̂−1

e−( t+r̂y−y
μ̂ )ν̂−( y

μ̂ )ν̂

dy,

and the functions C2i are

C21(t) =
∂K2(t)
∂r

=
ν2

μ

∫ t

0

(

y

μ

)ν (

t+ ry − y

μ

)ν−1

e−( t+ry−y
μ )ν−( y

μ )ν

dy,

C22(t) =
∂K2(t)
∂μ

= − ν
μ

(

t

μ

)ν

e−( t
μ )ν

+
ν2

μ2

∫ t

0

(

y

μ

)ν−1 [

1 −
(

y

μ

)ν

−
(

t+ ry − y

μ

)ν]

e−( t+ry−y
μ )ν−( y

μ )ν

dy,

C23(t) =
∂K2(t)
∂ν

=
(

t

μ

)ν

e−( t
μ )ν

ln
(

t

μ

)

− 1
μ

∫ t

0

(

y

μ

)ν−1

e−( t+ry−y
μ )ν−( y

μ )ν

dy

+
ν

μ

∫ t

0

(

y

μ

)ν−1 [(

y

μ

)ν

ln
(

y

μ

)

+
(

t+ ry − y

μ

)ν

ln
(

t+ ry − y

μ

)]

e−( t+ry−y
μ )ν−( y

μ )ν

dy

− ν
μ

∫ t

0

(

y

μ

)ν−1

ln
(

y

μ

)

e−( t+ry−y
μ )ν−( y

μ )ν

dy,
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The estimator of the variance σ2
K̂2(t)

of the estimator K̂2(t) is

σ̂2
K̂2(t)

= CT2 (t; r̂, μ̂, ν̂)(−�̈(r̂, μ̂, ν̂))−1C2(t; r̂, μ̂, ν̂), (13.6)

C2(t; r̂, μ̂, ν̂) = (C21(t; r̂, μ̂, ν̂), C22(t; r̂, μ̂, ν̂), C23(t; r̂, μ̂, ν̂))T .

The asymptotic 1−α confidence interval for K2(t) is of the form (13.4) or, alternatively,
(13.5) with j = 2.

The formulas simplify in the case of complete samples. Noting that the random
variables Z1i =

(

T1i

μ

)ν

have the standard exponential distribution, i.e. Z1i ∼ E(1) we
obtain

T1i = μZ
1/ν
1i , T ν1i = μνZ1i, T ν1i lnT1i = μν lnμZ1i +

μν

ν
Z1i lnZ1i;

T ν1i ln2 T1i = μν ln2 μZ1i +
2μν

ν
lnμZ1i lnZ1i +

μν

ν2
Z1i ln2 Z1i.

We have

EZ1i = 1, EZ1i lnZ1i =

∞
∫

0

x ln xe−xdx = Γ ′(2),

EZν1i ln2 Z1i =

∞
∫

0

xe−x ln2 xdx = Γ ′′(2).

So
ET ν1i = μν ,

ET ν1i lnT1i = E
(

μν

ν
Z1i lnZ1i + μν lnμZ1i

)

=
μν

ν
[Γ ′(2) + ν lnμ] ;

ET ν1i ln2 T1i =
μν

ν2

[

Γ ′′(2) + 2νΓ ′(2) lnμ+ ν2 ln2 μ
]

.

The random variables rT2j and T1i have the same distribution, so

ET ν2i = E
1
rν

(rT2i)
ν =

(μ

r

)ν

,

T ν2j lnT2j =
1
rν

(rT2j)ν [ln(rT2j) − ln r] =
1
rν

((rT2j)ν ln(rT2j) − ln r(rT2j)ν) ;

ET ν2j lnT2j =
1
rν

(

μν

ν
(Γ ′(2) + ν lnμ) − μν ln r

)

=
μν

rνν

(

Γ ′(2) + ν ln
μ

r

)

.

ET ν2j ln2 T2j =
1
ν2

(μ

r

)ν [

Γ ′′(2) + 2νΓ ′(2) ln
μ

r
+ ν2 ln2 μ

r

]

.
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Using the obtained means we compute the means of the second partial derivatives of
the loglikelihood function:

E�̈r2 = −ν
2n2

r2
; E�̈rμ =

n2ν
2

rμ
; E�̈rν = −n2

r
Γ ′(2);

E�̈μ2 = −nν
2

μ2
; E�̈μν =

nΓ ′(2)
μ

; E�̈ν2 =
n

ν2
(1 + Γ ′′(2)).

So the Fisher information matrix is

I(r, μ, ν) =

⎛

⎜

⎝

n2ν
2

r2 −n2ν
2

rμ
n2
r Γ

′(2)
−n2ν

2

rμ
nν2

μ2 −n
μΓ

′(2)
n2
r
Γ ′(2) −n

μ
Γ ′(2) n

ν2 (1 + Γ ′′(2))

⎞

⎟

⎠
.

The inverse of the Fisher information matrix is

I−1(r, μ, ν) =

⎛

⎜

⎜

⎜

⎝

nr2

n1n2ν2
rμ
n1ν2 0

rμ
n1ν2

μ2n[1+Γ ′′(2)]−μ2n2[Γ ′(2)]2

n1nν2(1+Γ ′′(2)−[Γ ′(2)]2)
μΓ ′(2)

n(1+Γ ′′(2)−[Γ ′(2)]2)
0 μΓ ′(2)

n(1+Γ ′′(2)−[Γ ′(2)]2)
ν2

n(1+Γ ′′(2)−[Γ ′(2)]2)

⎞

⎟

⎟

⎟

⎠

.

The estimator of the variance σ2
K̂2(t)

of the estimator K̂2(t) is

σ̂2
K̂2(t)

= CT2 (t; r̂, μ̂, ν̂)I−1(r̂, μ̂, ν̂)C2(t; r̂, μ̂, ν̂). (13.7)

The asymptotic 1−α confidence interval for K2(t) is of the form (13.4) or, alternatively,
(13.5) with j = 2.

In the case of complete samples of size n1 = n2 = 100, we found by simulation
finite sample confidence levels of the intervals obtained using asymptotic formulas with

Figure 13.2. Graphs of the trajectories of the parametric estimators F̂1, K̂2 (Weibull
distribution)
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Table 13.3. Confidence level for finite samples (n1 = n2 = 100)

Time, t 50 100 200 300 400 500

K2(t) 0.018 0.194 0.822 0.992 0.999 1.000
Confidence level (%) 89.4 89.2 89.2 89.5 89.5 90.2

1−α = 0.9. We simulated failure times T1j and T2j from the Weibull distribution with
following parameters:

T1j ∼W (α1, β1), T2j ∼ W (α2, β2),

α1 = α2 = 2, β1 = 100, β2 = 300.

The number of replications was 2,000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:

13.3.3 Loglogistic Distribution

Suppose that the distribution of failure times in “hot” and “warm” conditions is
loglogistic. So S1(t) = 1

1+(t/μ)ν . The loglikelihood function has the form

l(r;μ, ν) = m ln ν − νm lnμ+ νm2 ln r + (ν − 1)(
n1
∑

i=1

δ1i lnX1i +
n2
∑

j=1

δ2j lnX2j)

−
n1
∑

i=1

(1 + δ1i) ln
(

1 +
(

X1i

μ

)ν)

−
n2
∑

j=1

(1 + δ2j) ln
(

1 +
(

rX2j

μ

)ν)

.

Partial derivatives are

�̇r =
νm2

r
− ν

r

n2
∑

j=1

(1 + δ2j)

(

rX2j

μ

)ν

1 +
(

rX2j

μ

)ν ;

�̇μ = −νm
μ

+
ν

μ

n1
∑

i=1

(1 + δ1i)

(

X1i

μ

)ν

1 +
(

X1i

μ

)ν +
ν

μ

n2
∑

j=1

(1 + δ2j)

(

rX2j

μ

)ν

1 +
(

rX2j

μ

)ν ;

�̇ν =
m

ν
−m lnμ+m2 ln r +

n1
∑

i=1

δ1i lnX1i +
n2
∑

j=1

δ2j lnX2j

−
n1
∑

i=1

(1 + δ1i)

(

X1i

μ

)ν

log
(

X1i

μ

)

1 +
(

X1i

μ

)ν −
n2
∑

j=1

(1 + δ2j)

(

rX2j

μ

)ν

log
(

rX2j

μ

)

1 +
(

rX2j

μ

)ν .

Set

Ui =
(

X1i

μ

)ν

, Vj =
(

rX2j

μ

)ν

.
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Second partial derivatives of the loglikelihood function are

�̈r2 = −νm2

r2
+

ν

r2

n2
∑

j=1

(1 + δ2j)
Vj

1 + Vj
− ν2

r2

n2
∑

i=1

(1 + δ2j)
Vj

(1 + Vj)2
,

�̈rμ =
ν2

rμ

m2
∑

j=1

(1 + δ2j)
Vj

(1 + Vj)2
,

�̈rν =
m2

r
− 1
r

n2
∑

j=1

(1 + δ2j)
Vj

1 + Vj
− 1
r

n2
∑

j=1

(1 + δ2j)
Vj lnVj

(1 + Vj)2
,

�̈μ2 =
mν

μ2
− 2ν
μ2

⎛

⎝

n1
∑

i=1

(1 + δ1i)
Ui

1 + Ui
+

n2
∑

j=1

(1 + δ2j)
Vi

1 + Vi

⎞

⎠

−2ν2

μ2

⎛

⎝

n1
∑

i=1

(1 + δ1i)
Ui

(1 + Ui)2
+

n2
∑

j=1

(1 + δ2j)
Vi

(1 + Vi)2
;

⎞

⎠ ,

�̈μν = −m
μ

+
1
μ

⎛

⎝

n1
∑

i=1

(1 + δ1i)
Ui

1 + Ui
+

n2
∑

j=1

(1 + δ2j)
Vj

1 + Vj

⎞

⎠

+
2
μ

⎛

⎝

n1
∑

i=1

(1 + δ1i)
Ui lnUi

(1 + Ui)2
+

n2
∑

j=1

(1 + δ2j)
Vi lnVi

(1 + Vi)2

⎞

⎠ ,

�̈ν2 = −m

ν2
− 1
ν2

⎛

⎝

n1
∑

i=1

(1 + δ1i)
Ui ln2 Ui
(1 + Ui)2

+
n2
∑

j=1

(1 + δ2j)
Vi ln2 Vi
(1 + Vi)2

⎞

⎠ .

The estimator of the c.d.f. K2(t) is

K̂2(t) = 1 − 1

1 +
(

t
μ̂

)ν̂
− ν̂

μ̂

t
∫

0

(

y

μ̂

)ν̂−1 1

1 +
(

t+r̂y−y
μ̂

)ν̂

1
(

1 +
(

y
μ̂

)ν̂
)2 dy,

and the functions C2i are

C21(t) = ν2

∫ t

0

(

y

μ

)ν (

t+ ry − y

μ

)ν−1 (

1 +
(

y

μ

)ν)−2 (

1 +
(

t+ ry − y

μ

)ν)−2

dy,

C22(t) = − ν
μ

(

t

μ

)ν (

1 +
(

t

μ

)ν)−2

−
∫ t

0

ν2
(

y
μ

)ν−1

μ2
(

1 +
(

t+ry−y
μ

)ν)(

1 +
(

y
μ

)ν)2

×
1 −

(

y
μ

)ν

− 2
(

y
μ

)ν (

t+ry−y
μ

)ν

(

1 +
(

t+ry−y
μ

)ν)(

1 +
(

y
μ

)ν) dy,
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C23(t) =
(

t

μ

)ν (

1 +
(

t

μ

)ν)−2

ln
(

t

μ

)

− 1
μ

∫ t

0

(

y

μ

)ν−1 (

1 +
(

y

μ

)ν)−2

×
(

1 +
(

t+ ry − y

μ

)ν)−1
[

(

1 +
(

y

μ

)ν

− ν ln
(

y

μ

)(

1 −
(

y

μ

)ν))(

1 +
(

y

μ

))−1

−ν
(

t+ ry − y

μ

)ν (

1 +
(

t+ ry − y

μ

)ν)−1

ln
(

t+ ry − y

μ

)

]

dy,

The estimator of the variance σ2
K̂2(t)

of the estimator K̂2(t) has the form (13.6) and
the asymptotic 1 − α confidence interval for K2(t) is of the form (1) or, alternatively,
(2) taking j = 2.

The formulas simplify in the case of complete samples. In such a case the random
variables Ui and Vj are identically distributed with the probability density function of
the standard loglogistic distribution: fUi(x) = fVj (x) = 1/(1 + x)2. It implies that for
any k > −2 and a ∈ (−1, k + 1)

g(a) = E
Uai

(1 + Ui)k
=

∞
∫

0

xa

(1 + x)k+2
dx =

Γ (k − a+ 1)Γ (a+ 1)
Γ (k + 2)

.

g′(a) = E
Uai lnUi
(1 + Ui)k

=
∫ ∞

0

xa

(1 + x)k+2
lnxdx

=
(Γ (k − a+ 1)Γ (a+ 1))′a

Γ (k + 2)
=

−Γ ′(k − a+ 1)Γ (a+ 1) + Γ (k − a+ 1)Γ ′(a+ 1)
Γ (k + 2)

;

g′′(a) = E
Xa
i ln2Xi

(1 +Xi)k
=

∫ ∞

0

xa

(1 + x)k+2
ln2 xdx

=
Γ ′′(k − a+ 1)Γ (a+ 1) − 2Γ ′(k − a+ 1)Γ ′(a+ 1) + Γ (k − a+ 1)Γ ′′(a+ 1)

Γ (k + 2)
.

If a = 1 and k = 1, then

E
Ui

1 + Ui
=

1
2
, E

Ui lnUi
1 + Ui

=
−Γ ′(1) + Γ ′(2)

2
;

if a = 1 and k = 2, then

E
Ui

(1 + Ui)2
=

1
6
, E

Ui lnUi
(1 + Ui)2

= 0, E
Ui ln2 Ui
(1 + Ui)2

=
Γ ′′(2) − [Γ ′(2)]2

3
,

if a = 2 and k = 2, then

E
U2
i

(1 + Ui)2
=

−2Γ ′(1) + Γ ′(3)
6

.
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Figure 13.3. Graphs of the trajectories of the parametric estimators F̂1, K̂2 (loglogistic
distribution)

Now we are able to compute the means of the second partial derivatives of the
loglikelihood function:

E�̈r2 = −n2ν
2

3r2
, E�̈rμ =

n2ν
2

3rμ
, −E�̈rν = 0;

E�̈μ2 = −nν
2

3μ2
, E�̈μν = 0, −E�̈ν2 =

n

3ν2
(3 + 2Γ ′′(2) − 2(Γ ′(2))2);

So the Fisher information matrix is

I(r, μ, ν) =

⎛

⎜

⎝

n2ν
2

3r2 −n2ν
2

3rμ 0
−n2ν

2

3rμ
nν2

3μ2 0

0 0 n{3+2Γ ′′(2)−2[Γ ′(2)]2}
3ν2

⎞

⎟

⎠

The inverse of the Fisher information matrix is

I−1(r, μ, ν) =

⎛

⎜

⎝

3nr2

n1n2ν2
3rμ
n1ν2 0

3rμ
n1ν2

3μ2

n1ν2 0
0 0 3ν2

n{3+2Γ ′′(2)−2[Γ ′(2)]2}

⎞

⎟

⎠
.

The estimator of the variance σ2
K̂2(t)

of the estimator K̂2(t) is of the form (13.7).
The asymptotic 1 − α confidence interval for K2(t) is of the form (13.4) or, alter-

natively, (13.5) with j = 2.
In the case of complete samples of size n1 = n2 = 100 we found by simulation

finite sample confidence levels of the intervals obtained using asymptotic formulas with
1 − α = 0.9. We simulated failure times T1j and T2j from loglogistic distribution with
following parameters:

T1j ∼ L(α1, β1), T2j ∼ L(α1, β1),
α1 = α2 = 2, β1 = 100, β2 = 300.
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Table 13.4. Confidence level for finite samples (n1 = n2 = 100).

Time, t 50 100 200 300 400 500

K2(t) 0.016 0.138 0.517 0.743 0.851 0.905
Confidence level (%) 89.0 88.8 90.4 89.6 89.5 90.5

The number of replications was 2000. For various values of t the proportions of
confidence interval realizations covering the true value of the distributional function
K2(t) are given below:
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Abstract: Suppose that a list of explanatory variables and corresponding random
responses was obtained during a series of regression experiments. The characteristic
of interest is the mean value of responses considered as a regression function of cor-
responding values of explanatory variables. For example, if responses are failure times
of tested elements, then the conditional mean value of life time given the value of
explanatory variable is one of the important reliability characteristics of the tested
elements. The analysis of this type of data can be realized in the framework of linear
heteroscedastic regression models. Here, one of the central problems is a consistent es-
timation of the unknown regression function when the size of data grows unboundedly.
The problems related to analysis of regression data attracted many researches, see Wu
[Ann. Statist. 14, 1261–1350 (1986)]. We give an approach to consistent solution of the
problems under the assumption that values of explanatory variables are real numbers
and the regression function is a polynomial with unknown degree and coefficients. The
selection of regression function is based on resamplings from terms in the sum of the
residuals estimated by the ordinary least squares method with various values of poly-
nomial degree. In a similar way, resamplings from the weighted estimated residuals are
used for consistent estimation of the deviations distributions of estimated coefficients
from their true unknown values. The consistency of applied resamplings methods holds
under certain assumptions, e.g. it is assumed that the residuals distributions have uni-
formly integrable second moments (assumption AW2). Given in Appendix a variant of
the Central Limit Resampling Theorem is used in the proofs of Theorems 1 and 2.

Keywords and phrases: Asymptotic normality, Distributions of deviations, Least
squares estimators, Linear heteroscedastic regression, Overparametrisation, Resampled
sums of weighted estimated residuals, Selection of regression function

14.1 Introduction

Usually, the analysis of statistical data includes three steps. In the first step, after a
pilot analysis of a given statistical data, an appropriate statistical model is suggested.
In the second step, statistical inferences, e.g. point estimation, p-values, classification,

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 193
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 14, c© Springer Science+Business Media, LLC 2010
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etc., are realized. In the third step, the accuracy of the obtained statistical inferences
are evaluated. In some statistical models, the last step can be done by using computer
intensive methods Efron [E79], Davison and Hinkley [DH97], Belyaev [Bel07].

We characterize accuracy of an estimator as follows. Suppose that there are n
researchers (n is large). Each researcher realizes an experiment and has obtained data.
Conditions of experiments are the same. Then the obtained data can be considered as
realizations of independent and identically distributed random sets. Each researcher
knows only its own data set. All researches used the same software. They had the same
recommendation to estimate a parameter θ0 of interest. The ith researcher obtains
only one value θ̂i of an estimator Θ̂i and he knows nothing about values of estimates
θ̂j , j �= i, of others researches. The accuracy of such experiments we characterize by the
deviations distribution of the estimates θ̂i, i = 1, ..., n, from the parameter of interest θ0.

If we could know θ0 and all values of estimates θ̂i, i = 1, ..., n, then we could con-
sistently estimate the distribution of deviations Fθ0 [x] = P[Θ̂i − θ0 ≤ x] as n→ ∞ by
the empirical distribution function (e.d.f.)

F̂n[x] =
1
n

n
∑

i=1

I[θ̂i − θ0 ≤ x]. (14.1)

We will call Fθ0 [·] the total distribution of deviations (total d.d.).
We underline that Fθ0 [·] is the same for all researches. It would be useful for every

researcher to know the total d.d. which characterizes the accuracy of the used estimator.
If it would be possible to find a consistent estimator of the total d.d. then each researcher
would have the useful information on possible deviations of its estimate value θ̂i from
the true unknown value θ0. This will be useful addition to the common confidence
intervals which are different for different researches. To find a consistent estimator for
Fθ0 [·], is not a trivial problem because as usual only one data set is known. Under
certain assumptions resampling methods can help to obtain consistent estimator of the
total d.d. Fθ0 [·] if the size n of the known data set grows unboundedly. A variant of the
Central Limit Resampling Theorem (CLRT), which we apply in assessing accuracy of
considered estimators, is given in Appendix.

The main aim of this work is an illustration of the proper resampling methods in
evaluation of accuracy of statistical inferences in the case of regression heteroscedastic
data.

In the analysis of reliability data, it is common to estimate the mean failure time of
tested elements. It is one of important reliability characteristics. Suppose that before
the life testing for each element it is known a value of an explanatory variable. Then
the mean failure should be considered as a function of this explanatory variable. We
suggest estimation of this function and its accuracy in the framework of the linear
heteroscedastic regression model.

We use the following notation. Capital letters denote random variables (r.v.s) and
the corresponding ordinary letters their values, E and P expectation and probability,
respectively, P→ means convergence in probability. The normal distribution function
(d.f.) with mean μ and variance σ2 is Φ

[

x−μ
σ

]

, Φ[x] = 1√
2π

∫ x

−∞ e−z
2/2dz, I[A] is the

indicator of an event A. For vectors we use bold characters and for matrices double-
struck characters. The definition of resampling is given in Appendix. The mark “�” is
used for resampled r.v.s and their characteristics.
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14.2 Linear Heteroscedastic Regression Model

Suppose that we have statistical data dn = {{x1, y1}, ..., {xn, yn}}, x1, ..., xn are values
of explanatory variable and y1, ...., yn are values of responses. One may interpret the
responses as failure times of tested elements. We consider the simplest case of data:
x1, ..., xn, are values of independent identically distributed real r.v.s and responses
y1, ..., yn are values of independent real r.v.s Y1, ..., Yn. We also assume that the dis-
tribution of Yi may vary for different i and it only depends on the value of related
explanatory variable xi, i = 1, ..., n. We assume that E[Y 2

i ] <∞, then, the variances of
Yi, i = 1, ..., n, are finite. The considered type of statistical data is called heteroscedas-
tic. We suppose that there are no other explanatory variables with influence on the
response distributions. It is a strong and restrictive assumption.

We can write

Yi = Exi [Yi] + (Yi − Exi [Yi]) = f [xi] +Wi, i = 1, ..., n.

Wi is called residual, Exi [Wi] = 0. We do not know the function f [x] = Ex[Yi] and
do not observe the true values Wi = wi, i = 1, ..., n. If all Yi are failure times then
f [x] is the mean failure time. The function f [x] is called a regression function if in the
relations

yi = f [xi] + wi, i = 1, ..., n, (14.2)

wi are values of independent r.v.s Wi with zero expectations. It is desirable to know
how it is possible consistently select an appropriate regression function f [x] and to
evaluate accuracy of corresponding estimators. Our approach can be generalized to
data with vector explanatory variables and vector responses {{x1,y1}, ..., {xn,yn}},
Belyaev [Bel04]. The generalization is based on usage of the Cramér–Wold device,
Cramér and Wold [CW36], Belyaev and Sjöstedt de-Luna [BS00].

We simplify the stated problem to find an appropriate regression function. Suppose
that the explanatory variables are values in a finite interval [x−, x+],−∞ < x− <
x+ < +∞, and the true regression function ftr[x] is continuous. Then ftr[x] can be
uniformly approximated on [x−, x+] by polynomials fk[x] = b0 + b1x+ · · · + bkx

k , k =
0, 1, 2, .... Similarly, we could use for approximation f [x] by other systems of functions,
e.g. trigonometric functions. We further simplify the problem. We suppose that the
true regression function ftr[x] is a polynomial ftr[x] = b0(0) + b1(0)x+ · · ·+ bk0(0)xk0 ,
bk0(0) �= 0. Its degree k0 and its k0 + 1 parameters are not known. The regression data
can be written as the following system of relations

y1 = b0(0) + b1(0)x1 + · · · + bk0(0)xk01 + w1,

· · · · · · · · · · · · (14.3)
yn = b0(0) + b1(0)xn + · · · + bk0(0)xk0n + wn,

bk0(0) �= 0. Recall that the vector {b0(0), ..., bk0(0)}, and the true degree k0 are unknown
parameters.

Let Fk be the set of all polynomials of degree k. We try to find ftr[x] among
functions

fk[x] = b0 + b1x+ · · · + bkx
k ∈ Fk.
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If k > k0, then we have the case with overparametrisation. If k < k0, then we have the
case with underparametrisation. We will show how it is possible consistently recognize
as n → ∞ which of these two cases we have for any given k. We can do that by a
special investigation of estimated residuals.

We say that a polynomial fk[x] = b0 + b1x+ b2x
2 + · · ·+ bkx

k belongs to the set of
selected models sMI0I1...Ik where Ij = 1 if we do not know bj and we want to estimate
it, otherwise if we know that bj = 0 then we let Ij = 0, j < k, Ik = 1. For example,
f2(x) = 4

9 + 4
3x−x2 belongs to sM111, f2(x) = 4

3x−x2 belongs to sM011, f1(x) = 9
4−x2

belongs to sM101 f2(x) = 9
4 + 4

3x belongs to sM11, etc. In the overparametrisation
case bk(0) = 0 if k > k0. We will use vectors’ notation yn = {y1, ..., yn}T , (“T” –
transposed), i.e. yn is a column vector, x̃h = {1, xh, x2

h, ..., x
k
h}T , h = 1, ..., n

bk(0) = {b0(0), ..., bk(0)}T , wn = {w1, ..., wn}T , and the matrices

Xnk =

⎛

⎝

1 x1 x2
1 ... xk1

· · · · · · · · · · · · · · ·
1 xn x2

n ... xkn

⎞

⎠ ,XT

nk =

⎛

⎜

⎜

⎝

1 1 · · · 1
x1 x2 ... xn
· · · · · · · · · · · ·
xn1 xn2 ... xnn

⎞

⎟

⎟

⎠

.

The regression equations can be written as follows,

Yn = Xnkbk(0) + Wn. (14.4)

X
T

nkXnk is a symmetric (k + 1) × (k + 1)-matrix. Let the matrix Xnk(j), the vectors
bk(j), and x̃h(j) be obtained by exclusion the jth column in Xnk, the jth component
in bk, and xjh in x̃h, respectively. The notation fk(j)[x] is used if the term bj(0)xj is
excluded from the regression polynomial fk[x].

In general case, when rank (XT

nkXnk) < k+1 then the Moore–Penrose inverse matrix
(XT

nkXnk)+ to (XT

nkXnk) should be used, Searly [S71]. In this case (XT

nkXnk)+ should
be used.

By M(XT

nk) we denote the linear subspace in R
k+1 generated by the column vectors.

Let c = {c0, c1, ..., ck}T , c ∈ M(XT

nk), Xnk =

⎡

⎣

x̃T
1

· · ·
x̃T
n

⎤

⎦ , X
T

nk = [x̃1...x̃n].

The following relations hold

X
T

nkXnk =
n
∑

h=1

x̃hx̃T

h , (XT

nkXnk)+(XT

nkXnk)(XT

nkXnk)+ = (XT

nkXnk)+. (14.5)

The symmetric matrix (XT

nkXnk)+X
T

nkXnk is a projector on M(XT

nk) = M(XT

nkXnk).
Hence, we have

x̃T

h(XT

nkXnk)+X
T

nkXnk = x̃T

h . (14.6)

We assume that for any given k and all sufficiently large n the rank (XT

nkXnk) = (k+1)
then (XT

nkXnk)+ = (XT

nkXnk)−1, M(XT

nk) = R
k+1, and

b̂(k, n) = {b̂0(k, n), ..., b̂k(k, n)}T = (XT

nkXnk)−1
X

T

nkYn (14.7)

is the ordinary least squares (OLS-) estimate of bk(0) = {b0(0), ..., bk(0)}T . The OLS-
estimate for the true residuals is

Ŵn(k) = {Ŵ1n(k), ..., Ŵnn(k)}T = Yn − Xnkb̂k(n). (14.8)
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We introduce the following assumptions on residuals and explanatory variables:

AW1: (i) True residuals W1, ...,Wn are independent real-valued random variables; dis-
tribution of Wh may depend on the value of xh, h ≥ 1, −∞ < x− ≤ xh ≤ x+ <∞;

(ii) E[Wh] = 0, h ≥ 1;

(iii) There exist two 0 < σ2
− ≤ σ2

+ <∞ such that

σ2
− ≤ σ2

h[xh] = E[W 2
h ] ≤ σ2

+;

AW2 : For each ε > 0 there is an aε > 0 such that

sup
h≥1

E[W 2
h I[|Wh |> aε]] < ε;

AX1 : Trace tr (XT

nkXnk)−1 = O
(

1
n

)

, and tr(XT

nk(j)Xnk(j))
−1 = O

(

1
n

)

, j ≤ k,
n→ ∞;

AX2 : t(c, n) = max1≤h≤n
|cT (XT

nkXnk)−1x̃h|√
cT (XT

nkXnk)−1c
→ 0, n→ ∞;

AX3 : s(c, n) =
∑n
h=1

(cT (XT
nkXnk)−1x̃h)2x̃T

h (XT
nkXnk)−1x̃h

cT (XT
nkXnk)−1c

→ 0, n→ ∞.

Numerical experiments show that if explanatory variables “uniformly dense”, e.g. they
are values of independent r.v.s with positive probability density on [x−, x+], then the
sequences of values in AX1–AX3 approach to zero as n→ ∞.

14.3 Resampling from Estimates of Residuals

Recall that k is the degree of the regression polynomial fk[x]. From (14.7) and (14.8),
the OLS-estimators Ŵhn(k) of the residuals Wh, h = 1, ..., n, satisfy the following
relations

Ŵhn(k) = Wh −
n
∑

h′=1

x̃T

h(XT

nkXnk)−1x̃h′Wh′ , h = 1, ..., n, (14.9)

if k ≥ k0. From AW1 and (14.28) we have

E

⎡

⎣E�

⎡

⎣

(

n
∑

h=1

n
∑

h′=1

(N�
hn − 1)x̃T

h(XT

nkXnk)−1x̃h′Wh′

)2
⎤

⎦

⎤

⎦

≤ σ2
+ sup
x−≤x≤x+

‖x̃h‖2tr(XT

nkXnk)−1 = (k + 1)2σ2
+x

2
0tr(XT

nkXnk)−1,

x0 = max
j≤k

{| x− |j , | x+ |j}. (14.10)
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If the coefficient bj(0) �= 0 is erroneously excluded from the regression polynomial
ftr[x], then instead of (14.4) we have that the vector of responses

Yn = Xnk(j)bk(j)(0) + bj(0)xjn + Wn,

where xjn = {xj1, xj2, ..., xjn}T . The estimators of corresponding residuals, obtained by
the least squares method, satisfy the following relation

Ŵn(j)(k) = Wn + bj(0)xjn − Xnk(j)(XT

nk(j)Xnk(j))
−1

X
T

nk(j)(Wn + bj(0)xjn). (14.11)

Let ŵhn(j)(k), h = 1, ..., n, be the estimated components values of random vector
(14.11), then ŵhn(j) = whn + bj(0)u[xh], where

uj [xh] = xjh − x̃h(XT

nk(j)Xnk(j))
−1

X
T

nk(j)x
j
n. (14.12)

We can calculate values uj [xh], h = 1, ..., n, 1 ≤ j ≤ k.
Then, the two sequences of resampled sums

1√
n

n
∑

h=1

(N�
hn − 1)ŵhn(k), (14.13)

1√
n

n
∑

h=1

(N�
hn − 1)ŵhn(j)(k), n = 1, 2, ... (14.14)

are defined and we can simulate their values via simulated copies j�n, r = 1, ..., R for
any given large R.

Let u[x] be a real bounded function on [x−, x+] ⊂ R
1, u+ = supx−≤x≤x+

| u[x] |,
{xh}h≥1 be a sequence, xh ∈ [x−, x+], uh = u[xh], h ≥ 1. Residuals {Wh}h≥1 are
independent r.v.s, E[Wh] = 0, σ2

− ≤ σ2
h[xh] = E[W 2

h ] ≤ σ2
+ < ∞. We introduce the

following notation: uoh = uh − u·n, u·n = 1
n

∑n
h=1 uh, uo2·n = 1

n

∑n
h=1(uoh)2, σ2·n =

1
n

∑n
h=1 σ

2
h[xh]. From (14.28) and AW1 it follows that

σ2
W+u,n = E

⎡

⎣E�

⎡

⎣

(

1√
n

n
∑

h=1

(N�
hn − 1)(Wh + uh)

)2
⎤

⎦

⎤

⎦

=
(

1 − 1
n

)

σ2·n + uo2·n − (u·n)2. (14.15)

We call the sequence of explanatory variables xh, h = 1, 2, ..., , and the function uh
essential if limh→∞(uo2·n − (u·n)2) > 0. Let {Z ′

h}h≥1 and {Z ′′
h}h≥1 be two sequences of

r.v.s with uniformly bounded variances {σ′2
h }h≥1 and {σ′′2

h }h≥1. We say that {Z ′
h}h≥1

has essentially larger variances than {Z ′′
h}h≥1 if limh→∞(σ

′2
h −σ′′2

h ) > 0. If limh→∞(σ
′2
h −

σ
′′2
h ) = 0, then we say that both sequences of r.v.s have equivalent variances. The

following statement follows from (14.15).

Lemma 1. If assumptions AW1,AW2, and AX1 hold, Wh, h ≥ 1, are the residuals,
xh, h = 1, 2, ..., and a real function u[x] are essential then

limn→∞(σ2
W+u,n − (σ2·n) = limn→∞(uo2·n − (u·n)2) > 0, (14.16)



14 Assessing Accuracy of Statistical Inferences by Resamplings 199

i.e. the sequence r.v.s
{

1√
n

∑n
h=1(N�

hn − 1)(Wh + uh)
}

has essentially larger variances

than the sequence
{

1√
n

∑n
h=1(N�

hn − 1)Wh

}

.

Theorem 1. If AW1,AW2,AX1 and AX2 hold, then

(i) For each fixed h r.v.s Ŵhn(k), k ≥ k0, are unbiased and consistent OLS-estimators
of Wh n→ ∞;

(ii)
∣

∣

∣P
[

1√
n

∑n
h=1Wn ≤ z

]

− Φ
[

z
σ·n

]∣

∣

∣ → 0, n→ ∞, σ·n =
(

1
n

∑n
h=1 σ

2
h[xh]

)1/2 ;

(iii) supz
∣

∣

∣P
[

1√
n

∑n
h=1Wh ≤ z

]

− 1√
n

∑n
h=1(N�

hn − 1)I[ŵhn(k) ≤ z]
∣

∣

∣

P→ 0, n→ ∞;
(iv) If bj(0) = 0 is excluded from the list of coefficients bk(0) = {b0(0), ..., bk(0)}T

then the sequence of r.v.s (14.13)and (14.14) have equivalent variances.

Proof. Part (i) follows from (14.9) and AW1. All assumptions in Theorem 3 hold for
r.v.s Zhn = Wh/

√
n. Therefore, (ii) holds. The distributions of the resampled sums

of Wh/
√
n and Ŵhn(k)/

√
n, h = 1, ..., n, are asymptotically normal. From (14.10) it

follows that the distributions’ variances approach each other as n → ∞, and (iii) also
holds. To check (iv), we use relation (14.10) (14.11) with bj(0) = 0, and AX1.

Suppose that for the sequence of explanatory variables xh, h = 1, 2, ..., holds

limn→∞E�

⎡

⎣

(

n
∑

h=1

(N�
hn − 1)uj[xh]

)2
⎤

⎦ > 0. (14.17)

Then, the sequence of resampled sums (14.14) has essentially larger variances than the
sequence of resampled sums (14.13). In this case we have to estimate bj(0)xj .

The suggested approach shows possibility to apply resamplings in consistent iden-
tification of the degree of the true regression polynomial and exclude from estimation
zero coefficients.

14.4 OLS-Estimators of Regression Coefficients
and Their Accuracies

The resampling methods can be used in the consistent assessing distributions of
deviations OLS-estimators b̂j(k, n) from the true values bj(0). If we erroneously include
bj(0) = 0 into the list of unknown coefficients and find their OLS-estimators, then Xnk

does not been reduced to Xnk(j). Then, accuracy of others OLS-estimators will be
worsened, i.e. their variances will be essentially larger. Therefore, it is important be-
fore estimation exclude the zero coefficients from the estimated regression polynomial.
This worsening was observed in a series of numerical experiments.

It is convenient to consider assessing accuracies of the OLS-estimators of linear
forms cT bk(0), c = {c0, ..., ck}T , k ≥ k0. If cj = {δ0j , δ1j , ..., δkj}T , then all re-
gression coefficients bj(0), j = 0, 1, ..., k, k ≥ k0 are unbiasly estimable as in (14.7).
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The OLS-estimator of cT bk(0) is cT (XT

nkXnk)−1
X

TYn. The normed deviation of this
estimate from the linear form cTbk(0) is

cT (XT

nkXnk)−1
X

TYn − cTbk(0)
√

cT (XT

nkXnk)−1c
=

n
∑

h=1

Uhn(c, k), (14.18)

where

Uhn(c, k) =
cT (XT

nkXnk)−1x̃h
√

cT (XT

nkXnk)−1c
Wh. (14.19)

The mean of (14.18) is zero and the variance is

σ2
n(c, k) =

n
∑

h=1

cT (XT

nkXnk)−1x̃hx̃T

h(XT

nkXnk)−1cσ2
h[xh]

cT (XT

nkXnk)−1c
, σ2

− ≤ σ2
n(c, k) ≤ σ2

+.

Theorem 2. If assumptions AW1,AW2, AX1 and AX2 hold, and c = {c0, ..., ck}T ,
k ≥ k0, then

(i) cT (XT

nkXnk)−1
X

T Yn is an unbiased and consistent estimator of cT bk(0), and
for each z ∈ R

1

sup
z

∣

∣

∣

∣

∣

P

[

n
∑

h=1

Uhn(c, k) ≤ z

]

− Φ

[

z

σn(c, k)

]

∣

∣

∣

∣

∣

→ 0, n→ ∞; (14.20)

(ii) If the assumption AX3 also holds then for each z ∈ R
1

sup
z

∣

∣

∣

∣

∣

P �

[

n
∑

h=1

(N�
hn − 1)Ûhn(c, k) ≤ z

∣

∣

∣

∣

∣

Dn = {{x1, y1}, ..., {xn, yn}}
]∣

∣

∣

∣

∣

− P

[

n
∑

h=1

Uhn(c, k) ≤ z

]

P→ 0, n→ ∞. (14.21)

Proof. We check validity of Assumptions (i)–(v) in the Theorem 3 in Appendix. From
(14.18) and (14.19) we have that the terms Zhn = Uhn(c, k), 1 ≤ h ≤ n, are independent
and E[Uhn(c, k)] = 0. Assumptions (ii)–(iv) follow from AW1. From AW2, (14.5) and
the Chebyshev inequality for any small ε > 0 and all sufficiently large n such that
t(c, n) < ε/aε it follows

n
∑

h=1

E[U2
hn(c, k)I[| Uhn(c, k) |> ε]]

≤
n
∑

h=1

(

cT (XT

nkXnk)−1x̃h
√

cT (XT

nkXnk)−1c

)2

E
[

W 2
hI

[

|Wh |> ε

t(c, n)

]]

≤ cT (XT

nkXnk)−1 (
∑n

h=1 x̃hx̃T

h) (XT

nkXnk)−1cε
cT (XT

nkXnk)−1c
< ε, n ≥ 1. (14.22)
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The inequalities (14.22) and AX2 imply that (i) and (v) in Theorem 3 hold. Hence,
the stated relations (14.20) hold. The idea to prove (14.21) is similar to those used in
the proof of Theorem 1. From (14.9) we can write

n
∑

h=1

(N�
hn − 1)Ûhn(c, k) −

n
∑

h=1

(N�
hn − 1)Uhn(c, k)

= −
n
∑

h=1

(N�
hn − 1)

cT (XT

nkXnk)−1x̃h
√

cT (XT

nkXnk)−1c
(Ŵhn(k) −Wh)

= −
n
∑

h=1

n
∑

h′=1

(N�
hn − 1)

cT (XT

nkXnk)−1xhx̃T

h(XT

nkXnk)T x̃h′
√

cT (XT

nkXnk)−1c
Wh′ . (14.23)

From AX3 and (14.28), it follows that the variance of right hand side in (14.23) tends
to zero as n→ ∞. Hence, part (ii) in Theorem 2 holds. We have

P �

[

n
∑

h=1

(N�
hn − 1)Uhn(c, k) ≤ z|Dn = {{x1, y1}, ..., {xn, yn}}

]

= lim
n→∞,R→∞

1
R

R
∑

r=1

I

[

n
∑

h=1

(n�rhn − 1)ûhn(c, k) ≤ z

]

, (14.24)

where n�rhn =
∑n
i=1 I[j�rin = h], and

ûhn(c, k) =
cT (XT

nkXnk)−1x̃h
√

cT (XT

nkXnk)−1c
ŵhn(k).

From (14.20)–(14.24) it follows

sup
z

∣

∣

∣

∣

∣

P

[

cT b̂k(n) − cTbk(0)
√

cT (XT

nkXnk)−1cT
≤ z

]

− 1
R

R
∑

r=1

I

[

n
∑

h=1

(n�rhn − 1)ûhn(c, k) ≤ z

]∣

∣

∣

∣

∣

P→ 0,

(14.25)
R → ∞, n→ ∞.

Under the same assumptions by Cramèr–Wold device one can generalize (14.25) to
consistent simultaneous estimation the deviations distribution of two or more linear
forms cT

i b̂k(n) − cT
i bk(0), i = 1, 2, .... Then it is possible to estimate accuracy of esti-

mated maximum f̂m = maxx fk[x] = f [x̂m] and its position x̂m, Belyaev [Bel04]. This
possibility can be used in searching of optimal designs of regression experiments.

If rank (XT

nkXnk) < k + 1, then the most of relations in Sects. 14.3 and 14.4 hold
with (XT

nkXnk)+ instead of (XT

nkXnk)−1, and c ∈ M(XT

nk).

14.5 Conclusion

Usage of resamplings methods in the analysis of statistical data with explanatory
variables gives new possibilities of consistent identification corresponding statistical
models and consistent evaluation accuracies of related statistical inferences. In the
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considered approach to the analysis data of regression experiments the decision, to
add or exclude bj(0)xj from estimated regression polynomial, can be done by compar-
ison the related distributions of sums of resampled estimated residuals. If bj(0) �= 0
then from lemma 1 it follows that the two related distributions, of sums of resam-
pled estimated residuals, with and without bj(0) will be essentially different for all
sufficiently large n. Then b̂j(k, n) should be included in the list with coefficients of
estimated regression function. Estimates of components in (14.7) are calculated simul-
taneously for each copy of J�n. The erroneous inclusion b̂j(k, n) in the list of components
(14.7) if bj(0) = 0 essentially decreases accuracies of others estimates b̂j′(k, n), j′ �= j.
Hence, the overparametrisation is not desirable. Our numerical experiments show that
the resampling methods from sums of estimated residuals (14.13) and from sums of
weighted deviations (14.18) are efficient methods in assessing accuracies of inferences
in the analysis data of regression experiments. One may detect relationship of the re-
samplings methods with the theoretical problem of consistent estimation distribution
of a sum of n independent r.v.s if we know only one value for each of these r.v.s. Then
usage of the CLRT immediately follows from presentation deviations of the considered
OLS-estimators (14.18)–(14.19) as sums of weighted residuals values.

In several applications, we can also observe such possibility to use the CLRT but in
a more complicated form. In paper Belyaev [Bel05], the resamplings methods are used
in assessing accuracy of the cross-classification probabilities estimated by the cross-
validation method. Here, the estimators are sums of values of locally dependent ran-
dom variables and resamplings are taken from independent subsets which are directed
graphs. The considered in Belyaev [Bel05] 1NN - and kNN -classifiers were applied
in the analysis of digital images transmitted from satellites. The classifiers can also
be applied for rejection as defective the elements with non-admissible probability of
appearance failures after short working time, depending on the values of elements ex-
planatory variables.

Evaluation the accuracy of estimated reliability characteristics is actual in
constructing some mechanical systems with redistributions of applied loads between
non-failed systems’ elements. Cables with many fibres are examples of such systems,
Crowder et al. [CKSS88]. Reliability of cables can be characterised by the distribu-
tion of tensile strengths destroying pieces of tested cables. Each cable consists of m
fibers. If a fiber breaks in a tested cable, then the force applied to the piece of cable
will be immediately equally redistributed between the not yet unbroken fibers. The
redistributed forces may simultaneously destroy one or several new fibers. The applied
force is growing up to the value when all fibers, of the tested piece of cable, will be
broken. The numbers of simultaneously broken fibers and corresponding forces are
registered for each of n tested cable. The martingale theory can be used to obtain a
non-parametric estimator similar to Aalen–Nelson one for the distribution of tensile
forces destroying cables. The resampling methods can be used in assessing accuracy of
such non-parametric estimators, Belyaev and Rydén [BR97], Rydén [Ryd00], where a
variant of the Functional CLRT is given.

There are several economic problems related to the cost-benefit analysis of improve-
ment reliability characteristics. An appropriate increasing of price, which consumers will
be ready to pay for elements with improved reliability characteristics, is essentially to
know for future development and production of such elements. Necessary information
may be collected by a contingent valuation (CV) where randomly sampled consumers
should freely state intervals containing the most reasonable for them future price. It is
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not known where inside the stated intervals exact values of reasonable prices are placed.
The ends of stated intervals depend on the unknown suggested values of prices, and
besides that the ends of the stated intervals may be essentially rounded. Is it possi-
ble to find the distribution of exact prices hidden inside the stated intervals? It is a
rather difficult statistical problem. Its solution depends on developing a correspond-
ing statistical model which is essentially different from the models with censored data
considered in the Survival Analysis, Turnbull [T76], where usually censoring intervals
are independent from positions of exact values.The author of this paper participates
in a research program on evaluation acceptable costs needed for improvement of envi-
ronment. The initial stage of research is presented in report, Belyaev, H̊akansson, and
Kriström [BHK09], where we have not yet a developed appropriate statistical model.
The suggested statistical model will be given in forthcoming research report, Belyaev
and Kriström [BK10]. It seems that there are many similarities with the above statis-
tical problem with prices for elements with improved reliability characteristics.
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Appendix

One approach to evaluation accuracies of statistical inferences is closely related to
a solution of the following problem. Let zn = {z1n, ..., zrn}T be observed values of
r.v.s Zn = {Z1n, ..., Znn}T with independent components. The unknown distributions
of the r.v.s Zhn can be different. It is useful to estimate the distribution of Z·n =
∑n

h=1(Zhn − E[Zhn]) if only one value zhn of Zhn, h = 1, ..., n, is observed. Then the
only one value z·n =

∑n
h=1 zhn is known. Under rather general assumptions, sums of

n values, resampled from the list zn, can be considered as if they have the desirous
distributions of

∑n
h=1(Zhn − E[Zhn]) as n→ ∞.

Let {Xhn : {h, n} ∈ T} be a triangular array of real r.v.s {Xhn} which are in-
dependent for each n = 2, 3, ..., T = {{h, n} : n = 1, 2, ..., h = 1, 2, ..., n}, Xn =
{X1n, ..., Xnn}. The r.v.s Xhn, h = 1, ..., n, may be non-identically distributed. By
{ρn}n≥1 we denote a sequence of positive non-random values which will be used to
rescale r.v.s. We consider the rescaled r.v.s Zhn = Xhn/ρn. Let Z̄·n = Z·n/n, and

Z�
n = {Z1n − Z̄·n, Z2n − Z̄·n, ..., Znn − Z̄·n}. (14.26)

Let J�n = {J�1n, ..., J�nn}, be n independent r.v.s uniformly distributed on {1, 2, ..., n},
i.e. P�[J�in = h] = 1/n, h = 1, ..., n. We use the mark “�” to show that r.v.s’ prob-
abilities and expectations are related to J�n. Values of r.v.s J�in can be obtained on a
personal computer by simulation. Resampling copies, based on the list Z�

n , obtained
via simulation of the r.v.s J�n, will be

Z��
n = {Z��

1n , ..., Z
��
nn}, (14.27)
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where Z��
hn = Z�hn − Z̄·n , Z�hn = ZJ�

hn,n
. Let N�

hn =
∑n
i=1 I(J�in = h). The mean values,

the variances and the covariances of N�
hn are

E�[N�
hn] = 1, E�[(N�

hn − 1)2] = 1 − 1
n
, E�[(N�

h1n − 1)(N�
h2n − 1)] = − 1

n
, h1 �= h2.

(14.28)
The resampled sums of components in Z��

n can be written as follows

Z��
·n =

n
∑

h=1

(N�
hn − 1)Zhn. (14.29)

The variance of Z·n is σ2
·n =

∑n
h=1 E[(Zhn − E[Zhn])2] <∞, if E[Z2

hn] <∞, h ≥ 1.

Theorem 3. (CLRT with sufficient assumptions) Suppose that

(i) max1≤h≤n | Zhn | P→ 0, n→ ∞,

(ii) All second order moments exists, E[Z2
hn] <∞,

(iii) There are constants 0 < σ2− ≤ σ2
+ <∞ such that

σ2
− ≤ σ2

·n ≤ σ2
+,

(iv)
∑n

h=1(E[Zhn])2 → 0, n→ ∞,

(v) (Lindeberg assumption) for every τ > 0

n
∑

h=1

E[(Zhn)2I(| Zhn |> τ)] → 0, n→ ∞. (14.30)

Then for any z

P

[

n
∑

h=1

(Zhn − E[Zhn]) ≤ z

]

− Φ

[

z

σ·n

]

→ 0, n→ ∞, (14.31)

and

P[Z��
·n ≤ z | Z1n, ..., Znn] − P

[

n
∑

h=1

(Zhn − E[Zhn]) ≤ z

]

P→ 0, n→ ∞. (14.32)

Note that (14.32) implies that both sequences of the d.f.s converge mutually to each
other in the uniform metric. For proof of Theorem 1, see e.g. Belyaev [Bel03] and
Belyaev and Sjösted-de-Luna [BS00].

Assumptions (i)–(iii), and (v) imply the sufficient part of the Central Limit Theorem
(CLT), see Loeve [L77]. Assumptions (i)–(v) imply the sufficient part of the Central
Limit Resampling Theorem (CLRT). See also Mammen [M92], and Belyaev [Bel03]
were variants of CLRTs with necessary and sufficient assumptions are given.

This Theorem 3 can be used in the justification consistency of estimators of total
d.d.s in several statistical models. The main idea to use resamplings is follows.

Suppose that we are interested in finding a consistent estimator for the distribution
of

∑n
h=1(Zhn − E[Zhn]) knowing only values {z1n, ..., znn} of r.v.s {Z1n, ..., Znn}.



206 Y.K. Belyaev

Let z̄·n = 1
n

∑n
h=1 zhn, and {j�r1n, ..., j

�r
nn}, r = 1, ..., R, be R independently simulated

copies of the r.v. J�n. We find values z��r
·n =

∑n
h=1(zj�r

hn
,n − z̄·n) =

∑n
h=1(n�rhn − 1)

zhn, r = 1, ..., R. The mean 1
R

∑R
r=1 I[z��r·n ≤ z] is a stepwise function of z. This

stepwise function can be applied to consistent estimation of P[Z��
·n ≤ z | z1n, ..., znn]

as R → ∞ and n→ ∞. From (i)–(v) and (14.32) we have for any z

sup
z

∣

∣

∣

∣

∣

1
R

R
∑

r=1

I[z��r
·n ≤ z ] − P

[

n
∑

h=1

(Zhn − E[Zhn]) ≤ z

]∣

∣

∣

∣

∣

P→ 0, (14.33)

as R → ∞ and n→ ∞. In addition, relation (14.31) implies that both terms in (14.33)
approach to the sequence of normal d.f.s Φ

[

z
σ·n

]

included in (14.31). Note that (14.33)
is the convergence in the uniform metric in probability.
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with Fixed Design

Maik Döring and Uwe Jensen∗
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Abstract: In this paper, we consider a simple regression model with change points
in the regression function which can be one of two types: A so called smooth bent-
line change point or a discontinuity point of a regression function. In both cases we
investigate the consistency of the M-estimates of the change points. It turns out that
the rates of convergence are n1/2 or n, respectively, where n denotes the sample size in
a fixed design. In addition, the asymptotic distributions of the change point estimators
are investigated.

Keywords and phrases: Regression, Change-points, M-estimates, Rate of
Consistency

15.1 Introduction

To motivate our study we begin to look at change point models in Survival Analysis.
Methods of Survival Analysis were developed to estimate lifetime or survival distribu-
tions in medicine or reliability. Sometimes additional variables, so called covariates, are
observed, which characterize the objects under consideration in more detail. The link
between these covariates and the lifetime distribution is given in regression models by
the intensities of corresponding lifetime models (see [ABG08,MS06]). One of the most
popular regression models is the Cox model:

If for each object i, i = 1, . . . , n, k covariates Zi,1, . . . , Zi,k are observed, then the
hazard rate process is given by

λi (t) = λ0 (t) ·Ri (t) · exp {β1Zi,1 + ...+ βkZi,k} ,

where λ0 is the deterministic baseline hazard rate. Ri is the risk indicator, equal to one
as long as object i is observed (at risk). βT = (β1, . . . , βk) is the vector of the unknown
regression parameters. The analysis of several datasets has shown that the basic model
should in some cases be extended to a Cox model with a change point. An overview
over change point models can be found in [JL07].

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 207
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 15, c© Springer Science+Business Media, LLC 2010



208 M. Döring and U. Jensen

In the following, we briefly describe the simplest version of such a model with a
change point. More complex versions are investigated in detail in [JL08]. In the simplest
version, we assume that for one covariate with index, say k, we have a change in the
regression parameter from βk to βk + βk+1, when the covariate Zi,k hits the threshold
(change point) ξ. The corresponding intensity is

λi (t) = λ0 (t) ·Ri (t) · exp
{

β1Zi,1 + ...+ βk−1Zi,k−1 + βkZi,k + βk+1 (Zi,k − ξ)+
}

,

(15.1)

where a+ = max {a, 0}. The change point ξ has to be estimated. The asymptotic
behavior of the (partial) maximum likelihood estimates ξ̂n has been investigated in
detail in [JL08]. It turned out that this sequence is consistent at a rate of n

1
2 and

follows asymptotically a normal distribution. Estimates of change points are often
known to converge at a rate of n. For instance Pons [Pon03] and Kosorok and Song
[KS07] considered extensions of the Cox model where the covariates jump at a certain
threshold. They derived n-consistent estimates of the change points. It seems that
the smoothness of the regression function or the criterion function, here the partial
likelihood, determines the rate of convergence of change point estimators. In (15.1)
the regression function is continuous in the change point ξ in contrast to the models
of Pons and Kosorok and Song with jump change points. The question arises whether
this difference also can be found in simple regression models. At first sight this question
looks easier to answer as it is. It is quite challenging and includes the use of methods
of M-estimation theory. In this paper, simple regression models in a fixed design with
smooth (continuous case) or jump change points are investigated.

We assume that the observations Y1,n, . . . , Yn,n for n ∈ N and 1 ≤ i ≤ n are given by

Yi,n = fθ0

(

i

n

)

+ εi,n, 1 ≤ i ≤ n, n ∈ N.

For θ ∈ [0, 1] the regression function fθ : [0, 1] → IR is given by

fθ (x) := g (x) + hθ (x) · 11[θ,1] (x) ,

where g : [0, 1] → IR, hθ : [0, 1] → IR and 11A is the indicator function of a set A. For
n ∈ N and 1 ≤ i ≤ n let εi,n be i.i.d. random variables with Eε1,1 = 0 and suitably
integrable, i.e. there exists a real number 1 < p < ∞ such that E |ε1,1|p < ∞. In
the following the focus will be on estimating the change point θ0 by the least squares
method. We assume that the regression function is known except the change point
θ0 ∈ [0, 1]. Therefore, we can without loss of generality set g = 0.

The problem to estimate the location of a change point in a regression model has
been studied in the literature to some extent, see among others Müller [Mue92], Müller
and Song [MSo97], Müller and Stadtmüller [MSt99], Bai [Bai97], Dempfle and Stute
[DS02], Koul et al. [KQS03], and Lan et al. [LBM09] and the cited references therein. In
most cases locating a jump discontinuity is considered and properties of the estimators
are studied. Müller [Mue92] investigates the problem of estimating a jump change
point in the derivative of some order ν ≥ 0 of the regression function. His change
point estimators are based on one-sided kernels. This includes the case of continuous
regression functions with a change in the derivative at some point which we call smooth
change point. In a number of applications one would rather model a smooth change
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point than a jump in the regression function. in particular, in the recently published
article by Lan et al. [LBM09] the plotted dataset would suggest to fit a regression
function with a smooth change instead of the proposed jump model. In this paper, we
investigate both types of regression models, the jump case and the continuous case, for
a fixed design.

The jump case: Here, we assume that the regression function has a jump at θ:

hθ(x) = h(x) with h : [0, 1] → IR.

In the special case of h = 1 we have fθ (x) = 11[θ,1] (x). Further, we assume that h is
continuous and that there exist a δ > 0 and a constant C̃ = C̃ (δ) > 0 such that for all
θ ∈ [θ0 − δ, θ0 + δ] ∩ [0, 1]

∫ θ0∨θ

θ0∧θ
h2 (x) dx ≥ C̃ |θ − θ0| , (15.2)

where a ∧ b = min {a, b} and a ∨ b = max {a, b}. For example, (15.2) obviously holds
true, if

inf
{

h2 (x) : x ∈ [θ0 − δ, θ0 + δ] ∩ [0, 1]
} ≥ C̃ > 0.

The continuous case: Here we assume that the regression function has a smooth
change point θ:

hθ(x) = (x− θ)q , q ≥ 1.

The following conclusion can also be drawn for the more complex model hθ(x) =
h(x) · (x− θ)q, where h : [0, 1] → IR is continuous. In the special case of q = 1 we have
fθ (x) = (x− θ)+.

We consider the least squares error for any possible change-point. For θ ∈ [0, 1] and
n ∈ N we define

Mn (θ) := − 1
n

n
∑

i=1

(

Yi,n − fθ

(

i

n

))2

.

For n ∈ N our estimator is defined as the maximizing point of Mn:

θ̂n := argmax
θ∈[0,1]

Mn (θ) .

Observe that

Mn (θ) = M̃n (θ) − 1
n

n
∑

i=1

ε2i,n , with

M̃n (θ) := − 1
n

n
∑

i=1

2εi,n ·
(

fθ0

(

i

n

)

− fθ

(

i

n

)

)

+

(

fθ0

(

i

n

)

− fθ

(

i

n

)

)2

. (15.3)
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It follows that Mn and M̃n have the same maximizers. The εi,n’s are centered random
variables, hence

EM̃n (θ) = −
n
∑

i=1

1
n

(

fθ0

(

i

n

)

− fθ

(

i

n

)

)2

.

Note that for fixed θ ∈ [0, 1] the expectation of M̃n (θ) is a Riemann sum. If the
function fθ is integrable, then this sum converges for n → ∞ to the corresponding
integral M̃ (θ), where the deterministic function M̃ : [0, 1] → IR is given by

M̃ (θ) := −
∫ 1

0

(fθ0 (x) − fθ (x))2 dt.

If the function f is continuous, i.e. h is continuous with hθ (θ) = 0, then this convergence
holds uniformly.

Lemma 1. If f(·) (·) : [0, 1]2 → IR is continuous, then

lim
n→∞ sup

θ∈[0,1]

∣

∣

∣EM̃n (θ) − M̃ (θ)
∣

∣

∣ = 0.

Proof. By the continuity of f on the compact set [0, 1]2 we have that f is uniformly
continuous. Thus for every ε > 0 a k ∈ N exists such that

∣

∣fθ(x) − fθ̃(x)
∣

∣ <
1
3
ε for all θ, θ̃ ∈

[

i− 1
k

,
i

k

]

for 1 ≤ i ≤ k.

Furthermore, for arbitrary θi ∈
[

i−1
k , ik

]

there exists an n0 (θi), such that for all n ≥
n0 (θi) by the convergence of the Riemann sums

∣

∣

∣EM̃n (θi) − M̃ (θi)
∣

∣

∣ <
1
3
ε.

Hence, for all n ≥ n0 = max1≤i≤k n0 (θi) and 1 ≤ i ≤ k

sup
θ∈[ i−1

k , i
k ]

∣

∣

∣EM̃n (θ) − M̃ (θ)
∣

∣

∣ ≤ ε.

Since
⋃k
i=1

[

i−1
k
, i
k

]

= [0, 1] the statement follows. �

15.2 The Jump Case

The jump case in a simple regression model has been already investigated by Kosorok
(Chap. 14.5.1 in [Kos08]), under different conditions for a random design. Here, we
consider the jump case for a fixed design. We assume that the regression function has
a jump at an unknown point in time θ. The easiest case would be to set hθ(x) = c,
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where c 
= 0 is a constant. Here, we consider a slightly more general model, namely
hθ(x) = h(x) with h : [0, 1] → IR continuous, which fulfills in addition (15.2) to ensure
that we have a jump at θ0. Then we have for θ ∈ [0, 1] by (15.3) that

M̃n (θ) =
1
n

[n(θ∨θ0)]
∑

i=[n(θ∧θ0)]+1

2εi,n · h
(

i

n

)

· sgn (θ0 − θ) − h2

(

i

n

)

M̃ (θ) = −
∫ θ∨θ0

θ∧θ0
h2 (x) dx,

where sgn denotes the signum function. We get a similar result as in Lemma 1 in
the jump case. Since the function h does not depend on θ one can show the uniform
convergence directly. Therefore, we state the following lemma without proof.

Lemma 2. Let h : [0, 1] → IR be continuous. Then

lim
n→∞ sup

θ∈[0,1]

∣

∣

∣EM̃n (θ) − M̃ (θ)
∣

∣

∣ = 0.

Next, we prove that our estimators θ̂n are (strongly) consistent. By (15.2) we have
that θ is a unique maximizer of the deterministic function M̃ . Our estimator θ̂n is a
maximizer of M̃n. We show that the sequence M̃n converges uniformly for n → ∞
to M̃ . By a corresponding argmax theorem we can transfer this convergence to the
maximizing points.

Lemma 3. Let h : [0, 1] → IR be continuous and let E |ε1,1|p < ∞ for some p > 1.
Then

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − M̃ (θ)
∣

∣

∣

n→∞−−−−→ 0
{

P-stochastically, if 1 < p <∞
P-a.s., if 2 < p <∞.

Proof. First we prove an upper bound of supθ∈[0,1]

∣

∣

∣M̃n (θ) − EM̃n (θ)
∣

∣

∣. Let ρ > 0 and
C be a generic constant. Then,

P

(

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − EM̃n (θ)
∣

∣

∣ > ρ

)

= P

⎛

⎝ sup
θ∈[0,1]

∣

∣

∣

∣

∣

∣

1
n

[n(θ∨θ0)]
∑

i=[n(θ∧θ0)]+1

2εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

> ρ

⎞

⎠

≤ P

⎛

⎝ max
[nθ0]+1≤k≤n

∣

∣

∣

∣

∣

∣

1
n

k
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

> Cρp

⎞

⎠

+ P

⎛

⎝ max
0≤k≤[nθ0]

∣

∣

∣

∣

∣

∣

1
n

[nθ0]
∑

i=k+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

> Cρp

⎞

⎠ = P1 + P2.

For 1 ≤ i ≤ n the random variables εi,n · h ( in
)

are centered and independent. So the
sums are martingales. By Doob’s inequality it follows that

P1 ≤ Cn−pρ−pE

∣

∣

∣

∣

∣

∣

n
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

.
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By Lemma A.2 in [Fer01] we can change the sum with the expectation. This is similar
to the inequality of Burkholder, see for example Theorem 1 on page 396 in [CT88].

P1 ≤ Cn−pρ−p
n
∑

i=[nθ0]+1

E
∣

∣

∣

∣

εi,n · h
(

i

n

)∣

∣

∣

∣

p{ 2 1 ≤ p ≤ 2
(n− [nθ0])

p
2−1 2 < p <∞ (15.4)

By the boundedness of the function h on the compact interval [0, 1] and the identical
distribution of the εi,n’s we get

P1 ≤ C · E |ε1,1|p ρ−p
{

n−(p−1) 1 ≤ p ≤ 2
n−p

2 2 < p <∞,

The same conclusion can be drawn for P2. Hence we have

lim
n→∞P

(

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − EM̃n (θ)
∣

∣

∣ > ρ

)

= 0 if 1 < p <∞,

∞
∑

n=1

P

(

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − EM̃n (θ)
∣

∣

∣ > ρ

)

<∞ if 2 < p <∞.

By Lemma 2 it follows that EM̃n converges uniformly to M̃ . Finally the assertion is
proved by applying the Borel–Cantelli Lemma. �

In the next step, an argmax theorem is used to carry over the convergence to the
maximizer.

Theorem 1. Let hθ(x) = h(x) with h : [0, 1] → IR continuous and let h satisfy (15.2).
Further, let E |ε1,1|p <∞ for some p > 1. Then

θ̂n
n→∞−−−−→ θ0

{

P-stochastically, if 1 < p <∞
P-a.s., if 2 < p <∞.

Proof. In the case of 2 < p <∞ it follows by Lemma 3 that

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − M̃ (θ)
∣

∣

∣

n→∞−−−−→ 0 P-a.s.

This convergence may be transferred to the maximizing points by a corresponding
argmax theorem, which can be found in the appendix. It remains to prove that the
assumptions (1)− (4) of Theorem 7 hold. By (15.2) θ0 is the unique maximizing point
of M̃ . Hence the assumption (1) and (2) are satisfied. The definition of our estimator
yields (3) directly and by Lemma 3 we get (4). By a subsequences argument the required
stochastic convergence follows. �

We have that the estimator θ̂n is consistent at a rate of n.

