
Handbook of Reliability
Engineering

Hoang Pham,
Editor

Springer

Handbook of Reliability Engineering

Springer
London
Berlin
Heidelberg
New York
Hong Kong
Milan
Paris
Tokyo http://www.springer.de/phys/

Hoang Pham (Editor)

Handbook of

Reliability
Engineering

123

Hoang Pham, PhD
Rutgers University
Piscataway
New Jersey, USA

British Library Cataloguing in Publication Data
Handbook of reliability engineering

1. Reliability (Engineering)
I. Pham, Hoang
620′ .00452
ISBN 1852334533

Library of Congress Cataloging-in-Publication Data
Handbook of reliability engineering/Hoang Pham (ed.).

p.cm.
ISBN 1-85233-453-3 (alk. paper)
1. Reliability (Engineering)–Handbooks, manuals, etc. I. Pham, Hoang.

TA169.H358 2003
620′ .00452–dc21 2002030652

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication
may only be reproduced, stored or transmitted, in any form or by any means, with the
prior permission in writing of the publishers, or in the case of reprographic reproduction
in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries
concerning reproduction outside those terms should be sent to the publishers.

ISBN 1-85233-453-3 Springer-Verlag London Berlin Heidelberg
a member of BertelsmannSpringer Science+Business Media GmbH
http://www.springer.co.uk

c© Springer-Verlag London Limited 2003

The use of registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for
any errors or omissions that may be made.

Typesetting: Sunrise Setting Ltd, Torquay, Devon, UK
Printed and bound in the United States of America
69/3830-543210 Printed on acid-free paper SPIN 10795762

To

Michelle, Hoang Jr., and David

This page intentionally left blank

Preface

In today’s technological world nearly everyone depends upon the continued
functioning of a wide array of complex machinery and equipment for our everyday
safety, security, mobility and economic welfare. We expect our electric appliances,
lights, hospital monitoring control, next-generation aircraft, nuclear power plants,
data exchange systems, and aerospace applications, to function whenever we need
them. When they fail, the results can be catastrophic, injury or even loss of life.

As our society grows in complexity, so do the critical reliability challenges and
problems that must be solved. The area of reliability engineering currently received
a tremendous attention from numerous researchers and practitioners as well.

This Handbook of Reliability Engineering, altogether 35 chapters, aims to provide
a comprehensive state-of-the-art reference volume that covers both fundamental
and theoretical work in the areas of reliability including optimization, multi-state
system, life testing, burn-in, software reliability, system redundancy, component
reliability, system reliability, combinatorial optimization, network reliability,
consecutive-systems, stochastic dependence and aging, change-point modeling,
characteristics of life distributions, warranty, maintenance, calibration modeling,
step-stress life testing, human reliability, risk assessment, dependability and safety,
fault tolerant systems, system performability, and engineering management.

The Handbook consists of five parts. Part I of the Handbook contains five papers,
deals with different aspects of System Reliability and Optimization.

Chapter 1 by Zuo, Huang and Kuo studies new theoretical concepts and methods
for performance evaluation of multi-state k-out-of-n systems. Chapter 2 by Pham
describes in details the characteristics of system reliabilities with multiple failure
modes. Chapter 3 by Chang and Hwang presents several generalizations of the
reliability of consecutive-k-systems by exchanging the role of working and failed
components in the consecutive-k-systems. Chapter 4 by Levitin and Lisnianski
discusses various reliability optimization problems of multi-state systems with
two failure modes using combination of universal generating function technique
and genetic algorithm. Chapter 5 by Sung, Cho and Song discusses a variety of
different solution and heuristic approaches, such as integer programming, dynamic
programming, greedy-type heuristics, and simulated annealing, to solve various
combinatorial reliability optimization problems of complex system structures
subject to multiple resource and choice constraints.

Part II of the Handbook contains five papers, focuses on the Statistical Reliability
Theory. Chapter 6 by Finkelstein presents stochastic models for the observed failure

viii Preface

rate of systems with periods of operation and repair that form an alternating
process. Chapter 7 by Lai and Xie studies a general concept of stochastic dependence
including positive dependence and dependence orderings. Chapter 8 by Zhao
discusses some statistical reliability change-point models which can be used to
model the reliability of both software and hardware systems. Chapter 9 by Lai
and Xie discusses the basic concepts for the stochastic univariate and multivariate
aging classes including bathtub shape failure rate. Chapter 10 by Park studies
characteristics of a new class of NBU-t0 life distribution and its preservation
properties.

Part III of the Handbook contains six papers, focuses on Software Reliability.
Chapter 11 by Dalal presents software reliability models to quantify the reliability
of the software products for early stages as well as test and operational phases.
Some further research and directions useful to practitioners and researchers are
also discussed. Chapter 12 by Ledoux provides an overview of some aspects of
software reliability modeling including black-box modeling, white-box modeling,
and Bayesian-calibration modeling. Chapter 13 by Tokuno and Yamada presents
software availability models and its availability measures such as interval software
reliability and the conditional mean available time.

Chapter 14 by Dohi, Goševa-Popstojanova, Vaidyanathan, Trivedi and Osaki
presents the analytical modeling and measurement based approach for evaluating
the effectiveness of preventive maintenance in operational software systems and
determining the optimal time to perform software rejuvenation. Chapter 15 by
Kimura and Yamada discusses nonhomogeneous death process, hidden-Markov
process, and continuous state-space models for evaluating and predicting the
reliability of software products during the testing phase. Chapter 16 by Pham
presents basic concepts and recent studies nonhomogeneous Poisson process
software reliability and cost models considering random field environments. Some
challenge issues in software reliability are also included.

Part IV contains nine chapters, focuses on Maintenance Theory and Testing.
Chapter 17 by Murthy and Jack presents overviews of product warranty and
maintenance, warranty policies and contracts. Further research topics that
link maintenance and warranty are also discussed. Chapter 18 by Pulcini
studies stochastic point processes maintenance models with imperfect preventive
maintenance, sequence of imperfect and minimal repairs and imperfect repairs
interspersed with imperfect preventive maintenance. Chapter 19 Dohi, Kaio and
Osaki presents the basic preventive maintenance policies and their extensions in
terms of both continuous and discrete-time modeling. Chapter 20 by Nakagawa
presents the basic maintenance policies such as age replacement, block replacement,
imperfect preventive maintenance, and periodic replacement with minimal repair
for multi-component systems.

Chapter 21 by Wang and Pham studies various imperfect maintenance models that
minimize the system maintenance cost rate. Chapter 22 by Elsayed presents basic
concepts of accelerated life testing and a detailed test plan that can be designed

Preface ix

before conducting an accelerated life test. Chapter 23 by Owen and Padgett focuses
on the Birnbaum-Saunders distribution and its application in reliability and life
testing. Chapter 24 by Tang discusses the two related issues for a step-stress
accelerated life testing (SSALT) such as how to design a multiple-steps accelerated
life test and how to analyze the data obtained from a SSALT. Chapter 25 by Xiong
deals with the statistical models and estimations based on the data from a SSALT
to estimate the unknown parameters in the stress-response relationship and the
reliability function at the design stress.

Part V contains nine chapters, primarily focuses on Practices and Emerging
Applications. Chapter 26 by Phillips presents proportional and non-proportional
hazard reliability models and its applications in reliability analysis using non-
parametric approach. Chapter 27 by Yip, Wang and Chao discusses the capture-
recapture methods and the Horvits Thompson estimator to estimate the number
of faults in a computer system. Chapter 28 by Billinton and Allan provides
overviews and deals with the reliability evaluation methods of electric power
systems. Chapter 29 by Dhillon discusses various aspects of human and medical
device reliability.

Chapter 30 by Bari presents the basic of probabilistic risk assessment methods
that developed and matured within the commercial nuclear power reactor
industry. Chapter 31 by Akersten and Klefsjö studies methodologies and tools in
dependability and safety management. Chapter 32 by Albeanu and Vladicescu deals
with the approaches in software quality assurance and engineering management.
Chapter 33 by Teng and Pham presents a generalized software reliability growth
model for N-version programming systems which considers the error-introduction
rate, the error-removal efficiency, and multi-version coincident failures, based on
the non-homogeneous Poisson process. Chapter 34 by Carrasco presents Markovian
models for evaluating the dependability and performability of fault tolerant systems.

Chapter 35 by Lee discusses a new random-request availability measure and
presents closed-form mathematical expressions for random-request availability
which incorporate the random task arrivals, the system state, and the operational
requirements of the system.

All the chapters are written by over 45 leading reliability experts in academia and
industry. I am deeply indebted and wish to thank all of them for their contributions
and cooperation. Thanks are also due to the Springer staff, especially Peter Mitchell,
Roger Dobbing and Oliver Jackson, for their editorial work. I hope that practitioners
will find this Handbook useful when looking for solutions to practical problems;
researchers can use it for quick access to the background, recent research and trends,
and most important references regarding certain topics, if not all, in the reliability.

Hoang Pham
Piscataway, New Jersey

This page intentionally left blank

Contents

PART I. System Reliability and Optimization

1 Multi-state k-out-of-n Systems
Ming J. Zuo, Jinsheng Huang and Way Kuo 3

1.1 Introduction . 3
1.2 Relevant Concepts in Binary Reliability Theory 3
1.3 Binary k-out-of-n Models . 4

1.3.1 The k-out-of-n:G System with Independently and Identically
Distributed Components . 5

1.3.2 Reliability Evaluation Using Minimal Path or Cut Sets 5
1.3.3 Recursive Algorithms . 6
1.3.4 Equivalence Between a k-out-of-n:G System and an

(n− k + 1)-out-of-n:F system 6
1.3.5 The Dual Relationship Between the k-out-of-n G and F Systems 7

1.4 Relevant Concepts in Multi-state Reliability Theory 8
1.5 A Simple Multi-state k-out-of-n:G Model 10
1.6 A Generalized Multi-state k-out-of-n:G System Model 11
1.7 Properties of Generalized Multi-state k-out-of-n:G Systems 13
1.8 Equivalence and Duality in Generalized Multi-state k-out-of-n Systems 15

2 Reliability of Systems with Multiple Failure Modes
Hoang Pham . 19

2.1 Introduction . 19
2.2 The Series System . 20
2.3 The Parallel System . 21

2.3.1 Cost Optimization . 21
2.4 The Parallel–Series System . 22

2.4.1 The Profit Maximization Problem 23
2.4.2 Optimization Problem . 24

2.5 The Series–Parallel System . 25
2.5.1 Maximizing the Average System Profit 26
2.5.2 Consideration of Type I Design Error 27

2.6 The k-out-of-n Systems . 27
2.6.1 Minimizing the Average System Cost 29

2.7 Fault-tolerant Systems . 32
2.7.1 Reliability Evaluation . 33

xii Contents

2.7.2 Redundancy Optimization . 34
2.8 Weighted Systems with Three Failure Modes 34

3 Reliabilities of Consecutive-k Systems
Jen-Chun Chang and Frank K. Hwang . 37

3.1 Introduction . 37
3.1.1 Background . 37
3.1.2 Notation . 38

3.2 Computation of Reliability . 39
3.2.1 The Recursive Equation Approach 39
3.2.2 The Markov Chain Approach 40
3.2.3 Asymptotic Analysis . 41

3.3 Invariant Consecutive Systems . 41
3.3.1 Invariant Consecutive-2 Systems 41
3.3.2 Invariant Consecutive-k Systems 42
3.3.3 Invariant Consecutive-k G System 43

3.4 Component Importance and the Component Replacement Problem . 43
3.4.1 The Birnbaum Importance . 44
3.4.2 Partial Birnbaum Importance 45
3.4.3 The Optimal Component Replacement 45

3.5 The Weighted-consecutive-k-out-of-n System 47
3.5.1 The Linear Weighted-consecutive-k-out-of-n System 47
3.5.2 The Circular Weighted-consecutive-k-out-of-n System 47

3.6 Window Systems . 48
3.6.1 The f -within-consecutive-k-out-of-n System 49
3.6.2 The 2-within-consecutive-k-out-of-n System 51
3.6.3 The b-fold-window System 52

3.7 Network Systems . 53
3.7.1 The Linear Consecutive-2 Network System 53
3.7.2 The Linear Consecutive-k Network System 54
3.7.3 The Linear Consecutive-k Flow Network System 55

3.8 Conclusion . 57

4 Multi-state System Reliability Analysis and Optimization
G. Levitin and A. Lisnianski . 61

4.1 Introduction . 61
4.1.1 Notation . 63

4.2 Multi-state System Reliability Measures 63
4.3 Multi-state System Reliability Indices Evaluation Based on the

Universal Generating Function . 64
4.4 Determination of u-function of Complex Multi-state System Using

Composition Operators . 67
4.5 Importance and Sensitivity Analysis of Multi-state Systems 68
4.6 Multi-state System Structure Optimization Problems 72

4.6.1 Optimization Technique . 73
4.6.1.1 Genetic Algorithm 73

Contents xiii

4.6.1.2 Solution Representation and Decoding Procedure . 75
4.6.2 Structure Optimization of Series–Parallel System with

Capacity-based Performance Measure 75
4.6.2.1 Problem Formulation 75
4.6.2.2 Solution Quality Evaluation 76

4.6.3 Structure Optimization of Multi-state System with Two Failure
Modes . 77
4.6.3.1 Problem Formulation 77
4.6.3.2 Solution Quality Evaluation 80

4.6.4 Structure Optimization for Multi-state System with Fixed
Resource Requirements and Unreliable Sources 83
4.6.4.1 Problem Formulation 83
4.6.4.2 Solution Quality Evaluation 84
4.6.4.3 The Output Performance Distribution of a System

Containing Identical Elements in the Main
Producing Subsystem 85

4.6.4.4 The Output Performance Distribution of a System
Containing Different Elements in the Main
Producing Subsystem 85

4.6.5 Other Problems of Multi-state System Optimization 87

5 Combinatorial Reliability Optimization
C. S. Sung, Y. K. Cho and S. H. Song . 91

5.1 Introduction . 91
5.2 Combinatorial Reliability Optimization Problems of Series Structure . 95

5.2.1 Optimal Solution Approaches 95
5.2.1.1 Partial Enumeration Method 95
5.2.1.2 Branch-and-bound Method 96
5.2.1.3 Dynamic Programming 98

5.2.2 Heuristic Solution Approach 99
5.3 Combinatorial Reliability Optimization Problems of a Non-series

Structure . 102
5.3.1 Mixed Series–Parallel System Optimization Problems 102
5.3.2 General System Optimization Problems 106

5.4 Combinatorial Reliability Optimization Problems with
Multiple-choice Constraints . 107
5.4.1 One-dimensional Problems 108
5.4.2 Multi-dimensional Problems 111

5.5 Summary . 113

PART II. Statistical Reliability Theory

6 Modeling the Observed Failure Rate
M. S. Finkelstein . 117

6.1 Introduction . 117
6.2 Survival in the Plane . 118

xiv Contents

6.2.1 One-dimensional Case . 118
6.2.2 Fixed Obstacles . 119
6.2.3 Failure Rate Process . 121
6.2.4 Moving Obstacles . 122

6.3 Multiple Availability . 124
6.3.1 Statement of the Problem . 124
6.3.2 Ordinary Multiple Availability 125
6.3.3 Accuracy of a Fast Repair Approximation 126
6.3.4 Two Non-serviced Demands in a Row 127
6.3.5 Not More than N Non-serviced Demands 129
6.3.6 Time Redundancy . 130

6.4 Modeling the Mixture Failure Rate . 132
6.4.1 Definitions and Conditional Characteristics 132
6.4.2 Additive Model . 133
6.4.3 Multiplicative Model . 133
6.4.4 Some Examples . 135
6.4.5 Inverse Problem . 136

7 Concepts of Stochastic Dependence in Reliability Analysis
C. D. Lai and M. Xie . 141

7.1 Introduction . 141
7.2 Important Conditions Describing Positive Dependence 142

7.2.1 Six Basic Conditions . 143
7.2.2 The Relative Stringency of the Conditions 143
7.2.3 Positive Quadrant Dependent in Expectation 144
7.2.4 Associated Random Variables 144
7.2.5 Positively Correlated Distributions 145
7.2.6 Summary of Interrelationships 145

7.3 Positive Quadrant Dependent Concept 145
7.3.1 Constructions of Positive Quadrant Dependent Bivariate

Distributions . 146
7.3.2 Applications of Positive Quadrant Dependence Concept to

Reliability . 146
7.3.3 Effect of Positive Dependence on the Mean Lifetime of a

Parallel System . 146
7.3.4 Inequality Without Any Aging Assumption 147

7.4 Families of Bivariate Distributions that are Positive Quadrant
Dependent . 147
7.4.1 Positive Quadrant Dependent Bivariate Distributions with

Simple Structures . 148
7.4.2 Positive Quadrant Dependent Bivariate Distributions with

More Complicated Structures 149
7.4.3 Positive Quadrant Dependent Bivariate Uniform Distributions 150

7.4.3.1 Generalized Farlie–Gumbel–Morgenstern Family of
Copulas . 151

7.5 Some Related Issues on Positive Dependence 152

Contents xv

7.5.1 Examples of Bivariate Positive Dependence Stronger than
Positive Quadrant Dependent Condition 152

7.5.2 Examples of Negative Quadrant Dependence 153
7.6 Positive Dependence Orderings . 153
7.7 Concluding Remarks . 154

8 Statistical Reliability Change-point Estimation Models
Ming Zhao . 157

8.1 Introduction . 157
8.2 Assumptions in Reliability Change-point Models 158
8.3 Some Specific Change-point Models 159

8.3.1 Jelinski–Moranda De-eutrophication Model with a Change
Point . 159
8.3.1.1 Model Review . 159
8.3.1.2 Model with One Change Point 159

8.3.2 Weibull Change-point Model 160
8.3.3 Littlewood Model with One Change Point 160

8.4 Maximum Likelihood Estimation . 160
8.5 Application . 161
8.6 Summary . 162

9 Concepts and Applications of Stochastic Aging in Reliability
C. D. Lai and M. Xie . 165

9.1 Introduction . 165
9.2 Basic Concepts for Univariate Reliability Classes 167

9.2.1 Some Acronyms and the Notions of Aging 167
9.2.2 Definitions of Reliability Classes 167
9.2.3 Interrelationships . 169

9.3 Properties of the Basic Concepts . 169
9.3.1 Properties of Increasing and Decreasing Failure Rates 169
9.3.2 Property of Increasing Failure Rate on Average 169
9.3.3 Properties of NBU, NBUC, and NBUE 169

9.4 Distributions with Bathtub-shaped Failure Rates 169
9.5 Life Classes Characterized by the Mean Residual Lifetime 170
9.6 Some Further Classes of Aging . 171
9.7 Partial Ordering of Life Distributions 171

9.7.1 Relative Aging . 172
9.7.2 Applications of Partial Orderings 172

9.8 Bivariate Reliability Classes . 173
9.9 Tests of Stochastic Aging . 173

9.9.1 A General Sketch of Tests . 174
9.9.2 Summary of Tests of Aging in Univariate Case 177
9.9.3 Summary of Tests of Bivariate Aging 177

9.10 Concluding Remarks on Aging . 177

xvi Contents

10 Class of NBU-t0 Life Distribution
Dong Ho Park . 181

10.1 Introduction . 181
10.2 Characterization of NBU-t0 Class . 182

10.2.1 Boundary Members of NBU-t0 and NWU-t0 182
10.2.2 Preservation of NBU-t0 and NWU-t0 Properties under

Reliability Operations . 184
10.3 Estimation of NBU-t0 Life Distribution 186

10.3.1 Reneau–Samaniego Estimator 186
10.3.2 Chang–Rao Estimator . 188

10.3.2.1 Positively Biased Estimator 188
10.3.2.2 Geometric Mean Estimator 188

10.4 Tests for NBU-t0 Life Distribution . 189
10.4.1 Tests for NBU-t0 Alternatives Using Complete Data 189

10.4.1.1 Hollander–Park–Proschan Test 190
10.4.1.2 Ebrahimi–Habibullah Test 192
10.4.1.3 Ahmad Test . 193

10.4.2 Tests for NBU-t0 Alternatives Using Incomplete Data 195

PART III. Software Reliability

11 Software Reliability Models: A Selective Survey and New Directions
Siddhartha R. Dalal . 201

11.1 Introduction . 201
11.2 Static Models . 203

11.2.1 Phase-based Model: Gaffney and Davis 203
11.2.2 Predictive Development Life Cycle Model: Dalal and Ho 203

11.3 Dynamic Models: Reliability Growth Models for Testing and
Operational Use . 205
11.3.1 A General Class of Models . 205
11.3.2 Assumptions Underlying the Reliability Growth Models 206
11.3.3 Caution in Using Reliability Growth Models 207

11.4 Reliability Growth Modeling with Covariates 207
11.5 When to Stop Testing Software . 208
11.6 Challenges and Conclusions . 209

12 Software Reliability Modeling
James Ledoux . 213

12.1 Introduction . 213
12.2 Basic Concepts of Stochastic Modeling 214

12.2.1 Metrics with Regard to the First Failure 214
12.2.2 Stochastic Process of Times of Failure 215

12.3 Black-box Software Reliability Models 215
12.3.1 Self-exciting Point Processes 216

12.3.1.1 Counting Statistics for a Self-exciting Point Process . 218

Contents xvii

12.3.1.2 Likelihood Function for a Self-exciting Point Process 218
12.3.1.3 Reliability and Mean Time to Failure Functions . . . 218

12.3.2 Classification of Software Reliability Models 219
12.3.2.1 0-Memory Self-exciting Point Process 219
12.3.2.2 Non-homogeneous Poisson Process Model:

λ(t;Ht , F0)= f (t; F0) and is Deterministic 220
12.3.2.3 1-Memory Self-exciting Point Process with

λ(t;Ht , F0)= f (N(t), t − TN(t), F0) 221
12.3.2.4 m≥ 2-Memory . 221

12.4 White-box Modeling . 222
12.5 Calibration of Model . 223

12.5.1 Frequentist Procedures . 223
12.5.2 Bayesian Procedure . 225

12.6 Current Issues . 225
12.6.1 Black-box Modeling . 225

12.6.1.1 Imperfect Debugging 225
12.6.1.2 Early Prediction of Software Reliability 226
12.6.1.3 Environmental Factors 227
12.6.1.4 Conclusion . 228

12.6.2 White-box Modeling . 229
12.6.3 Statistical Issues . 230

13 Software Availability Theory and Its Applications
Koichi Tokuno and Shigeru Yamada . 235

13.1 Introduction . 235
13.2 Basic Model and Software Availability Measures 236
13.3 Modified Models . 239

13.3.1 Model with Two Types of Failure 239
13.3.2 Model with Two Types of Restoration 240

13.4 Applied Models . 241
13.4.1 Model with Computation Performance 241
13.4.2 Model for Hardware–Software System 242

13.5 Concluding Remarks . 243

14 Software Rejuvenation: Modeling and Applications
Tadashi Dohi, Katerina Goševa-Popstojanova, Kalyanaraman Vaidyanathan,
Kishor S. Trivedi and Shunji Osaki . 245

14.1 Introduction . 245
14.2 Modeling-based Estimation . 246

14.2.1 Examples in Telecommunication Billing Applications 247
14.2.2 Examples in a Transaction-based Software System 251
14.2.3 Examples in a Cluster System 255

14.3 Measurement-based Estimation . 257
14.3.1 Time-based Estimation . 258
14.3.2 Time and Workload-based Estimation 260

14.4 Conclusion and Future Work . 262

xviii Contents

15 Software Reliability Management: Techniques and Applications
Mitsuhiro Kimura and Shigeru Yamada . 265

15.1 Introduction . 265
15.2 Death Process Model for Software Testing Management 266

15.2.1 Model Description . 267
15.2.1.1 Mean Number of Remaining Software Faults/Testing

Cases . 268
15.2.1.2 Mean Time to Extinction 268

15.2.2 Estimation Method of Unknown Parameters 268
15.2.2.1 Case of 0 < α ≤ 1 268
15.2.2.2 Case of α = 0 . 269

15.2.3 Software Testing Progress Evaluation 269
15.2.4 Numerical Illustrations . 270
15.2.5 Concluding Remarks . 271

15.3 Estimation Method of Imperfect Debugging Probability 271
15.3.1 Hidden-Markov modeling for software reliability growth

phenomenon . 271
15.3.2 Estimation Method of Unknown Parameters 272
15.3.3 Numerical Illustrations . 273
15.3.4 Concluding Remarks . 274

15.4 Continuous State Space Model for Large-scale Software 274
15.4.1 Model Description . 275
15.4.2 Nonlinear Characteristics of Software Debugging Speed 277
15.4.3 Estimation Method of Unknown Parameters 277
15.4.4 Software Reliability Assessment Measures 279

15.4.4.1 Expected Number of Remaining Faults and Its
Variance . 279

15.4.4.2 Cumulative and Instantaneous Mean Time Between
Failures . 279

15.4.5 Concluding Remarks . 280
15.5 Development of a Software Reliability Management Tool 280

15.5.1 Definition of the Specification Requirement 280
15.5.2 Object-oriented Design . 281
15.5.3 Examples of Reliability Estimation and Discussion 282

16 Recent Studies in Software Reliability Engineering
Hoang Pham . 285

16.1 Introduction . 285
16.1.1 Software Reliability Concepts 285
16.1.2 Software Life Cycle . 288

16.2 Software Reliability Modeling . 288
16.2.1 A Generalized Non-homogeneous Poisson Process Model . . . 289
16.2.2 Application 1: The Real-time Control System 289

16.3 Generalized Models with Environmental Factors 289
16.3.1 Parameters Estimation . 292
16.3.2 Application 2: The Real-time Monitor Systems 292

Contents xix

16.4 Cost Modeling . 295
16.4.1 Generalized Risk–Cost Models 295

16.5 Recent Studies with Considerations of Random Field Environments . 296
16.5.1 A Reliability Model . 297
16.5.2 A Cost Model . 297

16.6 Further Reading . 300

PART IV. Maintenance Theory and Testing

17 Warranty and Maintenance
D. N. P. Murthy and N. Jack . 305

17.1 Introduction . 305
17.2 Product Warranties: An Overview . 306

17.2.1 Role and Concept . 306
17.2.2 Product Categories . 306
17.2.3 Warranty Policies . 306

17.2.3.1 Warranties Policies for Standard Products Sold
Individually . 306

17.2.3.2 Warranty Policies for Standard Products Sold in Lots 307
17.2.3.3 Warranty Policies for Specialized Products 307
17.2.3.4 Extended Warranties 307
17.2.3.5 Warranties for Used Products 308

17.2.4 Issues in Product Warranty 308
17.2.4.1 Warranty Cost Analysis 308
17.2.4.2 Warranty Servicing 309

17.2.5 Review of Warranty Literature 309
17.3 Maintenance: An Overview . 309

17.3.1 Corrective Maintenance . 309
17.3.2 Preventive Maintenance . 310
17.3.3 Review of Maintenance Literature 310

17.4 Warranty and Corrective Maintenance 311
17.5 Warranty and Preventive Maintenance 312
17.6 Extended Warranties and Service Contracts 313
17.7 Conclusions and Topics for Future Research 314

18 Mechanical Reliability and Maintenance Models
Gianpaolo Pulcini . 317

18.1 Introduction . 317
18.2 Stochastic Point Processes . 318
18.3 Perfect Maintenance . 320
18.4 Minimal Repair . 321

18.4.1 No Trend with Operating Time 323
18.4.2 Monotonic Trend with Operating Time 323

18.4.2.1 The Power Law Process 324
18.4.2.2 The Log–Linear Process 325
18.4.2.3 Bounded Intensity Processes 326

xx Contents

18.4.3 Bathtub-type Intensity . 327
18.4.3.1 Numerical Example 328

18.4.4 Non-homogeneous Poisson Process Incorporating Covariate
Information . 329

18.5 Imperfect or Worse Repair . 330
18.5.1 Proportional Age Reduction Models 330
18.5.2 Inhomogeneous Gamma Processes 331
18.5.3 Lawless–Thiagarajah Models 333
18.5.4 Proportional Intensity Variation Model 334

18.6 Complex Maintenance Policy . 335
18.6.1 Sequence of Perfect and Minimal Repairs Without Preventive

Maintenance . 336
18.6.2 Minimal Repairs Interspersed with Perfect Preventive

Maintenance . 338
18.6.3 Imperfect Repairs Interspersed with Perfect Preventive

Maintenance . 339
18.6.4 Minimal Repairs Interspersed with Imperfect Preventive

Maintenance . 340
18.6.4.1 Numerical Example 341

18.6.5 Corrective Repairs Interspersed with Preventive Maintenance
Without Restrictive Assumptions 342

18.7 Reliability Growth . 343
18.7.1 Continuous Models . 344
18.7.2 Discrete Models . 345

19 Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection
Tadashi Dohi, Naoto Kaio and Shunji Osaki 349

19.1 Introduction . 349
19.2 Block Replacement Models . 350

19.2.1 Model I . 350
19.2.2 Model II . 352
19.2.3 Model III . 352

19.3 Age Replacement Models . 354
19.3.1 Basic Age Replacement Model 354

19.4 Ordering Models . 356
19.4.1 Continuous-time Model . 357
19.4.2 Discrete-time Model . 358
19.4.3 Combined Model with Minimal Repairs 359

19.5 Inspection Models . 361
19.5.1 Nearly Optimal Inspection Policy by Kaio and Osaki (K&O

Policy) . 362
19.5.2 Nearly Optimal Inspection Policy by Munford and Shahani

(M&S Policy) . 363
19.5.3 Nearly Optimal Inspection Policy by Nakagawa and Yasui

(N&Y Policy) . 363
19.6 Concluding Remarks . 363

Contents xxi

20 Maintenance and Optimum Policy
Toshio Nakagawa . 367

20.1 Introduction . 367
20.2 Replacement Policies . 368

20.2.1 Age Replacement . 368
20.2.2 Block Replacement . 370

20.2.2.1 No Replacement at Failure 370
20.2.2.2 Replacement with Two Variables 371

20.2.3 Periodic Replacement . 371
20.2.3.1 Modified Models with Two Variables 372
20.2.3.2 Replacement at N Variables 373

20.2.4 Other Replacement Models 373
20.2.4.1 Replacements with Discounting 373
20.2.4.2 Discrete Replacement Models 374
20.2.4.3 Replacements with Two Types of Unit 375
20.2.4.4 Replacement of a Shock Model 376

20.2.5 Remarks . 377
20.3 Preventive Maintenance Policies . 378

20.3.1 One-unit System . 378
20.3.1.1 Interval Reliability 379

20.3.2 Two-unit System . 380
20.3.3 Imperfect Preventive Maintenance 381

20.3.3.1 Imperfect with Probability 383
20.3.3.2 Reduced Age . 383

20.3.4 Modified Preventive Maintenance 384
20.4 Inspection Policies . 385

20.4.1 Standard Inspection . 386
20.4.2 Inspection with Preventive Maintenance 387
20.4.3 Inspection of a Storage System 388

21 Optimal Imperfect Maintenance Models
Hongzhou Wang and Hoang Pham . 397

21.1 Introduction . 397
21.2 Treatment Methods for Imperfect Maintenance 399

21.2.1 Treatment Method 1 . 399
21.2.2 Treatment Method 2 . 400
21.2.3 Treatment Method 3 . 401
21.2.4 Treatment Method 4 . 402
21.2.5 Treatment Method 5 . 403
21.2.6 Treatment Method 6 . 403
21.2.7 Treatment Method 7 . 403
21.2.8 Other Methods . 404

21.3 Some Results on Imperfect Maintenance 404
21.3.1 A Quasi-renewal Process and Imperfect Maintenance 404

21.3.1.1 Imperfect Maintenance Model A 405
21.3.1.2 Imperfect Maintenance Model B 405

xxii Contents

21.3.1.3 Imperfect Maintenance Model C 405
21.3.1.4 Imperfect Maintenance Model D 407
21.3.1.5 Imperfect Maintenance Model E 408

21.3.2 Optimal Imperfect Maintenance of k-out-of-n Systems 409
21.4 Future Research on Imperfect Maintenance 411
21.A Appendix . 412