Theorem 2. Let h : [0, 1] → IR be continuous satisfying (15.2). Further, let E |ε1,1|p<
∞ for some p > 1. Then

n
(

θ̂n − θ0

)

= OP (1) .



15 Change Point Estimation in Regression Models with Fixed Design 213

Proof. For δ > 0 there exists a constant C̃ > 0 from (15.2) such that for all
θ ∈ [θ0 − δ, θ0 + δ] ∩ [0, 1]

−M̃ (θ) ≥ C̃ |θ − θ0| .

It follows by Lemma 2, that for eventually all n ∈ N

−EM̃n (θ) ≥ C̃

2
|[nθ] − [nθ0]|

n
. (15.5)

Let x > 0 and C be a positive generic constant. By the definition of θ̂n it follows that

P
(

x <
∣

∣

∣nθ̂n − [nθ0]
∣

∣

∣ < nδ
)

≤ P

(

sup
x<|nθ−[nθ0]|<nδ

M̃n (θ) ≥ M̃n (θ0)

)

≤ P

(

max
x<|k−[nθ0]|<nδ

M̃n

(

k

n

)

− EM̃n

(

k

n

)

+ EM̃n

(

k

n

)

≥ 0
)

.

By (15.5) we have

≤ P

(

max
x<|k−[nθ0]|<nδ

M̃n

(

k

n

)

− EM̃n

(

k

n

)

− C̃

2
|k − [nθ0]|

n
≥ 0

)

≤ P

⎛

⎝ max
x<|k−[nθ0]|<nδ

1
|k − [nθ0]|p

∣

∣

∣

∣

∣

∣

[nθ0]∨k
∑

i=([nθ0]∧k)+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

≥ C

⎞

⎠

≤ P

⎛

⎝ max
x<k−[nθ0]<nδ

1
(k − [nθ0])p

∣

∣

∣

∣

∣

∣

k
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

≥ C

⎞

⎠

+ P

⎛

⎝ max
x<[nθ0]−k<nδ

1
([nθ0] − k)p

∣

∣

∣

∣

∣

∣

[nθ0]
∑

i=k+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

≥ C

⎞

⎠ := P1 + P2.

For 1 ≤ i ≤ n the random variables εi,n · h ( i
n

)

are centered and independent. So the
sums are martingales. The term 1

(k−[nθ0])p is decreasing in k, hence by the inequality
of Chow it follows that

P1 ≤ C

[nθ0]+[nδ]−1
∑

k=[x]+[nθ0]+1

(

1
(k − [nθ0])p

− 1
(k + 1 − [nθ0])p

)

E

∣

∣

∣

∣

∣

∣

k
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

+ C
1

[nδ]p
E

∣

∣

∣

∣

∣

∣

[nθ0]+[nδ]
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

=: P1,1 + P1,2.

As in the proof of Lemma 3, (15.4) gives

P1,2 = C
1

[nδ]p
E

∣

∣

∣

∣

∣

∣

[nθ0]+[nδ]
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

≤ C · E |ε1,1|p
{

n−(p−1) 1 < p ≤ 2
n− 1

2p 2 < p <∞.
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By Lemma A.2 in [Fer01] we claim that

P1,1 ≤ C

[nθ0]+[nδ]−1
∑

k=[x]+[nθ0]+1

1

(k − [nθ0])p+1 E

∣

∣

∣

∣

∣

∣

k
∑

i=[nθ0]+1

εi,n · h
(

i

n

)

∣

∣

∣

∣

∣

∣

p

≤ C

[nθ0]+[nδ]−1
∑

k=[x]+[nθ0]+1

1
(k − [nθ0])p+1

k
∑

i=[nθ0]+1

E
∣

∣

∣

∣

εi,n · h
(

i

n

)∣

∣

∣

∣

p{ 2 1 < p ≤ 2
(k − [nθ0])

p
2−1 2 < p <∞

By the boundedness of the function h on the compact interval [0, 1] and the identical
distribution of the εi,n’s we get

≤ C · E |ε1,1|p
[nθ0]+[nδ]−1

∑

k=[x]+[nθ0]+1

{

(k − [nθ0])−p

(k − [nθ0])−
1
2p−1

}

≤ C · E |ε1,1|p
{

x−(p−1) 1 < p ≤ 2
x−

1
2p 2 < p <∞.

A corresponding upper bound for P2 can be derived in the same manner. So we have
for x > 0, δ > 0 and eventually all n ∈ N that

P
(

x <
∣

∣

∣nθ̂n − [nθ0]
∣

∣

∣ < nδ
)

≤ C · E |ε1,1|p
{

n−(p−1) + x−(p−1) 1 < p ≤ 2
n− 1

2p + x−
1
2p 2 < p <∞.

By Theorem 1 it follows that θ̂n
n→∞−−−−→ θ0 P-stochastically for 1 < p < ∞. Therefore,

we have

lim
x→∞ lim sup

n→∞
P
(

x < n
∣

∣

∣θ̂n − θ0

∣

∣

∣

)

≤ lim
x→∞ lim sup

n→∞

(

P

(

1
2
x < |nθ0 − [nθ0]|

)

+ C ·E |ε1,1|p
{

n−(p−1) + x−(p−1)

n− 1
2p + x−

1
2 p

}

+ P

(

1
4
nδ ≤

∣

∣

∣nθ̂n − nθ0

∣

∣

∣

)

+ P

(

1
4
nδ ≤ |nθ0 − [nθ0]|

)

)

= 0. �

We next show that nθ̂n − [nθ0] converges in distribution to a maximizing point of a
random walk with drift. For that purpose, let (εk)k∈Z

be i.i.d. random variables with
the same distribution as ε1,1. Further, we define a sequence of stochastic processes
(Zn)n∈N

with Zn = {Zn(k) : k ∈ Z} and a random walk Z = {Z(k) : k ∈ Z} by

Zn (k) :=
{

n · M̃n

(

θ0 + k
n

) −nθ0 ≤ k ≤ n (1 − θ0)
−7 otherwise.

Z (k) := −h2 (θ0) · |k| − 2h (θ0) · sgn(k) ·
|k|
∑

j=1

εsgn(k)·j

Observe that [nθ̂n] − [nθ0] is a maximizer of the process Zn for n ∈ N. If the sequence
Zn converges for n→ ∞ to Z in some sense, then we can transfer this convergence to
the maximizing points by a continuous mapping theorem for the argmax functional of
Ferger (Theorem 2 in [Fer04]).
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Lemma 4. If h : [0, 1] → IR is continuous, then

{Zn(k) : −d ≤ k ≤ d} �L−−−−→
n→∞ {Z(k) : −d ≤ k ≤ d} ∀d ∈ N.

Proof. Let d ∈ N and n0 = d
min{θ0,1−θ0} , then we have for all n > n0 that −nθ0 ≤

−d ≤ k ≤ d ≤ n (1 − θ0). It follows that

Zn (k) =
[nθ0]∨[nθ0]+k

∑

i=([nθ0]∧[nθ0]+k)+1

2εi,n · sgn (−k) · h
(

i

n

)

− h2

(

i

n

)

=
|k|
∑

j=1

2ε[nθ0]+sgn(k)·j,n · sgn (−k) · h
(

[nθ0] + sgn (k) · j
n

)

− h2

(

[nθ0] + sgn (k) · j
n

)

�L=
|k|
∑

j=1

2εsgn(k)·j · sgn (−k) · h
(

[nθ0] + sgn (k) · j
n

)

− h2

(

[nθ0] + sgn (k) · j
n

)

n→∞−−−−→
|k|
∑

j=1

2εsgn(k)·j sgn (−k) · h (θ0) − h2 (θ0) = Z (k) ,

where the convergence follows by the continuity of the function h. �

Theorem 3. Let h : [0, 1] → IR be continuous satisfying (15.2). Further let E |ε1,1|p <
∞ for some p > 1, then:

(i) The trajectories of Z possess a smallest and a largest maximizer τs and τl.

(ii) lim sup
n→∞

P
(

nθ̂n − [nθ0] ≤ z
)

≤ P (τs ≤ z)

(iii) lim inf
n→∞ P

(

nθ̂n − [nθ0] ≤ z
)

≥ P (τl ≤ z) .

Proof. We apply a corresponding argmax theorem of Ferger, which can be found in the

appendix, Theorem 8. We have EZ(k) = −h2 (θ0) · |k| |k|→∞−−−−→ ∞ and by the strong

law of large numbers it follows that Z(k)
|k|→∞−−−−→
P−a.s.

−∞, hence (i) holds true. Observe

that [nθ̂n]− [nθ0] is a maximizer of the process Zn for n ∈ N. Together with Lemma 4,
statement (i) and Theorem 2 the assumptions (1)–(4) of Theorem 8 follow, hence (ii)
and (iii) hold true by P

(

nθ̂n − [nθ0] ≤ z
)

= P
(

[nθ̂n] − [nθ0] ≤ z
)

. �

If the trajectories of Z possess a unique maximizer almost surely, then we have
convergence in distribution.

Theorem 4. Let h : [0, 1] → IR be continuous satisfying (15.2) and let E |ε1,1|p < ∞
for some p > 1. Further, let ε1,1 have an absolutely continuous distribution, then:

(i) The trajectories of Z possess a unique maximizer τ almost surely.

(ii) nθ̂n − [nθ0] �L−−−−→
n→∞ τ.
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Proof. As ε1,1 has an absolutely continuous distribution we conclude that for k 
= l ∈ Z

Z (k) − Z (l) has also an absolutely continuous distribution. Hence,

P (Z has a unique maximizer)

= 1 − P
( {Z has no maximizer} ∪ {Z has at least two maximizer τ and σ} )

≥ 1 − P
(

Z (τ) = Z (σ)
)

= 1 − P

⎛

⎝

⋃

k 	=l∈Z

{τ = k, σ = l, Z (k) = Z (l)}
⎞

⎠

≥ 1 −
∑

k 	=l∈Z

P
(

Z (k) − Z (l) = 0
)

= 1.

So we get (i). Now by Theorem 3 it follows that for z ∈ Z we have

lim sup
n→∞

P
(

nθ̂n − [nθ0] ≤ z
)

≤ P (τ ≤ z) ≤ lim inf
n→∞ P

(

nθ̂n − [nθ0] ≤ z
)

,

which yields statement (ii). �

15.3 The Continuous Case

In this case, we assume that the regression function fθ has a smooth change point in
the sense that there is no jump but a continuous change at θ:

fθ (x) = hθ (x) · 11[θ,1] (x) ,

where

hθ(x) = (x− θ)q , q ≥ 1.

First we prove the consistence of the least squares estimators θ̂n described in Chap. 15.1.
By Lemma 1 we know that EM̃n converges for n → ∞ uniformly to M̃ . We use
Andrews’ [And87] uniform law of large numbers to show that M̃n converge for n→ ∞
uniformly to M̃ .

Lemma 5. Let E |ε1,1|p <∞ for some p > 1. Then

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − M̃ (θ)
∣

∣

∣

n→∞−−−−→ 0
{

P-stochastically, if 1 < p <∞
P-a.s., if 2 < p <∞.
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Proof. Let εi for i ∈ N be i.i.d. random variables with distribution of ε1,1. We define
for θ ∈ [0, 1], δ > 0, n ∈ N and 1 ≤ i ≤ n the following functions

qi (εi, θ) = −2εi ·
(

fθ

(

i

n

)

− fθ0

(

i

n

)

)

q∗i (εi, θ, δ) = sup
{

qi

(

εi, θ̃
)

: θ̃ ∈ [θ − δ, θ + δ] ∩ [0, 1]
}

q∗,i (εi, θ, δ) = inf
{

qi

(

εi, θ̃
)

: θ̃ ∈ [θ − δ, θ + δ] ∩ [0, 1]
}

.

We apply Theorem 9 to qi (εi, θ). Since [0, 1] is compact and qi (εi, θ), q∗i (εi, θ, δ) and
q∗,i (εi, θ, δ) are random variables, the assumptions A1 and A2(a) of Theorem 9 hold.
fθ(x) = (x− θ)q · 11[θ,1](x) is a decreasing function in θ, which gives

q∗i (εi, θ, δ) = 2εi ·
(

fθ0

(

i

n

)

− 11{εi>0} · fθ+δ
(

i

n

)

− 11{εi<0} · fθ−δ
(

i

n

)

)

q∗,i (εi, θ, δ) = 2εi ·
(

fθ0

(

i

n

)

− 11{εi>0} · fθ−δ
(

i

n

)

− 11{εi<0} · fθ+δ
(

i

n

)

)

,

where θ + δ has to be understood as min {θ + δ, 1} and θ − δ as max {θ − δ, 0}. The
brackets on the right hand side are bounded. If E |ε1,1|p < ∞ for some 1 < p ≤ 2,
then we have by Theorem 1 on page 124 of [CT88] that q∗i (εi, θ, δ) and q∗,i (εi, θ, δ)
satisfy pointwise a weak law of large numbers. If E |ε1,1|p < ∞ for some p ≥ 2, then
q∗i (εi, θ, δ) and q∗,i (εi, θ, δ) satisfy a strong law of large numbers. Hence, Assumption
A2(b) of Theorem 9 holds true. Further, we have for all θ ∈ [0, 1]

lim
δ→0

sup
n∈N

1
n

n
∑

i=1

E sup
θ−δ≤θ̃≤θ+δ

∣

∣

∣qi
(

εi, θ̃
)

− qi (εi, θ)
∣

∣

∣ = 0,

since

sup
θ−δ≤θ̃≤θ+δ

∣

∣

∣qi

(

εi, θ̃
)

− qi (εi, θ)
∣

∣

∣ = sup
θ−δ≤θ̃≤θ+δ

2 |εi| ·
∣

∣

∣

∣

fθ

(

i

n

)

− fθ̃

(

i

n

)∣

∣

∣

∣

≤ 2 |εi| ·
(

fθ−δ

(

i

n

)

− fθ+δ

(

i

n

)

)

≤ 2 |ε1,1| · 2qδ.

The last inequality follows for q ≥ 1 from
∣

∣
∂
∂θ
fθ (x)

∣

∣ ≤ q. Hence, all assumptions of
Theorem 9 hold true and a uniform law of large numbers for the sequences qi (εi,n, θ)
can be applied. By (15.3) we have

M̃n (θ) − EM̃n (θ) =
1
n

n
∑

i=1

qi (εi,n, θ)
�L=

1
n

n
∑

i=1

qi (εi, θ) ,

hence by Lemma 1 the statement follows. �

Theorem 5. Let E |ε1,1|p <∞ for some p > 1. Then

θ̂n
n→∞−−−−→ θ0

{

P-stochastically, if 1 < p <∞
P-a.s., if 2 < p <∞.
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Proof. In the case of 2 < p <∞, Lemma 5 yields

sup
θ∈[0,1]

∣

∣

∣M̃n (θ) − M̃ (θ)
∣

∣

∣

n→∞−−−−→ 0 P-a.s.

This can be shown by the same method as in Theorem 1. Here, a simple calculation
proves that θ0 is the unique maximizing point of M̃ . �

We are going to show that the least squares estimators θ̂n are consistent at a rate of
n

1
2 . We adopt an approach which can be found in [VdV98]. We define the measurable

function

mθ (x, y) := −(y − fθ (x)
)2

which fulfills a Lipschitz condition for every θ1, θ2 in [0, 1]:

|mθ1 (x, y) −mθ2 (x, y)| = |fθ1 (x) − fθ2 (x)| · |2y − fθ1 (x) − fθ2 (x)|
≤ 2q

(

1 + |y| ) · |θ1 − θ2| =: ṁ (x, y) · |θ1 − θ2| ,

since
∣

∣
∂
∂θ
fθ(x)

∣

∣ ≤ q for q ≥ 1. Furthermore,

Emθ (x, Y1,1) = −Eε21,1 −
(

fθ (x) − fθ0 (x)
)2

admits a second-order Taylor expansion at θ0:

Emθ (x, Y1,1) = Emθ0 (x, Y1,1) − (θ − θ0)2 · ∂
∂θ
fθ0(x) + o

(

|θ − θ0|2
)

= Eε21,1 − q2 (x− θ0)2(q−1) · 11[θ0,1] (x) · (θ − θ0)2 + o
(

|θ − θ0|2
)

.

Since θ̂n is the least squares estimator

θ̂n := argmax
θ∈[0,1]

1
n

n
∑

i=1

mθ

(

i

n
, Yi,n

)

we conclude that

1
n

n
∑

i=1

mθ̂n

(

i

n
, Yi,n

)

≥ 1
n

n
∑

i=1

mθ0

(

i

n
, Yi,n

)

−OP
(

n−1
)

.

Therefore, all condition of Corollary 5.53 in [VdV98] are satisfied, which gives us the
following result.

Theorem 6. Let Eε21,1 <∞, then

√
n
(

θ̂n − θ0

)

= Op (1) for all q ≥ 1.
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Appendix

Theorem 7. Let X and Xn for n ∈ N be stochastic processes defined on a common
probability space (Ω,A, P ) with trajectories in D [0, 1]. Let τn ∈ [0, 1] for n ∈ N be a
sequence and τ ∈ [0, 1] satisfying the following properties:
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(1) X(τ) ∨X(τ−) = supt∈[0,1]X(t) a.s.

(2) supt∈[0,1]X(t) > sup {X(t) : |t− τ | > ε} a.s. for all ε > 0.
(3) Xn(τn) ∨X(τn−) = supt∈[0,1]Xn(t) a.s. with τn measurable for all n ∈ N.

(4) supt∈[0,1] |Xn(t) −X(t)| n→∞−−−−→ 0 a.s. for n→ ∞.

Then, it follows that τn
n→∞−−−−→ τ a.s.

Proof. See [Fer09] (p 25, Theorem 4.6.) �

Theorem 8. Let X and Xn for n ∈ N be stochastic processes defined on a common
probability space (Ω,A, P ) with index set Z. Let τn ∈ [0, 1] for n ∈ N be a sequence
satisfying the following properties:

(1) Xn(τn) ≥ supk∈ZXn(k) − αn, αn = oP (1).

(2) {Xn(k) : −d ≤ k ≤ d} �L−−−−→
n→∞ {X(k) : −d ≤ k ≤ d} ∀d ∈ N.

(3) The trajectories of X posses a smallest and a largest maximizer τs and τl,
respectively, which are Borel measurable.

(4) τn = OP (1).

Then for every z ∈ Z it follows that

lim sup
n→∞

P (τn ≤ z) ≤ P (τs ≤ z) and lim inf
n→∞ P (τn ≤ z) ≥ P (τl ≤ z) .

Proof. This follows from Theorem 2 in [Fer04] (p 85) �

To state Andrews [And87] uniform law of large numbers we introduce some nota-
tion. Let (Wi)i∈N

be a sequence of W -valued random variables defined on a common
probability space. For i ∈ N and some metric space (Θ, d) we define the functions
qi : W ×Θ → IR. For δ > 0 define

q∗i (Wi, θ, δ) := sup
{

qi

(

Wi, θ̃
)

: d
(

θ, θ̃
)

< δ
}

q∗,i (Wi, θ, δ) := inf
{

qi
(

Wi, θ̃
)

: d
(

θ, θ̃
)

< δ
}

The theorem is based on the following assumptions:

Assumption A1: (Θ, d) is a compact metric space.
Assumption A2: (a) qi (Wi, θ), q∗i (Wi, θ, δ) and q∗,i (Wi, θ, δ) are random variables for

all θ ∈ Θ, i ∈ N and all δ sufficiently small, where δ may depend on θ.
(b) {q∗i (Wi, θ, δ)} and {q∗,i (Wi, θ, δ)} satisfy pointwise strong (weak) laws of large
numbers, i.e.

1
n

n
∑

i=1

{q∗,i (Wi, θ, δ)} − E {q∗,i (Wi, θ, δ)} n→∞−−−−→ 0 P-a.s. (in Probability)

1
n

n
∑

i=1

{q∗i (Wi, θ, δ)} − E {q∗i (Wi, θ, δ)} n→∞−−−−→ 0 P-a.s. (in Probability),

for all θ ∈ Θ, and all δ sufficiently small, where δ may depend on θ.
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Assumption A3: For all θ ∈ Θ,

lim
δ→0

sup
n∈N

∣

∣

∣

∣

∣

1
n

n
∑

i=1

Eq∗,i (Wi, θ, δ) − Eqi (Wi, θ)

∣

∣

∣

∣

∣

= 0

lim
δ→0

sup
n∈N

∣

∣

∣

∣

∣

1
n

n
∑

i=1

Eq∗i (Wi, θ, δ) − Eqi (Wi, θ)

∣

∣

∣

∣

∣

= 0.

Theorem 9. If Assumptions A1-A3 hold, then

sup
θ∈Θ

∣

∣

∣

∣

∣

1
n

n
∑

i=1

qi (Wi, θ) − Eqi (Wi, θ)

∣

∣

∣

∣

∣

n→∞−−−−→ 0 P-a.s. (in Probability).

Proof. See [And87]. �
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Abstract: Due to the dynamics of the environment and the variability in product
usage, product units in the field are usually exposed to varying failure-causing stresses.
Some products are equipped with sensors and smart chips that measure and record
usage/environmental information over the life of the product. For some products, it is
possible to track environmental variables dynamically, even in real time, providing use-
ful information for field-failure prediction. In many applications, predictions are needed
for individual units, giving the remaining life of individuals, and for the population,
giving the cumulative number of failures at a future time. It is always desirable to
obtain more accurate predictions for both the population and the individuals. This
paper outlines a model and methods that can be used for field-failure prediction using
dynamic environmental data. Multivariate time series models are also used to describe
the dynamic covariate information. The cumulative exposure model is used to link
the explanatory variables which are recorded as a multivariate time series, and the
failure-time model.

Keywords and phrases: Cumulative exposure model, Covariate process, Failure time
data, Multivariate time series, Reliability, Usage history

16.1 Introduction

16.1.1 Background

Laboratory tests that are conducted to obtain product reliability information are often
done under a constant stress. Product units in the field, however, are usually exposed
to varying failure-causing stresses due to the dynamics of the environment and the
variability in product usage. These variations include environmental variables such as
temperature, humidity, vibration, UV intensity and spectrum, and usage variables such
as loading and use rate, which vary from unit to unit and over time within each unit.

For some products, it is possible to track environmental variables dynamically, even
in real time. This usage/environmental information can be obtained from sensors and
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DOI 10.1007/978-0-8176-4971-5 16, c© Springer Science+Business Media, LLC 2010
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smart chips that are installed in a product to measure and record such information over
the life of the product. For products that are connected to a network or installed with a
wireless transmission device, such information is available dynamically or periodically.
For products that are not connected to a network, this information is available at the
time of product inspection, return, or repair.

Several examples of products/systems that provide dynamic information are as
follows.

• OnStarTM [OnS09] is an in-vehicle safety and security system created to help protect
automobile occupants. The system consists of various sensors and has the ability to
communicate vehicle information to the driver as well as to a central location, via
a satellite wireless connection. The system also collects usage and environmental
information and, with the vehicle owner’s permission, transmits this information
periodically to the central location.

• Large medical systems, such as CT scanners, have sensors and devices that can
provide real-time system information to those who do system maintenance.

• Hahn and Doganaksoy [HD08, Sect. 9.9] describe an application involving modern
locomotive engines installed with sensors that indicate operating status variables
such as oil pressure, oil temperature, and water temperature. Such information is
automatically recorded and transmitted to a central location and can be used to
shutdown an engine, should a dangerous condition arise. Aircraft subsystems also
have similar sensors.

• High-voltage power transformers can be monitored by an automatic dissolved gas
analyzer (DGA) system (e.g., [STW+05]). DGA automatically performs periodic
analyses (typically every hour) to indicate the presence of different kinds of dis-
solved gases in the transformer insulating oil and moisture content. Certain combi-
nations of gas mixtures are known to be a precursor of a failure event. In addition,
the DGA system reports real-time dynamic loading and thermal information. This
information is automatically transmitted to a control center for monitoring and
analyses.

• Computers and high-end printers with smart chips can record the usage history
and the environmental condition such as operating temperature. This information
is available dynamically through the network or other communications channels and
can, in cooperation with the owner, be downloaded periodically.

16.1.2 Applications in Prediction

One important reason for outfitting products with sensors, smart chips, and com-
munications channels is to assist in the delivery of timely maintenance actions and
to increase system availability. It can be expected, however, that using dynamic us-
age/environmental information in modeling and data analysis will also provide stronger
statistical methods and more accurate inferences or predictions of field failures. These
improvements can be realized when one or more of the important sources of variability
the field data can be explained by the additional information. In applications, predic-
tions for the number of field failures or warranty returns for the population is important
for financial planning decisions, such as setting warranty reserves for a manufactured
product or capital budgeting for a company’s fleet of assets. For example, after a prod-
uct has been introduced into the field for a certain period of time (e.g., 1 year), the



16 A Model for Field Failure Prediction Using Dynamic Environmental Data 225

finance department is often interested to know what will be the total number of returns
for some future period of time (i.e., the next 3 years), based on early warranty returns
of the product. By taking advantage of the dynamic information available from the
product, one can expect to get more accurate predictions than what would be obtained
by using only the traditional failure-time data.

The prediction of the remaining life of individual units sometimes is also of interest,
especially for fleets of assets for a company (e.g., locomotives in Sect. 9.9 of [HD08],
and high-voltage power transformers in [HMM09]). [HMM09] give the prediction inter-
vals for the remaining life of high-voltage power transformers based only on currently
available failure-time data. The prediction intervals given there are wide for individual
units. The dynamic usage/environmental information can be expected to improve the
accuracy of prediction intervals for individuals.

16.1.3 Related Literature

[Nel90, Chap. 10] describes the cumulative exposure model in the context of life tests.
The cumulative exposure model is equivalent to the time scale accelerated failure time
model with time-dependent covariates used in [RT92]. [RT92], however, used a nonpara-
metric estimation method that does not require specification of the baseline failure-time
distribution.

[Nel01] describes prediction for field reliability of units under dynamic stresses using
the cumulative exposure model. The problem considered in our paper, however, is
different. We consider predictions and prediction intervals (PIs) for both the population
and individual units based on the distribution of remaining life. The uncertainty in the
covariate process is also considered.

In the area of warranty prediction involving dynamic stress, [GMMO09] consider
warranty prediction with stress that is random from unit to unit but constant within
a unit. Stress information, however, is not available for individual units. [HM10] con-
sider a warranty prediction problem where the average use-rate is available for both
failed and censored units. However, warranty prediction procedures using the dynamic
information need to be developed.

16.2 Data and Model

16.2.1 Notation

Let T be the time to failure random variable. The usage/environmental informa-
tion at time t is denoted by a random vector X(t) = [X1(t), · · · , Xp(t)]′ where
p is the number of covariates. The history of the covariate process is denoted by
X(t) = {X(s) : 0 ≤ s ≤ t} which records the dynamic information from time 0 to
time t. Because of the dynamic information on usage and environmental conditions,
observations of X(t) are available for each small time interval with length Δ. X(t) is
assumed to be constant over these intervals. Thus, the covariate history is recorded as
a multivariate time series.
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The data are denoted by { ti, δi,xi(ti) } for i = 1, 2 · · · , n where n is the number
of observations in the dataset. Here, ti is the failure time (time in service) for unit i
if it failed (did not fail). The censoring indicator δi = 1 if unit i failed and δi = 0
otherwise. Let x(t) be the observed covariate information at time t. Then xi(ti) =
{x(s) : 0 ≤ s ≤ ti} is the observed covariate history from the time origin to ti for unit i.

16.2.2 Cumulative Exposure Model

We use the cumulative exposure model, as described in [Nel90], to model the failure-
time data with covariates which were recorded as a multivariate time series. In partic-
ular, the cumulative exposure U for a unit with failure time T is defined as

U =
∫ T

0

g[X(s); β]ds ∼ F0(u,θ0) (16.1)

given the covariate entire history X(∞) = x(∞). Here, g[X(t); β] is the time scale
acceleration rate which is a function of the covariate process history with parameter β,
and F0(u,θ0) is the baseline cumulative distribution function (cdf). g[X(t); β] gives the
instantaneous effect of the stress/exposure on the product life from both the usage and
the environment at time t. If a unit is operated under harsh environmental conditions
and/or has a large use rate, then g[X(t); β] > 1. That is, the calender time scale is
accelerated. The unit would be expected to fail sooner than those used under mild
conditions.

There needs to be a restriction on g[X(t); β] in order for the parameters to be
estimable. In particular, the function needs to have g[X(t); β] = 1 when β = 0. Given
the covariate history X(∞) = x(∞) and β = 0, the cumulative exposure is U =
∫ T

0
g[x(s); β]ds =

∫ T

0
1ds = T . That is, the cumulative exposure has the same scale as

the calender time scale.
We assume that lifetimes of product units that are all used at the same constant use

rate and environmental conditions can be adequately described by the same distribu-
tion. This is because the failure mechanisms of those units are similar. The cumulative
exposure model converts units under different usage and environmental conditions into
a comparable scale which is called the cumulative exposure. We assume that failure
time of the population under the cumulative exposure time scale can be adequately
described by a single distribution.

16.2.3 Modeling the Time Scale Acceleration Rate

The following log-linear relationship is widely used as an acceleration factor

g[X(t); β] = exp[β′X(t)]. (16.2)

This model assumes the effect on the time scale acceleration is proportional for different
values of X(t). This model is sometimes called the proportional quantiles (PQ) model
or the scale accelerated failure-time (SAFT) model (e.g., [ME98, Chap. 17]). Here, X(t)
might be transformed values of the original explanatory variable.

• If use-rate information is available, one possible relationship is g[X(t); β] = exp[β0+
β1X(t)] where X(t) = log(use rate), which is the inverse power law (e.g., [ME98,
Page 480]).
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• If information on temperature is available, the Arrhenius relationship (e.g., [ME98,
Page 472]) can be used, in which case g[X(t); β] = exp[β0 + β1X(t)] where X(t) =
−11605/(temp+ 273.6) is a transformation of Celsius temperature temp. β1 can be
interpreted as the effective activation energy in electron volts. Both β0 and β1 are
product or material characteristics.

• If information on both temperature and use rate is available, the following relation-
ship can be used,

g[X(t); β] = exp[β0 + β1X1(t) + β2X2(t)],

where X1(t) is the transformed temperature and X2(t) is the transformed use rate.

16.2.4 Modeling the Baseline Distribution

The baseline cdf is defined as the cdf of the failure-time distribution for a unit which
is used at typical fixed conditions. These baseline conditions are similar to the use
conditions in a standard life test or accelerated life test. We will model the baseline cdf
F0(u; θ0) as a log-location-scale distribution. The general log-location-scale cdf is

F0(u; θ0) = Φ

[

log(u) − μ

σ

]

, u > 0. (16.3)

Here, θ0 = (μ, σ)′, μ is the location parameter, σ is the scale parameter, and Φ(z) is
the standard cdf for the location-scale family of distributions (location 0 and scale 1).
The corresponding probability density function (pdf) is

f0(u; θ0) =
dF0(u)

du
=

1
σu
φ

[

log(u) − μ

σ

]

,

where φ(z) = dΦ(z)/dz. The Weibull and lognormal distributions are the most com-
monly used distributions for modeling of failure-time data from this family of distribu-
tions. The cdf and pdf of T , given the entire history X(∞) = x(∞), is

F (t; β,θ0) = F0

(∫ t

0

g[x(s); β]ds; θ0

)

and

f(t; β,θ0) = g[x(t); β]f0

(∫ t

0

g[x(s); β]ds; θ0

)

respectively.

16.2.5 Modeling the Covariate Process

For the purpose of prediction of failure times, a parametric model for X(t) is needed.
This allows prediction of the future covariate vector for an individual unit. X(t) is
modeled as

X(t) = m(t; η) + a(t) . (16.4)
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Here, m(t; η) is the mean function with parameter η and a(t) is the error term which is
assumed to be a stationary process. The parametric form for the mean function m(t; η)
needs to be specified according to the particular application. Some components of η
can be random to allow for population nonhomogeneity of the covariate process. Also,
depending on the application, the following gives possible models for the distribution
of a(t).

• In a simple case, a(t) for different values of t can be modeled as independently and
identically distributed (iid) with N(0, Σ) where Σ is the covariance matrix.

• To allow for more complicated models for a(t), the vector autoregressive (VAR)
moving average time series models in [Rei03] can be used. For example, the VAR(1)
model is represented as

a(t) = Ψ a(t− 1) + ε(t), (16.5)

where Ψ is an unknown coefficient matrix. For the purpose of prediction, a
parametric distribution assumption is needed for the noise term ε(t). One common
choice is that ε(t) are iid with N(0, ν2I) where I is the identity matrix and ν2 is
the variance factor.

16.3 Parameter Estimation

In this section, we use the method of maximum likelihood (ML) to obtain estimates
for unknown model parameters. The ML estimates for the failure-time distribution
parameters are obtained by conditioning on the observed covariate history. The ML
estimates for the parameters of the covariate history can also be obtained by assuming
that the data were generated from a specific class of multivariate time series models.

16.3.1 ML Estimate for Parameters of the Failure-Time Distribution

The likelihood of the failure-time data, conditional on the observed covariate history, is

L(β,θ0|DATA) =
n

∏

i=1

{

g[xi(ti); β]f0

(∫ ti

0

g[xi(s); β]ds; θ0

)}δi {

1 − F0

(∫ ti

0

g[xi(s); β]ds; θ0

)}1−δi

.

(16.6)

The maximum likelihood (ML) estimate
(

̂β
′
, ̂θ

′)′
is obtained by finding those values

of (β′,θ′)′ that maximize (16.6).

16.3.2 ML Estimate for Parameters of the Covariate Process

The likelihood for the covariate history, assuming the parameter η in the mean function
m(t; η) is non-random and the error term a(t) is distributed with N(0, Σ), is
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L(η, Σ|DATA)

=
n

∏

i=1

∏

s≤ti

1
(2π)p/2|Σ|1/2 exp

{

−1
2

[xi(s) −m(s; η)]′Σ−1[xi(s) −m(s; η)]
}

. (16.7)

The ML estimates are denoted by η̂ and ̂Σ. For more complicated models describing
a(t), the parameters can also be estimated using the method of ML. The ML estimation
techniques described, for example, in [Rei03, Chap. 5] can be used.

16.4 Predictions

As described in Sect. 16.1.2, predictions are needed for both the cumulative number
of field failures and the remaining life of individual units. There is need for accurate
predictions on both the population and individuals in business and industry. The avail-
ability of dynamic environmental information can be expected to improve the accuracy
of predictions, especially for individuals. In applications, predictions need to correspond
to the real time scale, after the data-freeze date (DFD). These predictions will be based
on the distribution of remaining life of units that have survived until the DFD.

16.4.1 Distribution of Remaining Life

The distribution of remaining life provides the basis for calculating the prediction for
the population and the individuals. The distribution of Ti, given Ti > ti and the
covariate history X i(ti), is

ρi(tw; θ) = Pr[ti < Ti ≤ tw|Ti > ti,Xi(ti)], tw > ti. (16.8)

Here, θ is the collection of parameters including β,θ0, and the parameters for the
covariate process. In particular,

ρi(tw; θ) = EXi(ti,tw)|Xi(ti) {Pr[ti < Ti ≤ tw|Ti > ti,Xi(ti),Xi(ti, tw)]}

=
EXi(ti,tw)|Xi(ti)

{

F0

(

∫ tw
0
g[Xi(u); β]du; θ0

)}

− F0

(

∫ ti
0
g[xi(u); β]du; θ0

)

1 − F0

(

∫ ti
0
g[xi(u); β]du; θ0

)

(16.9)

where Xi(t1, t2) = {Xi(u) : t1 < u ≤ t2}. When the model for X(t) is complicated,
the distribution of Xi(ti, tw)|X i(ti) may be mathematically intractable. Numerical
methods can, however, be applied to evaluate ρi(tw; θ).

16.4.2 Prediction for the Population

When focusing on the overall population, we need to generate predictions for the
cumulative number of failures for the units in the field. The prediction for the war-
ranty returns can also be obtained in a similar way but there is a need to adjust the
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risk set for the length of the warranty period. Prediction intervals are also needed for
quantifying the statistical uncertainties.

Let N(s) be the number of field failures at s time units after the DFD. N(s) =
∑

i∈RS Ii(s) where RS is the risk set and Ii(s) ∼ Bernoulli[ρi(ti + s; θ)]. The point
prediction for N(s) is ̂N(s) =

∑

i∈RS ρi(ti + s; ̂θ). A prediction interval (PI) for N(s)
is denoted by

[

N, N
]

. The naive (plug-in) PI is obtained by solving

FN (N ; ̂θ) =
α

2
, and FN (N ; ̂θ) = 1 − α

2
. (16.10)

Here, FN (nk; θ), nk = 0, 1, · · · , n∗ is the cdf of N(s) where n∗ is the number of units in
the RS at the DFD. 1−α is the desired coverage probability. Note that N(s) is a sum
of non-identically distributed Bernoulli random variables. The cdf of Nk does not have
a simple closed-form expression. An approximation is usually needed in applications.
The Volkova approximation ([Vol96]), which is based on a refined normal approximation
with correction for the skewness of N(s), is used by [HMM09] for a prediction problem.
The Poisson approximation is also used in the literature (e.g., [EM99, Sect. A.3]) when
the expected number of failure (after the DFD in setting of this paper) is small (e.g.,
less than 10).

16.4.3 Prediction for Individuals

When focusing on individuals, we will compute prediction intervals for each individual.
The naive prediction interval for the individual remaining life is denoted by

[

T i, T i
]

and can be obtained by solving

ρi(T i; ̂θ) =
α

2
, and ρi(T i; ̂θ) = 1 − α

2
, (16.11)

where ρi( · ,θ) is given in (16.9). Note here the PI of remaining life is conditional on the
individual’s current time in service ti and its observed covariate process xi(ti). Thus
each individual will have a distinct PI.

16.5 Calibration of Prediction Intervals

The PIs in (16.10) and (16.11) ignore the uncertainty in ̂θ. Thus, the coverage
probability is generally smaller than the nominal 1 − α level. These PIs can be cali-
brated to improve the coverage probability property. We will use simulations to do the
calibration.

16.5.1 Bootstrapping the Distribution of ̂θ

To account for the uncertainty in ̂θ, we use a parametric bootstrap simulation to
approximate the distribution of ̂θ. The calibration has two parts: first, we use boot-
strap to generate the bootstrap version of the covariate process x∗

i (ti), i = 1, 2, · · · , n.
Because we assume a parametric model for the covariate process as in (16.4), parametric
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simulation methods can be used here to generate x∗
i (ti). Repeating the ML estimation

procedure in Sect. 16.3.2, one obtains the bootstrap version of estimates of the param-
eters for the covariate process.

The second part of the calibration process is to obtain the bootstrap version
estimates of parameters for the failure-time distribution. The traditional bootstrap
method that uses simple random sampling with replacement can be problematic with
heavy censoring, as it can result in bootstrap samples without enough failures for the
estimation of the parameters. Here, we use the random weighted bootstrap method
(e.g., [NR94], [JYW01]) to obtain the bootstrap version estimates of the parameters.
See [HMM09] for another application of random weighted bootstrap in calibration PIs.
In particular, with a set of random weights Zi generated from any positive continuous
distribution with E(Zi) =

√

Var(Zi), the random weighted likelihood is

L∗(β,θ0|DATA)

=
n

∏

i=1

{

g[x∗i (ti); β]f0

(∫ ti

0

g[x∗i (s); β]ds; θ0

)}δiZi

×
{

1 − F0

(∫ ti

0

g[x∗i (s); β]ds; θ0

)}(1−δi)Zi

.

Here, x∗
i (ti) is the bootstrap sample generated in the first part. The bootstrap versions

of the parameter estimates for the failure-time distribution can be obtained by maximiz-
ing the random weighted likelihood. Combining with the bootstrap version estimates
of the parameter for the covariates, we obtain the bootstrap version of ̂θ, which is
denoted by ̂θ

∗
.

16.5.2 Calibration for Prediction Intervals

With B bootstrap samples of ̂θ
∗
, the calibration of PIs for the population can be done

by using a procedure similar to the procedure described in Sect. 6.2 of [HMM09]. Here,
B is usually chosen to be a large number (e.g., B = 10,000). The calibration of PIs
for individuals can be done by using a procedure similar to the procedure described in
Sect. 5.4 of [HMM09].

16.6 Conclusions and Areas for Future Research

In this paper, we outline a model and methods that can be used for field-failure
prediction using dynamic environmental data. We also describe predictions of the cu-
mulative number of field failures and the remaining life for individuals. Prediction
intervals are also given and the associated calibration procedures are also described.

In future work, we will consider more general modeling of effects of covariate
processes on the failure-time distribution. For example, one can model the time scale
acceleration rate function g in (16.1) as g[X(t),β]. This means the time scale accelera-
tion rate function depends on the history from the time origin to time t. For example,
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some environmental variables may have a delayed effect on the failure-time distribu-
tion. Alternative models, such as the proportional hazards model with time dependent
covariates could also be considered. Parametric models for the baseline hazard function
and the covariate process will be needed if prediction is the main goal of the application.

Modern sensor technology also allows us to obtain dynamic degradation measure-
ments (or indirect measurements) for products or components of products on the field.
Prediction and intervals using dynamic degradation can be expected to have some
advantages and provide more useful information. Some research has been done in this
direction. [GP08] used dynamic environmental data to update the distribution of re-
maining life under a Bayesian frame work. [VTM09] developed a statistical model for
linking field and laboratory exposure data that measure the chemical degradation pro-
cesses of a coating system, where environmental variables such as UV spectrum and
intensity, temperature, and relative humidity were also measured repeatedly. More gen-
eral models and methods for prediction and prediction intervals, however, need to be
developed for these situations.

Acknowledgment. We would like to thank Katherine Meeker for helpful comments
on an earlier version of this paper.
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Abstract: Much attention has been paid to the semi-parametric approach for right
censored data in survival analysis while the case of data that are also truncated has
been considered less frequently. We consider here the case of data that are censored
and truncated in the most general way and obtain an efficient estimator of a regres-
sion model relying on a basic hazard that is non parametric. The model is defined in
Sect. 17.1, the censorship and truncation scheme is described in Sect. 17.2. The result-
ing model for the really observed data is derived in Sect. 17.3 and the efficiency of the
proposed estimator proved in Sect. 17.4. The last section deals with commentaries and
perspectives of this work which was conducted in collaboration with Valentin Solev of
the Steklov Institute in Saint Petersbourg (Russia) and Filia Vonta of the National
Technical University in Athens (Greece).

Keywords and phrases: AIDS, Censored data, Kullback-Leibler distance, Least
favorite parametric sub-model, Semiparametric approach, Seropositive patient,
Truncation by interval

17.1 Framework

We want to estimate the impact of some factors on the time to onset X of a specific
event among patients of a certain type, without assuming a parametric model for the
baseline law of X , while X itself is not observed.

1. X is the random time elapsed until some event takes place. Example: time to onset
of AIDS among seropositive patients.

2. We aim at estimating the impact of some factors, named covariates, on the proba-
bility of X .
Example: age, sex, and transmission mode.

3. Each patient is observed at certain random times Y1, . . . , Yk, so that X is known to
lie inside an interval: it is interval censored. Moreover, some patients are skipped
from the sample: they are truncated.
Example: observation of seropositive patients is scheduled 3 or 4 times a year to
check for possible onset of AIDS.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 235
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 17, c© Springer Science+Business Media, LLC 2010
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17.2 Data Description

Time X to an event that changes permanently the state of subject i under study
(0 before X , 1 afterwards) is a random variable whose distribution is influenced by cer-
tain factors. This influence is to be estimated under the following observation scheme:

• Censorship: observation of each subject i does not take place continuously but is
scheduled at a random number r(i) of random times

a < Yi,1 <, · · · , < Yi,r(i) < b.

• Truncation: only those scheduled times that are inside a given random window
[Zi,1 Zi,2] give rise to an observation of subject i.

Thus, if subject i is observed in state 0 at time yi,j and in state 1 at time yi,j+1, inside
its window zi,1, zi,2, one observes two embedded intervals bracketing the unobserved
X = x:

zi,1 ≤ yi,k1 ≤ yi,j < x? ≤ yi,j+1 ≤ yi,k2 ≤ zi,2

17.2.1 Censorship

The random partition

τ = {Y0 = a < Y1 <, · · · , < Yj , · · · , < Yr < Yr+1 = b}
defines, for each x ∈ (a, b), through j(x) = inf {j : x ≤ Yj+1} a bracketing interval
L(x) := Yj(x) ; R(x) := Yj(x)+1:

L(x) < x ≤ R(x)

a b

time

Y1 Y2 Yj Yj+1 Yj+2

L(x)

x

R(x)

17.2.2 Truncation by Interval [z1, z2].

Observations can take place only inside an interval � = [z1, z2], for some z1 < z2.
Then, for a fixed value of the censoring partition τ = t, all observations take place
inside interval

[R(z1) ; L(z2)], provided R(z1) < L(z2).

Otherwise, there is no observation at all: truncated subject.
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a b
time

Y1 Y2 Yj Yj+1 Yj+2

L(x)
x

R(x)

Special case of right truncation: z1 = a.

17.2.3 The Data

The data is a 4-dimensional vector embedding the unobserved x:

R(z1) ≤ L(x) < R(x) ≤ L(z2)

and in the special case of right truncation by Z = z, a 3-dimensional vector:

L(x) < R(x) ≤ L(z)

As the data include also the covariate Ξi, i = 1, . . . , n whose influence on the distribu-
tion of the unobserved X is to be estimated, the data are finally

(L(X), R(X), L(Z), Ξ)

for each subject i, i = 1, . . . , n.

17.3 The Semi-Parametric Model

We denote νk the Lebesgue measure on Rk, while νk is any measure on Rk.

17.3.1 Model for X

X has density f with respect to νk and survival function S conditional on Ξ = ξ
defined as

S(t|Ξ = ξ) = P (X > t|Ξ = ξ) = e−e
β′ξΛ(t) (17.1)

• β ∈ Rd is the parameter of interest
• Ξ a d-dimensional vector of covariates, with distribution dPΞ = φ(ξ)dνd for some

σ−finite measure νd on Rd possibly equal to νd.
• Λ the cumulative hazard function, infinite-dimensional nuisance parameter.

17.3.2 Resulting Model for the Observations Q

Observed data are Q1, . . . , Qn, i.i.d. random vectors,

Q = (L(X), R(X), L(Z), Ξ)
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with density p(u, v, w, ξ) with respect to a measure ν∗ [HCSV07] given as

p(u, v, w, ξ) = r(u, v, w) ·

v
∫

u

f(t|ξ) dt
∫ w

0 f(t|ξ) dt
· φ(ξ) (17.2)

Two components for r, density of the joint law of censoring and truncation

r = r3 + r2

• r3 absolutely continuous with respect to ν3 (when u < v < w),
• r2 absolutely continuous with respect to ν2 (when u < v = w).

• r is the known density with respect to ν∗∗, the marginal of ν∗ integrated over ξ, of
the joint law of censoring and truncation.

• ν∗ is the measure on R3+d which is defined for continuous nonnegative functions
ψ(s) = ψ(u, v, w, ξ) by the relation

∫∫∫∫

ψ(s) dν∗ =
∫∫∫∫

ψ(u, v, w, ξ) d(ν3 ⊗ νd)(u, v, w, ξ)+

+
∫∫∫

ψ(u, v, v, ξ) d(ν2 ⊗ νd)(u, v, ξ).

For details and an example of such a law r, see [HCSV07]
From model (17.1) p is equal to

r(u, v, w) ·

v
∫

u

e−e
β′ξΛ(t)eβ

′ξλ(t) dt
∫ w

0
e−eβ′ξΛ(t)eβ′ξλ(t) dt

· φ(ξ) := r(u, v, w) · ϕ(u, v, w, ξ|β, λ) · φ(ξ) (17.3)

by definition of ϕ which is the likelihood of each unobserved survival conditional on
the censoring, truncation and covariate.

We prove efficiency by following the methodology given in [SV05].
The data-space D = R × R × R × Rd consists of vectors s = (u, v, w, ξ).

• True parameters: (β0, λ0).
• True law of the observed data: μ0

dμ0(s) := p0(s)dν∗(s) ; p0(s) := p(s|β0, λ0)

Densities fQ(s|β, λ) with respect to μ0 are

fQ(s|β, λ) =

v
∫

u

e−e
β′ξΛ(t)eβ

′ξλ(t) dt
∫ w

0 e−eβ′ξΛ(t)eβ
′ξλ(t) dt

×
∫ w

0
e−e

β′
0ξΛ0(t)eβ

′
0ξλ0(t) dt

v
∫

u

e−e
β′
0ξΛ0(t)eβ

′
0ξλ0(t) dt

· (17.4)
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17.3.3 Least Favorable Parametric Sub-Model (LFPS)

For fixed β, find the least favorable parametric sub-model (Λβ, β) by minimizing the
Kullback–Leibler distance between P (·|β0, λ0) and P (·|β, λ(β)), denoted K(β, λ):

K(β, λ) = −
∫

log
(

p(u, v, w, ξ|β, λ)
p(u, v, w, ξ|β0, λ0)

)

p(u, v, w, ξ|β0, λ0) dν∗.

Due to the form of the law r(u, v, w), written equivalently as

= −
∫

log
(

p(u, v, w, ξ|β, λ)
p(u, v, w, ξ|β0, λ0)

)

p(u, v, w, ξ|β0, λ0) d(ν3 ⊗ νd)

−
∫

log
(

p(u, v, v, ξ|β, λ)
p(u, v, v, ξ|β0, λ0)

)

p(u, v, v, ξ|β0, λ0) d(ν2 ⊗ νd)

which because of model (17.1) is equal to

−
∫

{

log
(∫ v

u

e−e
β′ξΛ(t)eβ

′ξλ(t)dt
)

− log
(∫ w

0

e−e
β′ξΛ(t)eβ

′ξλ(t)dt
)

}

p(u, v, w, ξ|β0, λ0)d(ν3 ⊗ νd)(u, v, w, ξ)

−
∫

{

log
(∫ v

u

e−e
β′ξΛ(t)eβ

′ξλ(t)dt
)

− log
(∫ v

0

e−e
β′ξΛ(t)eβ

′ξλ(t)dt
)

}

p(u, v, v, ξ|β0, λ0)d(ν2 ⊗ νd)(u, v, ξ) + C′, (17.5)

where C ′ denotes a term that does not depend on (β, λ).

Keeping β fixed, differentiate K(β, λ) (Gâteaux differentiation) with respect to
the functional parameter λ. We consider perturbations of functions λ ∈ V by small
multiples of functions γ in G0:

Hazard λ belongs to space V:

V = {λ measurable : 0 < c1 ≤ λ(t) ≤ c2 = C · c1 ∀t ∈ [0, b]}.
Perturbations γ belong to space G0:

G0 = {γ ∈ C2 ∩ L∞([0, b], ν) : ‖γ(t)‖∞ ≤ C · c1}
such that:

{ γ
c1

: γ ∈ G0} is ‖ · ‖∞ dense in {g ∈ L∞([0, b], ν) : ‖g‖∞ ≤ C}.

Differentiation operator Dλ for all functionals Φ : V → R, and all γ ∈ G0:
Let θ be in a small neighborhood of 0. Then

λθ(t) := λ(t) + θγ(t).

(Dλ Φ(λ))(γ) :=
d

dθ
Φ(λ + θγ)

∣

∣

∣

θ=0
:=

d

dθ
Φ(λθ)

∣

∣

∣

θ=0
(17.6)
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Lemma 1 (Least favorable Parametric Sub-model (LFPS)). For the observa-
tional scheme defined in Sect. 17.2 under which Q = (L(X), R(X), L(Z), Ξ) is the
observed random vector of variables with values s = (u, v, w, ξ), μ0 the true law such
that dμ0 = p0dν

∗ and under model (17.1) assumed for the survival time X, for fixed β,
a least favorable nuisance parametrization Λβ is defined recursively through the equation

Λβ(t) =
I1(t, b, β)
I2(t, b, β)

(17.7)

where

I1(t, b, β) = Eμ0

(

Λβ(R(X))Sβ(R(X))eβ
′Ξ

Sβ(L(X)) − Sβ(R(X))

∣

∣

∣R(X) > t

)

−Eμ0

(

Λβ(L(X))Sβ(L(X))eβ
′Ξ

Sβ(L(X)) − Sβ(R(X))

∣

∣

∣L(X) > t

)

− Eμ0

(

Λβ(L(Z))Sβ(L(Z))eβ
′Ξ

1 − Sβ(L(Z))

∣

∣

∣L(Z) > t

)

and

I2(t, b, β) = Eμ0

(

eβ
′Ξ

∣

∣

∣L(X) ≥ t
)

+ Eμ0

(

Λβ(L(Z))Sβ(L(Z))eβ
′Ξ

1 − Sβ(L(Z))

∣

∣

∣L(Z) ≥ t

)

−Eμ0

(

Λβ(R(X))Sβ(R(X))eβ
′Ξ

Sβ(L(X)) − Sβ(R(X))

∣

∣

∣L(X) < t ≤ R(X)

)

.

The least favorable sub-model is defined implicitly through (17.7).

Proof. Proof of Lemma 1 is rather technical.

17.4 Inference About β

17.4.1 Main Result

We impose regularity assumptions on the baseline hazard λ (bounded), on β, the
parameter of interest (which has to lie in the interior of a compact set), on the laws of
the censoring, the truncation and the covariate Ξ.

Lemma 2 (Efficiency). Under the assumed regularity assumptions the profile
likelihood estimator β̃, for model (17.1) and interval censored and truncated data,
is efficient for β.
Moreover, the semi-parametric information bound about β0 is given at the least favor-
able sub-model and is defined implicitly from (17.7).

Hint on proof. We prove that under the assumed regularity assumptions, all
requirements for Theorem 3 in Slud and Vonta (2005) are fulfilled. Then, in the
current situation we have that
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√
n(β̃ − β0) D−→ N(0, (I0

β)−1)

where, in our setting, the semi-parametric information bound is given below as

∫

((

− a′ξ{ (Λ(u)S(u) − Λ(v)S(v))eβ
′ξ

S(u) − S(v)
+
Λ(w)S(w)eβ

′ξ

1 − S(w)
}
)

×
(

− { (Γ (u)S(u) − Γ (v)S(v))eβ
′ξ

S(u) − S(v)
+
Γ (w)S(w)eβ

′ξ

1 − S(w)
}
))∣

∣

∣

β0,λ0

p0dν∗

where γ is chosen as the least favorable direction defined implicitly from the recursive
equation (17.7). �

17.5 Perpectives and References

This is work in progress so that there is the need for simulations and real examples.
This can be done along the lines of an example for the joint law of censoring and
truncation that we treated in our paper in JSPI [HCSV09].
In a more theoretical direction, we hope to extend the method to other semi-
parametric models like for example accelerated models [BN02] and transformation
models [HCV04].
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Abstract: The aim of this work is the investigation of tests of fit for multinomial
distributions based on the Φ-family of test statistics for goodness of fit (gof) tests
[Mattheou and Karagrigoriou, Aust. New Zeal. J. Statist. 52(2), 187–200 (2010)]. For
comparing the various goodness of fit tests the asymptotic distribution, which is known
to be chi-square, [Cressie and Read, JRSSB, 5, 440–454 (1984); Zografos et al. Comm.
Statist. Theor. Meth., 19(5), 1785–1802 (1990); Mattheou and Karagrigoriou, Aus-
tralian and New Zealand Journal of Statistics 52(2), 187–200 (2010)] and the empirical
distribution of all test statistics under investigation are obtained and at the same time
the appropriate critical values are evaluated. For the comparison, samples from trino-
mial distributions are used and both the size and the power of each test for various
alternative hypotheses are calculated.

Keywords and phrases: Generalized goodness of fit tests, Φ-family of test statistics,
Multinomial populations, Asymptotic and empirical distribution

18.1 Introduction

The problem of goodness-of-fit to a distribution, H0 : F = F0, is frequently treated
by partitioning the range of data in disjoint intervals and by testing the hypothesis
H0 : p = p0 about the vector of parameters of a multinomial distribution.

Let P = {Ei}i=1,...,m be a partition of the real line R in m intervals. Let p =
(p1, . . . , pm)′ and p0 = (p10, . . . , pm0)′ be the true and the hypothesized probabilities
of the intervals Ei, i = 1, . . . ,m, respectively, in such a way that pi = PF (Ei), i =
1, . . . ,m and pi0 = PF0 (Ei) =

∫

Ei

dF0, i = 1, . . . ,m.

Let Y1, . . . , YN be a random sample from F , let ni =
n
∑

j=1

IEi (Yj), where

IEi (Yj) =

{

1 if Yj ∈ Ei

0 otherwise
,

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 243
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
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p̂ = (p̂1, p̂2, ...., p̂m)′ with p̂i = ni/N , i = 1, . . . ,m be the maximum likelihood estimator
(MLE) of pi, the true probability of the Ei interval, and

∑m
i=1 ni = N . For testing the

simple null hypothesis

H0 : p = p0, (18.1)

the most commonly used test statistics are Pearson’s or chi-squared test statistic,
given by

X2 =
m
∑

i=1

(ni −Npi0)2

Npi0
(18.2)

and the likelihood ratio test statistic given by

G2 = 2
m
∑

i=1

ni log
(

ni
Npi0

)

. (18.3)

Both these test statistics are particular cases of the family of power-divergence test
statistics (CR test) which has been introduced by Cressie and Read [CR84] and is given
by

Iλn (p̂,p0) =
2N

λ (λ+ 1)

m
∑

i=1

p̂i

(

(

p̂i
pi0

)λ

− 1

)

, λ �= −1, 0 (18.4)

where −∞ < λ < ∞. Particular values of λ in (18.4) correspond to well known
test statistics: Chi-squared test statistic X2 (λ = 1), likelihood ratio test statistic
G2 (λ→ 0), Freeman–Tukey test statistic (λ = −1/2), minimum discrimination in-
formation statistic [GK78] (λ→ −1), modified chi-squared test statistic (λ = −2) and
Cressie–Read test statistic (λ = 2/3).

Although the power-divergence test statistics yield to an important family of gof
tests, it is possible to consider the more general family of φ− divergence test statistics
for testing (18.1) which contains (18.4) as a particular case and is defined by

Iφn (p̂,p0) =
2n

φ′′ (1)

m
∑

i=1

pi0φ

(

p̂i
pi0

)

, (18.5)

with φ (x) a twice continuously differentiable function for x > 0 such that φ′′ (1) �= 0.
The above family of tests is based on the well known φ-divergence family of measures
defined simultaneously by [CS63] and [AS66]:

Definition 1. The φ-divergence family of measures is defined by

Dφ (p̂,p0) =
m
∑

i=1

pi0φ

(

p̂i
pi0

)

, φ ∈ Φ (18.6)

where p̂i = ni/N the MLE of pi, i = 1, . . . ,m and Φ is the class of all convex functions
φ (x), x ≥ 0, such that at x = 1, φ (1) = 0, at x = 0, 0φ (0/0) = 0 and 0φ (u/0) =
lim
u→∞φ (u) /u.
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Note that if φ ∈ Φ is differentiable at x = 1, then ψ (x) ≡ φ (x) − φ′ (1) (x− 1) ∈Φ
and ψ′ (1) = 0. This property, together with the convexity, implies that ψ (x) ≥
0, ∀ x ≥ 0 and Dψ (p̂,p0) = Dφ (p̂,p0) . Since the two divergence measures coincide,
we can consider the sets Φ and Φ∗ ≡ Φ ∩ {φ : φ′ (1) = 0} to be equivalent.

Note that the well known Kullback–Leibler (KL) divergence measure [KL51] is
obtained for ψ (x) = x log (x) − x + 1 ∈ Φ or φ (x) = x log (x) ∈ Φ∗. If ϕ(u) =
1/2(1− u)2, ϕ(u) =

(

uλ+1 − u− λ(u− 1)
)

/(λ(λ+ 1)), λ �= 0,−1, or ϕ(u) = (1−√
u)2,

Csiszar’s measure yields the Pearson’s chi-squared divergence, the Cressie and Read
power divergence [CR84], and the Matusita’s divergence [MAT67], respectively. More
examples can be found in Arndt [AR01], Pardo [PA06], and Vajda [VA89,VA95].

Csiszar’s family of measures was recently generalized by Mattheou and
Karagrigoriou [MK10] to the Φ-family of measures given by

da =
m
∑

i=1

p1+a
i0 Φ

(

p̂i
pi0

)

. (18.7)

For Φ having the special form

Φ1 (u) = u1+a −
(

1 +
1
a

)

ua +
1
a

(18.8)

we obtain the BHHJ measure of Basu et al. [BHHJ98] which was proposed for the
development of a minimum divergence estimating method for robust parameter esti-
mation. Observe that for Φ (u) = φ (u) and a = 0 we obtain the Csiszár’s φ-divergence
family of measures while for a = 0 and for

Φ (u) = Φ2,λ(u) =
1

λ (λ+ 1)
(

uλ+1 − u− λ (u− 1)
)

it reduces to the Cressie and Read power divergence measure. Other important special
cases of the Φ–divergence family are the ones for which the function Φ(u) takes the
form

Φ2(u) = (1 + λ)Φ2,λ(u)

and

Φ1,α (u) =
1

1 + a
Φ1 (u) =

1
1 + a

(

u1+a −
(

1 +
1
a

)

ua +
1
a

)

. (18.9)

It is easy to see that for a→ 0 the measure Φ2(·) reduces to the KL measure.
A general test of fit based on the above Φ-family of measures was recently proposed

by Mattheou and Karagrigoriou [MK10]. In this work, we focus on the same test and
establish its empirical distribution which then is compared with the asymptotic one.
The comparison is based on graphical illustrations as well as on power evaluations
through extensive simulations. In Sect. 18.2, we present the Φ-family of tests based on
(18.7) and state its asymptotic distribution. In Sect. 18.3, we establish the empirical
distribution not only of the Φ-test but also of all the well known test statistics used in
such problems, namely the KL, Matusita, CR, and Pearson test statistics. Finally, we
provide a comparative study between the asymptotic and the empirical distributions.
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18.2 The Φ-Family of Test Statistics

Mattheou and Karagrigoriou [MK10] have recently defined for any function Φ such
that Φ(1) = Φ′(1) = 0 and Φ′′(1) �= 0, the Φ-divergence test statistics for tests of fit
discussed in the previous section, which is given by:

IΦn (p̂,p0) =
2Nda
Φ′′ (1)

, da =
m
∑

i=1

p1+a
i0 Φ

(

p̂i
pi0

)

, Φ ∈ Φ∗. (18.10)

Cressie and Read [CR84] obtained the asymptotic distribution of the power-
divergence test statistic IΦn (p̂,p0) for Φ(u) = Φ2,a(u), Zografos et al. [ZFP90] extended
the result to the family IΦn (p̂,p0) for a = 0 and Φ = φ ∈ Φ∗ and Mattheou and Kara-
grigoriou [MK10] extended the result to cover any function Φ ∈ Φ∗:

Theorem 1. Under the null hypothesis H0 : p = p0 = (p10, . . . , pm0)′, the asymptotic
distribution of the Φ-divergence test statistic, IΦn (p̂,p0), is a chi-square with m − 1
degrees of freedom times a constant c:

IΦn (p̂,p0) L−−−−→
n→∞ cχ2

m−1,

where c = 0.5
(

min
i
pa

i0
+ max

i
pa

i0

)

.

The following two theorems for the CR test statistic and the φ-family of test statis-
tics are special cases of the above theorem for c = 1, a = 0 and for the appropriate
forms of the function Φ(·).
Theorem 2. Under the null hypothesis H0 : p = p0 = (p10, . . . , pm0)′, the asymptotic
distribution of the divergence test statistic IΦn (p̂,p0) with Φ = Φ2,λ given in (18.4), is
chi-square with m− 1 degrees of freedom:

I
Φ2,λ
n (p̂,p0) L−−−−→

n→∞ χ2
m−1.

Theorem 3. Under the null hypothesis H0 : p = p0 = (p10, . . . , pm0)′, the asymptotic
distribution of the φ− divergence test statistic, Iφn (p̂,p0) given in (18.5), is chi-square
with m− 1 degrees of freedom:

Iφn (p̂,p0) L−−−−→
n→∞ χ2

m−1.

The following theorem by Mattheou and Karagrigoriou [MK10] provides the asymp-
totic power of the proposed test statistic.

Theorem 4. Let (n1, . . . , nm)′ ∼M (N,p) with p = (p1, . . . , pm)′, pi, i = 1, . . . ,m−1
unknown parameters and pm = 1−∑m−1

i=1 pi. Under the alternative hypothesis Ha : p =
pb = (p1b, . . . , pmb)

′ the power of the test given in (18.10) is asymptotically equal to

γa = P
(

Z ≥ (2
√
nσa)−1

(

Φ′′ (1) cχ2
m−1,α − 2nd∗a

))

, (18.11)
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where d∗a is given by (18.7) with pib in place of p̂i, Z is a standard Normal random
variable, χ2

m−1,α is the αth percentile of the χ2
m−1 distribution, and

σ2
a =

m
∑

i=1

pib

[

pai0Φ
′
(

pib
pi0

)]2

−
⎡

⎣

m
∑

j=1

pibp
a
i0Φ

′
(

pib
pi0

)

⎤

⎦

2

.

Note that from the statistical point of view, the Cressie and Read family of measures
with λ = 2/3 is very important since as a by-product, the power divergence statis-
tic CR that emerged for goodness of fit purposes for multinomial distributions has
received widespread attention [RC88]. Other related goodness of fit tests have been
investigated among others by Aguirre and Nikulin [AN94], Bagdonavičius and Nikulin
[BN02], Huber and Vonta [HV04], Marsh [MAR06], Menéndez et al. [MPPP97] and
Zhang [ZH02].