21.A.1 Acronyms and Definitions . 412
21.A.2 Exercises . 412

22 Accelerated Life Testing
Elsayed A. Elsayed . 415

22.1 Introduction . 415
22.2 Design of Accelerated Life Testing Plans 416

22.2.1 Stress Loadings . 416
22.2.2 Types of Stress . 416

22.3 Accelerated Life Testing Models . 417
22.3.1 Parametric Statistics-based Models 418
22.3.2 Acceleration Model for the Exponential Model 419
22.3.3 Acceleration Model for the Weibull Model 420
22.3.4 The Arrhenius Model . 422
22.3.5 Non-parametric Accelerated Life Testing Models: Cox’s Model 424

22.4 Extensions of the Proportional Hazards Model 426

23 Accelerated Test Models with the Birnbaum–Saunders Distribution
W. Jason Owen and William J. Padgett . 429

23.1 Introduction . 429
23.1.1 Accelerated Testing . 430
23.1.2 The Birnbaum–Saunders Distribution 431

23.2 Accelerated Birnbaum–Saunders Models 431
23.2.1 The Power-law Accelerated Birnbaum–Saunders Model 432
23.2.2 Cumulative Damage Models 432

23.2.2.1 Additive Damage Models 433
23.2.2.2 Multiplicative Damage Models 434

23.3 Inference Procedures with Accelerated Life Models 435
23.4 Estimation from Experimental Data 437

23.4.1 Fatigue Failure Data . 437
23.4.2 Micro-Composite Strength Data 437

24 Multiple-steps Step-stress Accelerated Life Test
Loon-Ching Tang . 441

24.1 Introduction . 441
24.2 Cumulative Exposure Models . 443
24.3 Planning a Step-stress Accelerated Life Test 445

24.3.1 Planning a Simple Step-stress Accelerated Life Test 446
24.3.1.1 The Likelihood Function 446
24.3.1.2 Setting a Target Accelerating Factor 447

Contents xxiii

24.3.1.3 Maximum Likelihood Estimator and Asymptotic
Variance . 447

24.3.1.4 Nonlinear Programming for Joint Optimality in
Hold Time and Low Stress 447

24.3.2 Multiple-steps Step-stress Accelerated Life Test Plans 448
24.4 Data Analysis in the Step-stress Accelerated Life Test 450

24.4.1 Multiply Censored, Continuously Monitored Step-stress
Accelerated Life Test . 450
24.4.1.1 Parameter Estimation for Weibull Distribution . . . 451

24.4.2 Read-out Data . 451
24.5 Implementation in Microsoft ExcelTM 453
24.6 Conclusion . 454

25 Step-stress Accelerated Life Testing
Chengjie Xiong . 457

25.1 Introduction . 457
25.2 Step-stress Life Testing with Constant Stress-change Times 457

25.2.1 Cumulative Exposure Model 457
25.2.2 Estimation with Exponential Data 459
25.2.3 Estimation with Other Distributions 462
25.2.4 Optimum Test Plan . 463

25.3 Step-stress Life Testing with Random Stress-change Times 463
25.3.1 Marginal Distribution of Lifetime 463
25.3.2 Estimation . 467
25.3.3 Optimum Test Plan . 467

25.4 Bibliographical Notes . 468

PART V. Practices and Emerging Applications

26 Statistical Methods for Reliability Data Analysis
Michael J. Phillips . 475

26.1 Introduction . 475
26.2 Nature of Reliability Data . 475
26.3 Probability and Random Variables . 478
26.4 Principles of Statistical Methods . 479
26.5 Censored Data . 480
26.6 Weibull Regression Model . 483
26.7 Accelerated Failure-time Model . 485
26.8 Proportional Hazards Model . 486
26.9 Residual Plots for the Proportional Hazards Model 489
26.10 Non-proportional Hazards Models 490
26.11 Selecting the Model and the Variables 491
26.12 Discussion . 491

xxiv Contents

27 The Application of Capture–Recapture Methods in Reliability Studies
Paul S. F. Yip, Yan Wang and Anne Chao . 493

27.1 Introduction . 493
27.2 Formulation of the Problem . 495

27.2.1 Homogeneous Model with Recapture 496
27.2.2 A Seeded Fault Approach Without Recapture 498
27.2.3 Heterogeneous Model . 499

27.2.3.1 Non-parametric Case: λi(t)= γiαt 499
27.2.3.2 Parametric Case: λi(t)= γi 501

27.3 A Sequential Procedure . 504
27.4 Real Examples . 504
27.5 Simulation Studies . 505
27.6 Discussion . 508

28 Reliability of Electric Power Systems: An Overview
Roy Billinton and Ronald N. Allan . 511

28.1 Introduction . 511
28.2 System Reliability Performance . 512
28.3 System Reliability Prediction . 515

28.3.1 System Analysis . 515
28.3.2 Predictive Assessment at HLI 516
28.3.3 Predictive Assessment at HLII 518
28.3.4 Distribution System Reliability Assessment 519
28.3.5 Predictive Assessment at HLIII 520

28.4 System Reliability Data . 521
28.4.1 Canadian Electricity Association Database 522
28.4.2 Canadian Electricity Association Equipment Reliability

Information System Database for HLI Evaluation 523
28.4.3 Canadian Electricity Association Equipment Reliability

Information System Database for HLII Evaluation 523
28.4.4 Canadian Electricity Association Equipment Reliability

Information System Database for HLIII Evaluation 524
28.5 System Reliability Worth . 525
28.6 Guide to Further Study . 527

29 Human and Medical Device Reliability
B. S. Dhillon . 529

29.1 Introduction . 529
29.2 Human and Medical Device Reliability Terms and Definitions 529
29.3 Human Stress—Performance Effectiveness, Human Error Types, and

Causes of Human Error . 530
29.4 Human Reliability Analysis Methods 531

29.4.1 Probability Tree Method . 531
29.4.2 Fault Tree Method . 532
29.4.3 Markov Method . 534

Contents xxv

29.5 Human Unreliability Data Sources . 535
29.6 Medical Device Reliability Related Facts and Figures 535
29.7 Medical Device Recalls and Equipment Classification 536
29.8 Human Error in Medical Devices . 537
29.9 Tools for Medical Device Reliability Assurance 537

29.9.1 General Method . 538
29.9.2 Failure Modes and Effect Analysis 538
29.9.3 Fault Tree Method . 538
29.9.4 Markov Method . 538

29.10 Data Sources for Performing Medical Device Reliability Studies 539
29.11 Guidelines for Reliability Engineers with Respect to Medical Devices . 539

30 Probabilistic Risk Assessment
Robert A. Bari . 543

30.1 Introduction . 543
30.2 Historical Comments . 544
30.3 Probabilistic Risk Assessment Methodology 546
30.4 Engineering Risk Versus Environmental Risk 549
30.5 Risk Measures and Public Impact . 550
30.6 Transition to Risk-informed Regulation 553
30.7 Some Successful Probabilistic Risk Assessment Applications 553
30.8 Comments on Uncertainty . 554
30.9 Deterministic, Probabilistic, Prescriptive, Performance-based 554
30.10 Outlook . 555

31 Total Dependability Management
Per Anders Akersten and Bengt Klefsjö . 559

31.1 Introduction . 559
31.2 Background . 559
31.3 Total Dependability Management . 560
31.4 Management System Components . 561
31.5 Conclusions . 564

32 Total Quality for Software Engineering Management
G. Albeanu and Fl. Popentiu Vladicescu . 567

32.1 Introduction . 567
32.1.1 The Meaning of Software Quality 567
32.1.2 Approaches in Software Quality Assurance 569

32.2 The Practice of Software Engineering 571
32.2.1 Software Lifecycle . 571
32.2.2 Software Development Process 574
32.2.3 Software Measurements . 575

32.3 Software Quality Models . 577
32.3.1 Measuring Aspects of Quality 577
32.3.2 Software Reliability Engineering 577
32.3.3 Effort and Cost Models . 579

xxvi Contents

32.4 Total Quality Management for Software Engineering 580
32.4.1 Deming’s Theory . 580
32.4.2 Continuous Improvement . 581

32.5 Conclusions . 582

33 Software Fault Tolerance
Xiaolin Teng and Hoang Pham . 585

33.1 Introduction . 585
33.2 Software Fault-tolerant Methodologies 586

33.2.1 N-version Programming . 586
33.2.2 Recovery Block . 586
33.2.3 Other Fault-tolerance Techniques 587

33.3 N-version Programming Modeling 588
33.3.1 Basic Analysis . 588

33.3.1.1 Data-domain Modeling 588
33.3.1.2 Time-domain Modeling 589

33.3.2 Reliability in the Presence of Failure Correlation 590
33.3.3 Reliability Analysis and Modeling 591

33.4 Generalized Non-homogeneous Poisson Process Model Formulation . 594
33.5 Non-homogeneous Poisson Process Reliability Model for N-version

Programming Systems . 595
33.5.1 Model Assumptions . 597
33.5.2 Model Formulations . 599

33.5.2.1 Mean Value Functions 599
33.5.2.2 Common Failures 600
33.5.2.3 Concurrent Independent Failures 601

33.5.3 N-version Programming System Reliability 601
33.5.4 Parameter Estimation . 602

33.6 N-version programming–Software Reliability Growth 602
33.6.1 Applications of N-version Programming–Software Reliability

Growth Models . 602
33.6.1.1 Testing Data . 602

33.7 Conclusion . 610

34 Markovian Dependability/Performability Modeling of Fault-tolerant Systems
Juan A. Carrasco . 613

34.1 Introduction . 613
34.2 Measures . 615

34.2.1 Expected Steady-state Reward Rate 617
34.2.2 Expected Cumulative Reward Till Exit of a Subset of States . . 618
34.2.3 Expected Cumulative Reward During Stay in a Subset of States 618
34.2.4 Expected Transient Reward Rate 619
34.2.5 Expected Averaged Reward Rate 619
34.2.6 Cumulative Reward Distribution Till Exit of a Subset of States 619
34.2.7 Cumulative Reward Distribution During Stay in a Subset

of States . 620

Contents xxvii

34.2.8 Cumulative Reward Distribution 621
34.2.9 Extended Reward Structures 621

34.3 Model Specification . 622
34.4 Model Solution . 625
34.5 The Largeness Problem . 630
34.6 A Case Study . 632
34.7 Conclusions . 640

35 Random-request Availability
Kang W. Lee . 643

35.1 Introduction . 643
35.2 System Description and Definition . 644
35.3 Mathematical Expression for the Random-request Availability 645

35.3.1 Notation . 645
35.3.2 Mathematical Assumptions 645
35.3.3 Mathematical Expressions . 645

35.4 Numerical Examples . 647
35.5 Simulation Results . 647
35.6 Approximation . 651
35.7 Concluding Remarks . 652

Index . 653

This page intentionally left blank

Contributors

Professor Per Anders Akersten
Division of Quality Technology and Statistics
Lulea University of Technology
Sweden

Professor G. Albeanu
The Technical University of Denmark
Denmark

Professor Ronald N. Allan
Department of Electrical Engineering

and Electronics
UMIST, Manchester
United Kingdom

Dr. Robert A. Bari
Energy, Environment and National Security
Brookhaven National Laboratory
USA

Professor Roy Billinton
Department of Electrical Engineering
University of Saskatchewan
Canada

Professor Juan A. Carrasco
Dep. d’Enginyeria Electronica, UPC
Spain

Professor Jen-Chun Chang
Department of Information Management
Ming Hsin Institute of Technology
Taiwan, ROC

Professor Anne Chao
Institute of Statistics
National Tsing Hua University
Taiwan

Dr. Yong Kwon Cho
Technology and Industry Department
Samsung Economic Research Institute
Republic of Korea

Dr. Siddhartha R. Dalal
Information Analysis and

Services Research Department
Applied Research
Telcordia Technologies
USA

Professor B. S. Dhillon
Department of Mechanical Engineering
University of Ottawa
Canada

Professor Tadashi Dohi
Department of Information Engineering
Hiroshima University
Japan

Professor Elsayed A. Elsayed
Department of Industrial Engineering
Rutgers University
USA

Professor Maxim S. Finkelstein
Department of Mathematical Statistics
University of the Orange Free State
Republic of South Africa

Professor Katerina Goševa-Popstojanova
Lane Dept. of Computer Science and

Electrical Engineering
West Virginia University
USA

Dr. Jinsheng Huang
Stantec Consulting
Canada

Professor Frank K. Hwang
Department of Applied Mathematics
National Chao Tung University
Taiwan, ROC

xxx Contributors

Dr. Nat Jack
School of Computing
University of Abertay Dundee
Scotland

Professor Naoto Kaio
Department of Economic Informatics
Faculty of Economic Sciences
Hiroshima Shudo University
Japan

Professor Mitsuhiro Kimura
Department of Industrial and Systems Engineering
Faculty of Engineering
Hosei University
Japan

Professor Bengt Klefsjö
Division of Quality Technology and Statistics
Lulea University of Technology
Sweden

Professor Way Kuo
Department of Industrial Engineering
Texas A&M University
USA

Professor C. D. Lai
Institute of Information Sciences and Technology
Massey University
New Zealand

Professor James Ledoux
Centre de mathématiques
Institut National des Sciences Appliquees
France

Dr. Gregory Levitin
Reliability Department
The Israel Electric Corporation
Israel

Dr. Anatoly Lisnianski
Reliability Department
The Israel Electric Corporation
Israel

Professor D. N. P. Murthy
Engineering and Operations Management Program
Department of Mechanical Engineering
The University of Queensland
Australia

Professor Toshio Nakagawa
Department of Industrial Engineering
Aichi Institute of Technology
Japan

Professor Shunji Osaki
Department of Information and

Telecommunication Engineering
Faculty of Mathematical Sciences and

Information Engineering
Nanzan University
Japan

Dr. W. Jason Owen
Mathematics and Computer Science Department
University of Richmond
USA

Professor William J. Padgett
Department of Statistics
University of South Carolina
USA

Professor Dong Ho Park
Department of Statistics
Hallym University
Korea

Professor Hoang Pham
Department of Industrial Engineering
Rutgers University
USA

Dr. Michael J. Phillips
Department of Mathematics and Computer Science
University of Leicester
United Kingdom

Professor Gianpaolo Pulcini
Statistics and Reliability Department
Istituto Motori CNR
Italy

Mr. Sang Hwa Song
Department of Industrial Engineering
Korea Advanced Institute of Science and Technology
Republic of Korea

Professor Chang Sup Sung
Department of Industrial Engineering
Korea Advanced Institute of Science and Technology
Republic of Korea

Contributors xxxi

Professor Loon-Ching Tang
Department of Industrial and Systems Engineering
National University of Singapore
Singapore

Dr. Xiaolin Teng
Department of Industrial Engineering
Rutgers University
USA

Professor Koichi Tokuno
Department of Social Systems Engineering
Tottori University
Japan

Professor Kishor S. Trivedi
Department of Electrical and Computer Engineering
Duke University
USA

Dr. Kalyanaraman Vaidyanathan
Department of Electrical and Computer Engineering
Duke University
USA

Professor Florin Popentiu Vladicescu
The Technical University of Denmark
Denmark

Dr. Yan Wang
School of Mathematics
City West Campus, UniSA
Australia

Professor Min Xie
Department of Industrial and Systems Engineering
National University of Singapore
Singapore

Professor Chengjie Xiong
Division of Biostatistics
Washington University in St. Louis
USA

Professor Shigeru Yamada
Department of Social Systems Engineering
Tottori University
Japan

Professor Paul S. F. Yip
Department of Statistics and Actuarial Science
University of Hong Kong
Hong Kong

Professor Ming Zhao
Department of Technology
University of Gävle
Sweden

Professor Ming J. Zuo
Department of Mechanical Engineering
University of Alberta
Canada

This page intentionally left blank

System Reliability and
OptimizationP

A
R

T
I

1 Multi-state k-out-of-n Systems
1.1 Introduction
1.2 Relevant Concepts in Binary Reliability Theory
1.3 Binary k-out-of-nModels
1.4 Relevant Concepts in Multi-state Reliability Theory
1.5 A Simple Multi-state k-out-of-n:G Model
1.6 A Generalized Multi-state k-out-of-n:G System Model
1.7 Properties of Generalized Multi-state k-out-of-n:G Systems
1.8 Equivalence and Duality in Generalized Multi-state k-out-of-n Systems

2 Reliability of Systems with Multiple Failure Modes
2.1 Introduction
2.2 The Series System
2.3 The Parallel System
2.4 The Parallel–Series System
2.5 The Series–Parallel System
2.6 The k-out-of-n Systems
2.7 Fault-tolerant Systems
2.8 Weighted Systems with Three Failure Modes

3 Reliabilities of Consecutive-k-Systems
3.1 Introduction
3.2 Computation of Reliability
3.3 Invariant Consecutive Systems
3.4 Component Importance and the Component Replacement Problem
3.5 The Weighted-consecutive-k-out-of-n System
3.6 Window Systems
3.7 Network Systems
3.8 Conclusion

4 Multi-State System Reliability Analysis and Optimization
4.1 Introduction
4.2 MSS Reliability Measures
4.3 MSS Reliability Indices Evaluation Based on the UGF
4.4 Determination of u-Function of Complex MSS Using Composition Operators
4.5 Importance and Sensitivity Analysis of Multi-state Systems
4.6 MSS Structure Optimization Problems

5 Combinatorial Reliability Optimization
5.1 Introduction
5.2 Combinatorial Reliability Optimization Problems of Series Structure
5.3 Combinatorial Reliability Optimization Problems of Non-series Structure
5.4 Combinatorial Reliability Optimization Problems with Multiple-choice Constraints
5.5 Summary

Multi-state k-out-of-n Systems

Ch
ap

te
r1

Ming J. Zuo, Jinsheng Huang and Way Kuo

1.1 Introduction
1.2 Relevant Concepts in Binary Reliability Theory
1.3 Binary k-out-of-nModels
1.3.1 The k-out-of-n:G System with Independently and Identically Distributed Components
1.3.2 Reliability Evaluation Using Minimal Path or Cut Sets
1.3.3 Recursive Algorithms
1.3.4 Equivalence Between a k-out-of-n:G System and an (n− k + 1)-out-of-n:F system
1.3.5 The Dual Relationship Between the k-out-of-nG and F Systems
1.4 Relevant Concepts in Multi-state Reliability Theory
1.5 A Simple Multi-state k-out-of-n:GModel
1.6 A Generalized Multi-state k-out-of-n:G System Model
1.7 Properties of Generalized Multi-state k-out-of-n:G Systems
1.8 Equivalence and Duality in Generalized Multi-state k-out-of-n Systems

1.1 Introduction
In traditional reliability theory, both the system
and its components are allowed to take only two
possible states: either working or failed. In a multi-
state system, both the system and its components
are allowed to experience more than two possible
states, e.g. completely working, partially working
or partially failed, and completely failed. A multi-
state system reliability model provides more
flexibility for modeling of equipment conditions.
The terms binary and multi-state will be used to
indicate these two fundamental assumptions in
system reliability models.

1.2 Relevant Concepts in Binary
Reliability Theory
The following notation will be used:

• xi : state of component i, xi = 1 if component
i is working and zero otherwise;
• x: an n-dimensional vector representing the

states of all components, x= (x1, x2, . . . , xn);

• φ(x): state of the system, which is also called
the structure function of the system;
• (ji, x): a vector x whose ith argument is set

equal to j , where j = 0, 1 and i = 1, 2, . . . , n.

A component is irrelevant if its state does not
affect the state of the system at all. The structure
function of the system indicates that the state of
the system is completely determined by the states
of all components. A system of components is
said to be coherent if: (1) its structure function is
non-decreasing in each argument; (2) there are no
irrelevant components in the system. These two
requirements of a coherent system can be stated
as: (1) the improvement of any component does
not degrade the system performance; (2) every
component in the system makes some non-
zero contribution to the system’s performance.
A mathematical definition of a coherent system is
given below.

Definition 1. A binary system with n components
is a coherent system if its structure function φ(x)
satisfies:

3

4 System Reliability and Optimization

1. φ(x) is non-decreasing in each argument xi ,
i = 1, 2, . . . , n;

2. there exists a vector x such that 0= φ(0i , x) <
φ(1i , x)= 1;

3. φ(0)= 0 and φ(1)= 1.

Condition 1 in Definition 1 requires that φ(x)
be a monotonically increasing function of each
argument. Condition 2 specifies the so-called rel-
evancy condition, which requires that every com-
ponent has to be relevant to system performance.
Condition 3 states that the system fails when all
components are failed and system works when all
components are working.

A minimal path set is a minimal set of compo-
nents whose functioning ensures the functioning
of the system. A minimal cut set is a minimal set
of components whose failure ensures the failure
of the system. The following mathematical defi-
nitions of minimal path and cut sets are given by
Barlow and Proschan [1].

Definition 2. Define C0(x)= i | xi = 0 and C1(x)
= i | xi = 1. A path vector is a vector x such that
φ(x)= 1. The corresponding path set is C1(x).
A minimal path vector is a path vector x such
that φ(y)= 0 for any y < x. The corresponding
minimal path set is C1(x). A cut vector is a vector
x such that φ(x)= 0. The corresponding cut set is
C0(x). A minimal cut vector is a cut vector x such
that φ(y)= 1 for any y > x. The corresponding
minimal cut set is C0(x).

The reliability of a system is equal to the
probability that at least one of the minimal path
sets works. The unreliability of the system is equal
to the probability that at least one minimal cut
set is failed. For a minimal path set to work, each
component in the set must work. For a minimal
cut set to fail, all components in the set must
fail.

1.3 Binary k-out-of-n Models

A system of n components that works (or is
“good”) if and only if at least k of the n

components work (or are “good”) is called a

k-out-of-n:G system. A system of n components
that fails if and only if at least k of the n

components fail is called a k-out-of-n:F system.
The term k-out-of-n system is often used to
indicate either a G system, an F system, or both.
Since the value of n is usually larger than the
value of k, redundancy is built into a k-out-of-n
system. Both the parallel and the series systems
are special cases of the k-out-of-n system. A series
system is equivalent to a 1-out-of-n:F system and
to an n-out-of-n:G system. A parallel system is
equivalent to an n-out-of-n:F system and to a
1-out-of-n:G system.

The k-out-of-n system structure is a very
popular type of redundancy in fault-tolerant
systems. It finds wide applications in both
industrial and military systems. Fault-tolerant
systems include the multi-display system in a
cockpit, the multi-engine system in an airplane,
and the multi-pump system in a hydraulic control
system. For example, in a V-8 engine of an
automobile it may be possible to drive the car
if only four cylinders are firing. However, if less
than four cylinders fire, then the automobile
cannot be driven. Thus, the functioning of
the engine may be represented by a 4-out-of-
8:G system. It is tolerant of failures of up to
four cylinders for minimal functioning of the
engine. In a data-processing system with five
video displays, a minimum of three displays
operable may be sufficient for full data display.
In this case, the display subsystem behaves as a
3-out-of-5:G system. In a communications system
with three transmitters the average message load
may be such that at least two transmitters
must be operational at all times or critical
messages may be lost. Thus, the transmission
subsystem functions as a 2-out-of-3:G system.
Systems with spares may also be represented
by the k-out-of-n system model. In the case of
an automobile with four tires, for example, the
vehicle is usually equipped with one additional
spare tire. Thus, the vehicle can be driven as
long as at least four out of five tires are in good
condition.

In the following, we will also adopt the
following notation:

Multi-state k-out-of-n Systems 5

• n: number of components in the system;
• k: minimum number of components that must

work for the k-out-of-n:G system to work;
• pi : reliability of component i, i = 1, 2, . . . , n,

pi = Pr(xi = 1);
• p: reliability of each component when all

components are i.i.d.;
• qi : unreliability of component i, qi = 1− pi ,

i = 1, 2, . . . , n;
• q : unreliability of each component when all

components are i.i.d., q = 1− p;
• Re(k, n): probability that exactly k out of n

components are working;
• R(k, n): reliability of a k-out-of-n:G system

or probability that at least k out of the n

components are working, where 0≤ k ≤ n

and both k and n are integers;
• Q(k, n): unreliability of a k-out-of-n:G system

or probability that less than k out of the
n components are working, where 0≤ k ≤ n

and both k and n are integers, Q(k, n)= 1−
R(k, n).

1.3.1 The k-out-of-n:G System with
Independently and Identically
Distributed Components

The reliability of a k-out-of-n:G system with
independently and identically distributed (i.i.d.)
components is equal to the probability that the
number of working components is greater than or
equal to k:

R(k, n)=
n∑

i=k

(
n

i

)
piqn−i (1.1)

Other equations that can be used for system
reliability evaluation include

R(k, n)= pk
n∑

i=k

(
i − 1

k − 1

)
qi−k (1.2)

and

R(k, n)=
(
n− 1

k − 1

)
pkqn−k + R(k, n+ 1) (1.3)

with the boundary condition:

R(k, n)= 0 for n= k (1.4)

1.3.2 Reliability Evaluation Using
Minimal Path or Cut Sets

In a k-out-of-n:G system, there are
(
n
k

)
minimal

path sets and
(

n
n−k+1

)
minimal cut sets. Each min-

imal path set contains exactly k different compo-
nents and each minimal cut set contains exactly
n− k + 1 components. Thus, all minimal path sets
and minimal cut sets are known. To find the reli-
ability of a k-out-of-n:G system, one may choose
to evaluate the probability that at least one of the
minimal path sets contains all working compo-
nents or one minus the probability that at least one
minimal cut set contains all failed components.

The inclusion–exclusion (IE) method can be
used for reliability evaluation of a k-out-of-
n:G system. However, it has the disadvantage
of involving many canceling terms. Heidtmann
[2] and McGrady [3] provide improved versions
of the IE method for reliability evaluation
of the k-out-of-n:G system. In their improved
algorithms, the canceling terms are eliminated.
However, these algorithms are still enumerative
in nature. For example, the formula provided by
Heidtmann [2] is as follows:

R(k, n)=
n∑

i=k
(−1)i−k

(
i − 1

k − 1

) ∑
j1<j2<···<ji

i∏
l=1

pjl

(1.5)
In this equation, for each fixed i value, the inner
summation term gives us the probability that i

components are working properly regardless of
whether the other n− i components are working
or not. The total number of terms to be summed
together in the inner summation series is equal
to
(
n
i

)
.

The sum-of-disjoint-product (SDP) method
can also be used for reliability evaluation of
the k-out-of-n:G systems. Let Si indicate the
ith minimal path of a k-out-of-n:G system (i =
1, 2, . . . , m, where m= (n

i

)
. The SDP method

uses the following equation for system reliability
evaluation:

R(k, n)= Pr(S1)+ Pr(S1S2)+ Pr(S1S2S3)+ · · ·
+ Pr(S1S2 . . . Sm−1Sm) (1.6)

6 System Reliability and Optimization

Like the improved IE method given in Equa-
tion 1.5, the SDP method is pretty easy to use
for the k-out-of-n:G systems. However, we will see
later that there are much more efficient methods
than the IE (and its improved version) and the SDP
method for the k-out-of-n:G systems.

1.3.3 Recursive Algorithms

Under the assumption that components are
s-independent, several efficient recursive algo-
rithms have been developed for system reliability
evaluation of the k-out-of-n:G systems. Barlow
and Heidtmann [4] and Rushdi [5] independently
provide an algorithm with complexity O(k(n−
k + 1)) for system reliability evaluation of the
k-out-of-n:G systems. The approaches used to
derive the algorithm are the generating func-
tion approach (Barlow and Heidtmann) and the
symmetric switching function approach (Rushdi).
The following equation summarizes the algo-
rithm:

R(i, j)= pjR(i − 1, j − 1)

+ qjR(i, j − 1) i ≥ 0, j ≥ 0 (1.7)

with boundary conditions

R(0, j)= 1 j ≥ 0 (1.8)

R(j + 1, j)= 0 j ≥ 0 (1.9)

Chao and Lin [6] were the first to use the
Markov chain technique in analyzing reliability
system structures; in their case, it was for the
consecutive-k-out-of-n:F system. Subsequently,
Chao and Fu [7, 8] standardized this approach
of using the Markov chain in the analysis of
various system structures and provided a general
framework and general results for this technique.
The system structures that can be represented by
a Markov chain were termed linearly connected
systems by Fu and Lou [9]. Koutras [10] provides
a systematic summary of this technique and calls
these systems Markov chain imbeddable (MIS)
systems. Koutras [10] applied this technique to
the k-out-of-n:F system and provided recursive
equations for system reliability evaluation of the
k-out-of-n:F systems. In the following, we provide

the equations for the k-out-of-n:G systems.

a0(t)= qta0(t − 1) t ≥ 1 (1.10)

aj (t)ptaj−1(t − 1)+ qtaj (t − 1)

1≤ j < k, j ≤ t ≤ n (1.11)

ak(t)ptak−1(t − 1)+ ak(t − 1) k ≤ t ≤ n

(1.12)

where aj (t) is the probability that there are exactly
j working components in a system with t com-
ponents for 0≤ j < k and ak(t) is the probability
that there are at least k working components in the
t component subsystem. The following boundary
conditions are immediate:

a0 = 1 (1.13)

aj (0)= 0 j > 0 (1.14)

aj (t)= 0 for t < j (1.15)

The reliability of the system, R(k, n)= ak(n).
The computational complexity of the recursive
Equations 1.10–1.12 for system reliability of a
k-out-of-n:G system is also O(k(n− k + 1)).

Belfore [11] used the generating function
approach as used by Barlow and Heidtmann [4]
and applied a fast Fourier transform (FFT) in
computation of the products of the generating
functions. An algorithm for reliability evaluation
of k-out-of-n:G systems results from such a
combination that has a computational complexity
of O(n[log2(n)]2). This algorithm is not easy to
use for manual calculations or when the system
size is small. For details of this algorithm, readers
are referred to Belfore [11].

1.3.4 Equivalence Between a
k-out-of-n:G System and an
(n− k + 1)-out-of-n:F system

Based on the definitions of these two types
of systems, a k-out-of-n:G system is equivalent
to an (n− k + 1)-out-of-n:F system. Similarly, a
k-out-of-n:F system is equivalent to an (n− k +
1)-out-of-n:G system. This means that provided
the systems have the same set of component
reliabilities, the reliability of a k-out-of-n:G system

Multi-state k-out-of-n Systems 7

is equal to the reliability of an (n− k + 1)-out-
of-n:F system and the reliability of a k-out-
of-n:F system is equal to the reliability of an
(n− k + 1)-out-of-n:G system. As a result, we
can use the algorithms that have been covered
in the previous section for the k-out-of-n:G
systems in reliability evaluation of the k-out-of-n:F
systems. The procedure is simple and is outlined
below.

Procedure 1. Procedure for using algorithms for
the G systems in reliability evaluation of the F
systems utilizing the equivalence relationship:

1. given: k, n, p1, p2, . . . , pn for a k-out-of-n:F
system;

2. calculate k1 = n− k + 1;
3. use k1, n, p1, p2, . . . , pn to calculate the reli-

ability of a k1-out-of-n:G system. This reliabil-
ity is also the reliability of the original k-out-
of-n:F system.

1.3.5 The Dual Relationship Between
the k-out-of-n G and F Systems

Definition 3. (Barlow and Proschan [1]) Given a
structure φ, its dual structure φD is given by

φD(x)= (1− x) (1.16)

where 1− x= (1− x1, 1− x2, . . . , 1− xn).

With a simple variable substitution of y= 1− x
and then writing y as x, we have the following
equation:

φD(1− x)= 1− φ(x) (1.17)

We can interpret Equation 1.17 as follows. Given
a primal system with component state vector x
and the system state represented by φ(x), the
state of the dual system is equal to 1− φ(x) if
the component state vector for the dual system
can be expressed by 1− x. In the binary system
context, each component and the system may only
be in two possible states: either working or failed.
We say that two components with different states
have opposite states. For example, if component
1 is in state 1 and component 2 is in state
0, components 1 and 2 have opposite states.

Suppose a system (called system 1) has component
state vector x and system state φ(x). Consider
another system (called system 2) having the same
number of components as system 1. If each
component in system 2 has the opposite state of
the corresponding component in system 1 and the
state of system 2 becomes the opposite of the state
of system 1, then system 1 and system 2 are duals
of each other.

Now let us examine the k-out-of-n G and F
systems. Suppose that in the k-out-of-n:G system,
there are exactly j working components and
the system is working (in other words, j ≥ k).
Now assume that there are exactly j failed
components in the k-out-of-n:F system. Since j ≥
k, the k-out-of-n:F system must be in the failed
state. If j < k, the k-out-of-n:G system is failed,
and at the same time, the k-out-of-n:F system is
working. Thus, the k-out-of-n G and F systems
are duals of each other. The dual and equivalence
relationships between the k-out-of-n G and F
systems are summarized below.

1. A k-out-of-n:G system is equivalent to an
(n− k + 1)-out-of-n:F system.

2. A k-out-of-n:F system is equivalent to an
(n− k + 1)-out-of-n:G system.

3. The dual of a k-out-of-n:G system is a
k-out-of-n:F system.

4. The dual of a k-out-of-n:G system is an
(n− k + 1)-out-of-n:G system.

5. The dual of a k-out-of-n:F system is a
k-out-of-n:G system.

6. The dual of a k-out-of-n:F system is an
(n− k + 1)-out-of-n:F system.

Using the dual relationship, we can summarize the
following procedure for reliability evaluation of
the dual system if the available algorithms are for
the primal system.

Procedure 2. Procedure for using algorithms for
the G systems in reliability evaluation of the F
systems utilizing the dual relationship:

1. given: k, n, p1, p2, . . . , pn for a k-out-of-n:F
system;

2. calculate qi = 1− pi for i = 1, 2, . . . , n;

8 System Reliability and Optimization

3. treat qi as the reliability of component i in a k-
out-of-n:G system and use the algorithms for
the G system discussed in the previous section
to evaluate the reliability of the G system;

4. subtract the calculated reliability of the G
system from one to obtain the reliability of the
original k-out-of-n:F system.

Using the dual relationship, we can also obtain
algorithms for k-out-of-n:F system reliability
evaluation from those developed for the k-out-of-
n:G systems. We only need to change reliability
measures to unreliability measures and vice versa.
Take the algorithm developed by Rushdi [5]
as an example. The formulas for reliability
and unreliability evaluation of a k-out-of-n:G
system are given in Equation 1.7 with boundary
conditions in Equations 1.8 and 1.9. By changing
R(i, j) to Q(i, j), Q(i, j) to R(i, j), pi to qi , and
qi to pi in those equations, we obtain the following
equations for unreliability evaluation of a k-out-
of-n:F system:

QF(i, j)= qjQF(i − 1, j − 1)+ pjQF(i, j − 1)
(1.18)

with the following boundary conditions

QF(0, j)= 1 (1.19)

QF(j + 1, j)= 0 (1.20)

The subscript “F” is added to indicate that these
measures are for the F system to avoid confusion.
Similar steps can be applied to other algorithms
for the G systems to derive the corresponding
algorithms for the F systems.

1.4 Relevant Concepts in
Multi-state Reliability Theory
In the multi-state context, the definition domains
of the state of the system and its components
are expanded from {0, 1} to {0, 1, . . . , M} where
M is an integer greater than one. Such multi-
state system models are discrete models. There are
also continuous-state system reliability models.
However, we will focus on discrete state models in
this chapter.

We will adopt the following notation:

• xi : state of component i, xi = j if component
i is in state j , 0≤ j ≤M ;
• x: an n-dimensional vector representing the

states of all components, x= (x1, x2, . . . , xn);
• φ(x): state of the system, which is also called

the structure function of the system, 0≤
φ(x) ≤M ;
• (ji, x): a vector x whose ith argument is set

equal to j , where j = {0, 1, . . . , M} and i =
1, 2, . . . , n.

In extending Definition 1 for a binary coherent
system to the multi-state context, conditions 1
and 3 can be easily extended, namely, φ(x) is
still a monotonically increasing function in each
argument and the state of the system is equal to
the state of all components when all components
are in the same state. However, there are many
different ways to extend condition 2, namely, the
relevancy condition. One definition of a coherent
system in the multi-state context is given below.

Definition 4. A multi-state system with n com-
ponents is defined to be a coherent system if its
structure function satisfies:

1. φ(x) is monotonically increasing in each
argument;

2. there exists a vector x such that φ(0i , x) <
φ(Mi, x) for each i = 1, 2, . . . , n;

3. φ(j)= j for j = 0, 1, . . . , M .

The reason that there are many different ways
to define the relevancy condition (condition 2)
is that there are different degrees of relevancy
that a component may have on the system in
the multi-state context. A component has M + 1
levels and the system has M + 1 levels. A level
of a component may be relevant to some levels
of the system but not others. Every level of a
component may be relevant to every level of the
system (this is the case in the binary case, since
there are only two levels). There are many papers
discussing relevancy conditions, for example, see
Andrzejezak [12] for a review. However, the focus
of this chapter is not on relevancy conditions.

Multi-state k-out-of-n Systems 9

There are two different definitions of minimal
path vectors and minimal cut vectors in the multi-
state context. One is given in terms of resulting
in the system state to be exactly in a certain state
while the other is given in terms of resulting in the
system state to be in or above a certain state.

Definition 5. (El-Neweihi et al. [13]) A vector x is
a connection vector to level j if φ(x)= j . A vector
x is a lower critical connection vector to level j
if φ(x)= j and φ(y) < j for all y < x. A vector x
is an upper critical connection vector to level j if
φ(x)= j and φ(y) > j for all y > x.

A connection vector to level j defined here is a
path vector that results in a system state of level j .
A lower critical connection vector to level j can be
called a minimal path vector to level j . An upper
critical connection vector can be called a maximal
path vector to level j . These terms refer to path
vectors instead of cut vectors. If these vectors are
known, one can use them in evaluation of the
probability distribution of the system state.

Definition 6. (Natvig [14]) A vector x is called a
minimal path vector to level j if φ(x)≥ j and
φ(y) < j for all y < x. A vector x is called a
minimal cut vector to level j if φ(x) < j and
φ(y) ≥ j for all y≥ x.

In this definition, both minimal path vectors
and minimal cut vectors are defined in terms of
whether they result in a system state “equal to or
greater than j” or not. Based on the definitions
given by El-Neweihi et al. [13] and Natvig [14], a
minimal path vector to level j may or may not be
a connection vector to level j , as it may result in a
system state higher than j . A minimal cut vector
to level j may or may not be a connection vector
to level j − 1, as it may result in a system state
below j − 1. We find that the minimal path vectors
and minimal cut vectors defined by Natvig [14] are
easier to use than the connection vectors defined
by El-Neweihi et al. [13].

Definition 7. (Xue [15]) Let φ(x) be the structure
function of a multi-state system. The structure

function of its dual system, φD(x), is defined to be

φD(x)=M − φ(M− x)

where M− x= (M − x1, M − x2, . . . , M − xn).

Based on this definition of duality, the following
two results are immediate.

1. (φD(x))D = φ(x) [15].
2. Vector x is an upper critical connecting vector

to level j of φ if and only if M− x is a lower
critical connection vector to level M − j of
φD. Vector x is a lower critical connecting
vector to level j of φ if and only if M− x
is an upper critical connection vector to level
M − j of φD.

Reliability is the most widely used performance
measure of a binary system. It is the probability
that the system is in state 1. Once the reliability
of a system is given, we also know the probability
that the system is in state 0. Thus, the reliability
uniquely defines the distribution of a binary
system in different states. In a multi-state system,
it is often assumed that the state distribution,
i.e. the distribution of each component in different
states, is given. The performance of the system
is represented by its state distribution. Thus, the
most important performance measure in a multi-
state system is the state distributions. A state
distribution may be given in terms of a probability
distribution function, a cumulative distribution
function, or a reliability function.

We define the following notation:

• pij : probability that component i is in state j ,
1≤ i ≤ n, 0≤ j ≤M ;
• pj : probability that a component is in state j

when all components are i.i.d.;
• Pij : probability that component i is in state j

or above;
• Pj : probability that a component is in state j

or above when all components are i.i.d.;
• Qij = 1− Pij : the probability that component

i is in a state below j ;
• Qj = 1− Pj ;
• Rsj = Pr(φ(x)≥ j);
• Qsj = 1Rsj ;
• rsj = Pr(φ(x)= j).

10 System Reliability and Optimization

Based on this notation, we have the following facts:

Pi0 = 0 1≤ i ≤ n

M∑
j=0

pij = 1 1≤ j ≤ n

piM = PiM, pij = Pij − Pi,j+1

1≤ i ≤ n, 0≤ j ≤M − 1

Rs0 = 1, RsM = rsj = Rsj − Rs(j+1)

0≤ j ≤M − 1

1.5 A Simple Multi-state
k-out-of-n:G Model
The following notation is adopted:

• R(k, n; j): probability that the k-out-of-n:G
system is in state j or above.

The state of a multi-state series system is equal
to the state of the worst component in the system
[13], i.e.

φ(x)= min
1≤i≤n xi

The state of a parallel system is equal to the state
of the best component in the system [13], i.e.

φ(x)= max
1≤i≤n

xi

These definitions are natural extensions from
the binary case to the multi-state case. System
performance evaluation for the defined multi-state
parallel and series systems is straightforward.

Rsj =
n∏

i=1

Pij j = 1, 2, . . . , M (1.21)

for a series system, and

Qsj =
n∏

i=1

Qij j = 1, 2, . . . , M (1.22)

for a parallel system.
A simple extension of the binary k-out-of-

n:G system results in the definition of a simple
multi-state k-out-of-n:G system. We call it simple
because there are more general models of the
k-out-of-n:G systems, which will be discussed
later.

Definition 8. (El-Neweihi et al. [13]) A system is
a k-out-of-n:G system if its structure function
satisfies

φ(x)= x(n−k+1)

where x(1) ≤ x(2) ≤ · · · ≤ x(n) is an non-decreas-
ing arrangement of x1, x2, . . . , and xn.

Based on this definition, a k-out-of-n:G system
has the following properties.

1. The multi-state series and parallel systems
defined above satisfy this definition of the
multi-state k-out-of-n:G system.

2. The state of the system is determined by the
worst state of the best k components.

3. Each state j for 1≤ j ≤M has
(
n
k

)
minimal

path vectors and
(

n
k−1

)
minimal cut vectors.

The numbers of minimal path and minimal
cut vectors are the same for each state. We
can say that the defined k-out-of-n:G system
has the same structure at each system state
j for 1≤ j ≤M . In other words, the system
is in state j or above if and only if at least
k components are in state j or above for
each j (1≤ j ≤M). Because of this property,
Boedigheimer and Kapur [16] actually define
the k-out-of-n:G system as one that has

(
n
k

)
minimal path vectors and

(
n

k−1

)
minimal cut

vectors to system state j for 1≤ j ≤M .

System performance evaluation for the simple
k-out-of-n:G system is straightforward. For any
specified system state j , we can use the sys-
tem reliability evaluation algorithms for a binary
k-out-of-n:G system to evaluate the probabil-
ity that the multi-state system is in state j

or above. For example, Equation 1.7 and its
boundary condition can be used as follows, for
1≤ j ≤M :

R(k, n; j)= PnjR(k − 1, n− 1; j)
+QnjR(k, n− 1; j) (1.23)

R(0, n; j)= 1 (1.24)

R(n+ 1, n; j)= 0 (1.25)

Multi-state k-out-of-n Systems 11

1.6 A Generalized Multi-state
k-out-of-n:G System Model
The simple multi-state k-out-of-n:G system model
limits that the system structure at each system
level must be the same. In practical situations, a
multi-state system may have different structures
at different system levels. For example, consider a
three-component system with four possible states.
The system could be a 1-out-of-3:G structure at
level 1; in other words, it requires at least one
component to be in state 1 or above for the system
to be in state 1 or above. It may have a 2-out-of-3:G
structure at level 2; in other words, for the system
to be in state 2 or above, at least two components
must be in state 2 or above. It may have a 3-out-
of-3:G structure at level 3; namely, at least three
components have to be in state 3 for the system
to be in state 3. Such a k-out-of-n system model
is more flexible for modeling real-life systems.
Huang et al. [17] proposed a definition of the
generalized multi-state k-out-of-n:G system and
developed reliability evaluation algorithms for the
following multi-state k-out-of-n:G system model.

Definition 9. (Huang [17]) φ(x)≥ j (j = 1, 2,
. . . , M) if there exists an integer value l (j ≤
l ≤M) such that at least kl components are in
state l or above. An n-component system with
such a property is called a multi-state k-out-of-n:G
system.

In this definition, kj values do not have to be
the same for different system states j (1≤ j ≤
M). This means that the structure of the multi-
state system may be different for different system
state levels. Generally speaking, kj values are
not necessarily in a monotone ordering. But the
following two special cases of this definition will
be particularly considered.

• When k1 ≤ k2 ≤ · · · ≤ kM , the system is called
an increasing multi-state k-out-of-n:G system.
In this case, for the system to be in a
higher state level j or above, a larger
number of components must be in state j or
above. In other words, there is an increasing
requirement on the number of components

that must be in a certain state or above for the
system to be in a higher state level. That is why
we call it the increasing multi-state k-out-of-
n:G system.
• When k1 ≥ k2 ≥ · · · ≥ kM , the system is called

a decreasing multi-state k-out-of-n:G system.
In this case, for a higher system state level
j , there is a decreasing requirement on the
number of components that must be in state
level j or above.

When kj is a constant, i.e. k1 = k2 = · · · =
kM = k, the structure of the system is the same
for all system state levels. This reduces to the
definition of the simple multi-state k-out-of-n:G
system discussed in the previous section. We call
such systems constant multi-state k-out-of-n:G
systems. All the concepts and results of binary
k-out-of-n:G systems can be easily extended to
the constant multi-state k-out-of-n:G systems.
The constant multi-state k-out-of-n:G system is
treated as a special case of the increasing multi-
state k-out-of-n:G system in our later discussions.

For an increasing multi-state k-out-of-n:G
system, i.e. k1 ≤ k2 ≤ · · · ≤ kM , Definition 9 can
be rephrased as follows:

φ(x) ≥ j

if and only if at least kj components are in state
j or above. If at least kj components are in state
j or above (these components can be considered
“functioning” as far as state level j is concerned),
then the system will be in state j or above (the
system is considered to be “functioning”) for 1≤
j ≤M . The only difference between this case of
Definition 9 and Definition 8 is that the number of
components required to be in state j or above for
the system to be in state j or above may change
from state to state. Other characteristics of this
case of the generalized multi-state k-out-of-n:G
system are exactly the same as that defined with
Definition 8. Algorithms for binary k-out-of-n:G
system reliability evaluation can also be extended
for the increasing multi-state k-out-of-n:G system
reliability evaluation:

Rj (kj , n)= PnjRj (kj − 1, n− 1)

+ (1− Pnj)Rj (kj , n− 1) (1.26)

12 System Reliability and Optimization

where Rj(b, a) is the probability that at least b

out of a components are in state j or above.
The following boundary conditions are needed for
Equation 1.26:

Rj (0, a)= 1 for a ≥ 0 (1.27)

Rj(b, a)= 0 for b > a > 0 (1.28)

When all the components have the same state
probability distribution, i.e. pij = pj for all i, the
probability that the system is in j or above, Rsj ,
can be expressed as:

Rsj =
n∑

k=kj

(
n

k

)
Pk
j (1− Pj)

n−k (1.29)

Example 1. Consider an increasing multi-state
k-out-of-n:G system with k1 = 1, k2 = 2, k3 = 3,
p0 = 0.1,p1 = 0.3,p2 = 0.4, andp3 = 0.2. We can
use Equation 1.29 to calculate the probability that
the system is at each level.

We have P1 = 0.9, P2 = 0.6, P3 = 0.2.
At level 3, k3 = 3.

Rs3 = P 3
3 = 0.23 = 0.008

At level 2, k2 = 2.

Rs2 =
(

3

2

)
× 0.62 × (1− 0.6)+ 0.63 = 0.648

At level 1, k1 = 1.

Rs1 =
(

3

1

)
× 0.9× (1− 0.9)2

+
(

3

2

)
× 0.92 × (1− 0.9)+ 0.93 = 0.999

The system probabilities at all levels are as
follows:

rs3 = 0.008

rs2 = Rs2 − Rs3 = 0.64

rs1 = Rs1 − Rs2 = 0.351

rs0 = 1− 0.008− 0.64− 0.351= 0.001

For a decreasing multi-state k-out-of-n:G sys-
tem, i.e. k1 ≥ k2 ≥ · · · ≥ kM , the wording of its
definition is not as simple. The system is in level
M if at least kM components are in level M .

The system is in level M − 1 or above if at least
kM−1 components are in level M − 1 or above or
at least kM components are in level M . Generally
speaking, the system is in level j or above (1≤
j ≤M) if at least kj components are in level j or
above, at least kj+1 components are in level j + 1
or above, at least kj+2 components are in level
j + 2 or above, . . . , or at least kM components are
in level M . The definition of the decreasing multi-
state k-out-of-n:G system can also be stated as the
following in terms of the system being exactly in a
certain state:

φ(x)= j if and only if at least kj
components are in state j or above
and at most kl − 1 components are
at state l or above for l = j + 1, j +
2, . . . , M where j = 1, 2, . . . , M .

When all the components have the same state
probability distribution, the following equation
can be used to calculate the probability that the
system is in state j for a decreasing multi-state
k-out-of-n:G system:

rsj =
n∑

k=kj

(
n

k

)(j−1∑
m=0

pm

)n−k

×
(
pk
j +

M∑
l=j+1,kl>1

βl(k)

)
(1.30)

where βl(k) is the probability that there is at least
one and at most kl − 1 components that are in
state l, at most ku − 1 components that are in
state u for j ≤ u < l, and the total number of
components that are in states between j and l

inclusive is k. To calculate βl(k), we can use the
following equation:

βl(k)=
kl−1∑
i1=1

(
k

i1

)
p
i1
l

kl−1−1−i1∑
i2=0

(
k − i1

i2

)
p
i2
l−1 × · · ·

×
kj+1−1−Il−j−1∑

il−j=0

(
k − Il−j−1

il−j

)
p
il−j
j+1p

k−Il−j
j

(1.31)

where Il−j−1 =∑l−j−1
m=1 im and Il =∑l−j

m=1 im.

Multi-state k-out-of-n Systems 13

We can see that even when the components are
i.i.d., Equations 1.30 and 1.31 are enumerative in
nature. When the components are not necessarily
identical, the procedure for evaluation of system
state distribution is more complicated. Huang
et al. [17] provide an enumerative procedure
for this purpose. These algorithms need further
improvement.

1.7 Properties of Generalized
Multi-state k-out-of-n:G Systems
We adopt the following notation:

• xij : a binary indicator,

xij =
{

1, if xi ≥ j

0, otherwise

• xj : a binary indicator vector,

xj = (x1j , x2j , . . . , xnj)

• φj (x): a binary indicator,

φj =
{

1, if φ(x)≥ j

0, otherwise

• ψj : binary structure function for system
state j ;
• ψ : multi-state structure function of binary

variables;
• φD: the dual structure function of φ.

In order to develop more efficient algorithms
for evaluation of system state distribution, proper-
ties of multi-state systems should be investigated.

Definition 10. (Hudson and Kapur [18]) Two-
component state vectors x and y are said to be
equivalent if and only if there exists a j such
that φ(x)= φ(y)= j , j = 0, 1, . . . , M . We use
notation x↔ y to indicate that these two vectors
are equivalent.

In the generalized k-out-of-n:G system, all per-
mutations of the elements of a component state
vector are equivalent to the component state vec-
tor, since the positions of the components in

the system are not important. For example, con-
sider a k-out-of-n:G system with three compo-
nents and four possible states. Component state
vectors (1, 2, 3) and its permutations, namely
(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) and (3, 2, 1),
are equivalent to one another.

Definition 11. (Huang and Zuo [19]) A multi-
state coherent system is called a dominant system
if and only if its structure function φ satisfies:
φ(y) > φ(x) implies either (1) y > x or (2) y > z
and x↔ z.

This dominance condition says that if φ(y) >
φ(x), then vector y must be larger than a vector
that is in the same equivalent class as vector x.
A vector is larger than another vector if every
element of the first vector is at least as large as
the corresponding element in the second vector
and at least one element in the first vector is
larger than the corresponding one in the second
vector. For example, vector (2, 2, 0) is larger than
(2, 1, 0), but not larger than (0, 1, 1). We use
the word “dominant” to indicate that vector y
dominates vector x, even though we may not
necessarily have y > x. If a multi-state system does
not satisfy Definition 11, we call it a non-dominant
system.

The increasing k-out-of-n:G system is a dom-
inant system, whereas a decreasing k-out-of-n:G
system is a non-dominant system. Consider
a decreasing k-out-of-n:G system with n= 3,
M = 3, k1 = 3, k2 = 2, and k3 = 1. Then, we have
φ(3, 0, 0)= 3, φ(2, 2, 0)= 2, and φ(1, 1, 1)= 1.
The dominance conditions given in Definition
11 are not satisfied, since (3, 0, 0) �> (2, 2, 0)∗ �>
(1, 1, 1)∗ even though φ(3, 0, 0) > φ(2, 2, 0) >
φ(1, 1, 1). The asterisk is used to indicate the
vector or any one of its permutations.

The concept of a binary image has been used
to indicate whether a multi-state system can be
analyzed with the algorithms for binary systems.
Based on Ansell and Bendell [20], a multi-state
system has a binary image if condition xj = yj

implies φj (x)= φj (y). Huang and Zuo [19] point
out that this requirement is too strong. A system
may have a binary image even if this condition is

14 System Reliability and Optimization

Table 1.1. Structure functions of the multi-state systems in Example 2

System A System B System C

φ(x): 0 1 2 0 1 2 0 1 2

x: (0, 0) (1, 0) (2, 2) (0, 0) (1, 0) (2, 0) (0, 0) (1, 1) (2, 0)
(0, 1) (0, 1) (1, 1) (2, 1) (1, 0) (0, 2)
(1, 1) (0, 2) (2, 2) (0, 1) (2, 1)
(2, 0) (1, 2) (1, 2)
(0, 2) (2, 2)
(2, 1)
(1, 2)

not satisfied. The following definition of binary-
imaged systems is provided.

Definition 12. (Huang and Zuo [19]) A multi-
state system has a binary-image if and only if
its structure indicator functions satisfy: φj (x)=
φj (y) implies either (1) xj = yj or (2) xj = zj and
z↔ x for each j (1≤ j ≤M).

Based on Definitions 11 and 12, we can see
that a binary-imaged multi-state system must be
a dominant system, whereas a dominant multi-
state system may not have a binary image.
The increasing k-out-of-n:G system has a binary
image. The decreasing multi-state k-out-of-n:G
system does not have a binary image. If a multi-
state system has a binary image, algorithms for
binary systems can be used for evaluation of its
system state distribution. These binary algorithms
are not efficient for non-dominant systems.
The following example illustrates a dominant
system with binary image, a dominant system
without binary image, and a non-dominant
system.

Example 2. Consider three different multi-state
systems, each with two components and three
possible states. The structure functions of the
systems are given in Table 1.1, where System A is
a dominant system with binary image, System B
is a dominant system without binary image, and
System C is a non-dominant system.

The following properties of multi-state systems
are identified by Huang and Zuo [19].

1. Let P
j

1 , P
j

2 , . . . , P
j
r be the minimal path

vectors to level j of a dominant system, then
φ(P

j
i)= j for i = 1, 2, . . . , r .

2. Let K
j

1 , K
j

2 , . . . , K
j
s be the minimal cut

vectors to level j of a dominant system, then
φ(K

j
i)= j − 1 for i = 1, 2, . . . , s.

3. The minimal path vectors to level j of
a binary-imaged dominant system are
of the form (j, . . . , j, 0, . . . , 0) for
j = 1, 2, . . . , M or one of its permutations.

Example 3. A multi-state coherent system con-
sists of three i.i.d. components. Both the system
and the components are allowed to have four pos-
sible states: 0, 1, 2, 3. Assume that p0 = 0.1, p1 =
0.3, p2 = 0.4, and p3 = 0.2. The structures of the
system are shown in Figure 1.1.

We say that the system has a parallel structure
at level 1 because it is at level 1 or above if and
only if at least one of the components is at level 1
or above. The system has a mixed parallel–series
structure at level 2, because it is at level 2 or above
if and only if at least one of components 1 and 2 is
at level 2 or above and component 3 is at level 2
or above. The system has a series structure at
level 3, because it is at level 3 if and only if all three
components are at level 3. The structures change
from strong to weak as the level of the system
increases. The minimal path vectors to level 1
are (1, 0, 0), (0, 1, 0), and (0, 0, 1); to level 2 are
(2, 0, 2) and (0, 2, 2); and to level 3 is (3, 3, 3).
The system is a binary-imaged system. To calculate
the probability of the system at each level, we
can extend the algorithms for binary reliability

Multi-state k-out-of-n Systems 15

Figure 1.1. A dominant system with binary image

systems:

P1 = 0.9, P2 = 0.6, P3 = 0.2

Rs3 = P13 × P23 × P33 = 0.008

Rs2 = [1− (1− P12)(1− P22)] × P33

= 2× P 2
2 − P 3

2 = 0.504

Rs1 = 1− (1− P11)(1− P12)(1− P13)

= 1− (1− P1)
3 = 0.999

rs3 = Rs3 = 0.008

rs2 = Rs2 − Rs3 = 0.496

rs1 = Rs1 − Rs2 = 0.495

rs0 = 1− Rs1 = 0.001

1.8 Equivalence and Duality in
Generalized Multi-state
k-out-of-n Systems
Following the way that a generalized multi-state
k-out-of-n:G system is defined, we propose a
definition of the generalized multi-state k-out-of-
n:F system as follows.

Definition 13. φ(x) < j (j = 1, 2, . . . , M) if at
least kl components are in states below l for all l
such that j ≤ l ≤M . An n-component system with
such a property is called a multi-state k-out-of-n:F
system.

A generalized multi-state k-out-of-n:F system
is labeled increasing if k1 ≤ k2 ≤ · · · ≤ kM and

decreasing if k1 ≥ k2 ≥ · · · ≥ kM . Similar to an
increasing k-out-of-n:G system, the definition of
a decreasing k-out-of-n:F system can be stated in
a simpler form. A decreasing k-out-of-n:F system
is in a state below j if and only if at least kj
components are in states below j for 1≤ j ≤M .
For such a system, we do not need to state the
requirements for those states above j because they
will be automatically satisfied by the requirement
on state j . However, this cannot be said of
an increasing multi-state k-out-of-n:F system.
An increasing multi-state k-out-of-n:F system is
in a state below j if and only if all the following
conditions are satisfied: at least kj components are
below state j , at least kj+1 components are below
state j + 1, at least kj+2 components are below
state j + 2, . . . , and at least kM components
are below state M . Since the increasing k-out-
of-n:G system has a binary image, there is an
efficient algorithm for evaluation of its system
state distribution, as discussed in a previous
section. For the decreasing k-out-of-n:F system,
there is a similar efficient algorithm for evaluation
of system state distribution

Qj(kj , n)= (1− Pj)Qj (kj − 1, n− 1)

+ PnjQj (kj , n− 1) (1.32)

where Qj(b, a) is the probability that at least b

out of a components are below state j . Qj(kj , n)

is the probability that the system is below state j .
The following boundary conditions are needed for

16 System Reliability and Optimization

Equation 1.32:

Qj(0, a)= 1 for a ≥ 0 (1.33)

Qj(b, a)= 0 for b > a > 0 (1.34)

When all the components have the same state
probability distribution, i.e. pij = pj for all i, the
probability Qsj that the system is below state j can
be expressed as:

Qsj =
n∑

k=kj

(
n

k

)
(1− Pj)

kP n−k
j (1.35)

The evaluation of system state distribution
for an increasing multi-state k-out-of-n:F system
is much more complicated than that for the
decreasing case. A similar algorithm to that
for a decreasing multi-state k-out-of-n:G system
developed by Huang et al. [17] can be derived.
However, that kind of algorithm is enumerative
in nature. More efficient algorithms are needed
for the increasing k-out-of-n:F and the decreasing
k-out-of-n:G systems.

The definition of a multi-state k-out-of-n:G
system with vector k= (k1, k2, . . . , kM) given in
Definition 9 can be stated in an alternative way
as follows. A k-out-of-n:G system is below state
j if at least n− kl + 1 components are below
state l for all l such that j ≤ l ≤M . Similarly,
the definition of a multi-state k-out-of-n:F sys-
tem with k= (k1, k2, . . . , kM) given in Defini-
tion 13 can be stated in an alternative way as
follows. A k-out-of-n:F system is in state j or
above if at least n− kl + 1 components are in
state l or above for at least one l such that j ≤
l ≤M . An equivalence relationship exists between
the generalized multi-state k-out-of-n:F and G
systems. An increasing k-out-of-n:F system with
vector kF = (k1, k2, . . . , kM) is equivalent to a
decreasing k-out-of-n:G system with vector kG =
(n− k1 + 1, n− k2 + 1, . . . , n− kM + 1). A de-
creasing k-out-of-n:F system with vector kF =
(k1, k2, . . . , kM) is equivalent to an increasing
k-out-of-n:G system with vector kG = (n− k1 +
1, n− k2 + 1, . . . , n− kM + 1).

Using the definition of duality for multi-state
systems given in Definition 7, we can verify
that, unlike the binary case, there does not exist

any duality relationship between the generalized
multi-state k-out-of-n:F and G systems. In a binary
k-out-of-n:G system, if vector x has k components
being in state 1, then vector y= 1− x must
have k components below state 1. However, in a
multi-state k-out-of-n:G system, if vector x has
k components being in state j or above, then
vector y=M− x does not necessarily have k

components being in states below j .
The issues that should be investigated further

on generalized multi-state k-out-of-n systems
and general multi-state systems include the
following.

1. Should a different definition of duality be
given for multi-state systems?

2. Does the dual of a non-dominant system
become a dominant system?

3. What techniques can be developed to provide
bounds on the probability that the system is in
a certain state?

4. How should we evaluate the system state
distribution of a dominant system without
binary image?

5. How should we evaluate the system state
distribution of a non-dominant system?

References
[1] Barlow RE, Proschan F. Statistical theory of reliability and

life testing: probability models. New York: Holt, Rinehart
and Winston; 1975.

[2] Heidtmann KD. Improved method of inclusion-exclusion
applied to k-out-of-n systems. IEEE Trans Reliab
1982;31(1):36–40.

[3] McGrady PW. The availability of a k-out-of-n:G network.
IEEE Trans Reliab 1985;34(5):451–2.

[4] Barlow RE, Heidtmann KD. Computing k-out-of-n
system reliability. IEEE Trans Reliab 1984;R-33:322–3.

[5] Rushdi AM. Utilization of symmetric switching functions
in the computation of k-out-of-n system reliability.
Microelectron Reliab 1986;26(5):973–87.

[6] Chao MT, Lin GD. Economical design of large
consecutive-k-out-of-n:F systems. IEEE Trans Reliab
1984;R-33(5):411–3.

[7] Chao MT, Fu JC. A limit theorem of certain repairable
systems. Ann Inst Stat Math 1989;41:809–18.

[8] Chao MT, Fu JC. The reliability of large series systems
under Markov structure. Adv Appl Prob 1991;23:894–908.

Multi-state k-out-of-n Systems 17

[9] Fu JC, Lou WY. On reliabilities of certain large
linearly connected engineering systems. Stat Prob Lett
1991;12:291–6.

[10] Koutras MV. On a Markov chain approach for the study
of reliability structures. J Appl Prob 1996;33:357–67.

[11] Belfore LA. An o(n(log2(n))
2) algorithm for computing

the reliability of k-out-of-n:G & k-to-l-out-of-n:G sys-
tems. IEEE Trans Reliab 1995;44(1):132–6.

[12] Andrzejczak K. Structure analysis of multi-state coherent
systems. Optimization 1992;25:301–16.

[13] El-Neweihi E, Proschan F, Sethuraman J. Multi-state
coherent system. J Appl Prob 1978;15:675–88.

[14] Natvig B. Two suggestions of how to define a multi-state
coherent system. Appl Prob 1982;14:391–402.

[15] Xue J. On multi-state system analysis. IEEE Trans Reliab
1985;R-34(4):329–37.

[16] Boedigheimer RA, Kapur KC. Customer-driven reliability
models for multi-state coherent systems. IEEE Trans
Reliab 1994;43(1):46–50.

[17] Huang J, Zuo MJ, Wu YH. Generalized multi-state k-out-
of-n:G systems. IEEE Trans Reliab 2002;in press.

[18] Hudson JC, Kapur KC. Reliability analysis for multi-
state systems with multi-state components. IIE Trans
1983;15:127–35.

[19] Huang J, Zuo MJ. Dominant multi-state systems. IEEE
Trans Reliab 2002;in press.

[20] Ansell JI, Bendell A. On alternative definitions of multi-
state coherent systems. Optimization 1987;18(1):119–36.