18.3 Empirical Distribution and Power Simulations

For checking the accuracy of the asymptotic distribution of IΦn test statistic as well
as the asymptotic distribution of the other four popular tests, namely the tests of fit
based on the Kullback measure (KL), the Pearson’s chi-squared measure (X2), the
Matusita measure (Mat) and the Cressie and Read measure (CR), we evaluate first
their empirical cumulative distribution functions (cdfs).

The proposed Φ test of fit is applied for Φ = Φ1 and Φ = Φ2 and for two different
values of the index a, namely for a = 0.01 and 0.05 while the CR test is applied for
λ = 2/3. For the empirical distributions we focus on the trinomial distribution p0 =
(p10, p20, p30)′ = (0.2, 0.6, 0.2)′ with sample size equal to 150 and 25,000 simulations.
For each simulation, the value of each test statistic is evaluated. The 25,000 values
of each test are ranked and the graph of the empirical distribution is compared with
the corresponding asymptotic distribution presented in the appropriate theorem of
Sect. 14.2. The graphs for the Φ-test for the function Φ1 with a = 0.01 and a = 0.05
are given in Figs. 18.1 and 18.2, respectively, while the graphs for the same values of
the index a for the function Φ2 are given in Figs. 18.3 and 18.4.

All figures show that the fit is extremely good if one takes into consideration the
fact that the sample size used is 150. Note that the same evaluations have been done
for sample sizes equal to 500 and 1,000. Since we are primarily interested in testing
procedures, the 95th percentiles of the empirical and asymptotic distributions are
provided in Table 18.1 for all 6 competing tests (the a = 0.01 case in parentheses).
Recall that the asymptotic percentiles follow from Theorems 1–3.

For checking now the accuracy of the Φ-family of tests and its asymptotic
distribution, simulations using trinomial distributions are considered. For the null
hypothesis, 10,000 simulations of size 150 are drawn from the trinomial distribution
p0 = (p10, p20, p30)′ = (0.2, 0.6, 0.2)′. Note that besides the examples presented here
a number of other simulations have been performed (results not shown) with sample
sizes equal to 50, 100, and 500 and for nonsymmetric null hypotheses (skewed either
to the right or to the left) with similar conclusions.
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Figure 18.1. Empirical and asymptotic null distribution of Φ1-test statistic (a = 0.01) for
trinomial M(150, p0)
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Figure 18.2. Empirical and asymptotic null distribution of Φ1-test statistic (a = 0.05) for
trinomial M(150, p0)
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Figure 18.3. Empirical and asymptotic null distribution of Φ2-test statistic (a = 0.01) for
trinomial M(150, p0)
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Figure 18.4. Empirical and asymptotic null distribution of Φ2-test statistic (a = 0.05) for
trinomial M(150, p0)

Table 18.1. 5% Upper critical values for tests of fit

Test Empirical value Asymptotic value

Mat 6.088768 5.991465

Pearson X2 6.044444 5.991465

KL 5.961975 5.991465

CR 5.992962 5.991465

Φ1 5.830634 (6.121232) 5.684291 (5.928373)

Φ2 5.562362 (5.875057) 5.684291 (5.928373)

In Table 18.2, the powers based on the asymptotic distribution are presented. The
results according to the empirical cdfs are presented in Table 18.3. Both tables provide
the proportion of times the null hypothesis is rejected. The various alternatives con-
sidered are presented in the first column of the tables (p3 is omitted). Observe though
that the first row refers to the size of the test. The results from the power calculations
reveal a number of conclusions which are stated below:

• The Φ1-test performs better than the KL statistic irrespectively of the alternative
hypothesis.

• The Φ2-test for a = 0.01 is identical to the KL test. This is expected since as a→ 0,
Φ2(u) → u logu − u + 1 which is the function associated with the KL test. More
specifically observe that the powers of the resulting test increase as the index a
approaches 0 and they reach their maximum value at a = 0.01. Notice that for both
Φ1 and Φ2 tests, the larger the value of a the smaller the power of the test.

• The results based on the empirical distribution are very similar to the ones based
on the asymptotic distribution for all cases examined.

• The Φ1-test performs better than the other tests for all alternatives that are not far
away from the null hypothesis. On the other hand it performs as good as all other
tests for all alternatives that are far away from the null hypothesis.
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Table 18.2. Powers (%) for Φ1 and Φ2 tests based on the asymptotic distribution (α = 0.05)

Ha Competing tests Φ1-test Φ2-test

H0 : p10 = 0.20, p20 = 0.60, p30 = 0.20, χ2
2;0.05, n = 150

p1b & p2b KL X2 Mat CR a = 0.01 0.05 a = 0.01 0.05

0.20, 0.60 5.12 5.67 5.78 5.44 5.75 5.58 5.12 4.97
0.21, 0.59 6.07 6.86 6.49 6.28 6.29 5.95 6.07 5.90

0.22, 0.60 9.44 10.00 10.13 9.69 10.09 9.68 9.44 8.96

0.25, 0.60 38.80 39.26 40.27 39.06 40.42 38.67 38.80 37.08

0.20, 0.70 89.15 88.39 91.10 88.53 91.87 91.82 89.15 88.91

0.10, 0.60 96.38 96.08 96.65 96.22 96.65 96.17 96.38 95.80

0.40, 0.36 99.99 100.00 99.99 100.00 99.99 99.99 100.00 100.00

0.45, 0.35 100.00 100.00 100.00 100.00 100.00 100.00 99.99 99.99

0.40, 0.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.55, 0.25 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

• The Matusita and the Φ1 tests have a very similar behavior and in most cases
are the most powerful tests among the ones examined. Both tests behave well for
alternatives close to the null hypothesis and better than both the classical Pearson
chi-squared test and the KL test. This observation indicates that the Φ1-test, as well
as the Matusita test, are able to distinguish between null and alternative hypotheses
when they are very close.

Table 18.3. Powers (%) for Φ1 and Φ2 tests based on the empirical distribution (α = 0.05)

Ha Competing tests Φ1-test Φ2-test

H0 : p10 = 0.20, p20 = 0.60, p30 = 0.20, n = 150

p1b & p2b KL X2 Mat CR a = 0.01 0.05 a = 0.01 0.05

0.20, 0.60 5.19 5.35 5.31 5.39 5.33 5.31 5.19 5.28
0.21, 0.59 6.14 6.32 6.07 6.22 5.67 5.70 6.14 6.14

0.22, 0.60 9.54 9.49 9.37 9.52 9.48 9.36 9.54 9.38

0.25, 0.60 38.84 38.24 38.38 38.59 38.40 38.20 38.84 38.40

0.20, 0.70 89.36 87.91 90.46 88.39 91.82 91.48 89.36 89.15

0.10, 0.60 96.38 95.80 96.20 96.06 96.11 96.07 96.38 96.16

0.40, 0.36 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.45, 0.35 99.99 100.00 99.99 100.00 99.99 99.99 99.99 100.00

0.40, 0.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.55, 0.25 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

The above results clearly show the appropriateness of the asymptotic distribution
of the generalized test statistic for tests of fit presented in Theorem 1. It is important
to point out that any type of data can be viewed as multinomial data by dividing the
range of data into m categories. In that sense data related to biomedicine, engineer-
ing and reliability that usually come from continuous distributions can be transformed
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into multinomial data and tests of fit based on the above measures can be applied.
Some of the most popular of such continuous distributions are the exponential, log-
normal, Gamma, Inverse Gaussian, Weibull, Pareto, and Positive Stable distributions.
For instance, the family of the two-parameter inverse Gaussian distribution (IG2) is
one of the basic models for describing positively skewed data which arise in a variety
of fields of applied research as cardiology, hydrology, demography, linguistics, employ-
ment service, etc. Such examples include the repair times of an airborne communica-
tion transceiver [CF77] and quality characteristics [SI03]. Recently, Huberman et al.
[HPPL98] have argued and demonstrated the appropriateness of the inverse Gaussian
family for studying the internet traffic and in particular the number of visited pages
per user within an internet site. Most applications of IG2 are justified on the fact that
the IG2 is the distribution of the first passage time in Brownian motion with positive
drift. Furthermore, distributions like the Weibull, the Positive Stable and the Pareto
are frequently encountered in survival modelling. The main problem of determining the
appropriate distribution is extremely important for reducing the possibility of erroneous
inference. In addition, the existence of censoring schemes in survival modelling makes
the determination of the proper distribution an extremely challenging problem. Finally
distributions like the exponential, the Gamma, the lognormal and others are very com-
mon in lifetime problems.

In Tables 18.4 and 18.5 we present the size of the Φ1-test of fit for the Inverse
Gaussian and the Gamma distributions. In particular, we compare, the size of the
test for various null hypotheses. More specifically, for the Gamma distribution, we
use a scale parameter equal to 1 and for the shape parameter we use the values
0.5, 1, 2, and 4. In regard to the Inverse Gaussian distribution, we examine a wide
range of skewness values but report here the results only for small (skewness=1.414),
medium (skewness=2) and large values (skewness=3 and 4) of skewness. The results are
presented for both the empirical and the asymptotic distribution for comparative
purposes. For the determination of the empirical percentiles, samples of size equal
to 25000 have been used. For a better understanding, we provide also the size of a
number of well known tests which are frequently used for testing the particular dis-
tributions. These tests include the R test [KCK10, KK10], the Anderson Darling test,
the Mudholkar Z-test [MNC01] especially for the inverse Gaussian distribution and the
minimum X2 test [KKC06] especially for the Gamma distribution. In all cases exam-
ined the range of values has been divided into m = 3 disjoint intervals such that the
first and the last contain the upper and lower 20% of the distribution while the middle
one the central 60% of the distribution.

The results clearly show that the empirical and asymptotic results for the Φ test
are much closer than in all other tests. This indicates that the asymptotic distribution
for the Φ test statistic given in Theorem 1 is quite satisfactory for continuous null dis-
tributions like the ones examined. Finally, we observe that the asymptotic distribution
presents an underestimation for the KL test while in all other cases, the reversed is
observed.
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Table 18.4. Asymptotic (Asy) and empirical (Emp) size (%) for the Φ1-test with a = 0.01
and 0.05 and competing tests for the inverse Gaussian distribution

Inverse Gaussian (shape=γ, scale=1)

γ 4.5 2.25 1.00 0.56

Asy Emp Asy Emp Asy Emp Asy Emp

Φ1 (a = 5%) 5.24 4.48 5.40 4.73 4.77 4.11 5.31 4.59

Φ1 (a = 1%) 5.51 5.30 5.60 5.48 5.00 4.92 5.57 5.30

CR test 5.19 4.97 5.26 5.03 4.78 4.46 5.71 5.41

Mat test 5.62 5.13 5.50 5.26 5.04 4.56 5.78 5.22

X2 test 5.49 4.65 5.56 4.77 5.12 4.30 6.16 5.36

KL test 5.12 5.44 5.20 5.56 4.62 4.95 5.34 5.75

AD 4.90 5.00 4.70 4.90

R test 5.50 5.40 5.10 5.60
Z test 5.70 5.60 4.40 4.10

Table 18.5. Asymptotic (Asy) and empirical (Emp) size (%) for the Φ1-test with a = 0.01
and 0.05 and competing tests for the Gamma distribution

Gamma (shape=γ, scale=1)

γ 4.0 2.0 1.0 0.5

Asy Emp Asy Emp Asy Emp Asy Emp

Φ1 (a = 5%) 5.24 4.48 5.40 4.73 4.77 4.11 5.31 4.59

Φ1 (a = 1%) 5.51 5.30 5.60 5.48 5.00 4.92 5.57 5.30

CR test 5.19 4.97 5.26 5.03 4.78 4.46 5.71 5.41

Mat test 5.62 5.13 5.50 5.26 5.04 4.56 5.78 5.22

X2 test 5.49 4.65 5.56 4.77 5.12 4.30 6.16 5.36

KL test 5.12 5.44 5.20 5.56 4.62 4.95 5.34 5.75

AD 5.20 5.30 4.70 5.30
R test 5.00 6.00 3.50 5.60

min X2 test 4.60 4.30 5.20 5.20

18.4 Conclusions

The aim of this work is the investigation of generalized tests of fit for multinomial
populations which are based on the Φ-divergence class of measures. In particular, we
present various test statistics associated with the above testing problem and calculate
the size and the power by simulating samples from trinomial distributions. For com-
parative purposes we are using both the asymptotic and the empirical distributions.
We are mainly interested in investigating the behavior of the Φ-divergence class and
establish its appropriateness.

The results show that the Φ1-test as well as the Matusita test perform better than
the Kullabck–Leibler test (KL) in most cases and also have the advantage of distinguish-
ing between null and alternative hypothesis when they are very close. The empirical
and asymptotic percentiles for all tests are extracted and their similarity is verified.



18 On Generalized Tests of Fit for Multinomial Populations 253

For checking the accuracy of the asymptotic distribution of the Φ1 and Φ2 tests
the graphs of the associated empirical distributions are drawn together with the cor-
responding asymptotic ones. The graphs clearly show that the two distributions are
identical in all cases which proves the appropriateness of the asymptotic distribution.

Finally, Inverse Gaussian and Gamma simulations are used with m = 3 disjoint
intervals for establishing the appropriateness of the asymptotic distributions for con-
tinuous distributions often appearing in engineering systems and reliability theory.
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Abstract: Estimation and testing of distributions in metric spaces are well known.
R.A. Fisher, J. Neyman, W. Cochran, and M. Bartlett achieved essential results on the
statistical analysis of categorical data. In the last 40 years, many other statisticians
found important results in this field.

Often data sets contain categorical data, e.g., levels of factors or names. There does
not exist any ordering or any distance between these categories. At each level there
are measured some metric or categorical values. We introduce a new method of scaling
based on statistical decisions. For this we define empirical probabilities for the original
observations and find a class of distributions in a metric space where these empirical
probabilities can be found as approximations for equivalently defined probabilities.
With this method we identify probabilities connected with the categorical data and
probabilities in metric spaces. Here, we get a mapping from the levels of factors or names
into points of a metric space. This mapping yields the scale for the categorical data.

From the statistical point of view we use multivariate statistical methods, we
calculate maximum likelihood estimations and compare different approaches for scaling.

Keywords and phrases: Multivariate scaling, Discrimination, Power of multivariate
tests

19.1 Introduction

Estimation and testing for distributions of metric random variables are known since the
end of the nineteenth century. R.A. Fisher and many other statisticians developed very
efficient statistical methods for analyzing medical and biological data. These methods
correspond to regression, multivariate analysis, and in general to data analysis. Many
procedures, e.g. the procedures of the analysis of variance belong to the basic methods
in applied statistics.

Essential contributions about statistics of categorical data were developed first by
R.A. Fisher, J. Neyman, W. Cochran and M. Bartlett. One finds very different strong
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results for analyzing categorical data since the 1960s. Mostly data structures from
social, biological, medical and technical areas are analyzed. In biomedical applications
categories as sex, race, or social strata are considered, in technical problems one works
with technical patterns or places. In social problems, one uses verbal assessments or
marks, in political or philosophical context one finds arrangements as “liberal”, “mod-
erate” or “conservative”.

In this paper, we introduce a method of scaling based on statistical decisions, espe-
cially classification methods are used. We will concentrate on methods and examples
with categorical data. But it will be clear that the proposed procedures can be used
as a pretreatment in other data structures for generating such transformed data which
conform with assumptions in standard software.

Multidimensional scaling is considered by several authors. In most of the cases, they
use similarities or dissimilarities and then they find scales for the categories [EvDu01].
Instead of such geometrical approaches we use here statistical decisions.

19.2 Basic Model

We consider the q-way classification model which is used mostly in the analysis of
variance. At least the structure is interesting for us. The basic assumptions can be
explained in the 2-way classification. We are given data in the following structure.

Factor B
Factor A level 1 level 2 level 3 · · · level b

level 1 z11j z12j z13j · · · z1bj
j = 1, ..., m11 j = 1, ..., m12 j = 1, ..., m13 · · · j = 1, ..., m1b

...
...

...
...

. . .
...

level a za1j za2j za3j · · · zabj
j = 1, ..., ma1 j = 1, ..., ma2 j = 1, ..., ma3 · · · j = 1, ..., mab

At level s of the factor A and level t of factor B there are mst observations and the
total sample size is

m =
a

∑

s=1

b
∑

t=1

mst.

Here, the categorical variables are the levels of the factors A and B. The L := a · b
categories are described by

{(s, t) : s = 1, ..., a; t = 1, ..., b}.

For finding a scale for the categories it is convenient to group the observations {zstj} in
given classes. We assume that there are given k classes and hil is the number of obser-
vations in the category l = (s, t) falling in the class Ki. Then we have the contingency
table
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Factor B

Factor A level 1 level 2 level 3 · · · level b

level 1 h1(1,1) ...hk(1,1) h1(1,2) ...hk(1,2) h1(1,3) ...hk(1,3) · · · h1(1,b) ...hk(1,b)
...

...
...

...
. . .

...
level a h1(a,1) ...hk(a,1) h1(a,2) ...hk(a,2) h1(a,3) ...hk(a,3) · · · h1(a,b) ...hk(a,b)

This table of frequencies is our starting data set. The interpretation of this table is
the following. At the level l = (s, t) we have observations from different classes and
from the

ml =
k

∑

i=1

hil =
k

∑

i=1

hi(s,t)

observations the parts for the classes are given by

h1l

ml
, ...,

hkl
ml

.

Such tables are obtained in a similar way if q > 2. The dimension of l depends on q in
general.

19.2.1 Modeling of Categorical Data

We will find a model for data structures given in the last tables. For this we remember
the discrimination of distributions or classes. There are given k distributions with
densities f1, ..., fk over a space R

p and for each point y ∈ R
p it is known that it can be

a realization of one of the classes. Furthermore, let π1, ..., πk be prior probabilities for
the classes. Then it is known that a given realization y of the random variable Y with
the density f with

f(y) =
k

∑

j=1

πjfϑj (y)

corresponds to the class Ki with the probability

P(Y ∈ Ki | Y = y)) =
πifϑi(y)

∑k
j=1 πjfϑj (y)

=: p̃i(y). (19.1)

Consequently, under the assumption that a point y (or a point in a very near neigh-
borhood of y) has the frequency m̃ in the data set then we expect m̃ · p̃i(y) of these
points corresponding to class Ki.

Modeling of Categories

We denote by Mult(m̃, p1, ..., pk) the multinomial distribution where pi is the probability
for the class Ki and we repeat the experiment m̃ times. Then we expect that under
these m̃ observations approximately m̃ · pi correspond to Ki. As a consequence from
the last two subsections we formulate the definition.
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Definition 1. The points {sl ∈ R
p, l = 1, ..., L} are called scale points for the categories

{xl, l = 1, ..., L} if
(h1l, ..., hkl)

are realizations of independent multinomial random variables Wl with

Wl ∼ Mult(h+l, p̃1(sl), ..., p̃k(sl)), l = 1, ..., L

and

h+l =
k

∑

i=1

hil.

This means that in the statistical model the same expected frequencies occur as in the
table. In general, the densities depend on some parameters. Then, one has to estimate
the distributional parameters and the scale parameters. This can be done using the
likelihood principle. Here, we use another criterion. We will find such scales that the
classes will be discriminated as well as possible. Voinov and Nikulin considered in
[VoNi93] multivariate multinomial distributions for identically distributed Wl, here we
use a more general model.

19.2.2 Determination of Observations

Scale points are to be constructed on the basis of the observations. The observations
are those which are given by the categories and the frequencies. In our understanding,
the categories are identified with points x1, ..., xL ∈ R

p and these points are to be
determined in an optimal way. The observations express the correspondence to some
classes, denoted by {y11, ..., yknk

}. Explicitly, we have the observations

{y11, ..., y1n1} = {h11 times x1, h12 times x2, ..., h1L times xL},

hence, we have n1 = h1+. Or we write

y1t = x1, t = 1, ..., h11; y1t = x2, t = h11 + 1, ..., h11 + h12; ...;
y1t = xL, t = h1+ − h1L, ..., h1+.

In an analogous way we have for the other classes i = 2, ..., k

yit = x1, t = 1, ..., hi1; yit = x2, t = hi1 + 1, ..., hi1 + hi2; ...;
yit = xL, t = hi+ − hiL, ..., hi+.

It holds ni = hi+. For statistical decisions one needs assumptions on the distributions.

19.2.3 Choice of Distributions

In general, one chooses yij ∈ R
q if one has data from a q-way classification model.

This means p = q. But sometimes a lower-dimensional space is also possible especially
if some factors have not a large influence on the results. The special case p = 1 is of
interest if one likes to have an ordered scale for the categories.
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Depending on the meaning of the observations we can choose the distributions. Quite
often binomial, normal, or Poisson distributions are useful, but especially in reliability
or survival analysis exponential or Weibull distributions are to be chosen.

Assuming that we are given k distributions Pϑ1 , ...,Pϑk
and for each distribution

Pϑi with a density fϑi we have a random sample Yi1, ..., Yini . All random variables
should be independent. For testing

H : Pϑ1 = ... = Pϑk

against K, that not all distributions are the same, we use the likelihood ratio test.
The joint density for Y = (Y11, ..., Yknk

) is denoted by fϑ1,...,ϑk
. As usually, the LRT is

given by

ϕ(y) = 1 if Rn(y) :=
maxϑ1,...,ϑk

fϑ1,...,ϑk
(y)

maxϑ fϑ,...,ϑ(y)
≥ c,

where c ensures the significance level.

Normal Distributions

We assume that
Y11 . . . Y1n1

...
. . .

...
Yk1 . . . Yknk

are independent and normally distributed p-dimensional random variables, Yij ∼
Np(μi, Σ). Then we consider the test problem

H : μ1 = ... = μk against K : not H. (19.2)

We denote the sample mean for the ith distribution by yi·, i = 1, ..., k, the total
mean by

y·· =
1
n

k
∑

i=1

ni
∑

j=1

yij =
1
n

k
∑

j=1

njyj· .

The unbiased estimator for the variance is

S =
1

n− k

k
∑

i=1

ni
∑

j=1

(Yij − Yi·)(Yij − Yi·)t.

Then

T 2
0 (Y ) =

n− k − p+ 1
(k − 1)(n− k)p

k
∑

i=1

ni(Yi· − Y··)tS−1(Yi· − Y··)

is approximately F-distributed. H. Ahrens and J. Läuter proposed in [AhLa81] the
approximation T 2

0 (Y ) ≈ Fg1,g2 for

g1 =

{

(k−1)(n−k−p)p
n−(k−1)p−2 if n− (k − 1)p− 2 > 0
∞ otherwise,

g2 = n− k − p+ 1.
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Then an admissible test is given by

ϕ(y) =
{

1 if T 2
0 (y) > Fg1,g2;α

0 otherwise,

for the α-fractile of the Fg1,g2 -distribution.

Exponential Distributions

We choose p = 1. We consider independent exponentially distributed variables

Y11 . . . Y1n1

...
. . .

...
Yk1 . . . Yknk

.

With the densities

fμ(x) = μ exp(−μx) 1(0,∞)(x)

we assume that Yij has the density fμi . The likeliood ratio test statistic has the form
(up to a factor)

R(y) =
yn··

yn1
1· · ... · ynk

k·
.

If R(y) is large enough, then we reject the hypothesis.

19.3 Criteria for Scaling

M.G. Kendall and A. Stuart [KeSt67] and later on H. Ahrens and J. Läuter in [AhLa81]
introduced a method for scaling which bases on a test statistic. This will be generalized
for higher dimensional q-way classification tables. This was considered by H. Läuter in
[La07] too. At first we denote the levels of the q factors in an arbitrary way by real
numbers. The factor i has νi levels. Then we put τij for the level j of the factor i, all
levels are described by

τ = (τ11, ..., τ1ν1 , ..., τqνq )t

and altogether we have ν =
∑

i νi levels. In sect. 19.2.2, the categories were identified
by x1, ..., xL and we introduced the yij . For any xl we find a p × ν matrix Cl with
xl = Clτ. Every yts is one of the values C1τ, ..., CLτ . We use

ht· =
1
L

L
∑

l=1

htl, h·l =
1
k

k
∑

t=1

htl, h·· =
1
kL

k
∑

t=1

L
∑

l=1

htl,

ht· · L =
L

∑

l=1

htl = nt, h·· · kL = n.
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Then we calculate

yt· =
1
nt

nt
∑

s=1

yts =
1
nt

(

ht1C1 + · · · + htLCL
)

τ, y·· =
k

n

(

h·1C1 + · · · + h·LCL
)

τ

yt· − y·· =
(

(
ht1
nt

− kh·1
n

)C1 + · · · + (
htL
nt

− kh·L
n

)CL
)

τ =: Dt τ.

These values are to be substituted in the test statistics. In the normal case we have T 2
0

as the test statistic. For calculating this statistic we use

H :=
k

∑

i=1

ni
(

yi· − y··
)(

yi· − y··
)t

=
k

∑

i=1

niDi τ τ
tDt

i ,

S :=
1

n− k

k
∑

i=1

ni
∑

s=1

(

yis − yi·
)(

yis − yi·
)t

=
1

n− k

k
∑

i=1

L
∑

l=1

hilFil τ τ
tF til

for
Fil = Cl − 1

ni

(

hi1C1 + · · · + hiLCL
)

and

T 2
0 =

n− k − p+ 1
(k − 1)(n− k)p

k
∑

i=1

ni(yi· − y··)tS−1(yi· − y··)

=
n− k − p+ 1

(k − 1)(n− k)p
tr

(

HS−1
)

,

tr
(

HS−1
)

= τ t
[

k
∑

i=1

niD
t
iS

−1Di

]

τ

with

S =
1

n− k

k
∑

i=1

L
∑

l=1

milFil τ τ
tF til.

In the case of exponential distributions, we considered the LRT. There we had p = 1
and so we have L = ν and the statistic was

R(y) =
yn··

yn1
1· · ... · ynk

k·
. (19.3)

Substituting here the values with τ we obtain

R =

[

k
n

(

h·1C1 + · · · + h·LCL
)

τ
]n

[

1
n1

(

h11C1 + · · · + h1LCL

)

τ
]n1 · ... ·

[

1
nk

(

hk1C1 + · · · + hkLCL

)

τ
]nk

. (19.4)
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In the case q = 1 it holds Clτ = τ1l =: τl and therefore we get

R =
knnn1

1 · ... · nnk

k

nn

(

h·1τ1 + · · · + h·LτL
)n

(

h11τ1 + · · · + h1LτL

)n1 · ... ·
(

hk1τ1 + · · · + hkLτL

)nk
. (19.5)

The aim is to find such a scale that the distributions or here classes can be discriminated
as well as possible. Therefore, we have to determine such a vector τ∗ that maximizes the
corresponding test statistic. In the normal case the test bases on T 2

0 , for the exponential
distributions the likelihood ratio test statistic R was proposed.

Definition 2. If LR denotes the test statistic where large values of LR lead to the
rejection of the hypothesis then τ∗ with

LR(τ∗) = max
τ

LR(τ) (19.6)

is called a most separating scale.

19.4 Calculation of Most Separating Scales

In general, one has to use some optimization software for finding a maximal τ∗. We
will consider in some detail the special case of normal distributions. In sect. 19.2.3 we
considered the statistic T 2

0 as the statistic to be maximized. Up to a factor this coincides
with

tr(HS−1) = τ t
[

k
∑

i=1

niD
t
iS

−1Di

]

τ (19.7)

with

S =
1

n− k

k
∑

i=1

L
∑

l=1

hilFil τ τ
tF til.

19.4.1 One-Dimensional Normal Distributions

We consider p = 1. Then we have the 1 × L matrices Cl, Di, Fil and get

H = τ tAτ, S = τ tBτ (19.8)

for the matrices

A =
k

∑

i=1

niD
t
iDi, B =

1
n− k

k
∑

i=1

L
∑

l=1

hilF
t
ilFil. (19.9)

Therefore, the τ∗ = (τ∗1 , ..., τ
∗
L)t maximizing tr(HS−1) is determined by the eigenvector

to the maximal eigenvalue of
Aτ = λBτ. (19.10)

Therefore, in the case p = 1 the optimal scale vector τ∗ can be determined exactly.
The level l corresponds to the number τ∗l .
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19.4.2 Higher-Dimensional Case

Now we consider q-way classification models and p ≤ q. Then we have the p×ν matrices
Cl, Di, Fil and with Sτ := S we have

tr(HS−1) = tr(HS−1
τ ) = τ t

[
k

∑

i=1

niD
t
iS

−1
τ Di

]

τ (19.11)

for

Sτ =
1

n− k

k
∑

i=1

L
∑

l=1

hilFilττ
tF til. (19.12)

Defining

ψ(τ, a) := at
[

k
∑

i=1

niD
t
iS

−1
τ Di

]

a (19.13)

and then τ∗ fulfills
ψ(τ∗, τ∗) = max

τ
ψ(τ, τ). (19.14)

We see that ψ does not change if τ is substituted by μτ for any real μ.

Definition 3. τ̃ is called a local extremum if

d
dλ
ψ

(

(1 − λ)τ̃ + λv, (1 − λ)τ̃ + λv
)

|λ=0 ≤ 0 ∀v ∈ R
p.

We are interested in characterizing such a local extremum. This gives us the next
theorem.

Theorem 1. τ̃ is a local extremum if and only if α(τ̃ ) = 0 with

α(τ) :=
k

∑

i=1

niD
t
iS

−1
τ Diτ − 1

n− k

k
∑

i=1

ni

k
∑

j=1

L
∑

l=1

hjlF
t
jlS

−1
τ Diττ

tF tjlS
−1
τ Diτ.

Proof. We put τλ = (1 − λ)τ̃ + λv and obtain

d
dλ
τλ = v − τλ,

d
dλ
τλτ

t
λ|λ=0 = (v − τ̃ )τ̃ t + τ̃(v − τ̃ )t,

d
dλ
S−1
τλ

= −S−1
τλ

(
d

dλ
Sτλ

)S−1
τλ

and consequently

d
dλ
S−1
τλ

|λ=0 = − 1
n− k

S−1
τ̃

k
∑

j=1

L
∑

l=1

hjlFjl(vτ̃ t + τ̃ vt − 2τ̃ τ̃ t)F tjlS
−1
τ̃ .

Now we calculate in a direct way

d
dλ
ψ(τλ, τλ)|λ=0 = 2vtα(τ̃ )

and so the theorem is proven.
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This theorem gives us a proposal for the calculation of a local extremum.
Step 1: Choice of an initial point τ0.
Step 2: Set w := 1

|α(τ0)| α(τ0) and τ̃λ = (1 − λ)τ0 + λw for euclidian norm |α(τ0)| of
α(τ0).
Step 3: Determine such λ1 that

ψ(τ̃λ1 , τ̃λ1) = max
λ

ψ(τ̃λ, τ̃λ).

Step 4: Set τ1 := τ̃λ1 and calculate α(τ1). Now we set w := 1
|α(τ1)| α(τ1) and τ̃λ =

(1 − λ)τ1 + λw and so on.
In this way we get a sequence of q-vectors τ0, τ1, τ2, ... and have

ψ(τ0, τ0) ≤ ψ(τ1, τ1) ≤ ψ(τ2, τ2) ≤ ...

In each step, one can check α(τj) and decide to proceed in the sequential calculation
or to break up. Under α(τj) ≈ 0 one reaches the optimum.

Acknowledgment. The authors are very grateful to Prof. H. Liero and Dr. Martin
Läuter for their helpful comments and suggestions.
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Nonparametric Estimation and Testing the Effect

of Covariates in Accelerated Life Time Models
Under Censoring

Hannelore Liero
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Abstract: We consider an accelerated life time model where the distribution of the
basic life time is not specified and the function ψ describing the effect of the covariates
has no parametric form. That is, the model is completely nonparametric. In this paper,
a procedure for testing whether ψ has prespecified parametric form is proposed. The
approach is based on a transformation to a regression model and the test statistic is
a weighted L2-distance between a nonparametric estimator for the regression function
from the hypothetical regression. Since the problem is investigated for censored data
the derivation of the test procedure requires the study of the asymptotic behavior of
nonparametric regression estimators under censoring. A proposal for a Monte Carlo
procedure for the realization of the test completes the considerations.

Keywords and phrases: Accelerated life time model, Beran estimator, Censoring,
Goodness-of-fit tests, Nonparametric curve estimators

20.1 Introduction

We consider a life time model which describes the following situation: By some covariate
X the time to failure may be accelerated or retarded relative to some baseline. The
speeding up or slowing down is accomplished by some positive function ψ, and we may
write

T =
T0

ψ(X)
,

where T0 is the so-called baseline life time and T is the observable life time. We will
assume that T is an absolute continuous random variable (r.v.) and that the covariate
X does not depend on the time. For simplicity of presentation letX be one-dimensional.

For statistical application a suitable choice of the function ψ is important and the
problem of testing ψ arises. A survey of test procedures for testing ψ under different
model assumptions is given in the paper by Liero H. and Liero M. [LL08].

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 265
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 20, c© Springer Science+Business Media, LLC 2010
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The aim of the present paper is to propose a test procedures for testing whether
the function ψ belongs to a pre-specified parametric class of functions

F = {ψ |ψ(·) = ψ(·;β), β ∈ R
d}. (20.1)

For data without censoring this problem was already considered by Liero in [Lie08].
In this paper we assume that the independent and identically distributed life times Ti
are subject to random right censoring, i.e. the observations are

Vi = min(Ti, Ci), Δi = 1(Ti ≤ Ci) and Xi, i = 1, . . . , n,

where the Ci’s are independent and identically distributed censoring times with distri-
bution function G. Furthermore, we assume that the Ti’s and the Ci’s are conditionally
independent given the Xi’s.

The inference is based on the log transformation of the lifetime model to a regression
model: The conditional expectation of Y = logT given the covariate X has the form

E (Y |X = x) = μ − logψ(x) with μ = −
∫

log z dS0(z) = E (logT0),

where S0 is the survival function of the baseline life time T0, and we can translate the
considered problem into a problem of testing the regression function in a nonparametric
regression model

Y = logT = m(X) + ε,

where m(x) = μ − logψ(x), and with ε = log(T0) − E(log(T0))

E (ε|X = x) = 0, and E (ε2|X = x) = σ2

for some σ2 > 0. For identifiability, we assume ψ(0) = 1.
Test problem (20.1) is translated into the following problem

H : m ∈ M versus K : m �∈ M

where
M = {m |m(·;β, μ) = − logψ(·;β) + μ, β ∈ R

d, μ ∈ R},
that is we have to check whether the regression function has a parametric form or
alternatively that this regression is nonparametric.

As test statistic a weighted L2-distance between a parametric and the nonparametric
regression estimator is proposed. To formulate the corresponding test procedure one
has to investigate the properties of nonparametric estimators for regression functions
under censoring. Therefore, in Sect. 20.2, the nonparametric estimation of the regres-
sion function under censoring is considered. In Sect. 20.3 asymptotic properties of the
nonparametric regression estimator are presented; the main result is the asymptotic
normality of the weighted L2-distance of the estimator. This limit theorem is based on
a so-called asymptotic (conditional) i.i.d. representation of the difference between the
estimator and the regression function. The test procedure is given in Sect. 20.4.
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20.2 Nonparametric Estimation of the Regression Function
Under Censoring

We start with the a nonparametric estimator for the conditional distribution function
of the transformed r.v. Y = logT . Such an estimator was introduced by Beran [Ber81].
On one hand the Beran estimator can be regarded as an extension of the well-known
Kaplan–Meier estimator proposed for models with censored data without covariates,
on the other hand it is an extension of nonparametric estimators for conditional dis-
tributions functions studied for data sets without censoring. To define the Beran es-
timator it is useful to introduce the following functions and their estimators: The
conditional distribution function of the r.v. Z = logV with V = min(T,C) is given by
H(z|x) = P(Z ≤ z|X = x) and estimated by the kernel estimator

Ĥn(z|x) =
∑

i

Wbni(x,X1, . . . , Xn)1(Zi ≤ z), (20.2)

where Wbni are the kernel weights defined by

Wbni(x,X1, . . . , Xn) =
1
bn
K
(

x−Xi

bn

)

1
bn

∑n
j=1 K

(

x−Xj

bn

) .

Here K : R → R is a kernel function, and bn is a sequence of bandwidths tending to
zero as n → ∞. The symbol ”1” denotes the indicator function. The estimator of the
conditional subdistribution function HU (z|x) = P(Z ≤ z,Δ = 1|X = x) is given by

ĤU
n (z|x) =

∑

i

Wbni(x,X1, . . . , Xn)1(Zi ≤ z,Δi = 1). (20.3)

For the conditional cumulative hazard function Λ we have for y ≤ τx

Λ(y|x) =
∫ y

−∞

dF (s|x)
1 − F (s−|x)

=
∫ y

−∞

dHU (s|x)
1 −H(s−|x)

where F denotes the conditional cdf of the transformed Y = logT and H(s−|x) =
limt↑sH(t|x), τx = inf{y|H(y|x) = 1} is the upper bound of the support of H(·|x).
ReplacingHU andH by their estimators (20.2) and (20.3) leads to the weighted Nelson–
Aalen type estimator for the conditional cumulative hazard function:

Λ̂n(y|x) =
∫ y

−∞

dĤU
n (s|x)

1 − Ĥn(s−|x)
.

Now from the well-known relation between the cumulative hazard function and the
survival function we obtain as estimator for SY (y|x) = 1 − F (y|x) = P(Y > y|X = x)

ŜY n(y|x) =
∏

t≤y

(

1 − ΔΛ̂n(t|x)
)

(20.4)
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where ΔΛ̂n(t|x) = Λ̂n(t|x) − Λ̂n(t−|x) is the jump of Λ̂n(·|x) at t. An equivalent form
of (20.4) is

F̂n(y|x) = 1 −
∏

Zi≤y
Δi=1

⎧

⎪

⎨

⎪

⎩

1 − Wbni(x,X)
∑

j

1(Zj ≥ Zi)Wbnj(x,X)

⎫

⎪

⎬

⎪

⎭

,

where X = (X1, . . . , Xn).
Note that for weights Wbni = 1

n the estimator F̂n is the classical Kaplan–Meier
estimator; for Δi = 1 for all i the estimator F̂n is the estimator of the conditional
distribution function, and for Wbni = 1

n
and Δi = 1 for all i the estimator F̂n is simply

the empirical distribution function.
Several authors considered the asymptotic behavior of F̂n. Consistency of F̂n(y|x)

is proven for y ≤ τx.
The regression function m(x) = E(Y |X = x) is defined by

∫

ydF (y|x). However, for
the estimation of m and the investigation of the properties of the resulting estimator
the following identities are useful:

m(x) = E(Y |X = x)

=
∫

ydF (y|x) (20.5)

= E

(

1 − F (Z−|X)
1 −H(Z−|X)

ZΔ|X = x

)

(20.6)

and

m(x) =
∫ 1

0

F−1(u|x) du (20.7)

where F−1(u|x) = inf{y|F (y|x) ≥ u}.
To estimate m we replace F (y|x) in (20.5) by the Beran estimator and obtain as

nonparametric estimator for m

m̂n(x) =
∫

y dF̂n(y|x).

One can show that for this estimator the empirical versions of (20.6) and (20.7)
hold, i.e.,

m̂n(x) =
n
∑

i=1

Wbni(x,X)
1 − F̂n(Zi−|x)
1 − Ĥn(Zi−|x)

ZiΔi

and

m̂n(x) =
∫ 1

0

F̂−1
n (u|x)du

where F̂−1
n (u|x) = inf{y|F̂n(y|x) ≥ u}. We see that as in the case without censoring the

regression estimator is a weighted average; now, in the case with censoring an average
of the uncensored observations. The weights depend on the kernel and on the ratio of
the Kaplan–Meier estimator and the empirical df of the observations.
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20.3 Properties of the Nonparametric Regression Estimator

Györfi et al. showed in [GKKW02] that an estimator of this type is L2-consistent if
the right endpoint of the support of F is smaller than that of G.1 We follow another
approach than those authors. We will use a conditional i.i.d. presentation of the dif-
ference between estimator and regression function; such a presentation is based on the
corresponding result for the estimator F̂n which is derived by Akritas and Du in [AD02].
Since this presentation holds only for y ≤ y∗, where y∗ < supx τx we will truncate the
estimator (due to the right censoring):

Instead of m(x) =
∫∞
−∞ y dF (y|x) we estimate the function

m∗(x) =
∫ y∗

−∞
y dF (y|x).

The function m∗ is estimated by

m̂∗
n(x) =

∫ y∗

−∞
y dF̂n(y|x).

Before we state the results let us formulate the assumptions

A1 The marginal density g of X is bounded on R and twice continuously differentiable
in a neighborhood of a set I and g(x) ≥ c > 0 for some c and all x ∈ I.

A2 The kernel K is a symmetric density with compact support; furthermore, it is twice
continuously differentiable.

A3 We will need typical smoothness conditions on the functions H(·|·) and HU (·|·).
We formulate here for a general (sub)distribution function L:
The derivatives

L̈(y|x) =
∂2L(y|x)
∂2x

, L′′(y|x) =
∂2L(y|x)
∂2y

, L̇′(y|x) =
∂2L(y|x)
∂y∂x

exist and are continuous for all y, and all x in a neighborhood of M.

Lemma 1. Suppose that A1 and A2 hold and that A3 is satisfied by H and HU . Then

m̂∗
n(x) −m∗(x) =

n
∑

i=1

Wbni(x,X) η(Zi, Δi|x) + Rn(x)

with

η(Zi, Δi|x) = y∗(1 − F (y∗|x))ξ(Zi, Δi, y
∗|x)

−
∫ y∗

−∞
(1 − F (s|x))ξ(Zi, Δi, s|x)ds,

where

ξ(Zi, Δi, s|x) =
1(Zi ≤ s,Δi = 1)

(1 −H(Zi|x))
−
∫ s

−∞

1(Zi ≥ w)dHU (w|x)
(1 −H(w|x))2

,

1 Instead of kernel weights considered here they used nearest neighbor weights.
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and where

sup
x∈I

Rn(x) = OP

(

(nbn)−
3
4 (logn)

3
4

)

as n→ ∞.

Based on the presentation given in Lemma 1 we will prove the asymptotic normality
of m̂n(x) at an arbitrary fixed point x and a limit theorem for a weighted integrated
squared error. Let us consider the conditional i.i.d. presentation as process and set

An(x) =
n
∑

i=1

Wbni(x,X) η(Zi, Δi|x).

In a first step, we will split An in a stochastic and in a systematic part:

An(x) =
n
∑

i=1

Wbni(x,X) (η(Zi, Δi|x) − E[η(Zi, Δi|x)|Xi])

+
n
∑

i=1

Wbni(x,X)E[η(Zi, Δi|x)|Xi].

Note that

Wbni(x,X) =
1
nKbn(x −Xi)

ĝn(x)

where

ĝn(x) =
1
n

n
∑

j=1

Kbn(x−Xj)

is the estimator for the marginal density g of the covariate X .
The first part, the stochastic one, is approximated by

An1(x) =
1

Eĝn(x)
1
n

n
∑

i=1

Kbn(x−Xi) (η(Zi, Δi|x) − E[η(Zi, Δi|x)|Xi]) .

Using the well-known asymptotic properties of a nonparametric density estimator it
is shown that the stochastic part of An and the statistic An1 have the same asymptotic
behavior. The stochastic behavior of An1 is characterized by the covariance function

Cn(x, y) = Cov(An1(x),An1(y)).

Since this function plays a key role in proving limit theorems and deriving the
corresponding standardizing terms an asymptotic expression for Cn(x, y) is presented
in the following lemma:

Lemma 2. Suppose that A1 and A2 hold, and H and HU are Lipschitz continuous
with respect to x. Set

βx(v) =
∫ v

−∞

dHU (w|x)
(1 −H(w|x))2
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and

γxy(s, t) =

∞
∫

−∞
βx(s ∧ z)βy(t ∧ z)dH(z|x)

−
s
∫

−∞
βy(t ∧ z)dΛ(w|x) −

t
∫

−∞

1 −H(z|x)
1 −H(z|y)

βx(s ∧ z)dΛ(z|x)

+

s∧t
∫

−∞

dHU (z|x)
(1 −H(z)|x)(1 −H(z|y))

.

Then

Cn(x, y) =
1
nb

(g(x))−1(K ∗K)
(

y − x

b

)

×
(

y∗2(1 − F (y∗|x))(1 − F (y∗|y))γxy(y∗, y∗)

−y∗(1 − F (y∗|x))
∫ y∗

−∞
(1 − F (t|y))γxy(y∗, t)dt

−y∗(1 − F (y∗|y))
∫ y∗

−∞
(1 − F (s|x))γxy(s, y∗)ds

+
∫ y∗

−∞

∫ y∗

−∞
(1 − F (s|x))(1 − F (t|y))γxy(s, t)dsdt

)

+ o
(

n−1
)

,

where K ∗K denotes the convolution.

The approximating statistic An1(x) is a sum of i.i.d. r.v.’s. Applying the central
limit theorem we obtain immediately the asymptotic normality at a fixed point x:

An1(x)
Cn(x, x)

D−→ N(0, 1).

After some transformations we obtain from Lemma 2 for x = y

Cn(x, x) =
1
nbn

(g(x))−1(K ∗K)(0)

×
∫ y∗

−∞
(y∗(1 − F (y∗)) −Ax(s; y∗))2

dHU
x (s)

(1 −Hx(s))2
+ o(n−1)

=
1
nbn

κ2ρ2(x) + o(n−1)

with Ax(s; y∗) =
∫ y∗

s
(1 − F (t|x))dt and κ2 = (K ∗K)(0). Hence,

√

nbn An1(x) D−→ N(0, ρ2(x)κ2).

Since ĝn(x) is consistent,
An1(x) = OP((nbn)−1/2)
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and
ĝn(x) − Eĝn(x) = OP((nbn)−1/2)

we obtain

(An(x) −
n
∑

i=1

Wbi(x,X)E(ηx(Zi, Δi)|Xi)) − An1(x)

= An1(x)
Eĝn(x) − ĝn(x)

ĝn(x)
= OP((nbn)−1).

Hence,

√

nbn

(

An(x) −
n
∑

i=1

Wbi(x,X)E(ηx(Zi, Δi)|Xi)

)

D−→ N(0, ρ2(x)κ2).

Now, to characterize the systematic part of the deviation define

B1(s, x) =
∫ s

−∞

dḢU (t|x)
1 −H(t|x)

+
∫ s

−∞

Ḣ(t|x)dHU (t|x)
(1 −H(t|x))2

and

B2(s, x) =
∫ s

−∞

dḦU (t|x)
1 −H(t|x)

+
∫ s

−∞

Ḧ(t|x)dHU (t|x)
(1 −H(t|x))2

.

Using standard techniques for the investigation of a bias we obtain the following asymp-
totic expansion for the term

∑n
i=1Wbi(x,X)E(ηx(Zi, Δi)|Xi):

n
∑

i=1

Wbi(x,X)E(ηx(Zi, Δi)|Xi) = b2nB(x)μ2(K) + oP(b2n),

where

B(x) =
g′(x)
g(x)

(

y∗(1 − F (y∗))B1(y∗, x) −
∫ y∗

−∞
(1 − F (s))B1(s, x)ds

)

+
1
2

(

y∗(1 − F (y∗))B2(y∗, x) −
∫ y∗

−∞
(1 − F (s))B2(s, x)ds

)

and μ2(K) =
∫

u2K(u)du.
If nb5n → 0

√

nbn

n
∑

i=1

Wbi(x,X)E(ηx(Zi, Δi)|Xi) = oP

(

(nb5n)1/2
)

= oP(1),

in other words, the systematic part is asymptotically negligible.
If nb5n → c > 0 we have

√

nbn

n
∑

i=1

Wbi(x,X)E(ηx(Zi, Δi)|Xi) →
√
cB(x)

and
√

nbn An(x) D−→ N(
√
cB(x)μ2(K), ρ2(x)κ2).
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By Lemma 1 we conclude from the asymptotic behavior of An(x) to that of the
difference m̂∗

n(x) −m∗(x) and formulate the following theorem:

Theorem 1 (Asymptotic normality at a fixed point). Under the assumptions
given above and bn → 0 and nbn → ∞
(i) If nb5n → 0 then

√

nbn (m̂∗
n(x) −m∗(x)) D−→ N(0, κ2 ρ2(x))

with

ρ2(x) = (g(x))−1

∫ y∗

−∞
(y∗(1 − F (y∗|x)) −Ax(s; y∗))2

dHU (s|x)
(1 −H(s|x))2

.

(ii) If nb5n → c > 0 then

√

nbn (m̂∗
n(x) −m∗(x)) D−→ N(

√
cB(x)μ2(K), ρ2(x)κ2).

Remark 1. Consider the case without censoring. Using integration by parts we obtain
for y∗ = ∞, H = HU = F

∫ ∞

−∞
A2
x(s;∞)

dF (s|x)
(1 − F (s|x))2

= Var(Y |X = x) = σ2.

Thus, in this case Theorem 1 coincides with the well-known limit theorem stating
asymptotic normality of nonparametric kernel regression estimators.

The asymptotic normality at a fixed point characterizes the local behavior. For test-
ing the formulated hypothesis it seems to be better to use a global deviation measure.
So, let us consider the integrated squared difference, weighted by a known function a
with a(x) = 0 for x /∈ I:

Qn =
∫

(m̂∗
n(x) − m∗(x))2a(x)dx.

Heuristically speaking this is an infinite sum of squares of asymptotically normally
distributed r.v.’s. which are asymptotically independent as bn tends to zero. Thus Qn,
properly standardized, converges in distribution to the standard normal distribution.

Applying the method proposed by P. Hall in [Hal84] for proving the asymptotic nor-
mality of the integrated squared error of kernel density estimators to the approximating
An one can show the following limit theorem

Theorem 2 (Asymptotic normality of the ISE). Under the assumptions formu-
lated above and nbn → ∞ and n

2
9 bn → 0

Qn =
∫

(m̂∗
n(x) − m∗(x))2a(x)dx

nb1/2n (Qn − en) D−→ N(0, ν2)
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with

en = en(g,H,HU ;K, a, bn) = (nbn)−1κ2

∫

ρ2(x)a(x)dx

ν2 = ν2(g,H,HU ;K, a) = 2 κ1

∫

ρ4(x) a2(x)dx

with κ1 =
∫

(K ∗K)2(x)dx.

20.4 Formulation of the Test Procedure

Let us apply the limit theorem for the L2-type distance of the truncated estimator
from the truncated regression function to formulate a test procedure for testing the
hypothesis m ∈ M.

The alternative is characterized by the nonparametric estimator m̂∗
n. Suppose the

null hypothesis is true. The hypothetical function m∗(·;ϑ) is unknown. Firstly, one has
to estimate the unknown parameter ϑ. There are several proposals in the literature
to do this; we refer to Tsiatis [Tsi90], Ritov [Rit90] or Bagdonavičius and Nikulin
[BN01]. The basic idea is to replace the unknown cumulative hazard function by an
efficient estimator depending on ϑ and to estimate this unknown parameter then by
the maximum likelihood method. The authors show that under suitable assumptions
the resulting estimator is

√
n-consistent, i.e.

√
n
(

ϑ̂n − ϑ
)

= OP (1) as n→ ∞.

The next step is to determine m∗(·; ϑ̂). With the estimator β̂ the Breslow estimator
for the cumulative hazard function of the unobservable r.v. T0 is constructed as follows:

Λ̂n0(t; β̂) =
∫ t

0

dĤU
n0(s; β̂)

1 − Ĥn0(s−; β̂)
,

where

Ĥn0(t; β̂) =
1
n

n
∑

i=1

1(V̂0i ≤ t)

is the empirical distribution function of the estimated hypothetical baseline observa-
tions V̂0i = Viψ(Xi, β̂), and

ĤU
n0(t; β̂) =

1
n

n
∑

i=1

1(V̂0i ≤ t,Δi = 1)
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is the corresponding estimator of the subdistribution of the uncensored observations.
Then the baseline survival function is estimated by

Ŝ0(t; β̂) =
∏

s≤t
(1 − ΔΛ̂0(s; β̂)),

and the hypothetical truncated regression function by

m̃∗(x; ϑ̂) = −
∫ y∗

−∞
ydŜ0(eyψ(x; β̂))

= −
∫ ey∗

ψ(x;β̂)

0

log
z

ψ(x; β̂)
dŜ0(z)

= −
∫ ey∗

ψ(x;β̂)

0

log zdŜ0(z) + logψ(x; β̂)
(

Ŝ0(ey
∗
ψ(x; β̂)) − 1

)

.

We see, for y∗ → ∞ the function m̃∗(x; ϑ̂) converges to

−
∫ ∞

0

log zdŜ0(z) − logψ(x; β̂) = μ̂ − logψ(x; β̂) = m(x; ϑ̂).

The test procedure has the following form: The hypothesis m ∈ M, that is ψ ∈ F

is rejected if the estimated L2-distance

Q̂n =
∫

(m̂∗
n(x) − m∗(x; ϑ̂))2a(x)dx

satisfies the inequality

Q̂n ≥ z1−α
ν̂

nb
1/2
n

+ ên,

where z1−α is the (1 − α)-quantile of the limiting distribution and the terms ên =
en(ĝn, Ĥn, Ĥ

U ,K, a, bn) and ν̂2 = ν2(ĝn, Ĥn, Ĥ
U ,K, a) are the estimated standardizing

terms.

20.4.1 A Proposal for a Monte Carlo Procedure

Finally, a Monte Carlo method for determining empirical p-values of the test procedure
is proposed. The aim of this method is to generate data

(V ∗
ir, X

∗
ir, Δ

∗
ir), r = 1, . . . , R, i = 1, . . . , n

according to the hypothetical model. Based on these data the test statistics

Q̂n1, . . . , Q̂nr, . . . , Q̂nR

are computed and from their empirical distribution the p-value is determined.
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The data can be constructed as follows:

1. Let β̂ the estimator for β based on the original data. Construct the Breslow esti-
mator Λ̂0(·; β̂) for the cumulative baseline hazard function. Then

Ŝ0(t; β̂) =
∏

s≤t
(1 − ΔΛ̂0(s; β̂)).

2. Generate data T ∗
0ir from the estimated survival function Ŝ0(t; β̂) and set

T ∗
ir =

T ∗
0ir

ψ(Xi; β̂)
.

3. Estimate the distribution function of the Ci by the weighted Kaplan–Meier estima-
tor Ĝn and generate censoring variables C∗

ir from the estimated survival function
Ĝn.

4. Finally, set

V ∗
ir = min(T ∗

ir, C
∗
ir), Δ∗

ir = 1(T ∗
ir ≤ C∗

ir), X∗
ir = Xi.

As of yet this MC procedure is only a proposal and further investigations should
be pursued.
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Nonparametric Estimation of Time Trend

for Repairable Systems Data

Bo Henry Lindqvist
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Abstract: The trend-renewal-process (TRP) is defined to be a time-transformed
renewal process, where the time transformation is given by a trend function λ(·) which
is similar to the intensity of a nonhomogeneous Poisson process (NHPP). A nonpara-
metric maximum likelihood estimator of the trend function of a TRP can be obtained
in principle in a similar manner as for the NHPP using kernel smoothing. But for
a TRP one must consider the simultaneous estimation of the renewal distribution,
which is here assumed to belong to a parametric class such as the Weibull-distribution.
A weighted kernel estimator for λ(·) is suggested and studied. Other approaches are
also briefly discussed.

Keywords and phrases: Kernel estimator, Trend-renewal process

21.1 Introduction

Failures of a repairable system are usually modeled by a stochastic point process in
time. The most common models are the renewal process (RP), the homogeneous Poisson
process (HPP), and the nonhomogeneous Poisson process (NHPP) (see Ascher and
Feingold [AF84]). As is well known, the RP model assumes what is called “perfect
repair”, indicating that after each failure, the system is renewed to its original condition.
The NHPP model, on the other hand, assumes what is called “minimal repair”. After
each failure and following repair, the system is in the same state as it was just prior to
that failure. This is often more plausible than the complete renewal assumption. Yet
often the replaced part is not a minor part, or the repair may affect some other parts of
the system, to the better or the worse. This could mean a small jump in the intensity,
in either direction.

There is thus a need for models which allow the system to deteriorate (or improve)
over time, yet still allow for the possibility that the system could have a drastic increase
or decrease in its failure intensity just after a repair, because of damage done, or weak
spots removed. Several models have been developed for this purpose.

A class of models of this kind is the trend-renewal process (TRP), which was defined
and studied by Lindqvist, Elvebakk, and Heggland [LEH03], see also Lindqvist [Lin06].

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 277
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 21, c© Springer Science+Business Media, LLC 2010



278 Bo H. Lindqvist

This model contains the RP and NHPP as special cases, and in a simple manner
the TRP fills some of the gap between the two extreme repair models. While [LEH03]
considered parametric estimation for TRPs, not much has been done on nonparametric
estimation in the TRP model. An exception is here the paper Heggland and Lindqvist
[HL07], where nonparametric estimation of time trend is done under the assumption
that this trend is monotonic, leading to a problem of isotonic regression. The purpose of
this chapter is to present an approach for nonparametric estimation without assuming
monotonicity of the time trend, and using weighted kernel smoothing as the basic
estimation technique. For completeness we also review the approach in [HL07].

21.2 Definitions and Preliminaries

Consider a repairable system, observed from time t = 0. Let N(t) be the number of
failures in (0, t], let Ti be the time of the ith failure, where we define T0 = 0, and let Xi

be the time between failure number i−1 and failure number i, that is Xi = Ti−Ti−1. We
assume that all repair times equal 0. This assumption is reasonable if the repair times
are negligible compared to the times between failures, or if we let the time parameter
be the operation time of the system. For a general treatment of repairable systems, see
Ascher and Feingold [AF84] or Meeker and Escobar [ME98].

We next review the definitions of the RP and NHPP, and then we define the trend-
renewal process which will be the main model used in this chapter and which can be
seen as a generalization of the two first mentioned models.

21.2.1 Models for Repairable Systems

The Renewal Process, RP(F ):

The process N(t) is an RP(F ) if X1, X2, . . . are independent and identically distributed
with cumulative distribution function (cdf) F , where we assume F (0) = 0. If F is the
exponential distribution with parameter λ, then RP(F )=HPP(λ), the homogeneous
Poisson process with intensity λ.

The Nonhomogeneous Poisson Process, NHPP(λ(·)):
Let λ(t), t ≥ 0 be a nonnegative function, called the intensity of the process. The cumu-
lative intensity function is then Λ(t) =

∫ t

0
λ(u)du. The process N(t) is an NHPP(λ(·))

if the time-transformed process Λ(T1), Λ(T2), . . . is an HPP(1).

The Trend-Renewal Process, TRP(F, λ(·)):
The idea behind the trend-renewal process is to generalize the property that was used
above to define the NHPP(λ(·)), i.e. that Λ(T1), Λ(T2), . . . is an HPP(1).

The trend-renewal process (TRP) is defined simply by allowing the HPP(1) to
be any renewal process RP(F ) where F has expected value 1. Thus, in addition to
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Figure 21.1. The defining property of the trend-renewal process

the intensity function λ(t), for a TRP we need to specify a distribution function F
of the inter-arrival times of this renewal process. Formally, we can define the process
TRP(F, λ(·)) as follows:

Let λ(t) be a nonnegative function defined for t ≥ 0, let Λ(t) =
∫ t

0 λ(u)du and
let F be a survival distribution with expected value 1. The process T1, T2, . . . is
called TRP(F, λ(·)) if the process Λ(T1), Λ(T2), . . . is RP(F ), that is if the Λ(Ti) −
Λ(Ti−1); i = 1, 2, . . . are i.i.d. with distribution function F . The function λ(·) is called
the trend function, while F is called the renewal distribution.

Figure 21.1 illustrates the definition. For the cited property of the NHPP, the points
on the lower axis would correspond to an HPP with unit intensity, HPP(1). For the
TRP, this process is instead taken to be any renewal process, RP(F), where F has
expectation 1. This shows that the TRP includes the NHPP as a special case by letting
F be the standard exponential distribution. Further, if G is a lifetime distribution with
finite expectation μ, then with λ(t) = 1/μ and F (t) = G(μt) we have RP(G) =
TRP(F, λ(·)). Thus, all RPs with inter-arrival times with finite expectation are TRPs.

21.2.2 The Likelihood Function for the TRP Model

The conditional intensity function of a point process (Andersen et al. [ABGK93]) is
defined by

γ(t) = lim
Δt→0

P(failure in [t, t+Δt)|Ft−)
Δt

,

where Ft− is the history of the process N(t) up to, but not including time t. The
conditional intensity function will, in general, be stochastic.

For a TRP(F, λ(·)) the conditional intensity function is given by

γ(t) = z(Λ(t) − Λ(TN(t−)))λ(t), (21.1)

where z(t) is the hazard rate corresponding to F , i.e. z(t) = f(t)/(1−F (t)) where the
density function f(·) is assumed to exist.

Consider now a point process N(t), observed from time t = 0 to time t = τ , with
corresponding failure times T1, T2, . . . , TN(τ) and conditional intensity function γ(t).
The likelihood function of the process is then given by (see [ABGK93])

L =

⎧

⎨

⎩

N(τ)
∏

i=1

γ(Ti)

⎫

⎬

⎭

exp
{

−
∫ τ

0

γ(u)du
}

. (21.2)
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The likelihood function of a TRP is obtained by substituting (21.1) into (21.2),
giving

L =

⎧

⎨

⎩

N(τ)
∏

i=1

z(Λ(Ti) − Λ(Ti−1))λ(Ti)

⎫

⎬

⎭

exp

⎧

⎨

⎩

−
N(τ)
∑

i=1

∫ Ti

Ti−1

z(Λ(u) − Λ(Ti−1))λ(u)du

⎫

⎬

⎭

· exp

{

−
∫ τ

TN(τ)

z(Λ(u) − Λ(TN(τ)))λ(u)du

}

.

By making the substitution v = Λ(u) − Λ(Ti−1) and taking the log we get the log
likelihood function

l = lnL =
N(τ)
∑

i=1

{ln(z(Λ(Ti) − Λ(Ti−1))) + ln(λ(Ti)) − Z(Λ(Ti) − Λ(Ti−1))}

− Z(Λ(τ) − Λ(TN(τ))). (21.3)

where Z(t) =
∫ t

0
z(v)dv is the cumulative hazard corresponding to F .

21.3 A Motivating Example

Meeker and Escobar [ME98, Table 16.4] display 71 times of unscheduled maintenance
actions for the U.S.S. Halfbeak number 4 main propulsion diesel engine. Figure 21.2
shows the plot of cumulative failure number against time (in thousands of hours of
operation). The plot can be interpreted as an estimate of the cumulative trend function
Λ(t) of a TRP, and hence the rate of increase of the plot at any time gives a rough
estimate of the trend function λ(t).

From Fig. 21.2 it is reasonable to conclude that the system is deteriorating, and an
increasing λ(·) could be a fair assumption, even if we might suspect that λ(t) could be
decreasing at least for t > 22. Here and in the following we will make the usual conven-
tion of writing increasing to mean nondecreasing and decreasing to mean nonincreasing.
By monotone we will then mean either increasing or decreasing.

A standard procedure for analysis of such data is to fit an NHPP model with, say,
a power law intensity function λ(t) = αβtβ−1, so Λ(t) = αtβ . Figure 21.2 indicates,
however, that such a model does not fit the data very well. In order to increase the
flexibility of the model, Heggland and Lindqvist [HL07] fitted a parametric TRP with
a power law trend function as given above, and with a renewal distribution F which
is a Weibull-distribution with shape b. Again the fit was shown to be bad, but the
interesting result was that b was estimated to 0.762 (with standard error 0.071), which
clearly indicated that a power law NHPP is not appropriate. On the other hand, the
Poisson property is reasonable to hold for a large system like this. This leads one to
think that perhaps the rejection of the power law NHPP means rejection of the power
law trend function, and not of the assumption of NHPP per se?
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Figure 21.2. Failure number against time in thousands of hours of operation. U.S.S. Halfbeak
data

The above motivates an approach where λ(t) is allowed to be in principle any
smooth positive function. We shall see that such an approach finds the NHPP property
to be in fact very reasonable for these data. This will be made more precise in the
following.

21.4 Nonparametric Estimation of a Monotone λ(·)
Heggland and Lindqvist [HL07] considered the case where λ(t) is monotone but oth-
erwise is completely unspecified, and extended the approach by Bartozyński et al.
[BBMT81] from the NHPP case to the TRP case.

More specifically, the problem considered by [HL07] was that of maximizing the
log likelihood function l in (21.3) under the condition that λ(·) is nonnegative and
monotone on [0, τ ]. As in Bartozyński et al. [BBMT81] it was first observed that the
optimal λ(t) must consist of step functions closed on the left, with no jumps except at
failure time points.

Now, letting n = N(τ), λi = λ(Ti), Xi = Ti − Ti−1; i = 1, 2, . . . , n, and Xn+1 =
τ − Tn, the problem of maximizing l is simplified to the problem of maximizing

l′ =
n
∑

i=1

{ln z(λi−1Xi) + lnλi − Z(λi−1Xi)} − Z(λnXn+1), (21.4)

subject to 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn.
Heggland and Lindqvist [HL07] further assumed that z(t) is given on parametric

form z(t; θ). An iterative estimation technique was suggested, consisting in alternatively
maximizing with respect to θ and the λi. It is readily seen that maximization of (21.4)
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Figure 21.3. Nonparametric estimate of an increasing trend-function λ(·). U.S.S. Halfbeak
data

with respect to θ for any given set of λi is the same as maximum likelihood estimation in
the survival model corresponding to z(·; θ) with completely observed “lifetimes” λi−1Xi

for i = 1, 2, . . . , n, and a censored “lifetime” λnXn+1 in the end. This simplifying
property is due to the structure of the TRP model as a time-transformed renewal
process.