This page intentionally left blank

Reliability of Systems with Multiple
Failure Modes

Ch
ap

te
r2

Hoang Pham

2.1 Introduction
2.2 The Series System
2.3 The Parallel System
2.3.1 Cost Optimization
2.4 The Parallel–Series System
2.4.1 The Profit Maximization Problem
2.4.2 Optimization Problem
2.5 The Series–Parallel System
2.5.1 Maximizing the Average System Profit
2.5.2 Consideration of Type I Design Error
2.6 The k-out-of-n Systems
2.6.1 Minimizing the Average System Cost
2.7 Fault-tolerant Systems
2.7.1 Reliability Evaluation
2.7.2 Redundancy Optimization
2.8 Weighted Systems with Three Failure Modes

2.1 Introduction

A component is subject to failure in either
open or closed modes. Networks of relays,
fuse systems for warheads, diode circuits, fluid
flow valves, etc. are a few examples of such
components. Redundancy can be used to enhance
the reliability of a system without any change
in the reliability of the individual components
that form the system. However, in a two-failure
mode problem, redundancy may either increase
or decrease the system’s reliability. For example,
a network consisting of n relays in series has
the property that an open-circuit failure of any
one of the relays would cause an open-mode
failure of the system and a closed-mode failure
of the system. (The designations “closed mode”
and “short mode” both appear in this chapter,

and we will use the two terms interchangeably.)
On the other hand, if the n relays were arranged
in parallel, a closed-mode failure of any one relay
would cause a system closed-mode failure, and
an open-mode failure of all n relays would cause
an open-mode failure of the system. Therefore,
adding components in the system may decrease
the system reliability. Diodes and transistors
also exhibit open-mode and short-mode failure
behavior.

For instance, in an electrical system having
components connected in series, if a short circuit
occurs in one of the components, then the short-
circuited component will not operate but will
permit flow of current through the remaining
components so that they continue to operate.
However, an open-circuit failure of any of the
components will cause an open-circuit failure of

19

20 System Reliability and Optimization

the system. As an example, suppose we have
a number of 5 W bulbs that remain operative
in satisfactory conditions at voltages ranging
between 3 V and 6 V. Obviously, on using the
well-known formula in physics, if these bulbs
are arranged in a series network to form a two-
failure mode system, then the maximum and the
minimum number of bulbs at these voltages are
n= 80 and k = 40, respectively, in a situation
when the system is operative at 240 V. In this case,
any of the bulbs may fail either in closed or in open
mode till the system is operative with 40 bulbs.
Here, it is clear that, after each failure in closed
mode, the rate of failure of a bulb in open mode
increases due to the fact that the voltage passing
through each bulb increases as the number of
bulbs in the series decreases.

System reliability where components have
various failure modes is covered in References
[1–11]. Barlow et al. [1] studied series–parallel
and parallel–series systems, where the size of
each subsystem was fixed, but the number of
subsystems was varied to maximize reliability.
Ben-Dov [2] determined a value of k that
maximizes the reliability of k-out-of-n systems.
Jenney and Sherwin [4] considered systems in
which the components are i.i.d. and subject
to mutually exclusive open and short failures.
Page and Perry [7] discussed the problem of
designing the most reliable structure of a given
number of i.i.d. components and proposed an
alternative algorithm for selecting near-optimal
configurations for large systems. Sah and Stiglitz
[10] obtained a necessary and sufficient condition
for determining a threshold value that maximizes
the mean profit of k-out-of-n systems. Pham and
Pham [9] further studied the effect of system
parameters on the optimal k or n and showed that
there does not exist a (k, n) maximizing the mean
system profit.

This chapter discusses in detail the aspects of
the reliability optimization of systems subject to
two types of failure. It is assumed that the system
component states are statistically independent and
identically distributed, and that no constraints
are imposed on the number of components to be
used. Reliability optimization of series, parallel,

parallel–series, series–parallel, and k-out-of-n
systems subject to two types of failure will be
discussed next.

In general, the formula for computing the
reliability of a system subject to two kinds of
failure is [6]:

System reliability

= Pr{system works in both modes}
= Pr{system works in open mode}
− Pr{system fails in closed mode}
+ Pr{system fails in both modes} (2.1)

When the open- and closed-mode failure struc-
tures are dual of one another, i.e. Pr{system fails in
both modes} = 0, then the system reliability given
by Equation 2.1 becomes

System reliability

= 1− Pr{system fails in open mode}
− Pr{system fails in closed mode} (2.2)

We adopt the following notation:

qo the open-mode failure probability of each
component (po = 1− qo)

qs the short-mode failure probability of each
component (ps = 1− qs)

� implies 1−� for any �

�x	 the largest integer not exceeding x

∗ implies an optimal value.

2.2 The Series System

Consider a series system consisting of n compo-
nents. In this series system, any one component
failing in an open mode causes system failure,
whereas all components of the system must mal-
function in short mode for the system to fail.

The probabilities of system fails in open mode
and fails in short mode are

Fo(n)= 1− (1− qo)
n

and
Fs(n)= qns

Reliability of Systems with Multiple Failure Modes 21

respectively. From Equation 2.2, the system
reliability is:

Rs(n)= (1− qo)
n − qns (2.3)

where n is the number of identical and indepen-
dent components. In a series arrangement, reli-
ability with respect to closed system failure in-
creases with the number of components, whereas
reliability with respect to open system failure falls.
There exists an optimum number of components,
say n∗, that maximizes the system reliability. If we
define

n0 =
log

(
qo

1− qs

)
log

(
qs

1− qo

)
then the system reliability, Rs(n

∗), is maximum for

n∗ =
{
�n0	 + 1 if n0 is not an integer

n0 or n0 + 1 if n0 is an integer
(2.4)

Example 1. A switch has two failure modes: fail-
open and fail-short. The probability of switch
open-circuit failure and short-circuit failure are
0.1 and 0.2 respectively. A system consists of n

switches wired in series. That is, given qo = 0.1
and qs = 0.2. From Equation 2.4

n0 =
log

(
0.1

1− 0.2

)
log

(
0.2

1− 0.1

) = 1.4

Thus, n∗ = �1.4	 + 1= 2. Therefore, when n∗ = 2
the system reliability Rs(n)= 0.77 is maximized.

2.3 The Parallel System
Consider a parallel system consisting of n

components. For a parallel configuration, all the
components must fail in open mode or at least
one component must malfunction in short mode
to cause the system to fail completely.

The system reliability is

Rp(n)= (1− qs)
n − qno (2.5)

where n is the number of components connected
in parallel. In this case, (1− qs)

n represents the
probability that no components fail in short
mode, and qno represents the probability that all
components fail in open mode. If we define

n0 =
log

(
qs

1− qo

)
log

(
qo

1− qs

) (2.6)

then the system reliability Rp(n
∗) is maximum for

n∗ =
{
�n0	 + 1 if n0 is not an integer

n0 or n0 + 1 if n0 is an integer
(2.7)

It is observed that, for any range of qo and qs,
the optimal number of parallel components that
maximizes the system reliability is one, if qs > qo.
For most other practical values of qo and qs, the
optimal number turns out to be two. In general,
the optimal value of parallel components can be
easily obtained using Equation 2.6.

2.3.1 Cost Optimization

Suppose that each component costs d dollars and
system failure costs c dollars of revenue. We now
wish to determine the optimal system size n that
minimizes the average system cost given that the
costs of system failure in open and short modes are
known. Let Tn be a total of the system. The average
system cost is given by

E[Tn] = dn+ c[1− Rp(n)]
where Rp(n) is defined as in Equation 2.5.
For given qo, qs, c, and d , we can obtain a value
of n, say n∗, minimizing the average system cost.

Theorem 1. Fix qo, qs, c, and d . There exists a
unique value n∗ that minimizes the average system
cost, and

n∗ = inf

{
n≤ n1 : (1− qo)q

n
o − qs(1− qs)

n <
d

c

}
(2.8)

where n1 = �n0	 + 1 and n0 is given in Equa-
tion 2.6.

22 System Reliability and Optimization

The proof is straightforward and left for an
exercise. It was assumed that the cost of system
failure in either open mode or short mode was the
same. We are now interested in how the cost of
system failure in open mode may be different from
that in short mode.

Suppose that each component costs d dollars
and system failure in open mode and short mode
costs c1 and c2 dollars of revenue respectively.
Then the average system cost is given by

E[Tn] = dn+ c1q
n
o + c2[1− (1− qs)

n] (2.9)

In other words, the average system cost of system
size n is the cost incurred when the system has
failed in either open mode or short mode plus
the cost of all components in the system. We can
determine the optimal value of n, say n∗, which
minimizes the average system cost as shown in the
following theorem [5].

Theorem 2. Fix qo, qs, c1, c2, and d . There exists a
unique value n∗ that minimizes the average system
cost, and

n∗ =
{

1 if na ≤ 0

n0 otherwise

where

n0 = inf

{
n≤ na : h(n) ≤ d

c2qs

}
and

h(n)= qno

[
1− qo

qs

c1

c2
−
(

1− qs

qo

)n]

na =
log

(
1− qo

qs

c1

c2

)
log

(
1− qs

qo

)

Example 2. Suppose d = 10, c1 = 1500, c2 = 300,
qs = 0.1, qo = 0.3. Then

d

c2qs
= 0.333

From Table 2.1, h(3)= 0.216 < 0.333; therefore,
the optimal value of n is n∗ = 3. That is,
when n∗ = 3 the average system cost (151.8) is
minimized.

Table 2.1. The function h(n) vs n

n h(n) Rp(n) E[Tn]
1 9.6 0.6 490.0
2 2.34 0.72 212.0
3 0.216 0.702 151.8
4 −0.373 0.648 155.3
5 −0.504 0.588 176.5
6 −0.506 0.531 201.7

2.4 The Parallel–Series System

Consider a system of components arranged so that
there are m subsystems operating in parallel, each
subsystem consisting of n identical components in
series. Such an arrangement is called a parallel–
series arrangement. The components could be
a logic gate, a fluid-flow valve, or an electronic
diode, and they are subject to two types of failure:
failure in open mode and failure in short mode.
Applications of the parallel–series systems can be
found in the areas of communication, networks,
and nuclear power systems. For example, consider
a digital circuit module designed to process the
incoming message in a communication system.
Suppose that there are, at most, m ways of
getting a message through the system, depending
on which of the branches with n modules are
operable. Such a system is subject to two failure
modes: (1) a failure in open circuit of a single
component in each subsystem would render the
system unresponsive; or (2) a failure in short
circuit of all the components in any subsystem
would render the entire system unresponsive.

We adopt the following notation:

m number of subsystems in a system (or
subsystem size)

n number of components in each
subsystem

Fo(m) probability of system failure in open
mode

Fs(m) probability of system failure in short
mode.

The systems are characterized by the following
properties.

Reliability of Systems with Multiple Failure Modes 23

1. The system consists of m subsystems, each
subsystem containing n i.i.d. components.

2. A component is either good, failed open, or
failed short. Failed components can never
become good, and there are no transitions
between the open and short failure modes.

3. The system can be (a) good, (b) failed open (at
least one component in each subsystem fails
open), or (c) failed short (all the components
in any subsystem fail short).

4. The unconditional probabilities of component
failure in open and short modes are known
and are constrained: qo, qs > 0; qo + qs < 1.

The probabilities of a system failing in open
mode and failing in short mode are given by

Fo(m)= [1− (1− qo)
n]m (2.10)

and

Fs(m)= 1− (1− qms)m (2.11)

respectively. The system reliability is

Rps(n, m)= (1− qns)
m − [1− (1− qo)

n]m
(2.12)

where m is the number of identical subsystems
in parallel and n is the number of identical
components in each series subsystem. The term
(1− qns)

m represents the probability that none of
the subsystems has failed in closed mode. Simi-
larly, [1− (1− qo)

n]m represents the probability
that all the subsystems have failed in open mode.

An interesting example in Ref. [1] shows that
there exists no pair n, m maximizing system
reliability, since Rps can be made arbitrarily close
to one by appropriate choice of m and n. To see
this, let

a = log qs − log(1− qo)

log qs + log(1− qo)

Mn = q
−n/(1+a)
s mn = �Mn	

For given n, take m=mn; then one can rewrite
Equation 2.12 as:

Rps(n, mn)= (1− qns)
mn − [1− (1− qo)

n]mn

A straightforward computation yields

lim
n→∞ Rps(n, mn)

= lim
n→∞{(1− qns)

mn − [1− (1− qo)
n]mn}

= 1

For fixed n, qo, and qs, one can determine the
value of m that maximizes Rps, and this is given
below [8].

Theorem 3. Let n, qo, and qs be fixed. The max-
imum value of Rps(m) is attained at m∗ = �m0	 +
1, where

m0 = n(log po − log qs)

log(1− qns)− log(1− pn
o)

(2.13)

If m0 is an integer, then m0 and m0 + 1 both
maximize Rps(m).

2.4.1 The Profit Maximization Problem

We now wish to determine the optimal subsystem
size m that maximizes the average system profit.
We study how the optimal subsystem size m

depends on the system parameters. We also show
that there does not exist a pair (m, n) maximizing
the average system profit.

We adopt the following notation:

A(m) average system profit
β conditional probability that the system

is in open mode
1− β conditional probability that the system

is in short mode
c1, c3 gain from system success in open, short

mode
c2, c4 gain from system failure in open, short

mode; c1 > c2, c3 > c4.

The average system profit is given by

A(m)= β{c1[1− Fo(m)] + c2Fo(m)}
+ (1− β){c3[1− Fs(m)] + c4Fs(m)}

(2.14)

Define

a = β(c1 − c2)

(1− β)(c3 − c4)

24 System Reliability and Optimization

and
b = βc1 + (1− β)c4 (2.15)

We can rewrite Equation 2.14 as

A(m)= (1− β)(c3 − c4)

× {[1− Fs(m)] − aFo(m)} + b (2.16)

When the costs of the two kinds of system
failure are identical, and the system is in
the two modes with equal probability, then
the optimization criterion becomes the same
as maximizing the system reliability. Here, the
following analysis deals with cases that need not
satisfy these special restrictions.

For a given value of n, one wishes to find
the optimal number of subsystems m (m∗) that
maximizes the average system profit. Of course, we
would expect the optimal value of m to depend on
the values of both qo and qs. Define

m0 =
ln a + n ln

(
1− qo

qs

)
ln

[
1− qns

1− (1− qo)n

] (2.17)

Theorem 4. Fix β ,n, qo, qs, and ci for i =
1, 2, 3, 4. The maximum value of A(m) is attained
at

m∗ =
{

1 if m0 < 0

�m0	 + 1 if m0 ≥ 0
(2.18)

Ifm0 is a non-negative integer, bothm0 andm0 + 1
maximize A(m).

The proof is straightforward. When m0 is a
non-negative integer, the lower value will provide
the more economical optimal configuration for
the system. It is of interest to study how the
optimal subsystem size m∗ depends on the various
parameters qo and qs.

Theorem 5. For fixed n, c1, c2, c3, and c4.

(a) If a ≥ 1, then the optimal subsystem size m∗ is
an increasing function of qo.

(b) If a ≤ 1, then the optimal subsystem size m∗ is
a decreasing function of qs.

(c) The optimal subsystem size m∗ is an increasing
function of β .

The proof is left for an exercise. It is
worth noting that we cannot find a pair (m, n)

maximizing average system-profit A(m). Let

x = ln qs − ln po

ln qs + ln po
Mn = q

−n/l+x
s mn = �Mn	

(2.19)
For given n, take m=mn. From Equation 2.14, the
average system profit can be rewritten as

A(mn)= (1− β)(c3 − c4)

× {[1− Fs(mn)] − aFo(mn)} + b

(2.20)

Theorem 6. For fixed qo and qs

lim
n→∞ A(mn)= βc1 + (1− β)c3 (2.21)

The proof is left for an exercise. This result
shows that we cannot seek a pair (m, n) maximiz-
ing the average system profit A(mn), since A(mn)

can be made arbitrarily close to βc1 + (1− β)c3.

2.4.2 Optimization Problem

We show how design policies can be chosen when
the objective is to minimize the average total
system cost given that the costs of system failure
in open mode and short mode may not necessarily
be the same.

The following notation is adopted:

d cost of each component
c1 cost when system failure in open
c2 cost when system failure in short
T (m) total system cost
E[T (m)] average total system cost.

Suppose that each component costs d dollars,
and system failure in open mode and short mode
costs c1 and c2 dollars of revenue, respectively.
The average total system cost is

E[T (m)] = dnm+ c1Fo(m)+ c2Fs(m) (2.22)

In other words, the average system cost is the cost
incurred when the system has failed in either the
open mode or the short mode plus the cost of all

Reliability of Systems with Multiple Failure Modes 25

components in the system. Define

h(m)= [1− (po)
n]m

[
c1p

n
o − c2q

n
s

(
1− qns

1− pn
o

)m]
(2.23)

m1 = inf{m<m2 : h(m) < dn}
and

m2 =

 ln

[
c1

c2

(
po

qs

)n]
ln

(
1− qns

1− pn
o

)
+ 1 (2.24)

From Equation 2.23, h(m) > 0 if and only if

c1p
n
o > c2q

n
s

(
1− qns

1− pn
o

)m
or equivalently, that m<m2. Thus, the function
h(m) is decreasing in m for all m<m2. For fixed
n, we determine the optimal value of m, m∗, that
minimizes the expected system cost, as shown in
the following theorem [11].

Theorem 7. Fix qo, qs, d , c1, and c2. There exists
a unique value m∗ such that the system minimizes
the expected cost, and

(a) if m2 > 0 then

m∗ =
{
m1 if E[T (m1)] ≤ E[T (m2)]
m2 if E[T (m1)]> E[T (m2)]

(2.25)
(b) if m2 ≤ 0 then m∗ = 1.

The proof is straightforward. Since the function
h(m) is decreasing in m for m<m2, again the
resulting optimization problem in Equation 2.25 is
easily solved in practice.

Example 3. Suppose n= 5, d = 10, c1 = 500, c2 =
700, qs = 0.1, and qo = 0.2. From Equation 2.25,
we obtain m2 = 26. Since m2 > 0, we determine
the optimal value of m by using Theorem 7(a).

The subsystem size m, h(m), and the expected
system cost E[T (m)] are listed in Table 2.2; from
this table, we have

m1 = inf{m< 26 : h(m) < 50} = 3

Table 2.2. The data for Example 3

m h(m) E[T (m)]
1 110.146 386.17
2 74.051 326.02
3 49.784 301.97
4 33.469 302.19
5 22.499 318.71
6 15.124 346.22
7 10.166 381.10
8 6.832 420.93
9 4.591 464.10

10 3.085 509.50

and
E[T (m1)] = 301.97

For m2 = 26, E[T (m2)] = 1300.20. From The-
orem 7(a), the optimal value of m required to
minimize the expected total system cost is 3, and
the expected total system cost corresponding to
this value is 301.97.

2.5 The Series–Parallel System
The series–parallel structure is the dual of the
parallel–series structure in Section 2.4. We study
a system of components arranged so that there are
m subsystems operating in series, each subsystem
consisting of n identical components in parallel.
Such an arrangement is called a series–parallel
arrangement. Applications of such systems can be
found in the areas of communication, networks,
and nuclear power systems. For example, consider
a digital communication system consisting of m

substations in series. A message is initially sent to
substation 1, is then relayed to substation 2, etc.,
until the message passes through substation m and
is received. The message consists of a sequence
of 0’s and 1’s and each digit is sent separately
through the series ofm substations. Unfortunately,
the substations are not perfect and can transmit as
output a different digit than that received as input.
Such a system is subject to two failure modes:
errors in digital transmission occur in such a
manner that either (1) a one appears instead of a
zero, or (2) a zero appears instead of a one.

26 System Reliability and Optimization

Failure in open mode of all the components
in any subsystem makes the system unresponsive.
Failure in closed (short) mode of a single
component in each subsystem also makes the
system unresponsive. The probabilities of system
failure in open and short mode are given by

Fo(m)= 1− (1− qno)
m (2.26)

and
Fs(m)= [1− (1− qs)

n]m (2.27)

respectively. The system reliability is

R(m)= (1− qno)
m − [1− (1− qs)

n]m (2.28)

where m is the number of identical subsystems in
series and n is the number of identical components
in each parallel subsystem.

Barlow et al. [1] show that there exists no pair
(m, n) maximizing system reliability. For fixed m,
qo, and qs, however, one can determine the value
of n that maximizes the system reliability.

Theorem 8. Let n, qo, and qs be fixed. The max-
imum value of R(m) is attained at m∗ = �m0	 + 1,
where

m0 = n(log ps − log qo)

log(1− qno)− log(1− pn
s)

(2.29)

If m0 is an integer, then m0 and m0 + 1 both
maximize R(m).

2.5.1 Maximizing the Average System
Profit

The effect of the system parameters on the optimal
m is now studied. We also determine the optimal
subsystem size that maximizes the average system
profit subject to a restricted type I (system failure
in open mode) design error.

The following notation is adopted:

β conditional probability (given system
failure) that the system is in open mode

1− β conditional probability (given system
failure) that the system is in short mode

c1 gain from system success in open mode
c2 gain from system failure in open mode

(c1 > c2)

c3 gain from system success in short mode
c4 gain from system failure in short mode

(c3 > c4).

The average system-profit, P(m), is given by

P(m)= β{c1[1− Fo(m)] + c2Fo(m)}
+ (1− β){c3[1− Fs(m)] + c4Fs(m)}

(2.30)

where Fo(m) and Fs(m) are defined as in
Equations 2.26 and 2.27 respectively. Let

a = β(c1 − c2)

(1− β)(c3 − c4)

and
b = βc1 + (1− β)c4

We can rewrite Equation 2.30 as

P(m)= (1− β)(c3 − c4)

× [1− Fs(m)− aFo(m)] + b (2.31)

For a given value of n, one wishes to find the
optimal number of subsystems m, say m∗, that
maximizes the average system-profit. We would
anticipate that m∗ depends on the values of both
qo and qs. Let

m0 =
n ln

(
1− qs

qo

)
− ln a

ln

[
1− qno

1− (1− qs)n

] (2.32)

Theorem 9. Fix β , n, qo, qs, and ci for i =
1, 2, 3, 4. The maximum value of P(m) is attained
at

m∗ =
{

1 if m0 < 0

�m0	 + 1 if m0 ≥ 0

If m0 ≥ 0 andm0 is an integer, bothm0 andm0 + 1
maximize P(m).

The proof is straightforward and left as an
exercise. When both m0 and m0 + 1 maximize the
average system profit, the lower of the two values
costs less. It is of interest to study how m∗ depends
on the various parameters qo and qs.

Reliability of Systems with Multiple Failure Modes 27

Theorem 10. For fixed n, ci for i = 1, 2, 3, 4.

(a) If a ≥ 1, then the optimal subsystem size m∗ is
a decreasing function of qo.

(b) If a ≤ 1, the optimal subsystem size m∗ is an
increasing function of qs.

This theorem states that when qo increases,
it is desirable to reduce m as close to one as is
feasible. On the other hand, when qs increases, the
average system-profit increases with the number
of subsystems.

2.5.2 Consideration of Type I Design
Error

The solution provided by Theorem 9 is optimal
in terms of the average system profit. Such an
optimal configuration, when adopted, leads to a
type I design error (system failure in open mode),
which may not be acceptable at the design stage.
It should be noted that the more subsystems we
add to the system the greater is the chance of
system failure by opening (Fo(m), Equation 2.26));
however, we do make the probability of system
failure in short mode smaller by placing additional
subsystems in series. Therefore, given β , n, qo, qs
and ci for i = 1, 2, . . . , 4, we wish to determine
the optimal subsystem size m∗ in order to
maximize the average system profit P(m) in such
a way that the probability of system type I design
error (i.e. the probability of system failure in open
mode) is at most α.

Theorem 9 remains unchanged if m∗ obtained
from Theorem 9 is kept within the tolerableα level,
namely Fo(m)≤ α. Otherwise, modifications are
needed to determine the optimal system size.
This is stated in the following result.

Corollary 1. For given values of β , n, qo, qs, and ci
for i = 1, 2, . . . , 4, the optimal value of m, say m∗,
that maximizes the average system profit subject to
a restricted type I design error α is attained at

m∗ =

1 if min{�m0	, �m1	}
min{�m0	 + 1, �m1	}

otherwise

where �m0	 + 1 is the solution obtained from
Theorem 9 and

m1 = ln(1− a)

ln(1− qno)

2.6 The k-out-of-n Systems

Consider a model in which a k-out-of-n system
is composed of n identical and independent
components that can be either good or failed.
The components are subject to two types of
failure: failure in open mode and failure in closed
mode. The system can fail when k or more
components fail in closed mode or when (n−
k + 1) or more components fail in open mode.
Applications of k-out-of-n systems can be found
in the areas of target detection, communication,
and safety monitoring systems, and, particularly,
in the area of human organizations. The following
is an example in the area of human organizations.
Consider a committee with n members who must
decide to accept or reject innovation-oriented
projects. The projects are of two types: “good”
and “bad”. It is assumed that the communication
among the members is limited, and each member
will make a yes–no decision on each project.
A committee member can make two types of error:
the error of accepting a bad project and the error
of rejecting a good project. The committee will
accept a project when k or more members accept
it, and will reject a project when (n− k + 1)
or more members reject it. Thus, the two types
of potential error of the committee are: (1) the
acceptance of a bad project (which occurs when
k or more members make the error of accepting
a bad project); (2) the rejection of a good project
(which occurs when (n− k + 1) or more members
make the error of rejecting a good project).
This section determines the:

• optimal k that minimizes the expected total
system cost;
• optimal n that minimizes the expected total

system cost;
• optimal k and n that minimizes the expected

total system cost.

28 System Reliability and Optimization

We also study the effect of the system’s parameters
on the optimal k or n. The system fails in closed
mode if and only if at least k of its n components
fail in closed mode, and we obtain

Fs(k, n)=
n∑

i=k

(
n

i

)
qisp

n−i
s = 1−

k−1∑
i=0

(
n

i

)
qisp

n−i
s

(2.33)
The system fails in open mode if and only if at least
n− k + 1 of its n components fail in open mode,
that is:

Fo(k, n)=
n∑

i=n−k+1

(
n

i

)
qiop

n−i
o =

k−1∑
i=0

(
n

i

)
pi

oq
n−i
o

(2.34)
Hence, the system reliability is given by

R(k, n)= 1− Fo(k, n)− Fs(k, n)

=
k−1∑
i=0

(
n

i

)
qisp

n−i
s −

k−1∑
i=0

(
n

i

)
pi

oq
n−i
o

(2.35)

Let

b(k; p, n)=
(
n

k

)
pk(1− p)n−k

and

b inf(k; p, n)=
k∑

i=0

b(i; p, n)

We can rewrite Equations 2.33–2.35 as

Fs(k, n)= 1− b inf(k − 1; qs, n)

Fo(k, n)= b inf(k − 1; po, n)

R(k, n)= 1− b inf(k − 1; qs, n)

− b inf(k − 1; po, n)

respectively. For a given k, we can find the
optimum value of n, say n∗, that maximizes the
system reliability.

Theorem 11. For fixed k, qo, and qs, the maximum
value of R(k, n) is attained at n∗ = �n0	 where

n0 = k

1+
log

(
1− qo

qs

)
log

(
1− qs

qo

)

If n0 is an integer, both n0 and n0 + 1 maximize
R(k, n).

This result shows that when n0 is an integer,
both n∗ − 1 and n∗ maximize the system reliabil-
ity R(k, n). In such cases, the lower value will pro-
vide the more economical optimal configuration
for the system. If qo = qs, the system reliability
R(k, n) is maximized when n= 2k or 2k − 1. In
this case, the optimum value of n does not depend
on the value of qo and qs, and the best choice for
a decision voter is a majority voter; this system is
also called a majority system [12].

From the above Theorem 11 we understand
that the optimal system size n∗ depends on the
various parameters qo and qs. It can be shown
the optimal value n∗ is an increasing function of
qo and a decreasing function of qs. Intuitively,
these results state that when qs increases it is
desirable to reduce the number of components
in the system as close to the value of threshold
level k as possible. On the other hand, when qo
increases, the system reliability will be improved
if the number of components increases.

For fixed n, qo, and qs, it is straightforward to
see that the maximum value of R(k, n) is attained
at k∗ = �k0	 + 1, where

k0 = n

log

(
qo

ps

)
log

(
qsqo

pspo

)
If k0 is an integer, both k0 and k0 + 1 maximize
R(k, n).

We now discuss how these two values, k∗ and
n∗, are related to one another. Define α by

α =
log

(
qo

ps

)
log

(
qsqo

pspo

)
then, for a given n, the optimal threshold k is given
by k∗ = �nα, and for a given k the optimal n is
n∗ = �k/α	. For any given qo and qs, we can easily
show that

qs < α < po

Reliability of Systems with Multiple Failure Modes 29

Therefore, we can obtain the following bounds for
the optimal value of the threshold k:

nqs < k∗ < npo

This result shows that for given values of qo and
qs, an upper bound for the optimal threshold k∗
is the expected number of components working
in open mode, and a lower bound for the
optimal threshold k∗ is the expected number of
components failing in closed mode.

2.6.1 Minimizing the Average System
Cost

We adopt the following notation:

d each component cost
c1 cost when system failure is in open mode
c2 cost when system failure is in short mode

b inf(k; qs, n)= 1− b inf(k − 1; qs, n)

The average total system cost E[T (k, n)] is

E[T (k, n)] = dn+ [c1Fo(k, n)+ c2Fs(k, n)]
(2.36)

In other words, the average total system cost is the
cost of all components in the system (dn), plus the
average cost of system failure in the open mode
(c1Fo(k, n)) and the average cost of system failure
in the short mode (c2Fs(k, n)).

We now study the problem of how design
policies can be chosen when the objective is to
minimize the average total system cost when the
cost of components, the costs of system failure in
the open, and short modes are given. We wish to
find the:

• optimal k (k∗) that minimizes the average
system cost for a given n;
• optimal n (n∗) that minimizes the average

system cost for a given k;
• optimal k and n (k∗, n∗) that minimize the

average system cost.

Define

k0 =
log

(
c2

c1

)
+ n log

(
ps

qo

)
log

(
pops

qoqs

) (2.37)

Theorem 12. Fix n, qo, qs, c1, c2, and d . The min-
imum value of E[T (k, n)] is attained at

k∗ =
{

max{1, �k0	 + 1} if k0 < n

n if k0 ≥ n

If k0 is a positive integer, both k0 and k0 + 1
minimize E[T (k, n)].

It is of interest to study how the optimal value of
k, k∗, depends on the probabilities of component
failure in the open mode (qo) and in the short
mode (qs).

Corollary 2. Fix n,

1. if c1 ≥ c2, then k∗ is decreasing in qo;
2. if c1 ≤ c2, then k∗ is increasing in qs.

Intuitively, this result states that if the cost of
system failure in the open mode is greater than
or equal to the cost of system failure in the short
mode, then, as qo increases, it is desirable to
reduce the threshold level k as close to one as is
feasible. Similarly, if the cost of system failure in
the open mode is less than or equal to the cost
of system failure in the short mode, then, as qs
increases, it is desirable to increase k as close to
n as is feasible. Define

a = c1

c2

n0 =

 log a + k log

(
poPs

qoqs

)
log

(
ps

qo

) − 1

n1 =

⌈
k − 1

1− qo
− 1

⌉

f (n)=
(
ps

qo

)n
(n+ 1)qs − (k − 1)

(n+ 1)po − (k − 1)

B = a

(
pops

qoqs

)k
qo

ps

and
n2 = f−1(B) for k ≤ n2 ≤ n1

Let

n3 = inf

{
n ∈ [n2, n0] : h(n) < d

c2

}

30 System Reliability and Optimization

where

h(n)=
(

n

k − 1

)
pk

oq
n−k+1
o

×
[
a −

(
qoqs

pspo

)k (
ps

qo

)n+1
]

(2.38)

It is easy to show that the function h(n) is
positive for all k ≤ n≤ n0, and is increasing in
n for n ∈ [k, n2) and is decreasing in n for n ∈
[n2, n0]. This result shows that the function h(n)

is unimodal and achieves a maximum value at
n= n2. Since n2 ≤ n1, and when the probability
of component failure in the open mode qo is quite
small, then n1 ≈ k; so n2 ≈ k. On the other hand,
for a given arbitrary qo, one can find a value n2
between the values of k and n1 by using a binary
search technique.