Heggland and Lindqvist [HL07] considered in particular the case where F is a
Weibull distribution with shape b. It was demonstrated that this leads to an isotonic
regression problem, and an algorithm using the “minimum lower sets algorithm” of
Robertson et al. [RWD88] was devised.

Example: For the U.S.S. Halfbeak data (see previous section), the b was estimated to
0.937, with a standard error computed by bootstrapping equal to 0.113. This estimate
is much closer to 1 than the estimate 0.762 reported above for the fully parametric
estimation. Since b = 1 corresponds to an NHPP, the nonparametric analysis therefore
suggests that an underlying Poisson property is reasonable. The estimated increasing
trend function λ(·) is shown in Fig. 21.3.

21.5 Kernel-Estimators for λ(t) in the General Case

In the following, we assume that λ(t) is completely nonparametric and not necessarily
monotone. As in the previous section we assume, on the other hand, that the renewal
distribution is given on parametric form with hazard rate z(t; θ) and expected value 1.
For convenience we also assume that there is a parameter value θ(0) such that
z(t; θ(0)) ≡ 1, i.e. such that F is the standard exponential distribution.
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The estimation in the next subsection will be done using an iterative scheme
switching between maximizing the log likelihood (21.3) for estimation of θ, and
estimating the trend function λ(t) using in an ad hoc way the kernel smoothing method
for counting process intensities due to Ramlau-Hansen [RH83].

21.5.1 The Naive Kernel Smoothing Algorithm

Let K(t) be a positive density function and let h until further be a fixed window size.
We consider the following algorithm for estimation of λ(·) and θ.

Step 1 Let θ = θ(0). Then {N(t)} is an NHPP with intensity λ(t), and it is well
known that this can be estimated by a standard kernel estimator (Ramlau-Hansen
[RH83]):

λ(1)(t) =
1
h

N(τ)
∑

i=1

K

(

t− Ti
h

)

. (21.5)

Let the cumulative time trend be Λ(1)(t) =
∫ t

0
λ(1)(s)ds.

Step 2 Substitute λ(1)(·) and Λ(1)(·) in (21.3) and maximize the expression with
respect to θ to find the maximum at θ = θ(1). (As already noted, this is the
same as maximum likelihood estimation in the parametric model corresponding to
the z(·; θ).)

Step 3 Now use the estimated Λ(1)(·) and θ(1) as if they were known, to get from
(21.1) an expression for the conditional intensity of {N(t)} given by

z
(

Λ(1)(t) − Λ(1)(TN(t−)); θ(1)
)

λ(t).

This is of the form of Aalen’s multiplicative intensity model (see [ABGK93]), which
assumes that the intensity of the counting process {N(t)} is Y (t)λ(t), with {Y (t)}
an observable stochastic process, adapted to the process {N(t)} and predictable.
In our case,

Y (t) = z
(

Λ(1)(t) − Λ(1)(TN(t−)); θ(1)
)

which clearly satisfies these criterions. From (3.12) in Ramlau-Hansen [RH83] we
get from this a new kernel estimate for λ(t) given by

λ(2)(t) =
1
h

N(τ)
∑

i=1

K

(

t− Ti
h

)

· 1
z
(

Λ(1)(Ti) − Λ(1)(Ti−1)); θ(1)
) (21.6)

which is seen to be a weighted version of the kernel estimator λ(1)(t) in (21.5).
Step 4 Return to step 2 above with λ(1)(·) and Λ(1)(·) replaced by λ(2)(·), Λ(2)(·), to

find θ(2); then use these in step 3 and continue with steps 2 and 3 until convergence.
Here, Λ(k)(·) is defined in the obvious way by integrating λ(k)(·).
The weights in (21.6) are thus of the form

1
z (Λ(Ti) − Λ(Ti−1); θ)

.



284 Bo H. Lindqvist

It is interesting to see that these have expected values 1. To see this, note first that
the definition of the TRP implies that the Λ(Ti)−Λ(Ti−1) are i.i.d.∼ F with expected
value 1. Now it can be easily shown that for any lifetime Y > 0 with hazard rate z(·)
we have E(1/z(Y )) = E(Y ) which proves the claim.

Example: A Weibull-distribution with shape parameter b and expected value 1 has
hazard rate

z(t; b) = b[Γ (b−1 + 1)]btb−1 (21.7)

(so that b = 1 corresponds to an NHPP).
In this case, we have the (inverse) weights

z(Λ(Ti) − Λ(Ti−1)) = b[Γ (b−1 + 1)]b(Λ(Ti) − Λ(Ti−1))b−1.

Simulations using the Weibull-distribution has shown, however, that the given al-
gorithm may not converge. The problem seems to be that the weights are too closely
related to the values of the K(·) in corresponding terms of (21.6). Further, the estima-
tion of λ(·) is done without regard to a possible maximization of the likelihood (21.3)
(except in the estimation of θ). Still, the method suggests the use of a weighted kernel
estimator, which will be studied in the next subsection.

21.5.2 Maximum Likelihood Weighted Kernel Estimation

Jones and Henderson [JH05, JH09] study kernel density estimation using variable
weights and/or variable locations of the kernels, where the clue is to maximize the
nonparametric likelihood with respect to these weights or locations. Since our es-
timator (21.6) in effect is a weighted kernel estimator, it might be worthwhile to
search for better weights than the ones suggested by (21.6). We will do this by max-
imizing the log likelihood (21.3) simultaneously with respect to θ and the weights
w = (wi; i = 1, 2, . . . , N(τ)), using

λ(t;w) =
1
h

N(τ)
∑

i=1

K

(

t− Ti
h

)

wi. (21.8)

We, thus, consider maximization of (21.3) with z(·) = z(·; θ) on parametric form and
with λ(·) = λ(·;w) given in the form (21.8). The maximization is with respect to
(θ, w1, . . . , wn), where n = N(τ). Note that, while in the density estimation considered
by Jones and Henderson it is necessary to restrict the wi to have sum 1, in our case
such a restriction is not necessary. This follows from the definition of the TRP, where
F is required to have expected value 1, and the scale parameter in question is instead
included in the trend function λ(·).

We may maximize (21.3) in an iterative alternating manner, similar to what was
done in the monotone case in Sect. 21.4. We then utilize the already noted fact that
maximization with respect to θ for given λ(·) is the same as maximum likelihood
estimation in the model z(·; θ).

In order to simplify the algorithms we modify (21.3) by using the approximation

Λ(Ti;w) − Λ(Ti−1) ≈ λ(Ti;w)(Ti − Ti−1) = λ(Ti;w)Xi.
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The corresponding approximation of (21.3) is hence

l′′ =
n
∑

i=1

{ln z(λ(Ti;w)Xi; θ) + lnλ(Ti;w) − Z(λ(Ti;w)Xi; θ)}

− Z(λ(τ ;w)Xn+1; θ), (21.9)

where Z(t; θ) =
∫ t

0
z(v; θ)dv is the cumulative hazard corresponding to F .

21.5.3 Specializing to a Weibull Renewal Distribution

If the renewal distribution is Weibull with hazard rate (21.7), the log likelihood (21.9)
can be written

l′′ = n log b+ nb logΓ (b−1 + 1) +
N(τ)
∑

i=1

{b log(Xiλ(Ti;w)) − logXi

− [Γ (b−1 + 1)λ(Ti;w)Xi]b} − [Γ (b−1 + 1)λ(τ ;w)(τ − TN(τ))]b

Differentiating with respect to w� we get

∂l′′/∂w� = b

N(τ)
∑

i=1

{

h−1K((Ti − T�)/h)
λ(Ti, w)

− [Γ (b−1 + 1)λ(Ti;w)Xi]b−1Γ (b−1 + 1)Xih
−1K((Ti − T�)/h)

}

− b[Γ (b−1 + 1)λ(τ ;w)Xn+1]b−1Γ (b−1 + 1)Xn+1h
−1K((τ − T�)/h) (21.10)

In the example below, we used these partial derivatives in a steepest ascent approach
in order to maximize l′′ with respect to the wi for given value of b. The b was then,
in alternating steps, estimated by maximum likelihood using the current values of
λ(Ti;w). The kernel used was the Epanechnikov kernel.

Example: Consider again the U.S.S. Halfbeak data. The results for three different
choices of h are given in Table 21.1 and Fig. 21.4. As the table shows, there is a tendency
for higher maximum likelihood for small values of h. This is reasonable as a small h
means following too closely the obtained data (overfitting). This also indicates that
in the approach of weighted kernel estimation based on maximizing a likelihood, it is
not possible to include h among the parameters in the maximization. This issue is also
discussed in [JH05]. It is also seen from the table that the value of b decreases as h
increases. An intuitive reason for this could be that a too high degree of smoothing
leads to “lifetimes” λ(Ti)Xi which are (modulo a scale factor) closer and closer to the
Xi themselves. When these are fitted to the Weibull, the shape parameter is estimated
to 0.63. Thus, we would believe that increasing h further would lead to estimated values
for b converging to 0.63.

The curves in Fig. 21.4 basically reflect the features of the cumulative plot given in
Fig. 21.2 at least up to, say, t = 22. After that time, the curves drop due to the fact that
no edge-correction has been implemented in the present analysis. For ordinary density
estimation, such methods are considered for example by Cowling and Hall [CH96].
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Figure 21.4. Weighted kernel estimation of U.S.S. Halfbeak data. Estimates of λ(·) for h = 2
(solid), h = 5 (dotted), h = 10 (dot-dash)

Table 21.1. Weighted kernel estimation of U.S.S. Halfbeak data. Estimates of the shape
parameter b and the maximum value of the log likelihood �′′ in (21.10)

h = 2 h = 5 h = 10

b 0.957 0.915 0.870
�′′ −116.91 −120.08 −123.38

It is noted in [JH05] that the weights obtained at the maximum of the log likelihood
are non-zero only for fairly few observations. For the present example, the number of
non-zero weights wi are 20 for h = 2; 25 for h = 5; and just 9 for h = 10, while there
are 71 observations. As also noted by Jones and Henderson, and as also found in our
computations, the non-zero weights are usually clustered around similar values of the
Ti, thus suggesting an even more parsimonious model.

21.6 Concluding Remarks

The aim of this chapter has been to develop useful nonparametric estimation techniques
for trend analysis of repairable systems, particularly for systems modeled by TRPs.

The monotone NPMLE of λ(·) developed in [HL07] was briefly described. It is
particularly simple when the renewal distribution F is a Weibull distribution func-
tion. The Weibull distribution was also used in the estimation of λ(·) in the general
nonparametric case. This distribution was chosen because it is important and much
used in reliability analyses, and because it gives a computationally tractable approach.
In addition it implies a smooth connection with the exponential distribution which is
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the distribution inherent in an NHPP assumption. It would, though, be of interest to
see how the suggested algorithms can be adapted to other distributions, such as the
gamma or log-normal distributions.

According to [JH05] it may be even better, instead of using variable weights in kernel
estimation, to change the location of the ith term of the kernel estimator to be an un-
known value mi instead of the observed point Ti. In this case, one may maximize the log
likelihood (21.3) with respect to θ and the location points m = (mi; i = 1, 2, . . . , N(τ)),
using

λ(t;m) =
1
h

N(τ)
∑

i=1

K

(

t−mi

h

)

.

Note then that each Ti has its own location mi, while the weights are now all equal
to 1. This approach is the main topic of [JH09], where it is noted the closeness to the
kernel convolution sieve estimator proposed by Geman and Hwang [GH82].

As briefly mentioned, we have assumed that the kernel estimations are done with a
fixed h, tacitly assuming that the actual value of h should be chosen by some additional
procedure. This is in fact also the approach of Jones and Henderson, who advocate the
use of the usual CV criterion. It is not quite clear, however, how to perform the cross
validation for data from a TRP, where single failures can not easily be taken out without
destroying the structure of the process. One possibility would be to choose an optimal
value of h assuming an NHPP, in which case kernel estimation is essentially the same
as density estimation. This value could be determined by cross-validation and could be
kept throughout the iterative procedure.

It should be noted that Jones and Henderson [JH05] maximize a likelihood corre-
sponding to assuming z(t) ≡ 1 in (21.3). Thus, the task of maximizing (21.3) for a
general parametric z(t; θ) will obviously be a harder problem than theirs, although in
principle they are similar.

We have in the present chapter not considered estimation of the standard error of
the estimates, except for the estimates taken from [HL07]. Indeed, [HL07] suggest the
use of bootstrapping in order to estimate bias, standard error and obtain confidence
intervals, for both the parameter θ in the renewal distribution and the trend function
λ(·). In fact, the TRP is particularly suited for bootstrapping. The obvious way to
generate bootstrap samples from a TRP is to first simulate the estimated renewal
process, and then transform the arrival times of this renewal process by the inverse
mapping of the estimated cumulative trend function Λ(·). Both nonparametric and
parametric bootstrapping are feasible in this way.

Throughout the chapter we have assumed that the failure data come from one
single system. For the case of monotone λ(·), [HL07] suggested an approach based
on the approximation of the superposition of several TRPs by an NHPP. This is of
course exactly true only if the original processes are NHPPs. It is the purpose of future
research to extend the weighted kernel methods of this chapter to cases with several
systems.
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Abstract: The aim of this chapter is to consider the problem of construction of a
confidence region for distribution function as we deal with censored data. This problem
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22.1 Introduction

Let X be a random variable. We denote F the distribution function of X ,

F (x) = P{X ≤ x}, x ∈ R,

and let Y be a random variable independent of X , and let G is the distribution function
of Y .
We consider the model according to which instead of random variables X and Y , we
observe the random vector

Z = (W, δ), where W ∈ R, δ ∈ {0, 1} . (22.1)

Here,
W = X ∧ Y, δ = 1IX≤Y . (22.2)

The problem is to estimate the distribution function F of the random variable
X using the observations Z1, . . . , Zn, where Z1, . . . , Zn are independent copies of the
random vector Z.

The distribution of the vector Z has the density

p(w, t), w ∈ R, t ∈ {0, 1} ,
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DOI 10.1007/978-0-8176-4971-5 22, c© Springer Science+Business Media, LLC 2010



290 M.S. Nikulin and V.N. Solev

with respect to the measure

μ(dw × dt) = [tdF (w) + (1 − t)dG(w)] × ν(dt),

where ν(dt) is the counting measure on the set {0, 1},

p(w, t) = [1 −G(w)]t × [1 − F (w)]1−t . (22.3)

It is evident that if t ∈ {0, 1} then

p(w, t) = t [1 −G(w)] + (1 − t) [1 − F (w)] . (22.4)

The distribution of the random variable W has the distribution function H(w), where

1 −H(w) = (1 − F (w))(1 −G(w)). (22.5)

Now we consider a statistical problem of estimation of the distribution function F .
Let X1, . . . , Xn are i.i.d.r.v., having a common distribution function F , and Y1, . . . , Yn
are i.i.d.r.v., having a common distribution function G. We suppose that the samples

X1, . . . , Xn and Y1, . . . , Yn

are independent.
Consider a sample Z1, . . . , Zn, where Zi = (Wi, δi),

Wi = Xi ∧ Yi, δi = 1IXi≤Yi , i = 1, 2, ..., n. (22.6)

To estimate the distribution function F , Kaplan and Meier [KM58] proposed in
1958 their famous estimator ̂Fn:

1 − ̂Fn(x) =
∏

i ∈ {1, 2, . . . , n},
Wi ≤ x

(

n− ri
n− ri + 1

)δi

, (22.7)

where ri - the rank of the statistic Wi in the vector of order statistics

(W(1), ...,W(i), ...,W(n)), W(1) < ... < W(i) < ... < W(n),

associated with the sampleW1, ...Wn. The corresponding estimator ̂Gn for the unknown
distribution function G is given by the next formula:

1 − ̂Gn(x) =
∏

i ∈ {1, 2, . . . , n},
Wi ≤ x

(

n− ri
n− ri + 1

)1−δi

. (22.8)

Let Hn be the distribution function of the empirical distribution based on the
sample W1, . . . ,Wn. Then

1 −Hn(w) =
(

1 − ̂Fn(w)
) (

1 − ̂Gn(w)
)

, (22.9)
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and

̂Fn(Zj + 0) − ̂Fn(Zj − 0) = 0, if δj = 0; ̂Gn(Zj + 0) − ̂Gn(Zj − 0) = 0, if δj = 1.

We remind now the famous inequality of Dvoretsky–Kiefer–Wolfowitz [DKW56].
Let X1, . . . , Xn be independent random variables having the common distribution func-
tion F , and let Fn is the empirical distribution function associated with the sample
X1, . . . , Xn defined by

Fn(x) =
1
n

n
∑

i=1

1I(−∞,x)(Xi).

In this case, the next inequality holds:

P {‖Fn − F‖∞ > λ} ≤ 2 exp {−2nλ2}. (22.10)

Here,
‖Fn − F‖∞ = sup

x
|Fn(x) − F (x)|.

In the case of right censored data, Bitouzé et al. [BLM99] proved in 1999 that the
next theorem holds.

Theorem 1. Let ̂Fn be the Kaplan–Meier estimator of the distribution function F .
There exists an absolute constant C such that ∀λ > 0 holds the next inequality:

P

{

‖(1 −G)( ̂Fn − F )‖∞ > λ
}

≤ 2.5 exp {−2nλ2 + C
√
nλ}. (22.11)

It is evident that the next inequality holds:

P

{

‖(1 − F )( ̂Gn −G)‖∞ > λ
}

≤ 2.5 exp {−2nλ2 + C
√
nλ}. (22.12)

It is evident that there is one problem with the application of Theorem 1: we have
the unknown G(x). However, the inequality of Dvoretsky–Kiefer–Wolfowitz does not
give the possibility to construct the confidence interval for the unknown function F (x).
Now we shall show how we may to change the situation.

Theorem 2. Let ̂Fn be the Kaplan–Meier estimator for F , and ̂Gn be the Kaplan–
Meier estimator for G. Then there exists an absolute constant C such that ∀λ > 0

P

{

‖(1 − ̂Gn)( ̂Fn − F )‖∞ > λ
}

≤ 5 exp {−nλ2/2 + C
√
nλ/2}. (22.13)

Now we reformulate the state of Theorem 2 as asymptotic upper bound for proba-
bilities (see also [BLM99]).

Theorem 3. Let ̂Fn be the Kaplan–Meier estimator for F , and ̂Gn be the Kaplan–
Meier estimator for G. Then for all λ > 0

lim sup
n→∞

P

{√
n ‖(1 − ̂Gn)( ̂Fn − F )‖∞ > λ

}

≤ 4 exp {−λ2/2}. (22.14)
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Suppose at first we have priori information according to which F belongs to the
parametric family, i.e.,

F ∈ F = {F : F = Fθ, θ ∈ Θ} .
The confident interval

Θ(λ) =
{

θ : ‖(1 − ̂Gn)( ̂Fn − Fθ)‖∞ ≤ λ
}

gives the permission to construct the confidence set for the values of the unknown
parameter θ with the confidence probability p,

p ≥ 1 − 5 exp {−nλ2/2 + C
√
nλ/2}.

If ̂θn ∈ Θ(λ) is an element of the confidence set, then the function F
̂θn

is closed to F
in the following sense:

P

{

‖(1 − ̂Gn)( ̂F
̂θn

− F )‖∞ > λ
}

≤ 5 exp {−nλ2/2 + C
√
nλ/2}.

Note that this method has a big advantage: we don’t do any priori supposition
about the distribution functions F and G, and hence our approach is very natural for
statistical situations in estimation of parameters and testing hypotheses. It is evident
that in such a case the width of the confidence zone around the estimator Fn depends
on the observed values of the function ̂Gn. If a statistician is not satisfied by this
confidence zone, he needs to continue the observations!

22.1.1 Proofs

Proof of the Theorem 2. The value (1 − ̂Gn)( ̂Fn − F ) can be presented by the
following way:

(1 − ̂Gn)(F − ̂Fn) = (1 − ̂Gn)((1 − ̂Fn) − (1 − F ))

= (1 − ̂Gn)(1 − ̂Fn) − (1 − ̂Gn)(1 − F ).
(22.15)

Furthermore,

(1 − ̂Hn) = (1 − ̂Fn)(1 − ̂Gn),
(1 −H) = (1 − F )(1 −G).

It implies that

(1 − ̂Hn) − ((1 − ̂Gn)(1 − F ))

=
[

(1 − ̂Hn) − (1 −H)
]

+
[

(1 −H) − (1 − ̂Gn)(1 − F )
]

=
[

(1 − ̂Hn) − (1 −H)
]

+
[

(1 − F )( ̂Gn −G)
]

.

Hence,

(1 − ̂Gn)(F − ̂Fn) =
[

(1 − ̂Hn) − (1 −H)
]

+
[

( ̂Gn −G)(1 − F )
]

, (22.16)



22 Confidence Region for Distribution Function 293

and we obtain for the uniform norm of the function

(1 − ̂Gn(x))( ̂Fn(x) − F (x))

the estimator

‖(1 − ̂Gn)( ̂Fn − F )‖∞ ≤ ‖H − ̂Hn‖∞ + ‖(1 − F )( ̂Gn −G)‖∞.

From the inequality of Dvoretsky–Kiefer–Wolfowitz (1956) it follows that

P

{

‖(H − ̂Hn)‖∞ > λ/2
}

≤ 2 exp {−nλ2/2}.

From the Theorem 2 it follows that

P

{

‖(1 − F )( ̂Gn −G)‖∞ > λ/2
}

≤ 2.5 exp {−nλ2/2 + C
√
nλ/2}.

Since
{

‖H − ̂Hn‖∞ + ‖(1 − F )( ̂Gn −G)‖∞ > λ)
}

⊂
{

‖(H − ̂Hn)‖∞ > λ/2
}

⋃
{

‖(1 − F )( ̂Gn −G)‖∞ > λ/2
}

,

we obtain

P

{

‖(H − ̂Hn)‖∞ + ‖(1 − F )( ̂Gn −G)‖∞ > λ
}

≤ P

{

‖(1 − ̂Hn) − (1 −H)‖∞ >
λ

2

}

+P

{

‖(1 − F )( ̂Gn −G)‖∞ >
λ

2

}

.

(22.17)

From the last inequality it follows that

P

{√
n‖(1 − ̂Gn)( ̂Fn − F )‖∞ > λ

}

≤ 2.5 exp{−λ2/2 + Cλ/2} + 2 exp {−λ2/2},
(22.18)

which we present by the following way:

P

{

‖(1 − ̂Gn)( ̂Fn − F )‖∞ > x
}

≤ 5 exp {−nx2/2 + C
√
nx/2}, (22.19)

from where it follows that the Theorem 2 is proved.

Proof of the Theorem 3. It is proved in [BLM99] that for all λ > 0

lim sup
n→∞

P

{√
n ‖(1 −G)( ̂Fn − F )‖∞ > λ

}

≤ 2 exp {−2λ2}. (22.20)

Using the same arguments as above we deduce from (22.20) the inequality (22.14).
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22.2 Testing of the Homogeneity Hypothesis

As before let suppose that X1, . . . , Xn be i.i.d.r.v., having a common distribution func-
tion F , and Y1, . . . , Yn be i.i.d.r.v., having a common distribution function G. We
suppose that the samples

X1, . . . , Xn and Y1, . . . , Yn

are independent.
Consider a sample Z1, . . . , Zn, where Zi = (Wi, δi),

Wi = Xi ∧ Yi, δi = 1IXi≤Yi , i = 1, 2, ..., n. (22.21)

To estimate unknown distribution function F and G we may, as before, to construct the
Kaplan–Meier estimators ̂Fn, ̂Gn based on the sample Z1, . . . , Zn, given by formulas
(6) and (7) respectively.

Also let suppose that X∗
1 , . . . , X

∗
m be i.i.d.r.v., having a common distribution func-

tion F ∗, and Y ∗
1 , . . . , Y

∗
m be i.i.d.r.v., having a common distribution function G∗. We

suppose that samples
X∗

1 , . . . , X
∗
m and Y ∗

1 , . . . , Y
∗
m

are independent. We assume also that

X1, . . . , Xn, Y1, . . . , Yn and X∗
1 , . . . , X

∗
m, Y

∗
1 , . . . , Y

∗
m

are independent.
Suppose the sample Z∗

1 , . . . , Z
∗
m, Z∗

i = (W ∗
i , δ

∗
i ), is constructed by usual way on ob-

servations X∗
1 , . . . , X

∗
m and Y ∗

1 , . . . , Y
∗
n . Denote by ̂F ∗

m,̂G
∗
m Kaplan–Meier estimators

of unknown distribution functions F ∗, G∗, that constructed on the sample Z∗
1 , . . . , Z

∗
m:

1 − ̂F ∗
m(x) =

∏

i ∈ {1, 2, . . . ,m},
W ∗
i ≤ x

(

m− ri
m− ri + 1

)δ∗i
, (22.22)

1 − ̂G∗
m(x) =

∏

i ∈ {1, 2, . . . ,m},
W ∗
i ≤ x

(

m− ri
m− ri + 1

)1−δ∗i
, (22.23)

where ri - the rank of the statistics W ∗
i .

For simplicity, further we shall assume that n = m and denote
(

1 − G̃(t)
)

= (1 −G(t)) ∧ (1 −G∗(t)) , (22.24)

(

1 − G̃n(t)
)

=
(

1 − ̂Gn(t)
)

∧
(

1 − ̂G∗
n(t)

)

. (22.25)
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To test the hypothesis H0 : F = F ∗ we consider the statistics

Tn = sup
t

(

1 − G̃n(t)
) ∣

∣

∣

̂Fn(t) − ̂F ∗
n(t)

∣

∣

∣ . (22.26)

We note that we want to test H0 without any suggestions on G and G∗. From
the Theorem 2 it is easily to deduce following results concern the asymptotical upper
bound.

Theorem 4. Under hypothesis H0 : F = F ∗, there exists an absolute constant C such
that for all λ > 0

P {Tn > λ} ≤ 10 exp{−nλ2/2 + C
√
nλ/2}. (22.27)

Theorem 5. Under alternative

H1 : sup
t

(

1 − G̃(t)
)

|F (t) − F ∗(t)| ≥ r > 0,

there exists an absolute constant C such that for all 0 < λ < r

P {Tn < λ} ≤ 10 exp{−n(r − λ)2/8 + C
√
n (r − λ)/4}. (22.28)

From the Theorem 3 it is easily to deduce following results

Theorem 6. Under hypothesis H0 : F = F ∗, for all λ > 0

lim sup
n→∞

P
{√

nTn > λ
} ≤ 8 exp {−λ2/2}. (22.29)

Theorem 7. Under alternative

H1 : sup
t

(

1 − G̃(t)
)

|F (t) − F ∗(t)| ≥ 1√
n
r > 0,

for all 0 < λ < r

lim sup
n→∞

P
{√

nTn < λ
} ≤ 8 exp {−(r − λ)2/8}. (22.30)
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Empirical Estimate with Uniformly Minimal d-Risk

for Bernoulli Trials Success Probability

E. D. Sherman and I. N. Volodin∗
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Abstract: In the framework of empirical d-posterior approach, two methods of a con-
struction of estimates with uniformly minimal d-risk for a Bernoulli trials success prob-
ability is considered when the prior distribution is completely unknown. The first one
is based on a modification of the historical data. The second is based on the invari-
ance property of an estimate with uniformly minimal d-risk for a scalar parameter of
a discrete exponential family.

Keywords and phrases: Empirical d-posterior approach, Estimates with uniformly
minimal d-risk, Convergence of empirical d-risk, Success probability for Bernoulli trials

23.1 Introduction

The classical probability model for a guarantee control by a quality attribute is
connected with a random selection of products from a finite population with subse-
quent classification into two classes as good and defective. Usually, the population size
is significantly bigger than the number of selected items n. Assume that an organization
of the population is fulfilled in correspondence with a particular technological process.
For example, assume that the population contains a metallic products from the same
melting and the controlled attribute is connected with the metal characteristics. Then,
the control procedure is fulfilled in framework of Bernoulli trials with a constant prob-
ability θ of “success” for a product testing (the probability of the present of a defect
for a randomly chosen product from the population).

For L.N. Bolshev’s d-posterior approach, the notion of guarantee estimation is based
on the definition of d-risk of the estimation as a mean value of losses among the
experiments that result in an acceptance of the same decision. From the point of view
of a consumer of the controlled production, this values correspond to the proportion of
defective production among all that was accepted as good after the quality control pro-
cedure. A solution of the problem of the minimization of such loses is possible only in
the framework of Bayesian model of production. Therefore, estimating probability θ we
assume that its value, that changes from an experiment to experiment, is a realization
of a random variable ϑ with some prior distribution.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 297
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Usually, there is no information to specify this prior distribution. Hence, for the
d-risk minimization problem, an approach similar to empirical Bayesian approach by
Robbins [Rob55] is explored. First an estimation of θ is calculated under the known
prior distribution and after its empirical analog is constructed under which the mini-
mization procedure for d-risk is substituted by its minimization by the historical data.

Estimates with the minimal d-risk (EUMD) were considered in papers by Volodin,
Novikov, and Simushkin (see [Sim83, SV83, VN93, VS87]) as a Bayesian alternative to
unbiased estimates with uniformly minimal risk (UEUMR) [VN83].

Possible variants of empirical approach to d-guarantee procedures with unknown
prior distribution suggested in article [SV83] are used in the current article for the
problem of EUMD construction. Such estimates were considered for the first time in
article [SV83]. The existence, unbiasedness and other properties of EUMD were studied
in article [VN93] it is proved that maximum likelihood estimates have asymptotically
minimal d-risk. Finally, in article [She08] an empirical version of EUMD (EEUMD)
was obtained for discrete exponential families.

For the case of known prior distribution, an EUMD construction is based on the min-
imization of the posterior risk according to the values of the random sample (compare
with Bayesian approach where minimization is obtained over all possible values of the
estimate). As it is mentioned in article [SV83], such minimization is possible only if
there exists a sufficient statistics of the same dimension as the parameter, otherwise
a reduction of sample values to a statistic is required (for example, to a Bayesian es-
timate). A similar problem arises also in the case of unknown prior distribution for a
construction of empirical versions of EUMD (the same as in the empirical Bayesian
approach of Robbins).

In this article, the binomial distribution with probability function

f(x | θ, n) = Cxn θ
x (1 − θ)n−x, x ∈ {0, . . . , n}, θ ∈ (0, 1), n ∈ N (23.1)

is considered. For the case of quadratic loss function, two methods of empirical variant
of EUMD are constructed for the success probability θ (parameter n is assumed to be
known) according to the historical data X [m] of size m. The first method is based on
the posterior risk estimate minimization, which is constructed by a modification of then
historical data. The second method based on the invariance property of EUMD for a
scalar parameter of one dimensional discrete exponential family. For the case of prior
Beta distribution, the accuracy properties of the two constructed empirical estimates,
UEUMR, and empirical Bayesian estimate are compared by the method of stochastic
modeling.

23.2 An Estimate with Uniformly Minimal d-Risk

The Binomial distribution family (23.1) has a sufficient statistics with the same
distribution type, hence without loss of generality we assume the sample size equals
one. Let g(θ), θ ∈ R+ be density functions of the prior distribution G of parame-
ter ϑ. For the problem of θ estimation under the quadratic loss function L(θ, d), the
d-posterior risk (or simply d-risk) �(d | δ) of the decision function (estimate) δ(x),



23 Empirical Estimate with Minimal d-Risk 299

is defined as the conditional mathematical expectation L(ϑ, d) with respect to the
σ-algebra generated by the statistic δ(x). Obviously, �(d | δ) could be represented as
the conditional mathematical expectation of the posterior risk

R (d |x) =

∫

Θ

L(θ, d)f(x | θ)g(θ)dθ

f(x)
,

where f(x) is the marginal density function of the random variable x.
It is known (see [SV83]) that an estimate that takes some given value d0 only at

the sample space points that provide the minimum of posterior risk R (d0 |x) (denote
the set of such points as X(d0)) possesses the minimal d-risk at the point d = d0).
This means that for an EUMD δ∗(x) construction, it is required for each fixed d ∈ R+

to find the corresponding set X(d) and after to make the decision δ∗(x) = d only in
the case when the observation value x ∈ X(d). Note that the d-risk of the estimate
constructed in such way is �(d | δ∗) = min x R (d |x). Therefore, the problem of EUMD
construction is reduced to a search of sets X(d).

It may be the case that there exists a subset D ∈ R+ for which

Z =
⋂

d∈D
X(d) �= ∅,

then for x ∈ Z an arbitrary decision d ∈ D should be taken in accordance with an
arbitrary randomized rule. An existence of such subsets D is common for discrete
distributions, moreover for each d ∈ D, the sets X(d) coincide and consist from one
point.

The projection of the graph of the posterior risk R (d |x) function (for n = 5 and
quadratic loss function) on the plane (d,R) is presented as Fig. 23.1 above.

The shape of the graph suggests that there is a finite number of intervals Di for
which Xi(d) = i, i = 0, . . . , n

At the bottom of Fig. 23.1 the function x(d), d ∈ (0, 1) is presented, that provides
the points of achieving the minimum by x ∈ X- = {0, . . . , n} of the posterior risk R (d |x)
for each fixed d ∈ (0, 1).

Therefore, for each value of the current observation x0 it is allowed to take an
arbitrary decision d for which x(d) = x0 and the problem of choosing a concrete decision
arises. For the considered example it seems to be reasonable to chose for a estimate the
value d0 = min{d : x(d) = x0} because the posterior risk function R (d |x0) achieves
the minimum at the point d = d0 (see Fig. 23.1).

If another deterministic way of the decision is used, then we obtain a different
rule with the uniformly minimal d-risk, which has a support on a different subset of
the decision space. Since these two rules have different supports, it is not possible to
compare them from the point of view of d-risks comparison.

Because of that, the randomized rule seems to be universal. According to it, a
decision from the interval {d : x(d) = x0} is chosen randomly with some (for example,
unform) distribution with the support on the whole interval.

For the empirical estimate with uniformly minimal d-risk (EEUMD) construction
in the case of completely unknown prior distribution, an estimate x̂(d) instead of the
function x(d) should be used. In the above suggested method, we substitute the min-
imization of the posterior risk on the minimization of its estimate R̂(d |x), which is
constructed by the historical data X [m] = (x1, . . . , xm, x). In connection with this, the



300 E. D. Sherman and I. N. Volodin

�

�

d

R

10

�

�

d

x(d)

1

2

3

4

5

10

Figure 23.1. Functions R (d |x) (on the top) and x (d) (at the bottom)

question raises of the convergence of the minimum of R̂(d |x) over all possible outcomes
of the experiment to the correspondent minimum of the posterior risk (which coincides
with the minimal value of the d-risk). Such convergence takes place (see [VDV98], p.45,
Theorem 5.7), if for each fixed d ∈ R+

lim
m→∞P

(

sup
x∈X-

| R̂(d |x) −R(d |x) | > ε

)

= 0, (23.2)

Where P is the probability that corresponds to the marginal distribution of the date set.

23.3 Empirical Estimate Based on the Modification
of the Historical Data

In this article, the problem of EEUMD construction for the Binomial distribution (23.1)
parameter is considered under the quadratic loss function and completely unknown
prior distribution.
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It is not difficult to show that the posterior risk

R(d |x) =

∫ 1

0
(θ − d)2Cxn θ

x (1 − θ)n−xg(θ)dθ
∫ 1

0
Cxn θ

x (1 − θ)n−xg(θ)dθ

can be represented in the form

(xn−2 + 1)(xn−2 + 2)
(n− 1)n

· fn(xn−2 + 2)
fn−2(xn−2)

− 2d
(xn−2 + 1)

(n− 1)
· fn−1(xn−2 + 1)

fn−2(xn−2)
+ d2, (23.3)

where

fk(y) =
∫ 1

0

Cyk θ
y (1 − θ)k−yg(θ)dθ

is unconditional probability of y successes in k Bernoulli trials, xn−2 is the number of
successes in the first (n− 2) out of n trials. The representation (23.3) of the posterior
risk we denote as R(d |xn−2).

It is possible to obtain an estimate of the posterior risk by substituting into (23.3)
instead of unknown prior densities fk(y) their frequential estimates based on the his-
torical data. For this goal, the data set X [m] which contains the result of (m − 1)-st
observation of the random variable x (which corresponds to the number of successes
for n Bernoulli trials) and also the result of the current observation, is necessary to
represent in the form

X [m] =

⎛

⎜

⎜

⎜

⎝

y 1, n−2 y 1, n−1 y 1, n

...
...

...
y m−1, n−2 ym−1, n−1 ym−1, n

x n−2 x n−1 x n

⎞

⎟

⎟

⎟

⎠

,

where y i, k is the number of successes for k trials for i-th historical data element, and xk
is the number of successes for k trials of the current experiment, i = 1, . . . ,m−1; k =
n− 2, n− 1, n. The frequency estimate of the marginal density fn+i−3(y) (i = 1, 2, 3)
is f̂n+i−3(y) = νi/m, where νi is the number of elements of the i-th column of the data
set Y [m] which are equal to y and the posterior risk estimate is

R̂(d |xn−2) =
(xn−2 + 1)(xn−2 + 2)

(n− 1)n
· f̂n(xn−2 + 2)
f̂n−2(xn−2)

−

2d
(xn−2 + 1)

(n− 1)
· f̂n−1(xn−2 + 1)

f̂n−2(xn−2)
+ d2 (23.4)

The following result is true.

Theorem 1. The minimal value of the posterior risk estimate (23.4) over all x ∈
{0, . . . , n− 2} converges in probability P to the minimal value of the d-risk.
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Proof. For the proof of the theorem it is sufficient to show that condition (23.2) is
satisfied. It is simple to show that for estimate (23.4) the following asymptotic repre-
sentation (as (f̂n−2(xn−2) − fn−2(xn−2))/fn−2(xn−2) → 0) is true

R̂(d |xn−2) =
(xn−2 + 1)(xn−2 + 2)
n(n− 1)fn−2(xn−2)

(

f̂n(xn−2 + 2) − fn(xn−2 + 2)
)

−

(xn−2 + 1)(xn−2 + 2)
n(n− 1)f2

n−2(xn−2)

(

f̂n−2(xn−2) − fn−2(xn−2)
)

−

2d
(xn−2 + 1)

(n− 1)fn−2(xn−2)

(

f̂n−1(xn−1 + 1) − fn−1(xn−1 + 1)
)

+

2d
(xn−2 + 1)fn−1(xn−2 + 1))

(n− 1)f2
n−2(xn−2)

(

f̂n−2(xn−2) − fn−2(xn−2)
)

+

o

(

f̂n−2(xn−2) − fn−2(xn−2)
fn−2(xn−2)

)

+R(d |xn−2).

The probability in (23.2) is bounded above by

P
(

sup
x

| R̂(d |xn−2) −R(d |xn−2) | > ε

)

�

� P
(

sup
x

(xn−2 + 1)(xn−2 + 2)
n(n− 1)fn−2(xn−2)

∣

∣

∣f̂n(xn−2 + 2) − fn(xn−2 + 2)
∣

∣

∣ >
ε

5

)

+

P
(

sup
x

(xn−2 + 1)(xn−2 + 2)
n(n− 1)f2

n−2(xn−2)

∣

∣

∣f̂n−2(xn−2) − fn−2(xn−2)
∣

∣

∣ >
ε

5

)

+

P
(

sup
x

2d
(xn−2 + 1)

(n− 1)fn−2(xn−2)

∣

∣

∣f̂n−1(xn−1 + 1) − fn−1(xn−1 + 1)
∣

∣

∣ >
ε

5

)

+

P
(

sup
x

2d
(xn−2 + 1)fn−1(xn−2 + 1))

(n− 1)f2
n−2(xn−2)

∣

∣

∣f̂n−2(xn−2) − fn−2(xn−2)
∣

∣

∣ >
ε

5

)

+

P

(

sup
x

o

(

f̂n−2(xn−2) − fn−2(xn−2)
fn−2(xn−2)

)

>
ε

5

)

. (23.5)

Show that the first term in (23.5) (denote it P1) converges to zero as m→ ∞. For
other terms the same procedure is applied. The following inequalities are true.

P1 � P
(

max
xn−2

|f̂n(xn−2 + 2) − fn(xn−2 + 2) | > ε fn−2(xn−2)n(n− 1)
5 (xn−2 + 1)(xn−2 + 2)

)

�

� P
(

max
xn−2

|f̂n(xn−2 + 2) − fn(xn−2 + 2) | > εC

)

,
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where the last inequality is true because the maximum is taken over the finite set of
values xn−2 ∈ {0, . . . , n− 2} for which the expression fn−2(xn−2)n (n− 1)/(5 (xn−2 +
1)(xn−2 + 2)) is bounded below by a positive constant C. Applying to the expression
obtained the known estimate for the frequency estimate f̂(x) of the density f(x)

P
(

|f̂(x) − f(x) | > γ
)

< exp
(−2mγ2

)

,

We obtain the following upper bound for P1:

P1 � exp
(−2mε2C2

)

.

Hence, P1 → 0 as m→ ∞.
This means that condition (23.2) is satisfied and hence the statement of the theorem

is true.
In the framework of the method suggested in Sect. 1, the algorithm of finding EUMD

is reduced to a construction of a function x(d), for which the posterior risk R(d |x) is
minimized for each fixed d ∈ (0, 1) over x ∈ {0, . . . , n}.

Hence, for the empirical variant of EUMD it is necessary to find an estimate
x̂(d) of the function x(d) substituting the posterior risk minimization on its esti-
mate R̂(d |xn−2) minimization over all x ∈ {0, . . . , n − 2}. Obviously, the function
x̂(d), d ∈ (0, 1) represents the points of achieving the minimum by x of the posterior
risk estimate R̂(d |xn−2) for each fixed d ∈ (0, 1). For an estimate of the parameter θ
for the current result of the observation x ∈ {0, . . . , n− 2} the value

̂θ1 = arg min
{d: x̂(d)=x}

R̂(d |xn−2)

should be taken.
In order to find x̂(d), for each xi ∈ {0, . . . , n} we correspond the interval Di =

{d : R̂(d |xi) � R̂(d |xn−2) ∀x ∈ {0, . . . , n− 2}} for which xm(d) = xi. It is possible
that for some values of x0 ∈ {0, . . . , n− 2} the correspondent interval D0 = ∅ and the
function x̂(d) �= x0 for all values d ∈ (0, 1). For such results of the current observation
we use empirical Bayesian estimate for the estimate ̂θ1 of the parameter θ.

23.4 Empirical Estimate Based on the Invariance of EUMD
for the Scalar Parameter of a Discrete Exponential Family

In [She08], a method of EEUMD construction under the quadratic loss function for the
scalar parameter of a discrete exponential family with the density function

f(x |λ) = h(x)λx b(λ), x ∈ X- ⊆ {0, 1, 2, . . .}, λ ∈ Λ ⊆ R+, h(x) > 0 ∀x ∈ X-, (23.6)
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was developed. It is based on the minimization of the posterior risk

Rλ(dλ |x) =

∫

Λ
(λ− d)2f(x |λ)gλ(λ)dλ
∫

Λ
f(x |λ)gλ(λ)dλ

(where gλ(λ) is the prior density of the parameter λ).
Density function (23.1) can be written in the form (23.6) with substitution λ =

θ/(1−θ) and if it is possible to state that the EUMD has the invariance property under
such type of transformations, then the problem of EEUMD construction for parameter
θ is possible to reduce to the problem of EEUMD construction for the parameter λ.

The next theorem provides the invariance condition for the EUMD.

Theorem 2. Let the transformation a : Λ→ Θ be a bijection, moreover (a(λ)−a(l))2 =
m(λ, l)(λ−l)2 ∀λ, l ∈ Λ, where function m(λ, l) is such that ∀λ, l ∈ Λ

∫

Λ
m(λ, l)dλ <

∞. If dλ is the EUMD of the parameter λ of a discrete exponential family (23.6), then
dθ = a(λ) is the EUMD of the parameter θ.

Proof. Let x∗ be the result of current observation of random variable x with the
density function (23.6). The following inequality is true for the posterior risk dλ of the
EUMD Rλ(dλ |x∗) � Rλ(dλ |x) ∀x ∈ X-. For the proof of the statement it is sufficient
to show that the similar inequality Rθ(dθ |x∗) � Rθ(dθ |x) is true for ∀x ∈ X- for the
posterior risk of the estimate dθ = a(λ), which has the form

Rθ(a(λ) |x) =

∫

Θ
(a(dλ) − θ)2f(x | θ)gθ(θ)dθ
∫

Θ
f(x | θ)gθ(θ)dθ , (23.7)

where gθ(θ) is the prior density of θ.
Change the variable in (23.7) as θ = a(λ) and by the assumptions of the proposition,

transform the posterior risk

Rθ(a(λ) |x) =

∫

Λ
(a(dλ) − a(λ))2f(x | a(λ))gλ(λ)dλ

∫

Λ
f(x | a(λ))gλ(λ)dλ

=

∫

Λm(λ, dλ)(dλ − λ)2f(x | a(λ))gλ(λ)dλ
∫

Λ
f(x | a(λ))gλ(λ)dλ

.

Applying the mean value theorem, we obtain

Rθ(a(λ) |x) =
C
∫

Λ(dλ − λ)2f(x | a(λ))gλ(λ)dλ
∫

Λ
f(x | a(λ))gλ(λ)dλ

= C Rλ(dλ |x),

where C is a positive constant. The theorem is proved.
In our case, the function a(λ) = λ/(1 + λ) obviously satisfies the assumptions of

Theorem 2; hence, EEUMD of the parameter θ is

̂θ2 = d̂λ/(1 + d̂λ),

where d̂λ is the EEUMD of the parameter λ. In the case when EEUMD d̂λ does not
exist (see [She08] for conditions of its existence), as the estimate ̂θ2 of the parameter θ
we use empirical Bayesian estimate, the same as in Sect. 23.3.
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23.5 Accuracy Properties Investigation for the Estimates Based
on the Statistical Modeling

Under the assumption that the probability θ has the prior beta-distribution B(α, β),
for some values of parameters α and β and historical data of various size m, by the
method of statistical modeling, the estimates ̂θ1 and ̂θ2 were calculated for n = 10.
The values α = 10 and β = 1 are of special interest because the most of the mass of
beta-distribution is concentrated near 0 and for the quality control the true values of
θ are usually small.

For each fixed historical data the values of the current observation were generated,
that is, 100 values of probably θ and correspondent observed values of the random
variable X . Based on them, for each current observation the values of estimates ̂θ1 and
̂θ2 were calculated. In Table 23.1, the arithmetic averages for θ, ̂θ1, and ̂θ2 are presented.

The obtained modeling results allow us to make the following conclusions.

1. Sufficiently accurate values of both estimates for all considered sizes of the data
set are obtained in the case when prior beta-distribution is concentrated around one
(α = 5, β = 1), while for α = 1, β = 10 (the case interesting for quality control) with
small sample sizes, the estimate appear to be underestimating. Hence if there is an
information about possible small values of probability θ, then it is better to estimate
(1 − θ).

2. In the case of symmetric prior distribution (α = 2, β = 2) the estimate ̂θ2
possesses a significant bias and hence is not recommended for applications.

3. It was noted during the modeling process that EEUMD ̂θ1 does not exist more
frequently than EEUMD ̂θ2 (remind that in the case when EEUMD does not exist, we
use empirical Bayesian estimate for the probability θ). For example, for small sizes of
the historical data (m = 250, 500) EEUMD ̂θ1 does not exist in approximately 60%
of cases, while the EEUMD ̂θ2 does not exist for 40%. When the size of the historical
data is large (m = 10 000, 100 000) EEUMD ̂θ1 does not exist in approximately 30% of
cases and EEUMD ̂θ2 in approximately 10%.

Table 23.1. Arithmetic averages for θ, ̂θ1 and ̂θ2

α = 1, β = 10 α = 5, β = 1 α = 2, β = 2
m

θ ̂θ1
̂θ2 θ ̂θ1

̂θ2 θ ̂θ1
̂θ2

250 0,082 0,034 0,037 0,821 0,823 0,834 0,491 0,482 0,565

500 0,102 0,060 0,040 0,841 0,890 0,862 0,473 0,450 0,515

1,000 0,091 0,057 0,061 0,820 0,882 0,847 0,489 0,503 0,542

10,000 0,105 0,064 0,066 0,830 0,829 0,845 0,496 0,497 0,559

100,000 0,089 0,081 0,081 0,814 0,819 0,833 0,506 0,505 0,578
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Abstract: ISO/IEC 10995:2008 specifies a procedure for estimating the distribution
of archival lifetimes of optical disks from accelerated lifetime test results. In this article
we derive the maximum likelihood estimator of the lifetime distributions based on
an accelerated lifetime model, an Eyring model, and lognormal distribution, from a
reliability engineering perspective. We also propose a procedure to analyze a data set
from an accelerated lifetime test.
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24.1 Introduction

ISO/IEC 10995:2008 [1] specifies a procedure for estimating the distribution of archival
lifetimes of writable optical disks on the basis of accelerated lifetime test results. The
standard implements the procedure using a sort of bootstrap technique and also a
nonparametric estimator of density functions. However, it is not usually recommended
to use those techniques in small sample cases. We estimate the lifetime distribution
from a reliability engineering perspective and derive a slightly different and simple
method of estimation for writable optical disks.

24.2 Models

As specified in Annex B of ISO/IEC 10995:2008 [1], we assume a set of models to
investigate the problem of estimation of archival lifetime distributions. We denote the
random variable for the archival lifetime of an optical disk by Y and its observations
as y1, . . . , yn.
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24.2.1 Lognormal Distribution

We assume that Y is distributed with lognormal distribution LN
(

μ, σ2
)

, where μ and
σ2 are the expected value of logY and the variance, respectively. The density function
of this distribution is defined as

fLN

(

y;μ, σ2
)

=
1√

2πσ2
exp

[

− (log y − μ)2

2σ2

]

. (24.1)

The expected value of Y is exp
(

μ+ σ2/2
)

, and the variance is
(

exp
(

σ2
) − 1

)

exp
(

2μ+ σ2
)

. The logarithm of Y is distributed with normal distribution N
(

μ, σ2
)

.
Although the expected value of Y is not exp (μ), the percentiles of the lognormal
distribution coincide with the exponentially transformed percentiles of the normal
distribution.

24.2.2 Accelerated Lifetime Model

Accelerated lifetime tests are widely used when the product to be tested is highly
reliable under regular usage conditions and it is not realistic to conduct lifetime tests
under such usage conditions. The product lifetime is shortened by increasing the use
rate, the aging-rate, or the levels of stresses under which the test units operated. The
effects of changes in the test conditions on the lifetime or lifetime distributions is
modeled either theoretically or empirically.

ISO/IEC 10995:2008 [1] specifies for optical disk testing temperature T (K) and
relative humidity H(%) and assumes an Eyring model for determining the relation-
ship between the lifetime under regular usage conditions and that under acceleration.
Accelerated lifetime models assume that the method of acceleration affects the lifetime
distribution through acceleration factor α (x), where x is a vector of variables each of
which affects the acceleration of the lifetime.

Meeker and Escobar [2] gives a concise yet sufficient overview of accelerated lifetime
models and accelerated lifetime tests. Bagdonavic̆ious and Nikulin [3] described more
advanced topics of accelerated lifetime models. If we denote the cumulative distribution
function of the lifetime distribution under the target condition as F0 (y0; θ), the lifetime
distribution under acceleration condition x is given by

Fx (yx; θ) = F0 (y0α (x) ; θ) . (24.2)

The lifetime of the product is α (x) times shorter under test condition x than under
the regular usage condition. The functional form of α (x) depends on the mechanism of
acceleration used in the test. Under the assumption of lognormality, acceleration factor
α (x) affects only μ. For we have logYx = logY0+logα (x). If we denote the distribution
under the regular usage conditions as LN

(

μ, σ2
)

, the distribution under test condition
T and H is given as LN

(

μ0 − logα (T,H) , σ2
)

for the problem considered here.

24.2.3 Eyring Model

The Eyring model assumed in ISO/IEC 10995:2008 [1] is a generalized Eyring
relationship between the accelerated lifetime and the lifetime under regular usage
conditions:
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YT,H = Y0 exp
{

−β1

(

1
T0

− 1
T

)

− β2 (H0 −H)
}

, (24.3)

where β1 (= −Ea/k) is an unknown constant representing the activation energy divided
by Boltzmann’s constant, and β2 is another unknown constant. The terms in the
exponents containing T0 or H0 are also constants. We can thus reparameterize this
relationship as

YT,H = Y0 exp
{

κ0 +
β1

T
+ β2H

}

(24.4)

by defining κ0 = −β1/T0 − β2H0.

24.3 Estimation of Parameters and Percentiles

By combining the three models described in the previous section, we obtain a model
for the archival lifetime distribution for optical disks:

YT,H ∼ LN
(

μ0 + κ0 + β1/T + β2H,σ
2
)

.

It is not necessary to estimate μ and κ0 separately; we simply need to estimate β0 =
μ0 + κ0. Therefore we have an accelerated lifetime model for our problem:

YT,H ∼ LN
(

β0 + β1/T + β2H,σ
2
)

. (24.5)

The resulting model is illustrated in Fig. 24.1.
ISO/IEC 10995:2008 [1] specifies four pairs of temperature T and relative humidity

H with which the accelerated lifetime tests are to be conducted, and also specifies the
minimum sample size for each condition, as shown in Table 24.1. We assume that the
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Figure 24.1. Lognormal plots of example data
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Table 24.1. The test conditions specified in ISO/IEC 10995:2008 [1]

Group Temperature (C) Relative humidity Minimum sample size

A 85 0.85 20
B 85 0.70 20
C 65 0.85 20
D 70 0.75 30
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Figure 24.2. Lognormal probability plots for the example data set from ISO/IEC
10995:2008 [1]

lifetimes are observed or well predicted for all products and that there is no censoring,
as is assumed in the standard.

Let yik denote the observed lifetime of the i-th product for the k-th set of test
conditions, n be the sample size for group k, and T and H be the temperature and
relative humidity for group k. The example data set included in ISO/IEC 10995:2008
[1] is analyzed, and the lognormal probability plots as in Fig. 24.2.

Since it is rather straightforward, we omit the mathematical details and describe the
criterion and the resulting estimators of β0, β1, β2, and σ2. The maximum likelihood
principle is an important principle for statistical inference. The simultaneous distribu-
tion function as a function of unknown parameters is called the likelihood function.
The principle states that all information about the unknown parameters are contained
in that the likelihood function and the estimator is obtained as the maximizer of the
likelihood function and its logarithm. See Meeker and Escobar [2] or Lawless [4] for fur-
ther details. The maximum likelihood estimators of β0, β1, and β2 are the minimizers
of the sum of squares:
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4
∑

k=1

nk
∑

i=1

{

yki −
(

β0 +
β1

Tk
+ β2Hk

)}2

. (24.6)

The minimizers, β̂0, β̂1, β̂2, coincide with the least square estimators and are easily
obtained by any software, such as spreadsheet software, that can fit linear functions to
data using least square methods. The maximum likelihood estimator of σ2 is

σ̂2 =
1

∑4
k=1 nk

4
∑

k=1

nk
∑

i=1

{

yki −
(

β̂0 +
β̂1

Tk
+ β̂2Hk

)}2

, (24.7)

which is the sum of the squared residuals divided by the total number of observations.
It has been proven that the set β̂0, β̂1, β̂2, and σ̂2 maximizes the likelihood function.

The p percentile of the lifetime distribution, so called Bp life, is widely used in
reliability engineering as a measure of reliability. A point estimator of logBp is

log B̂p (T,H) = β̂0 +
β̂1

T
+ β̂2H + zp/100σ̂, (24.8)

where zp/100 is the lower p percentile of the standard normal distribution, N (0, 1).
Further, it is easy to derive the lower confidence limit of this percentile. If we
denote the covariance matrix of β̂0, β̂1, β̂2 and σ̂2 as V and the row vector of
(

1, 1/T,H, zp/100

)

as u′, standard statistical calculations lead to the variance formula
of logBp (T,H) as u′V u. The estimate of V is obtained using the Fisher information
formula. Furthermore, we can obtain the 100−a percent lower confidence limit of logBp

as log B̂p (T,H)− z1−a/100

√
u′V u by using normal approximation. That for Bp (T,H)

is obtained by exponential transformation.

24.4 An Example

As mentioned, we analyze the data set included in Annex B of ISO/IEC 10995:2008 [1].
First, we plot the observations for each group on lognormal probability paper to

determine whether the lognormality assumption is valid (Fig. 24.2). Then we compare
the plots as is done in Fig. 24.2. We temporarily conclude that each group of plots
is fairly linear and that the difference among slopes are due to sampling variations.
Finally we fit the models described in the previous sections. The resulting estimates
are listed as Table 24.2 and fitted lines are added to Fig. 24.2.

The point estimates and 95% lower confidence limits ofB5 andB50 under the regular
usage condition are given in Table 24.3. The point estimates obtained by the procedure,
stated in Annex B of ISO/IEC 10995:2008 [1], are 12.64 and 31.06, respectively.

Table 24.2. Maximum likelihood estimates

β̂0 β̂1 β̂2 σ̂

−13.934 8561.7 −0.041601 0.16778
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Table 24.3. Point estimates and lower confidence limits of percentile lifes under the regular
usage condition

Estimate B5 B50

Point estimate 28.34 37.50
95% Lower confidence limit 21.62 28.53

24.5 Concluding Remarks

We derived the maximum likelihood estimator of the archival lifetime distributions
by using an accelerated lifetime model, an Eyring model, and lognormal distribution
and using the data obtained from accelerated lifetime tests for writable optical disks.
It is fairly easy and simple to implement the proposed estimation procedure in any
spreadsheet software. With this method, we can use the following steps to analyze a
data set from an accelerated lifetime test.

1. Plot the data set for each accelerated condition on lognormal probability paper and
check the distributional assumption.

2. Fit the accelerated lifetime model (24.5) to the entire data set so as to minimize
(24.6) and the variance estimate (24.7).

3. Draw the fitted line on the probability paper used in Step 1 and check the assump-
tion of accelerated lifetime model (24.6).

4. Estimate B5 and B50 and their confidence limits.

The final step is intended to use B5 and B50 as characteristic quantities of the
estimated lifetime distributions to compare the reliability of various items.

The possible directions of further investigation of this problem include (1) developing
methods for model assessment and selection, (2) simultaneous modeling of μ and
σ2, (3) developing statistically optimal designs for accelerated lifetime testing, and
(4) extending our estimation procedure to other families of lifetime distributions, e.g.,
Weibull distribution. It is also interesting to develop the optimal designs of accelerated
lifetime testings for optica disks, as is developed in Escobar and Meeker [5].

Furthermore, ISO/IEC 10995:2008 [1] describes a scheme for accelerated degrada-
tion testing of optical media. Though we assume here that we can use the results of
a model fitting as observed lifetimes as we would those from an accelerated lifetime
testing, it would be interesting to investigate this further using accelerated degradation
models.
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Abstract: In this article, we define age and compare ages for objects from two
populations by making use of their lifetime distributions. The main purposes of this
talk are to propose various definitions, based on relationships between important dif-
ferent but equivalent probability components, which allow tractable use in engineering
and humane practice. These definitions admit different meaning important in numer-
ous applications. Respectively, there are various areas of use. Most of the statements
and Examples are straightforward consequences of the Definitions. For instance, there
are several ways for evaluation of the true age of an object on the background of its
population. An approach to the time scaling in the age evaluation based on accelerated
testing is offered, using the concept of accumulated total stress. Examples with bio-
logical age control similar to reliability age-correcting factor illustrate the theory. We
generalize this approach to two-dimensional and multi-dimensional distributions that
also may represent life, and sketch areas where this knowledge can be applied.

Keywords and phrases: Ages and aging, Equivalent ages, Determination of individ-
ual age, Multi-dimensional ages and comparison, Process ages comparison, Reliability
applications

25.1 Introduction

Aging begins at the birth. The common approach to measure the age is by measuring
the time of existence (survival) since the birth/creation of the items. However, age is
a heterogeneous and individual property which is better tolerated by some individuals
than others, as noted by Campbell [CC06]. It is perhaps better expressed in biological
individuals than among technical items. However, we claim that technical items in
engineering have individual ages and these can be assessed. There exists an internal
clock (IC) which indicates is what the real age of each item. To be able to read the
counts in the IC for a particular individual means that we understand the age. The
most popular method of measuring the age of objects is according to the time of its
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creation and existence (otherwise, this is the elapsed life since the birth). However,
individuals have their internal (biological) clock, the IC, which shows their individual
age, also counted since the birth, but running with a speed which may be different from
the astronomical time.

Definition 1. The age of an individual is the count on its Internal Clock.

The only problem is to clearly define the ways of measuring the age, i.e. the ways to read
the counts on an IC. The approaches of probability theory, statistics, and reliability
offer some mathematical tools to use for the purpose. This is the main goal of our
discussion here. In the probability textbooks we see problems like this: The times of
first failure of brand new printers are approximately normally distributed with a mean
of 1,500 h, and a standard deviation of 200 h. What should be the guarantee time for
these printers if the manufacturer wants only 5% to fail within the guarantee period?
Well, but what if these were used autos, or refrigerators, or repaired planes, or houses?
What is common between these items in similar questions? The common is that we
are talking about comparable ages. Our review of various references, articles, books,
monographs and encyclopedia did not find any satisfactory answer of the question,
what is age? We could not find sources specifying such question and addressing its
possible answer for the area of potential unified application. However, the resent book
of Finkelstein [MF08] contains some ideas which are close to the presented here, but not
the same. This encouraged us to write this material here, and pretend that it contains
some fresh ideas.

25.2 Main Definitions and Equivalent Representations

Age of a particular individual is impossible to understand without its comparison to
(or, say, projection on) some background of other individuals. To get to the idea of
particular individual’s age one should understand the concept of ages of populations,
and the approaches to age measuring. Then, in order to find the ways for evaluation of
individual ages one needs tools for comparing the ages. Thus, we start with comparison
of ages for populations, and with definition of equivalent ages. It is fair to notice that
actually, in age comparison, we do not compare the ages of two particular individu-
als, but the respective ages of two average individuals from two populations to which
these individuals belong. Thus, we imagine that there are many copies similar to these
two which we do compare, and the comparison is made based on the images about
the respective populations. We consider biological individuals, or technical items, etc.,
anything that experiences aging. With X, Y, ... we will denote life times of objects,
and by FX(x), FY (y), ... their cumulative distribution functions (c.d.f.).

Definition 2. We say, the age a of the individual with life time X is equivalent to the
age b of an individual with life time Y if the probabilities to survive the respective ages
are equal, i.e., if it is fulfilled

P{X > a} = P{Y > b}. (25.1)
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In the sense of Definition 2, every age a of one of the two individuals (with continuous
c.d.f. of its life) has equivalent comparable age b to any other individual. Ages a and
b are equivalent when the probabilities to survive these respective values a and b are
equal for the individuals of the two populations.

Example 1. Let X ∼ Exp(1/1000) be the life time of Y be the life time of a microfilm
with a uniform distribution over the interval [3, 5] in years (we write Y ∼ U [3, 5], and
know that the respective average life time is 4 years). Then we have age a = 800 h of a
bulb equivalent to what the age b of a microfilm? Let solve the (1) for this particular
case. We have

P{X > 800} = e−
800
1000 = P{Y > b} = 1 − b− 3

5 − 3
,

or b = 5 − (2)e−.8 = 4.10 years is the equivalent age of the microfilm, compare to the
age of 800 h of the considered electrical bulb. Inversely, the age of b = 4 years of a
microfilm is compared to the age a = (1, 000) ln 2 = 693.12h of one of the considered
electric bulbs.

Notice, that our approach requires the knowledge of the probability distributions of
the life for populations of items whose ages we like to compare.
Next, we focus on some equivalent representations of Definition 2 for equivalent ages.
Directly from Definition 2 by making use of some probability identities, we see the
truth of the following:

Definition 3. The ages a, and b of two individuals with life times X and Y are equiv-
alent if and only if

FX(a) = FY (b) (25.2)

i.e. when it is true that the probabilities not to survive age a for the first individual, and
not to survive age b for the second individual, are equal. In other words, the equivalent
ages are equal quantiles of the respective life time distributions.

Definition 3 is equivalent to Definition 2. The interpretation there is that two ages a
and b are equivalent when the probabilities to survive these values are equal. In other
words, the equivalent ages are equal quantiles of the respective life time distributions.

Remark 1. There is an easy graphical presentation of the equivalent ages from two pop-
ulations with life time distributions FX(x) and FY (x), which immediately follows from
Definition 3. Introduce the inverse function of the cumulative probability distribution
by the equation

xp = F−1(p) = inf{x; F (x) ≥ p} for p ∈ (0, 1).

Then the curve of equivalent ages of the two populations is the curve C defined by the
parametric equation

C : =
{

(xp, yp); xp = F−1
X (p); yp = F−1

Y (p), p ∈ (0, 1)
}

. (25.3)

Coordinates of each point on the curve C are the pair of equivalent ages in the two
populations. We call such curve a nomogram. Such presentation would make an easy,
graphical nomogram for comparing the ages between any two populations with life
times X and Y .
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Example 2. Now we look at another popular class of life distributions called location
and scale equivalent family of probability distributions. Two random variables X, and
Y belong to the same scale and location parameter family of probability distributions
when there exists a principal (standard) distribution function F (t) such that it is
fulfilled

FX (t) = F

(

t− μ1

σ1

)

and FY (t) = F

(

t− μ2

σ2

)

for all t ≥ 0. (25.4)

Here, μi and σi, i = 1, 2 are some positive, non-zero constants (called location pa-
rameter, μi, and scale parameter, σi, i = 1, 2).

Items whose life times X and Y have scale and location equivalent probability
distributions with parameters μi and σi respectively, i = 1, 2, will have equivalent
ages a, and b if and only if these ages are related by the equations

a = μ1 + σ1
b− μ2

σ2
, and b = μ2 + σ2

a− μ1

σ1
, or simply, by

a− μ1

σ1
=
b− μ2

σ2
(25.5)

Note for instance, that all exponential distributions are scale equivalent. Despite the
lack of memory property which may urge us to believe that such objects are tending
to have no age, they do have ages, and we can compare ages in these cases too. The
equivalent ages for two populations X ∼ exp(λ) and Y ∼ exp(μ) are related by the
equalities λa = μb.

As another note we remark, that we may have linear dependence between equivalent
ages. The precise legal transfer of one age in terms of the other needs appropriate
shifts and scale changes. In the last equation of (25.5) we notice (in some analogy with
the standardization in the case of the normal distribution), that the ratios in both
sides of (25.5) can be called z-scores. Thus, we find out that two life times from one
and the same scale and location equivalent family of probability distributions would
have equivalent ages a and b only when these numbers have the same z-scores in
their populations. Relationships (25.5) say that the smaller the variance is within a
population, the younger its individuals are compare to individuals of same average but
larger variance in another population.

Example 3. There is a popular dog – human life comparison, the belief in proportional
age relationship (like 1 dog’s year of age is equivalent to 7 years of life of a human).
If we assume normally distributed life times, is not true anymore. Let the probabil-
ity distributions of the humans life and the dog’s life have values μ1 = 65 years, and
μ2 = 12 years (by an analogy with the normal distribution, these values of the lo-
cation parameters are chosen to be approximately equal to the average ages for the
two populations). The respective scale parameters σ1, and σ2 (usually understood as
the standard deviations in the two normally distributed populations) satisfy conditions
(25.5), and can be appropriately calculated. Assume that they have values σ1 = 8,
and σ2 = 3. Then the age of a dog at b = 12 years is, according to (6), equivalent to
a = 65 years age of man. But, the age of a 5 years old dog is equivalent to a = 46, 3
years old man. Reversely, an a = 80 years old man has a “dog’s comparable age” of
b = 17.5 years. A 1 year old dog has an equivalent of a = 35.3 years age of a human.
The table bellow gives a numeric comparison of the ages between the dog’ and human
populations for quantiles multiple to 0.10. It is based on simulated 150 observations
of the human population (assumed normal with mean 65 years and standard deviation
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8 years) and 95 observations for dog’ population (assumed normal with mean 12 years
and standard deviation 3 years). The same numbers are also theoretically obtained as
in Example 3. What is not shown in this table, and is a fact easy to understand, that
more drastic differences appear in the zones of low (0.01, 0.02, ... 0.08) and high (0.91,
...,0.99) probability levels of the equivalent ages

Probability not to
survive an age, p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Theoretical Human
Age N(65, 8)

54.75 58.27 60.80 62.97 65.00 67.03 69.20 71.73 75.25

Theoretical Human
Age N(65, 8)

54.75 58.27 60.80 62.97 65.00 67.03 69.20 71.73 75.25

Theoretical Dog’
Age N(12, 3)

8.16 9.48 10.43 11.24 12.00 12.76 13.57 14.52 14.52

Empirical Human
Age

56.02 59.12 60.96 64.33 65.64 67.28 68.80 70.83 73.58

Empirical Dog’
Age

7.84 9.26 10.36 11.17 12.07 13.09 14.22 14.76 16.26

Comparing the numbers in proportional, and the scale and location rules of comparison
of ages, we see significant differences in the results obtained by two approaches. The
true model of age comparison is an important factor, and we must be aware of it.
We should revise some simple rules in comparing ages, based straightforward on the
average life expectancy only. There is a simple explanation: The IC for dog population
runs much faster from the start of their life than the IC for the humans, and rates of
these runs are not uniform, as the calendar rate (for convenience of comparison) is.

25.3 Empirical Distribution Functions and Empirically
Equivalent Ages

It is clear from the definitions of equivalent ages that one may use samples from each
population, and the empirically estimated quantiles to compare ages of items from
different populations. The accuracy in determination of the empirical quantiles will
determine the precision in the evaluation of the equivalent ages from both popula-
tions. We have no intention to enter in more details here, considering the case as intu-
itively clear and practically usable. The obtained estimations are based on consistent
non-parametric sample estimators of the p-quantiles of probability distributions. The
equivalent ages are equal empirical quantiles of the respective life time distributions.

This approach is convenient to compare equivalent ages in two groups of similar
objects, e.g. same purpose products from different providers, ages among ethnic pop-
ulations based on data collected within a census, or for comparing ages from different
countries, etc. The empirical approach is expected to be useful to compare the mar-
ket value of products based on the duration of their free of failures use. It can be
used for purposes of warranty, life support, quality evaluation, and similar risk areas
of application.
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25.4 Equivalent Ages Have Equivalent/Equal Accumulated
Stress: Comparing Ages of Processes

There are other convenient descriptions of the life times, which offer additional
interpretations suitable in life comparison and broaden its possible area of applica-
tions. They are using the terms of the failure rate function and related to it hazard
function associated with any life time distribution. The idea comes from reliability
theory and from the survival analysis.

Let the initial lifetime, X , of an individual be a continuous r.v. with c.d.f. F (x) and
p.d.f. f(x). Then its hazard function is defined by the equation

Λ(x) = − ln[1 − F (x)], x ≥ 0. (25.6)

Its failure rate function is respectively defined by

λ(x) =
d

dx
Λ(x) =

f(x)
1 − F (x)

, for all x ≥ 0, where 1 − F (x) �= 0. (25.7)

The relationship between Λ(x) and λ(x) is remarkable:

Λ(x) =
∫ x

0

λ(t) dt. (25.8)

It allows to introduce in our terminology time dependent processes, which seem more
suitable for the age equivalence purposes and age comparison establishment. Living is a
process. In demography and survival analysis the function λ(x) is called mortality rate
among the individuals at calendar age x. Here we propose to call it risk function (risk
to fail, risk to die, risk of something to happen at age x since the process has started).
Another suitable terminology seems to be stress function. Respectively, equation (14)
offers an intuitively clear, natural name for the function Λ(x). We call Λ(x) accumulated
stress (or accumulated risk) during the life up to age x. This is what we believe is the
count one may read at the IC. Now, the following statement holds.

Theorem 1. The ages a, and b of two individuals with life times X and Y are equiv-
alent if and only if the accumulated stress up to age a of the first individual, and the
accumulated stress up to age b of the second individual are equal, i.e. when it is fulfilled

ΛX(a) =
∫ a

0

λX (t) dt =
∫ b

0

λY (t) dt = ΛY (b). (25.9)

In other words, equivalent ages have equal accumulated stress within each of the indi-
viduals (one may read it as having the meaning that equivalent ages have equivalent
readings on their respective Internal Clocks).

Proof. From Definition 3 we know that two ages a and b are equivalent when equation
(2) is fulfilled. Then, it is also true that 1 − FX (a) = 1 − FY (b) . Therefore, it is true
− ln[1−FX(a)] = − ln[1−FY (b)]. By making use of relationships (25.7) and (25.8) we
conclude that (25.9) holds.



25 Ages in Reliability and Bio Systems, Interpretations, Control, and Applications 323

Definition 4. The ages a, and b of two individuals with life time variables X and Y
are equivalent if and only if they have equal accumulated stress up to the moments a
and b respectively

ΛX(a) = ΛY (b). (25.10)

i.e. when it is true that the incurred stresses up to age a, and to age b respectively,
are equal. In other words, the equivalent ages have equal quantities of the respective
accumulated stresses.

Definition 4 is equivalent to Definitions 2 and 3. However, we now gain the opportunity
to find a way for determination of the true age of an individual within the population
where this individual belongs.

Remark 2. To understand the concept of incurred stress, also what we think can be
called accumulated risk, expressed by (25.10). One needs to admit, that the way to
measure it is unique, and does not depend on the nature of the population to which
it is related. The measuring unit for the incurred stress is one and the same for the
entire world of random variables representing life times, and should correspond to one
of the presentations (25.6) or (25.8) used in reliability theory. Respectively, the rate of
accumulation the stress per unit time may get its measuring unit from the relations in
(25.7).

25.4.1 About Assessment of Individual Life: Age of Bio-Systems

Assume, that the accumulated stress function Λ(t) is analytically known, and also that
it can be particularly evaluated, i.e. that it is possible to measure the accumulated
stress of a particular individual when he is at calendar age t. Equation (25.10) allows
to evaluate the real age of this individual on the background of his own population, no
matter what its calendar age t is at the moment.

Corollary 1. If the accumulated stress up to some calendar time T of a particular
individual within his population equals A, then its actual particular age is TA, obtained
as solution of the equation

Λ(t) = A, i.e. TA = Λ−1(A), (25.11)

where Λ−1(t) is the inverse function of the function Λ(t).

We may call Λ(t) also as function of the wasted resource on behalf of this individual
within the “calendar” time interval [0, t]. As more resources an individual wastes, as
more age he/she gets. The picture reminds the one in counting the accumulated work-
load of technical equipment (as it is for instance, in airplane motors, nuclear reactors,
heating facilities, mileage for cars) when attempting to find out the true value/age of
the items. However, there is no clear picture in how to transform the load amount into
a calendar age, and our approach here can be a helpful tool. An open question raises:
How would be the age prolonged with adding extra resources to an individual.

Remark 3. The Nobel Laureates in Medicine for 2006 are A. Z. Fire and C. C. Mello
“for their discovery of RNA interference – gene silencing by double-stranded RNA”.

Professor G. Hansson [HG06], Chairman of the Nobel Committee for Medicine, in
his presentation speech says: “In their brilliant paper from 1998, Andrew Fire and Craig
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Mello [FXKDM98] demonstrated that double-stranded RNA activates an enzymatic
mechanism that leads to gene silencing, with the genetic code in the RNA molecule
determining which gene to silence. Today, we call this mechanism RNA interference.

Continued research has shown that our cells use RNA interference to regulate
thousands of genes. Through RNA interference, the pattern of gene expression is fine-
tuned in such a way that each cell uses precisely those genes that are needed for
building its proteins. Today we also know that RNA interference helps to protect us
against viruses and jumping genes.”

The Nobel Laureates have discovered a fundamental mechanism for controlling the
flow of genetic information. Our genome operates by sending instructions conveyed by
messenger RNA (mRNA). RNA interference occurs in plants, animals, and humans.
It is of great importance for the regulation of gene expression, participates in defense
against viral infections, and keeps jumping genes under control. RNA interference is
already being widely used in basic science as a method to study the function of genes
and it may lead to novel therapies in the future, especially in slowing the aging.

Since 1988, some gigantic steps towards understanding the mechanism of aging
have been made. My search through the available literature gives to me some opti-
mistic hopes. The following excerpt may be in support: “Many aging-related diseases
are linked to shortened telomeres. Organs deteriorate as more and more of their cells
die off or enter cellular senescence. Telomeres are the physical ends of linear eukary-
otic chromosomes. They are specialized nucleo-protein complexes that have important
functions, primarily in the protection, replication, and stabilization of the chromosome
ends. In most organisms studied, telomeres contain lengthy stretches of tandemly re-
peated simple DNA sequences composed of a G- rich strand and a C-rich strand (called
terminal repeats). These terminal repeats are highly conserved; in fact all vertebrates
appear to have the same simple sequence repeat in telomeres: (TTAGGG)n.

Telomerase is an enzyme that adds specific DNA sequence repeats (“TTAGGG”
in all vertebrates) to the 3′ (“three prime”) end of DNA strands in the telomere re-
gions, which are found at the ends of eukaryotic chromosome. The telomeres contain
condensed DNA material, giving stability to the chromosomes. The enzyme is a reverse
transcriptase that carries its own RNA molecule, which is used as a template when it
elongates telomeres, which are shortened after each replication cycle.” Telomerase was
discovered by Greider and Blackburn in 1985 [GB85].

Advocates of human life extension promote the idea of lengthening the telomeres
in certain cells through temporary activation of telomerase (by drugs), or possibly per-
manently by gene therapy. They reason that this would extend human life. So far these
ideas have not been proven in humans. In 2006, Geron corporation’s web site (http://
www.hoovers.com/generic-drugs/--HICID 1488--/free-ind-factsheet.xhtml) indicated
that it had at least two candidate drugs able to activate telomerase.

There are several techniques currently employed to assess average telomere length in
eukaryotic cells. These methods, however, require significant amounts of genomic DNA
(2–20 micrograms) and labor which renders its use limited in large epidemiological
studies.

Laboratory studies show, that human individuals come to life at birth with a telom-
ere of length between 9,000 and 18,000. Due to stress and deceases, the cells reproduc-
tion etc., the length of the telomere shortens at each of these actions by several letters
in their “TTAGGG” sequence. By the end of the natural life span the length of telomere
becomes short to the size of 400–700 letters.
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The statements in this remark indicate, that the telomeres are these hidden sources
of counts on our IC since there is a way to measure telomeres length. A combined
statistical work is needed to find out the exact form of the function Λ(t) which corre-
sponds to the true life time of a human’ subpopulation. The Gompertz–Makenham law
of mortality discussed below offers a useful opportunity since it contains just a few of
constants to be estimated, and is proven to work for all live organisms (bio systems).
The Gompertz–Makenham mortality law has been confirmed for people and for other
mammals, flies, mollusks with specific values of its parameters.

Bio-systems are obviously subject of wearing and aging. Bio-systems naturally have
a proven life-span (something like a maximal value of life beyond which no copy of
the bio-system can pass). Life span for people is, for instance, 120 years. Life spans
have also most of the functional components of the bio-systems. Life span for people’s
brain is 250 years. For technical devices the exponential, the Weibull, the Gamma,
and even the Normal distributions frequently fit for modeling the life times. For the
bio-systems, despite of their complexity, according to Koltover [VK04] there exists
this “universal kinetics of the growth of mortality with the age”, expressed by the
Gompertz–Makenham law of mortality

λ(t) = β + αeγt. (25.12)

Here, the parameters β, α, and γ > 0 are independent on time. From Koltover [VK04]
we understand that for people parameter β �= 0 if the age is less than 35 years, and
β = 0 if the age is greater than 35. Values of the other parameters, according to that
same source are given as α ≈ 42.8271± 8.85 years, and γ ≈ .094 ± .0014 years−1

We use (25.12) and immediately find the form of the function of the accumulated
stress the Gompertz–Makenham law of mortality

Λ(t) = βt+
α

γ
(1 − eγt) t ≥ 0. (25.13)

In order to find the values of the parameters β, α, and γ and to relate them to the
length of telomeres and the age distribution, it seems sufficient to use the normalizing
conditions for the probability functions i.e. solve the equations Λ(120) = 400, Λ(0) =
18,000, and exp(−Λ(120))− exp(−Λ(0)) = 1. Similar approach seem to be appropriate
and for any other live population, where the same mortality law is valid, and just the
parameters and measured numbers differ in values. After the constants β, α, and γ are
established, a measurement of the respective telomere length, L, of an individual and
the solution of the equation

βT +
α

γ
(1 − eγT ) = L (25.14)

would give the assessed particular age TL of the individual.
The last equation here is a transcendental equation and des not have an explicit

solution. However, its solution is unique. The same will be and in the most common
case. We mark here its general solution.

Let Λ(t) be the population accumulated stress function, and let Λi(T ) be the ac-
cumulated stress in an individual i. Then its individual age, compare to the average
individual age in (on the background of) the population, is

T̂i = Λ−1(Λi(T )). (25.15)
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Notice, that (25.15) allows to forecast the ages of items (individuals) which are
operating in different work environment, or in different workload conditions. This same
approach should be applicable and in accelerated life testing in reliability.

25.4.2 Process Ages Comparison

In the theory of the Non-stationary Poisson processes (NPP), the function Λ(t)
discussed in the previous section is called Leading function. It constantly increases
with t from 0 to ∞ and characterizes the entire development of the respective process
onto any time interval [0, t], as well as what may happen on any other interval [t, t+s].
Every function Λ(t) with such properties defines a NPP. A NPP describes flows of
events which occur one at a time while the process exists. Age of such process can
be called the time variable TA which satisfies the equation TA = Λ−1(A) where A is
certain amount of accumulated “work” achieved by the leading function, and Λ−1(t)
is the inverse function of Λ(t). The less known fact is that there is a random vari-
able, say X , defined by a probability distribution F (t), related to Λ(t) by the equation
FX(t) = 1 − e−Λ(t), and this is the distribution of the time X from the start of the
process up to the occurrence of its first event. We call this variable associated with the
considered NPP.

Let two processes have leading functions Λi(t), i = 1, 2. The above considerations
give us the reasonable opportunity to compare the ages of the two processes. Actually,
these are the equivalent ages of the underlying random variables Xi associated with
each of the two processes. We have the following Definition true:

Definition 5. The ages T1 and T2 of two processes are equivalent whenever the equality
between the values of their leading functions

Λ1(T1) = Λ2(T2). (25.16)

at these times holds.

Definition 5 is equivalent to Definitions 2, 3, and 4. Definition 5 requires the knowl-
edge of the growth of the leading functions for the processes whose ages we are willing
to compare.

Based on Definition 5 one gets the opportunity to do lots of useful practical appli-
cations. For instance, the time scaling between laboratory (possibly, overloaded, accel-
erated, intensive) testing and real world (in the field) transfer of results. If the field
conditions allow to determine how the resource function Λ2(T ) will be wasted (used),
then the true field age up to the death of an item which dies in accelerated (labora-
tory) conditions at age T1 and has had used resources Λ1(T1) will be predicted by an
equation similar to (25.15), i.e. the predicted death age T2 will be T2 = Λ−1

2 (Λ1(T1)).

Example 4. The Gompertz–Makenham life-time distribution with an age-affecting
factor.

Drug use activities may improve the performance of the individuals and give them
a “new life”. The specifics of the drugs, its regular intake, amount of labor, recovery
time, or money invested in the health care may have significant impact on the health
improvement, which directly affects the longevity of life. If assume that health improve-
ment shortens the current age of such individuals by certain percentage δ, we call it
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an age- reducing factor. Drug abuses may affect the future performance of the in-
dividuals, and make them look older. We introduce age-accelerating factor δ, which
means making the overall life of such individuals shorter by certain percentage δ. The
model and the theorem below explain how it happens and the reflection of the changes
on the individual mortality rate and on the integrated risk function (Dimitrov et al.
[DGCK04,DCK04]).

Let Xi denote (calendar) time intervals between successive epochs of drugs intake
that affect the individual. Assume that δi denote the lack of perfection the live system
may get as result of the i-th action. The values

T0 = 0, Ti = Ti−1 + δiXi, i = 1, 2, . . . (25.17)

are understood as virtual ages of the individual right after the i-th action. When δi = 1,
then no improvement or deterioration of the virtual age of the individual occurs at the i-
th epoch of action. When δi < 1 (or if δi > 1), then an improvement (or a deterioration)
of the virtual age of the individual occurs at that epoch of the i-th action. The model
described here is also known in Reliability as Kijima [MK89] model II.

Dimitrov et al. [DCK04] consider this model with the assumption that δi = δ �= 0,
and call this δ an age-correcting factor. It has been noticed that when the individual
is at calendar age t its virtual age measured on the calendar age scale is xδ(t) = δt.
Based on some calculations, the following relations are found: The virtual hazard rate
(accumulated risk) Λ∗(t) and the original hazard rate function (the “normal run” of
accumulation) Λ(t), as well as their rates of change, are related by the equalities

Λ∗(t) =
1
δ
Λ(δt) and λ∗(t) = λ(δt) t ≥ 0, δ �= 0. (25.18)

Here, the function Λ∗(t) also represents the accumulated risk up to calendar time t
of an individual maintaining his life as in the Kijima model (25.17), and the function
λ∗(t) represents the risk (mortality) at the same calendar age t.

When considering the Gompertz–Makenham life-time distribution Dimitrov et al.
[DHKS07] show that for individuals of a population who maintain their life with same
age-correcting factor δ, their accumulated stress is represented by the function

Λ∗(t) = βt+
α

δγ
(1 − eγδt) t ≥ 0. (25.19)

By making use actually, of for equivalent ages of processes, The authors apply
Definition 6 with the shown in the previous section values of the parameters α, β, γ
and obtain a nomogram (a graph) of related ages. It shows how equivalent ages between
human populations are (could be) transferred at any calendar age t. The table bellow is
an excerpt of these results. The equivalent ages depend on the values of the correcting
factor δ and on the levels p of survival probability.

p δ 1.5 1.25 1.1 1 0.9 0.6 0.3
0.9 28 30 31 33 34 37 39
0.7 42 45 50 58 61 80 112
0.5 48 55 61 66 72 98 158
0.25 53 62 69 75 82 114 197
0.1 57 66 75 81 89 125 220
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We selected the equivalent ages for several probability levels. In bold black digits are
shown the ages for the normal population where δ = 1. In the same line are shown
the ages in the other populations, at which (we intuitively understand) an average
individual would look (has the age) equivalent to the shown for the normal population.
One may see some unreal numbers which we need to comment. For instance, at level
p = 0.25 (the age of 75 years, which will be survived only by a quarter of the individuals
in the normal population) same properties would be in possession by the individuals at
82 years age, if they reduce their ages regularly by a factor δ = 0.9 (an improvement by
10% compare to the normal). In the same line, we see that one quarter would survive
114 year old people in the population who got 40% improvements regularly, i.e. have
δ = 0.6. Finally, we see that as a 75 year old normal individual would have feel an
individual at age 197 if it was possible to reduce the age regularly by 70%. Numbers
in the last column are somewhat unreal, because they represent a mystic dream for
such high level of age reduction. If one chooses a calendar age, it should be as shown
for the normal population. His/her real age is the one read in the column of his/her
population.

Notice that the telomeres length L discussed in the previous section is a random
process, which shows the existing (initial minus wasted) resources within an individual.
Measuring the telomeres length Li, i = 1, 2 and using the equation (25.14) one is able
to compare the ages of individuals from two populations, and get an information on
how to evaluate the age correction factor δ when such problem is of interest.

On the other hand, biological systems can be treated similarly as the devices con-
structed to perform some preset functions considered in reliability. They perform their
functions in the presence of a great number of random factors, which may disturb the
normal operations. In terms of reliability, keeping most of the biological objects under
control is maintenance. The malfunction of the bio-system is equivalent to the failure in
a technical device. The applied treatment in the bio-system corresponds to respective
repair in reliability.

Bio-systems can be considered as a specifically organized devices constructed to
perform some preset functions, according to their genetic programs. These functions
are performed in the presence of a great number of random factors (environmental
conditions). Biological discoveries materialize the vision of imagination demonstrated
in mathematical models. There are connections between the two fields which have to
be appropriately used. There are number of interesting problems associated with the
discussed above mechanisms of control of process age and its prolongation. Here we
describe one of these.

Problem 1. How frequently to use the aid tool (e.g. telomerase in bio cells) in order
to prolong the total cells life (e.g. keep the telomere above the critical level). You
understand that if you miss the moment, the cell will be reproduced, and the telomere
will be shortened. If you use the aid tool more than once before the reproduction instant,
there will be waste of material. Set up a problem either to maximize the probability
for staying above the critical level, or to minimize the limited aid tool quantity within
a given calendar time interval, or to minimize related expected cost functional, and
similar goal function.

If the expenses are at least particularly covered by some life, or medical insur-
ance, then just the calculation of the expected associated costs would be of significant
importance.
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If Λ(t) is the amount of wasted resources during the life of an individual, what
measures how adding extra resources prolongs the total life?

This section was induced by the number of presentations and articles presented
at the First French-Russian Conference on Longevity, Aging and Degradation Models
in Reliability, Public Health, Medicine and Biology (LAD’2004 as it is well described
by Auperin and Nikulin in [AN04]). It intended to combine the latest biological and
medical results with the probability and statistical methods.

25.5 Multidimensional Life Time Equivalence

There are objects (technical items, bio individual) where the age gets a two, three, and
possibly more dimensional form. The life time almost any system can be measured in
more than one time scale. For instance, for the automobiles people use two “parallel
scales”, the calendar age, and the total mileage. For airplanes there could be three
“time” scales, the calendar age, the amount of fly time (in the air) and the number of
takeoffs and landings. At the time of death every one of these “age variables”, say X ,
and Y , have certain values. The death itself is an event which is just indirectly related
to the meaning of X , and Y , i.e. these variables may have no “time meaning”. The prob-
ability of the pair (X,Y ) not to survive certain values (x, y), namely P (X ≤ x, Y ≤ y)
is called joint probability distribution and is denoted by FX,Y (x, y). Its value, roughly
speaking, represents the proportion of individuals from the population which will have
X ≤ x and Y ≤ y when die. The probability to survive both values (x, y), we call
Survival Function, and denote by FX,Y (x, y). Its value, roughly speaking, represents
the proportion of individuals from the population which will have X > x and Y > y
when die. In other words the variables X , and Y are just collateral to the age. Ways to
transfer these values into calendar measurement of the age are still expected. However,
the measurements on variables X , and Y are giving important information for use in
the same way as calendar time can be used in the risk assessment, and utilization. The
following of this section uses the ideas described in Dimitrov [BD07], and in Dimitrov
et al. [DGS07].

Now we introduce two definitions of equivalent ages, and claim that despite of the
differences, each may have its reason to be used.

Definition 6. (Optimistic): We say, two individuals with two dimensional dependent
age variables (X1, Y1) and (X2, Y2) have equivalent ages (T (1)

1 , T
(1)
2 ) = (T (2)

1 , T
(2)
2 ) if it

is fulfilled

F(X1,Y1)(T
(1)
1 , T

(1)
2 ) = F(X2,Y2)(T

(2)
1 , T

(2)
2 ). (25.20)

Notice, that now we have two sets of equivalent ages, not just a unique pair
(T (1)

1 , T
(1)
2 ) = (T (2)

1 , T
(2)
2 ). Even in the frame of just one population with a two di-

mensional age (X,Y ), for any number p within the interval (0, 1) all the points on the
level p curve

Cp : = {(xp, yp); FX,Y (xp, yp) = p} (25.21)
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are points whose coordinates trace all individuals of the same (we say equivalent)
ages. Only individuals who have (X = x, Y = y) for which the value of the proba-
bility FX,Y (x, y) = q is less than p can be called younger, i.e. we can say that then
(x, y) < (xp, yp). The set Cp given by (25.21) is the curve of equivalent ages of the indi-
viduals at level p. Individuals whose measurements in X and Y are located on the lower
level curves are younger than individuals with measurements on higher level curves.
Analogously, in the three (and higher) dimensional ages we will have level surfaces of
equivalent ages, and an order between ages can be given according to the level of the
respective surface, on which these ages belong.

Example 5. Fair Pricing of the Used Cars
Assume that X is the calendar age of a car, and Y is its mileage. When buying a

car people usually are interested of these two car characteristics. Assume, other car’
features are equivalent (color, impression), and the joint distribution of (X,Y ) is known.
Then all the used cars of same brand with individual values of age x and mileage y
laying on the curve of equivalent ages should have same price. More on this example
can be seen in [DGS09]

Example 6. Warranty costs for used items – an estimation.
Assume, we are in situation as in above example, and the age of the car is X = x0,

and the mileage Y = y0.. The conventional “extended warranty” is offered for an
addition a ti the one component, and addition b to the second whichever comes first..
In other words, if the measured pair (X,Y ) fails in the rectangle R = [x0, x0 + a] ×
[y0, y0 + b], some of the repair expenses will be covered by the warranter.

By noticing that the variables X and Y can only increase in time, and using the
curves of equivalent ages one can see that the expected warranty costs will be the same
from any initial point on the curve C0 : = {(x, y); FX,Y (x, y) = FX,Y (x0, y0)} to any
end point on the curve Cw : = {(xw , yw); FX,Y (xw , yw) = FX,Y (x0 + a, y0 + b)} .
Then in the advertisement of the extended warranty can be used any pair of num-
bers (a = xw − x0, b = yw − y0). The ads may use the most attractive pair without
hurting the expected warranty costs. Detailed numeric examples are given in Dimitrov
et al. [DGS09] We do believe, that similar situation can be build on an example with
life insurance, or in guarantees related to yearnings from investments, or from other
portfolio.

Remark 4. In two, and higher dimension the value of the joint distributions decrease
when adding an additional dimension. In other words, adding an additional time (age)
characteristic (component) to an already existing set of time characteristics (age com-
ponents) will make this object to look “younger” compare to what it would be with
less components in consideration. This is due to the fact that

F(X1,...,Xn−1)(T1, . . . , Tn−1) ≥ F(X1,...,Xn−1,Xn)(T1, . . . , Tn−1, Tn),

whose interpretation e.g. is “chances to die before the expiration of certain level
of n age components (T1, . . . , Tn−1, Tn) are less than the chances to die before the
expiration of same level of n− 1 age components (no matter which exactly are chosen)
(T1, . . . , Tn−1)”. Therefore, it looks that it is more likely to survive a highest dimension
age than an age of lower dimension. This sounds as a paradox, but fact is proven. By
adding an additional component into consideration in your life complex you low the
level on the surface of equivalent ages.
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And this is our reason to call this definition of age equivalence (and model for age
comparison) as optimistic definition. It decreases the level of portion of dead individuals
in the population with the increase of the number of age components we care for.

Definition 7. (Pessimistic): We say, two individuals with two age components (X1, Y1)
and (X2, Y2) have equivalent ages (T (1)

1 , T
(1)
2 ) = (T (2)

1 , T
(2)
2 ) if the values of their sur-

vival functions at these points fulfill the requirement

S(X1,Y1)(T
(1)
1 , T

(1)
2 ) = S(X2,Y2)(T

(2)
1 , T

(2)
2 ). (25.22)

Notice, that as in the optimistic case, we have sets of equivalent ages, not just unique
pairs (T (1)

1 , T
(1)
2 ) = (T (2)

1 , T
(2)
2 ). Even in the frame of one population with two age

components (X,Y ), for any number p within the interval (0, 1) all the points on the
curve Gp:

Gp : =
{

(x, y); S(X,Y )(x, y) = p
}

p ∈ (0, 1), (25.23)

are points whose coordinates trace the level curve of equivalent ages at survival level p.
Only individuals whose values (X = x, Y = y) satisfy the inequality S(X,Y )(x, y) =
q > p can be called younger than any individual whose measurements are on the curve
Gp. Then we can say that (x, y) < (xp, yp) ∈ Gp. Individual whose life components
measurements are on higher level curve are younger than individual whose life com-
ponents measurements are on lower level curves. The curve Cp, 0 < p < 1 given by
equation (25.23) is the set of equivalent ages for the individuals at the survival level p.
And this curve is quite different from the curve given by (25.21). More precisely it is
always fulfilled

S(X,Y )(x, y) + F(X,Y )(x, y) ≤ 1.

Therefore, the proportion, say p of individuals in the population not surviving
level (xp, yp) ∈ Cp is always less then proportion of individuals surviving the level
(x1−p,y1−p) ∈ G1−p. It says that the curve of equivalent ages Cp is located below
the curve of equivalent ages G1−p p ∈ (0, 1). Some graphs can be shown to illustrate
better visually these possibilities.

Analogously to the case of previous definition, in the three (and higher) dimensional
ages we will have level surfaces of equivalent ages, and an opportunity to put order
between ages of individuals by making use of values of the respective survival functions
at the measured values of age components. Age rating is given according to the level of
the respective surface of equivalent ages, Gp, to which these ages belong, when using
the survival function, and Definition 7.

Example 7. The two examples discussed for the case of Definition 6 can be exploited
here too. Including the survival function instead of the c.d.f. in consideration just
changes the vision angle, possibly the goals and tools of analysis. We do not focus here
on any particular problem. More detailed examples can be found in Dimitrov et al.
[DGS09].

Remark 5. In two, and higher dimension the values of the joint survival function also
decrease when adding an additional dimension. But now inclusion of an additional age
characteristic to an already chosen set of age components will give this object less
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chances to survive. In other words, this object will “look older with more components
considered in his age than if less components are taken into consideration” (even when
compared to itself). This is due to the fact that

S(X1,...,Xn−1)(T1, . . . , Tn−1) ≥ S(X1,...,Xn−1,Xn)(T1, . . . , Tn−1, Tn),

An interpretation of the above facts could be “probability to survive any fixed levels of
a set of n age components (T1, . . . , Tn−1, Tn) is less than the probability to survive the
same fixed levels of a subset of n−1 time variables (T1, . . . , Tn−1)”. Therefore, it is less
likely to survive the highest dimension age than ages of lower dimension. Practically it
comes to an advise: “The more age characteristics you take into account, the more age
to yourself you will add. Your age will not change only if you are “perfect” in regard
to the newly added characteristic, i.e. when P{Xn > Tn} = 1.”

This is our reason to call Definition 7 (of age equivalence and model for age com-
parison) a pessimistic definition. However, we do expect this definition to be used more
frequently in determining ages of various dimensions, because it seems to us a little bit
more realistic (by properties) than Definition 6. More about multidimensional life in
Dimitrov et al. [DGS07].

Problem 2. In two, and higher dimension joint distributions the introduction of the
concepts of failure rates and integral hazard rates has various approaches (see e.g.
Galambos and Kotz [GK78]). Here, for the purposes of age studies we can not propose
any specific approach, which could be of equivalent value to the meaning and interpre-
tations offered in the one dimensional case, or to the one of the multidimensional cases
in this section. This is a hard problem, and any progress in it could be a significant
contribution.

Another question of general issue that makes the bridge between studies on ages
and related risks is the question of modeling dependence between age component.
The Copula approach in the study of multi dimensional dependence should have some
specific when related to ages and aging. The reason is justified by the importance of
Gompertz–Makenham distribution in the 1-dimensional case. Copulas with use of this
distribution are not known to me.

Remark 6. The web site http://message.realage.com/ offers a newsletter periodically
e-mailed to RealAge members. There are several options, e.g. to take a RealAge test
and to receive health information. They say: “The RealAge test is a science-based
health assessment that calculates your biological age (or RealAge) and includes an Age
Reduction. The page where you take the test is http://www.realage.com/ralong/qa/HI.
aspx. It contains more than 60 questions (one is what is your current age), many with
multiple answers, and at the and a number is given as your real age. I went in contact
with them and was told that the algorithm of their calculations is their company’s
secret. However, part of the questions are about frequency of taking medications, like
aspirin, drinking habits (in quantity), exercises, etc., and almost immediately change
your prognoses of the age. This is what reminds the Kijima models, but it could be
another story, possibly multi-dimensional.
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25.6 Conclusions

Age of technical items, as well as the age of live individuals may not correspond to
their calendar age. To answer lots of questions related to determination of the true age,
and also what is aging and how to keep aging under control we need to define age.

In the present article, we give several equivalent definitions of age based on the
ways to compare ages. Then we find corresponding equivalent forms of the definition
of age, and claim that each form offers an opportunity to see different aspects of age
and aging.

Some interpretations and recent medical discoveries trace the way for new research
in this area. It also offers numerous opportunities to get into cooperation in study-
ing ages by means of mathematics, probability and statistics, reliability, engineering,
medicine and biology.

Multidimensional ages are briefly discussed. Some additional open problems related
to the ideas present here are sketched.

References

[AN04] Auperin C. and Nikulin M., Unified Bio-Reliability Approach in Statisti-
cal Modeling of Aging, Longevity, Degradation and Mortality with Dynamic
Environment, in Proceedings of LAD’2004, Volume 2, Edits Antonov et al.,
Saint Petersburg, pp. 346-361, (2004)

[CC06] Campbell C.A., Two Americas: Country’s healthiest live 3 decades longer than
those most ailing, The Flint Journal, Nov. 26, p. C1–C2, (2006)

[DGCK04] Dimitrov B., Green D., Chukova S. and Khalil Z., Age Affecting Repairs and
Warranty Costs, in Proceedings of LAD’2004, Volume 2, Edits Antonov et al.,
Saint Petersburg, pp. 101–114, (2004a)

[DCK04] Dimitrov B., Chukova S. and Khalil Z., Warranty Costs: An Age-Dependent
Failure/Repair Model, Naval Research Logistic Quarterly, 51, pp. 959–976,
(2004b)

[BD07] Dimitrov B., Lifetime Distributions and Equivalent Ages. Applications in
Insurance, Risk, and More, Proceedings of the Third Brazilian Conference on
Statistical Modelling in Insurance and Finance, Maresias, Brazil, pp. 21–40,
(2007)

[DHKS07] Dimitrov B, Hayrapetyan G., Khalil Z. and Stanchev P., Aging and Longevity
Control of Biological Systems via Drugs – a Reliability Model. e-journal:
Reliability: Theory & Applications No 2, Vol.2, June 2007, pp. 10–20, (2007)

[DGS09] Dimitrov B., Green D. and Stanchev P., Warranty and Fair Pricing for Used
Items in Two-Dimensional Life Time, VI International Conf. MMR’2009, Pro-
ceedings, Moscow, pp. 262–267, (2009)

[DGS07] Dimitrov B., Green D. Jr. and Stanchev P., Multidimensional Life Time
Equivalence, Proceedings of the International Workshop “Distributed Computer
and Communication Networks: Theory and Applications, Moscow, Russia Sept.
10–12, 1, pp. 26–33, (2007)



334 B. Dimitrov

[MF08] Finkelstein M. (2008) Failure Rate Modelling for Reliability and Risk, Springer
series in reliability engineering, London, (2008)

[FXKDM98] Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C.,
Potent and specific genetic interference by double-stranded RNA in Caenorhab-
ditis elegans. Nature, 391, pp. 806–811 (1998)

[GK78] Galambos J. and Kotz S., Characterizations of Probability Distributions. Lec-
ture Notes in Mathematics 675, Springer, Berlin, (1978)

[GB85] Greider C.W. and Blackburn E.H., Identification of a specific telomere terminal
transferase – activity in tetrahymena extracts, Cell, 43(2), pp. 405–413, (1985)

[HG06] Hansson G., Chairman of the Nobel Committee for Medicine, Presentation-
speech on December 10,
http://nobelprize.org/nobel prizes/medicine/laureates/2006/
presentation-speech.html) (2006)

[MK89] Kijima M., Some Results for Repairable Systems with General Repair, J. Appl.
Probab., 26, pp. 89–102, (1989)

[VK04] Koltover V. K., Reliability of Biological Systems: Terminology and Method-
ology, in Proceedings of LAD’2004, Volume 2, Edits Antonov et al., Saint
Petersburg, pp. 98–113, (2004)



26

Shocks in Mixed Populations

Maxim Finkelstein1∗ and Ji Hwan Cha2

1 Department of Mathematical Statistics, University of the Free State, South Africa/
Max Planck Institute for Demographic Research, Bloemfontein, South Africa,
FinkelM@ufs.ac.za

2 Department of Statistics, Ewha Womans University, Seoul, Korea, jhcha@ewha.ac.kr

Abstract: We consider shocks as a method of burn-in in discrete and continuous
heterogeneous populations. Burn-in is a widely used engineering method of elimination
of defective items before they are shipped to customers or put into field operation.
In conventional burn-in procedures, components or systems are subject to a period of
simulated operation prior to actual usage and those which failed during this period
are scrapped and discarded. In this paper, we assume that the ‘weak’ items are more
susceptible to elimination via shocks and therefore this method can be considered as
burn-in. Optimal severity levels of these shocks that minimize the defined expected
costs are investigated.

Keywords and phrases: Burn-in, Heterogeneous populations, Optimal severity,
Shocks

26.1 Introduction

In this chapter, we consider shocks (i.e., “instantaneous” stresses of “high” level) as
a method of burn-in in heterogeneous populations. Burn-in is a method of elimination
of initial failures in field usage. To burn-in a component or a system usually means to
subject it to a period of simulated operation prior to actual usage. Due to the high
failure rate in the early stages of component’s life, burn-in has been widely accepted
as a method of screening out early failures [JP82]; [KK83]; [BS97].

As burn-in is usually expensive, one of the major tasks is to decide for how long
this procedure should be performed. The corresponding optimal problem has been
considered in numerous publications. See, for example, [BMS93], [BSS02], [NM82],
[CS91], [M94a], [M96], [M97], [C00], [C01] and [C03].

In order to shorten the duration of this procedure, burn-in is often performed in
an accelerated environment. In this case, obviously, the larger values of stress should
correspond to the shorter duration of burn-in. By letting the stress to increase, we can
end up (as some limit) with very short (negligible) durations, in other words, shocks.
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We discuss two settings: the case of two ordered subpopulations and the continuous
“pattern” of a heterogeneous population composition. We present here only some of
our findings in this direction. The extended version with numerous additional results
and generalizations will be published elsewhere.

26.2 Two Ordered Subpopulations

Assume that a population is a mixture of two ordered subpopulations – the strong
subpopulation and the weak subpopulation. Let the lifetime of a component from the
strong subpopulation be denoted by XS and its Cdf, pdf and the failure rate function
be F1(t), f1(t) and λ1(t), respectively. Similarly, the lifetime, the Cdf, pdf and the
failure rate function of a weak component are denoted by XW , F2(t), f2(t) and λ2(t),
respectively. Let the lifetimes in these subpopulations be ordered in the sense of the
failure rate ordering [SS06]:

λ1(t) � λ2(t), for all t � 0,

and the mixing proportion (distribution) π(z) is defined as π(z1) = π, π(z2) = 1 −
π where z1 and z2, z1 < z2 are variables that represent the strong and the weak
subpopulations, respectively, and 0 � π � 1. Then the mixture failure rate is [F08]:

λm(t) =
πf1(t) + (1 − π)f2(t)
πF 1(t) + (1 − π)F 2(t)

= π(z1|t)λ1(t) + π(z2|t)λ2(t),

where the time-dependent probabilities are

π(z1|t) =
πF 1(t)

πF 1(t) + (1 − π)F 2(t)
, π(z2|t) = 1 − π(z1|t) =

(1 − π)F 2(t)
πF 1(t) + (1 − π)F 2(t)

.

and F i(t) = 1 − Fi(t), i = 1, 2.
Assume that a shock with complementary probabilities either “kills” an item (i.e.,

a failure occurs), or “leaves it unchanged”. It is also reasonable to assume that items
with larger failure rates have larger probabilities of failures.

Let πs(z) denote the mixing distribution after a shock (πs(z1) = πs, πs(z2) =
1 − πs) and let λms(t) be the corresponding mixture (observed) failure rate. Denote
the probabilities of failures caused by each shock for two subpopulations as:

p(z) =
{

p1, z = z1,
p2, z = z2.

(26.1)

In accordance with our assumption, p1 � p2. It is easy to show [F08] that

λms(t) =
πsf1(t) + (1 − πs)f2(t)
πsF 1(t) + (1 − πs)F 2(t)

= πs(z1|t)λ1(t) + πs(z2|t)λ2(t), (26.2)

where

πs(z1|t)= πsF 1(t)
πsF 1(t) + (1 − πs)F 2(t)

, πs(z2|t)=1 − πs(z1|t)= (1 − πs)F 2(t)
πsF 1(t) + (1 − πs)F 2(t)

.
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The following simple result justifies the fact that a shock can be considered as a
burn-in, as reliability characteristics of items after a shock are better than before.

Theorem 1. Let p1 � p2. If λ1(t) � λ2, for all t � 0, then λms(t) � λm(t), ∀t ∈ [0,∞).

Proof. Observe that λm(t) and λms(t) are the weighted averages of λ1(t) and λ2(t).
Then it is sufficient to show that πs(z1|t) � π(z1|t), which follows from the fact that

π(z1|t) =
πF 1(t)

πF 1(t) + (1 − π)F 2(t)
=

F 1(t)
F 1(t) + (1/π − 1)F 2(t)

(26.3)

is increasing in π and that πs � π.

The optimal burn-in time is the main characteristic of interest in conventional burn-
in procedures. In our model, the “severity” of a shock will somehow correspond to this
parameter. We will suggest now an approach for determining an optimal magnitude of
a shock that maximizes the “quality” of our population after burn-in.

Denote the magnitude of a shock by s ∈ [0,∞] . Assume that the “strength” of
the component in a strong subpopulation is a continuous random variable, which is
denoted by U , i.e., if s > U , then the failure occurs. Let the Cdf, the survival function
and the failure rate function of U are denoted by G(s), G(s), and r(s), respectively.
Similarly, let the strength of the component in a weak subpopulation be denoted by
Uw. In accordance with our assumption, let U �st Uw, which is equivalent to

Gw(s) = G(ρ(s)), for all s � 0, (26.4)

where Gw(s) is the Cdf of Uw, ρ(s) is an increasing function, ρ(s) � s for all s � 0, and
ρ(0) = 0. Thus from (26.1) and (26.4): p(z1, s) = p1 = G(s), p(z2, s) = p2 = G(ρ(s)),
and p1 � p2 holds for all s ∈ [0,∞).

Denote the corresponding mixture failure rate by λms(t; s) and consider now its
uniform minimization for all fixed t � 0, with respect to s ∈ [0,∞]:

s∗ = arginfs∈[0,∞]λms(t; s), for all fixed t � 0.

It is clear that this optimal s∗ will maximize also the important reliability char-
acteristics such as the expected lifetime of an item that has survived a shock and the
probability of success (survival probability) for a mission time τ .

Denote by R(s) ≡ ∫ s

0
r(u)du the cumulative failure rate that corresponds to the

Cdf G(s). Then the following result defines the optimal severity s∗.

Theorem 2. Let λ1(t) � λ2(t), for all t � 0. Then the optimal s∗ is the value which
maximizes R(ρ(s)) −R(s). In particular,
(i) If r(s) is increasing and ρ′(s) > 1, then s∗ = ∞.
(ii) If ρ′(s)r(ρ(s))

r(s) > 1, for s < s0, and ρ′(s)r(ρ(s))
r(s) < 1, for s > s0, then s∗ = s0.

Proof. As λms(t; s) is the weighted average of λ1(t) and λ2(t) (see (26.2)) and, similar
to (26.3), πs(z1|t) is increasing in πs, the minimum of λms(t; s) for ∀t � 0 is obtained
by maximizing

πs =
(1 −G(s))π

(1 −G(s))π + (1 −G(ρ(s)))(1 − π)
, (26.5)
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which is equivalent to minimization of exp{−[R(ρ(s)) − R(s)]} (maximization of
R(ρ(s)) −R(s)).

(i) Denote φ(s) ≡ R(ρ(s)) − R(s). Then φ′(s) ≡ ρ′(s)r(ρ(s)) − r(s). As ρ′(s) > 1 and
r(x) is increasing,

φ′(s) = ρ′(s)r(ρ(s)) − r(s) > r(ρ(s)) − r(s) � 0,

where assumption ρ(s) � s is used. Thus, in this case, s∗ = ∞.
(ii) Now assume that ρ′(s)r(ρ(s))

r(s)
> 1, for s < s0, and ρ′(s)r(ρ(s))

r(s)
< 1, for s > s0. Then

φ′(s) > 0, for s < s0, and φ′(s) < 0, for s > s0, which implies s∗ = s0.

Remark 1. In practice, obviously, there exists a maximum level of stress sa < ∞
that can be applied to items without destroying the whole population or without the
non-negligible damage in the survived items.

Consider now a model of determining the optimal severity minimizing the expected
cost function, which takes into account burn-in and field operation. An item is chosen
at random from our heterogeneous population and is exposed to a shock. If it survives,
it is considered to be ready for usage, otherwise the failed item is discarded and the
new one is chosen from the population, etc. This procedure is repeated until the first
survived item is obtained.

Let csr be the shop replacement cost and cs be the cost for conducting a single
shock. Let c1(s), as a function of s, be the expected cost for eventually obtaining a
component which has survived a shock. It is easy to show that

c1(s) =
cs + csrP

1 − P
,

where P = G(s)π + G(ρ(s))(1 − π) is the probability that an item from the mixture
population does not survive the shock.

Let the cost cm be incurred by the event {Ts � τ} (failure of a mission with
duration τ) and the gain gm result from the event {Ts > τ} (success of a mission).
Then the expected cost during field operation, c2(s), is

c2(s) = −gm
(

πsF 1(τ) + (1 − πs)F 2(τ)
)

+ cm (πsF1(τ) + (1 − πs)F2(τ)) ,

where πs is defined by (26.5). Denote c(s) = c1(s) + c2(s)
Let s∗ be the optimal severity level that satisfies

s∗ = arginfs∈[0,∞]c(s).

The following theorem defines properties of optimal s∗:

Theorem 3. Let F 1(t) � F 2(t), for all t � 0. If R(ρ(s)) − R(s) strictly decreases for
s > s0, then s∗ � s0. In particular,

(i) If ρ′(s) > 1 and r(x) is increasing, then s∗ <∞.
(ii) If ρ′(s)r(ρ(s))

r(s) < 1, for s > s0, then s∗ � s0.



26 Shocks in Mixed Populations 339

Proof. Note that c1(s) strictly increases from c1(0) = cs to c1(∞) = ∞. Also observe
that c2(s) = −(gm + cm)Fms(τ ; s) + cm, where Fms(t; s) (the survival function of a
component after a shock) is the weighted average of F 1(t) and F 2(t) with the corre-
sponding weights πs and 1 − πs, respectively. If R(ρ(s)) − R(s) strictly decreases for
s > s0, then, by similar arguments as those described in the proof of Theorem 2, c2(s)
strictly increases for s > s0. This imply that c(s) strictly increases for s > s0 and thus
we can conclude that s∗ � s0. The specific cases are easily obtained based on the proof
of Theorem 2.

26.3 Continuous Mixtures

Consider a general “continuous” mixing model for a heterogeneous population, i.e.,

Fm(t) =
∫ ∞
0
F (t, z)π(z)dz,

fm(t) =
∫ ∞
0
f(t, z)π(z)dz,

where F (t, z), f(t, z) are the Cdf and the pdf of subpopulations indexed by the frailty
parameter Z and π(z) is the pdf of Z with support in [0,∞). Then the mixture (the
observed or the population) failure rate λm(t), similar to the discrete case (26.2) is

λm(t) =

∫ ∞
0
f(t, z)π(z)dz

∫ ∞
0
F (t, z)π(z)dz

=
∫ ∞

0

λ(t, z)π(z|t)dz, (26.6)

where

π(z|t) ≡ π(z)
F (t, z)

∫ ∞
0
F (t, z)π(z)dz

. (26.7)

Assume that an instantaneous shock with complementary probabilities either “kills]’
an item, or “leaves it unchanged’]. It is natural to suppose (as in the discrete case) that
the more frail (e.g., with larger failure rate) items are, the more susceptible they are to
be destroyed by a shock.

• Burn-in procedure by means of a shock: An item is chosen at random from a het-
erogeneous population and is exposed to a shock. If it survives, it is considered to be
ready for usage, otherwise the failed item is discarded and the new one is chosen from
the population, etc.

This setting can be formalized in the following way: Let πs(z) denote the pdf of the
frailty Zs (with support in [0,∞)) after a shock and let λms(t) be the corresponding
mixture (observed) failure rate. In accordance with (26.6):

λms(t) =
∫ ∞

0

λ(t, z)πs(z|t)dz,

where, similar to (26.7), πs(z|t) is defined by the right-hand side of (26.7) with π(z)
substituted by πs(z).
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Let each item fails with probability p(z) and is survived (as good as new) with
probability q(z) = 1 − p(z). Assume, similar to the discrete case, that p(z) is an
increasing function of z (0 ≤ p(z) ≤ 1): larger values of frailty correspond to larger
values of the failure rate. Therefore, population densities before and after a shock are
obviously related as

πs(z) =
q(z)π(z)

∫ ∞
0
q(z)π(z)dz

, (26.8)

which means that population frailties before and after a shock are ordered in the sense
of the likelihood ratio: Z ≥LRZs (see, e.g., [SS06]) where g(z) is a decreasing function
and therefore πs(z)/π(z) is decreasing.

Theorem 4. Let relationship (26.8), defining the mixing density after a shock, where
q(z) is a decreasing function, hold.
Assume that

λ(t, z1) ≤ λ(t, z2), z1 < z2, ∀z1, z2 ∈ [0,∞], t ≥ 0.

Then

λms(t) ≤ λm(t); ∀t ≥ 0. (26.9)

where λms(t) is a population (mixture) failure rate after a shock.

Proof. It can be shown ([F08], page 164) that:

sign[λms(t) − λm(t)]

= sign

∫ ∫

u>s

F̄ (t, u)F̄ (t, s)(λ(t, u) − λ(t, s))(πs(u)π(s) − πs(s)π(u))duds, (26.10)

which is negative due to (26.8) and assumptions of this theorem.

Remark 2. Inequality (26.9) is a “natural” ordering in the family of failure rates
λ(t, z), z ∈ [0,∞), and trivially holds, e.g., for the specific multiplicative model:

λ(t, z) = zλ(t). (26.11)

To consider the corresponding optimization, we must define the costs and proba-
bilities of interest. A simple and convenient model for p(z) is the step function:

p(z) =
{

0, 0 ≤ z ≤ zb,
1, z > zb.

(26.12)

It means that all weak items with z > zb will be eliminated and only strong items will
remain in the population. In accordance with (26.12), the probability of not surviving
the shock in this case is

Pzb
≡ Π̄(zb) =

∫ ∞

zb

π(z)dz,
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where Π(z) is the Cdf that corresponds to the pdf π(z). Obviously, for a general form
of p(z), this probability is defined by the following mixture

P =
∫ ∞

0

p(z)π(z)dz. (26.13)

It is clear that parameter zb in the specific model (26.12) can be considered as
a parameter of severity: the larger values of zb correspond to the smaller severity.
For a more general setting, define the functions p(z) and q(z) as functions of a frailty
variable z and the severity parameter s ∈ [0,∞), p(z, s) and q(z, s). Assume that q(z, s)
is decreasing in z for each fixed s and is decreasing in s for each z. The assumption
that q(z, s) is decreasing in s for each fixed z is also quite natural and implies that
items characterized by the same value of frailty have larger failure probabilities under
larger severity levels.

Denote the corresponding failure rate and survival functions by λms(t; s) and
Fms(t; s), respectively. Similar to (26.8) and (26.7):

πs(z, s) =
q(z, s)π(z)

∫ ∞
0
q(u, s)π(u)du

, πs(z, s|t) ≡ πs(z, s)
F̄ (t, z)

∫ ∞
0
F̄ (t, u)πs(u, s)du

.

To compare two severity levels, we need the following definition.

Definition 1. The severity (stress) level s is said to be dominated if there exists another
level s′ such that

λms(t; s) ≥ λms(t; s′), for all t ≥ 0.

Otherwise, the severity (stress) level s is called non-dominated.

Theorem 5. Assume that q(z, s) is decreasing in z for each fixed s and is decreasing
in s for each z. Consider two stress levels s and s′. Let

q(u, s′)q(v, s) − q(v, s′)q(u, s) ≤ 0, for all u > v, (26.14)

which means that q(z, s′)/q(z, s) is decreasing in z. If

λ(t, z1) ≤ λ(t, z2), z1 < z2, ∀z1, z2 ∈ [0,∞], t ≥ 0,

then the severity level s is dominated.

Proof. Similar to (26.10):

sign[λms(t; s′) − λms(t; s)] = sign

∫ ∫

u>v

F̄ (t, u)F̄ (t, v)(λ(t, u)

−λ(t, v))(πs(u, s′)πs(v, s) − πs(v, s′)πs(u, s))dudv.

Thus, if (26.14) holds, then

πs(u, s′)πs(v, s) − πs(v, s′)πs(u, s) ≤ 0,

which implies the result.
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Remark 3. Intuitively, it can be believed that a higher level of severity results in
a better “quality of a population” but it is not always true. A similar observation
holds for the conventional burn-in in homogeneous populations when the larger time
of burn-in does not necessarily improve the “quality of a population”.

Similar to the discrete case, the optimal severity of a shock that minimizes the
average cost incurred during the burn in and field usage will be now considered.

As previously, a new component randomly selected from the heterogeneous popu-
lation is burned-in by means of a shock. If the first one did not survive then we take
another one from infinite heterogeneous population and burn-in again. This procedure
is repeated until we obtain the first component which survives burn-in. Then this com-
ponent is put into field operation. The expected cost of burn-in until obtaining the first
item that has survived shocks, c1(s), is given by (26.6). This function increases when
P increases in [0, 1). Note that P (see (26.13) is now a function of the stress level s ,
that is, P (s) . Let, as in the discrete case, cm and gm are the cost and the (gain) that
correspond to the failure (success) of the mission. Obviously, as in the discrete case,
the expected cost during field operation is:

c2(s) = −(gm + cm)Fms(τ ; s) + cm.

Therefore, the total expected cost function (as a function of the severity level s) for the
burn-in and the field operation phases is c(s) = c1(s)+c2(s). The values csr, cs, gm, cm
are assumed to be known. Thus, similar to the discrete case:

s∗ = arginfs∈[0,∞]c(s). (26.15)

The following result immediately follows from Theorem 5:

Theorem 6. Suppose that

F (t, z1) ≥ F (t, z2), z1 < z2, ∀z1, z2 ∈ [0,∞], t ≥ 0.

If, for any s2 > s1, q(u, s2)q(v, s1) − q(v, s2)q(u, s1) ≤ 0, for all u > v, i.e.,
q(z, s2)/q(z, s1) decreases in z for all s2 > s1, then there exists the finite optimal
level s∗ <∞ for the optimization problem (26.15).

Example 1. Consider the multiplicative model (26.11) with constant baseline failure
rate: λ(t, z) = zλ . Note that many electronic components have a constant failure rate
which is varying from component to component due to production instability, etc.

Assume (for simplicity) that Z is also exponentially distributed: Pr(Z ≤ z) =
1 − exp{−αz}. It is well known that the mixture failure rate in this case is

λm(t) =

∫ ∞
0
zλ exp{−zλt}π(z)dz

∫ ∞
0

exp{−zλt}π(z)dz
=

λ

λt+ α
.

Let the impact of a shock be defined by the specific p(z) in (26.12). Then

λms(t, zb) =
∫ zb
0 zλ exp{−zλt}π(z)dz
∫ zb
0 exp{−zλt}π(z)dz

= λ
λt+α

(

1 − zb(λt+α)
exp{zb(λt+α)}−1

)

.
.
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The corresponding total expected cost function is c(zb) = c1(zb) + c2(zb), where

c1(zb) =
csr exp{−α zb} + cs

1 − exp{−α zb} ,

c2(zb) = −(gm + cm) exp
{

−
∫ τ

0

λ

λu+ α

(

1 − zb(λu+ α)
exp{zb(λu+ α)} − 1

)

du
}

+ cm.

A simple analysis of the shape of c(zb) (as a function of zb) shows that there exists a
finite optimal stress level s∗ <∞ (positive optimal z∗b > 0).

26.4 Concluding Remarks

Conventional burn-in procedures are usually performed during specified intervals of
time for items with decreasing or bathtub failure rates in order to eliminate early
failures or (and) to improve reliability characteristics. This can be done in a “normal”
or accelerated environment or with the help of high environmental stresses applied for
short (or “instantaneous”) duration that are often called “shocks”. The latter method
of burn-in was not considered previously in the literature on burn-in modeling.

In this paper, we assume that population of items is heterogeneous (discrete and
continuous) and different subpopulations have different resistances to shocks. Items
with larger failure rates are assumed to have larger probabilities of failures when ex-
posed to shocks and also larger values of stress levels result in larger probabilities of
failures. Our modeling is based on these ‘natural assumptions’. Based on this reasoning
the optimal severity levels that minimize relevant cost functions are studied.
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Fabrice Guérin1∗, Mihaela Barreau1, Amel Demri1, Sylvain Cloupet1, Julien Hersant1

and Ridha Hambli2

1 LASQUO, University of Angers, Angers, France, fabrice.guerin@univ-angers.fr
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Abstract: The constantly increasing market request of high quality vehicles ask the
automotive manufacturers to perform lifetime testing in order to verify the reliabil-
ity levels of new products. In this paper, we deal with two difficulties in reliability
assessment for mechanical parts. On one hand, there is the small number of parts
available for testing. On the other hand, there is the problem of wear. In the automo-
tive applications, mechanical components subjected to relative motion of parts have
to be designed against wear. In this paper, the Bayesian estimation of Wiener pro-
cess parameters (usually used to define the degradation process) is studied to improve
the estimation accuracy in incorporating the available knowledge on the product. In
particular, the finite element results and expert knowledge are considered as “a priori”.
For wear prediction by FEM, a model based on Archard law was developed for the
brake disc wear.

Keywords and phrases: Archard model, Bayesian estimation, Brake, FEM, Relia-
bility, Wear, Wiener process

27.1 Introduction

Reliability assessment is becoming an integral part of the design process of complex
systems in order to highlight potential risk areas so they can be dealt with at the
design stage of the project. Indeed, the early control of system specifications allows
diminishing operating (either financial or safety) risks. Since systems must be more
and more reliable and offer longer guarantees, it is necessary to check the compliance
of their performances as early as possible.

One can analyze two failure types:

• Material failures, often appearing all of a sudden.
• Soft failures, meaning a performance drift in time, until unacceptable levels.

Testing prototypes allows evaluating the reliability of a system before it is mass-
produced. This process requires long testing times and huge numbers of prototypes since
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Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 27, c© Springer Science+Business Media, LLC 2010
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the latter are more and more reliable, therefore extremely diminishing the probability
of failure.

One alternative solution is the study of a performance drift in time, in order to
characterize failure probability. This is done by testing a number of systems and by
measuring the evolution of their performance in time, z(t). The systems are considered
as failed when their performance has reached the critical value denoted z0.

The constantly increasing market request for high quality products compels the
manufacturers to verify, before starting mass production, if new components or parts
attain a field reliability target. To this end, reliability testing is used to estimate the
lifetime distribution (Meeker et al [MEE98]). Common problems in lifetime distribution
estimation by testing are the total time required to test and the available number of
examples for testing to demonstrate reliability to a customer’s satisfaction. This paper
proposes to use Bayes estimation [SAN91] in incorporating the prior expert opinions
and finite elements results.

27.2 Reliability Testing

Degradation tests for reliability estimation consist in measuring the evolution of the
degradation during the testing of a sample of products or systems. We thus obtain a
degradation path, z(t), for each tested system and a network of degradation paths for
the entire sample (see Fig. 27.1).

The system is considered as failed when its degradation reaches a critical value,
denoted z0. Reaching this critical value allows obtaining pseudo-failure times, denoted
tiwhich are then used to asses reliability function.

Degradation processes are paths of some stochastic process with independent
increments. Wiener process [COU05], [NIK10] characterizes average monotonic degra-
dations. In this paper, we consider the case of a Wiener process with linear leaning μ
and variance σ2, with following hypothesis:

• W (0) = 0.
• Increment law W (t+ h) −W (t) is normal distribution N(μh, σ2h).
• If W0 is a standard Wiener process, i.e., μ = 0 and σ = 1, then W (t) = μt+σW0(t)

is a Wiener process of linear leaning μ and variance σ2.

Figure 27.1. Degradation paths example
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Figure 27.2. Example of data

The distribution of pseudo instants of failure, T , is an inverse normal distribution
IG(z0/μ, z2

0/σ
2), of density given by:

f(T, z0, μ, σ) =
z0√
2πσ

T−3
2 e

(

− (z0−μt)2

2σ2T

)

(27.1)

The estimation of μ and σ is obtained by maximum likelihood, using the observed
increments; the degradation increments are denoted Δzij (for path i (m paths) and
time j (qi measures on path), as shown Fig. 27.2).

Since degradation incrementΔzij is characterized by a normal distribution (of mean
μΔtij and variance Δtij .(1/θ2) with σ2 = 1/θ2), the likelihood is:

g(Δz|μ, θ) =
m
∏

i=1

qi
∏

j=1

θ1/2
√

2πΔtij
e
−
(

θ(Δzij−μΔtij )2

2Δtij

)

(27.2)

In test, the periodicity of degradation measurements is often constant (Δtij = Δt).
Considering this assumption, the likelihood function can be written

g(x|μ, θ) =
m
∏

i=1

qi
∏

j=1

θ1/2√
2π

e
−
(

θ(xij−μΔtij )2

2Δtij

)

(27.3)

with xij = Δzij/Δt.
The function g(x|μ, θ is characteristic of normal likelihood function. Usually, a prob-

ability distribution is defined by its parameters which are often unknown constants.
Based on a random sample, one can use the maximum likelihood method to estimate
and obtain confidence intervals for the parameters and the reliability function.

From a random sample of n observations (n =
∑m
i=1 qi) the sample mean x̄ and

sample standard deviation s are computed [AYY97]:

n =
∑m

i=1
qi (27.4)

x̄ =

m
∑

i=1

qi
∑

j=1
xij

n
(27.5)
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and

s =

√

√

√

√

√

n
∑

i=1

qi
∑

j=1
(xij − x̄)2

n− 1
. (27.6)

27.3 Bayesian Estimation of Wiener Process Parameters

Recently, a rising interest in the Bayesian approach to reliability and life parameter esti-
mation has emerged. To statisticians and reliability engineers this approach is appealing
since it provides a method of using their past experiences and/or prior convictions in
describing the studied parameter x stochastically. On some situations the parameter
is not known, but can be treated as a random variable with a known prior probability
density. Under this scenario, one can combine information from the random sample
and prior probability distributions to obtain (l − γ) Bayesian confidence intervals for
the parameters. The objective of this section is to obtain the Bayesian estimators for
the parameters μ and θ of the normal distribution [CHE97], [AHM95].