Theorem 13. Fix qo, qs, k, d , c1, and c2. The op-
timal value of n, say n∗, such that the system
minimizes the expected total cost is n∗ = k if
n0 ≤ k. Suppose n0 > k. Then:

1. if h(n2) < d/c2, then n∗ = k;
2. if h(n2) ≥ d/c2 and h(k) ≥ d/c2 then n∗ = n3;
3. if h(n2) ≥ d/c2 and h(k) < d/c2, then

n∗ =
{
k if E[T (k, k)] ≤ E[T (k, n3)]
n3 if E[T (k, k)]> E[T (k, n3)]

(2.39)

Proof. Let �E[T (n)] = E[T (k, n+ 1)] −
E[T (k, n)]. From Equation 2.36, we obtain

�E[T (n)] = d − c1

(
n

k − 1

)
pk

oq
n−k+1
o

+ c2

(
n

k − 1

)
qks p

n−k+1
s (2.40)

Substituting c1 = ac2 into Equation 2.40, and after
simplification, we obtain

�E[T (n)] = d − c2

(
n

k − 1

)
pk

oq
n−k+1
o

×
[
a −

(
qoqs

pops

)k (
ps

qo

)n+1
]

= d − c2h(n)

The system of size n+ 1 is better than the system
of size n if, and only if, h(n) ≥ d/c2. If n0 ≤ k,
then h(n) ≤ 0 for all n≥ k, so that E[T (k, n)]
is increasing in n for all n≥ k. Thus n∗ = k

minimizes the expected total system cost. Suppose
n0 > k. Since the function h(n) is decreasing in n

for n2 ≤ n≤ n0, there exists an n such that h(n) <
d/c2 on the interval n2 ≤ n≤ n0. Let n3 denote
the smallest such n. Because h(n) is decreasing
on the interval [n2, n0] where the function h(n) is
positive, we have h(n) ≥ d/c2 for n2 ≤ n≤ n3 and
h(n) < d/c2 for n > n3. Let n∗ be an optimal value
of n such that E[T (k, n)] is minimized.

(a) If h(n2) < d/c2, then n3 = n2 and h(k) <

h(n2) < d/c2, since h(n) is increasing in [k, n2)

and is decreasing in [n2, n0]. Note that increment-
ing the system size reduces the expected system
cost only when h(n) ≥ d/c2. This implies that
n∗ = k such that E[T (k, n)] is minimized.

(b) Assume h(n2) ≥ d/c2 and h(k) ≥ d/c2.
Then h(n) ≥ d/c2 for k ≤ n < n2, since h(n) is
increasing in n for k < n < n2. This implies
that E[T (k, n+ 1)] ≤ E[T (k, n)] for k ≤ n < n2.
Since h(n2) ≥ d/c2, then h(n) ≥ d/c2 for n2 < n<

n3 and h(n) < d/c2 for n > n3. This shows that
n∗ = n3 such that E[T (k, n)] is minimized.

(c) Similarly, assume that h(n2) ≥ d/c2 and
h(k) < d/c2. Then, either n= k or n∗ = n3 is
the optimal solution for n. Thus, n∗ = k if
E[T (k, k)] ≤ E[T (k, n3)]; on the other hand,
n∗ = n3 if E[T (k, k)]>E[T (k, n3)]. �

In practical applications, the probability of
component failure in the open mode qo is often
quite small, and so the value of n1 is close to k.
Therefore, the number of computations for finding
a value of n2 is quite small. Hence, the result of the
Theorem 13 is easily applied in practice.

In the remaining section, we assume that the
two system parameters k and n are unknown. It
is of interest to determine the optimum values of
(k, n), say (k∗, n∗), that minimize the expected
total system cost when the cost of components and
the costs of system failures are known. Define

α = log(ps/qo)

log(pops/qoqs)
β = log(c2/c1)

log(pops/qoqs)
(2.41)

Reliability of Systems with Multiple Failure Modes 31

We need the following lemma.

Lemma 1. For 0≤m ≤ n and 0≤ p ≤ 1:

m∑
i=0

(
n

i

)
pi(1− p)n−i <

√
n

2πm(n−m)

Proof. See [5], Lemma 3.16, for a detailed proof. �

Theorem 14. Fix qo, qs, d , c1, and c2. There exists
an optimal pair of values (kn, n), say (kn∗, n∗),
such that average total system cost is minimized at
(kn∗ , n∗), and

kn∗ = �n∗α	
and

n∗ ≤
(1− qo − qs)

2π

(c1

d

)2 + 1+ β

α(1 − α)
(2.42)

Proof. Define �E[T (n)] = E[T (kn+1, n+ 1)] −
E[T (kn, n)]. From Equation 2.36, we obtain

�E[T (n)] = d + c1[b inf(kn+1 − 1; po, n+ 1)

− b inf(kn − 1; po, n)]
− c2[b inf(kn+1 − 1; qs, n+ 1)

− b inf(kn − 1; qs, n)]
Let r = c2/c1, then

�E[T (n)] = d − c1g(n)

g(n)= r[b inf(kn+1 − 1; qs, n+ 1)

− b inf(kn − 1; qs, n)]
− [b inf(kn+1 − 1; po, n+ 1)

− b inf(kn − 1; po, n)] (2.43)

Case 1. Assume kn+1 = kn + 1. We have

g(n)=
(
n

kn

)
pkn

o qn−kn+1
o

×
[
r

(
qoqs

pops

)kn (ps

qo

)n+1

− 1

]

Recall that (
pops

qoqs

)β
= r

then (
qoqs

pops

)nα+β (
ps

qo

)n+1

= 1

r

ps

qo
(2.44)

since nα + β ≤ kn ≤ (n+ 1)α + β , we obtain

r

(
qoqs

psps

)kn (ps

qo

)n+1

≤ r

(
qoqs

pops

)nα+β (
ps

qo

)n+1

= ps

qo

Thus

g(n) ≤
(
n

kn

)
pkn

o qn−kn+1
o

(
ps

qo
− 1

)
=
(
n

kn

)
pkn

o qn−kno (ps − qo)

From Lemma 1, and nα + β ≤ kn ≤ (n+ 1)α + β ,
we obtain

g(n) ≤ (ps − qo)

[
2πn

kn

n

(
1− kn

n

)]−1/2

≤ (ps − qo)

{
2πn

(
α + β

n

)
×
[

1− α

(
n+ 1

n

)
− β

n

]}−1/2

≤ (1− qs − qs)

× {2πn[nα(1− α)− α(α + β)]}−1/2

(2.45)

Case 2. Similarly, if kn+1 = kn then from
Equation 2.43, we have

g(n)=
(

n

kn − 1

)
qkns pn−kn+1

s

×
[(

pops

qoqs

)kn (qo

ps

)n+1

− r

]

32 System Reliability and Optimization

since kn = �nα + β ≤ nα + β + 1, and from
Equation 2.44 and Lemma 1, we have

g(n) ≤ qs

(
n

kn − 1

)
qkn−1

s pn−kn+1
s

×
[(

pops

qoqs

)nα+β+1 (
qo

ps

)n+1

− r

]

≤ qs

√
n

2π(kn − 1)[n− (kn − 1)]

×
[(

pops

qoqs

)nα+β(qo

ps

)n+1(pops

qoqs

)
− r

]

≤ qs

√
n

2π(kn − 1)[n− (kn − 1)]
×
[
r

(
qo

ps

) (
pops

qoqs

)
− r

]
≤
√

n

2π(kn − 1)[n− (kn − 1)] (1− qo − qs)

Note that kn+1 = kn, then nα − (1− α − β)≤
kn − 1≤ nα + β . After simplifications, we have

g(n) ≤ (1− qo − qs)

×
[

2πn

(
kn − 1

n

) (
1− kn − 1

n

)]−1/2

≤ (1− qo − qs)

×
[

2πn

(
α − 1− α − β

n

)
×
(

1− α − β

n

)]−1/2

≤ 1− qo − qs√
2π[nα(1− α) − (1− α)2 − (1− α)β]

(2.46)

From the inequalities in Equations 2.45 and 2.46,
set

(1− qs − qo)
1√

2π[nα(1− α)− α(α + β)] ≤
d

c1

and

1− qo − qs√
2π[nα(1− α)− (1− α)2 − α(α + β)] ≤

d

c1

we obtain

(1− qo − qs)
2
(c1

d

)2 1

2π
≤min{nα(1 − α)− α(α + β), nα(1 − α)

− (1− α)2 − (1− α)β}
�E[T (n)] ≥ 0

when

n≥
(1− qo − qs)

2

2π

(c1

d

)
+ 1+ β

α(1− α)

Hence

n∗ ≤
(1− qo − qs)

2

2π

(c1

d

)
+ 1+ β

α(1 − α)
�

The result in Equation 2.42 provides an upper
bound for the optimal system size.

2.7 Fault-tolerant Systems
In many critical applications of digital systems,
fault tolerance has been an essential architectural
attribute for achieving high reliability. It is uni-
versally accepted that computers cannot achieve
the intended reliability in operating systems, ap-
plication programs, control programs, or com-
mercial systems, such as in the space shuttle, nu-
clear power plant control, etc., without employ-
ing redundancy. Several techniques can achieve
fault tolerance using redundant hardware [12] or
software [13]. Typical forms of redundant hard-
ware structures for fault-tolerant systems are of
two types: fault masking and standby. Masking
redundancy is achieved by implementing the func-
tions so that they are inherently error correct-
ing, e.g. triple-modular redundancy (TMR), N-
modular redundancy (NMR), and self-purging re-
dundancy. In standby redundancy, spare units
are switched into the system when working units
break down. Mathur and De Sousa [12] have
analyzed, in detail, hardware redundancy in the
design of fault-tolerant digital systems. Redun-
dant software structures for fault-tolerant systems

Reliability of Systems with Multiple Failure Modes 33

based on the acceptance tests have been proposed
by Horning et al. [13].

This section presents a fault-tolerant architec-
ture to increase the reliability of a special class
of digital systems in communication [14]. In this
system, a monitor and a switch are associated with
each redundant unit. The switches and monitors
can fail. The monitors have two failure modes:
failure to accept a correct result, and failure to
reject an incorrect result. The scheme can be used
in communication systems to improve their relia-
bility.

Consider a digital circuit module designed to
process the incoming messages in a communica-
tion system. This module consists of two units: a
converter to process the messages, and a monitor
to analyze the messages for their accuracy. For
example, the converter could be decoding or un-
packing circuitry, whereas the monitor could be
checker circuitry [12]. To guarantee a high relia-
bility of operation at the receiver end, n converters
are arranged in “parallel”. All, except converter n,
have a monitor to determine if the output of the
converter is correct. If the output of a converter is
not correct, the output is cancelled and a switch
is changed so that the original input message is
sent to the next converter. The architecture of
such a system has been proposed by Pham and
Upadhyaya [14]. Systems of this kind have useful
application in communication and network con-
trol systems and in the analysis of fault-tolerant
software systems.

We assume that a switch is never connected
to the next converter without a signal from the
monitor, and the probability that it is connected
when a signal arrives is ps. We next present
a general expression for the reliability of the
system consisting of n non-identical converters
arranged in “parallel”. An optimization problem
is formulated and solved for the minimum average
system cost. Let us define the following notation,
events, and assumptions.

The notation is as follows:

pc
i Pr{converter i works}

ps
i Pr{switch i is connected to converter

(i + 1) when a signal arrives}

pm1
i Pr{monitor i works when converter i

works} = Pr{not sending a signal to the
switch when converter i works}

pm2
i Pr{i monitor works when converter i

has failed} = Pr{sending a signal to the
switch when converter i has failed}

Rk
n−k reliability of the remaining system of

size n− k given that the first k switches
work

Rn reliability of the system consisting of n
converters.

The events are:

Cw
i , C

f
i converter i works, fails

Mw
i , M

f
i monitor i works, fails

Sw
i , S

f
i switch i works, fails

W system works.

The assumptions are:

1. the system, the switches, and the converters
are two-state: good or failed;

2. the module (converter, monitor, or switch)
states are mutually statistical independent;

3. the monitors have three states: good, failed in
mode 1, failed in mode 2;

4. the modules are not identical.

2.7.1 Reliability Evaluation

The reliability of the system is defined as the
probability of obtaining the correctly processed
message at the output. To derive a general
expression for the reliability of the system, we use
an adapted form of the total probability theorem
as translated into the language of reliability.
Let A denote the event that a system performs
as desired. Let Xi and Xj be the event that a
component X (e.g. converter, monitor, or switch)
is good or failed respectively. Then

Pr{system works}
= Pr{system works when unit X is good}
× Pr{unit X is good}
+ Pr{system works when unit X fails}
× Pr{unit X is failed}

34 System Reliability and Optimization

The above equation provides a convenient way
of calculating the reliability of complex systems.
Notice that R1 = pc

i , and for n≥ 2, the reliability
of the system can be calculated as follows:

Rn = Pr{W | Cw
1 and Mw

1 } Pr{Cw
1 and Mw

1 }
+ Pr{W | Cw

1 and M f
1} Pr{Cw

1 and M f
1}

+ Pr{W | Cf
1 and Mw

1 } Pr{Cf
1 and Mw

1 }
+ Pr{W | Cf

1 and M f
1} Pr{Cf

1 and M f
1}

In order for the system to operate when the first
converter works and the first monitor fails, the
first switch must work and the remaining system
of size n− 1 must work:

Pr{W | Cw
1 and M f

1} = ps
1R

1
n−1

Similarly:

Pr{W | Cf
1 and Mw

1 } = ps
1R

1
n−1

then

Rnp
c
1p

m1
1 + [pc

1(1− pm1
1)+ (1− pc

1)p
m2
1]ps

1R
1
n−1

The reliability of the system consisting of n non-
identical converters can be easily obtained:

Rn =
n−1∑
i=1

pc
i p

m1
i πi−1 + πn−1p

c
n for n > 1

(2.47)
and

R1 = pc
1

where

π
j
k =

k∏
i=j

Ai for k ≥ 1

πk = π1
k for all k, and π0 = 1

and

Ai ≡ [pc
i (1− pm1

i)+ (1− pc
i)p

m2
i]

for all i = 1, 2, . . . , n. Assume that all the
converters, monitors, and switches have the same
reliability, that is:

pc
i = pc, pm1

i = pm1, pm2
i = pm2, ps

i = ps

for all i, then we obtain a closed form expression
for the reliability of system as follows:

Rn = pcpm1

1 − A
(1− An−1)+ pcAn−1 (2.48)

where

A= [pc(1− pm1)+ (1− pc)pm2]ps

2.7.2 Redundancy Optimization

Assume that the system failure costs d units of
revenue, and that each converter, monitor, and
switch module costs a, b, and c units respectively.
Let Tn be system cost for a system of size n. The
average system cost for size n, E[Tn], is the cost
incurred when the system has failed, plus the cost
of all n converters, n− 1 monitors, and n− 1
switches. Therefore:

E[Tn] = an+ (b + c)(n− 1)+ d(1− Rn)

where Rn is given in Equation 2.48. The minimum
value of E[Tn] is attained at

n∗ =
{

1 if A≤ 1− pm1

�n0	 otherwise

where

n0 = ln(a + b + c)− ln[dpc(A+ pm1 − 1)]
ln A

+ 1

Example 4. [14] Given a system with pc = 0.8,
pm1 = 0.90, pm2 = 0.95, ps = 0.90, and a = 2.5,
b = 2.0, c = 1.5, d = 1200. The optimal system
size is n∗ = 4, and the corresponding average cost
(81.8) is minimized.

2.8 Weighted Systems with
Three Failure Modes
In many applications, ranging from target de-
tection to pattern recognition, including safety-
monitoring protection, undersea communication,
and human organization systems, a decision has
to be made on whether or not to accept the hy-
pothesis based on the given information so that

Reliability of Systems with Multiple Failure Modes 35

the probability of making a correct decision is
maximized. In safety-monitoring protection sys-
tems, e.g. in a nuclear power plant, where the sys-
tem state is monitored by a multi-channel sensor
system, various core groups of sensors monitor
the status of neutron flux density, coolant tem-
perature at the reaction core exit (outlet temper-
ature), coolant temperature at the core entrance
(inlet temperature), coolant flow rate, coolant level
in pressurizer, on–off status of coolant pumps.
Hazard-preventive actions should be performed
when an unsafe state is detected by the sensor
system. Similarly, in the case of chlorination of a
hydrocarbon gas in a gas-lined reactor, the pos-
sibility of an exothermic, runway reaction occurs
whenever the Cl2/hydrocarbon gas ratio is too
high, in which case a detonation occurs, since a
source of ignition is always present. Therefore,
there are three unsafe phenomena: a high chlorine
flow y1, a low hydrocarbon gas flow y2, and a
high chlorine-to-gas ratio in the reactor y3. The
chlorine flow must be shut off when an unsafe
state is detected by the sensor system. In this ap-
plication, each channel monitors a different phe-
nomenon and has different failure probabilities
in each mode; the outputs of each channel will
have different weights in the decision (output).
Similarly, in each channel, there are distinct num-
ber of sensors and each sensor might have dif-
ferent capabilities, depending upon its physical
position. Therefore, each sensor in a particular
channel might have different failure probabilities;
thereby, each sensor will have different weights on
the channel output. This application can be con-
sidered as a two-level weighted threshold voting
protection systems.

In undersea communication and decision-
making systems, the system consists of n elec-
tronic sensors each scanning for an underwater
enemy target [16]. Some electronic sensors, how-
ever, might falsely detect a target when none is ap-
proaching. Therefore, it is important to determine
a threshold level that maximizes the probability of
making a correct decision.

All these applications have the following work-
ing principles in common. (1) System units make
individual decisions; thereafter, the system as an

entity makes a decision based on the information
from the system units. (2) The individual decisions
of the system units need not be consistent and
can even be contradictory; for any system, rules
must be made on how to incorporate all informa-
tion into a final decision. System units and their
outputs are, in general, subject to different errors,
which in turn affects the reliability of the system
decision.

This chapter has detailed the problem of
optimizing the reliability of systems with two
failure modes. Some interesting results concerning
the behavior of the system reliability function have
also been discussed. Several cost optimization
problems are also presented. This chapter also
presents a brief summary of recent studies in
reliability analysis of systems with three failure
modes [17–19]. Pham [17] studied dynamic
redundant system with three failure modes.
Each unit is subject to stuck-at-0, stuck-at-1
and stuck-at-x failures. The system outcome is
either good or failed. Focusing on the dynamic
majority and k-out-of-n systems, Pham derived
optimal design policies for maximizing the
system reliability. Nordmann and Pham [18] have
presented a simple algorithm to evaluate the
reliability of weighted dynamic-threshold voting
systems, and they recently presented [19] a general
analytic method for evaluating the reliability of
weighted-threshold voting systems. It is worth
considering the reliability of weighted voting
systems with time-dependency.

References
[1] Barlow RE, Hunter LC, Proschan F. Optimum redundancy

when components are subject to two kinds of failure.
J Soc Ind Appl Math 1963;11(1):64–73.

[2] Ben-Dov Y. Optimal reliability design of k-out-of-n
systems subject to two kinds of failure. J Opt Res Soc
1980;31:743–8.

[3] Dhillon BS, Rayapati SN. A complex system reliability
evaluation method. Reliab Eng 1986;16:163–77.

[4] Jenney BW, Sherwin DJ. Open and short circuit reliability
of systems of identical items. IEEE Trans Reliab 1986;R-
35:532–8.

[5] Pham H. Optimal designs of systems with competing
failure modes. PhD Dissertation, State University of New
York, Buffalo, February 1989 (unpublished).

36 System Reliability and Optimization

[6] Malon DM. On a common error in open and short circuit
reliability computation. IEEE Trans Reliab 1989;38:
275–6.

[7] Page LB, Perry JE. Optimal series–parallel networks of 3-
stage devices. IEEE Trans Reliab 1988;37:388–94.

[8] Pham H. Optimal design of systems subject to two
kinds of failure. Proceedings Annual Reliability and
Maintainability Symposium, 1990. p.149–52.

[9] Pham H, Pham M. Optimal designs of {k, n− k + 1} out-
of-n: F systems (subject to 2 failure modes). IEEE Trans
Reliab 1991;40:559–62.

[10] Sah RK, Stiglitz JE. Qualitative properties of profit
making k-out-of-n systems subject to two kinds of
failures. IEEE Trans Reliab 1988;37:515–20.

[11] Pham H, Malon DM. Optimal designs of systems with
competing failure modes. IEEE Trans Reliab 1994;43:
251–4.

[12] Mathur FP, De Sousa PT. Reliability modeling and
analysis of general modular redundant systems. IEEE
Trans Reliab 1975;24:296–9.

[13] Horning JJ, Lauer HC, Melliar-Smith PM, Randell B.
A program structure for error detection and recovery.
Lecture Notes in Computer Science, vol. 16. Springer;
1974. p.177–93.

[14] Pham H, Upadhyaya SJ. Reliability analysis of a class of
fault-tolerant systems. IEEE Trans Reliab 1989;38:333–7.

[15] Pham H, editor. Fault-tolerant software systems: tech-
niques and applications. Los Alamitos (CA): IEEE Com-
puter Society Press; 1992.

[16] Pham H. Reliability analysis of digital communication
systems with imperfect voters. Math Comput Model J
1997;26:103–12.

[17] Pham H. Reliability analysis of dynamic configurations
of systems with three failure modes. Reliab Eng Syst Saf
1999;63:13–23.

[18] Nordmann L, Pham H. Weighted voting human-
organization systems. IEEE Trans Syst Man Cybernet
Pt A 1997;30(1):543–9.

[19] Nordmann L, Pham H. Weighted voting systems. IEEE
Trans Reliab 1999;48:42–9.

Reliabilities of Consecutive-k
Systems

Ch
ap

te
r3

Jen-Chun Chang and Frank K. Hwang

3.1 Introduction
3.1.1 Background
3.1.2 Notation
3.2 Computation of Reliability
3.2.1 The Recursive Equation Approach
3.2.2 The Markov Chain Approach
3.2.3 Asymptotic Analysis
3.3 Invariant Consecutive Systems
3.3.1 Invariant Consecutive-2 Systems
3.3.2 Invariant Consecutive-k Systems
3.3.3 Invariant Consecutive-k G System
3.4 Component Importance and the Component Replacement Problem
3.4.1 The Birnbaum Importance
3.4.2 Partial Birnbaum Importance
3.4.3 The Optimal Component Replacement
3.5 The Weighted-consecutive-k-out-of-nSystem
3.5.1 The Linear Weighted-consecutive-k-out-of-nSystem
3.5.2 The Circular Weighted-consecutive-k-out-of-nSystem
3.6 Window Systems
3.6.1 The f -within-consecutive-k-out-of-nSystem
3.6.2 The 2-within-consecutive-k-out-of-nSystem
3.6.3 The b-fold-window System
3.7 Network Systems
3.7.1 The Linear Consecutive-2 Network System
3.7.2 The Linear Consecutive-k Network System
3.7.3 The Linear Consecutive-k Flow Network System
3.8 Conclusion

3.1 Introduction

In this chapter we introduce the consecutive-k
systems, including the original well-known
consecutive-k-out-of-n:F system. Two general
themes are considered: computing the system
reliability and maximizing the system reliability
through optimally assigning components to
positions in the system.

3.1.1 Background

The consecutive-k-out-of-n:F system is a system
of n components arranged in a line such
that the system fails if and only if some
k consecutive components fail. It was first
studied by Kontoleon [1] under the name of r-
successive-out-of-n:F system, but Kontoleon only
gave an enumerative reliability algorithm for

37

38 System Reliability and Optimization

the system. Chiang and Niu [2] motivated the
study of the system by some real applications.
They proposed the current name “consecutive-
k-out-of-n:F system” for the system and gave
an efficient reliability algorithm by recursive
equations. From then on, the system became more
and more popular.

There are many variations and generalizations
of the system, such as circular consecutive-
k-out-of-n:F systems [3], weighted-consecutive-
k-out-of-n:F systems [4, 5], f -or-consecutive-k-
out-of-n:F systems [6, 7], f -within-consecutive-
k-out-of-n:F systems [8, 9], consecutive-k-out-of-
n:F networks [10, 11], consecutive-k-out-of-n:F
flow networks [8], and consecutive-k − r-out-of-
n:DFM systems [12], etc. Reliability analysis for
these systems has been widely studied in recent
years.

There are other variations called consecutive-
k:G systems, which are defined by exchanging
the role of working and failed components in
the consecutive-k systems. For example, the
consecutive-k-out-of-n:G system works if and
only if some k consecutive components all
work. The reliability of the G system is simply
the unreliability of the F system computed
by switching the component reliabilities and
the unreliabilities. However, to maximize the
reliability of a G system is not equivalent to
minimize the reliability of an F system.

Two basic assumptions for the consecutive-k
systems are described as follows.

1. Binary system. The components and the
system all have two states: working or failed.

2. IND model. The states of the components
are independent. In addition, if the working
probabilities of all components are identical,
we call it the IID model.

We consider two general problems in this chap-
ter: computing the system reliability and maxi-
mizing the system reliability through optimally
assigning components to positions in the system.

Two general approaches are used to compute
the reliability for the IND probability models:
one is the recursive equation approach, and the
other is the Markov chain approach. The recursive

equation approach was first pursued by Chiang
and Niu [2] and Derman et al. [3]. The Markov
chain approach was first proposed by Griffith and
Govindarajula [13], Griffith [14], Chao and Lin
[15], and perfected by Fu [16].

The general reliability optimization problem is
to allocate m≥ n components with non-identical
reliabilities to the n positions in a system, where a
position can be allocated one or more components
to maximize the system reliability (it is assumed
that the components are functionally equivalent).
Two different versions of this general problem are:

1. Sequential. Components are allocated one at
a time. Once a component is placed into a
position, its state is known.

2. Non-adaptive. Components are allocated si-
multaneously.

Since the general optimization problem is very
difficult, in most cases we do not have a globally
optimal algorithm. Sometimes heuristics are used.
The special case which we study here is m= n

under the IND model.

3.1.2 Notation

The following notation is used in this chapter.

Pr(e) probability of event e
Pr(e1 | e2) probability of event e1 under

the condition that event e2
occurs

E(X) expectation of a random
variable X

E(X | e) expectation of a random
variable X under the condition
that event e occurs

Trace(M) trace of a matrix M
n number of components in the

system
pi probability that component i

functions
qi 1− pi

L(1, n) or L consecutive-k-out-of-n linear
system, where k and all pi are
assumed understood

Reliabilities of Consecutive-k Systems 39

C(1, n) or C circular consecutive-k-out-of-n
linear system, where k and all
pi are assumed understood

Rx(1, n) or Rx reliability of the system x(1, n)
where x ∈ {L, C}, k and all pi

are assumed understood
R̄x(1, n) or Rx 1− Rx(1, n), unreliability of

the system x(1, n)
Rx(n) Rx(1, n) when all pi = p and

all qi = q

R̄x(n) 1− Rx(n)

si working state of component i
s̄i failure state of component i
x(i, j) x system containing

components i, i + 1, . . . , j
Rx(i, j) reliability of the subsystem x(i, j)

R̄x(i, j) 1− Rx(i, j), unreliability of
the subsystem x(i, j)

Sx(i, j) set of all component states
including a working x(i, j)

S̄x(i, j) set of all component states
including a failed x(i, j)

Nx(d, n, k) number of ways that n nodes,
including exactly d failed
nodes, ordered on a line (if
x = L) or a cycle (if x = C)
contain no k consecutive failed
nodes.

3.2 Computation of Reliability

We introduce various approaches to compute
the reliability of the consecutive-k-out-of-n:F
system and its circular version. In addition, we
also compare the time complexities of these
approaches.

3.2.1 The Recursive Equation
Approach

The first solution of the reliability of the lin-
ear consecutive-k-out-of-n:F system was given by

Chiang and Niu [2] (for the IID model). The so-
lution is in the form of recursive equations. From
then on, many other recursive equations have been
proposed to improve the efficiency of the relia-
bility computation. We only present the fastest
ones.

Shanthikumar [17] and Hwang [18] gave the
following recursive equation for the reliability of
the linear consecutive-k-out-of-n:F system.

Theorem 1.

RL(1, n)= RL(1, n− 1)

− RL(1, n− k − 1)pn−k
k∏

j=1

qn−k+j

This equation holds for any n≥ k + 1.
Since RL(1, n) can be computed after RL(1, 1),
RL(1, 2), . . . , RL(1, n− 1) are all computed in
that order, the system reliability RL(1, n) can be
computed in O(n) time.

The solution for the reliability of the circular
consecutive-k-out-of-n:F system was first given by
Derman et al. [3]. Note that the indices are taken
modulo n for circular systems.

Theorem 2.

RC(1, n)=
n∑

1≤i≤k
n−k+i≤j≤n

pj

(n+i−1∏
h=j+1

qh

)

× piRL(i + 1, j − 1)

Hwang [18] observed that there are O(k2) RL

terms in the right-hand side of the equation,
each needing O(n) time to compute. Therefore,
Hwang announced that RC(1, n) can be computed
in O(k2n) time. Wu and Chen [19] observed
that RL(i, i), RL(i, i + 1), . . . , RL(i, n) can be
computed together in O(n) time. Hence, they
claimed that RC(1, n) can be computed in O(kn)

time.
Wu and Chen [20] also showed a trick of using

fictitious components to make the O(kn) time
more explicit. Let LW(1, n+ i) be a linear system
with p1 = p2 = · · · = pi = pn+1 = pn+2 = · · · =
pn+i = 0. They gave the following recursive
equation.

40 System Reliability and Optimization

Theorem 3.

RC(1, n)= RL(1, n)−
k−1∑
i=1

i∏
j=1

qj

× [RLW (1, n+ i − 1)− RLW (1, n+ i)]

Because there are only O(kn) terms of RL,
RC(1, n) can be computed in O(kn) time.

In addition, Antonopoulou and Papastavridis
[21] gave the following recursive equation.

Theorem 4.

RC(1, n)= pnRL(1, n− 1)+ qnRC(1, n− 1)

−
k∑

i=1

pn−k+i−1

(n+i−1∏
j=n−k+i

qj

)
× piRL(i + 1, n− k + i − 2)

Antonopoulou and Papastavridis claimed that
this is an O(kn) algorithm, but Wu and Chen
[20] found that the computational complexity is
O(kn2) rather than O(kn). Later, Hwang [22]
gave a different, more efficient implementation of
the same recursive equation, which is an O(kn)

algorithm.

3.2.2 The Markov Chain Approach

The Markov chain approach was first introduced
into the reliability study by Griffith [14] and
Griffith and Govindarajula [13], but they did
not give an efficient algorithm. The first efficient
algorithm based on the Markov chain approach
was given by Chao and Lin [15].

We briefly describe the Markov chain approach
as follows. Chao and Lin [15] defined Sv as the
aggregate of states of nodes v − k + 1, v − k +
2, . . . , v. Hence {Sv} forms a Markov chain, and
Sv+1 depends only on Sv . Fu [16] lowered the
number of states by defining Sv to be in state i,
i ∈ {0, 1, . . . , k} if the last i nodes including node
v are all failed. Note that all states (except the
failed state k) are working states. The following
transition probability matrix for Sv was given by

Fu and Hu [23].

v =

pv qv
pv qv
...