27.3.1 Bayesian Principle

The probability density function f(μ, θ|x) of the posterior pdf of μ and θ obtained
from the sample of observations x = {xij} and the pdf f(μ) and f ′(θ) of the prior
distribution of μ and θ is given by

f(μ, θ/x) =
g(x/μ, θ) · f(μ) · f ′(θ)

∫

D(μ)

∫

D(θ)

g(x/μ, θ) · f(μ) · f ′(θ) · dμdθ
(27.7)

where

• μ and θ: parameters to estimate
• x = {xij}: observed data
• f(μ) and f ′(θ): prior probability density functions (available knowledge from the

experts)
• g(x|μ, θ): likelihood function
• f(μ, θ|x): posterior density function
• D(μ) and D(θ): set of nature states

Now, two cases are studied to define the posterior pdf :

• No knowledge on μ and θ
• Available knowledge on μ and θ

Case 1: No knowledge on μ and θ. When there is no information about the mean
μ and the inverse variance θ, the uniform uninformative density (Fig. 27.3) is used to
define the prior pdf f (μ) and f ’( θ). The selection of this uniform probability density
is based on the fact that this pdf has maximum entropy among all pdf that are non
zero in a given range.
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with K, K’ ® ¥

Figure 27.3. Uniform uninformative pdf

The likelihood function is given for a sample of size n by

g(x|μ, θ) =
m
∏

i=1

qi
∏

j=1

θ1/2√
2π

e
−
(

θ(xij−μΔtij )2

2Δtij

)

(27.8)

Thus, the posterior pdf is written as

f(μ, θ/x) =
g (x/μ, θ) f(μ)f(θ)

+K
∫

−K

+K′
∫

0

g (x/μ, θ) f(μ)f(θ)dμdθ
(27.9)

with K,K’ → ∞
Following Congdon, Ahmad et al. and Chen et al. [CON01], [AHM95] and [CHE97],

the posterior pdf is given by

f(μ, θ|x) =
ba

Γ (a)
θa−1e−bθ

√

nθ

2π
e−( nθ

2 (μ−c)) = G(a, b)N
(

c,
1

θ(2a− 1)

)

(27.10)

where a = n+1
2 b = 1

2

m
∑

i=1

qi
∑

j=1
(xij − x)2 and c = x which is a combination of the gamma

and normal distributions.

Case 2: Available knowledge about μ and θ. Following Congdon, Ahmad et al.
and Chen et al. [CON01], [AHM95] and [CHE97], we propose to choose the prior pdf
defined by the relationship (27.10). Then the posterior pdf is written

f(μ, θ|x) =
b′a

′

Γ (a′)
θa

′−1e−b
′θ

√

nθ

2π
e−( nθ

2 (μ−c′)) = G(a′, b′)N
(

c′,
1

θ(2a′ − 1)

)

(27.11)

where a′ = n
2 + a , c′ = M = nx+(2a−1)c

n+2a−1 b′ = 1
2

m
∑

i=1

qi
∑

j=1
(xij − x)2 + b + n(2a−1)(x−c)2

2(n+2a−1)

which is a combination of the gamma and normal distributions.
Note that the form of relationship (27.11) is identical to (27.10). The prior pdf

defined by (27.10) is the natural conjugate.

27.3.2 Bayesian Estimators

Once the posterior distribution is defined, the estimators of the parameters μ and θ
can be obtained by using the marginal distributions associated to μ and θ.
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The marginal distribution of θ is written as

f (θ/x) =
∫ +∞

−∞
f(μ, θ/x)dμf (θ/x)

f (θ/x) = G (a′, b′)
∫ +∞

−∞
N

(

c′,
1

θ (2a′ − 1)

)

dμf (θ/x)

f (θ|x) =
b′a

′
θa

′−1e−b
′θ

Γ (a′)
= G(a′, b′). (27.12)

The point estimate for θ is defined by the mode of f(θ/x) and the point estimate
of variance are given by

θ̂ =
a′ − 1
b′

(27.13)

and

ŝ2 =
b′

a′ − 1
. (27.14)

The two-sided confidence interval (defined by θmin and θmax) is evaluated such that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ
2

=
θmin
∫

0

f(θ/x)dθ ⇒ θmin

1 − γ
2

=
θmax
∫

0

f(θ/x)dθ ⇒ θmax

(27.15)

with (1-γ) the given confidence level.
The marginal distribution of μ is written

f (μ/x) =
∫ +∞

0

f(μ, θ)dθ =
ba
√

2a− 1
αa+

1
2
√

2π

Γ
(

a+ 1
2

)

Γ (a)
(27.16)

with
α = b+

1
2

(2a− 1)(μ− c)2 (27.17)

The point estimate for μ is defined by the mode of f(μ/x)

μ̂ = c′ (27.18)

The two-sided confidence interval (defined by μmin and μmax) is evaluated such that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ
2

=
μmin
∫

0

f(μ/x)dμ⇒ μmin

1 − γ
2 =

μmax
∫

0

f(μ/x)dμ ⇒ μmax

(27.19)

with (1− γ) the given confidence level. In the case when no knowledge is available, the
point estimates of mean and variance are defined by known relationships

μ̂ = c = x (27.20)
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and

ŝ2 =
b

a− 1
=

n
∑

i=1

qi
∑

j=1

(xij − x)2

n− 1
(27.21)

with a, b and c defined by (27.11).
In the case in which prior knowledge is available, the point estimates of mean and

variance are defined by:

μ̂ = c′ =
nx̄+ (2a− 1)c
n+ 2a− 1

(27.22)

and

ŝ2 =
b′

a′ − 1
=

1
2

n
∑

i=1

qi
∑

j=1

(xij − x)2 + b+ n(2a−1)(x−c)2
2(n+2a−1)

n
2 + a− 1

(27.23)

where a, b and c are the parameters of the prior pdf and a’, b’ and c’ the parameters
of the posterior pdf.

27.3.3 Determination of the Prior Distribution from Available Information

The standard deviation (s) interval and prior mean μ are provided by an expert
[COO91] or the results of a previous analysis. The prior knowledge is given by a believed
estimation of mean and a range believed to contain the inverse of the variance

[μ] and
[

θmin = 1/s2max, θmax = 1/s2min

]

.

The prior pdf f(μ,θ/ x) is defined by the relationship (27.10) with the unknown
parameters a, b and c.

Evaluation of a and b by Moments Method

The marginal distribution of θ is written

f (θ/x) =
baθa−1e−bθ

Γ (a)
= G(a, b) (27.24)

The interval [θmin, θmax] defines an uniform distribution. The mean and variance
for this distribution are

E(θ) =
(θmin + θmax)

2
(27.25)

and

V (θ) =
(θmax − θmin)2

12
(27.26)

The mean and variance for a gamma distribution G(a, b) are given by

E′(θ) =
a

b
(27.27)
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and
V ′(θ) =

a

b2
(27.28)

By evaluating of means and variances (E (θ) =E’(θ) and V (θ) =V’(θ)), the values
of parameters a and b are deducted to be

a =
3 (θmin + θmax)2

(θmax − θmin)2
(27.29)

and

b =
6 (θmin + θmax)
(θmax − θmin)2

(27.30)

Evaluation of c. The marginal distribution of μ is written

f (μ/x) =
ba
√

2a− 1
αa+

1
2
√

2π

Γ
(

a+ 1
2

)

Γ (a)
(27.31)

with α = b+ 1
2
(2a− 1)(μ− c)2.

This marginal distribution is symmetric around the c value (a and b are also de-
fined). Then the c value is given by

c = μ (27.32)

In the following section, we propose to define the μ value by FEM modeling.

27.4 Estimation of Prior Mean of Wiener Process by FEM
Method: Application to Brake Disc Wear

The aim of this section is to propose a method for the estimation of the prior mean of
Wiener process by FEM. The method is illustrated by an application on the brake disc
wear.

Brakes are common structural components (Fig. 27.4) that often require analysis
[MEE98]. Finite element analyses can provide information needed to determine the
brake performance and behavior. This information includes a contact pressure distri-
bution, friction and temperature distribution.

The relative motion of the pad-disc surfaces may result in a loss of tool material
through adhesive wear [ARC53], [CHO96] and [CAR94]. This wear processes are ini-
tiated by the interfacial adhesive junctions formed in contact zone. As a normal load
is applied, local pressure at the contact area become extremely high. Therefore, the
surfaces adhere together. The sliding between the surfaces leads to the generation of
wear particles. The presence of hard particles accelerates wear by abrasion.
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Figure 27.4. Disc brake system

Figure 27.5. Normal pressure and normal force acting on contact elements

27.4.1 Wear Modeling

The wear resulting from adhesive wear process has a phenomenological description by
the equation [ARC53]

Wad =
V

s
= k

FN
3H

(27.33)

Wad is the worn volume per unit sliding distance, V is the volume of the material
removed by wear from surface, k is a material constant that expresses the probability
of generating a wear particle (dimensionless), s is the sliding distance, H is the hardness
of the sheet and FN is the normal load applied on the tool.

If the parameters of the wear models are assumed to be constant in time, the above
wear models can be obtained as:

V = γwFNs (27.34)

where γw denotes a wear coefficient.
Equation (27.33) employs hardness as the only material property. Typical values of

the wear coefficient k for a combination of materials are given in [ARC53], [ABA62].
From a numerical point of view, at each node “i” of the contact elements of the

tool mesh, the above equation can be written as:

Vi = (γw)i (FN )i si (27.35)

With use of FEM, it is easier to use normal contact pressure instead of normal force.
At each node “i”, the normal force (FN )i, can be obtained from the normal stress as
(Fig. 27.5):

(FN )i =
∫

Ω

(P )i dΩi (27.36)

Ωi is the area of each contact element “i” and P the normal contact pressure acting
on the disc.
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Figure 27.6. Temperature and wear contours of the disc brake

Fully coupled thermal-stress analysis is needed when the stress analysis is dependent
on the temperature distribution and the temperature distribution depends on the stress
solution. When contact conditions exist in some problems where the heat conducted
between surfaces may depend strongly on the separation of the surfaces or the pres-
sure transmitted across the surfaces, it is necessary to take into account such coupled
procedure. For such cases the thermal and mechanical solutions must be obtained
simultaneously rather than sequentially. Coupled temperature-displacement elements
are provided for this purpose. More details can be found in Jensen [JEN98] about the
analysis procedure used in the work.

27.4.2 Wear Analysis of a Brake Disc

The problem consists in simulating of a 360◦ rotation of disk brake with an inner radius
of 90 mm, an outer radius of 135 mm and disk thickness of 10 mm. The pad has a 10 mm
thickness.

The 3D model including brick elements can be seen Fig. 27.6. Frictional contact
between the pads and the disc is modeled by contact pairs between surfaces defined on
the element faces in the contact region. The pad is a resin-bonded composite friction
material and the disk from steel. Although material occurs in the pad in time and
because the thermal degradation, one can assume the pad has the characteristics of
the unused material. The pad in the model is fixed and is pressed against the disc
with a specified pressure. The second step consists in applying a prescribed rotation of
the disc.

27.5 Results

Figure 27.6.a shows the temperature distribution within the disc generated by the
friction. It can be observed that the temperature is at maximum level in the contacting
surfaces.

Figure 27.6.b shows the wear contour for the disc-pad brake model expressed in
(27.33). It can be observed that the wear profile is not uniform on the disk surface.
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The wear is higher in the center of the disc as a consequence of the non-uniform pressure
stress generated by the pad contact. It can be observed that the maximum wear value
is 8.772 × 10−10 mm per revolution.

27.5.1 Bayesian Analysis for Brake Disc Wear

The aim of this study is to compare the classic method with Bayesian method
(introduced in Sect. 27.3). The brake disc life is assumed to be described by a Wiener
Process. The pseudo failure times are defined by an Inverse Normal distribution. For
this purpose, a Monte Carlo simulation is used to generate random wear paths. The
Wiener process and testing conditions are defined in Table 27.1.

The prior distribution is defined with the following information:

• The mean lifetime is estimated by the FEM Modeling (see Sect. 27.4): μ = 8.772×
10−10 mm per revolution.

• An expert provides an interval on the variance: s2 ∈ [3×10−10, 3.7×10−10] then θ
∈ [2.7×109, 3.33×109].

From these values and relationships (27.29) and (27.30), the parameters a, b and c
are deducted

• a = 274.8367
• b = 8.2041×10−11

• c = 8.772×10−10

A series of tests is performed. In each test, the wear depth of an example brake is
measured. Figure 27.7 presents the results of wear random simulation.

This measured values are used to update the pdf of normal distribution (Wiener
process) using the equation in Sect. 27.3. The Wiener parameters are evaluated by
classical and Bayesian estimations for μ and σ2 (see Table 27.2).

With these estimations, the reliability functions (see Fig. 27.8) are computed,
considering the theoretical, Bayesian, and classical approaches (defined by (27.1).

We observe that the result obtained by Bayesian estimation is closer to the
theoretical distribution than classical estimation (Bayesian estimation is merged with
theoretical function).

The choice of prior distribution is very important. The advantage of the proposed
method is that it enables one to take into account the available knowledge and to
reduce the number of tests.

Table 27.1. Simulation parameters

Physical parameters Wear depth = 8.772×10−10 mm per revolution; σ2 =
3.34 × 10−10

Wiener process μ = 8.772 × 10−10 mm per revolution; σ2 = 3.34 ×
10−10

Test conditions End time = 1×1088 revolutions; Number of paths =
10; Number of points for each path = 1; Critical wear
z0 = 2 mm
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Figure 27.7. Results of wear random simulation

Table 27.2. Estimation results

Bayesian method Classical method

Point estimator μ̂ = 8.7682 × 10−10

σ̂ = 2.4882 × 10−10
μ̂ = 8.3094 × 10−10

σ̂ = 2.6169 × 10−10

Figure 27.8. Reliability functions

27.6 Conclusion

In this paper, the Bayesian estimation of Wiener process parameters (usually used to
define the wear) has been studied, in order to improve the estimation accuracy by in-
corporating the available knowledge on the product. In particular, the finite elements
results and expert opinions have been considered prior knowledge. For life time predic-
tion by FEM, a model based on Archard law was developed for brake disc wear.
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The analysis of results obtained by numerical simulations demonstrates the
efficiency of the Bayesian approach compared to the classical approach.
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Abstract: Cox proportional hazards (PH) regression is a well-known model for
analyzing survival data and its strengths are widely recognized. Threshold regression
(TR) is a relatively new methodology but one that is receiving greater attention and
being used successfully by researchers in different fields, including biopharmaceutical
statistics. In threshold regression, event times are modeled by a stochastic process
reaching a boundary threshold. The TR model does not require the proportional haz-
ards assumption. It also can provide more insights into data than the Cox model, even
where the PH assumption holds. Thus, threshold regression deserves consideration by
investigators and their analysts as a serious alternative to Cox regression. In this arti-
cle, we demonstrate the benefits of the TR model using a large cohort data set drawn
from the Nurses’ Health Study (NHS). The TR results for the NHS data set show the
anticipated link between lung cancer and smoking for women. The TR model allows
this link to be understood with substantial insight and clarity and with a refined at-
tribution of disease progression to particular influences. We compare TR results with
those obtained from Cox proportional hazards regression. The adequacies of the TR
and Cox models in fitting the data set are examined using a new analytical approach.
We also present Stata programs to compare the models.

Keywords and phrases: Endpoint, First hitting time, Lifetime, Lung cancer,
Maximum likelihood, Smoking, Stochastic process, Survival analysis, Threshold
regression, Time-to-event, Wiener diffusion process

28.1 Introduction

Cox proportional hazards (PH) regression is a well-known model for analyzing survival
data and its strengths are widely recognized. Threshold regression (TR) is a relatively
new methodology but one that is receiving greater attention and being used success-
fully by researchers in different fields, including biopharmaceutical statistics. In thresh-
old regression, event times are modeled by a stochastic process reaching a boundary
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threshold. The TR model does not require the proportional hazards assumption. It also
can provide more insights into data than the Cox model, even where the PH assump-
tion holds. Thus, threshold regression deserves consideration by investigators and their
analysts as a serious alternative to Cox regression. Lee, Chang, Whitmore [LCW08]
used a threshold regression mixture model for assessing treatment efficacy in a multiple
myeloma clinical trial. They did not compare the benefits of TR with those of Cox PH
regression.

In this article, we compare the TR and Cox models and demonstrate the benefits
of the TR model using a large cohort data set drawn from the Nurses’ Health Study
(NHS). The TR results for the NHS data set show the anticipated link between lung
cancer and smoking for women. The TR model allows this link to be understood with
substantial insight and clarity and with a refined attribution of disease progression
to particular influences. Specifically, we compare TR results with those obtained from
Cox proportional hazards regression. The adequacies of the TR and Cox models in
fitting the data set are examined using a new analytical approach. We also present
Stata programs to compare the models.

28.2 First-Hitting Time (FHT) and Threshold Regression (TR)
Model

Threshold regression (TR) refers to a statistical model for time-to-event data in which
the time to the event is defined as the first hitting time of an absorbing boundary by
an underlying stochastic process. In our application of the TR model, the health status
of each subject with respect to lung cancer follows a latent Wiener diffusion process
{X(t)} where t denotes time measured from the baseline of an observation interval. The
initial health status of the subject at baseline is X(0) = x0 > 0, which is a parameter
to be estimated. The mean rate of change of health status over the interval is denoted
by μ. Lung cancer occurs when the health status process first decreases to the zero-
level, which is taken as an absorbing boundary or threshold for the process. The time
of this first encounter, denoted by S, is called the first hitting time (FHT). If μ > 0
then the lung cancer endpoint is not assured because the process would tend to drift
away from the threshold. Other causes of death are competing with lung cancer and,
hence, death from another cause will produce a right censored observation. In threshold
regression, statistical techniques are used to estimate the effects of covariates on the
parameters of the FHT model. See Aalen and Gjessing [AG01,AG04,ABG08] and Lee
and Whitmore [LW06] for a review of FHT models and threshold regression.

28.2.1 The Nurses Health Study

We consider a large cohort data set drawn from the Nurses’ Health Study (NHS) to
compare the benefits of the TR model to the Cox model. The Nurses’ Health Study
(NHS) was established in 1976 when a cohort of 121,700 female registered nurses, aged
30–55 years, returned a mailed questionnaire reporting on disease history, personal
characteristics and behaviors, and then updated the information by completing follow-
up questionnaires on a biannual basis. The study was designed to allow prospective
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Table 28.1. Summary statistics for the failure variable and covariates used in the fitted
threshold regression model. Covariate pkyrs sq = (pkyrs0 − 28)2. All variables have 115,768
readings

Variable Statistics

Name Units Mean Std. Dev. Min. Max.

Response

fail indicator (0,1) 0.0104174 0 1

Covariates

age0 years 52.343 7.217 39 72
pkyrs0 pack years 13.072 18.456 0 122
pkyrs sq pack years squared 563.471 447.294 0 8836
dpkyrs pack years 0.138 0.346 0 4

examination of the influences of lifestyle on the occurrence of disease, especially heart
disease and cancers. Every two years in follow-up questionnaires they have updated
and extended these data. In this article, data from the NHS for the period 1986–2000
are considered. The data set consists of observation sequences for 115,768 women which
represent 1,577,382 person-years at risk. The endpoint of interest here is a diagnosis of
primary lung cancer as confirmed from medical records or death certificates. This end-
point was experienced by 1206 of the women by the year 2000. For more details about
this study analyzed by the Cox PH model, see Bain, Feskanich et al. [BFSTHRC04].
We examine the link between lung cancer and smoking using the TR model and discuss
the benefits of the TR model.

Our model assumes that the logarithm of initial health status ln(x0) is a linear
regression function of two covariates, namely, cumulative smoking at baseline pkyrs0
(in pack years) and baseline age age0 (in years). These covariates are selected for the
initial health status on the assumption that initial health can only depend on conditions
that prevail at baseline. The parameter μ describes the mean rate of change in health
status with time. We assume that μ is a linear regression of the same covariates, pkyrs0
and age0. In addition to these two covariates, we include a covariate that is an affine
quadratic term for cumulative smoking, denoted by pkyrs sq. The affine adjustment
involves subtracting a constant from pkyrs0 before squaring it. This adjustment reduces
collinearity between the linear and quadratic terms. We have chosen the constant to be
28 pack years because this value reduces the correlation between pkyrs0 and pkyrs sq
to almost zero. The quadratic term assesses the presence, if any, of a curvature effect
in parameter μ for cumulative smoking. A further covariate, denoted by dpkyrs, is also
included in the regression function for μ. This covariate represents the average annual
rate of additional smoking by the subject between baseline and the endpoint (in pack
years). The expectation is that this covariate will capture the influence on the rate of
change in health status of continued smoking. Table 28.1 shows summary statistics for
the failure indicator variable and the covariates.

28.2.2 Regression Link Functions and Sample Log-Likelihood Function

Because the health status process is latent here, it can be given an arbitrary
measurement unit. Thus, in general, one parameter may be fixed and we choose
to set the variance parameter σ2 to unity. We link parameters μ and x0 to baseline
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covariates that are represented by row vector z = (1, z1, . . . , zk). The leading 1 in z
allows for a constant term in the regression relationship. An identity link function of
form

μ = zβ = β0 + β1z1 + . . .+ βkzk

is our choice for the mean parameter μ. A logarithmic link function

ln(x0) = zγ = γ0 + γ1z1 + . . .+ γkzk

is our choice for the initial health parameter x0. Here β = (β0, β1, . . . , βk)′ and γ =
(γ0, γ1, . . . , γk)′, where β0 and γ0 are regression constants.

We now set up the sample log-likelihood function for censored inverse Gaussian
regression. We assume that censoring is uninformative. Also, we assume that any nurse
who contracts primary lung cancer during the study period does so at the end of the
last reporting interval. We denote μ and x0 for the ith subject by μ(i) and x

(i)
0 . We

let t(i) denote the survival time of the ith subject for whom fail equals 1 or the right
censoring time of the ith subject for whom fail equals 0. Hence, a subject i for whom fail
= 1 contributes probability density f(t(i)|μ(i), x

(i)
0 ) to the sample likelihood function,

for i = 1, . . . , n1, where n1 = 1, 206 here. For subject i for whom fail = 0, the survival
probability F (t(i)|μ(i), x

(i)
0 ) = 1 − F (t(i)|μ(i), x

(i)
0 ) is the contribution to the sample

likelihood function, for i = n1 + 1, . . . , n1 + n0. The sum n = n1 + n0, which equals
115,768 here, is the total number of subjects. Note that the variance parameter has been
set to 1 and, hence, is suppressed in the preceding notation. The sample log-likelihood
function to be maximized therefore has the form:

lnL(β,γ) =
n1
∑

i=1

ln f(t(i)|μ(i), x
(i)
0 ) +

n1+n0
∑

i=n1+1

lnF (t(i)|μ(i), x
(i)
0 ). (28.1)

Numerical gradient methods can be used to find maximum likelihood estimates for β
and γ and estimates of their asymptotic standard errors. We have used a numerical
optimization routine in Stata for this purpose.

28.3 Threshold Regression (TR) Investigations of Lung Cancer

Basic Regression Output

Table 28.2 shows output for our chosen regression model. A parsimonious model has
been chosen to avoid overfitting and to simplify the interpretation of effects. For
parameter ln(x0), representing the logarithm of the initial health level, it is seen that
covariate pkyrs0 is significant, with a P -value of 0.000. Its regression coefficient is neg-
ative, signifying that baseline health status (with respect to lung cancer) tends to be
lower for subjects with a larger amount of cumulative smoking at baseline. In other
words, heavier smokers tend to be closer to a diagnosis of primary lung cancer. The
covariate age0 has a negative regression coefficient but it is not significant with the
conventional 0.05 rule (a P -value of 0.066). For the mean parameter μ, the regression
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Table 28.2. Threshold regression output for a model in which parameter ln(x0) depends on
baseline age age0 and baseline cumulative smoking pkyrs0. Parameter µ depends on the same
covariates as well as an affine quadratic term for cumulative smoking pkyrs sq and a covariate
dpkyrs which represents the average annual smoking rate of the subject between baseline and
the endpoint

Parameter Variable Estimate Std. Error P -value

ln(x0)

age0 −.0033470 .0018225 0.066
pkyrs0 −.0030204 .0004752 0.000
constant 1.792918 .1008379 0.000

µ

age0 −.0106827 .0012021 0.000
pkyrs0 −.0036346 .0003566 0.000
pkyrs sq .0000508 .0000058 0.000
dpkyrs −.1457822 .0086916 0.000
constant 1.146989 .0674920 0.000

coefficients of all covariates are significant with P -values of 0.000. The coefficients of
age0, pkyrs0, and dpkyrs are all negative, indicating the adverse effects on lung can-
cer health status of baseline age, baseline cumulative smoking, and continued smoking
after baseline. The regression coefficient of pkyrs sq for cumulative smoking is positive.
The combined linear and curvature effects for cumulative smoking suggest that heav-
ier smoking is increasingly harmful to health but that the rate of increase moderates
slightly with the amount of smoking.

Estimated Risks of Developing Primary Lung Cancer

The fitted threshold regression model provides estimates for the absolute risk or
probability of developing primary lung cancer for women of different baseline ages
and smoking habits. Women in the cohort have been followed for at most sixteen years
so the fitted model can only provide reliable estimates within a forward time horizon of
about 15 years. Figure 28.1 shows the absolute risk of developing primary lung cancer
within the next five years (panel a) and the next ten years (panel b) at different baseline
ages age0 for three smoking profiles: (1) a nonsmoker, (2) a smoker who has smoked
one pack each day since age 18 and who will continue to smoke at the same rate, and
(3) a smoker who has smoked two packs each day since age 18 and who will continue
to smoke at the same rate. The figure shows the small risk of developing primary lung
cancer for nonsmokers and the much greater risks for smokers, with the risk escalating
with heavier smoking and advancing years. For the smoker of two packs per day, for
example, the risk for the next decade of life rises to about 20% for women who are over
60 years old at baseline. The probabilities in Fig. 28.1 take no account of competing
risks of death and therefore will be larger than recorded mortality rates for lung cancer.
It is clear that a potential death from lung cancer will not be observed and recorded
for women who happen to die of other causes before the specified time horizon.

Another comparison of risks is offered by Fig. 28.2. The figure shows estimated lung
cancer survival functions over a 20-year horizon for a 45-year old nurse for four smoking
profiles: (1) a nonsmoker, (2) a smoker who has smoked one pack each day since age
20 and who will continue to smoke at the same rate, (3) a smoker who has smoked



364 M.-L.T. Lee et al.

a b

Figure 28.1. The absolute risk (probability) of developing primary lung cancer within the
next five years (panel a) and the next ten years (panel b) at different baseline ages age0 for
three smoking profiles: (1) a nonsmoker, (2) a smoker who has smoked one pack each day
since age 18 and who will continue to smoke at the same rate, and (3) a smoker who has
smoked two packs each day since age 18 and who will continue to smoke at the same rate.
The probabilities take no account of competing risks of death

Figure 28.2. Estimated lung cancer survival functions over a 20-year horizon for a 45-year
old nurse for four smoking profiles: (1) a nonsmoker, (2) a smoker who has smoked one pack
each day since age 20 and who will continue to smoke at the same rate, (3) a smoker who has
smoked two packs each day since age 20 and who will continue to smoke at the same rate,
and (4) a smoker who has smoked one pack each day since age 20 but quits smoking at age
45. The survival curves take no account of competing risks of death

two packs each day since age 20 and who will continue to smoke at the same rate, and
(4) a smoker who has smoked one pack each day since age 20 but quits smoking at
age 45. The survival curves take no account of competing risks of death. As expected,
survival prospects are worst for the continuing smoker who has a two-pack per day
habit. Her probability of developing primary lung cancer reaches close to 10% at the
20-year horizon when she would be 65 years of age.

A final comparison of risks is offered by hazard functions. Figure 28.3 presents plots
of hazard functions for three smoking profiles: (1) a nonsmoker, (2) a smoker who has
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Figure 28.3. Plots of hazard functions for three smoking profiles: (1) a nonsmoker, (2) a
smoker who has smoked one pack each day since age 18 and who will continue to smoke at the
same rate, and (3) a smoker who has smoked two packs each day since age 18 and who will
continue to smoke at the same rate. The functions in panel (a) span the 30-year period from
a baseline age of 40 until age 70. Those in panel (b) span the 10-year period from a baseline
age of 60 until age 70

smoked one pack each day since age 18 and who will continue to smoke at the same
rate, (3) a smoker who has smoked two packs each day since age 18 and who will
continue to smoke at the same rate. Panels (a) and (b) show these functions for nurses
who are 40 and 60 years old at baseline, respectively. Observe that scales of the graphs
are not comparable. The time horizon in each panel is 70 years of age and, thus, the
hazard window in panel (a) is 30 years while that in panel (b) is 10 years. Also, the
hazard levels in panel (b) are much larger than in panel (a) because the risk increases
sharply with age.

A comparison of the ratios of the hazard functions for different smoking profiles
over the age ranges presented in Fig. 28.3 shows that the hazard functions are far
from proportional. This observation is relevant for our comparison of TR and Cox
proportional hazard regression that we address in a later section.

28.4 Comparisons of Results Obtained from the Cox PH Model

In this article, we compare TR results with those from the Cox proportional hazards
regression model for the case of fixed covariates. The Cox model is the conventional one
for this kind of application in time-to-event analysis – see, for example, Kalbfleisch and
Prentice [KP80] and Cox and Oakes [CO84]. Comparisons of the TR model with the
Cox regression for longitudinal data with time-dependent covariates will be discussed
in a subsequent article.

h(t|ζz) = h0(t) exp(ζz) (28.2)

Here, h(t|ζz) is the hazard function of a subject with covariate vector z, h0(t) = h(t|0)
is an arbitrary baseline hazard function, and ζ is a vector of regression coefficients.

We have fitted the Cox model (28.2) to the data using the same covariates as
for the TR model, namely, baseline age age0, baseline cumulative smoking pkyrs0,
an affine quadratic term for cumulative smoking pkyrs sq, and the average annual
smoking rate of the subject between baseline and the endpoint dpkyrs. The regression
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Table 28.3. Cox proportional hazards regression results for the study using covariates: base-
line age age0, baseline cumulative smoking pkyrs0, an affine quadratic term for cumulative
smoking pkyrs sq, and the average annual smoking rate of the subject between baseline and
the endpoint dpkyrs

Variable Estimate Std. Error P-value

age0 .0967993 .005142 0.000
pkyrs0 .0434696 .0019047 0.000
pkyrs sq −.0005211 .000041 0.000
dpkyrs 1.0036 .0564842 0.000

results appear in Table 28.3. The signs of the regression coefficients for the covariates
in Table 28.2 are the reverse of those in Table 28.3, which confirms that the effects for
the covariates are in agreement with respect to the direction of effect. The signs of the
regression coefficients in Table 28.3 show increasing hazard with increasing age0, pkyrs0,
and continued smoking dpkyrs. The quadratic effect for cumulative smoking moderates
the linear effect. Direct comparisons of the actual magnitudes of the coefficients are
not meaningful, however, because they represent effects on parameters in completely
different models.

28.4.1 Checking Model Fit

As a check on the TR model fitted in Table 28.2, we have examined the difference
between actual and fitted lung cancer outcomes at different baseline ages age0. To
compute the differences, we consider all subjects with a given baseline age a, where
a ranges over 40–65 years. If Y (i)

a is an indicator variable for development of primary
lung cancer for subject i of that age and P

(i)
a is the true survival probability for the

observation interval then the difference Y (i)
a − (1−P

(i)
a ) has expected value 0 and vari-

ance P (i)
a (1 − P

(i)
a ). Our model is presumed to estimate the survival probability P

(i)
a

without bias. To check this claim, we have summed the differences Y (i)
a − (1 − P̂

(i)
a )

at each distinct year of baseline age a, where P̂ (i)
a denotes the estimate of P (i)

a . The
approximate variance of this sum for each age is calculated as the sum of the individual
variances based on the assumption that the sum components are independent. Inde-
pendence is a reasonable approximation as the estimation errors for the parameters
impart little dependence to the P̂ (i)

a . The ratio of the sum of differences to its standard
deviation at each age should be (approximately) a random standard normal number if
the chosen TR model is correct. These ratios are plotted in panel (a) of Fig. 28.4, with
the points connected by straight lines to assist visual interpretation. The plot shows a
zigsaw pattern that appears random and unbiased with no outliers. For a comparison,
panel (b) of Fig. 28.4 shows the standardized excess of actual lung cancer cases over
predicted lung cancer cases for the fitted Cox regression model in Table 28.3. The zig-
saw patterns are almost indistinguishable, showing that both models provide equally
good fits to actual lung cancer outcomes as a function of baseline age.

The check on fit was repeated with covariate age0 replaced by the covariate pkyrs0.
Figure 28.5 shows the resulting plots. Again we see similar fits, except for the region
where pkyrs0 exceeds about 100 pack years. In this upper region, the Cox model is
biased as shown by the standardized excess being quite large for several points. Both
graphs show one major outlier that happens to occur at the point where pkyrs0 is 106.
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a

b

Figure 28.4. Ratios representing the standardized excess of actual lung cancer cases over
predicted lung cancer cases for each baseline year age0 from 40 to 65 for (a) the fitted TR
regression model in Table 28.2 and (b) the fitted Cox regression model in Table 28.3

a

b

Figure 28.5. Ratios representing the standardized excess of actual lung cancer cases over
predicted lung cancer cases for each baseline cumulative pack years of smoking pkyrs0 for
(a) the fitted TR regression model in Table 28.2 and (b) the fitted Cox regression model in
Table 28.3

A global test of the proportional hazards assumption was also performed. The result
is a chi-square statistic of 1.59 for df = 4, giving a P -value of 0.811. The finding suggests
the assumption is quite adequate for this application.

28.4.2 Benefits of Threshold Regression Over Cox PH Regression

As noted already, the Cox proportional hazards (PH) regression model has been the
model of choice for many studies involving time-to-event and survival data. We have
seen that in spite of their different mathematical structures, threshold regression and
Cox regression give qualitatively similar findings and similar fits to the data in this
study. We quickly add that this similarity is not assured in other settings. Yet, in this
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setting, the clear similarity leads to the obvious question of why an alternative to Cox
regression should be considered. We certainly recognize the strengths of Cox regression
and, where its assumptions are valid, it should be used. On the other hand, there are
benefits to threshold regression that should be considered by investigators and their
analysts.

1. It can be shown that variants of the first hitting time model can be constructed
that do have the PH property. Thus, adopting a threshold regression framework
may enrich the interpretation of a Cox regression application. For example, setting
Cox regression within a first hitting time context, if that is appropriate, can give a
meaningful interpretation to the baseline hazard function.

2. Where a first hitting time model is appropriate and its survival functions do not
have the PH property then threshold regression finds immediate application and
the Cox model is disqualified. The inverse Gaussian survival distribution that is
implicit in our TR regression application here does not possess the PH property.
Yet, the Cox model and TR model do not differ sufficiently over the range of data
to be statistically distinct. Women in this cohort have been monitored for only 16
years at most, which is not a long survival window.

3. The TR model is actually more parsimonious than the Cox regression model. The
TR model is fully parametric and, in this application, has two set of coefficients
for covariate effects, namely, those associated with the ln(x0) and μ parameters.
In contrast, Cox regression is a semi-parametric procedure because the baseline
hazard function is arbitrary. The Cox model is rich in the parameters that define
the baseline hazard function h0(t) and numerous degrees of freedom are absorbed
in estimating that function, although this fact is not explicit in estimation routines
based on the partial likelihood approach. Thus, the Cox model (28.2) involves
estimating the regression coefficient vector ζ as well as the baseline hazard function
h0(t). Although the latter is often viewed as being of secondary interest, it deserves
more attention than it receives. Criticism is sometimes leveled at investigators who
use Cox regression without examining or attempting to understand the nature of
its unspecified baseline hazard function.

4. As noted already, TR formulations force investigators to consider the actual causal
mechanism of survival. Is a first hitting time involved? If so, what is the parent
process? What is the nature of the absorbing boundary? What is the appropriate
regression structure for each parameter? Which covariates affect initial health sta-
tus ln(x0) and which influence the mean parameter μ that determines the course
of disease progression after baseline. What are the relative magnitudes and direc-
tions of these influences? Threshold regression answers these important questions
that are aimed at the scientific foundation of the analysis. In contrast, Cox regres-
sion provides only a regression structure for the log-hazard ratio without forcing
investigators to dig deeper.

5. Most standard software packages contain a handy Cox regression routine. Some
investigators may worry that the TR method will require a major investment in
programming. We can allay this worry with two remarks. First, TR requires little
programming. For example, in Stata software, the programs used for this study
involve only the following core program lines for TR and Cox regression.
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1. Threshold regression for the inverse Gaussian model
ml model lf tr mle
(lnx0: age0 pkyrs0)
(m: age0 pkyrs0 pkyrs sq dpkyrs)

2. Cox regression with fixed covariates
stset t, failure(f)
stcox age0 pkyrs0 pkyrs sq dpkyrs

The Cox subroutine is built into Stata while TR uses a subroutine (called tr mle
here) to compute the sample log-likelihood function in (28.1). The latter is not
complicated in Stata as it only involves the normal density and distribution func-
tions given earlier. Second, even this amount of programming is not required for
TR as a new Stata command called threg has been developed for doing the kind
of TR analysis described here. The command threg may be found at the website
http:// sph. umd. edu/epib/ faculty/mltlee/test/ trprograms.html .
The TR command estimates regression coefficients of a TR model based on the
first-hitting-time of a Wiener diffusion process. The command uses a maximum
likelihood estimation routine in Stata for calculating estimates of regression
coefficients, asymptotic standard errors and P -values. Optionally, the routine
can provide estimates of hazard ratios at selected time points for specified sce-
narios and plots of estimated hazard functions, survival functions and probability
density functions of first-hitting-times.
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Abstract: We consider the problem of optimal reselling of European options.
A bivariate exponential diffusion process is used to describe the reselling model.
In this way, the reselling problem is imbedded to the model of finding optimal reward
for American type option based on this process. Convergence results are formulated
for optimal reward functionals of American type options for perturbed multi-variate
Markov processes. An approximation bivariate tree model is constructed and conver-
gence of optimal expected reward for this tree model to the optimal expected reward
for the corresponding reselling model is proved.

Keywords and phrases: American option, Binomial–trinomial approximation, Con-
vergence, European option, Optimal stopping, Reselling problem

29.1 Introduction

European options can only be exercised at maturity; however, there exists the
possibility for the holder to sell the option on the second hand market. The ques-
tion then arises at which moment of time is it optimal for the holder to sell the option,
this is the reselling problem.

We use the classical geometric Brownian motion to model the price process and an
exponential mean reverse Ornstein–Uhlenbeck process correlated with the price process
to describe stochastic dynamics for implied volatility. We also assume that a market
price for option is given by the Black–Scholes formula where implied volatility is used
instead its initial value.

The problem of optimal reselling of European option is treated as the problem of
finding optimal expected reward for American type option for this bivariate exponential
diffusion process with asset price and implied volatility components.

The reselling model considered in this paper has been introduced in the recent
paper Lundgren et al. [LSK08]. In present paper, we essentially improve results of this
paper and give the complete solution of an approximation problem that is to build up
an effective approximation algorithms for evaluation of optimal reward functionals for
the reselling model.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 371
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 29, c© Springer Science+Business Media, LLC 2010
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The paper contains five sections. In Sect. 29.2, we give exact formulation of reselling
problem. In Sect. 29.3, we present general convergence results for reward functional of
American type options for perturbed multivariate exponential Markov price processes.
We refer to the recent paper Lundgren and Silvestrov [LS09], where one can find the cor-
responding proofs. In Sect. 29.4, we construct the bivariate binomial–trinomial model
approximating the bivariate diffusion process used to describe the reselling model and
prove convergence of the optimal expected rewards for this tree model and the corre-
sponding bivariate diffusion process. In Sect. 29.5, we give numerical examples for the
behavior of the reselling reward given by the algorithm presented in Sect. 29.4.

In conclusion, we also would like to mention works related to the subject of the
present paper. For recent general results about optimal stopping we refer to the
papers by Dayanik and Karatzas [DK03], Henderson and Hobson [HH08], Ekström
et al. [ELTW09]. Optimal stopping problems for American type options have been
studies in the works by Jacka [Jac91], Kim [Kim90], Peskir and Shiryaev [PS06],
in Zhang and Lim [ZL06] for models with stochastic volatility, which concept were
introduced in Stein, E. and Stein, J. [StSt91], Heston [Hes93], Schöbel and Zhu [SZ99],
in Gau et al. [GHS00] for American barrier options, in Lundgren [Lun07] for gen-
eralized American knock out option, in Shepp and Shiryaev [SS93] for Russian
options, and in Xia and Zhou [XZ07] for related stock loans models. A simpler
reselling model was considered in Kukush et al. [KMS06], where an usual geo-
metric Brownian motion was used as a model for implied volatility. Convergence
of option rewards have been studied in works Amin and Khanna [AK94], Coquet
and Toldo [CT07], Dupuis and Wang [DW05], Jönsson [Jon01], [Jon05], Jönsson
et al. [JKS04], [JKS05], Kukush and Silvestrov [KS00], [KS01], [KS04], Prigent [Pri03],
Silvestrov et al. [SGM01], [SGS99], [SJS08a], [SJS08b].

29.2 Formulation of the Reselling Problem

We consider the geometric Brownian motion as a price process given by the stochastic
differential equation

d lnS(t) = μdt+ σdW1(t), t � 0, (29.1)

where μ ∈ R, σ > 0; W1(t) is a standard Brownian motion, and the initial state
S(0) = s0 > 0 is a constant.

It is also assumed that the continuously compounded interest model with a riskless
interest rate r > 0 is used.

In this case, the price (at moment t and under condition that S(t) = S) for a
European option, with the strike price K > 0 and maturity T > 0, is given by the
Black–Scholes formula,

C(t, S, σ) = SN(dt) −Ke−r(T−t)N(dt − σ
√
T − t), (29.2)

where dt = ln(S/K)+r(T−t)
σ
√
T−t + σ

√
T−t
2 , N(x) = 1√

2π

∫ x

−∞ e−y
2/2dy.

The theoretical volatility σ in (29.2) is usually some kind of historical volatility. The
theoretical price of the European option at moment t is given by formula (29.2), where
S should be replaced the price value S(t). However, it is well known that the market
price of European option at moment t deviates from the theoretical price. In fact, the
market price randomly oscillates around the theoretical price. In this case, the implied
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volatility σ(t) corresponding to the market price is used. It, respectively, randomly
oscillates around σ. A reverting character of these oscillations makes it natural to use a
model given by a mean reverting Ornstein–Uhlenbeck process for modeling of stochastic
dynamics of implied volatility,

d(ln σ(t) − lnσ) = −α(ln σ(t) − lnσ)dt+ νdW2(t), t � 0, (29.3)

where α, ν > 0, W2(t) is also a standard Brownian motion, and the boundary condition
is σ(0) = σ. It is also naturally to assume that the process W(t) = (W1(t),W2(t)) is the
bivariate Brownian motion with correlated components, i.e., EW1(t)W2(t) = ρt, t � 0,
where ρ ∈ [−1, 1]. Note that the process (S(t), σ(t)) is a diffusion process.

The model for stochastic volatility described above possesses necessary reverting
properties and, at the same time, let one get the explicit solution for the corresponding
system of stochastic differential equations suitable for effective constructing of approx-
imation tree models.

The use of the market price C(t, S(t), σ(t)) is an approach used in practice. In this
case, C(t, S, σ) may be interpreted as some kind of utility reward function commonly
recognized and used by market agents for evaluation of market option prices in the
extended, as above, Black–Scholes model.

The use of market option prices actualizes the problem of reselling for European
options. In this case, it is assumed that an owner of an option can resell the option at
some stopping time from the class MT which includes all stopping times 0 � τ � T
that are Markov moments with respect to the filtration Ft = σ((S(s), σ(s)), s � t)
generated by the vector process (S(t), σ(t)). It is worth to note that the process σ(t) is
indirectly observable as an implied volatility corresponding to the observable market
price of an option. The object of our studies is the reward functional,

Φ(MT ) = sup
τ∈MT

Ee−rτC(τ, S(τ), σ(τ)). (29.4)

Thus, the problem of reselling the European option is imbedded in the problem of
optimal execution of American type option with the pay-off function e−rtC(t, S, σ) for
the two-dimensional process (S(t), σ(t)).

It should also be noted that the problem is considered not before an option is bought
but under the assumption that the option is already bought. In the former case, the
risk-neutral considerations are actual for evaluation the fair price of the option. In the
latter case, the owner is only interested in finding the optimal expected reward for
reselling the option. In the this case, his estimation of the actual trend of the price
process should be involved is the analysis. This analysis is realized in the paper.

Our approach is based on the approximation of process (S(t), σ(t)) by a prop-
erly fitted bivariate binomial–trinomial model. This approach requires to solve three
problems. First, appropriate results concerning convergence for reward functional of
American type options should be developed for multivariate Markov price processes.
Second, the bivariate binomial–trinomial model satisfying the corresponding recombi-
nation conditions and a polynomial (quadratic for bivariate trees) rate of growth of the
number of nodes as a function of the number of steps should be constructed. Third,
the conditions of convergence for the reward functionals mentioned above should be
verified.
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29.3 Convergence of Rewards for Multivariate Markov Price
Processes

To show the convergence of the bivariate binomial–trinomial tree we apply the results
regarding convergence of optimal rewards for American type options for multivariate
Markov price processes and multivariate price processes with independent increments
given in the recent paper Lundgren and Silvestrov [LS09]. We summarize in this section
the results we need and refer to this paper, where one can find the corresponding proofs.

For every ε � 0, let Y(ε)(t) = (Y (ε)
1 (t), . . . , Y (ε)

k (t)), t � 0 be a càdlàg Markov
process with the phase space R

k and transition probabilities P (ε)(t,y, t + s,A) and a
constant initial state Y(ε)(0) = y0 ∈ R

k. We interpret Y(ε)(t) as a vector log-price
process. Now, we define a vector price process S(ε)(t) = (S(ε)

1 (t), . . . , S(ε)
k (t)), t � 0

with the phase space R
k
+ = R+ ×· · ·×R+, where R+ = (0,∞). Let us use the notation

ey = (ey1 , . . . , eyk),y = (y1, . . . , yk) ∈ R
k. The price process S(ε)(t) and the log-price

process Y(ε)(t) are connected by the relation, S(ε)(t) = eY
(ε)(t), t � 0. Due to the

one-to-one mapping and continuity property of exponential function, S(ε)(t) is also a
càdlàg Markov process.

Let g(t, s), (t, s) ∈ R+ × R
k
+ be a pay-off function. We assume that g(t, s) is a real

valued Borel measurable function. Note that we do not assume pay-off functions to be
non-negative. The first condition assumes the absolute continuity of pay-off functions
and imposes power type upper bounds on their partial derivatives:

A1: (a) Function g(t, s) is absolutely continuous in t with respect to the Lebesgue
measure on [0, T ] for every fixed s ∈ R

k
+ and in s with respect to the Lebesgue

measure on R
k
+ for every fixed t ∈ [0, T ]; (b) For every s ∈ R

k
+, the partial derivative

∣

∣

∣

∂g(t,s)
∂t

∣

∣

∣ � R1 + R2

∑k
j=1 s

γ0
j for almost all t ∈ [0, T ] with respect to the Lebesgue

measure on [0, T ], where 0 � R1, R2 < ∞ and γ0 � 0; (c) For every t ∈ [0, T ],
the partial derivative

∣

∣

∣

∂g(t,s)
∂sm

∣

∣

∣ � R3 + R4

∑k
j=1 s

γm

j for almost all s ∈ R
k
+ with

respect to the Lebesgue measure on R
k
+, where 0 � R3, R4 <∞ and γ1, . . . , γk � 0,

m = 1, . . . , k. (d) For every t ∈ [0, T ], the function g(t,0) = lims→0 g(t, s) � R5,
where 0 � R5 <∞.

It is useful to note that condition A1 implies that the function g(t, s) is continuous
in (t, s) ∈ [0, T ] × R

k
+.

Let F
(ε)
t = σ(Y(ε)(s), s � t) be the natural filtration of σ-fields, associated with the

vector log-price process Y(ε)(t), t � 0. It is useful to note that this filtration coincides
with the natural filtration generated by the price process S(ε)(t), t � 0.

We consider Markov moments τ (ε) with respect to the filtration F
(ε)
t , t � 0. It means

that τ (ε) is a random variable which takes values in [0,∞] and with the property
{ω : τ (ε)(ω) � t} ∈ F

(ε)
t , t ≥ 0. Let M

(ε)
max,T be the class of all Markov moments

τ (ε) � T , where T > 0, and consider a class of Markov moments M
(ε)
T ⊆ M

(ε)
max,T .

The main object of our studies is the reward functional, that is, the maximal expected
pay-off over different classes of Markov moments, M

(ε)
T ,
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Φ(M(ε)
T ) = sup

τ (ε)∈M
(ε)
T

Eg(τ (ε),S(ε)(τ (ε))). (29.5)

We use notations Ey,t and Py,t for expectation and probability calculated under
condition that Y(ε)(t) = y. For β, c, T > 0, i = 1, . . . , k, define the exponential moment
modulus of compactness for the càdlàg process Y (ε)

i (t), t � 0,

Δβ(Y (ε)
i (·), c, T ) = sup

0�t�t+u�t+c�T
sup
y∈Rk

Ey,t(eβ|Y
(ε)

i (t+u)−Y (ε)
i (t)| − 1).

We use the following conditions for exponential moment modulus of compactness
for log-price processes:

C1: limc→0 limε→0

∑k
i=1Δβ(Y (ε)

i (·), c, T ) = 0 for some β > γ = max(γ0, γ1

+1, . . . , γk + 1), where γ0 and γ1, . . . , γk are the parameters introduced in con-
dition A1,

Condition C1 implies that for any constant e−β < L0 < 1 one can choose c =

c(L0) > 0 and then ε0 = ε0(c) such that Δβ(Y
(ε)

i (·),c,T )+1

eβ � L0 for ε � ε0, and
i = 1, . . . , k.

The following lemma gives asymptotically uniform upper bounds for moments of
maximum of price processes, with respect to perturbation parameter and guarantee
that the reward functionals Φ(M(ε)

T ) take finite values for all ε small enough.

Lemma 1. Let conditions A1 and C1, hold. Then there exists a constant L1 <∞ such
that for every ε � ε0,

sup
τ (ε)∈M

(ε)
max,T

E|g(τ (ε),S(ε)(τ (ε))| � E sup
0�u�T

|g(u,S(ε)(u))|β
γ � L1. (29.6)

Let us now assume the following condition of weak convergence (denoted by the
symbol ⇒) for the transition probabilities:

B1:There exist measurable sets Yt ⊆ R
k, t ∈ [0, T ] such that: (a) P (ε)(t,y(ε), t+u, ·) ⇒

P (0)(t,y, t+ u, ·) as ε→ 0, for any y(ε) → y ∈ Yt as ε→ 0 and 0 � t < t+ u � T ;
(b) P (0)(t,y, t+u,Yt+u) = 1 for every y ∈ Yt and 0 � t < t+u � T ; (c) Y(ε)(0) =
y0 ∈ Y0.

The following theorem presents our main convergence result. It gives conditions of
convergence for reward functionals Φ(M(ε)

max,T ).

Theorem 1. Let conditions A1, B1, and C1 hold. Then

Φ(M(ε)
max,T ) → Φ(M(0)

max,T ) as ε→ 0. (29.7)

Let Π = {0 = t0 < t1 < . . . tN = T } be a partition on the interval [0, T ] and
d(Π) = max1�i�N (ti − ti−1).

We consider the class M
(ε)
Π,T of all Markov moments from M

(ε)
max,T , which only take

the values t0, t1, . . . tN , and such that the event {ω : τ (ε)(ω) = tj} ∈ σ(Y(ε)(t0),
. . . ,Y(ε)(tj)) for j = 0, . . .N . By definition, M

(ε)
Π,T ⊆ M

(ε)
max,T . This relation implies

that, under conditions of Lemma 1, −∞ < Φ(M(ε)
Π,T ) � Φ(M(ε)

max,T ) <∞.
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The reward functionals Φ(M(ε)
max,T ), and Φ(M(ε)

Π,T ) correspond to American type
option in continuous time, and American type option in discrete time, respectively. In
the first case, the underlying price process is a continuous time Markov type price pro-
cess, while in the second case, the corresponding price process is a discrete time Markov
type process. The random variables Y(ε)(t0),Y(ε)(t1), . . . ,Y(ε)(tN ) are connected in a
discrete time inhomogeneous Markov chain with the phase space R

k, transition prob-
abilities P (ε)(tn,y, tn+1, A), and the initial state Y(ε)(t0) = y0. Note that we have
slightly modified the standard definition of a discrete time Markov chain by counting
moments t0, . . . , tN as the moments of jumps for the Markov chain Y(ε)(tn), instead
of the moments 0, . . . , N . This is done in order to synchronize the discrete and contin-
uous time models. Thus, the optimization problem (29.5) for the class M

(ε)
Π,T is really

a problem of optimal expected reward for American type options in discrete time.
The following theorem gives a skeleton approximation for reward functionals

Φ(M(ε)
max,T ) which is asymptotically uniform with respect to perturbation parameter.

Theorem 2. Let conditions A1, and C1 hold. Let also ε � ε0 and d(Π) � c where ε0
and c are defined above. Then there exist constants L2, L3 <∞ such that the following
skeleton approximation inequality holds, for every ε � ε0,

Φ(M(ε)
max,T ) − Φ(M(ε)

Π,T ) � L2d(Π) + L3

k
∑

i=1

Δβ(Y (ε)
i (·), d(Π), T )

β−γ
β .

The following theorem gives conditions of convergence for reward functionals
Φ(M(ε)

Π,T ).

Theorem 3. Let conditions A1, B1, and C1 hold. Then, the following asymptotic
relation holds for any partition Π = {0 = t0 < t1 · · · < tN = T } on the interval [0, T ]
such that d(Π) � c, where c is defined above,

Φ(M(ε)
Π,T ) → Φ(M(0)

Π,T ) as ε→ 0. (29.8)

Let us now formulate some useful sufficient conditions for an important condition
of moment compactness C1.

Let us introduce the modulus of J-compactness, for h, c > 0, i = 1, . . . , k,

Δ(Y (ε)
i (·), h, c, T ) = sup

0�t�t+u�t+c�T
sup
y∈Rk

Py,t{|Y (ε)
i (t+ u) − Y

(ε)
i (t)| � h}.

The following condition of J-compactness plays the key role in functional limit
theorems for Markov type càdlàg processes:

D1: limc→0 limε→0Δ(Y (ε)
i (·), h, c, T ) = 0, h > 0, i = 1, . . . , k.

Introduce also the quantity, which represents the maximum of moment generating
functions for increments of the log-price processes Y (ε)

i (t), t � 0, i = 1, . . . , k,

Ξβ(Y (ε)
i (·), T ) = sup

0�t�t+u�T
sup
y∈Rk

Ey,teβ(Y
(ε)
i (t+u)−Y (ε)

i (t)), β ∈ R.
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The following condition formulated in terms of these moment generating functions
can be effectively verified in many cases:

C2: limε→0Ξ±β′(Y(ε)
i (·), T ) <∞, i = 1, . . . , k, for some β′ > γ, where γ is the param-

eter introduced in condition A1.

Lemma 2. Conditions D1 and C2 imply that condition C1 holds for any β ∈ (γ, β′).

In order to illustrate the results given in Theorems 1–3, let us consider the model
where the log-price process Y(ε)(t), t � 0 is a càdlàg processes with independent in-
crements. The process Y(ε)(t) is a càdlàg Markov process with transition probabilities
which are connected with the distributions of increments for this process P (ε)(t, t+u,A)
by the following relation,

P (ε)(t,y, t+ u,A) = P (ε)(t, t+ u,A− y)

= P{y + Y(ε)(t+ u) − Y(ε)(t) ∈ A}. (29.9)

Let us assume the following standard condition of weak convergence for distributions
of increments for log-price processes:

B2: P (ε)(t, t+ u, ·) ⇒ P (0)(t, t+ u, ·) as ε→ 0, 0 � t � t+ u � T .

Representation (29.9) implies that condition B1 holds with the sets Yt = R
k, t ∈

[0, T ], i.e., distributions of increments for the processes Y (ε)
i (t) locally uniformly weakly

converge if and only if condition B2 holds. Thus, in the case of processes with inde-
pendent increments, the condition B1 with the sets Yt = R

k pointed above is, in fact,
equivalent to the standard condition of weak convergence for such processes. In this
case the J-compactness modulus Δ(Y (ε)

i (·), h, c, T ) takes the following form:

Δ′(Y (ε)
i (·), h, c, T ) = sup

0�t�t+u�t+c�T
P{|Y (ε)

i (t+ u) − Y
(ε)
i (t)| � h}.

Thus, condition C2 is reduced to the standard J-compactness condition for the
log-price processes:

D2: limc→0 limε→0Δ
′(Y (ε)

i (·), h, c, T ) = 0, h > 0, i = 1, . . . , k.

Note that conditions B2 and D2 are necessary and sufficient for J-convergence of
processes Y(ε)(t), t ∈ [0, T ] to process Y(0)(t), t ∈ [0, T ] as ε → 0 and stochastic
continuity of the limit process.

Also, the quantities Ξβ(Y (ε)
i (·), T ), i = 1, . . . , k take a simplified form,

Ξ ′
β(Y (ε)

i (·), T ) = sup
0�t�t+u�T

Eeβ(Y
(ε)

i (t+u)−Y (ε)
i (t)), β ∈ R.

Therefore, condition C2 takes the following form:

C3: limε→0 Ξ
′
±β′(Y (ε)

i (·), T ) < ∞, i = 1, . . . , k, for some β′ > γ, where γ is the param-
eter in condition A1.

According to Lemma 2, conditions C3 and D2 imply that condition C1 holds for
any β ∈ (γ, β′).

The following theorem summarize the remarks above.
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Theorem 4. Let conditions A1, B2, D2, and C3 hold for the exponential price
processes with independent increments S(ε)(t). Then

Φ(M(ε)
max,T ) → Φ(M(0)

max,T ) as ε→ 0. (29.10)

It is worth to note that conditions A1, B2, D2, and C3 imply that conditions of
Theorems 2 and 3 hold for the exponential price processes with independent increments
S(ε)(t) and, therefore, the skeleton approximation inequality given in Theorem 2 as well
as the convergence relation given in Theorem 3 also take place.

29.4 Binomial–Trinomial Approximations for Reselling Model

Let us continue consideration of reselling model introduced in Sect. 29.2. In this model,
there exists the unique solution to the system of stochastic differential equations (29.1)
and (29.3). It is a diffusion process given by the following explicit formulas,

S(t) = S(0)eμt+σW1(t), σ(t) = σeνe
−αt

∫ t
0 eαsdW2(s), t � 0, (29.11)

where W(t) = (W1(t),W2(t)), t � 0 is the bivariate Brownian motion defined in (29.1)
and (29.3).

Therefore, our object is the reward functional Φ(MT ) for American type option
with the pay-off function e−rtC(t, S, σ) for this bivariate diffusion process (S(t), σ(t)).

The problem can be however reduced to the simpler case of a bivariate process with
independent increments using suitable transformations for the price processes and the
payoff functions. Let us consider processes,

S
(0)
1 (t) = eσW1(t), S

(0)
2 (t) = eνe

−αT
∫

t
0 eαsdW2(s), t � 0. (29.12)

By the definition, S(t) = s0eμtS(0)
1 (t), t � 0 and σ(t) = σ(S(0)

2 (t))e
α(T−t)

, t � 0,
i.e., the process (S(t), σ(t)) is a non-random one-to-one continuous transformation
of the process (S(0)

1 (t), S(0)
2 (t)) given by the above formulas. The vector process

S(0)(t) = (S(0)
1 (t), S(0)

2 (t)), t � 0 is a bivariate continuous non-homogeneous expo-
nential Gaussian process with independent increments. In some sense, this process is
simpler than the process (S(t), σ(t)). It is more suitable for construction of the corre-
sponding tree approximations.

The filtration Ft = σ((S(s), σ(s)), s � t) generated by the vector process (S(t), σ(t))
coincides with the filtration Ft = σ((S(0)

1 (s), S(0)
2 (s)), s � t), t � 0 generated by the

bivariate process S(0)(t). Thus, the class MT , which includes all stopping times 0 � τ �
T that are Markov moments with respect to the filtration Ft, t � 0, does not depend
on which bivariate process is taken as a generator of this filtration, i.e., MT = M

(0)
max,T .

Let us now define a pay-off function,

g(t, s) = e−rtC(t, s0eμts1, σse
α(T−t)

2 ). (29.13)

Note that its derivatives have not more than polynomial rates of growth. More
precisely, condition A1 holds for this function with some constants Ri, i = 1, . . . , 5 and
the parameters γ0 = 2 + e2αT , γ1 = 0, and γ2 = e2αT , and, therefore, γ = 2 + e2αT .
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It follows from the remarks above that the reward functional,

Φ(MT ) = sup
τ∈MT

Ee−rτC(τ, S(τ), σ(τ)) = sup
τ∈M

(0)
max,T

Eg(τ,S(0)(τ)). (29.14)

Therefore, the reward functional Φ(MT ) = Φ(M(0)
max,T ) is the optimal expected

reward for American type option with the payoff function g(t, s) for this bivariate
exponential process with independent increments S(0)(t).

Let us now consider the corresponding bivariate log-price process Y(0)(t) = (Y (0)
1 (t),

Y
(0)
2 (t)), t � 0 with the components

Y
(0)
1 (t) = σW1(t), Y (0)

2 (t) = νe−αT
∫ t

0

eαsdW2(s), t � 0. (29.15)

We approximate the process Y(0)(t), t � 0 by a bivariate binomial–trinomial sum-
process Y(ε)(t) = (Y (ε)

1 (t), Y (ε)
2 (t)), t � 0 with components

Y
(ε)
i (t) =

∑

1�n�[t/ε]

Y
(ε)
n,i , t � 0, i = 1, 2. (29.16)

Here, Y(ε)
n = (Y (ε)

n,1 , Y
(ε)
n,2 ), n = 1, 2, . . . are, for every ε > 0, independent random

vectors which have the following structure,

(Y (ε)
n,1 , Y

(ε)
n,2 ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(+u(ε)
n,1,+u

(ε)
n,2) p

(ε)
n,++

(+u(ε)
n,1, 0) p

(ε)
n,+·

(+u(ε)
n,1,−u(ε)

n,2) p
(ε)
n,+−

with probability
(−u(ε)

n,1,+u
(ε)
n,2) p

(ε)
n,−+

(−u(ε)
n,1, 0) p

(ε)
n,−·

(−u(ε)
n,1,−u(ε)

n,2) p
(ε)
n,−−

(29.17)

Respectively, the process S(0)(t), t � 0 is approximated by a bivariate exponential
binomial–trinomial process S(ε)(t) = eY

(ε)(t), t � 0.
Let assume for simplicity that ε = T/N . We shall try to fit the bivariate binomial–

trinomial sum-process Y(ε)(t) to the bivariate process Y(0)(t) by fitting expectations,
variances, and covariance between for increments Y(ε)(nε)−Y(ε)((n−1)ε) = Y(ε)

n and
Y(0)(nε) − Y(0)((n − 1)ε), for every n = 1, . . . , N . The corresponding quantities are
given by the following formulas,

E σ(W1(nε) −W1((n− 1)ε)) = 0, E νe−αT
∫ nε

(n−1)ε

eαsdW2(s) = 0. (29.18)

σ2ε = Var (σ(W1(nε) −W1((n− 1)ε))),

σ2
n,ε = Var νe−αT

∫ nε

(n−1)ε

eαsdW2(s)

= ν2e−2αT

∫ nε

(n−1)ε

e2αsds = ν2e−2αT e2αnε 1 − e−2αε

2α
,

(29.19)
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�n,ε = E σ(W1(nε) −W1((n− 1)ε)) · νe−αT
∫ nε

(n−1)ε

eαsdW2(s)

= ρσνe−αT
∫ nε

(n−1)ε

eαsds = σρνe−αT eαnε
1 − e−αε

α
.

(29.20)

The following system of 6N equations with 8N unknowns should be solved,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E[Y
(ε)

n,1 ] = u
(ε)
n,1(2(p

(ε)
n,++ + p

(ε)
n,+− + p

(ε)
n,+·) − 1) = 0,

Var[Y
(ε)

n,1 ] = (u
(ε)
n,1)

2 = σ2ε,

E[Y
(ε)

n,2 ] = u
(ε)
n,2(p

(ε)
n,++ + p

(ε)
n,−+ − p

(ε)
n,+− − p

(ε)
n,−−) = 0,

Var[Y
(ε)

n,2 ] = (u
(ε)
n,2)

2(p
(ε)
n,++ + p

(ε)
n,−+ + p

(ε)
n,+− + p

(ε)
n,−−) = σ2

n,ε,

EY
(ε)

n,1Y
(ε)
n,2 = u

(ε)
n,1u

(ε)
n,2(p

(ε)
n,++ + p

(ε)
n,−− − p

(ε)
n,−+ − p

(ε)
+−) = �n,ε,

p
(ε)
n,++ + p

(ε)
n,−+ + p

(ε)
n,+− + p

(ε)
n,−− + p

(ε)
n,+· + p

(ε)
n,−· = 1,

n = 1, . . . , N.

(29.21)

It follows from the relations above that the only possible choice for u(ε)
n,1 = σ

√
ε.

We also try to search a solution for u(ε)
n,2 = un

√
ε, where un > 0, n = 1, . . . , N are

parameters under our control, due to the fact that the number of unknowns in the
system (29.21) exceeds the number of equations. It is also natural to take into account
the symmetric property of the process Y(0)(t) and to search for unknown probabilities
satisfying the additional conditions, p(ε)

n,++ = p
(ε)
n,−−, p(ε)

n,+− = p
(ε)
n,−+, and p(ε)

n,+· = p
(ε)
n,−·,

for n = 1, . . . , N . In this case, it can be checked that the system above has the following
solution,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u
(ε)
n,1 = σ

√
ε,

u
(ε)
n,2 = un

√
ε,

p
(ε)
n,++ = p

(ε)
n,−− = 1

4

(

σ2
n,ε

u2
nε

+ n,ε

σunε

)

,

p
(ε)
n,+− = p

(ε)
n,−+ = 1

4

(

σ2
n,ε

u2
nε

− n,ε

σunε

)

,

p
(ε)
n,+· = p

(ε)
n,−· = 1

2
− σ2

n,ε

2u2
nε
,

n = 1, . . . , N.

(29.22)

It is also necessary to find conditions under which the solutions p(ε)
n,++, p

(ε)
n,+−, p

(ε)
n,+·

of the system (29.22) are probabilities, i.e., 0 � p
(ε)
n,++, p(ε)

n,+−, p
(ε)
n,+· � 1, n = 1, . . . , N .

This holds if and only if the following system of inequalities holds,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ2
n,ε

u2
nε

= ν2e−2αT

u2
nε

∫ nε

(n−1)ε
e2αsds

= ν2e−2αT

u2
n

e2α(n−1)ε e2αε−1
2αε

� 1,

σ2
n,ε

u2
nε

± n,ε

σunε
= ν2e−2αT

u2
nε

∫ nε

(n−1)ε
e2αsds± ρνe−αT

unε

∫ nε

(n−1)ε
eαsds

= νe−αT

un

eα(n−1)ε(eαε−1)
αε

(

νe−αT

un
eα(n−1)ε eαε+1

2
± ρ
)

� 0,
n = 1, . . . , N.

(29.23)
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Taking the inequality e2αε−1
2αε

= eαε+1
2

eαε−1
αε

<
(

eαε+1
2

)2
into account, we can

conclude that the system of inequalities (29.23) holds if the following system of two-
sided inequalities holds,

{

νe−αT eαnε 1+e−αε

2
� un � ν|ρ|−1e−αT eαnε 1+e−αε

2
,

n = 1, . . . , N.
(29.24)

Thus, a solution of the system (29.22) satisfying the system of inequalities (29.23)
exists for any value −1 � ρ � 1.

It follows, that we consider a model with a M -bounded solution which satisfies for
some constant M � 1 the following inequalities,

ν � un � νM, n = 1, . . . , N. (29.25)

If |ρ| > 0, one can take M = |ρ|−1. If |ρ| = 0, any number M � 1 can be taken.
The defining relation (29.17) implies that for any δ > 0 if ε is small enough, namely,

if (σ ∧M)
√
ε � δ, then

∑

n�[T/ε]

(P{|Y (ε)
n,1 | > δ} + P{|Y (ε)

n,2 | > δ}) = 0. (29.26)

Also, by the definition of processes Y(ε)(t), for ε � 0 and 0 � t � T ,

EY
(ε)
1 (t) = 0, EY

(ε)
2 (t) = 0. (29.27)

and, for every 0 � t � T ,

VarY
(ε)
1 (t) = [t/ε]σε→ VarY

(0)
1 (t) = tσ as 0 < ε→ 0,

VarY
(ε)
2 (t) = ν2e−2αT

∫ [t/ε]ε

0

e2αsds = ν2e−2αT e2α[t/ε]ε − 1
2α

→ VarY
(0)
2 (t) = ν2e−2αT e2αt − 1

2α
as 0 < ε→ 0,

EY
(ε)
1 (t)Y (ε)

2 (t) = ρσνe−αT
∫ [t/ε]ε

0

eαsds = ρσνe−αT
eα[t/ε]ε − 1

α

→ EY
(0)
1 (t)Y (0)

2 (t) = ρσνe−αT
eαt − 1
α

as 0 < ε→ 0.

(29.28)

Since the functions given on the left hand side in (29.28) are monotone, and the
corresponding limit functions are continuous, this convergence is also uniform in interval
[0, T ] and, therefore, conditions of Ascoli–Arzelá theorem, in particular, condition of
compactness in uniform topology holds as ε→ 0.

The above remarks imply that conditions of convergence theorems for vector sum-
processes with independent increments, given, for example, in Skorokhod [Sko64], hold
for processes Y(ε)(t), t ∈ [0, T ] with parameters given in (29.22), (29.24), and (29.25).
Thus, the processes Y(ε)(t), t ∈ [0, T ] weakly and, moreover, J-converge to the process
Y(0)(t), t ∈ [0, T ] as ε→ 0.

Therefore, conditions B2 and D2 hold for step-sum processes with independent
increments Y(ε)(t).
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The moment generating functions E exp{β′(Y (ε)
i (t + s) − Y

(ε)
i (t))}, exists for any

β′ ∈ R, for every 0 � t � t+ s � T and i = 1, 2 and can be given in the explicit form.
Namely,

E exp{β′(Y (ε)
1 (t+ s) − Y

(ε)
1 (t))}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

eβ
′σ

√
ε 1

2 + e−β
′σ

√
ε 1

2

)[(t+s)/ε]−[t/ε]

if ε > 0,

e
β′2σ2s

2 if ε = 0,

(29.29)

where it is taken into account that p(ε)
n,++ + p

(ε)
n,+− + p

(ε)
n,+· = p

(ε)
n,−+ + p

(ε)
n,−− + p

(ε)
n,−· = 1

2 ,
for n = 1, . . . , N . Also,

E exp{β′(Y (ε)
2 (t+ s) − Y

(ε)
2 (t))}

=

⎧

⎪

⎨

⎪

⎩

∏[(t+s)/ε]
n=[t/ε]+1(eβ

′un
√
εp

(ε)
n,+ + e−β

′un
√
εp

(ε)
n,− + p

(ε)
n,·) if ε > 0,

e
1
2β

′2ν2e−2αT
∫

t+s
t

e2αvdv if ε = 0.
(29.30)

where p
(ε)
n,+ = p

(ε)
n,++ + p

(ε)
n,−+ =

σ2
n,ε

2u2
nε

, p
(ε)
n,− = p

(ε)
n,+− + p

(ε)
n,−− =

σ2
n,ε

2u2
nε

, and p
(ε)
n,· =

p
(ε)
n,+· + p

(ε)
n,−· = 1 − σ2

n,ε

u2
nε

, for n = 1, . . . , N .
Using formulas (29.29) and (29.30) it is possible to check that condition C3 holds

for processes Y(ε)(t) for any β′ > γ. In this case,

Ξ±β′(Y (ε)
1 (·), T ) = sup

0�t�t+u�T
Ee±β

′(Y (ε)
1 (t+u)−Y (ε)

1 (t))

�
(

eβ
′σ

√
ε 1
2

+ e−β
′σ

√
ε 1
2

)T/ε

→ e
β′2σ2T

2 <∞ as ε→ 0.
(29.31)

Also, using that σ2
n,ε

2u2
nε

� 1
2

and ν < un � Mν, for n = 1, . . . , N , we get,

Ξ±β′(Y (ε)
1 (·), T ) = sup

0�t�t+u�T
Ee±β

′(Y (ε)
1 (t+u)−Y (ε)

1 (t))

�
[T/ε]
∏

n=1

(

1 +
σ2
n,ε

2u2
nε

(

eβ
′un

√
ε + e−β

′un
√
ε − 2

)

)

� (1 +
1
2

(eβ
′Mν

√
ε + e−β

′Mν
√
ε − 2))T/ε → e

β′2M2ν2T
2 <∞ as ε→ 0.

(29.32)

Relations (29.31) and (29.32) imply condition C3 to hold.
Summarizing the remarks above, one can conclude that the conditions and, there-

fore, the statement of Theorem 4 holds for the corresponding bivariate exponential
price processes with independent increments S(ε)(t), t � 0, i.e.,

Φ(M(ε)
max,T ) → Φ(M(0)

max,T ) = Φ(MT ) as ε→ 0. (29.33)

We are going now to construct the corresponding bivariate binomial–trinomial tree
approximation model. As above, let assume that ε = T/N and consider the partition
Πε = 〈t0 = 0 < t1 = ε < · · · < tN−1 = (N − 1)ε < tN = T 〉 on the interval [0, T ].
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Let us try to find condition, which would make it possible to choose the jump
values un = u, n = 1, 2, . . . , N independent of n. This would automatically provide a
very important recombining condition to hold for the corresponding bivariate binomial–
trinomial tree. In this case, the number of nodes (as a function of the number of tree
steps) in the tree would have not more than quadratic rate of growth.

The system of inequalities (29.24) takes in this case the form νe−αT eαnε 1+e−αε

2 �
u � ν|ρ|−1e−αT eαnε 1+e−αε

2
, n = 1, . . . , N . The inequality at the left hand side is

the most strong for n = N while the inequality at the right hand side is the most
strong for n = 1. Thus, the system of inequalities (29.24) holds if ν 1+e−αε

2 � u �
ν|ρ|−1e−αT eαε 1+e−αε

2 . Consequently, this inequality holds if the following stronger
inequality ν � u � ν|ρ|−1e−αT holds. The remarks above lead to the following
condition:

E1: |ρ| < e−αT .

If condition E1 holds then interval [ν, ν|ρ|−1e−αT ] has non-zero length and one can
choose any value u ∈ [ν, ν|ρ|−1e−αT ]. Moreover, one can always choose a rational value
of u in this interval that is useful for numerical calculations. If the value of u chosen as
described above we have the following values for the corresponding probabilities,
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⎪
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⎪

⎪

⎪

⎪

⎩

p
(ε)
n,++ = p

(ε)
n,−− =

σ2
n,ε

4u2ε
+

�n,ε

4σuε

= ν2e−2αT

4u2 e2αnε 1−e−2αε

2αε
+ ρνe−αT

4u
eαnε 1−e−αε

αε
,

p
(ε)
n,+− = p

(ε)
n,−+ =

σ2
n,ε

4u2ε
− �n,ε

4σuε

= ν2e−2αT

4u2 e2αnε 1−e−2αε

2αε
− ρνe−αT

4u
eαnε 1−e−αε

αε
,

p
(ε)
n,+· = p

(ε)
n,−· = 1

2
− σ2

n,ε

2u2ε

= 1
2
− ν2e−2αT

2u2 e2αnε 1−e−2αε

2αε
,

n = 1, . . . , N.

(29.34)

In this case, the Markov chain (n,Y(ε)(nε)), n = 0, 1, . . . is a bivariate binomial–
trinomial tree model with the initial node (0, (0, 0)) and (n+1)(2n+1) nodes of the form
(n,yn,l1,l2), where yn,l1,l2 = (2l1 − n)σ

√
ε, l2u

√
ε), l1 = 0, 1, . . . , n, l2 = 0,±1, . . . ,±n,

after n steps. The corresponding tree has (n + 1)(2n + 1) nodes after n steps. The
number of nodes is a quadratic function of n.

The standard backward procedure can be applied in order to find the optimal
expected reward at moment 0 for the discrete time exponential trinomial price process
S(ε)(tn) = eY(ε)(tn), tn = nε, n = 0, 1, . . . , N . This optimal expected reward coincides,
in this case, with the reward functional Φ(M(ε)

Πε,T
) for the continuous time exponential

price processes S(ε)(t) = eY(ε)(t), t ∈ [0, T ].
To estimate the difference Φ(M(ε)

max,T ) − Φ(M(ε)
Πε,T

), we can use Theorem 2. In

this case, d(Πε) = ε, while Δβ(Y (ε)
1 (·), ε, T ) = Eeβ|Y

(ε)
1,1 | − 1 � eβσ

√
ε − 1 and

Δβ(Y (ε)
2 (·), ε, T ) = max1�n�N (Eeβ|Y

(ε)
n,2| − 1) � eβu

√
ε− 1, for β > 0. Theorem 2 yields,

in this case, the following relation,

Φ(M(ε)
max,T ) − Φ(M(ε)

Πε,T
)

� L2ε+ L3

(

(

eβσ
√
ε − 1

)
β−γ

β

+
(

eβu
√
ε − 1

)
β−γ

β

)

→ 0 as ε→ 0. (29.35)
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The reward functional Φ(M(ε)
Πε,T

) is the optimal expected reward for American type
option in discrete time that corresponds to the discrete time Markov log-price process
Y(ε)(tn), tn = nε, n = 0, 1, . . . , N with parameter ε = T/N and the payoff function
g(t, ey) = e−rtC(t, s0eμtey1 , σey2e

α(T−t)
), t ∈ [0, t],y = (y1, y2) ∈ R

2 defined according
to relation (29.13). Let us introduce the corresponding reward functions,

w(ε)(tn,yn,l1,l2) = sup
τ∈MΠε,T , tn�τ�tN=T

Etn,yn,l1,l2
g(τ, eY

(ε)(τ)),

where Markov moments τ depend only on trajectories Y(ε)(tk), k � n, and the vector
points yn,l1,l2 , l1 = 0, 1, . . . , n, l2 = 0,±1, . . . ,±n, n = 0, . . . , N are defined as above,
and, in particular, y0,0,0 = (0, (0, 0)). Then, by the definition,

Φ(M(ε)
Πε,T

) = w(ε)(0, (0, 0)). (29.36)

The reward functions w(ε)(tn,yn,l1,l2) can be found using the following recurrence
relations, for n = 0, 1, . . . , N − 1,

w(ε)(tn,yn,l1,l2) = g(tn, eyn,l1,l2 ) ∨ (w(ε)(tn+1,yn+1,l1+1,l2+1)p(ε)
n,++

+ w(ε)(tn+1,yn+1,l1+1,l2)p(ε)n,+· + w(ε)(tn+1,yn+1,l1+1,l2−1)p(ε)n,+−

+ w(ε)(tn+1,yn+1,l1,l2+1)p(ε)n,−+ + w(ε)(tn+1,yn+1,l1,l2)p(ε)
n,−·

+ w(ε)(tn+1,yn+1,l1,l2−1)p(ε)
n,−−

)

,

l1 = 0, 1, . . . , n, l2 = 0,±1, . . . ,±n,

(29.37)

with the boundary conditions,

w(ε)(tN ,yN,l1,l2) = g(tN , eyN,l1,l2 ), l1 = 0, 1, . . . , N, l2 = 0,±1, . . . ,±N. (29.38)

The corresponding approximation result for the bivariate binomial tree algorithm
described above can be summarized in the following theorem.

Theorem 5. Let condition E1 holds. Then the optimal reselling rewards,

w(ε)(0, (0, 0)) = Φ(M(ε)
Πε,T

) → Φ(M(0)
max,T ) = Φ(MT ) as ε→ 0. (29.39)

In conclusion, let us comment condition E1. It is, in fact, a condition of weak
correlation between the noise terms of the price and stochastic volatility processes. The
restriction imposed by this condition can be lightened by dividing the time interval into
smaller parts and constructing a tree that has k different values of jumps on different
time intervals under assumption that the following condition holds for some k � 1:

Ek: |ρ| < e−
αT
k .

Let us, for example, shortly describe the case where k = 2. This condition
guarantees the existence of two intervals with non-zero length, [νe−

αT
2 , ν|ρ|−1e−αT ]

and [ν, ν|ρ|−1e−
αT
2 ] such that the constant values u(1) = un, n = 1, . . . , [N2 ] and

u(2) = un, n = [N
2

] + 1, . . . , N can be chosen, respectively, from the first and the
second interval, when constructing a solution for system (29.22) satisfying the sys-
tem of inequalities (29.23). Moreover, these values can be chosen to be positive
rational numbers. This makes it possible to represent them in the following form
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u(1) = m1u and u(2) = m2u, where u is a positive rational number and m1 and
m2 are positive integers. Note that the recombining condition hold for each subin-
terval. The corresponding tree for the trinomial component has, in this case, at
most Nn = m1 min(n, [N2 ]) + m2(max(n, [N2 ]) − [N2 ]) + 1 nodes located on the grid
−Nnu√ε, . . . ,−u√ε, 0, u√ε, . . . , Nnu√ε, after n steps. The corresponding bivariate
binomial–trinomial tree has at most (n + 1)Nn nodes, after n steps. This function
also has not more than the quadratic rate of growth as a function of n. A backward
algorithm for finding the corresponding reward functions and convergence results are
analogous to those presented above.

It is also worth to note that algorithm described above let one also to derive the
corresponding optimal stopping domains for the approximation binomial–trinomial pro-
cesses. Indeed, these domains are defined by the relations,

Γ (ε) = {(tn,yn,l1,l2) : w(ε)(tn,yn,l1,l2) = g(tn, eyn,l1,l2 ), n = 0, . . . , N − 1}. (29.40)

These domains, according Theorem 5, well approximate the optimal stopping
domains for the corresponding continuous time bivariate price processes with respect
to the natural measure of closeness based on the deviation of the corresponding optimal
expected rewards.

29.5 Numerical Examples

In this section, we illustrate some basic numerical aspects connected with the approx-
imation tree algorithm described above.

We consider the model introduced in Sect. 29.2 with the following parameters. The
risk free interest rate r = 0.04. The price process S(t) has the initial value S(0) =
10, the drift parameter μ = 0.02 and the initial volatility σ = 0.2. Note that these
values correspond to the risk neutral setting for the price process. We also assume
the parameters for the mean reverse volatility process σ(t) to be α = 1 for the mean
reverting coefficient and ν = 0.2 for the volatility of volatility. The correlation coefficient
connecting the noise terms for the price and stochastic volatility processes is ρ = 0.3.
We consider an European call option with the strike price K = 10 and the time to
maturity T = 0.5 of a year. Note that condition E1 holds for the chosen values of
parameters ρ, α and T .

In this case, we can choose the jump value for the trinomial tree to be u = ν.
Numerical studies show that the optimal expected reselling reward values w(ε)(0,

(0, 0)) stabilize good enough for N � 15. For example, they take values 0.9961 and
0.9955 if, respectively, N = 15 and N = 50, for the model with parameters pointed
above. Note that the time needed for calculation of the approximate optimal expected
reward value in the case of N = 15 is about 2.5 s on an 1.73 GHz Intel� Pentium-M
processor, 1GB internal memory using Matlab�.

The above reward values should be compared with the expected reward corre-
sponding to the reselling at maturity that is equivalent to the execution of the option
at maturity. In this case, the expected reward is 0.7228 for the above model. Thus,
optimal reselling of the option before maturity increases the expected reward (for the
model with parameters pointed above) by about 25%.
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Figure 29.1. The optimal expected reselling rewards for the models with parameters r = 0.04;
S(0) = 10, μ = 0.02, σ = 0.2, 0.12 < α < 2.4, 0.05 < ν < 1, ρ = 0.3; and K = 10, T = 0.5

We also show in the figures below how the reselling reward depend upon parameters
of price and stochastic volatility processes. In Fig. 29.1, we show how the optimal
expected reselling reward depends upon parameters α and ν. We let α vary in the
interval (0.12, 2.4) and ν vary in the interval (0.05, 1). Other parameters take the same
values as in the above initial example. In this case, condition E1 is not violated for
all values of α in the above interval. We see that the optimal reselling reward is a
decreasing function of α and an increasing function of ν. In Fig. 29.2, we show how
the reselling reward depend upon parameters μ and σ. We let μ vary in the interval
(−0.5, 0.5) and σ vary in the interval (0.05, 1). Other parameters take the same values
as in the above initial example. We see that the optimal reselling reward is an increasing
function of both parameters μ and σ.

Let us also shortly comment alternative approaches to the problem. The complexity
of the model makes it problematic to get close analytic solutions. As far as always exist-
ing alternative of Monte Carlo based algorithms, they require, in the case of American
type options, to use discrete time-space approximations for the price processes. These
algorithms have a slow performance even for univariate price processes due to large
number of points at the corresponding time-space grids, as show the experimental stud-
ies realized, for example, in Jönsson [Jon01], [Jon05], Lundgren [Lun07], and Silvestrov
et al. [SGS99]. This problem is very much aggravated for bivariate price processes.
Also, the corresponding convergence results provided by strict proofs should be given.
These problems do require additional theoretical and experimental studies.
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Figure 29.2. The optimal expected reselling rewards for the models with parameters r = 0.04;
S(0) = 10, −0.5 < μ < 0.5, 0.05 < σ < 1, α = 1, ν = 0.2, ρ = 0.3; and K = 10, T = 0.5

In conclusion, we would like to note that the reselling of options is a new and
complex problem. We hope that the promising results presented in the paper will
stimulate further research studies in this area.
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Abstract: In this paper, we present a Bayesian framework for modeling uncertainty
about a population’s health state preferences. Such a framework is motivated by the
need to analyze preference-based measurement data that arise from evaluation of health
states by a sample of individuals. The Bayesian framework leads to population util-
ity estimation and health policy evaluation by introducing a probabilistic interpreta-
tion of the multiattribute utility theory (MAUT) models used in health economics.
In doing so, our approach combines ideas from the MAUT approach of Keeney and
Raiffa (“Decisions with Multiple Objectives-Preferences and Value Tradeoffs”, Wiley,
New York, 1976) and Bayesian view point to provide an alternate method of modeling
preferences.

Keywords and phrases: Bayesian analysis, Health economics, Markov chain, Monte
Carlo, Multiattribute utility

30.1 Introduction

Preference based measurement of health (PBMH) methods have been developed to
be used in economic evaluation of health policies. Use of preference based measures
requires quantification of health state preferences by a group of individuals. This pref-
erence data is used as a sample to develop an aggregate measure for the population
preferences. A recent overview of PBMH methods can be found in Brazier and Roberts
[BRA06]. The methods that quantify preference based measurement of health (PBMH)
are referred to as the health related quality of life measures (HRQoL). The methods
include

• Health Utilities Index (HUI) of Torrance et al. [TOR96]
• Quality of Well-Being (QWB) scale of Kaplan et al. [KAP88]
• Short Form (SF-6D) survey of Brazier, Roberts and Deverill [BRA02].

These measures are used to quantify a population’s preferences over health states
that have multiple dimensions. Thus, the measures are based on multiattribute evalua-
tion of states using preference weights and scores. They provide a single index number
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for each health state. Typically, an index value “1” denotes perfect health and “0”
denotes death. In the health economics literature, these index values are referred to
as utility. Elicitation of utility requires sophisticated procedures based on standard
gambles as discussed in Brazier and Deverill [BRA99]. A more simplified approach for
obtaining preference measures is to ask respondents to assign values to health states
directly and have the analyst convert these to utilities.

Preference based measures such as QWB and SF-6D use what is referred to as the
composite approach for estimation of the multiattribute utility function for the health
states. The composite approach involves direct elicitation of utility of multidimensional
health states and requires more health states than that can be evaluated by a single
respondent; see Brazier [BRA05]. Regression type models are used to extrapolate the
values of health states that are not included in the survey. An alternative for estimation
of the utilities for the health states is the decomposed approach employed in the HUI.
This method uses the MAUT framework of Keeney and Raiffa [KR76] and determines a
functional form for the multiattribute utility function of health states. The decomposed
approach is based on simplifying assumptions such as preferential independence and
utility independence; see for example, Keeney [K76]. The approach yields simpler forms
of utility functions and substantially reduces the valuation effort by decomposing the
problem into one-dimensional elicitation problems. In addition to providing evaluations
of all possible health states, the decomposed approach is also flexible in modeling
interactions using multiplicative utility functions. As noted by [BRA05], this is unlike
the composite approach where there is no standard method for determining the states
required to estimate a model with interaction terms. Hazen [HAZ04] describes how the
additive or multiplicative decomposition within QALYs can be constructed using the
independence concepts and discusses how they relate to HUI.

Both the composite and decomposed approaches provide us with a sample of health
state valuation data, that is, with health state utilities from a sample of individuals. The
objective is to estimate the health state utilities of the population based on this sample
and use the estimated population utility function to evaluate different health policy
alternatives. Statistical methods have been considered by earlier researchers such as
Dolan [DOL97] and Brazier et al. [BRA02]. In general, these approaches employed linear
models with normally distributed error terms. As pointed out by Brazier [BRA05], these
models, that used data from the composite approach, “have estimated crude summary
terms for interactions” and have required range of transformations to deal with highly
skewed data.

Most of the earlier models and associated statistical methods have used classical
sampling theoretic approaches. More recently, Bayesian approaches have been consid-
ered in the health economics literature. For example, nonparametric Bayesian models
are proposed by Kharroubi, O’Hagan and Brazier [KH05] and by Kharroubi et al.
[KH07] for HRQoL estimation of a population. Standard gambles are used by the
authors to elicit utilities of health states from the sample of individuals. Although a
sampling method is used by authors to avoid an individual going through large number
of gambles, the proposed composite approach still requires large number of evaluations
of health states. In view of this, following Musal et al. [OURS], we consider a paramet-
ric Bayesian approach and use a decomposed model in our framework. Our framework
consists of modeling attribute utilities, modeling attribute weights and using a multi-
attribute model for aggregation.
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In Sect. 30.2, we introduce a model for single attribute utilities. Using a decomposed
approach and an additive utility function, modeling of attribute weights is presented
in Sect. 30.3. We discuss Bayesian aggregation of attribute utilities and weights as well
as probabilistic evaluation of health state preferences in Sect. 3.4. Concluding remarks
are given in Sect. 3.5.

30.2 Bayesian Modeling of Attribute Utilities

Assume that preference ordering of the Kc + 1 levels with respect to each attribute
c = 1, . . . , C,

Xc,1 ≺ Xc,2 ≺ · · · ≺ Xc,Kc ≺ Xc,Kc+1 (30.1)

is identical for the population, where Xc,j denotes the jth level of a single attribute c.
We are interested in making inference about the unknown population utilities

u(Xc,2) < · · · < u(Xc,Kc), (30.2)

where u(Xc,1) = 0 and u(Xc,Kc+1) = 1. We may have a prior opinion on these values
and we are interested in updating this prior opinion based on the sample utility mea-
surements on the N individuals. In general, u(X i

c,j) = uic,j is the utility declared by
the i-th individual for attribute c at level j.

We focus on a single criterion and to reflect the ordering that applies to the popu-
lation we assume that for all individuals

0 < u2 < u3 < · · · < uK < 1. (30.3)

It is desirable to have a probability model for utility vectors ui = (ui2, . . . , u
i
K) which

is consistent with the ordering and flexible enough to reflect the diminishing utility
scenario encountered in many applications. As suggested in Musal et al. [OURS], the
ordered Dirichlet model can provide that kind of flexibility in describing different utility
scenarios. The ordered Dirichlet model has been previously used in reliability growth
modeling by Mazzuchi and Soyer [IEEE93] and Erkanli, Mazzuchi and Soyer [TECH98]
who pointed out such properties with respect to behavior of reliabilities over time. The
ordered Dirichlet model for the utility vector u = (u2, u3, . . . , uK) is given by

p(u | β, α) =
Γ (β)

∏K+1
j=2 Γ (βαj)

K+1
∏

j=2

(uj − uj−1)βαj−1, (30.4)

where u1 = 0 and uK+1 = 1 and the distribution is defined over the simplex (30.3).
The model parameters are β and α such that β > 0, αj > 0 and

∑K+1
j=2 αj = 1.

In the ordered Dirichlet model (30.4), the marginals are beta densities denoted as

(uj | β, α) ∼ Beta
(

βα∗
j , β(1 − α∗

j )
)

(30.5)

for j = 2, . . .K, where α∗
j =

∑j
k=2 αk, E[uj | β, α] = α∗

j and β is the precision
parameter where lower values are associated with a more diffused distribution of the
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utility level. As pointed out by van Dorpe, Mazzuchi and Soyer [JSPI97], for i < j, the
model implies that

(uj − ui) | β, α ∼ Beta
(

β(α∗
j − α∗

i ), β(1 − α∗
j + α∗

i )
)

. (30.6)

Thus, the changes in the adjacent utilities (uj − uj−1), for j = 2, . . . ,K + 1, follow a
beta distribution where the mean is given by

E[uj − uj−1 | β, α] = (α∗
j − α∗

j−1) = αj . (30.7)

It follows from the above that, αj can be interpreted as the expected increase in
utility as a result of going from attribute level Xj−1 to attribute level Xj whereas
α∗
j is the expected utility at attribute level Xj . We note that α∗

j is increasing with j,
implying that for the population we expect utility is an increasing function of the
attribute when high values of the attribute are desirable. If E[uj − uj−1 | β, α] = αj is
a decreasing sequence in j, then we expect that the marginal utility is diminishing as the
attribute level gets larger. In this case, we will have E[uj | β, α] = α∗

j is discrete concave
in j. Thus, the model is attractive in that it allows for incorporation of different prior
information about expected behavior of utilities into the analysis. Such prior beliefs
can be used in specification of the prior distribution of the parameters α and β.

In the Bayesian paradigm, uncertainty about all unknown quantities are described
probabilistically. Thus, completion of Bayesian modeling of attribute utilities requires
us to specify the prior distribution of α and β. We will denote the prior by p(β, α). It
is not unreasonable to assume that α and β are independent a priori. Since β is the
precision parameter, a reasonable prior distribution for β is the gamma distribution. As
pointed out by Musal et al. [OURS], in specifying the prior distribution of α, one can
use the properties of the ordered Dirichlet model discussed above. More specifically, if
we have prior beliefs about the monotonicity of αj ’s, then a distribution which reflects
that belief will be the appropriate choice. However, in modeling health state preferences,
one of the objectives is to infer about such monotonic behavior and thus, a prior which
does not force an ordering of αj ’s is more desirable. Since the ordered Dirichlet model
(30.4) requires that

∑K+1
j=2 αj = 1, a natural prior for α is the Dirichlet distribution

p(α | b, a) =
Γ (b)

∏K+1
j=2 Γ (baj)

K+1
∏

j=2

(αj)abj−1, (30.8)

where aj > 0 and b > 0 are specified parameters such that
∑K+1

j=2 aj = 1. Note that
aj ’s are the expected values of αj ’s and b is the precision parameter of the model.

30.2.1 Bayesian Analysis of Utilities

Our objective is to describe uncertainty about the population utility u = (u2, . . . , uK)
based on the information provided by the sample of N utility vectors

ui = (ui2, u
i
3, . . . , u

i
K), i = 1, . . . , N,

where ui’s are assumed to follow the ordered Dirichlet model (30.4). Thus, given sample
utilities uN = (u1,u2, . . . ,uN ) from the N individuals, we are interested in the poste-
rior predictive distribution p(u|uN ). The distribution p(u|uN ) describes our inferences
about population utilities for a given attribute.
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The posterior predictive distribution is obtained via the calculus of probability as

p(u|uN ) =
∫

β,α

p(u|uN , β, α)p(β, α|uN )dβdα. (30.9)

Using the conditional independence of u and uN , given β and α, (30.9) reduces to

p(u|uN ) =
∫

β,α

p(u|β, α)p(β, α|uN )dβdα, (30.10)

where p(u|β, α) is given by (30.4) and p(β, α|uN ) is the posterior distribution of the
parameters of the ordered Dirichlet model. Once sample utilities uN is available, un-
certainty about α and β is revised via Bayes’ rule

p(β, α|uN ) ∝ L(β, α; uN )p(β, α), (30.11)

where L(β, α; uN ) is the likelihood function based on the ordered Dirichlet distribution
(30.4). More specifically, we have

L(β, α; uN ) =
N
∏

i=1

[

Γ (β)
∏K+1
j=2 Γ (βαj)

(uij − uij−1)βαj−1

]

. (30.12)

The posterior distribution p(β, α|uN ) can not be obtained analytically for any choice
of the prior distributions discussed earlier. However, we can draw samples from the
posterior distribution using Markov chain Monte Carlo (MCMC) methods; see Musal
et al. [OURS] for details. Since p(β, α|uN ) is not analytically available, evaluation of the
posterior predictive distribution (30.10) requires use of Monte Carlo methods. Given
samples

(

β(s), α(s)
)S

s=1
from the posterior distribution p(β, α|uN ), we can approximate

(30.10) via the Monte Carlo average

p(u|uN ) ≈ 1
S

S
∑

s=1

p(u|β(s), α(s)). (30.13)

By using the predictive distribution we can make probability statements about utilities
at each of the attribute levels and approximate the population’s expected utility function
by plotting the E(uj |uN ) versus the attribute level Xj ’s. We can also provide posterior
probability bounds for the utilities.

30.3 Modeling Attribute Weights

The development in Sect. 30.2 is presented for a single attribute, that is, for attribute c,
with Kc+1 levels and observed utility vectors uic = (uic,2, . . . , uic,Kc

) for individuals i =
1, . . . , N . In general, for specifying the ordered Dirichlet model for the multiattribute
problem, all model parameters are indexed by c, that is, we actually have (βc, αc) with
prior p(βc,αc).
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If we have mutual utility independence of the attributes (see for example, [KR76]),
then the above development can be easily extended to C attributes. In this case, the
parameters (βc, αc) are assumed to be independent for c = 1, . . . , C and thus the
approach presented in Sect. 30.2 yields independent posterior predictive distributions
p(uc|uNc ) for c = 1, . . . , C. The mutual utility independence of the attributes justifies
the use of multiplicative multiattribute utility model as considered by Torrance, Boyle
and Hardwood [TOR82] for describing society’s preference for health states. Further-
more, if additive utility independence (see Keeney [K76]) can be justified, then the
multiattribute utility function can be written as

u(X1, X2, . . . , XC) =
C

∑

c=1

wcu(Xc), (30.14)

where wc’s are weights representing the relative importance of the attributes such that
0 < wc < 1 and

∑C
c=1 wc = 1.

In the multiattribute utility (MAU) function (30.14), u(Xc)’s are unknown utilities
whose posterior distributions are available to us via using Monte Carlo based methods.
The weight vector w = (w1, , w2, . . . , wC) is also an unknown quantity. Thus, from a
Bayesian perspective for given levels of X1, X2, . . . , XC , uncertainty about the MAU
needs to be described probabilistically. Such a development requires us to consider a
probability model for the attribute weight vector w. The model needs to be consistent
with the requirement that

∑C
c=1wc = 1 and that the weights are negatively correlated.

An appropriate probability model for this case is the Dirichlet distribution

p(w | κ, γ) =
Γ (κ)

∏C
c=1 Γ (κγc)

C
∏

c=1

(wc)κγc−1, (30.15)

where γ = (γ1, . . . , γC). It is well known that all the marginal distributions are Beta
densities, that is,

(wc | κ, γ) ∼ Beta
(

κγc, κ(γ0 − γc)
)

, (30.16)

where γ0 =
∑C
c=1 γc = 1. Prior distributions of the unknown parameters κ and γ can

be specified to reflect these properties. For example, the prior for γ can be specified as
a Dirichlet distribution. Since γc’s represent expected attribute weights in the model,
the prior parameters can be chosen to reflect our best guesses about attribute weights
in the population. As before, a gamma density is a reasonable prior for the precision
parameter κ.

Health state preference data typically include attribute weights wi = (wi1, w
i
2, . . . ,

wiC), i = 1, . . . , N , elicited from the sample of N individuals (see for example, [OURS]).
As before, we treat the N weight vectors as the samples from the Dirichlet distribution
in (30.15). Thus, it is possible to develop Bayesian machinery to revise our uncertainty
based on such data.

If we specify, p(κ, γ), as the prior distribution for κ and γ then given sample weights,
wN , from N individuals, the posterior distribution is obtained via

p(κ, γ|wN ) ∝ L(κ, γ; wN )p(κ, γ), (30.17)

where the likelihood function, L(κ, γ; wN) is based on the Dirichlet model (30.15).
The posterior distribution (30.17) can not be analytically obtained for any reasonable
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choice of the prior p(κ, γ). As before, MCMC methods can be used to draw samples
from (30.17). As in the case of attribute utilities of Sect. 30.2, the objective is to make
inference about the attribute weight vector of the population. Thus, we are interested
in obtaining the posterior predictive distribution

p(w|wN ) =
∫

p(w|κ, γ)p(κ, γ|wN )dκdγ. (30.18)

The integral in (30.18) can not be obtained analytically, but given samples
(

κ(s), γ(s)
)S

s=1
from the posterior distribution (30.17) we can approximate it via

the Monte Carlo average

p(w|wN ) ≈ 1
S

S
∑

s=1

p(w|κ(s), γ(s)), (30.19)

where p(w|κ(s), γ(s)) is the Dirichlet density. Note that once we simulate the weight
vectors w(s), for s = 1, . . . , S, from the Dirichlet distribution, then we can make prob-
ability statements about attribute weights such as Pr(wi > wj |wN ). In other words,
we can infer probabilistically if certain attributes are more important than the others
for the population.

30.4 Bayesian Evaluation of Health States

In Sects. 30.2 and 30.3, we have presented a Bayesian framework for modeling attribute
utilities and weights. In so doing, we have discussed how to obtain two sets of posterior
samples, that is, sample of utilities for given attributes and attribute weights. Using
these, we can make probability statements using the MAU function (30.14). Given
samples from the posterior predictive distributions p(uc|uNc ) for c = 1, . . . , C and
p(w|wN ), we can evaluate the population utility distribution for a specific health state.

For a specific health state, Ai with the attribute levels, (X1,Ai , ..., XC,Ai), we can
obtain the probability distribution of the corresponding MAU via the Monte Carlo
evaluation of u (X1,Ai , ..., XC,Ai) using (30.14). For Ai, we can write

u (X1,Ai , ..., XC,Ai) =
C

∑

c=1

wcu(Xc,Ai), (30.20)

and using the posterior samples we can obtain a histogram estimate of the posterior
distribution of u (X1,Ai , ..., XC,Ai). In a similar manner, we can make probability state-
ments on whether health state Ai is preferred to state Aj in the population, that is,

Pr(Ai � Aj |uN1 , . . . ,uNC ,wN ).

This probability is equivalent to

Pr
{

u (X1,Ai , . . . , XC,Ai) > u
(

X1,Aj , . . . , XC,Aj

) |uN1 , . . . ,uNC ,wN
}

(30.21)

which can be approximated using the posterior samples.
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The literature on the preference based measures of health generally has considered
other alternatives to the additive model. A common method of decomposition that
is used to account for potential interactions in attribute utilities is the multiplicative
utility model. Musal et al. [OURS] considered a multiplicative model and developed a
Bayesian framework similar to what is presented here.

30.5 Concluding Remarks

In this paper, we have presented a Bayesian framework for modeling uncertainty about
a population’s health state preferences. Our development is based on the composite ap-
proach as in Torrance, Boyle and Hardwood [TOR82]. The Bayesian framework involves
modeling both the attribute utilities and attribute weights and provides probabilistic
evaluation of health state preferences. Since our focus has been on the Bayesian per-
spective here, computational issues involving implementation of MCMC methods for
developing posterior inferences are not discussed in the paper. For this we refer the
interested reader to Musal et al. [OURS] where such methods are applied in analysis
of actual health state preference data.

It is possible to consider extensions of the models proposed here. For example,
the precision parameters βc’s, in modeling utilities, can be assumed to be constant
across the attributes. This can be one way to impose a dependence structure for dif-
ferent attribute utilities. Other possible extensions include incorporation of covariate
information in the utility and attribute weight models and taking into consideration
heterogeneity of individuals. Such issues have been considered in [OURS].
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Abstract: In this paper, we discuss the basic tools for modelling in Biomedicine and
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optimal modelling issues are also addressed. The last section is devoted to various ap-
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31.1 Introduction

Statistical theory and applications are developing an increasingly close relationship.
Statistics cannot flourish without data whilst data cannot be handled without appro-
priate methodological techniques.

Statistical modelling or model building is an activity aimed at identifying the
generating mechanisms or probability distributions that produce a set of observed data.
Although, in some very special cases, the physical data generating mechanism suggests
a good probability model, in general, we do not have enough knowledge of the machin-
ery that generates the data to convert it into a probability distribution. Practitioners
know that one can never find the ‘true’ data generating distribution, so that its iden-
tification must be regarded as an unreachable task. This leads us to estimate the true
model by approaches based on information or divergence measures. Starting with the
reasonable idea that in general no model in a collection of models can capture all the
features in the data we should look for a model within the collection selected that
does it best. In order to formalize this concept, Akaike [Aka73] assumed that the ‘true
model’ exists but is not in the collection selected. Then, one searches within the collec-
tion of candidate models for that model which is “closest” to the true. An information
theoretic approach needs to be incorporated into the analysis to measure the close-
ness or the distance between each candidate model and the true but unknown model.
Statistical modelling is associated with the Model selection theory and the companion
concept of tests of fit, both of which are associated with the information and divergence
measures.
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The information or divergence (or distance) measures are used as indices of
similarity or dissimilarity between populations. They are also used to measure the
distance or the discrepancy between two functions or two populations. Finally, they
are used either to measure mutual information concerning two variables or to construct
model selection criteria.

In this paper, we discuss the basic tools for modelling in Biomedicine and Reliability.
In particular, in Sect. 31.2.1 we present the divergence measures and in Sect. 31.2.2 the
Tests of Fit. Optimal modelling issues are addressed in Sect. 31.2.3. The last section is
devoted to various applications in Reliability, Biomedicine, Hydrology, and Insurance
and Actuarial Science.

31.2 Modelling in Biomedicine and Reliability

31.2.1 Modelling Tools: Divergence Measures

Measures of divergence between two probability distributions have a very long history.
One could consider as pioneers in this field the famous scientists of the 20th century,
Pearson, Mahalanobis, Lévy and Kolmogorov. In our days the most popular measure of
divergence is considered to be the Kullback–Leibler measure of divergence introduced
in the 50’s [KL51]. A well known family of measures is the ϕ-divergence known also as
Csiszar’s measure of information which was introduced and investigated independently
by Csiszár [Csz63] and Ali and Silvey [AS66] and is defined by

ICX(f, g) =
∫

gϕ(f/g)dμ,

where μ is the Lebesgue measure or a counting measure and ϕ is a convex function
on [0,∞) such that ϕ(1) = 0 and ϕ′′(1) �= 0 with the conventions 0ϕ(0/0) = 0 and
0ϕ(u/0) = limu→∞[ϕ(u)/u], u > 0. For various functions ϕ the measure takes different
forms. Members of this family are among others, the Kullback–Leibler measure as well
as Pearson’s X2 divergence measure.

Measures of divergence can be used in statistical inference for the construction of
test statistics for tests of fit [ZFP90, Zha02, CLY04] or in statistical modelling for the
construction of model selection criteria like the Kullback–Leibler measure which has
been used for the development of various criteria [Aka73,Cav04,YTM06].

A unified analysis has been provided by Cressie and Read [CR84], who introduced
for both the continuous and the discrete case a family of measures of divergence known
as power divergence family of statistics that depends on a parameter λ and is used
for goodness-of-fit tests for multinomial distributions. The family is a member of the
Csiszar family with

ϕ(λ) =
xλ+1 − x− λ (x− 1)

λ (λ+ 1)
, λ �= 0,−1.

The Cressie and Read family includes for different values of λ among others, the well
known Pearson’s X2 divergence measure and for multinomial models the loglikelihood
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ratio statistic. It should be noted that for the appropriate limit of λ to 0 the above
measure becomes the Kullback–Leibler measure.

A new measure of divergence known as the BHHJ divergence measure, was recently
introduced by Basu et al. [BHHJ98]. The measure which is given by

IaX (f, g) =
∫ {

g1+a (z) −
(

1 +
1
a

)

f (z) ga (z) +
1
a
f1+a (z)

}

dz, a > 0 (31.1)

and depends on a positive index a which controls the trade-off between robustness and
efficiency when the measure is used as an estimating criterion for robust parameter
estimation. Basu et al. [BHHJ98] showed that values of a close to zero provide param-
eter estimators with good robust features without significant loss in terms of efficiency.
Note that for the appropriate limit of a to 0 the measure reduces to the Kullback-
Leibler measure. Note also that the BHHJ measure has been recently generalized to
the (ϕ, α)-family by Mattheou, Lee & Karagrigoriou [MLK09] as follows

IaX (g, f) = Eg

(

ga(X)ϕ
(f(X)
g(X)

))

=
∫

g1+a (z)ϕ
(f(z)
g(z)

)

dz, a > 0, (31.2)

where μ represents the Lebesgue measure and ϕ belongs to a class Φ of convex
functions such that ϕ(1) = 0, ϕ′(1) = 0, and ϕ′′(1) �= 0 with the conventions
0ϕ(u/0) = limu→∞[ϕ(u)/u], u > 0 and 0ϕ(0/0) = 0.

As it was mentioned earlier measures of divergence can also be used in model
selection. Since some measures of divergence have been proposed as distinguishability
indices between two distributions which are far from each other or from two distribu-
tions which are close, they can be used for the construction of model selection criteria.
A model selection criterion can be considered as an approximately unbiased estimator
of the expected overall discrepancy, a nonnegative quantity which measures the dis-
tance between the true unknown model and a fitted approximating model belonging
to a collection of candidate models. If the value of the criterion is small for a specific
member of the candidate class, then the corresponding approximated model is good.
The Kullback–Leibler divergence was the measure used by Akaike [Aka73] to develop
the Akaike Information Criterion (AIC).

Similar measures of entropy and divergence are useful in reliability and survival
analysis models. Specific measures have been introduced by Ebrahimi and Kirmani
[EK96] between the lifetimes X and Y of two items at time t. In survival analysis
or in reliability, we might know the current age t of a biomedical or technical system
which we need to take into consideration when we compare two systems or populations.
Ebrahimi and Kirmani [EK96] achieved this by replacing the distribution functions of
the random variables X and Y in the Kullback–Leibler divergence of X and Y , by
the distributions of their residual lifetimes. Di Crescenzo and Longobardi [DCL04]
define a dual measure of divergence which constitutes a distance between past life
distributions.

Let f(x), F (x) and F (x) = 1 − F (x) be the density function, the cumulative dis-
tribution function and the survival function of X , respectively. Let also g(x), G(x)
and G(x) = 1 − G(x) be the density function, the cumulative distribution function
and the survival function of Y respectively. Recently, Vonta and Karagrigoriou [VK10]
have proposed a new family of divergence measures for lifetime distributions. More
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specifically they proposed two new measures of discrepancy which are based on the
Csiszar’s ϕ-divergence family, namely, the ϕ-distance between residual lifetimes

IϕX,Y (t) =
∫ ∞

t

g(x)
G(t)

ϕ

(

f(x)/F (t)
g(x)/G(t)

)

dx, t > 0 (31.3)

and the ϕ-distance between past lifetimes

I
ϕ

X,Y (t) =
∫ t

0

g(x)
G(t)

ϕ

(

f(x)/F (t)
g(x)/G(t)

)

dx, t > 0 (31.4)

where the function ϕ belongs to a class of functions Φ with properties
(1) ϕ(x) is continuous, differentiable and convex for x � 0
(2) ϕ(1) = 0
(3) ϕ′(1) = 0.
From the above assumptions we deduce that ϕ(x) � 0 for all x > 0 and ϕ′(x) > 0

for x > 1 and ϕ′(x) < 0 for x < 1. The following theorem provides an upper bound for
ICX , IϕX,Y (t) and I

ϕ

X,Y (t) measures.

Theorem 1. For the measures ICX(f, g), IϕX,Y (t) and I
ϕ

X,Y (t) we have that

(i) ICX(f, g) < ϕ(0) + lim
r→∞

ϕ(r)
r

, (31.5)

(ii) IϕX,Y (t) < ϕ(0) + lim
r→∞

ϕ(r)
r

, (31.6)

and

(iii) I
ϕ

X,Y (t) < ϕ(0) + lim
r→∞

ϕ(r)
r

. (31.7)

The following theorems provide the ordering of measures between r.v’s X1, Y and
X2, Y . Similar results can be established for the ordering between Y1, X and Y2, X .

Theorem 2. Let three random variables X1, X2 and Y have p.d.f ’s f1, f2 and g re-
spectively. If Xt

2 �st X
t
1 and f1(x)/g(x) increasing in x then

IϕX1,Y
(t) � IϕX2,Y

(t), t > 0. (31.8)

If Xt
1 �st X

t
2 and f2(x)/g(x) increasing in x, the inequality is reversed.

Theorem 3. Let three random variables X1, X2 and Y have p.d.f ’s f1, f2 and g re-
spectively. If X2,t �st X1,t and f1(x)/g(x) increasing in x then

I
ϕ

X1,Y
(t) � I

ϕ

X2,Y
(t), t > 0. (31.9)

If X1,t �st X2,t and f2(x)/g(x) increasing in x, the inequality is reversed.
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31.2.2 Modelling Tools: Tests of Fit

For goodness of fit tests the focus is on multinomial distributions. More specifically,
for two multinomial distributions P = (p1, . . . , pm) and Q = (q1, . . . , qm) with sample
space Ω = {x : p(x) · q(x) > 0} and p(x) and q(x) the probability mass functions of the
two distributions, the discrete version of the (ϕ, α)-family of divergences is given by

da ≡ da (Q,P ) = Eq

(

qa(X)ϕ
(p(X)
q(X)

))

≡
m
∑

i=1

q1+a
i

ϕ

(

pi
qi

)

, (31.10)

with ϕ(·) ∈ Φ defined in (31.2). Observe that for

ϕ(u) = Φ1(u) = u1+a −
(

1 +
1
a

)

ua +
1
a

measure (31.10) reduces to the discrete version of the BHHJ measure corresponding to
(31.1) given by

da(Q,P ) =
m
∑

i=1

p1+a
i

−
(

1 +
1
a

) m
∑

i=1

qip
a
i

+
1
a

m
∑

i=1

q1+a
i

. (31.11)

Tests of fit have a very long history with recent contributions based on likeli-
hood ratio [Zha02, Mar06], the multivariate settings [SF84, ZFP90], the survival data
[VA07, HV04, CLY04] and the various modelling settings [AN94, BN02]. If we have to
examine whether the data (n1, n2, ..., nm) come from a known multinomial distribution
M (N,P0), where P0 = (p10, p20, ..., pm0) and N =

∑m
i=1 ni, a well known test statistic

is the chi-square goodness of fit test statistic. Mattheou and Karagrigoriou [MK10], for
any function ϕ ∈ Φ such that ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) �= 0, proposed the following
statistic for the above goodness of fit test:

X2
a ≡ 2Nd̂a

ϕ′′ (1)
, d̂a = df (P0, P̂ ) =

m
∑

i=1

pi0
1+aϕ

(

p̂i
pi0

)

(31.12)

where p̂i the MLE of pi. The above test statistic for ϕ ∈ Φ as in (31.11), constitutes the
test statistic associated with the BHHJ measure. Mattheou and Karagrigoriou [MK10]
have showed that the above test statistic is superior to the well known tests including
the popular X2 Pearson’s test.

The theorem below provides the asymptotic distribution of the test statistic (31.12).

Theorem 4. Let (n1, ...., nm) ∼ M (N,P ) with P = (p1, ..., pm) and pi, i = 1, ...,m

unknown parameters. Let also W =
m
∑

i=1

N
pi0

(

ni

N
− pi0

)2
. Under the null hypothesis H0 :

pi = pi0, i = 1, ...,m we have:

•
(

min
i
pai0

)

W ≺st

m
∑

i=1

Npa
i0

pi0

(

ni

N − pi0
)2 ≺st

(

max
i
pai0

)

W

• X2
a −

m
∑

i=1

Npa
i0

pi0

(

ni

N − pi0
)2 P−→ 0 and

• the distribution of (31.12) is estimated to be approximately cX2
m−1, where

c = 0.5
(

min
i
pa

i0
+ max

i
pa

i0

)
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where X2
m−1 is the chi-squared distribution with m− 1 degrees of freedom and ≺st the

symbol for stochastic ordering.

The power of the test is given below.

Proposition 1. Under the assumptions of Theorem 4 and for the alternative hypothesis
Ha : pi = pib, i = 1, . . . ,m the power of the test is asymptotically equal to

γa = P

(

Z ≥ (2
√
Nσa)−1

(

ϕ′′ (1) cX2
m−1,α + 2Nϕ (1)

m
∑

i=1

p1+a
i0

− 2Nda
)

)

(31.13)

where Z is a standard Normal random variable, X2
m−1,α the αth percentile of the X2

m−1

distribution and

σ2
a =

m
∑

i=1

pib

[

pai0ϕ
′
(

pib
pi0

)]2

−
⎡

⎣

m
∑

j=1

pibp
a
i0ϕ

′
(

pib
pi0

)

⎤

⎦

2

.

It is important to point out that any type of data can be viewed as multinomial
data by dividing the range of data into m categories. In that sense, data related to
biomedicine, engineering and economics and finance that usually come from continuous
distributions can be transformed into multinomial data and goodness of fit based on
the above (discrete) measures can be applied. The proper modelling of such data plays
a key role in determining the optimum goodness of fit test. In that sense the search
for the ideal value of m, namely the optimal number of categories is vital so that the
resulting test of fit for various null hypotheses given by

X2
a ≡

2N
m
∑

i=1
pi0

1+aϕ
(

p̂i

pi0

)

ϕ′′ (1)
(31.14)

will result in achieving

(a) The nominal size.
(b) The maximum power for a wide range of possible alternatives.

Examples of such continuous distributions are the exponential, lognormal, Gamma,
Inverse Gaussian, Weibull, Pareto, and Positive Stable distributions. For instance, the
family of two-parameter inverse Gaussian distribution (IG2) is one of the basic models
for describing positively skewed data which arise in a variety of fields of applied re-
search as cardiology, hydrology, demography, linguistics, employment service, etc. Such
examples include the repair times of an airborne communication transceiver [CF77]
and quality characteristics ([Sim03,ME06]). Recently, Huberman et al. [HPPL98] have
argued and demonstrated the appropriateness of the inverse Gaussian family for study-
ing the internet traffic and in particular the number of visited pages per user within
an internet site. Most applications of IG2 are justified on the fact that the IG2 is the
distribution of the first passage time in Brownian motion with positive drift. Further-
more, distributions like the Weibull, the Positive Stable and the Pareto are frequently
encountered in survival modelling. The main problem of determining the appropriate
distribution is extremely important for reducing the possibility of erroneous inference.
In addition, the existence of censoring schemes in survival modelling makes the deter-
mination of the proper distribution an extremely challenging problem. Finally, distri-
butions like the exponential, the Gamma, the lognormal and others are very common
in lifetime problems.
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31.2.3 Optimal Modelling

The asymptotic distribution of any goodness of fit test statistic based on a divergence
measure, say FT is given by (see e.g. [ZFP90,MK10])

FT = Fχ2
m−1

+ o(1).

It is possible to provide techniques to improve the accuracy of the proposed test statis-
tics which are indexed by a positive parameter a. More specifically, in addition to
the asymptotic distribution other approximations of the exact distribution of the new
family of test statistics can be provided. The methods that have been introduced and
widely used in the last three decades, provide:

(a) The test statistic with the first three moments as close as possible to the first three
moments of the asymptotic distribution.

(b) The corrected test statistic which has mean and variance equal to the mean and
variance of the asymptotic distribution.

(c) The second order approximation to the exact distribution where the second order
component from the Remainder term of the convergence to the asymptotic distribu-
tion is extracted. Note that this second order component was obtained by Yarnold
[Yar72] for the chi-square test statistic under the null hypothesis (the approxi-
mation consists of a term of multivariate Edgeworth expansion for a continuous
distribution and a discontinuous term), by Siotani and Fujikoshi [SF84] for the
likelihood ratio test statistic and Freeman–Tukey test statistic, by Read [Rea84]
for the power-divergence test statistic and by Menéndez et al. [MPPP97] for the
Csiszar-family.

These approximations are useful in an attempt to improve the accuracy of the
proposed test statistics especially when the sample size is not large. Using Taylor
expansions one can identify the optimum values of the index a so that the convergence
rate to the corresponding moments of the asymptotic distribution will be the fastest
possible. Hence, it is expected that the resulting optimum test will produce sufficiently
accurate results when the asymptotic distribution is used. Here we focus on the first
method only and for the test statistic

Iφn (p̂,p0) =
2N

m
∑

i=1
pi0φa

(

p̂i

pi0

)

φ′′a (1)
(31.15)

with φa ∈ Φ which is the discrete analogue of ICX or equivalently it is a special case of
(31.15) with a = 0.

Pardo [Par06] has established that

E
(

Iφa
n (p̂,p0)

)β
= E

(

χ2
m−1

)β
+

1
n
fβφa

+O
(

n−3/2
)

, β = 1, 2, 3. (31.16)

According to (31.16), fβφa
controls the speed at which the first exact three central

moments of Iφn (p̂,p0) converge to the corresponding moments of the χ2
m−1 distribution.

The function φa for which fβφa
= 0, β = 1, 2, 3, will be the best. So, we need to find

under what conditions these quantities converge faster to 0, taking into consideration
the value of m.
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If now we consider the equiprobable null hypothesis

H0 : P = P0 = (1/m, . . . , 1/m)′,

we have m2 =
m
∑

j=1
(pj0)−1

. However for m increasing the roots of the equation f1
φa

= 0

converge to the roots of the equation

4φ′′′a (1) + 3φ(4)
a (1) = 0, for φ′′a (1) �= 0, (31.17)

since, in this case, f1
φa

can be written as

4φ′′′a (1)
(

2 − 3m+m2

1 − 2m+m2

)

+ 3φ(4)
a (1) = 0.

Then the roots of this last equation converge to the roots of (31.17) as m→ ∞. Similar
arguments can be applied to f iφa

= 0, i = 2, 3. If we consider the Cressie and Read
family of the power-divergence test statistics, φa = φ (λ), we have that the roots of the
equation (31.17) are λ = 1 and λ = 2/3. These values were found directly by Read and
Cressie [RC88].

Let

ϕa(u) ≡ Φ1,a (u) =
1

1 + a

(

u1+a −
(

1 +
1
a

)

ua +
1
a

)

=
1

(1 + a)
Φ1(u), a ∈ R.

(31.18)

The associated Csiszar’s family of tests statistics has the expression

IΦ1,a
n (p̂,p0) =

2n
a (a+ 1)

m
∑

j=1

pj0

{

a

(

p̂j
pj0

)1+a

− (a+ 1)
(

p̂j
pj0

)a

+ 1

}

. (31.19)

It is observed immediately that IΦ1,1
n (p̂,p0) is the chi-square test statistic.

Proposition 2. The rate of convergence of the moments of the test statistic
I
Φ1,a
n (p̂,p0) to the moments of the χ2

m−1 is optimum for a = 1 or a = 10/9.

It is important to know how large m has to be for using the roots a = 1 and
a = 10/9. The solutions for the f1

Φ1,a
are given in Table 31.1 as the number of classes

m increases and
m
∑

j=1
(pj0)−1 changes. In particular, we have considered, for

m
∑

j=1
(pj0)−1,

the values m2, m3, m4 and m5.
For the function Φ1,a(·) we conclude the following: For m � 20 all roots are within

±0.05 of the limiting roots a = 1 and a = 10/9. Therefore, for m > 20 and for the
choices a = 1 or a = 10/9 the convergence of the first moment of the test statistic to the
corresponding moment of a chi-square random variable with m− 1 degrees of freedom
is faster. The range [1, 1.5] is optimal for all values of m which are not too small. For
small m one should use the values given in Table 31.1.
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Table 31.1. Roots (a1 < a2) for f1
Φ1,a

= 0

S S = m2 S = m3 S = m4 S = m5

m a1 a2 a1 a2 a1 a2 a1 a2

2 1 2.000000 1 1.288889 1 1.179487 1 1.141762

3 1 1.555556 1 1.191919 1 1.134503 1 1.118581

4 1 1.407407 1 1.157895 1 1.121821 1 1.113733

5 1 1.333333 1 1.141762 1 1.116883 1 1.112252
10 1 1.209877 1 1.119266 1 1.111913 1 1.111191

20 1 1.157895 1 1.113233 1 1.111217 1 1.111116

40 1 1.133903 1 1.111653 1 1.111125 1 1.111111

50 1 1.129252 1 1.111460 1 1.111118 1 1.111111

100 1 1.120090 1 1.111199 1 1.111112 1 1.111111

200 1 1.115578 1 1.111133 1 1.111111 1 1.111111

500 1 1.112892 1 1.111115 1 1.111111 1 1.111111

700 1 1.112383 1 1.111113 1 1.111111 1 1.111111

1000 1 1.112001 1 1.111112 1 1.111111 1 1.111111

31.3 Applications

Applications of the above proposed models and methods can be found in Insurance
and Actuarial Science, in Reliability and Engineering Systems, in Accelerated Lifetime
Models, in Biomedicine and Biostatistics, in Hydrology, etc. Some types of such appli-
cations are briefly presented below:

Insurance and Actuarial Science

Let us assume that the expected frequency of claims varies within the portfolio. Let
us further assume that any particular risk in the portfolio has a Poisson distribution
of claim frequencies with mean θ which is itself a random variable with distribution
representing the expected risks inherent in the given portfolio. The unconditional distri-
bution of claim frequencies of an individual drawn from the portfolio is mixed Poisson.
One interesting distribution for the mean θ is the Inverse Gaussian which has thick tails
and provides the advantage of having closed form expression for the moment generating
function. It is considered to be a reasonable distribution for modelling in many insur-
ance situations. Such Poisson Inverse Gaussian models are appropriate in bonus-malus
systems in the insurance industry [Tre92].

Similar models like the Exponential Inverse Gaussian model are also frequently used
in describing the amount paid in a contract. The mean of the exponential distributions
assumed follows the Inverse Gaussian distribution although the Gamma distribution
may also be considered as an adequate candidate.

Accelerated Life Time Models

(a) Shelf Life Failures. The distribution of the shelf life of a product by sensory
evaluation is a key to the improvement of the method of estimation of shelf life. The
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definition of time to failure in sensory testing is purely subjective. The mean time to
failure based on simple averages is biased by the inclusion of unfailed data. This is
often overcome by defining failure time as the time required for a sample to reach a
median or an average panel score of 3.5 on a seven-point rating scale. In a shelf life
test, a sample of n items of a product is evaluated for failures at predesignated periods,
and the age to failure is recorded. When the allotted experimental time elapses, the
ages of the samples that did not fail are also recorded. The total experimental time
is chosen by the examiner. Thus, life testing produces two sets of data: the times to
failure of the flawed items and the running times of the unflawed items. Data sets of
shelf lives of several products have been examined by Gacula and Kubala [GK75], Folks
and Chhikara [FC78] and O’Reilly and Rueda [OR92].

In such cases, the recording failures are based on the average panel score of 3.5 on a
seven-point off-flavor rating scale. The contribution from the presence of yeasts and high
bacterial count, rendering the product unsuitable for taste, was also a factor. Either the
lack of samples or the expiration of the total time from the date of production was a
factor in deciding the running time, with the samples obtained from the manufacturer
and sent to the laboratory for sensory testing. Such data are usually analyzed using the
normal, log-normal, exponential, Weibull, and extreme-value distributions with limiting
success. On the other hand some statistical techniques identify the IG2 as a good fit
while others fail to do so. New advanced tests of fit are required to show beyond any
doubt the appropriateness of the IG2 distribution.

(b) Endurance of Ball Bearings. Ball bearings can be used in a life test study by
measuring in millions the revolutions to failure. Similar examples include the hours of
operation of light bulbs.

Reliability and Engineering

(a) Traffic Data. The length of intervals between the times at which vehicles pass a
point on a road in seconds are recorded and used for a life test study.

(b) Machine Operation Data. The operating hours between successive failures of
aircondition units in aircrafts or in hospital operating rooms.

(c) Occupational Exposure Concentrations. In manufacturing, workers are ex-
posed to fluids (often called metalworking fluids, MWF) which are used during ma-
chining and grinding to prolong the life of the tool, carry away debris, and protect the
surfaces of work pieces. These fluids reduce friction between the cutting tool and the
work surface, reduce wear and galling, protect surface characteristics, reduce surface
adhesion or welding and carry away generated heat. Workers can be exposed to MWFs
by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs
by dipping the hands into the fluid, splashes, or handling workpieces coated with the
fluids. The amount of mist generated (and the resulting level of exposure) depends on
many factors: the type of MWF and its application process; the MWF temperature;
the specific machining or grinding operation; the presence of splash guarding; and the
effectiveness of the ventilation system in capturing and removing the mist. Substantial
scientific evidence indicates that workers currently exposed to MWF aerosols have an
increased risk of respiratory (lung) and skin diseases. These health effects vary based
on the type of MWF, route of exposure, concentration, and length of exposure. Occu-
pational exposure concentrations are generally assumed to vary in an Inverse Gaussian
or log-normal manner.
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Hydrology

Precipitation and Storage. Precipitation data from a certain geographic area and
the amount of water maintained in a dam and its discharge provide interesting and
important examples which can be analysed by distributions such as the ones discussed
here. The water in a dam is a well known storage problem where the dam collects
irregularly amounts of water and discharges water (usually) at a steady rate except
when it is empty.

Biomedicine

(a) Survival Modelling. Many failure time data in epidemiological studies are si-
multaneously truncated and interval-censored. Interval-censored data occur in grouped
data or when the event of interest is assessed on repeated visits. Right and left cen-
sored data are particular cases of interval-censored data. Right truncated data occur in
registers. For instance, an acquired immune deficiency syndrome (AIDS) register only
contains AIDS cases, which have been reported. This generates right-truncated samples
of induction times. Recently, Huber-Carol and Vonta [HV04] introduced frailty models
in the case of arbitrarily censored and truncated data and focused on estimation of the
parameter of interest as well as the nuisance parameter of their model.