. . .

pv qv
0 1

Let π0 and U0 denote the 1× (k + 1) row vector
{1, 0, . . . , 0} and the (k + 1)× 1 column vector of
all 1 except the last bit is 0, respectively. The system
reliability of the linear consecutive-k-out-of-n:F
system can be computed as

RL(1, n)= π0

(n∏
v=1

v

)
U0

Fu and Hu did not give any time complexity
analysis. Koutras [24] restated this method and
claimed that RL(1, n) can be computed in O(kn)

time.
For the circular system, the Markov chain

method does not work, since a Markov chain must
have a starting point. Hwang and Wright [25]
gave a different Markov chain method (called the
transfer matrix method) that works well for the
circular system. For simplicity, assume k divides n.
The n nodes are divided into n/k sets of k

each. The ith set consists of nodes (i − 1)k + 1,
(i − 1)k + 2, . . . , ik. A state of a set is simply a
vector of states of its k elements. Let Si = {Siu}
be the state space of set i. Then |Si | = 2k. Let Mi

denote the matrix whose rows are indexed by the
elements of Si , and columns are indexed by the
elements of Si+1. Cell (u, v)= 1 if Siu ∪ S(i+1)v
does not contain k consecutive failed nodes, and 0
otherwise. For the circular system, let Sn/k+1 =
S1. The number of working cases out of the 2n total
cases is

Trace

(n/k∏
i=1

Mi

)
Hwang and Wright [25] described a novel way

to compute the reliability by substituting each
entry 1 in cell (u, v) of Mi with√

Pr(Siu) Pr(S(i+1)v)

since each Siu appears once in Mi and once in
Mi+1. This method can also be applied to linear

Reliabilities of Consecutive-k Systems 41

systems. For a linear system, the corresponding
term is then

n/k−1∏
i=1

Mi

and M1(u, v) = 1 needs to be replaced with
Pr(S1u)

√
Pr(S2v) and Mn/k−1(u, v)= 1 with√

Pr(Sn/k−1,v) Pr(Sn/k,u). In this approach,
there are O(n/k) matrix multiplications where
each takes O(23k) time. Therefore, the total
computational complexity is O(23kn/k). Hwang
and Wright [25] also found a clever way to speed
up the multiplication time from O(23k) to O(k6).
For a working state Siu, let l denote the index of
the first working node and r (≥l) denote the last.
For each Si , delete the unique failed state and
regroup the working states according to (l, r).
The size of |Si | is lowered down to O(k2), while
the ability to determine whether Siu ∪ S(i+1)v
contains k consecutive failed nodes is preserved.
Note that

Pr(Si,(l,r))=
(l−1∏

j=1

q(i−1)k+j
)
p(i−1)k+lp(i−1)k+r

×
(k−1∏

j=1

q(i−1)k+r+j
)

but without p(i−1)k+r if l = r . The total computa-
tional complexity for the reliability is O(k5n).

3.2.3 Asymptotic Analysis

Chao and Lin [15] conjectured, and Fu [26],
proved the following result.

Theorem 5. For any integer k ≥ 1, if the compo-
nent reliability pn = 1− λn−1/k (λ > 0) holds for
IID model, then

lim
n→∞ RL(n)= exp{−λk}

Chao and Fu [27] embedded the consecutive-
k-out-of-n line into a finite Markov chain
{X0, X1, . . . , Xn} with states {1, . . . , k + 1} and

transition probability matrix (blanks are zeros)

n(t)=

pt qt
pt qt
...

. . .

pt qt
0 1

(k+1)×(k+1)

Let π0 = (π1, . . . , πk+1) be the initial probability
vector. Then

RL(n)= π0

n∏
t=1

n(t)U0

where U0 is the (k + 1)× 1 column vector
(1, . . . , 1, 0)T.

Define

b(t, n)= Pr{Xt = k + 1 | Xt−1 ≤ k}
and

λn =
∞∑
j=1

1

j

n∑
t=1

bj (t, n)

Chao and Fu proved Theorem 5 under a more
general condition.

Theorem 6. Suppose π0U0 = 1 and limn→∞ λn =
λ > 0. Then

lim
n→∞ RL(n, k)= exp{−λk}

3.3 Invariant Consecutive
Systems
Given n components with reliabilities p1, p2, . . . ,

pn, then a permutation of the n reliabilities
defines a consecutive-k system and its reliability.
An optimal system is one with the largest
reliability. An optimal system is called invariant if
it depends only on the ranks, but not the actual
values, of pi .

3.3.1 Invariant Consecutive-2 Systems

Derman et al. [3] proposed two optimization
problems for linear consecutive-2 systems and
solved one of them. Let the reliabilities of the

42 System Reliability and Optimization

n components be p1, p2, . . . , pn. Assume p[i]
denotes the ith smallest pj . In the sequential
assignment problem, components are assigned
one at a time to the system, and the state of
the component is determined as soon as it is
connected to the system. In the non-adaptive
assignment problem, the system is constructed all
at once.

For the sequential assignment problem,
Derman et al. [3] proposed the following
assignment rule: Assign the least reliable
component first. Afterwards, if the last assigned
component works, then assign the least reliable
component in the remaining pool next; otherwise,
if the last assigned component is failed, then
assign the most reliable component in the
remaining pool next. This rule is called DLR,
which is optimal.

Theorem 7. The assignment rule DLR is optimal.

For the non-adaptive assignment problem,
Derman et al. [3] conjectured the optimal
sequence is

L̃n = (p[1], p[n], p[3], p[n−2],
. . . , p[n−3], p[4], p[n−1], p[2])

where p[i] denotes the ith smallest of
p1, p2, . . . , pn. This conjecture was extended to
the circular system by Hwang [18] as follows:

C̃n = (p[1], p[n−1], p[3], p[n−3],
. . . , p[n−4], p[4], p[n−2], p[2], p[n])

Since any consecutive-k-out-of-n linear system
can be formulated as a consecutive-k-out-of-n
circular system by setting pn+1 = 1, the line
conjecture holds if the cycle conjecture holds.
Du and Hwang [28] proved the cycle conjecture,
while Malon [29] claimed a proof of the line
conjecture (see [30] for comment). Later, Chang
et al. [30] gave a proof for the cycle conjecture
that combines Malon’s technique for the line
conjecture and Du and Hwang’s technique for
the cycle conjecture, but is simpler than both.
These results can be summarized as follows.

Theorem 8. L̃n is the unique optimal consecutive-
2 line.

Theorem 9. C̃n is the unique optimal consecutive-
2 cycle.

Note that the optimal dynamic consecutive-
2 line, the optimal static consecutive-2 line, and
cycle are all invariant. One would expect that the
remaining case, the optimal dynamic consecutive-
2 cycle, is also invariant. However, Hwang and
Pai [31] recently gave a negative result.

3.3.2 Invariant Consecutive-k Systems

The invariant consecutive-k line problem is
completely solved by Malon [29]. The result is
quoted as follows.

Theorem 10. There exist invariant consecutive-
k lines if and only if k ∈ {1, 2, n− 2, n− 1, n}.
The invariant lines are given below:

(any arrangement) if k = 1;
(p[1], p[n], p[3], p[n−2],
. . . , p[n−3], p[4], p[n−1], p[2]) if k = 2;

(p[1], p[4], (any arrangement),
p[3], p[2]) if k = n− 2;
(p[1], (any arrangement), p[2]) if k = n− 1;
(any arrangement) if k = n.

Hwang [32] extended Malon’s result to the cycle.

Theorem 11. There exist invariant consecutive-k
cycles if and only if k ∈ {1, 2, n− 2, n− 1, n}.
For k ∈ {1, n− 1, n}, any cycle is optimal. For k ∈
{2, n− 2}, the unique invariant cycle is C̃n.

Sometimes there is no universal invariant
system, but there are some local invariant
assignments. Such knowledge can reduce the
number of systems we need to search as candidates
of optimal systems. Tong [33] gave the following
result for interchanging two adjacent components.

Theorem 12. Assume that (n− 1)/2≤ k ≤ n− 2
and p1 > p2. Let C′ be obtained from C =
(p1, p2, . . . , pn) by interchanging p1 and p2.
Then R(C′)≥ R(C) if and only if(k+1∏

i=3

qi

)
pk+2 − pn−k+1

(n∏
i=n−k+2

qi

)
≤ 0

Reliabilities of Consecutive-k Systems 43

For n < 2k, the following theorem was inde-
pendently given by Tong [34] and Malon [29]. Kuo
et al. [35] observed that it holds in general.

Theorem 13. In an optimal consecutive-k line,
p1 ≤ p2 ≤ · · · ≤ pn.

3.3.3 Invariant Consecutive-k
G System

A consecutive-k G system is the counterpart
of a consecutive-k (F) system by interchanging
the notions of working and failed components.
That is, a G system works if and only if some k

consecutive components all work. The G system
was first suggested by Tong [34]. For reliability
computation, formulas for the F systems also work
well for the G systems by interchanging pi and qi
for all i, and interchanging R with R̄.

However, the G system brought out new prob-
lems in reliability optimization and in component
importance. The main reason is that maximizing
the reliability of the G system is equivalent to
minimizing the reliability of the F system, which
has not been studied before. Zuo and Kuo [36]
gave the following result.

Theorem 14. There does not exist an invariant
consecutive-k-out-of-n G line for 2≤ k < n/2.

This result can be extended to the circular system.
That is:

Theorem 15. There does not exist an invari-
ant consecutive-k-out-of-n G cycle for 2≤ k <

(n− 1)/2.

Zuo and Kuo [36] first observed the following
result.

Theorem 16. In an optimal assignment of a
G system, p1 ≤ p2 ≤ · · · ≤ pk and pn ≤ pn−1 ≤
· · · ≤ pn−k+1.

For the G line, the case of n≤ 2k was studied by
Kuo et al. [35], and the case n≤ 2k + 1 for the G
cycle was studied by Zuo and Kuo [36]. But both
proofs are incomplete. Recently, Jalali et al. [37]
proposed the following lemma.

Lemma 1. In an optimal assignment of a G
system, p1 = p[1], pk = p[n−1], pk+1 = p[n] and
pn = p[2].

With Lemma 1, Jalali et al. [37] proved the
following theorem for the G line.

Theorem 17. The unique invariant consecutive-
k-out-of-n G line for n= 2k is α = (p[1], p[3],
p[5], . . . , p[6], p[4], p[2]).

This result can be extended to the n < 2k case.

Theorem 18. For n < 2k, the invariant
consecutive-k-out-of-n G line is

(p[1], p[3], p[5], . . . , B, . . . , p[6], p[4], p[2]),

where B is a center block of 2k − n largest
reliabilities in any arrangement.

Du et al. [38] used a completely different
method to prove the more general cycle case.

Theorem 19. For n≤ 2k + 1, the unique invariant
consecutive-k-out-of-n G cycle is

(p[1], p[3], p[5], . . . , p[6], p[4], p[2]),

where the two ends are considered adjacent.

3.4 Component Importance
and the Component
Replacement Problem

Component importance measures the relative
importance of a component, or sometimes the
position of a component in the system, with
respect to system reliability. The importance index
can be used to assist the allocation of redundant
components or replacement by giving priority to
the more important positions. The most popular
importance index is the Birnbaum importance,
but very few results have been obtained. Weaker
versions have been introduced to obtain more
results.

44 System Reliability and Optimization

3.4.1 The Birnbaum Importance

The Birnbaum (reliability) importance of compo-
nent i in system x ∈ {L, C} is defined as

Ix(i)= ∂Rx(p1, p2, . . . , pn)

∂pi

It is the rate at which the system reliability
grows when the reliability of component i grows.
When necessary, we use Ix(i, n) to denote
Ix(i) with n fixed. Independently, Griffith and
Govindarajulu [13] and Papastavridis [39] first
studied the Birnbaum importance for consecutive
lines. Their results can be quoted as follows.

Theorem 20.

IL(i)= [RL(1, i − 1)RL(i + 1, n)− RL(1, n)]/qi
and

IC(i)= [RL(pi+1, pi+2, . . . , pi−1)

− RC(1, n)]/qi.
It can be shown that IL(i) observes the same

recursive equations as observed by L(1, n). Thus
similar to Theorem 1, the following theorem
holds.

Theorem 21. For an IID model

1. IL(i, n)= IL(i, n− 1)− pqkIL(i, n− k − 1)
if n− i ≥ k + 1

2. IL(i, n)= IL(i−1, n−1)− pqkIL(i − k − 1,
n− k − 1) if i − 1≥ k + 1.

The comparison of Birnbaum importance
under the IND model is valid only for the
underlying set (p1, p2, . . . , pn). On the other
hand, the IID model is the suitable one if the focus
is on comparing the positions by neutralizing the
differences in pi . Even for the IID model, Hwang
et al. [40] showed that the comparison is not
independent of p.

The following theorem is given by Chang et al.
[30].

Theorem 22. Consider the consecutive-2 line un-
der the IID model. Then

IL(2i) > IL(2i − 1) for 2i ≤ (n+ 1)/2

IL(2i) < IL(2i − 2) for 2i ≤ (n+ 1)/2

IL(2i + 1) > IL(2i − 1) for 2i + 1≤ (n+ 1)/2

For general k, not much is known. Kuo et al.
[35] first observed the following result.

Theorem 23. For the consecutive-k line under the
IID model

IL(1) < IL(2) < · · ·< IL(k) if n≥ 2k

IL(n− k + 1)= IL(n− k + 2)

= · · · = IL(k) if n < 2k

The following theorem was proved (partially)
by Zuo [41] and (partially) by Zakaria et al. [42].

Theorem 24. Consider the consecutive-k line un-
der the IID model. Then IL(1)≤ IL(i) for all i ≤
n/2 and IL(k) > IL(k + 1) for n > 2k.

Chang et al. [43, 44] gave a method to compare
IL(i) with IL(i + 1), and derived the following
results.

Theorem 25.

IL(2k + 1) < IL(2k), IL(k + 1) < IL(k + 2)

and

IL(2k − 1, 4k − 1) < IL(2k, 4k − 1).

Recently, Chang et al. [45] extended the results
in Theorem 25 as follows:

Theorem 26.

(i) IL((t − 2)k − 1, tk − 1) < IL[(t − 2)k,
tk − 1] for t ≥ 3

(ii) IL(3k + 1, 6k + 1) < IL(3k, 6k + 1).

Hwang [46] defined a new importance mea-
sure. In Hwang’s definition, component i is said
to be more important than component j , writ-
ten as H(i) > H(j), if for every d = k, k + 1, k +
2, . . . , n, |CSi,d |, the number of d-cutsets con-
taining i is never fewer than |CSj,d |. Hwang [46]
proved thatH more importance implies Birnbaum
more importance. He gave the following theorem.

Theorem 27. H(i)≥H(j) implies IL(i)≥ IL(j)

under the IID model for all p.

Note that one cannot use computation to prove
IL(i)≥ IL(j) for all p since there is an infinite
number of them. But for any finite system, we

Reliabilities of Consecutive-k Systems 45

can verify H(i)≥H(j) since d is bounded by n.
Once H(i)≥H(j) is verified, then the previously
impossible-to-verify relation IL(i)≥ IL(j) is also
verified. Chang et al. [43] also proved that:

Theorem 28. H(k)≥H(i) for all i ≤ (n+ 1)/2.

3.4.2 Partial Birnbaum Importance

Chang et al. [45] proposed the half-line impor-
tance I h, which requires I h(i) > I h(j) only for
all p ≥ 1/2 for a comparison. They justified this
half-line condition by noting that, in most practi-
cal cases, p ≥ 1/2. For the consecutive-k-out-of-n
line, they were able to establish:

Theorem 29.

I h(1) < I h(2) < · · ·< I h(k − 1)

< I h(k + 1) < I h(i) < I h(2k) < I h(k)

for all i > k + 1 and i �= 2k.

The Birnbaum importance for the special case
p = 1/2 is known as the “structure importance”
in the literature. Chang et al. [30] suggested
calling it the “combinatorial importance” so that
the term “structure importance” can be reserved
for general use (there are other importance
indices depending on structure only). Denote the
combinatorial importance by IC(i); Lin et al.
[47] found an interesting correspondence between
IC(i) and fk,n, the Fibonacci numbers of order k,
which is defined by

fk,n =

0 if 1≤ n≤ k − 1

1 if n= k
k∑

i=1

fk,n−i if n≥ k + 1

They proved:

Theorem 30. For p = 1/2,

RL(n)= (1/2)nfk,n+k+1.

Thus fk,n+k+1 can be interpreted as the
number of working consecutive-k-out-of-n lines.

Theorem 31.

IC(i)= (1/2)n−1(2fk,i+kfk,n−i+k−1 − fk,n+k+1).

Chang and Hwang [48] considered the case that
p tends to zero. The importance index, denoted by
IR(i), actually measures the number of minimum
pathsets (a subset of components whose collective
successes induce a system success) containing
component i. Since, in practice, p is not likely
to approach zero, IR(i) is not of interest per se.
However, it could be a useful tool for the
comparison of Birnbaum importance. While it
is not easy to establish I (i) > I (j), sometimes
it is also difficult to establish the falsity of
it. By proving IR(i) < IR(j), we automatically
establish the above falsity. Further, if we have
proved I h(i) > I h(j), then proving IR(i)≥ IR(j)

would add a lot of credibility to the conjecture
that I (i) > I (j) since IR(i)≥ IR(j) provides
evidence from the other end of the p spectrum.

Represent n as n= qk + r with 0≤ r < k.
Then q is the minimum number of working
components for a pathset to exist. Let psq(k, n)
denote the number of pathsets with q working
components and let psi,q (k, n) the number of
those containing component i. Chang and Hwang
[48] proved:

Theorem 32.

psq(k, n)=
(
q + k − r − 1
k − r − 1

)
Represent i as i = uk + v with 0 < v ≤ k:

Theorem 33.

psi,q (k, n)=
(
u+ k − v

k − v

) (
q − u+ v − r − 2

v − r − 1

)
Theorem 34. IR(uk + v) ≤ IR[(u+ 1)k + v] for
1≤ v ≤ (k + 1)/2 and (u+ 1)k + v ≤ (n+ 1)/2.

IR(uk + 1) < IR(uk) for uk + 1≤ (n+ 1)/2

IR(uk + 1)≤ IR(j) for uk + 1≤ j ≤ (n+ 1/2)

3.4.3 The Optimal Component
Replacement

Consider the problem: “When a new extra
component is given to replace a component in

46 System Reliability and Optimization

a linear consecutive-k-out-of-n:F system in order
to raise the system reliability, which component
should be replaced such that the resulting system
reliability is maximized?” When a component is
replaced, the change of system reliability is not
only dependent on the working probabilities of
the removed component and the new component,
but also on the working probabilities of all other
components. A straightforward algorithm is first
re-computing the resulting system reliabilities of
all possible replacements and then selecting the
best position to replace a component. Even using
the most efficient O(n) reliability algorithm
for linear consecutive-k-out-of-n:F systems, the
computational complexity of the straightforward
component replacement algorithm is O(n2).

Chang et al. [49] proposed an O(n)-time al-
gorithm for the component replacement problem
based on the Birnbaum importance. They first
observed the following results.

Lemma 2. IL(i) is independent of pi .

Let the reliability of the new extra component
be p∗. Chang et al. [49] derived that:

Theorem 35.

RL(p1, . . . , pi−1, p
∗, pi+1, . . . , pn)

− RL(p1, . . . , pi−1, pi , pi+1, . . . , pn)

= IL(i)(p
∗ − pi)

They provided an algorithm to find the optimal
location where the component should be replaced.
The algorithm is quoted as follows.

Algorithm 1. (Linear component replacement
algorithm)

1. Compute RL(1, 1), RL(1, 2), . . . , RL(1, n)
in O(n) time.

2. Compute RL(n, n), RL(n− 1, n), . . . , RL

(2, n) in O(n) time.
3. Compute IL(i) for i = 1, 2, . . . , n, with the

equation given in Theorem 14.
4. Compute IL(i)(p∗ − pi) for i = 1, 2, . . . , n.
5. Choose the i in step 4 with the largest

IL(i)(p
∗ − pi) value. Then replace com-

ponent i with the new extra component.

The reliability of the resulting system is
IL(i)(p

∗ − pi)+ RL(1, n).

In Algorithm 1, each of the five steps takes at most
O(n) time. Therefore, the total computational
complexity is O(n).

Consider the component replacement problem
for the circular system. As with the linear case, a
straightforward algorithm can be designed as first
re-computing the resulting system reliabilities of
all possible replacements and then selecting the
best position to replace a component. However,
even using the most efficient O(kn) reliability
algorithm for the circular systems, the computa-
tional complexity of the straightforward algorithm
is still O(kn2). Chang et al. [49] also proposed a
similar algorithm for the circular component re-
placement problem. The computational complex-
ity is O(n2).

If the circular consecutive-k-out-of-n:F system
contains some components with zero working
probabilities such that the whole system reliability
is zero, then the computational complexity of the
circular component replacement algorithm can be
further improved. The following theorem for the
special case was given by Chang et al. [49].

Theorem 36. If RC(1, n)= 0 and there is an i

in {1, 2, . . . , n} such that IC(i) > 0, then the
following three conditions must be satisfied.

1. C(1, n) has just one run of at least k

consecutive components, where the working
probability of each component is 0.

2. The run that mentioned in condition 1
contains fewer than 2k components.

3. If the run that mentioned in condition 1
contains components 1, 2, . . . , m, where k ≤
m< 2k, then:

IC(i) > 0

for all i ∈ {m− k + 1, m− k + 2, . . . , k},
IC(i)= 0

for all i /∈ {m− k + 1, m− k + 2, . . . , k}.
Based on Theorem 36, the circular compo-

nent replacement algorithm can be modified as
follows.

Reliabilities of Consecutive-k Systems 47

Algorithm 2. (Modified circular component re-
placement algorithm for RC(1, n)= 0)

1. Find the largest run of consecutive compo-
nents consisting of components with 0 work-
ing probabilities 0. Then re-index the compo-
nents such that this run contains components
1, 2, . . . , m (m≥ k).

2. If m≥ 2k, then any replacement is optimal.
STOP.

3. Compute RL(i + 1, n+ i − 1) for i ∈ {m−
k + 1, m− k + 2, . . . , k}.

4. Choose the i in step 3 with the largest RL(i +
1, n+ i − 1) value. Then replace component i
with the new extra component. The reliability
of the resulting system is RL(i + 1, n+ i −
1)p∗. STOP.

In the modified algorithm, step 1 takes O(n)

time, step 2 takes O(1) time, step 3 takes at most
O(kn) time, and step 4 takes at most O(n) time.
The total computational complexity is thus O(kn).

3.5 The Weighted-consecutive-
k-out-of-n System
The weighted-consecutive-k-out-of-n F system
was first proposed by Wu and Chen [5].
A weighted-consecutive-k-out-of-n F system
consists of n components; each component has its
own working probability and a positive integer
weight such that the whole system fails if and
only if the total weight of some consecutive
failed components is at least k. The ordinary
consecutive-k-out-of-n F system is a special case
with all weights set to 1. Similar to the original
consecutive-k-out-of-n F system, this weighted
system also has two types: the linear and the
circular.

3.5.1 The Linear Weighted-
consecutive-k-out-of-n System

For the linear weighted-consecutive-k-out-of-n
system, Wu and Chen [5] gave an O(n)-time
algorithm to compute the set of minimal cutsets.

The algorithm scans the system from node 1 and
adds the weights one by one of nodes 1, 2, . . .
until a sum K ≥ k is found, say at node j .
Then subtract from K the weights one by one
of nodes 1, 2, . . . until a further subtraction
would reduce K to below k. Suppose i is the
new beginning node. Then (i, i + 1, . . . , j) is
the first minimal cutset. Repeating this procedure
by starting from node i + 1, we can find other
minimal cutsets.

Once all minimal cutsets are found, the system
reliability can be computed easily. Wu and Chen
[5] gave the following results, where m is the total
number of cutsets, F(1, n)= 1− R(1, n), Beg(i)
is the index of the first component of ith cutset,
and End(i) is the index of the last component of
ith cutset.

Theorem 37. In a linear weighted-consecutive-k-
out-of-n system:

1. F(1, i)= 0, for i = 0, 1, . . . , End(1)− 1;
2. F(1, i) = F(1, End(j)), for i = End(j),

End(j)+ 1, . . . , End(j + 1)− 1 and j = 1,
2, . . . , m− 1;

3. F(1, i) = F(1, End(m)), for i = End(m),

End(m)+ 1, . . . , n;
4. F(1, End(j))− FLW(1, End(j − 1))

=
Beg(j)−Beg(j−1)−1∑

i=0

R[1, Beg(j − 1)+ i − 1]

× pBeg(j−1)+i
(End(j)∏

t=Beg(j−1)+i−1

qt

)
for j = 2, 3, . . . , m

Based on the recursive equations given in
Theorem 37, the system reliability can be com-
puted in O(n) time.

3.5.2 The Circular Weighted-
consecutive-k-out-of-n System

For the circular weighted-consecutive-k-out-of-n
system, Wu and Chen [5] also gave an O(n ·
min{n, k})-time reliability algorithm. They con-
sider the system in two cases: n≥ k and n < k, and

48 System Reliability and Optimization

proposed the following equations, where wi is the
weight of component i.

Theorem 38. In a circular weighted-consecutive-k-
out-of-n system where n≥ k

R(1, n)=
k∑

s=1

n∑
l=n−k+s

δ(s, l)

where

δ(s, l)

=

(s−1∏
i=1

q1

)
psR(s + 1, l − 1)pl

n∏
i=l+1

qi

if
s−1∑
i=1

wi +
n∑

j=l+1

wj < k

0 otherwise

Theorem 39. In a circular weighted-consecutive-k-
out-of-n system where n < k

R(1, n)=
n−2∑
s=1

n∑
l=s+2

δ(s, l)

where

δ(s, l)

=

(s−1∏
i=1

qi

)
psR(s + 1, l − 1)pl

n∏
i=l+1

qi

if
s−1∑
i=1

w1 +
n∑

j=l+1

wj < k

0 otherwise

By combining the equations in both cases, Wu
and Chen [5] claimed that the reliability of the
circular weighted system can be computed in
O(n ·min{n, k})-time.

Though Wu and Chen’s algorithm seems to
work well, Chang et al. [4] found that it is
incomplete. In some special circular weighted
systems, Wu and Chen’s algorithm will result in
wrong reliabilities. Chang et al. [4] also gave an
O(T n)-time reliability algorithm for the circular
weighted system, where

T =max

{
i

∣∣∣∣ i−1∑
j=1

wj < k, 1≤ i ≤ n+ 1

}

The basis of Chang et al.’s algorithm [4] is
an equation that expresses the reliability of the
circular weighted system in reliability terms of
linear weighted systems. We describe the equation
below.

Theorem 40. In a circular weighted-consecutive-k-
out-of-n system

RC(1, n)

=

1 n < T
T∑
i=1

(i−1∏
j=1

qj

)
piRL(i + 1, n+ i − 1)

n≥ T

where

T =max

{
i

∣∣∣∣ i−1∑
j=1

wj < k, 1≤ i ≤ n+ 1

}
In order to analyze the computational complex-

ity, Chang et al. [4] also gave an upper bound of T .

Theorem 41. T ≤min{n, �(k−wmax)/wmin + 1},
where wmax and wmin are the maximum and
minimum weights of all components, respectively.

Chang et al.’s [4] reliability algorithm is
described as follows.

Algorithm 3. (CCH)

1. Compute T .
2. If T > n, then RC(1, n)= 1. STOP.
3. Compute RL(i + 1, n+ i − 1), for i = 1, 2,

. . . , T .
4. Compute RC(1, n) with the equation given in

Theorem 40. STOP.

In this algorithm, the bottleneck step is
step 3, which costs O(T n) time. Therefore, the
total computational complexity of this reliability
algorithm is O(T n).

3.6 Window Systems
A sequence of k consecutive nodes is called a
k-window. In various problems, the definition of

Reliabilities of Consecutive-k Systems 49

a “bad” window varies. In this section, the system
failure is defined in terms of windows. It could be
that the system fails if it contains a bad window.
But we can also define a system to be failed if every
window is bad, or, equivalently, the system works
if it contains a good window. In general, we can
define a system to be failed if it contains b bad
windows, called a b-fold-window system.

The window systems have many practical ap-
plications. For example, consider a linear flow
network consisting of n+ 2 nodes (node 0 to
node n+ 1) and directed links from node i to
node j (0≤ i < j ≤ n+ 1, j − i ≤ k). In this flow
network, the source (node 0), the sink (node n+
1), and all links are infallible, but the intermediate
nodes (nodes 1, 2, . . . , n) may fail. When an in-
termediate node fails, no flow can go through it;
when it works, the flow capacity is unity. Then,
the probability that the maximum flow from the
source to the sink is at least f is equal to the
probability that the intermediate nodes do not
contain a bad k-window, where a bad window is
a window that contains at least k − f + 1 failed
nodes. Such a flow network can be realized as a
circuit switching wireless telecommunication net-
work, where the communication between nodes
has a distance limitation and each intermediate
node has an identical bandwidth limitation.

3.6.1 The f -within-consecutive-k-
out-of-n System

An f -within-consecutive-k-out-of-n system, or
abbreviated as an (f, k, n) system, is a linear or
circular system consisting of n components that
fails if and only if there exist some k consecutive
components (a k-window) containing at least f

failed components.
The problem of computing the reliability of an

(f, k, n) system can be viewed as the binomial
version of the generalized birthday problem
studied by Saperstein [50]. The generalized
birthday problem is described as follows:

Given a random assignment of w 1’s
and n− w 0’s, what is the probability
that there is no set of k consecutive

bits in the arrangement containing f

or more 1’s?

Naus [51] first studied the case k = 2.
Saperstein considered the binomial version
of the generalized birthday problem in which each
bit has a probability p to be 0 and a probability
q to be 1. By interpreting each 0 as a working
component and each 1 as a failed component,
this problem is equivalent to the problem of
computing the reliability of the (f, k, n) system.

Hwang and Wright [9] proposed an O(23kn)-
time reliability algorithm for the (f, k, n) system.
Their algorithm is implemented using Griffith’s
[14] Markov chain approach. Let w(l) denote the
number of 1’s in a binary k-vector l (that is,
the weight of l). They define the state space of
the Markov chain {Y (t) : t ≥ 0} as

S = {l ∈ {0, 1}k : 0 <w(l) < f } ∪ {s1} ∪ {sN }
Therefore

N = |S| =
f−1∑
i=0

(
k

i

)
+ 1=O(2k)

And the Markov chain {Y (t)} is defined as follows.

1. The k-vector l is encoded from the last k

components of Lf,k(1, t) where a working
component is encoded as 0 and a failed
component is encoded as 1. If t < k, attach
leading 0’s to l.

2. Y (t)= s1 if w(l)= 0.
3. Y (t)= l if 0 <w(l) < f .
4. Y (t)= sN if w(l) ≥ f .

The transition matrix for {Y (t) : t ≥ 0} is
t,

an N × N matrix. Each (except the last) row of

t contains two nonzero elements: one is pt ,
and the other is qt . The last row of
t only
contains a non-zero element, which is 1, in the last
column. With the transition matrix
t , the system
reliability can be computed with the following
equation:

Rf,k(1, n)= π0

(n∏
t=1

t

)
UT

where
π0 = (1, 0, . . . , 0)1×N

50 System Reliability and Optimization

and

U= (1, . . . , 1, 0)1×N

Since a multiplication of two N × N matrices
costsO(N3) time (or less by Strassen’s algorithm),
the total computational complexity of Hwang
and Wright’s reliability algorithm is O(N3n)=
O(23kn).

Chang [8] proposed another reliability algo-
rithm for the (f, k, n) system, which is more ef-
ficient than the O(23kn) one. Their algorithm is a
Markov chain approach, but the Markov chain is
derived from an automaton with minimal number
of states. The automaton is a mathematical model
of a system, with discrete inputs and outputs.
The system can be in any one of a finite number
of internal configurations or “states”. The state of
a system summarizes the information concern-
ing past inputs that is needed to determine the
behavior of the system on subsequent inputs. In
computer science, the theory of automata is a
useful design tool for many finite state systems,
such as switching circuits, text editors, and lexical
analyzers. Chang [8] also employed the sparse ma-
trix data structure to speed up the computation of
reliabilities. Their method is described as follows.

Consider an f -within-consecutive-k-out-of-n
system. Every system state can be viewed as
a binary string where the ith bit is 1 if and
only if component i works. Chang [8] defined
M as the set of all strings corresponding to
working systems. Therefore, M̄ = {0, 1}∗ −M can
be expressed as

M̄ = (0+ 1)∗
[∑
x1,x2,...,xk∈{0,1}

x1+x2+···+xk≤k−f

x1x2 . . . xk

]
(0+ 1)∗

Based on automata theory, the minimal state
automaton accepting exactly the strings in M has
the following set of states Q. They labeled the
states with k-bit binary strings.

Q=Q0 ∪Q1 ∪ · · · ∪Qf

where

Q0 =
1 . . . 1︸ ︷︷ ︸

k−f
0 . . . 0︸ ︷︷ ︸

f

Q1 =

{
b1b2 . . . bk

∣∣∣∣ b1 = 1,
k∑

i=2

bi = k − f

}
Q2 =

{
b1b2 . . . bk

∣∣∣∣ b1 = b2 = 1, . . .

. . .

k∑
i=3

bi = k − f

}
. . .

Qf =
{
b1b2 . . . bk

∣∣∣∣ b1 = b2 = · · ·

= bf = 1,
k∑

i=f+1

bi = k − f

}

=
{

1 . . . 1︸ ︷︷ ︸
k

}
The only state in Qf is the initial state. The only
state in Q0 is the rejecting state; all other states
(including the initial state) are accepting states.
The state transition function δ :Q× {0, 1}→Q

is defined as:

δ(b1 . . . bk, 0)=

1 . . . 1︸ ︷︷ ︸
k−f

0 . . . 0︸ ︷︷ ︸
f

if
k∑

i=2

bi = k − f

b2 . . . bk0

otherwise

δ(b1 . . . bk, 1)=

1 . . . 1︸ ︷︷ ︸
k−f

0 . . . 0︸ ︷︷ ︸
f

if
k∑

i=1

bi = k − f

1 . . . 1︸ ︷︷ ︸
t−2

bt . . . bk1

otherwise,

where

t =min

{
x

∣∣∣∣ k∑
i=x

bi = k − f − 1

}

Reliabilities of Consecutive-k Systems 51

Thus, in the minimal state automaton

|Q| = 1+
(
k − 1

k − f

)
+
(
k − 2

k − f

)
+ · · ·

+
(
k − f

k − f

)
= 1+

(
k − 1

f − 1

)
+
(
k − 2

f − 2

)
+ · · ·

+
(
k − f

f − f

)
= 1+

(
k

f − 1

)
When this minimum state automaton is inter-
preted as a heterogeneous Markov chain, a reli-
ability algorithm can be derived easily. For con-
venience, they rewrote the states in Q such that
Q= {s1, s2, . . . , sN } where

s1 =
1, 1, . . . , 1︸ ︷︷ ︸

k

is the initial state and

SN =
1, . . . , 1︸ ︷︷ ︸

k−f
, 0, . . . , 0︸ ︷︷ ︸

f

is the only one failed state. When the working
probability of component i in the f -within-
consecutive-k-out-of-n system is pi , the transition
probability matrix of {Y (t)} is

t =
m1,1 · · · m1,N

...
...

mN,1 · · · mN,N

where

mi,j =

pt if i �= N, δ(si , 0)= sj

1− pt if i �= N, δ(si , 1)= sj

0 if i = N, j �=N

1 if i = N, j =N

Therefore, the reliability Rf,k(1, n) can be com-
puted as follows:

Rf,k(1, n)= π0

(n∏
t=1

t

)
UT

where
π0 = (1, 0, . . . , 0)1×N

and
U= (1, . . . , 1, 0)1×N.

The total computational complexity of Chang
et al.’s algorithm is O

((
k

f−1

)
n
)
, which is the most

efficient one so far.

3.6.2 The 2-within-consecutive-k-
out-of-n System

The 2-within-consecutive-k-out-of-n system, ab-
breviated as the (2, k, n) system, is a special
case of the f -within-consecutive-k-out-of-n sys-
tem. Most results obtained from the consecu-
tive system can be extended to the (2, k, n) sys-
tem. Let NS(d, f, k, n) denote the number of the
(f, k, n) system which works, S ∈ {L, C}, contain-
ing exactly d failed components. Naus [51] gave
the following result for f = 2.

Theorem 42.

NL(d, 2, k, n)=
(
n− (d − 1)(k − 1)

d

)
Sfaniakakis et al. [52] gave the following result for
the circular case:

Theorem 43.

NC(d, 2, k, n)= n

n− d(k − 1)

(
n− d(k − 1)

d

)
Thus, for the IID model and f = 2:

RL(n)=
n∑

d=0

(
n− (d − 1)(k − 1)

d

)
qdpn−d

RC(n)=
n∑

d=0

n

n− d(k − 1)

×
(
n− d(k − 1)

d

)
qdpn−d

Higashiyama et al. [53] gave a recursive
equation for the IND model:

52 System Reliability and Optimization

Theorem 44. For f = 2 and n≥ k:

RL(1, n)= pnRL(1, n− 1)

+ qn

(n−1∑
i=n−k+1

pi

)
RL(1, n− k)

They also gave a recursive equation for the IND
circular case:

Theorem 45. For f = 2:

RC(1, n)=
(n∏

i=n−k+2

pi

)
RL(1, n− k + 1)

+
k−1∑
i=1

qn−k+i+1

× RL(i + 1, n− 2k + i + 1)

×
(n−k+i∏

j=n−2k+i+2

pj

)(n+i∏
j=n−k+i+2

pj

)

3.6.3 The b-fold-window System

First consider the b-fold-non-overlapping-
consecutive system when a window is a
consecutive system and the system fails if
and only if there exist b non-overlapping bad
windows. Let Rb

L(1, n) be the reliability of such
a (linear) system. Papastavridis [54] gave the
following result. Based on this result, Rb

L(1, n) can
be computed in O(b2n) time.

Theorem 46.

Rb
L(1, n)= Rb

L(1, n− 1)

−
b∑

j=1

pn−jk
(jk∏

j=1

qn−jk+i
)

× [Rb−j
L (1, n− jk − 1)

− R
b−j+1
L (1, n− jk − 1)]

Alevizos et al. [55] gave a similar argument for
the circular system. With their equation, Rb

C(1, n)
can be computed in O(b3kn) time.

Theorem 47.

Rb
C(1, n)= pnR

b
L(1, n)+ qnR

b
C(1, n− 1)

−
b∑

j=1

jk∑
i=1

(n+i−1∏
l=n−jk+i

ql

)
× pn−jk+i−1pn+i
× [Rb−j

L (i + 1, n− jk + i − 2)

− R
b−j+1
L (i + 1, n− jk + i − 2)]

For an IID model, Papastavridis proved the
following results:

Theorem 48.

Rb
L(n)=

n∑
d=0

Nb
L(d, n, k)p

n−dqd

where

Nb
L(d, n, k)=

(
n− d + b

b

)
×
∑
i≥0

(−1)i
(
n− d + 1

i

)
×
(
n− k(i + b)

n− d

)
Theorem 49.

Rb
C(n)=

n∑
d=0

Nb
C(d, n, k)p

n−dqd

where

Nb
C(d, n, k)=

(
n− d + b − 1

b

)(
n− d

d

)
×
∑
i≥0

(−1)i
(
n− d + 1

i

)
×
(
n− k(i + b)

n− d

)
Windows are called isolated if there exists a

working component between any two windows.
Chang et al. [30] considered the case that the
system fails if and only if there are b isolated bad
windows. Let R(b) denote the system reliability.
Their results are summarized as follows:

Reliabilities of Consecutive-k Systems 53

Theorem 50.

R
(b)
L (1, n)= R

(b)
L (1, n− 1)−

(n∏
i=n−k+1

qi

)
pn−k

Theorem 51.

R
(b)
C (1, n)= pnR

(b)
L (1, n)+ qnR

(b)
C (1, n− 1)

−
n∑

i=n−k+1

{(i+k+1∏
j=i

qj

)
pi−1pi+k

× [R(b−1)
L (i + k + 1, i − 2)

− R
(b)
L (i + k + 1, i − 2)]

}
Based on these equations, the reliability

R
(b)
L (1, n) can be computed in O(bn) time, and

the reliability R
(b)
C (1, n) in O(bkn) time.

3.7 Network Systems
In the literature, a consecutive-k-out-of-n system
is a system consisting of n components arranged
in a sequence such that the system fails if and only
if some k consecutive components all fail. In many
practical applications, such as an oil pipeline or
a telecommunications system, the objective of the
system is to transmit something from the source
to the sink. For these cases, the system can be
represented by a network with n+ 2 nodes (nodes
0, 1, 2, . . . , n+ 1) and directed links from node i
to node j (0≤ i < j ≤ n+ 1, j − i ≤ k). We refer
to node 0 as the source and node n+ 1 as the
sink, and assume that they are infallible. Nodes 1
to n correspond to the n components. If some k

consecutive nodes all fail, then there exists no path
from the source to the sink. On the other hand,
if no k consecutive nodes all fail, then the path
starting from the source can always move forward
to a node until it lands at the sink. Therefore, the
system fails if and only if there exists no path from
the source to the sink.

The path interpretation of the consecutive-
k-out-of-n system brings about the notion of
links that connect adjacent pairs of nodes.
Therefore, one can study the link failure model

in which nodes always work but links can fail.
In many practical situations this could be the
more appropriate model. For example, nodes
could be some physical entities, like telephone
switching centers or airports, and the links are
routes interconnecting them. When a phone call
or a flight is blocked, it is usually due to the
non-availability of routes (wires busy or tickets
sold out) rather than a breakdown of hardware.
However, previous research suggested that the
reliability of the link failure system is much harder
to compute than that of the node failure system.
The network system is more general than the link
failure system and the node failure system, since
nodes and links can all fail.

3.7.1 The Linear Consecutive-2
Network System

Chen et al. [10, 56] first proposed the network
model for the consecutive-2-out-of-n line. They
assumed that the reliabilities of all nodes are all
equal to p. And p1 (p2) is the reliability of the
link from node i to node i + 1 (i + 2). Let R1(n)

denote the probability that node 0 has a working
path to node n+ 1. They gave a recursive equation
as follows:

R1(n)= p(1− q1q2)R1(n− 1)

+ pp2(1− pp1)R1(n− 2)

− p2q1p
2
2R1(n− 3)

from which a closed-form solution is obtained.

Theorem 52. For 0 < p(1− q1q2) < 1 we have:

R(n)= aαn+2 + bβn+2 + cγ n+2

where α, β, γ are the roots of

f (x)= x3 − p(1− q1q2)x2

− pp2(1− pp1)x + p2q1p
2
2

satisfying

1 > α > p(1 − q1q2) > b ≥ pp2q1

≥ 0 >−β > γ >−α >−1

54 System Reliability and Optimization

and

a = [pp2q1 − α]/[p(α − β)(γ − α)]> 0

b = [pp2q1 − β]/[p(β − γ)(α − β)]< 0

c = [pp2q1 − γ]/[p(γ − α)(β − γ)]< 0

Newton’s method can be employed to approx-
imate the three roots α, β, γ of f (x). Once the
roots are known, the reliability R1(n) can be com-
puted in another O(log n) time. However, the pre-
cision of the final value of R1(n) is usually worse
than that of recursively employing the equation
given in Theorem 52, which needs O(n) time.

Chen et al. [10] also compared the importance
of the three types of component (nodes, 1-
links, and 2-link) with respect to the system
reliability. Let r > s > t be three given reliabilities.
The question is how do we map {r, s, t} to
{p, p1, p2}. They found:

Theorem 53. R(n) is maximized by setting p = r ,
p1 = s and p2 = t .

3.7.2 The Linear Consecutive-k
Network System

Chen et al. [10] also claimed that their approach
can be extended to compute the reliability of the
consecutive-k-out-of-n network, but the details
are messy. Let M be a nonempty subset of the
first k nodes including node 0. They said one can
define:

RM(n)= Pr{a node in M has a path to the sink}
Then one can write 2k−1 recursive equations, one
for each M . The reliability of the consecutive-k-
out-of-n:F network is R{1}(n).

Chang et al. [11] proposed a new Markov
chain method and gave a closed-form expression
for the reliability of the consecutive-k-out-of-n
network system where each of the nodes and links
has its own reliability. In their algorithm, they
try to embed the consecutive-k-out-of-n network
into a Markov chain {Y (t) : t ≥ k} defined on the
state space S = {0, 1, 2, . . . , 2k − 1}. Then, they
showed that the reliability of the consecutive-k-
out-of-n network is equal to the probability that

Y (n+ 1) is odd. The Markov chain {Y (t) : t ≥ k}
was defined as follows.

Definition 1. {Y (t) : t ≥ k} is a Markov chain
defined on the state space S, where

S = {0, 1, 2, . . . , 2k − 1}
Define (x1x2 . . . xm)2 =∑m

i=1 2m−ixi . Initially:

Pr{Y (k)= 0} = Pr{(d1d2 . . . dk)2 = 0}
Pr{Y (k)= 1} = Pr{(d1d2 . . . dk)2 = 1}
Pr{Y (k)= 2} = Pr{(d1d2 . . . dk)2 = 2}
...

Pr{Y (k)= 2k − 1} = Pr{(d1d2 . . . dk)2 = 2k − 1}
The transition probability matrix of the Markov
chain {Y (t) : t ≥ k} is

t =

m0,0,t m0,1,t · · · m0,2k−1,t
m1,0,t m1,1,t · · · m1,2k−1,t

...
...

m2k−1,0,t m2k−1,1,t · · · m2k−1,2k−1,t

where, for 0≤ i ≤ 2k − 1, 0≤ j ≤ 2k − 1, k < t ≤
n+ 1

mi,j,t = Pr{Y (t)= j | Y (t − 1)= i}

=

1 if i = j = 0[
1−

∏
x:1≤x≤k,

(i mod 2x)≥2x−1

ql(t − x, t)

]
pn(t)

if j = (2i + 1) mod (2k)

1−
[

1−
∏

x:1≤x≤k,
(i mod 2x)≥2x−1

ql(t − x, t)

]
pn(t)

if j = (2i) mod (2k)

0 otherwise

Theorem 54.

RN(k, n)= Pr{Y (n+ 1) is odd}

= πk

(n+1∏
t=k+1

t

)
U

Reliabilities of Consecutive-k Systems 55

where

πk = [Pr{Y (k)= 0}, Pr{Y (k)= 1},
. . . , Pr{Y (k)= 2k − 1}]

U= [0, 1, 0, 1, . . . , 0, 1]T

Using a straightforward algorithm to compute
the initial probabilities, the computational com-
plexity for πk is at least (2k(k+3)/2). In order
to simplify the computation further, Chang et al.
[11] transformed the network system into an ex-
tended network system by adding k − 1 dummy
nodes before node 0. The reliability of the ex-
tended consecutive-k-out-of-n:F network was de-
fined as the probability that there is a working path
from “node 0” to node n+ 1. Therefore, dummy
nodes and their related links cannot contribute
to a working path from node 0 to node n+ 1.
The reliability of the extended consecutive-k-out-
of-n network is identical to that of the original
consecutive-k-out-of-n network.

When computing the reliability of the ex-
tended consecutive-k-out-of-n:F network, previ-
ous definitions must be modified. In Definition 1,
{Y ′(t)} = {Y (t) : t ≥ 0} can be defined in a similar
way except that
t is defined for 0 < t ≤ n+ 1 and
initially

Pr{Y (0)= 0} = Pr{(d−k+1d−k+2 . . . d0)2 = 0}
Pr{Y (0)= 1} = Pr{(d−k+1d−k+2 . . . d0)2 = 1}
Pr{Y (0)= 2} = Pr{(d−k+1d−k+2 . . . d0)2 = 2}
...

Pr{Y (0)= 2k − 1}
= Pr{(d−k+1d−k+2 . . . d0)2 = 2k − 1}

Furthermore, in the extended consecutive-k-out-
of-n:F network, one can let

pn(i)= 0 for − (k − 1)≤ i < 0

pl(i, j)= 0 for − (k − 1)≤ i < 0,

0 < j − i ≤ k

Again, the extended consecutive-k-out-of-n:F net-
work was embedded into the Markov chain

{Y ′(t)} = {Y (t) : t ≥ 0}. Considering the nodes
−k + 1,−k + 2, . . . ,−1, it is true that they al-
ways fail and there is no working path from
node 0 to them. Thus the binary number
(d−k+1d−k+2 . . . d0)2 is always equal to one.

Let

π0 = [Pr{Y (0)= 0}, Pr{Y (0)= 1}, . . . ,
Pr{Y (0)= 2k − 1}]

= [0, 1, 0, 0, . . . , 0]
The system reliability can be computed with

Rn(k, n)= π0

(n+1∏
t=1

t

)
U

Chang et al.’s [11] reliability algorithm is de-
scribed as follows.

Algorithm 4.

1. π← π0, t← 1.
2. Construct
t in a sparse matrix data struc-

ture.
3. π← π
t .

4. If t < n+ 1 then
t← t + 1,
go to Step 2.

5. Return πU . STOP.

With the efficient sparse matrix data structure,
this algorithm can compute RN(k, n) in O(2kn)
time. This is very efficient, since in most practical
situations where n is large and k is small, the time
complexity becomes O(n).

3.7.3 The Linear Consecutive-k Flow
Network System

The linear consecutive-k flow network system, first
proposed by Chang [8], was modified from the
network system. The structure of the flow network
system is similar to that of the network system.
In the flow network, the source (node 0), the sink
(node n+ 1), and all links are infallible, but the
intermediate nodes (nodes 1, 2, . . . , n) may fail.
When an intermediate node fails, no flow can go
through it; when it works, the flow capacity is
unity.

56 System Reliability and Optimization

The flow network can be realized as a circuit
switching wireless telecommunications network,
where the communication between nodes has
a distance limitation and each intermediate
node has an identical bandwidth limitation.
Chang [8] defined the f -flow-reliability, denoted
as RFN(f, k, n), as the probability that the
maximum flow from the source to the sink is at
least f . The maximum flow from the source to the
sink is f if and only if there are at most f node-
disjoint paths from the source to the sink.

RFN(f, k, n)= Pr{The maximum flow from

node 0 to node n+ 1 is at least f }

Then, they proved the following lemma:

Lemma 3. For 1≤ f ≤ k, if and only if there is
no k consecutive intermediate nodes containing at
least k − f + 1 failed nodes, the maximum flow
from node 0 to node n+ 1 is at least f .

Based on Lemma 3, the following equation
holds immediately:

Theorem 55.

RFN(f, k, n)= Pr{There are no k consecutive

intermediate nodes containing

at least k − f + 1 failed nodes}
= Rf−k+1,k(n)

That is, the f -flow-reliability of the
consecutive-k-out-of-n:F flow network is equal
to the reliability of the (k − f + 1)-within-
consecutive-k-out-of-n:F system. Thus, by
substituting f by k − f + 1, the reliability
algorithm for the f -within-consecutive-k-
out-of-n system can be used to compute
the f -flow-reliability of the consecutive-
k-out-of-n flow network system. The total
computational complexity for RFN(f, k, n) is
O
((

k
k−f+1−1

)
n
)=O

((
k
f

)
n
)
.

Furthermore, if the mission is to compute the
probability distribution of the maximum flow
(from node 0 to node n+ 1), the following

equations can be used:

Pr{the maximum flow= 0} = 1− RFN(1, k, n)

Pr{the maximum flow= 1}
= RFN(1, k, n)− RFN(2, k, n)

Pr{the maximum flow= 2}
= RFN(2, k, n)− RFN(3, k, n)

...

Pr{the maximum flow= k − 1}
= RFN(k − 1, k, n)− RFN(k, k, n)

Pr{the maximum flow= k} = RFN(k, k, n)

Or equivalently:

Pr{the maximum flow= 0} = 1− Rk(n)

Pr{the maximum flow= 1}
= Rk(n)− Rf,k(k − 1, k, n)

Pr{the maximum flow= 2}
= Rf,k(k − 1, k, n)− Rf,k(k − 2, k, n)

...

Pr{the maximum flow= k − 1}

= Rf,k(2, k, n)−
n∏

i=1

pi

Pr{the maximum flow= k} =
n∏

i=1

pi

Another topic that relates to the flow network
system is to find the route of the maximum flow.
Chang [8] proposed an on-line routing algorithm
to route the maximum flow. In executing their
routing algorithm, each working intermediate
node will dynamically choose a proper flow route
through itself in order to maximize the total flow
from the source to the sink.

The on-line routing algorithm is described
in Algorithm 6. Note that for each i, 1≤ i ≤ n,
Algorithm 6 is periodically executed on node i.
Algorithm 5 is a subroutine called by the main
procedure in Algorithm 5.

Reliabilities of Consecutive-k Systems 57

Algorithm 5. (Algorithm_Mark(i))

{ if (Ind(i) ≤ k) then
Mark(i)← Ind(i);

else
{ for j ← 1 to k do temp(j)← 0;

for j ← 1 to k do
{ (x, y)← (Ind(i−), Mark(i − j));

// Get messages from node i − j .
// If node i − j fails (timeout), skip this iteration.
if (temp(y)= 0) then temp(y)← x;

}
x← n;
for j ← 1 to k do

if (temp(j) > 0 and temp(j) < x) then
{ x← temp(j);

Mark(i)← j ;
}

}
}

Algorithm 6. (Algorithm_Route(i))

{ call Algorithm_Mark(i);
if (Ind(i) ≤ k) then

receive a unity flow from node 0;
else
{ for j ← 1 to k do

if (Mark(i)=Mark(i − j)) then break;
receive a unity flow from node i − j ;

}
}

The computational complexity of the routing
algorithm is O(k), which is optimal, since it is
necessary for each node to collect messages from
its k predecessor nodes in order to maximize the
total flow.

3.8 Conclusion
Owing to a limitation of 10,000 words for this
survey, we have to leave out topics so that
we can do justice to cover some other more
popular topics. Among others, we leave out the
following:

The lifetime distribution model. Component
i has a lifetime distribution fi(t); namely, the
probability that i is still working at time t .
Note that, at a given time t , fi(t) can be interpreted
as pi , the parameter in the static model we study.
Hence, our model studies the availability of the
system at any time t . However, there are problems
unique to the lifetime model, like mean time
to failure, the increasing failure rate property,

and estimation of parameters in the lifetime
distribution.

The dependence model. The failures among
components are dependent. This dependence
could be due to batch production or common
causes of failure. Typically, Markov chains are used
to study this model.

The consecutively connected systems. The
reachability parameter k of a node is no longer
constant. It is assumed that node i can reach the
next ki nodes. More generally, it is assumed that
the nodes are multi-state nodes and node i has
probability pij to be in state (i, j), which allows it
to reach the next j nodes.

The multi-failure models. In one model, a
component has two failure modes: open-circuit
and short-circuit. Consequently, the system also
has two failure modes: consecutive k open-
circuits and consecutive r short-circuits. In
another model, the system fails if either some
d components fail, or some k (<d) consecutive
components all fail.

The redundancy model. Suppose there are many
redundant components, how do we allocate them
to the n positions in a consecutive-k system?
Though Birnbaum importance does provide some
guideline, it has only a figure-of-merit value,
and there are very few Birnbaum importance
comparisons. More definite answers have been
obtained by combinatorial analysis.

The 2-dimension system. Components are ar-
ranged in an m× n rectangle and the rectangle
is declared failed if there exists an r × s subrect-
angle consisting of all failed components. It is
surprisingly difficult to write down efficient re-
cursive equations to compute the reliability of the
2-dimension system.

The graph model. The components are nodes in
a graph, and the system fails if and only if there
exist two failed adjacent nodes. Computing the
reliability is possible only for some special classes
of graphs. A theory of the invariant consecutive-2
graph has been developed.

We refer the reader to the recent book by Chang
et al. [30], which covers the above topics and
also gives more details on the topics we covered
here.

58 System Reliability and Optimization

References
[1] Kontoleon JM. Reliability determination of r-successive-

out-of-n:F system. IEEE Trans Reliab 1980;R-29:437.
[2] Chiang DT, Niu SC. Reliability of consecutive-k-out-of-

n:F system. IEEE Trans Reliab 1981;R-30:87–9.
[3] Derman C, Lieberman GJ, Ross SM. On the consecutive-

k-out-of-n:F system. IEEE Trans Reliab 1982;R-31:57–63.
[4] Chang JC, Chen RJ, Hwang FK. A fast reliability

algorithm for the circular consecutive-weighted-k-out-
of-n:F system. IEEE Trans Reliab 1998;47:472–4.

[5] Wu JS, Chen RJ. Efficient algorithms for k-out-of-n and
consecutive-weighted-k-out-of-n:F system. IEEE Trans
Reliab 1994;43:650–5.

[6] Chang GJ, Cui L, Hwang FK. Reliability for (n, f, k)

systems. Stat Prob Lett 1999;43:237–42.
[7] Chang JC, Chen RJ, Hwang FK. Faster algorithms to

compute reliabilities of the (n, f, k) systems. Preprint
2000.

[8] Chang JC. Reliability algorithms for consecutive-k
systems. PhD Thesis, Department of Computer Science
and Information Engineering, National Chiao Tung
University, December 2000.

[9] Hwang FK, Wright PE. An O(n log n) algorithm for the
generalized birthday problem. Comput Stat Data Anal
1997;23:443–51.

[10] Chen RW, Hwang FK, Li WC. Consecutive-2-out-of-n:F
systems with node and link failures. IEEE Trans Reliab
1993;42:497–502.

[11] Chang JC, Chen RJ, Hwang FK. An efficient algorithm for
the reliability of consecutive-k − n networks. J Inform Sci
Eng 2002; in press.

[12] Koutras MV. Consecutive-k,r-out-of-n:DFM systems.
Microelectron Reliab 1997;37:597–603.

[13] Griffith WS, Govindarajulu Z. Consecutive-k-out-of-
n failure systems: reliability, availability, component
importance and multi state extensions. Am J Math Manag
Sci 1985;5:125–60.

[14] Griffith WS. On consecutive k-out-of-n failure systems
and their generalizations. In: Basu AP, editor. Reliability
and quality control. Amsterdam: Elsevier Science; 1986.
p.157–65.

[15] Chao MT, Lin GD. Economical design of large
consecutive-k-out-of-n:F systems. IEEE Trans Reliab
1984;R-33:411–3.

[16] Fu JC. Reliability of consecutive-k-out-of-n:F systems
with (k − 1)-step Markov dependence. IEEE Trans Reliab
1986;R-35:602–6.

[17] Shanthikumar JG. Recursive algorithm to evaluate the
reliability of a consecutive-k-out-of-n:F system. IEEE
Trans Reliab 1982;R-31:442–3.

[18] Hwang FK. Fast solutions for consecutive-k-out-of-n:F
system. IEEE Trans Reliab 1982;R-31:447–8.

[19] Wu JS, Chen RJ. Efficient algorithm for reliability of
a circular consecutive-k-out-of-n:F system. IEEE Trans
Reliab 1993;42:163–4.

[20] Wu JS, Chen RJ. An O(kn) algorithm for a circular
consecutive-k-out-of-n:F system. IEEE Trans Reliab
1992;41:303–5.

[21] Antonopoulou I, Papastavridis S. Fast recursive algo-
rithms to evaluate the reliability of a circular consecutive-
k-out-of-n:F system. IEEE Trans Reliab 1987;R-36:83–4.

[22] Hwang FK. An O(kn)-time algorithm for computing the
reliability of a circular consecutive-k-out-of-n:F system.
IEEE Trans Reliab 1993;42:161–2.

[23] Fu JC, Hu B. On reliability of a large consecutive-k-out-of-
n:F system with (k − 1)-step Markov dependence. IEEE
Trans Reliab 1987;R-36:75–7.

[24] Koutras MV. On a Markov approach for the study of
reliability structures. J Appl Prob 1996;33:357–67.

[25] Hwang FK, Wright PE. An O(k3 log(n/k)) algorithm for
the consecutive-k-out-of-n:F system. IEEE Trans Reliab
1995;44:128–31.

[26] Fu JC. Reliability of a large consecutive-k-out-of-n:F
system. IEEE Trans Reliab 1985;R-34:127–30.

[27] Chao MT, Fu JC. The reliability of a large series system
under Markov structure. Adv Appl Prob 1991;23:894–908.

[28] Du DZ, Hwang FK. Optimal consecutive-2-out-of-n:F
system. Math Oper Res 1986;11:187–91.

[29] Malon DM. Optimal consecutive-k-out-of-n:F com-
ponent sequencing. IEEE Trans Reliab 1985;R-34:46–9.

[30] Chang GJ, Cui L, Hwang FK. Reliabilities of consecutive-k
systems. Boston: Kluwer, 2000.

[31] Hwang FK, Pai CK. Sequential construction of a
consecutive-2 system. Inform Proc Lett 2002; in press.

[32] Hwang FK. Invariant permutations for consecutive-k-
out-of-n cycles. IEEE Trans Reliab 1989;R-38:65–7.

[33] Tong YL. Some new results on the reliability of circular
consecutive-k-out-of-n:F system. In: Basu AP, editor.
Reliability and quality control. Elsevier Science; 1986.
p.395–9.

[34] Tong YL. A rearrangement inequality for the longest run,
with an application to network reliability. J Appl Prob
1985;22:386–93.

[35] Kuo W, Zhang W, Zuo M. A consecutive-k-out-of-n:G
system: the mirror image of consecutive-k-out-of-n:F
system. IEEE Trans Reliab 1990;39:244–53.

[36] Zuo M, Kuo W. Design and performance analysis
of consecutive-k-out-of-n structure. Nav Res Logist
1990;37:203–30.

[37] Jalali A, Hawkes AG, Cui L, Hwang FK. The optimal
consecutive-k-out-of-n:G line for n≤ 2k. Preprint 1999.

[38] Du DZ, Hwang FK, Jung Y, Hgo HQ. Optimal consecutive-
k-out-of-(2k + 1):G cycle. J Global Opt 2001;19:51–60.

[39] Papastavridis S. The most important component in
a consecutive-k-out-of-n:F system. IEEE Trans Reliab
1987;R-36:266–8.

[40] Hwang FK, Cui LR, Chang JC, Lin WD. Comments on
“Reliability and component importance of a consecutive-
k-out-of-n system by Zuo”. Microelectron Reliab
2000;40:1061–3.

[41] Zuo MJ. Reliability and component importance of
a consecutive-k-out-of-n system. Microelectron Reliab
1993;33:243–58.

[42] Zakaria RS, David HA, Kuo W. The nonmonotonicity of
component importance measures in linear consecutive-
k-out-of-n systems. IIE Trans 1992;24:147–54.

Reliabilities of Consecutive-k Systems 59

[43] Chang GJ, Cui L, Hwang FK. New comparisons in
Birnbaum importance for the consecutive-k-out-of-n
system. Prob Eng Inform Sci 1999;13:187–92.

[44] Chang GJ, Hwang FK, Cui L. Corrigenda on New compar-
isons in Birnbaum importance for the consecutive-k-out-
of-n system. Prob Eng Inform Sci 2000;14:405.

[45] Chang HW, Chen RJ, Hwang FK. The structural
Birnbaum importance of consecutive-k system. J Combin
Opt 2002; in press.

[46] Hwang FK. A new index for component importance. Oper
Res Lett 2002; in press.

[47] Lin FH, Kuo W, Hwang FK. Structure importance
of consecutive-k-out-of-n systems. Oper Res Lett
1990;25:101–7.

[48] Chang HW, Hwang FK. Rare event component impor-
tance of the consecutive-k system. Nav Res Logist 2002;
in press.

[49] Chang JC, Chen RJ, Hwang FK. The Birnbaum impor-
tance and the optimal replacement for the consecutive-
k-out-of-n:F system. In: International Computer
Symposium: Workshop on Algorithms 1998; p.51–4.

[50] Saperstein B. The generalized birthday problem. J Am
Stat Assoc 1972;67:425–8.

[51] Naus J. An extension of the birthday problem. Am Stat
1968;22:27–9.

[52] Sfakianakis M, Kounias S, Hillaris A. Reliability of
a consecutive k-out-of-r-from-n:F system. IEEE Trans
Reliab 1992;41:442–7.

[53] Higashiyama Y, Ariyoshi H, Kraetzl M. Fast solutions
for consecutive-2-out-of-r-from-n:F system. IEICE Trans
Fundam Electron Commun Comput Sci 1995;E78A:680–
84.

[54] Papastavridis S. The number of failed components in
a consecutive-k-out-of-n:F system. IEEE Trans Reliab
1989;38:338–40.

[55] Alevizos PD, Papastavridis SG, Sypsas P. Reliability
of cyclic m-consecutive-k-out-of-n:F system, reliability,
quality control and risk assessment. In: Proceedings
IASTED Conference 1992.

[56] Chen RW, Hwang FK, Li WC. A reversible model
for consecutive-2-out-of-n:F systems with node and
link failures. Prob Eng Inform Sci 1994;8:189–200.