The concept of frailty models was introduced by Vaupel et al. [VMS79] who studied
models with Gamma distributed frailties. There are many frailty distributions one could
consider, like the Gamma which corresponds to the well-known Clayton–Cuzick model
[CC85, CC86], the Inverse Gaussian and the Positive Stable. The choice of Gamma is
the most popular; however, due to its mathematical convenience. The determination
of appropriate regression parameters on frailty models plays a key role in describing as
accurately as possible the AIDS data. As a result, hypothesis testing about the regres-
sion parameter of the frailty model is of particular interest and should be investigated
in different situations such as the case of independent and dependent covariates, the
misspecification of the truncated proportion of the population and the misspecification
of the frailty distribution producing the data. The performance of such tests of fit is
based on the determination of the asymptotic distribution of the proposed test statistic
under both the null and the alternative distributions.

(b) Length of Hospital Stay. Description of length-of-hospital stay for certain types
of illness and, particularly, for psychiatric illnesses can be examined under the present
setting. Some preliminary research on schizophrenic patients released from hospital
show that although there is a significant departure from the IG2 distribution, the fit
is still quite good considering the difficulty which is experienced generally in finding
acceptable theoretical models for psychiatric hospital-stay data.
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Abstract: The computer approach to the investigation of estimation methods and
statistical tests is considered as an effective technique for developing apparatus of ap-
plied mathematical statistics. It has been shown that basing on the considered approach
and software system one can investigate statistical properties of estimates for distri-
bution parameters including estimates by grouped and censored samples. The statistic
distributions of nonparametric goodness-of-fit tests in testing composite hypotheses
have been investigated. The statistic distributions and the power of χ2 goodness-of-fit
tests have been investigated depending on the number of intervals and the grouping
method. A number of tests for deviation from the normal distribution law have been
investigated. Homogeneity tests (for testing hypotheses about equality of means, equal-
ity of variances and homogeneity of distributions) have been studied. Various classical
tests have been investigated in case of non-normal distributions of observations.

Keywords and phrases: Computer simulation, Nonparametric goodness-of-fit tests,
χ2 goodness-of-fit tests, Normality tests, Tests for homogeneity of distributions, Tests
for homogeneity of means, Tests for homogeneity of variances, The test power

32.1 Introduction

The practice of using statistical analysis methods in applications is full of various prob-
lems whose statements are not described within the framework of classical assumptions.
A wide range of statistical methods are based on the assumption of measurement error
normality. Under real conditions normality and often some other assumptions are not
satisfied. The use of classical methods of mathematical statistics in such situations can
turn out to be incorrect.

Many classical results have an asymptotical nature. At the same time in practice
one usually works with samples of a limited size. The application of asymptotical results
is not always valid for limited sample sizes.

The form of data (measurements) registration doesn’t often conform to complete
samples considered in mathematical statistics textbooks. Actually, samples of
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observations can be grouped, censored, partially grouped or interval. Mathematical
techniques must give an ability to analyze data in any form and must take into account
this form and not to neglect it.

As a rule revealing fundamental statistic regularities in nonstandard conditions is
a complicated problem for researchers. And the analytical methods for investigating
properties of statistical estimates and test statistic distributions are very difficult and
as a result of their complexity don’t allow researchers to solve a great number of prob-
lems. The best way out is to use the numerical approach that is computer modeling
of statistical regularities under conditions which simulate some real situations of mea-
surement taking. Then mathematical models approximating the regularities obtained
are constructed. Such an approach allows us to obtain good results in dealing with
problems which are difficult to solve by analytical methods only. That is why com-
puter simulation methods for statistical regularity analysis are becoming more and
more popular.

This paper is devoted to the consideration of results obtained in various chapters
of applied mathematical statistics with usage of the developed computer approach
and software system meant for research of statistical regularities and statistical data
analysis.

32.2 The Investigation of Parameter Estimates Properties

It has been shown in [Lem97a, Lem97b] that the usage of data grouping in tasks of
distribution model identification enables to obtain robust estimates, eliminating an in-
fluence of gross measurement errors existed in samples. And the usage of asymptotically
optimal grouping, for which losses of the Fisher information are minimized, enables to
obtain estimates with good asymptotical properties.

The Fisher information losses caused by sample censoring have been considered
in [LGP01, Lem01]. It has been shown that in some cases even for the considerable
censoring degree the losses of the Fisher information induced with censoring of samples
are not large. This enables to obtain rather good estimates of distribution parameters.
The distributions of maximum likelihood estimates (MLE) of distribution parameters
by censored samples have been investigated by computer simulation methods for various
censoring degrees and various sample sizes. It has been shown that for the limited
sample sizes the distribution of MLE turns out to be asymmetric and MLE is biased.
The distribution laws frequently used in “life time” data analysis, such as lognormal,
exponential, gamma, Rayleigh, Weibull, and other distributions have been considered.

32.3 The Investigation of Nonparametric Goodness-of-Fit Test
Statistic Distributions

In composite hypotheses testing of the form H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}, when the
estimate θ̂ of the scalar or vector distribution parameter F (x, θ) is calculated by
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Figure 32.1. The Anderson–Darling statistic distributions for testing composite hypotheses
with calculating MLE of two law parameters

the same sample, the nonparametric goodness-of-fit Kolmogorov, ω2 Cramer–Mises–
Smirnov, Ω2 Anderson–Darling tests lose the free distribution property [KKW55]. In
this case the conditional distribution law of the statistic G(S |H0 ) is affected by a
number of factors: the form of the observed law F (x, θ) corresponding to the true
hypothesis H0; the type of the parameter estimated and the number of parameters
to be estimated; sometimes, it is a specific value of the parameter (e.g., in the case
of gamma-distribution and beta-distribution families and others); the method of pa-
rameter estimation [LP99]. The distinctions in the limiting distributions of the same
statistics in testing simple and composite hypotheses are so significant that we can-
not neglect them. For example, Fig. 32.1 shows distributions of the Anderson–Darling
statistic while testing the composite hypotheses subject to various laws using maximum
likelihood estimates (MLE) of two parameters.

Figure 32.2 illustrates the dependence of Kolmogorov test statistic distribution upon
the type and the number of estimated parameters by the example of Su-Jonson law.

In our research [LP99,LP98a,LP01,Rec02ii,LM04a,Lem04,DELT04,LL09a,LNS09,
LL09b, LL09c] statistic distributions of the nonparametric goodness-of-fit tests have
been investigated by the methods of statistical simulating. Then basing on the obtained
empirical statistic distributions we have constructed approximate analytical models of
the statistic distribution laws. Table 32.1 contains a list of distributions relative to
which we can test composite goodness-of-fit hypotheses using the constructed approx-
imations of the limiting nonparametric statistic distributions.

One can use the models presented in [DELT04, LL09a, LNS09, LL09b, LL09c] in
tasks of statistical data analysis, beginning from the sample size n > 25 and using the
maximum likelihood estimates of unknown parameters.
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Figure 32.2. The Kolmogorov statistic distributions for testing composite hypotheses with
calculating MLE of Su-Jonson distribution law parameters

32.4 The Investigation of Statistic Distributions and the Power
of χ2 Tests

It has been shown in [DL79] that the less information losses caused by grouping are,
the higher power of χ2 tests (the Pearson χ2 test and the likelihood ratio test) for close
competing hypotheses.

Information losses can be decreased by selecting boundary points so, that JG(θ)
tends to the information matrix for nongrouped data J(θ), i.e. by solving asymptotically
optimal grouping problem.

In case of scalar parameter, the problem reduces to the maximization of Fisher
information quantity for grouped sample

max
x(1)<x(2)<···<x(k−1)

k
∑

i=1

(

∂ lnPi (θ)
∂θ

)2

Pi (θ) = max
x(1)<x(2)<···<x(k−1)

JG (θ) .

And in case of vector parameter various functionals of the Fisher information matrix
can be chosen.

D-optim: the determinant of information matrix is maximized with respect to the
boundary points

max
x0<x1<...<xk−1<xk

det JG(θ)

(asymptotically D-optimal grouping problem).
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Table 32.1. Random variable distribution laws

Random variable Density function Random variable Density function
distribution f(x, θ) distribution f(x, θ)

Exponential 1
θ0

e−x/θ0 Laplace 1
2θ0

e−|x−θ1|/θ0

Seminormal 2

θ0
√

2π
e−x2/2θ2

0 Normal 1

θ0
√

2π
e
− (x−θ1)2

2θ2
0

Rayleigh x
θ2
0
e−x2/2θ2

0 Log-normal 1

xθ0
√

2π
e−(ln x−θ1)2/2θ2

0

Maxwell 2x2

θ3
0
√

2π
e−x2/2θ2

0 Cauchy θ0
π[θ2

0+(x−θ1)2]

Random variable distribution Density function f(x, θ)

Logistic π

θ0
√

3
exp

{

− π(x−θ1)

θ0
√

3

}

/

[

1 + exp
{

−π(x−θ1)

θ0
√

3

}]2

Extreme-value (maximum) 1
θ0

exp
{

− x−θ1
θ0

− exp
(

− x−θ1
θ0

)}

Extreme-value (minimum) 1
θ0

exp
{

x−θ1
θ0

− exp
(

x−θ1
θ0

)}

Weibull θ0xθ0−1

θ
θ0
1

exp

{

−
(

x
θ1

)θ0
}

Sb- Johnson Sb(θ0, θ1, θ2, θ3)
θ1θ2

(x−θ3)(θ2+θ3−x)
exp

{

− 1
2

[

θ0 − θ1 ln x−θ3
θ2+θ3−x

]2
}

Sl-Johnson Sl(θ0, θ1, θ2, θ3)
θ1

(x−θ3)
√

2π
exp

{

− 1
2

[

θ0 + θ1 ln x−θ3
θ2

]2
}

Su-Johnson Su(θ0, θ1, θ2, θ3)
θ1√

2π
√

(x−θ3)2+θ2
2

× exp

{

− 1
2

[

θ0 + θ1 ln

{

x−θ3
θ2

+

√

(

x−θ3
θ2

)2

+ 1

}]2}

Gamma-distribution γ(θ0, θ1, θ2)
1

θ
θ0
1 Γ (θ0)

(x − θ2)
θ0−1 e−(x−θ2)/θ1

Double-exponential θ0
2θ1Γ (1/θ0)

exp

{

−
(

|x−θ2|
θ1

)θ0
}

Beta-distribution of the I type 1
θ2B(θ0,θ1)

(

x
θ2

)θ0−1 (

1 − x
θ2

)θ1−1

Beta-distribution of the II type 1
θ2B(θ0,θ1)

[x/θ2]θ0−1

[1+x/θ2]θ0+θ1

Generalized Weibull θ0
θ1

θθ0
2 xθ0−1

(

1 +
(

x
θ2

)θ0
) 1

θ1
−1

e
1−

(

1+
(

x
θ2

)θ0
) 1

θ1

Inverse Gaussian
(

λ
2πx3

)1/2
exp

(

−λ(x−μ)2

2μ2x

)

A-optim: the trace of information matrix is maximized with respect to the boundary
points

max
x0<x1<···<xk−1<xk

SpJG(θ)

(asymptotically A-optimal grouping problem).
E-optim: the minimal eigenvalue of information matrix is maximized with respect

to the boundary points

max
x0<x1<···<xk−1<xk

min
i=1,r

λi (JG(θ))

(asymptotically E-optimal grouping problem).



422 E.V. Chimitova et al.

0,00 10,00 20,00 30,00 40,00 50,00
0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

χ

for D-optimalG (Xn  H1)

-distribution

for A-optimal

for E-optimal

for optimal

8
2

|

X
2
n

2

Figure 32.3. Distributions of Pearson’s statistic X2
n in testing simple hypothesis H0 if the

hypothesis H1 is true depending on the grouping method with k = 9 and n = 500

Optimum: the ν is maximized with respect to the boundary points

max s
x(1)<x(2)<···<x(k−1)

= max
x(1)<x(2)<···<x(k−1)

(

n

k
∑

i=1

(Pi(θ1) − Pi(θ))
2

Pi(θ)

)

.

The tables of asymptotically D-optimal grouping for rather wide range of dis-
tribution laws which are most frequently used in applications were constructed
previously [DLT93]. At the present time we have solved the problems of A- and
E-optimal grouping for a number of distributions. The tables of asymptotically
optimal grouping which can be used in estimating distribution parameters by
grouped samples and in testing goodness-of-fit have been constructed. The use of
asymptotically optimal grouping tables ensures the maximal power of χ2 tests for
close competing hypotheses. In Fig. 32.3, there are the Pearson χ2 test statistic dis-
tributions in testing simple hypothesis of goodness-of-fit to the normal distribution
H0 : f(x) = 1

θ0
√

2π
exp

{

− (x−θ1)2
2θ20

}

, θ0 = 1, θ1 = 0, in case of the true competing

hypothesis H1 : f(x) = π
θ0

√
3

exp
{

−π(x−θ1)
θ0

√
3

}

/

[

1 + exp
{

−π(x−θ1)
θ0

√
3

}]2

, θ0 = 1, θ1 = 0

(logistic distribution), in dependence on the grouping method.
It has been shown for the first time that there is an optimal number of intervals k

depending on sample size, concrete alternatives and a way of grouping. The optimal
number of intervals k depends on the sample size n and on the concrete pair of com-
peting hypotheses H0 and H1. As a rule, the optimal k turns out to be significantly
less than values recommended by a number of empirical formulas for the choice of k.
In Fig. 32.4 the power functions of the Pearson χ2 tests are represented depending on
the interval number k in case of D-, A-, and E-optimal grouping in simple hypothesis
testing, for n = 200 (H0 : normal distribution; against H1 : logistic distribution).
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Figure 32.4. The dependence of the Pearson χ2 test power on the number of intervals k for
various grouping methods, n = 200, in case of testing H0: normal distribution against H1:
logistic distribution

The results of investigating [Lem97c, Lem98, LP98b, LC00, LPC01, LC03, LC02]
properties of the χ2 goodness-of-fit tests (Pearson, Rao-Robson-Nikulin [Nik73,NC73,
RR74,GN96]) were included to the developed recommendations [Rec02i].

The power of the χ2 Dzhaparidze–Nikulin test has been investigated depending on
the grouping method and the number of intervals. The problem of power maximization
for the χ2 Pearson and Rao–Robson–Nikulin tests has been investigated for specified
pairs of competing hypotheses. Moreover, we have considered the use of the so called
Neumann–Pearson intervals [GN96], for which the boundary points coincide with cross
points of density functions of competing hypotheses. It has been shown that such
intervals are reasonable to be used. But at the same time, the use of these intervals
doesn’t ensure the maximal power of the test for given pair of competing hypotheses.

32.5 The Comparative Analysis of the Power of
Goodness-of-Fit Tests

The power of a number of nonparametric and parametric goodness-of-fit tests with
respect to a series of pairs of competing hypotheses has been studied [LLP07, LLP09,
LLP08] in case of testing simple and composite hypotheses by statistical simulation
methods. We can rank the tests by power for simple hypothesis testing as follows:

χ2 Pearson (AOG) � Ω2 Anderson–Darling � ω2 Mises �= Kolmogorov.
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This scale holds while using asymptotically optimal grouping in the Pearson χ2

test, which minimizes the losses in the Fisher information. For quite close hypotheses,
the advantage by power of the Pearson χ2 test can be essential.

In testing composite hypotheses the preference sequence turns out to be quite
different:

Ω2 Anderson–Darling � ω2 Mises � Y 2
n Rao–Robson–Nikulin (AOG) �

� χ2 Pearson (AOG) � Kolmogorov.

For very close competing hypotheses the following sequence can take place:

Ω2 Anderson–Darling � Y 2
n Rao–Robson–Nikulin (AOG) � ω2 Mises �

� χ2 Pearson (AOG) � Kolmogorov.

The conclusions stated have an integrated nature.

32.6 The Investigation of Statistic Distributions and the Power
of Normality Tests

Statistic distributions and the power of a number of criteria for testing deviation
from the normal law (Shapiro-Wilk, Epps-Pulley, D’Agostino, Frosini, Hegazy-Green,
Spiegelhalter, Geary, David-Hartley-Pearson and some others) have been investigated
in [LL05a,LR09].

The considered tests can be ranked by power as follows:

Geary � Spiegelhalter � Hegazy-Green (T2) � Hegazy-Green (T1) �
� Epps-Pulley � David-Hartley-Pearson � Shapiro-Wilk � Frosini.

The advantages and disadvantages of various tests have been shown. It has been
shown for the first time that for small sample sizes a number of tests are biased, in-
cluding the Spiegelhalter, Shapiro-Wilk, Epps-Pulley and Hegazy-Green tests relative
to symmetrical alternatives with the kurtosis value less than three. Some of the consid-
ered tests are not reasonable to be applied at all because of their fundamental disadvan-
tages. The normality tests have been compared by power with the goodness-of-fit tests.

32.7 The Investigation of Homogeneity Test Statistic
Distributions

The homogeneity tests are intended for checking whether two random samples repre-
sented by the variation series

x1 < x2 < · · · < xm and y1 < y2 < · · · < yn

belong to the same distribution, i.e. H0 : F (x) = G(x) for any x.
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Figure 32.5. The Smirnov statistic distributions when the null hypothesis is true depending
on the sample sizes m and n

The statistic distributions and the power of the Smirnov and Lehmann–Rosenblatt
tests for homogeneity of two samples were investigated in [LL05b]. The Smirnov test
statistic is a discrete random variable and its distribution converges slowly (from the
left!) to the limiting Kolmogorov distribution (see Fig. 32.5). Hereupon, the use of the
Kolmogorov distribution K(s) as the limiting law when sample sizes are limited lead to
the overrated values of significance level achieved and, hence, to increasing the number
of beta errors. The recommendations of choosing sample sizes m and n are given in this
paper. The empirical correction for the Smirnov statistic which improves convergence
of the statistic distribution to the limiting Kolmogorov law has been obtained.

The power of the Lehmann–Rosenblatt test, as a rule, turns out to be higher than
the power of the Smirnov test.

32.8 The Investigation of Statistic Distributions and the Power
of Tests for Homogeneity of Means

The comparative analysis of the power of parametric and nonparametric criteria used
for testing homogeneity of means has been carried out in [LL08]. In the general case,
the hypothesis of mathematical expectations equality corresponding to k samples has
the form

H0 : μ1 = μ2 = · · · = μk
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under the competing hypothesis

H1 : μi1 �= μi2

for at least some pair of indices i1, i2.
There are a number of parametric tests that may be used to compare two sam-

ple means to check some hypothesis H0: with known variances; with unknown, but
equal variances (Student’s test); with unknown and unequal variances; and with the
F-test. There also exists a number of nonparametric tests that may be used for this
purpose, e.g., the Wilcoxon, Mann–Whitney, and Kruskal–Wallis tests. Membership of
the particular sample being analyzed to a normal law is the basic assumption deter-
mining whether parametric tests should be used. Nonparametric tests are free of this
requirement.

It has been shown that parametric tests associated with testing a hypothesis of
mathematical expectations are robust with respect to deviations of the observed laws
from the normal distribution. If the distribution law (laws) of analyzed samples is differ-
ent from the normal law but doesn’t have the “heavy tails” than the use of parametric
tests is correct, at least it doesn’t result in considerable errors.

Some conclusions can be arrived on the basis of the test power investigation re-
sults. Firstly, the parametric tests have the greater power than do nonparametric tests.
Secondly, it may be stated that nonparametric tests are absolutely slightly inferior in
terms of power to parametric tests, thus, the Mann–Whitney test is inferior to the
Student’s test, and the Kruskal–Wallis test to the Fisher test, respectively.

32.9 The Investigation of Statistic Distributions and the Power
of Tests for Homogeneity of Variances

One of the main assumptions which should be taken into account while constructing
the classical tests for homogeneity of variances is the normality of observed random
variables (measurement errors). Therefore, the application of classical tests is always
associated with the question whether obtained conclusions are correct in a certain
situation. The conditional test statistic distributions relative to a true hypothesis under
test, as a rule, change significantly if the assumption of the normal distribution of
analyzed random variables is disturbed.

The tested hypothesis about equality of variances in k samples has the form

H0 : σ2
1 = σ2

2 = · · · = σ2
k,

And the competing hypothesis is

H1 : σ2
i1

�= σ2
i2
,

where inequality holds at least for one pair of indices i1, i2.
The distributions of the classical test statistics have been investigated in case when

distributions of observed random variables differ from the normal law. The possibility
of the classical tests application under conditions of non-normal distributions has been
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studied. The comparative analysis by power of the classical variance homogeneity tests
(Fisher’s, Bartlett’s, Cochran’s, Hartley’s and Levene’s tests) and the nonparametric
(rank) tests Ansari–Bradley, Mood’s, Siegel–Tukey tests) have been carried out by
statistical simulation methods in [LM04b,LP06] and further works.

We have investigated the power of Fisher’s, Bartlett’s, Cochran’s, Hartley’s and
Levene’s tests relative to the competing hypothesis of the kind H1 : σ2 = dσ1, d �= 1,
for the number of samples k = 2 in case of normal distribution of random variables. It
has been shown that in this situation the Fisher, Bartlett, Cochran and Hartley tests
are equal by power. The Levene test considerably yields to them.

The Fisher, Bartlett, Cochran and Hartley tests remain to be equal by power if the
random variable distribution is different from the normal law, e.g. in case of belonging
of two analyzed samples to the double-exponential distribution law, and the Levene
test yields to them. But in case of distributions with “heavy tails” the Levene test has
an advantage in power.

The tests of Bartlett, Cochran, Hartley and Levene may be applied for number of
samples k > 2. In such situations, the power of these tests turns out to be different.
When the assumption of the normal distribution holds for k > 2 these tests may be
ranked by power decrease as follows:

Cochran � Bartlett � Hartley � Levene.

This preference order also holds in case when the normality assumption is disturbed.
An exception concerns the situations when samples belong to some distributions which
have more heavy tails than the normal law. For example, in case of belonging samples
to the Laplace distribution the Levene test turns out to be slightly more powerful than
three others.

The results of investigating the nonparametric tests have shown an evident advan-
tage of the Mood test and practical equivalence of the Ansari–Bradley and Siegel–Tukey
tests. The nonparametric tests are obviously inferior by power to the Bartlett, Cochran,
Hartley and Levene tests. In Fig. 32.6, there are the graphs of the test power relative
to the competing hypotheses H1

1 : σ2 = 1.1σ1 and H2
1 : σ2 = 1.5σ1 depending on

the sample sizes ni for α = 0.1 in case of the normal law. As it is seen from the figure
the power of Cochran’s test comparing with the most powerful nonparametric Mood’s
test is rather considerable. Let us remind that in case of two samples the power of the
Fisher, Bartlett, Cochran and Hartley tests coincide.

The distributions of nonparametric tests don’t depend on the observed distribution
law if both samples belong to one and the same family of distributions. But if samples
have different distributions than for the true tested hypothesis H0 of variance homo-
geneity the distributions of nonparametric test statistics change: they depend on these
distribution laws.

The classical tests have a considerable advantage by power over the nonparametric
tests. This advantage remains even when analyzed samples belong to the distribution
which is considerably different from the normal law. So there are all reasons for in-
vestigation of the classical test statistic distributions (construction of the distribution
models or the tables of percentage points) for the non-normal laws frequently used in
practice. The Cochran test is the most appropriate for this role among the considered
tests.

The table of upper percentage points (1%, 5%, 10%) of the Cochran test (for the
numbers of samples k = 2/5) have been constructed in case of some certain families
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of observed random variable distributions for a number of sample size values n. The
developed software system enables to solve this problem for any random variable dis-
tribution law and for any classical test of variance homogeneity, as well as it enables
to construct models of statistic distributions for these tests when necessary.

32.10 Conclusion

The computer simulation technique of data analysis and investigation of probabilistic
regularities have been used for solving other problems of applied mathematical statis-
tics. In particular, we have investigated the robustness and power of the Abbe test used
for testing hypothesis about the trend absence [Lem06]. The distributions of the Grabbs
test statistic used in tasks of rejecting anomalous measurements have been investigated
by statistical simulation methods in case when an observed law is different from the
normal distribution [LL05c]. The statistic distributions of classical criteria of testing
hypotheses about variances have been investigated when a random variable distribution
differs from the normal law [LP04a]. We have developed the facilities of modeling and
investigating the distribution laws of arbitrary functions of random variables and func-
tions of random variable systems as well as the facilities of constructing approximate
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models for these distribution laws [LC07]. We have also developed the technique for
simulation and investigation of distributions of multivariate random variables statistics
[LP02].

So we can state that the computer technologies of data analysis and investigation of
probabilistic and statistical regularities present the powerful tool for the development
and improvement of the applied mathematical statistics apparatus including solving
problems of reliability and survival analysis.

At the same time there are some own problems on the way of developing the com-
puter technologies of data analysis and statistical regularities research [LP04b]. First
of all, the construction of sufficiently precise models; for example, the models of test
statistic distributions, basing on statistical simulation results frequently requires large
amount of simulations (tens and hundreds hours of processor time). Secondly, the clas-
sical results involve mainly the most elementary situations. In more complicated cases,
the decision can turn out to be ambiguous. For example, the distribution of some test
statistic may depend on the value of a certain parameter of observed distribution law
and cannot be expressed in the form of regularity, someway depending on this param-
eter. This means that the statistic distribution changes in dependence on solved task
conditions. There exists the infinite number of combinations of the conditions and so it’s
impossible to construct an infinite number of models for all the affairs. Consequently, it
turns out to be reasonable to construct a probabilistic model “in real time” when there
occurs the necessity of decision making under conditions of available assumptions. It
means that when testing a statistical hypothesis we have to specify the test statistic
distribution, corresponding to the true hypothesis under test, in process of statistical
analysis itself. And then basing on this distribution one will reject or will not reject
the hypothesis under test. For the present condition of computing facilities and en-
couraging perspectives of their development the achievement of the purpose is feasible
by organizing distributed computations using free facilities of computers and computer
clusters in the networks. Our computing experiments have confirmed the possibility
and efficiency of such approach because of comparatively simple paralleling simulation
operations.
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33.1 Introduction

Over a century the family of inverse Gaussian distributions (IGD) had attracted the
attention of many researchers in several fields. The origin of this distribution goes
back to the famous botanist Robert Brown (1773–1858). He interested in the study
of particles motion (which now is well-known Brownian motion). In 1905, Albert
Einstein derived the normal distribution as the model for Brownian motion, also in 1915
Schrödinger has obtained the distribution of first passage time as inverse Gaussian, for
more details, we can see ([CF89, Ses93, Ses99]). Use of the IGD as a lifetime model
is particularly appealing [GDAM97, Sin06]. The hazard rate function of the IGD has
∩-shape like Log-normal, generalized Weibull and Log-logistic distributions, i.e. the
hazard rate of IGD is unimodal which increases from 0 to its maximum value and then
decreases asymptotically to a constant. For these reasons the family of IGD is used
often in reliability and survival analysis.

V.V. Rykov et al. (eds.), Mathematical and Statistical Models and Methods in Reliability: 433
Applications to Medicine, Finance, and Quality Control, Statistics for Industry and Technology,
DOI 10.1007/978-0-8176-4971-5 33, c© Springer Science+Business Media, LLC 2010



434 B. Lemeshko et al.

33.2 The Family of the Inverse Gaussian Distributions

Let consider X1, X2, . . . , Xn be n independent and identically distributed random
variables. We say that Xi follows the IGD and we note Xi ∼ IG(μ, λ) if the density
function is defined by

f(x, θ) =
(

λ

2πx3

) 1
2

exp

{

−λ(x− μ)2

2μ2x

}

, x � 0, θ = (μ, λ)T ∈ R
1
+ × R

1
+ ⊂ R

2,

(33.1)

where μ is the mean and λ is the shape parameter.
The density is unimodal with mode equal to

Mo = μ

⎧

⎪

⎨

⎪

⎩

(

1 +
9

4φ2

)

1
2 − 3

2φ

⎫

⎪

⎬

⎪

⎭

, φ =
λ

μ
,

and it is easy to verify that

E(Xi) = μ, Var(Xi) =
μ3

λ
.

All the positive and negative moments of the IGD exist with

E(Xk
i ) = μk

k−1
∑

i=0

(k − 1 + i)!
i!(k − 1 − i)!

(2φ)−i, k � 1 and E(X−k
i ) =

E(Xk+1)
μ2k+1

.

The distribution function is

F (x, θ) = Φ

(
√

λ

x

(

x

μ
− 1

)

)

+ exp
(

2λ
μ

)

Φ

(

−
√

λ

x

(

x

μ
+ 1

)

)

, x � 0, μ, λ > 0.

(33.2)

The hazard rate function of IGD is

h(x, θ) =

(

λ
2πx3

) 1
2 exp{−λ(x−μ)2

2μ2x
}

Φ

(

−
√

λ
x

(

x
μ
− 1

)

)

− exp(2λ
μ

)Φ
(

−
√

λ
x

(

x
μ

+ 1
)

) , x � 0.

Since h has ∩-shape we may say that the family of IGD is the natural competitor
of the family of Log-normal distributions (LND), the family of generalized Weibull
distributions (GWD) and the family of Log-logistic distributions (LLD). We can note
for example, that if we choose two densities (one from IGD and another from LND)
such that the first moments are equals, then we may see that these two distributions
are close to each other (Fig. 33.1).
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Figure 33.1. Hazard rate function of IGD

The loglikelihood function �n(θ) of the sample X1, X2, . . . , Xn is

�n(θ) =
n

2
lnλ− n

2
ln(2π) − 3

2

n
∑

i=1

lnXi −
n
∑

i=1

λ(Xi − μ)2

2μ2Xi
,

from where it follows that the bivariate statistic T =
(

X,V
)T

is the complete minimal
sufficient statistic for θ, where

X =
1
n

n
∑

i=1

Xi, V =
n
∑

i=1

(X−1
i − 1

X
).

We may note here that the components X and V of the sufficient statistic are
independent. It is easy to show that the maximum likelihood estimators (MLE) of
μ and λ are
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μ̂n = X and λ̂n =
n

∑n
i=1(X−1

i − 1
X

)
=
n

V

respectively.
The Fisher’s information matrix of Xi is

I(θ) =
(

λ
μ3 0
0 1

2λ2

)

.

Remark 1. The minimum variance unbiased estimators (MVUE) of μ and λ [VN93] are
respectively:

μ̂ = X and λ̂ =
n− 3
V

, n > 3.

Remark 2. The MVUE of the density of IGD with unknown parameters μ and λ
[VN93] is

f̂(x, μ, λ) =

⎧

⎪

⎪

⎨

⎪
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√

nx3(nX − x)3
, V > C

, (33.3)

where

C =
n(x−X)2

Xx(nX − x)
, n > 2.

Remark 3. The MVUE of the distribution function of IGD with unknown parameters
μ and λ [VN93] is

F̂ (x) = P(Xi � x)
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33.3 Goodness-of-Fit Tests for the Family of IGD

Let X1, X2, . . . , Xn be n independent and identically distributed random variables. We
consider the problem of testing the composite hypothesis H0:

H0 : P(Xi � x) = F (x, θ), x � 0, θ = (μ, λ)T .

Goodness-of-fit tests measure the degree of agreement between the distribution of
an observed data sample and a theoretical probability distribution. In all cases, a test
statistic is compared with a known critical value to accept or reject the hypothesis H0.
Many statisticians have developed numerous nonparametric methods including the Chi-
squared test and various empirical distribution function tests for testing H0. The best
known tests include the following one.

33.3.1 The RRN Statistic

We divide the real line into r intervals I1, I2, . . . , Ir by the points

0 = a0 < a1 < · · · < ar−1 < ar = +∞,

Ii = [ai−1, ai[, Ii ∩ Ij = ∅, i 	= j, ∪ri=1Ii = R1,

and we group the sample over these intervals, we obtain the vector of frequencies
ν = (ν1, ν2, . . . , νr)T and the probability vector

p(θ) = (p1(θ), p2(θ), . . . , pr(θ))T , where pj(θ) = P(X1 ∈ Ij |H0), j = 1, 2, . . . , r.

The Fisher’s information matrix of the vector of frequencies ν is

nJ(θ) = nBT (θ)B(θ),

where

B(θ) =

[

1
√

pl(θ)
∂pl(θ)
∂θj

]

r×2

.

Let
q(θ) = (

√

p1(θ),
√

p2(θ), . . . ,
√

pr(θ))T ,

and consider the vector

Xn(θ) =

(

ν1 − np1(θ)
√

np1(θ)
,
ν2 − np2(θ)
√

np2(θ)
, . . . ,

νr − npr(θ)
√

npr(θ)

)T

.

From the structure of the vector ν it follows by the multivariate Lindeberg-Levy central
theorem that under H0 and under the Cramer’s regularity conditions the vectorXn(θ̂n)
is AN(0r,W (θ)), where 0r = (0, ..., 0)T ∈ Rr, and W is the limit covariance matrix:

W (θ) = Ir − q(θ)qT (θ) −B(θ)I−1(θ)BT (θ), rankW (θ) = r − 1.
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For testing H0 one may use the Chi-squared test based on the RRN statistic Y 2
n , (see, for

example, [Nik73a,Nik73b,RR74,HR76,Dro88,AN94,GN96,Van98]). The RRN statistic
is defined as the next quadratic form

Y 2
n (θ̂n) = XT

n (θ̂n)W−(θ̂n)Xn(θ̂n),

where W−(θ) is the generalized inverse matrix of W (θ). The asymptotic behavior of
the statistic Y 2

n (θ̂n) is given by the next

Theorem 1.
lim
n→∞P(Y 2

n (θ̂n) � x|H0) = P(χ2
r−1 � x).

According to this the hypothesis H0 must be rejected at a significance level α, if
Y 2
n (θ̂n) > Cα, where Cα is the critical value of the test, and Cα = χ2

r−1,α is the upper
α− quantile of the χ2 distribution with r − 1 degrees of freedom.

Remark 4. For the RRN statistic, one can use the MVUE instead of the MLE.

33.3.2 The Kolmogorov, Cramér–Mises–Smirnov and Anderson–Darling
Statistics

An extension of the Kolmogorov goodness-of-fit test for testing H0 is based on the
application of the random variable

Dn = sup
|n|<∞

|Fn(x) − F (x, θ)| , θ ∈ Θ, (33.5)

where Fn(x) is the empirical distribution function. In practice it is better to use the
test based on Dn with Bolshev correction [Bol87] in the form [BS83]

SK =
6nDn + 1

6
√
n

, (33.6)

where Dn = max(D+
n , D

−
n ),

D+
n = max

1≤i≤n

{

i

n
− F (xi, θ)

}

, D−
n = max

1≤i≤n

{

F (xi, θ) − i− 1
n

}

,

x1, x2, . . . , xn are sample values in increasing order. The distribution of statistic (33.6)
obeys the Kolmogorov distribution law K(S) [BS83] in the testing simple hypotheses.

The statistic of ω2 Cramér–Mises–Smirnov goodness-of-fit test can be written as

Sω =
1

12n
+

n
∑

i=1

{

F (xi, θ) − 2i− 1
2n

}2

, (33.7)

and the statistic of Ω2 Anderson–Darling test can be written in the form

SΩ = −n− 2
n
∑

i=1

{

2i− 1
2n

lnF (xi, θ) +
(

1 − 2i− 1
2n

)

ln(1 − F (xi, θ))
}

. (33.8)
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In simple hypothesis testing, the statistic (1.7) has the a1(S) distribution and
statistic (1.8) has the a2(S) distribution (see [BS83]).

When testing composite hypotheses the conditional distribution law of the statistic
G(S|H0) is affected by a number of factors: the form of the law F (x, θ) corresponding
to the true hypothesis H0; the method of parameter estimation and the number of
estimated parameters; sometimes it is a specific value of a parameter (e.g., in the case of
gamma-distribution, beta-distribution, IGD or GWD). The distinctions in the marginal
statistic distributions in testing simple and composite hypotheses are so significant that
we cannot neglect them.

Distribution statistic models and tables of percentage points for nonparametric
goodness-of-fit tests for testing hypotheses relative to the IGD are given in [LNS09].

33.4 About Testing Hypotheses for the Inverse Gaussian
Distribution

The IGD is used in reliability and survival studies along with the LND and the GWD.
When constructing models of laws for really observed random variables it is some-
times difficult to choose one of the distributions mentioned above because it is compli-
cated to distinguish these families of distributions using parametric and nonparametric
goodness-of-fit tests.

Let consider an example about problems to distinguish these laws.
The sample presented (set out) below with size n = 200 was simulated in accordance

with the IGD with parameters μ = 2 and λ = 2. Pseudorandom values are given with
3 decimal digits in increasing order (by columns) in the table below (Table 33.1).

Table 33.1. Pseudorandom values

0.183 0.501 0.689 0.894 1.075 1.386 1.690 2.393 2.952 4.450
0.185 0.505 0.701 0.896 1.081 1.397 1.694 2.410 2.973 4.521
0.266 0.509 0.713 0.903 1.151 1.405 1.698 2.419 3.010 4.763
0.298 0.537 0.716 0.912 1.171 1.416 1.776 2.421 3.100 4.955
0.309 0.538 0.722 0.913 1.180 1.421 1.780 2.431 3.477 5.011
0.315 0.542 0.758 0.913 1.202 1.448 1.814 2.446 3.538 5.158
0.320 0.563 0.761 0.917 1.210 1.539 1.874 2.452 3.557 5.392
0.324 0.568 0.768 0.919 1.221 1.543 1.901 2.454 3.663 5.460
0.343 0.578 0.787 0.925 1.223 1.547 1.903 2.482 3.674 5.578
0.367 0.593 0.835 0.929 1.247 1.563 1.904 2.483 3.749 5.625
0.386 0.593 0.839 0.955 1.258 1.585 2.007 2.522 3.777 6.295
0.390 0.600 0.852 0.960 1.280 1.586 2.029 2.559 3.886 6.376
0.416 0.605 0.854 0.984 1.316 1.599 2.067 2.598 3.900 6.717
0.421 0.623 0.855 0.992 1.326 1.626 2.087 2.609 3.901 7.185
0.427 0.624 0.865 1.029 1.335 1.634 2.099 2.626 3.992 7.772
0.438 0.628 0.866 1.030 1.346 1.645 2.159 2.640 4.006 8.265
0.457 0.628 0.873 1.041 1.351 1.657 2.171 2.701 4.105 10.100
0.464 0.636 0.873 1.045 1.364 1.674 2.175 2.706 4.108 13.896
0.466 0.637 0.880 1.051 1.368 1.675 2.199 2.730 4.109 14.844
0.470 0.688 0.889 1.074 1.374 1.688 2.352 2.846 4.297 15.503
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Figure 33.2. Empirical distribution and the IGD with parameters μ = 2 and λ = 2

Testing a hypothesis about goodness-of-fit of the empirical distribution to the
theoretical IGD has been carried out by following four criteria: RRN test [Nik73a,
Nik73b,RR74] (Pearson test for simple hypothesis); Kolmogorov test; Cramér–Mises–
Smirnov test; Anderson–Darling test. In case of the RRN test the number of inter-
vals is k = 10. And domain of random variable is divided into equiprobable intervals
(equiprobable grouping). The Neyman–Pearson intervals [GN96] are also considered
in investigation of the test power. In this case, the interval bounds are chosen at the
points in which the density functions corresponding to competing hypotheses intersect.
The Table 1.1 contains the results of testing simple hypothesis about belonging of the
sample to the IGD with parameters μ = 2 and λ = 2. In the third column, there are
achieved significance levels (p-values) for each test. The empirical and theoretical laws
are presented in the Fig. 1.2 (Fig. 33.2).

The results of testing composite hypothesis about belonging of the sample to the
IGD are presented in Table 33.3. Parameters are estimated by the maximum likeli-
hood method (μ = 1.9848 and λ = 2.1119) (by non-grouped data). In the Fig. 33.3
corresponding results are shown.

If composite hypotheses are tested the distributions of the nonparametric
Kolmogorov, Cramér–Mises–Smirnov, Anderson–Darling goodness-of-fit tests depend
on certain μ and λ parameter values of the IGD. In the paper [LNS09], the models
of statistic distributions (and percentage points) of the nonparametric Kolmogorov,
Cramér–Mises–Smirnov, Anderson–Darling goodness-of-fit tests were obtained for
integer parameter values of the IGD. That is why in this case (in this situation) to
obtain p-values it is necessary to model statistic distributions of the those three tests
for the values μ = 1.9848 and λ = 2.1119. In the Table 33.2 there are the p-values
obtained basing on such modelling.

The same sample is tested for goodness-of-fit to the LND with density function

f(x, μ, σ) =
1

xσ
√

2π
exp

(−(lnx− μ)2/2σ2
)

, x > 0, μ ∈ R1, σ > 0,
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Figure 33.3. Empirical distribution and the IGD with the maximum likelihood estimates
μ = 1.9848 and λ = 2.1119

Table 33.2. The results of testing a simple hypothesis about belonging of the sample to the
IGD with parameters μ = 2 and λ = 2

Test Statistics value p-value

RRN test (Pearson test) 9.7000 0.3753
Kolmogorov test 0.6204 0.8362
Cramér-Mises-Smirnov test 0.0397 0.9346
Anderson-Darling test 0.2712 0.9581

and to the GWD with density function has the form

f(x; θ0, θ1, θ2) =
θ0
θ1
θ2
θ0xθ0−1

(

1 +
(

x

θ2

)θ0
) 1

θ1
−1

exp

⎧

⎨

⎩

1 −
(

1 +
(

x

θ2

)θ0
) 1

θ1

⎫

⎬

⎭

where x > 0, θ0, θ1, θ2 > 0.
As you can see in the figure below three distributions (the LND, the IGD, the

GWD) are close to each other. In the Fig. 33.4, there are distribution functions, in the
Fig. 33.5 there are density functions and in the Fig. 33.6 there are hazard rate functions.
Obviously, in practice it is difficult to make decision what law is the most appropriate.
At the same time this issue plays an important role in reliability and survival studies
because for close distribution functions (Fig. 33.4) we have considerable distinctions in
hazard rate functions (Fig. 33.6).

In the Table 33.3, the results of testing composite hypotheses about belonging of
the sample to the LND are presented. The models of statistic distributions of nonpara-
metric goodness-of-fit tests for testing composite hypotheses included to the developed
software system. These models are presented in the papers [LL09a,LL09b,LLP10].
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Figure 33.4. IGD (μ = 1.9848, λ = 2.1119), LND (μ = 0.3663, σ = 0.8558) and GWD
(θ0 = 3.1955, θ1 = 5.6772, θ2 = 0.5423)
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Figure 33.5. Density of the IGD (μ = 1.9848, λ = 2.1119), density of the LND (μ = 0.3663,
σ = 0.8558) and density of the GWD (θ0 = 3.1955, θ1 = 5.6772, θ2 = 0.5423)

The Table 33.5 contains the results of testing composite hypothesis about belonging
of the sample to the GWD. To obtain p-value it is necessary to model statistic distribu-
tions of the Kolmogorov, Cramér–Mises–Smirnov and Anderson–Darling test statistics
with the values θ0 = 3.1955, θ1 = 5.6772 and θ2 = 0.5423. The p-value (which is pre-
sented in the Table 33.5) are obtained on the basis of modeled statistic distributions
of the nonparametric goodness-of-fit tests.

The p-values obtained in testing hypothesis about the GWD practically the same
as in the case of the IGD. Notice that there are no reasons to rejected hypothesis about
belonging the sample to the LND.
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Figure 33.6. Hazard rate function of the IGD (μ = 1.9848, λ = 2.1119), the LND (μ = 0.3663,
σ = 0.8558) and the GWD (θ0 = 3.1955, θ1 = 5.6772, θ2 = 0.5423)

Table 33.3. The results of testing composite hypothesis of goodness-of-fit to the IGD with
the parameters μ = 1.9848 and λ = 2.1119 estimated by the maximum likelihood method (use
ungrouped observations)

Test Statistics value p-value

RRN test 2.6469 0.9545
Kolmogorov test 0.4875 0.9006
Cramér–Mises–Smirnov test 0.0263 0.9351
Anderson–Darling test 0.1754 0.9549

Table 33.4. The results of testing composite hypothesis of goodness-of-fit to the LND with
maximum likelihood estimates (by ungrouped observations) μ = 0.3636 and σ = 0.8558

Test Statistics value p-value

RRN test 9.1500 0.4235
Kolmogorov test 0.6524 0.4084
Cramér–Mises–Smirnov test 0.0500 0.5136
Anderson–Darling test 0.3055 0.5914

According to results in the Tables 33.3–33.5 the IGD model is more appropriate
than the GWD or the LND for the sample.It is logical because the sample was modeled
from the IGD. However, an isolated case does not give an opportunity (make it possible)
to recognize given laws by goodness-of-fit tests. We can assess the capacity of tests to
differ laws by the power of the test in testing hypothesis about belonging of the sample
to the IGD, considering the LND and the GWD as the competing distributions.

The obtained power estimates of tests are presented in the Tables 33.6 and 33.7.
Presented power values allow to suggest about sample sizes n due to which we can differ
corresponding laws. It is evident that the LND is easier to be differed from the IGD
than the GWD. At the same time it is obvious that a sure distinction requires a large
value of a sample size. In particular, to get the probability of the second type error
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Table 33.5. The results of testing composite hypothesis of goodness-of-fit to the GWD with
maximum likelihood estimates (by ungrouped observations) θ0 = 3.1955, θ1 = 5.6772 and
θ2 = 0.5423

Test Statistics value p-value

RRN test 6.1602 0.7238
Kolmogorov test 0.4853 0.8047
Cramér–Mises–Smirnov test 0.0257 0.8594
Anderson–Darling test 0.1636 0.9131

Table 33.6. The power of the test in testing composite hypothesis concerning the IGD (μ =
1.9848, λ = 2.1119) against the LND (μ = 0.3636, σ = 0.8558) as a competing hypothesis

Test n
50 100 200 300 400 500 1,000

RRN test (k = 10, equiprobable
grouping)

0.147 0.212 0.314 0.415 0.506 0.587 0.834

RRN test (k = 5, Neyman–Pearson
classes)

0.133 0.194 0.291 0.377 0.468 0.552 0.821

Kolmogorov test 0.161 0.221 0.322 0.412 0.500 0.568 0.798
Cramér–Mises–Smirnov test 0.173 0.247 0.366 0.476 0.577 0.650 0.868
Anderson–Darling test 0.174 0.249 0.377 0.501 0.610 0.688 0.923

The probability of the first type error α = 0.1

Table 33.7. The power of the test in testing composite hypothesis concerning the IGD (μ =
1.9848, λ = 2.1119) against the GWD ( θ0 = 3.1955, θ1 = 5.6772 and θ2 = 0.5423) as a
competing hypothesis

Test n
50 100 200 300 400 500 1,000

RRN test (k = 10, equiprobable
grouping)

0.122 0.147 0.200 0.248 0.288 0.337 0.524

RRN test (k = 5, Neyman–Pearson
classes)

0.132 0.145 0.179 0.211 0.226 0.242 0.325

Kolmogorov test 0.116 0.133 0.166 0.200 0.228 0.258 0.400
Cramér–Mises–Smirnov test 0.125 0.157 0.198 0.238 0.282 0.318 0.499
Anderson–Darling test 0.128 0.161 0.216 0.266 0.316 0.366 0.588

The probability of the first type error α = 0.1

with the condition β � 0.1 for the given probability of the first type error α = 0.1 the
sample sizes n > 2000 are required. In this case, we test the hypothesis concerning the
IGD against the competing hypothesis concerning the GWD.The power of Anderson–
Darling test (Table 33.7) is 0.588 for n = 1,000 (β = 0.412). If n = 2,000 the power
is 0.853 (β = 0.147), if n = 2,500 the power is 0.916 (β = 0.084). Under the same
conditions to differ the IGD from the LND n should be about 1,000 (the Anderson–
Darling test, Table 33.6).
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33.5 Chi-Squared Goodness-of-fit Test for the Family of IGD
in Case of Censored Data

In Reliability and survival analysis, we often encounter incomplete observations, and in
this situation the usual methods are no longer valid. In the case of random censorship,
one can use the RRN statistic Ŷ 2

n which is well adapted for right censored data, (see
[HT86]), where the Kaplan–Meier estimator Ŝn(x) is compared with the parametric
estimator S(x, θ̂n), where θ̂n is the MLE of θ (see also [NS99]). Consider now the
problem of testing the hypothesis H0 that the data are coming from the IGD.

Under the random censorship model, we assume that the failure times T1, T2, . . . , Tn
are nonnegative and independent. The censoring variables C1, C2, . . . , Cn are also non-
negative and assumed to be random sample. We observe only Xi = min(Ti, Ci) and
the indicator functions δi defined as:

δi =

{

1 , if Ti � Ci

0 , otherwise
.

Let S(t, θ) = 1−F (t, θ), θ = (μ, λ)T is the survival function (or reliability function)
of IGD, f(t, θ) is the density function corresponding to F (t, θ), H(t) the unknown
survival function of consortship and h(t) the density function corresponding to H(t).

The loglikelihood function is

�n(μ, λ) =
n
∑

i=1

δi

{

1
2

lnλ− 1
2

ln 2π − 3
2

lnTi − λ
(Ti − μ)2

2μ2Ti

}

+
n
∑

i=1

(1 − δi) ln
{

Φ (Ai) − exp
(

2λ
μ

)

Φ (Bi)
}

, (33.9)

where Ai = −
√

λ
Ti

(Ti

μ − 1) and Bi = −
√

λ
Ti

(Ti

μ + 1).

The score functions Ul(μ, λ), l = 1, 2 are

U1(μ, λ) =
∂�n(μ, λ)

∂μ
=

λ

μ3

n
∑

i=1

δi(Ti − μ)

+
1
μ2

n
∑

i=1

(1 − δi)

√
λTiϕ(Ai) + exp(2λ

μ )
(

2λΦ(Bi) −
√
λTiϕ(Bi)

)

S(Ti, μ, λ)
,

U2(μ, λ) =
∂�n(μ, λ)

∂λ
=

n
∑

i=1

δi

(

1
2λ

− (Ti − μ)2

2μ2Ti

)

+
n
∑

i=1

(1 − δi)
1
2λAiϕ(Ai) − exp(2λ

μ )
(

2
μΦ(Bi) + 1

2λBiϕ(Bi)
)

S(Ti, μ, λ)
,

where ϕ(t) is the density function of the standard normal distribution. To have the
MLE θ̂n of θ one can solve the system of equations of the score functions.
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Habib and Thomas [HT86,Hjo90] have shown that
√
n
(

Ŝn(t) − S(t, θ̂n)
)

converges
to the Gaussian process under the hypothesis H0.

We divide the real line into r intervals: I1, I2, . . . , Ir mutually disjoint by the points:

0 = t0 < t1 < · · · < tr−1 < tr = +∞.

Let consider the vector
Ẑn =

√
n
(

Ŝn − Sθ̂n

)

,

where
Ŝn = (Ŝn(t1), Ŝn(t2), · · · , Ŝn(tr−1))T

and
Sθ̂n

= (S(t1, θ̂1), S(t2, θ̂2), · · · , S(tr−1, θ̂n))T .

Under those assumptions:

1. f(t, θ) and F (t, θ) are twice differentiable in θ with continuous derivatives.

2. The Fisher’s information matrix I(θ) is positive definite , and continuous in θ,
where

Iij = −
∫

∂2 ln f(t, θ)
∂θiθj

H(t)f(t, θ)dt−
∫

∂2 lnS(t, θ)
∂θiθj

h(t)S(t, θ)dt, i, j = 1, 2.

3. The MLE θ̂n exist and is
√
n- consistent estimator of θ with

√
n(θ̂n − θ) = I−1Wn + op(1),

where

Wn = n−1/2
n
∑

i=1

∂ ln g(Xi, δi, θ)
∂θ

,

and g is the density of joint distribution of (X, δ).

Let

B = B(θ) =
[

∂F (ti, θ)
∂θj

]

(r−1)×2

,

and
V = V (θ) = [Cov (Z(ti), Z(tj))](r−1)×(r−1) ,

where

Cov (Z(ti), Z(tj)) = S(ti, θ)S(tj , θ)
∫ ti∧tj

0

f(t, θ)
H(t)F 2(t, θ)

dt.

To test H0 we construct the general modified Chi-squared type of Pearson for
random censored data which has the quadratic form

Ŷ 2
n (θ̂n) = ẐTn Σ̂

−(θ̂n)Ẑn,

where the matrix Σ̂ is the estimator of the covariance matrix Σ and Σ− its general
inverse, such that

Σ(θ) = V (θ) −B(θ)I−1(θ)BT (θ), rankΣ = r − 1.
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The asymptotic behavior of the statistic Ŷ 2
n (θ̂n) is given by the following

Theorem 2 ([HT86]).

lim
n→∞P(Ŷ 2

n (θ̂n)) � x|H0) = P(χ2
r−1 � x).

Note that for uncensored data, the statistic Ŷ 2
n reduces to the considered before

RRN statistic. We can also consider the case of doubly censored data (see [IL99]).

33.6 Models with Covariates Based on the Family of IGD

Failure time regression models relating the lifetime distribution to possibly time de-
pendent external explanatory variables are considered in this section. Failure time
regression models relating failure time distribution not only with external but also
with internal explanatory variables will be discussed in the next section. Such models
are used now not only in reliability but also in demography, dynamics of populations,
gerontology, biology, survival analysis, genetics, radiobiology, biophysics, everywhere
people study the problems of longevity, aging and degradation using the stochastic
modeling.

In reliability, in accelerated life testing (ALT) in particular, the choice of a good re-
gression model often is more important than in survival analysis. For example, in ALT
units are tested under accelerated stresses which shorten the lifetime. Using such ex-
periments the lifetime under the usual stress is estimated using some regression model.
The values of the usual stress are often not in the range of the values of accelerated
stresses, since the wide separation between experimental and usual stresses is possible,
so if the model is misspecified, the estimators of survival under the usual stress may
be very bad.

Let E be a set of all admission possible time-depending stresses (covariables)

E = {x(·) = (x1(·), x2(·), . . . , xm(·)) : [0,+∞) → Rm}.
We denote by Tx(·) the failure time under x(·) and by fx(·)(t), Sx(·)(t), Fx(·)(t) the

density function , survival function and the distribution function, respectively, where

Sx(·)(t) = P
(

Tx(·) � t
)

= 1 − Fx(·)(t), x(·) ∈ E.

The hazard rate function of Tx(·) under x(·)is:

λx(·)(t) = lim
h→0

1
h
P
(

t � Tx(·) < t+ h | Tx(·) � t
)

= −
S′
x(·)(t)

Sx(·)(t)
, x(·) ∈ E,

and we denote by:

Λx(·)(t) =
∫ t

0

λx(·)(u)du = − ln(Sx(·)(t)), x(·) ∈ E,

the cummulative hazard rate function of Tx(·).
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33.6.1 Cox Model

The famous Cox model on E is the most popular in survival analysis. It is given in
terms of the hazard rate function:

λx(·) = r(x(t))λ0(t), x(·) ∈ E,

where λ0(t) is the baseline hazard rate function(generally unknown) and r is a positive
function often parameterized as

r(x) = eβ
T x, β = (β1, . . . , βm)T .

Let us suppose that

λ0(t) ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

λ
2πt3

) 1
2 exp{−λ(t−μ)2

2μ2t
}

Φ

(

−
√

λ
t

(

t
μ − 1

)

)

− exp( 2λ
μ )Φ

(

−
√

λ
t

(

t
μ + 1

)

) , t � 0, μ > 0, λ > 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

In such, we have the so-called parametric Cox Inverse Gaussian model, where the

vector β expresses the effect of covariate x(·) on the distribution of the lifetime Tx(·).
Let consider the hypothesis

H0 : β = 0.

Under H0 there is no influence of covariates on distribution of the lifetime Tx(·) = T ,
and in this case (under H0) the lifetime T follows an inverse Gaussian distribution. So
to test H0 one can use, for example, the Chi-squared test exposed before.

33.6.2 AFT Model

The term accelerated life testing applies that the type of study where failure times
can be accelerated by applying higher “stress” to the component or system reliabil-
ity, and higher stress may bring quicker failure. For example, some component may
fail quicker at a higher temperature; however, it may have a long lifetime at normal
temperatures. At normal stress conditions, the time required may be too large for its
reliability estimation which may be tested under higher stress factors terminating the
experiment. We look at case where the hazard rate function has the ∩-shape.

We consider some applications of the family of IGD as the baseline survivals in
the construction of the accelerated failure time (AFT) model which is very natural
competitor of lognormal and generalized Weibull distributions.

The AFT model holds on E, (see [BN02]), if there exists on E a positive function
r and a survival function S0 such that:

Sx(·)(t) = S0

(∫ t

0

r(x(u))du
)

, t � 0, x(·) ∈ E, (33.10)

where S0 is the baseline survival function. In term of hazard rate function, the
expression (1.10) holds if and only if there exists on E a positive function r and on
[0,+∞) a positive function q such that
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αx(·)(t) = r(x(t)q(Sx(·)(t)), x(·) ∈ E.

In parametric case S0 belongs to a parametric family, and r(x) is often parameterized
as in the Cox model: r(x) = eβ

Tx.
If we consider the inverse Gaussian distribution as models for the baseline survival

function S0 such that

S0(t) = Φ

(

−
√

λ

t

(

t

μ
− 1

)

)

− exp
(

2λ
μ

)

Φ

(

−
√

λ

t

(

t

μ
+ 1

)

)

, t � 0, μ, λ > 0,

we obtain the AFT IG model.
Let consider the hypothesis

H0 : β = 0.

Under H0 there is no influence of covariates on distribution of the lifetime Tx(·) = T ,
and under H0 the distribution of the lifetime T is inverse Gaussian, and one can test
it using the chi-square test, for example.

Remark 5. We say that the distribution of Tx(·) belongs to the class GPH (Generalized
Proportional Hazards) on E (see [BN02]) if its hazard rate function is given by formula

λx(·) = r(x(t))q(Λx(·))λ0(t), x(·) ∈ E,

where q(·) is a positive function on R1
+. Model GPH is very interesting since it gen-

eralizes the famous Cox and AFT models on E. It is evident that in some situations
we need to test the Cox model against the AFT model, and in this situation it is very
interesting to apply the GPH model.

33.6.3 Inverse Gaussian Family and Analysis of Redundant System

Now we shall consider, following the papers of Bagdonavičius, Masiulaityle and Nikulin
[BMN08a, BMN08b, BMN09, BMN10], one example of the parametric estimation of
redundant system reliability when the distribution of the failure time in “hot” and
“warm” conditions belongs to the IGD. Let consider redundant system S(1,m − 1)
with one principal main unit operating in “hot” and (m− 1) stand-by units operating
in “warm” conditions. The problem is to estimate the parameters of the redundant
system, using failure data of two groups of units, when we suppose that switching from
warm to hot does not cause shock or damage to units.

Denote by T1, F1 and f1 the failure time, the cumulative distribution function and
the probability density function of the main unit. The failure times of the stand-by units
denote by T2, . . . , Tm. In “hot” conditions their distribution functions are also F1. In
“warm” conditions the distribution function of Ti is F2 and the density function is
f2, i = 2, . . . ,m. If a stand-by unit is switched to “hot” conditions, its cumulative
distribution function is different from F1 and F2.

The failure time of the system S(1,m− 1) is

T (m) = T1 ∨ T2 ∨ · · · ∨ Tm.
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Denote by Kj and kj the distribution function and the density function of T (j), respec-
tively, (j = 2, . . . ,m), K1 = F1, k1 = f1. The distribution function Kj can be written
in terms of the distribution function Kj−1 and F1:

Kj(t) = P(T (j) � t) =
∫ t

0

P(Tj � t|T (j−1) = y)dKj−1(y).

The “fluent switch on” hypothesis H0 formulated by Bagdonavičius et al. [BMN08a,
BMN08b] states that

fTj |T (j−1)=y(t) =
{

f2(t) if t � y,
f1(t+ g(y) − y) if t > y; ,

where g(y) = F−1
1 (F2(y)). This model implies that

Kj(t) =
∫ t

0

F1(t+ g(y) − y)dKj−1(y), j = 2, ...,m.

So the distribution function Km of the system with m − 1 stand-by units is defined
recurrently by the last formula. We consider here the situation when the distribution of
units functioning in “warm” and “hot” conditions differ only in scale, i.e. we suppose
that g(y) = ry and hence F2(t) = F1(rt) for all t � 0 and some r > 0. In such a
case the cumulative distribution function of units functioning in “hot” and “warm”
conditions mostly belong to the same parametric classes of distributions, for example,
to the family of IGD. If the cumulative distribution function of units belongs to the
family of IGD then

S1(t, μ, λ) = 1−F1(t, μ, λ) = Φ

(

−
√

λ

t

(

t

μ
− 1

)

)

− exp
(

2λ
μ

)

Φ

(

−
√

λ

t

(

t

μ
+ 1

)

)

.

Parametric Estimators of the Parameter γ = (r, μ, λ)T

Suppose that the following data are available:

(a) Complete ordered sample T11, . . . , T1n1 of size n1, T1i is the failure time of units
tested in ‘hot’ condition;

(b) Complete ordered sample T21, . . . , T2n2 of size n2, T2i is the failure time of units
tested in ‘warm’ condition.

Let γ = (r, μ, λ)T , the MLE γ̂ = (r̂, μ̂, λ̂)T of the parameter γ maximizes the
loglikelihood function

�(r, μ, λ) =
n

2
lnλ− n

2
ln(2π) − n2

2
ln r +

λn

μ
− 3

2

n1
∑

i=1

ln(T1i) − 3
2

n2
∑

i=1

ln(T2i)

− λ

2μ2

n1
∑

i=1

T1i − λ

2

n1
∑

i=1

T−1
1i − λr

2μ2

n2
∑

i=1

T2i − λ

2r

n2
∑

i=1

T−1
2i ,

where n = n1 + n2.
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The score functions are

∂�

∂r
= −n2

2r
− λ

2μ2

n2
∑

i=1

T2i +
λ

2r2

n2
∑

i=1

T−1
2i ,

∂�

∂μ
= −λn

μ2
+

λ

μ3

n1
∑

i=1

T1i +
λr

μ3

n2
∑

i=1

T2i,

∂�

∂λ
= n

(

1
2λ

+
1
μ

)

− 1
2μ2

n1
∑

i=1

T1i − 1
2

n1
∑

i=1

T−1
1i − r

2μ2

n2
∑

i=1

T2i − 1
2r

n2
∑

i=1

T−1
2i .

To find the estimator γ̂ one can solve the system formed by equalizing the score
functions to zero.

The Fisher information matrix is

I(γ) =

⎛

⎜

⎝

(μ+2λ)n2
2μr2 −λn2

rμ2 − n2
2rλ

−λn2
rμ2

λn
μ3 0

− n2
2rλ

0 n
2λ2

⎞

⎟

⎠
,

The inverse of this matrix is

I−1(γ) =

⎛

⎜

⎜

⎝

2nr2μ
n1n2(μ+2λ)

2rμ2

n1(μ+2λ)
2rμλ

n1(μ+2λ)
2rμ2

n1(μ+2λ)
(n1μ+2nλ)μ3

n1n(μ+2λ)λ
2n2μ

2λ
n1n(μ+2λ)

2rμλ
n1(μ+2λ)

2n2μ
2λ

n1n(μ+2λ)
2(nμ+2n1λ)λ2

n1n(μ+2λ)

⎞

⎟

⎟

⎠

.

Taking j = 2, the cumulative distribution function K2(t) is estimated by

K̂2(t) =
∫ t

0

√

λ̂

2πy3
exp

{

− λ̂(y − μ̂)2

2μ̂2y

}

Φ

⎛

⎝

√

λ̂

t+ r̂y − y

(

t+ r̂y − y

μ̂
− 1

)

⎞

⎠ dy

+
∫ t

0

√

λ̂

2πy3
exp

{

− λ̂(y − μ̂)2

2μ̂2y
+

2λ̂
μ̂

}

Φ

⎛

⎝−
√

λ̂

t+ r̂y − y

(

t+ r̂y − y

μ̂
+ 1

)

⎞

⎠ dy.

Now using the results of Bagdonavičius et al. [BMN08a,BMN08b,BMN09,BMN10]
we can construct the asymptotic 1 − α confidence interval (K2(t),K2(t)) for K2(t),
with

K2(t) =

⎛

⎝1 +
1 − K̂2(t)
K̂2(t)

exp

⎧

⎨

⎩

σ̂K̂2
z1−α/2

√

K̂2(t)(1 − K̂2(t))

⎫

⎬

⎭

⎞

⎠

−1

,

K2(t) =

⎛

⎝1 +
1 − K̂2(t)
K̂2(t)

exp

⎧

⎨

⎩

− σ̂K̂2
z1−α/2

√

K̂2(t)(1 − K̂2(t))

⎫

⎬

⎭

⎞

⎠

−1

,

here
σ̂2
K̂2(t)

= CT2 (t, γ̂)I−1(γ̂)C2(t, γ̂),
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where
C2(t, γ) = (C21(t, γ), C22(t, γ), C23(t, γ))T ,

C21(t, γ) =
∫ t

0

∂F1

∂r
(t+ ry − y, μ, λ)dF1(y, μ, λ),

C22(t, γ) =
∫ t

0

∂F1

∂μ
(t+ ry − y, μ, λ)dF1(y, μ, λ) + F1(y, μ, λ)d

(

∂F1

∂μ
(y, μ, λ)

)

,

C23(t, γ) =
∫ t

0

∂F1

∂λ
(t+ ry − y, μ, λ)dF1(y, μ, λ) + F1(y, μ, λ)d

(

∂F1

∂λ
(y, μ, λ)

)

,

and z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.
At the end of this section we note that using the results of [BMN10] it is easy to

estimate the parameter γ when the data are censored.
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