This page intentionally left blank

Multi-state System Reliability
Analysis and Optimization
(Universal Generating Function and
Genetic Algorithm Approach)

Ch
ap

te
r4

G. Levitin and A. Lisnianski

4.1 Introduction
4.1.1 Notation
4.2 Multi-state System Reliability Measures
4.3 Multi-state System Reliability Indices Evaluation Based on the Universal Generating

Function
4.4 Determination of u-function of Complex Multi-state System Using Composition

Operators
4.5 Importance and Sensitivity Analysis of Multi-state Systems
4.6 Multi-state System Structure Optimization Problems
4.6.1 Optimization Technique
4.6.1.1 Genetic Algorithm
4.6.1.2 Solution Representation and Decoding Procedure
4.6.2 Structure Optimization of Series-Parallel System with Capacity-based Performance

Measure
4.6.2.1 Problem Formulation
4.6.2.2 Solution Quality Evaluation
4.6.3 Structure Optimization of Multi-state System with Two Failure Modes
4.6.3.1 Problem Formulation
4.6.3.2 Solution Quality Evaluation
4.6.4 Structure Optimization for Multi-state System with Fixed Resource Requirements and

Unreliable Sources
4.6.4.1 Problem Formulation
4.6.4.2 Solution Quality Evaluation
4.6.4.3 The Output Performance Distribution of a System Containing Identical Elements in the

Main Producing Subsystem
4.6.4.4 The Output Performance Distribution of a System Containing Different Elements in the

Main Producing Subsystem
4.6.5 Other Problems of Multi-state System Optimization

4.1 Introduction

Modern large-scale technical systems are distin-
guished by their structural complexity. Many of
them can perform their task at several different
levels. In such cases, the system failure can lead

to decreased ability to perform the given task, but
not to complete failure.

In addition, each system element can also
perform its task with some different levels.
For example, the generating unit in power systems
has its nominal generating capacity, which is fully

61

62 System Reliability and Optimization

available if there are no failures. Some types of
failure can cause complete unit outage, whereas
other types of failure can cause a unit to work
with reduced capacity. When a system and its
components can have an arbitrary finite number
of different states (task performance levels) the
system is termed a multi-state system (MSS) [1].

The physical characteristics of the performance
depend on the physical nature of the system out-
come. Therefore, it is important to measure per-
formance rates of system components by their
contribution into the entire MSS output perfor-
mance. In the practical cases, one should deal
with various types of MSS corresponding to the
physical nature of MSS performance. For example,
in some applications the performance measure
is defined as productivity or capacity. Examples
of such MSSs are continuous materials or energy
transmission systems, power generation systems
[2, 3], etc. The main task of these systems is to
provide the desired throughput or transmission
capacity for continuous energy, material, or infor-
mation flow. The data processing speed can also
be considered as a performance measure [4,5] and
the main task of the system is to complete the task
within the desired time. Some other types of MSS
were considered by Gnedenko and Ushakov [6].

Much work in the field of reliability analysis
was devoted to the binary-state systems, where
only the complete failures are considered. The re-
liability analysis of an MSS is much more complex.

The MSS was introduced in the middle of the
1970s [7–10]. In these studies, the basic con-
cepts of MSS reliability were formulated, the
system structure function was defined for a
coherent MSS, and its properties were investi-
gated. Griffith [11] generalized the coherence def-
inition and studied three types of coherence.
The reliability importance was extended to MSSs
by Griffith [11] and Butler [12]. An asymptotic
approach to MSS reliability evaluation was devel-
oped by Koloworcki [13]. An engineering method
for MSS unavailability boundary points estimation
based on binary model extension was proposed by
Pourret et al. [14].

Practical methods of MSS reliability assessment
are based on three different approaches [15]:

the structure function approach, where Boolean
models are extended for the multi-valued case; the
stochastic process (mainly Markov) approach; and
Monte Carlo simulation. Obviously, the stochastic
process method can be applied only to relatively
small MSSs, because the number of system states
increases drastically with the increase in number
of system components. The structure function
approach is also extremely time consuming.
A Monte Carlo simulation model may be a
fairly true representation of the real world,
but the main disadvantage of the simulation
technique is the time and expense involved in
the development and execution of the model [15].
This is an especially important drawback when
the optimization problems are solved. In spite of
these limitations, the above-mentioned methods
are often used by practitioners, for example in the
field of power systems reliability analysis [2].

In real-world problems of MSS reliability anal-
ysis, the great number of system states that need
to be evaluated makes it difficult to use tradi-
tional techniques in various optimization prob-
lems. On the contrary, the universal generating
function (UGF) technique is fast enough to be
used in these problems. In addition, this technique
allows practitioners to find the entire MSS per-
formance distribution based on the performance
distributions of its components. An engineer can
find it by using the same procedures for MSSs
with different physical natures of performance.
In the following sections, the application of the
UGF to MSS reliability analysis and optimization
is considered.

To solve the wide range of reliability optimiza-
tion problems, one has to choose an optimization
tool that is robust and universal and that imposes
minimal requirements as to the knowledge of the
structure of the solution space. A genetic algo-
rithm (GA) has all these properties and can be
applied for optimizing vectors of binary and real
values, as well as for combinatorial optimization.
GAs have been proven to be effective optimization
tools in reliability engineering. The main areas of
GA implementation in this field are redundancy
allocation and structure optimization subject to
reliability constraints [16, 17], optimal design of

Multi-state System Reliability Analysis and Optimization 63

reliable network topology [18,19], optimization of
reliability analysis procedures [20], fault diagno-
sis [21], and maintenance optimization [22, 23].

4.1.1 Notation

We adopt the following notation herein:

Pr{e} probability of event e
G random output performance rate

of MSS
Gk output performance rate of MSS in

at state k
pk probability that a system is at

state k
W random system demand
Wm mth possible value of system

demand
qm Pr{W =Wm}
F(G, W) function representing the desired

relation between MSS performance
and demand

A MSS availability
EA stationary probability that MSS

meets a variable demand
EG expected MSS performance
EU expected MSS unsupplied demand
uj (z) u-function representing

performance distribution of
individual element

U(z) u-function representing
performance distribution of MSS

ω composition operator over
u-functions

ω function determining performance
rate for a group of elements

δx(U(z), F, W)

operator over MSS u-function
which determines Ex index,
x ∈ {A, G, U}

S MSS sensitivity index
g nominal performance rate of

individual MSS element
a availability of individual MSS element
h version of element chosen for MSS
r(n, h) number of elements of version h,

included to nth MSS component
R MSS configuration.

Figure 4.1. MSS reliability indices for failure criterion
F(G, W)=G−W < 0

4.2 Multi-state System
Reliability Measures

Consider a system consisting of n units. We sup-
pose that any system unit i can have ki states:
from complete failure up to perfect functioning.
The entire system has K different states as deter-
mined by the states of its units. Denote a MSS state
at instance t as Y (t) ∈ {1, 2, . . . , K}. The perfor-
mance rate Gk is associated with each state k ∈
{1, 2, . . . , K} and the system output performance
distribution (OPD) can be defined by two finite
vectors G and p= {pk(t)} = Pr{G(t)=Gk} (1≤
k ≤K), where G(t) is the random output perfor-
mance rate of the MSS and Pr{x} is a probability of
event x.

The MSS behavior is characterized by its evolu-
tion in the space of states. To characterize numer-
ically this evolution process, one has to determine
the MSS reliability indices. These indices can be
considered as extensions of the corresponding re-
liability indices for a binary-state system.

The MSS reliability measures were systemat-
ically studied by Aven [15] and Brunelle and
Kapur [24]. In this paper, we consider three mea-
sures that are most commonly used by engineers,
namely MSS availability, MSS expected perfor-
mance, and MSS expected unsupplied demand
(lost throughput) (Figure 4.1).

In order to define the MSS ability to perform
its task, we determine a function F(G, W)

representing the desired relation between the MSS

64 System Reliability and Optimization

random performance rate G and some specified
performance level (demand) W . The condition
F(G, W) < 0 is used as the criterion of an MSS
failure. Usually F(G, W)=G−W , which means
that states with system performance rate less than
the demand are interpreted as failure states.

MSS availability A(t) is the probability that
the MSS will be in the states with performance
level satisfying the condition F(G, W) ≥ 0 at a
specified moment t > 0, where the MSS initial
state at the instance t = 0 is j and F(Gj , W)

≥ 0. For large t , the initial state has practically no
influence on the availability. Therefore, the index
A is usually used for the steady-state case and
is called the stationary availability coefficient, or
simply the MSS availability. MSS availability is the
function of demand W . It may be defined as

A(W)=
∑

F(Gk,W)≥0

pk (4.1)

where pk is the steady-state probability of MSS
state k. The resulting sum is taken only for the
states satisfying the condition F(G, W) ≥ 0.

In practice, the system operation period T is
often partitioned into M intervals Tm (1≤m≤
M), and each Tm has its own demand level Wm.
The following generalization of the availability
index [4] is used in these cases:

EA(W, q)=
M∑

m=1

A(Wm)qm (4.2)

where W is the vector of possible demand levels
W= {W1, . . . , WM } and q= {q1, . . . , qM} is the
vector of steady-state probabilities of demand
levels:

qm = Tm

/ M∑
m=1

Tm (4.3)

For example, in power system reliability
analysis, the index (1− EA) is often used and
treated as loss of load probability [2]. The MSS
performance in this case is interpreted as power
system generating capacity.

The value of MSS expected performance could
be determined as

EG =
K∑
k=1

pkGk (4.4)

One can note that the expected MSS performance
does not depend on demand W . Examples of
the EG measure are the average productivity
(capacity) [2] or processing speed of the system.

When penalty expenses are proportional to
the unsupplied demand, the expected unsupplied
demand EU may be used as a measure of
system output performance. If in the case of
failure (F(Gk, W) < 0) the function −F(Gk, W)

expresses the amount of unsupplied demand at
state k, the index EU may be presented by the
following expression:

EU(W, q)=
M∑

m=1

K∑
k=1

pkqm max{−F(Gk, Wm), 0}
(4.5)

Examples of theEU measure are the unsupplied
power in power distribution systems and expected
output tardiness in information processing sys-
tems.

In the following section we consider MSS re-
liability assessment based on the MSS reliability
indices introduced above. The reliability assess-
ment methods presented are based on the UGF
technique.

4.3 Multi-state System
Reliability Indices Evaluation
Based on the Universal
Generating Function

Ushakov [25] introduced the UGF and formulated
its principles of application [26]. The most
systematical description of mathematical aspects
of the method can be found in [6], where the
method is referred to as a generalized generating
sequences approach. A brief overview of the
method with respect to its applications for MSS
reliability assessment was presented by Levitin
et al. [4]. The method was first applied to the real
system reliability assessment and optimization
in [27].

The UGF approach is based on definition
of a u-function of discrete random variables

Multi-state System Reliability Analysis and Optimization 65

and composition operators over u-functions.
The u-function of a variable X is defined as a
polynomial

u(z)=
K∑
k=1

pkz
Xk (4.6)

where the variable X has K possible values and
pk is the probability that X is equal to Xk .
The composition operators over u-functions of
different random variables are defined in order to
determine the probabilistic distribution for some
functions of these variables.

The UGF extends the widely known ordinary
moment generating function [6]. The essential
difference between the ordinary generating func-
tion and a UGF is that the latter allows one to
evaluate an OPD for a wide range of systems char-
acterized by different topology, different natures
of interaction among system elements, and the
different physical nature of elements’ performance
measures. This can be done by introducing dif-
ferent composition operators over UGF (the only
composition operator used with an ordinary mo-
ment generating function is the product of poly-
nomials). The UGF composition operators will be
defined in the following sections.

In our case, the UGF, represented by polyno-
mial U(z) can define an MSS OPD, i.e. it represents
all the possible states of the system (or element)
by relating the probabilities of each state pk to
performance Gk of the MSS in that state in the
following form:

U(t, z)=
K∑
k=1

pk(t)z
Gk (4.7)

Having an MSS OPD in the form of Equa-
tion 4.6, one can obtain the system availability for
the arbitrary t and W using the following operator
δA:

A(t, F, W) = δA[U(t, z), F, W]

= δA

(K∑
k=1

pk(t)z
Gk , F, W

)

=
K∑
k=1

pk(t)α[F(Gk, W)] (4.8)

where

α(x)=
{

1, x ≥ 0

0, x < 0
(4.9)

A multi-state stationary (steady state) availabil-
ity was introduced as Pr{G(t) ≥W } after enough
time had passed for this probability to become
constant. In the steady state, the distribution of
state probabilities is

pk = lim
t→∞ Pr{G(t)=Gk} G(t) ∈ {G1, . . . , GK }

(4.10)
The MSS stationary availability may be defined

according to Equation 4.1 when the demand is
constant or according to Equation 4.2 in the case
of variable demand. Thus, for the given MSS
OPD represented by polynomial U(z), the MSS
availability can be calculated as

EA(W, q)=
M∑

m=1

qmδA(U(z), F, Wm) (4.11)

The expected system output performance value
during the operating time (Figure 4.1) defined by
Equation 4.4 can be obtained for given U(z) using
the following δG operator:

EG = δG(U(z))= δG

(K∑
k=1

pkz
Gk

)
=

K∑
k=1

pkGk

(4.12)
In order to obtain the expected unsupplied

demand EU for the given U(z) and variable
demand according to Equation 4.5, the following
δU operator should be used:

EU(W, q)=
M∑

m=1

qmδU(U(z), F, Wm) (4.13)

where

EU(Wm)= δU(U(z), F, Wm)

= δU

(K∑
k=1

pkz
Gk , F, Wm

)

=
K∑
k=1

pk max(−F(Gk, Wm), 0) (4.14)

66 System Reliability and Optimization

Example 1. Consider, for example, two power
system generators with nominal capacity 100 MW
as two different MSSs. In the first generator some
types of failure require the capacity to be reduced
to 60 MW and some types lead to a complete
generator outage. In the second generator some
types of failure require the capacity to be
reduced to 80 MW, some types lead to capacity
reduction to 40 MW, and some types lead to a
complete generator outage. So, there are three
possible relative capacity levels that characterize
the performance of the first generator:

G1
1 = 0.0 G1

2 =
60

100
= 0.6 G1

3 =
100

100
= 1.0

and four relative capacity levels that characterize
the performance of the second one:

G2
1 = 0.0 G2

2 =
40

100
= 0.4

G2
3 =

80

100
= 0.8 G2

4 =
100

100
= 1.0

The corresponding steady-state probabilities
are the following:

p1
1 = 0.1 p1

2 = 0.6 p1
3 = 0.3

for the first generator and

p2
1 = 0.05 p2

2 = 0.25 p2
3 = 0.3 p2

4 = 0.4

for the second generator.
Now we find reliability indices for both MSSs

for W = 0.5 (required capacity level is 50 MW).

1. The MSS u-functions for the first and the
second generator respectively, according to
Equation 4.7, are as follows:

U1
MSS(z)= p1

1z
G1

1 + p1
2z

G1
2 + p1

3z
G1

3

= 0.1+ 0.6z0.6 + 0.3z1.0

U2
MSS(z)= p2

1z
G2

1 + p2
2z

G2
2 + p2

3z
G2

3 + p2
4z

G2
4

= 0.05+ 0.25z0.4 + 0.3z0.8 + 0.4z1.0

2. The MSS stationary availability (Equation 4.8)
is

E1
A(W)= A1(0.5)

=
∑

G1
k−W≥0

pk = 0.6+ 0.3= 0.9

E2
A(W)= A2(0.5)

=
∑

G2
k−W≥0

pk = 0.3+ 0.4= 0.7

3. The expected MSS performance (Equa-
tion 4.12) is

E1
G =

3∑
k=1

p1
kG

1
k

= 0.1× 0+ 0.6× 0.6+ 0.3× 1.0= 0.66

which means 66% of the nominal generating
capacity for the first generator, and

E2
G =

4∑
k=1

p2
kG

2
k

= 0.05× 0+ 0.25× 0.4+ 0.3× 0.8

+ 0.4× 1.0= 0.74

which means 74% of the nominal generating
capacity for the second generator.

4. The expected unsupplied demand (Equa-
tion 4.14) is

E1
U(W)=

∑
Gk−W<0

pk(W −Gk)

= 0.1× (0.5− 0.0)= 0.05

E2
U(W)=

∑
Gk−W<0

pk(W −Gk)

= 0.05× (0.5− 0.0)

+ 0.25× (0.5− 0.4)= 0.05

In this case, EU may be interpreted as
expected electric power unsupplied to consumers.
The absolute value of this unsupplied demand is
5 MW for both generators. Multiplying this index
by the considered system operating time, one can
obtain the expected unsupplied energy.

Note that since the reliability indices obtained
have different nature, they cannot be used
interchangeably. In Example 1, for instance, the
first generator performs better than the second

Multi-state System Reliability Analysis and Optimization 67

one when availability is considered (E1
A(0.5) >

E2
A(0.5)), the second generator performs better

than the first one when expected productivity
is considered (E2

G > E1
G), and both generators

have the same unsupplied demand (E1
U(0.5)=

E2
U(0.5)).

4.4 Determination of
u-function of Complex
Multi-state System Using
Composition Operators
Real-world MSSs are often very complex and
consist of a large number of elements connected
in different ways. To obtain the MSS OPD and the
corresponding u-function, we must develop some
rules to determine the system u-function based on
the individual u-functions of its elements.

In order to obtain the u-function of a
subsystem (component) containing a number
of elements, composition operators are intro-
duced. These operators determine the subsystem
u-function expressed as polynomial U(z) for a
group of elements using simple algebraic oper-
ations over individual u-functions of elements.
All the composition operators for two different el-
ements with random performance rates g1 ∈ {g1i}
(1≤ i ≤ I) and g2 ∈ {g2j } (1≤ j ≤ J) take the
form

ω(u1(z), u2(z))

=ω

[I∑
i=1

p1iz
g1i ,

J∑
j=1

p2j z
g2j

]

=
I∑

i=1

J∑
j=1

p1ip2j z
ω(g1i ,g2j) (4.15)

where u1(z), u2(z) are individual u-functions
of elements and ω(·) is a function that is
defined according to the physical nature of the
MSS performance and the interactions between
MSS elements. The function ω(·) in composition
operators expresses the entire performance of
a subsystem consisting of different elements

in terms of the individual performance of the
elements. The definition of the function ω(·)
strictly depends on the type of connection
between the elements in the reliability diagram
sense, i.e. on the topology of the subsystem
structure. It also depends on the physical nature
of system performance measure.

For example in an MSS, where performance
measure is defined as capacity or productivity
(MSSc), the total capacity of a pair of elements
connected in parallel is equal to the sum of the
capacities of elements. Therefore, the function
ω(·) in composition operator takes the form

ω(g1, g2)= g1 + g2 (4.16)

For a pair of elements connected in series,
the element with the least capacity becomes the
bottleneck of the system. In this case, the function
ω(·) takes the form

ω(g1, g2)=min(g1, g2) (4.17)

In MSSs where the performances of elements
are characterized by their processing speed
(MSSs) and parallel elements cannot share their
work, the task is assumed to be completed by the
group of parallel elements when it is completed
by at least one of the elements. The entire group
processing speed is defined by the maximum
element processing speed:

ω(g1, g2)=max(g1, g2) (4.18)

If a system contains two elements connected in
series, then the total processing time is equal to
the sum of processing times t1 and t2 of individual
elements: T = t1 + t2 = g−1

1 + g−1
2 .

Therefore, the total processing speed of the
system can be obtained as T −1 = g1g2/(g1 + g2)

and the ω(·) function for a pair of elements is
defined as

ω(g1, g2)= g1g2/(g1 + g2) (4.19)

 operators were determined in [4, 27] for
several important types of series–parallel MSS.
Some additional composition operators were also
derived for bridge structures [5, 28].

One can see that the operators for series
and parallel connection satisfy the following

68 System Reliability and Optimization

conditions:

ω{u1(z), . . . , uk(z), uk+1(z), . . . , un(z)}
=ω{u1(z), . . . , uk+1(z), uk(z), . . . , un(z)}

ω{u1(z), . . . , uk(z), uk+1(z), . . . , un(z)}
=ω{ω{u1(z), . . . , uk(z)},

ω{uk+1(z), . . . , un(z)}} (4.20)

Therefore, applying the operators in se-
quence, one can obtain the u-function represent-
ing the system performance distribution for an
arbitrary number of elements connected in series
and in parallel.

Example 2. Consider a system consisting of two
elements with total failures connected in parallel.
The elements have nominal performances g1 and
g2 (g1 < g2) and constant availabilities a1 and a2
respectively. In the failure state the elements have
performance zero. Even when a system consists of
elements with total failures it should be considered
as multi-state one when its output performance
rate is of interest. Indeed, the u-functions of the
individual elements are (1− a1)z

0 + a1z
g1 and

(1− a2)z
0 + a2z

g2 respectively. The u-function
for the entire MSS is

UMSS(z)=ω[u1(z), u2(z)]
=ω[(1− a1)z

0 + a1z
g1,

(1− a2)z
0 + a2z

g2]
which for MSSc takes the form

U(z)= (1− a1)(1− a2)z
0 + a1(1− a2)z

g1

+ a2(1− a1)z
g2 + a1a2z

g1+g2

and for MSSs takes the form

U(z)= (1− a1)(1− a2)z
0 + a1(1− a2)z

g1

+ a2(1− a1)z
g2 + a1a2z

max(g1,g2)

= (1− a1)(1− a2)z
0

+ a1(1− a2)z
g1 + a2z

g2

The measures of the system output performance
obtained for failure criterion F(G, W)=G−
W < 0 according to Equations 4.11–4.13 for both
types of MSS are presented in Table 4.1.

4.5 Importance and Sensitivity
Analysis of Multi-state Systems

Methods for evaluating the relative influence of
component availability on the availability of the
entire system provide useful information about
the importance of these elements. Importance
evaluation is a key point in tracing bottlenecks
in systems and in the identification of the most
important components. It is a useful tool to help
the analyst find weaknesses in design and to
suggest modifications for system upgrade.

Some various importance measures have been
introduced previously. The first importance mea-
sure was introduced by Birnbaum [29]. This in-
dex characterizes the rate at which the system
reliability changes with respect to changes in the
reliability of a given element. So, an improvement
in the reliability of an element with the highest
importance causes the greatest increase in system
reliability. Several other measures of elements and
minimal cut sets importance in coherent systems
were developed by Barlow and Proschan [30] and
Vesely [31].

The above importance measures have been
defined for coherent systems consisting of bi-
nary components. In multi-state systems the fail-
ure effect will be essentially different for system
elements with different performance levels. There-
fore, the performance levels of system elements
should be taken into account when their impor-
tance is estimated. Some extensions of importance
measures for coherent MSSs have been suggested,
e.g. [11, 30], and for non-coherent MSSs [32].

From Equations 4.11 and 4.14 one can see
that the entire MSS reliability indices are complex
functions of the demandW , which is an additional
factor having a strong impact on an element’s
importance in multi-state systems. Availability
of a certain component may be very important
for one demand level and less important for
another.

For the complex system structure, where each
system component can have a large number of
possible performance levels and there can be a
large number of demand levelsM , the importance

Multi-state System Reliability Analysis and Optimization 69

Table 4.1. Measures of system performance obtained for MSS

MSS EA EU EG W
type

MSSc 0 W − a1g1 − a2g2 a1g1 + a2g2 W > g1 + g2
a1a2 g1a1(a2 − 1)+ g2a2(a1 − 1) g2 <W ≤ g1 + g2+W(1− a1a2)
a2 (1− a2)(W − g1a1) g1 <W ≤ g2
a1 + a2 − a1a2 (1− a1)(1− a2)W 0 <W ≤ g1

MSSs 0 W − a1g1 − a2g2 + a1a2g1 a1(1− a2)g1 + a2g2 W > g2
a2 (1− a2)(W − g1a1) g1 <W ≤ g2
a1 + a2 − a1a2 (1− a1)(1− a2)W 0 <W ≤ g1

evaluation for each component obtained using
existing methods requires an unaffordable effort.
Such a problem is quite difficult to formalize
because of the great number of logical functions
for the top-event description when we use the logic
methods, and the great number of states when the
Markov technique is used.

In this section we demonstrate the method
for the Birnbaum importance calculation, based
on the UGF technique. The method provides
the importance evaluation for complex MSS with
different physical nature of performance and also
takes into account the demand.

The natural generalization of Birnbaum impor-
tance for MSSs consisting of elements with total
failure is the rate at which the MSS reliability index
changes with respect to changes in the availability
of a given element i. For the constant demand W ,
the element importance can be obtained as

∂A(W)

∂ai
(4.21)

where ai is the availability of the ith element at
the given moment, A(W) is the availability of the
entire MSS, which can be obtained for MSSs with
a given structure, parameters, and demand using
Equation 4.8.

For the variable demand represented by vectors
W and q the sensitivity of the generalized MSS
availability EA to the availability of the given
element i is

SA(i)= ∂EA(W, q)
∂ai

(4.22)

where index EA can be obtained using Equa-
tion 4.9.

In the same way, one can obtain the sensitivity
of the EG and EU indices for an MSS to the
availability of the given element i as

SG(i)= ∂EG

∂ai
(4.23)

and

SU(i)=
∣∣∣∣∂EU(W, q)

∂ai

∣∣∣∣ (4.24)

Since EU is a decreasing function of ai for each
element i, the absolute value of the derivative is
considered to estimate the degree of influence of
element reliability on the unsupplied demand.

It can easily be seen that all the suggested
measures of system performance (EA, EG, EU)
are linear functions of elements’ availability.
Therefore, the corresponding sensitivities can
easily be obtained by calculating the performance
measures for two different values of availability.

The sensitivity indices for each MSS element
depend strongly on the element’s place in the
system, its nominal performance level, and system
demand.

Example 3. Analytical example. Consider the sys-
tem consisting of two elements with total failures
connected in parallel. The availabilities of the ele-
ments are a1 and a2 and the nominal performance
rates are g1 and g2 (g1 < g2). The analytically
obtained measures of the system output perfor-
mance for MSSs of both types are presented in

70 System Reliability and Optimization

Table 4.2. Sensitivity indices obtained for MSS

MSS SA(1) SA(2) SU(1) SU(2) SG(1) SG(2) W
type

MSSc 0 0 −g1 −g2 g1 g2 W > g1 + g2
a2 a1 (a2 − 1)g1 (a1 − 1)g2 g2 <W ≤ g1 + g2−a2(W − g2) −a1(W − g1)
0 1 (a2 − 1)g1 a1g1 −W g1 <W ≤ g2
1− a2 1− a1 (a2 − 1)W (a1 − 1)W 0 <W ≤ g1

MSSs 0 0 (a2 − 1)g1 a1g1 − g2 g1(1− a2) g2 − a1g1 W > g2
0 1 (a2 − 1)g1 a1g1 −W g1 <W ≤ g2
1− a2 1− a1 (a2 − 1)W (a1 − 1)W 0 <W ≤ g1

Figure 4.2. Example of series–parallel MSS

the Table 4.1. The sensitivity indices can also be
obtained analytically. These indices for MSSc and
MSSs are presented in Table 4.2. Note that the sen-
sitivity indices are different for MSSs of different
types, even in this simplest case.

Numerical example. The series–parallel system
presented in Figure 4.2 consists of ten elements of
six different types. The nominal performance rate
gi and the availability ai of each type of element
are presented in Table 4.3.

We will consider the example of the system
with the given structure and parameters as MSSc
and MSSs separately. The cumulative demand
curves q1, W1 for MSSc and q2, W2 for MSSs are
presented in Table 4.4 (q1 = q2 = q).

The sensitivity indices estimated for both types
of system are presented in Table 4.5. These indices
depend strongly on the element’s place in the
system, on the element’s nominal performance,
and on the system demand.

Table 4.3. Parameters of system elements

No. of Nominal Availability
element i performance ai

rate gi

1 0.40 0.977
2 0.60 0.945
3 0.30 0.918
4 1.30 0.983
5 0.85 0.997
6 0.25 0.967

Table 4.4. Cumulative demand curves

q 0.15 0.25 0.35 0.25
W1 (ton h−1) 1.00 0.90 0.70 0.50
W2 (kbytes s−1) 0.30 0.27 0.21 0.15

The dependencies of sensitivity index SA on
the system demand are presented in Figures 4.3
and 4.4. Here, system demand variation is de-
fined as vector kW, where W is the initial de-
mand vector given for each system in Table 4.4
and k is the demand variation coefficient. As can
be seen from Figures 4.3 and 4.4, the SA(k) are
complicated non-monotonic piecewise continu-
ous functions for both types of system. The or-
der of elements according to their SA indices
changes when the demand varies. By using the
graphs, all the MSS elements can be ordered ac-
cording to their importance for any required de-
mand level. On comparing graphs in Figures 4.3

Multi-state System Reliability Analysis and Optimization 71

Table 4.5. Sensitivity indices obtained for MSS (numerical example)

Element no. MSSc MSSs

SA SG SU SA SG SU

1 0.0230 0.1649 0.0035 0.1224 0.0194 0.0013
2 0.7333 0.4976 0.2064 0.4080 0.0730 0.0193
3 0.1802 0.2027 0.0389 0.1504 0.0292 0.0048
4 0.9150 1.0282 0.7273 0.9338 0.3073 0.2218
5 0.9021 0.7755 0.4788 0.7006 0.1533 0.0709
6 0.3460 0.2022 0.0307 0.1104 0.0243 0.0023

Figure 4.3. Sensitivity SA as a function of demand for MSSc

and 4.4, one can notice that the physical na-
ture of MSS performance has a great impact on
the relative importance of elements. For exam-
ple, for 0.6≤ k ≤ 1.0, SA(4) and SA(5) are al-
most equal for MSSc and essentially different for
MSSs.

The fourth element is the most important one
for both types of system and for all the perfor-
mance criteria. The order of elements according
to their sensitivity indices changes when different

Figure 4.4. Sensitivity SA as a function of demand for MSSs

system reliability measures are considered. For
example, the sixth element is more important than
the third one when SA is considered for MSSc,
but is less important when SG and SU are consid-
ered.

The UGF approach makes it possible to evaluate
the dependencies of the sensitivity indices on
the nominal performance rates of elements easily.
The sensitivities SG(5), which are increasing
functions of g5 and decreasing functions of

72 System Reliability and Optimization

Figure 4.5. Sensitivity SG as a function of nominal performance
rates of elements 5 and 6 for MSSc

Figure 4.6. Sensitivity SG as a function of nominal performance
rates of elements 5 and 6 for MSSs

g6 for both types of system, are presented in
Figures 4.5 and 4.6. As elements 5 and 6 share
their work, the importance of each element is
proportional to its share in the total component
performance.

4.6 Multi-state System
Structure Optimization Problems

The UGF technique allows system performance
distribution, and thereby its reliability indices,
to be evaluated based on a fast procedure.
The system reliability indices can be obtained as
a function of its structure (topology and number
of elements), performance rates, and reliability
indices of its elements. Therefore, numerous
optimization problems can be formulated in
which the optimal composition of all or part of
the factors influencing the entire MSS reliability
has to be found subject to different constraints
(e.g. system cost). The performance rates and
reliability indices of elements composing the
system can be supplied by the producer of the
elements or obtained from field testing.

In order to provide a required level of sys-
tem reliability, redundant elements are included.
Usually, engineers try to achieve this level with
minimal cost. The problem of total investment
cost minimization, subject to reliability con-
straints, is well known as the redundancy opti-
mization problem. The redundancy optimization
problem for an MSS, which may consist of el-
ements with different performance rates and
reliability, is a problem of system structure
optimization.

In order to solve practical problems in which
a variety of products exist on the market and
analytical dependencies are unavailable for the
cost of system components, the reliability engi-
neer should have an optimization methodology
in which each product is characterized by its
productivity, reliability, price, and/or other pa-
rameters. To distinguish among products with
different characteristics, the notion of element
version is introduced. To find the optimal system

Multi-state System Reliability Analysis and Optimization 73

structure, one should choose the appropriate ver-
sions from a list of available products for each
type of equipment, as well as the number of par-
allel elements of these versions. The objective is
to minimize some criterion of the MSS quality
(e.g. the total MSS cost) subject to the require-
ment of meeting the demand with the desired
level of reliability or to maximize the reliabil-
ity subject to constraints imposed on the system
parameters.

The most general formulation of the MSS
structure optimization problem is as follows.
Given a system consisting of N components.
Each component of type n contains a number of
different elements connected in parallel. Different
versions and numbers of elements may be
chosen for any given system component. Element
operation is characterized by its availability and
nominal performance rate.

For each component n there are Hn element
versions available. A vector of parameters (cost,
availability, nominal performance rate, etc.) can be
specified for each version h of element of type n.
The structure of system component n is defined,
therefore, by the numbers of parallel elements of
each version r(n, h) for 1≤ h≤Hn. The vectors
rn = {r(n, h)}, (1≤ n≤N , 1≤ h≤Hn), define
the entire system structure. For a given set of
vectors R= {r1, r2, . . . , rN } the entire system
reliability indices E = (W, R) can be obtained,
as well as additional MSS characteristics C =
(W, R), such as cost, weight, etc.

Now consider two possible formulations of the
problem of system structure optimization:

Formulation 1. Find a system configuration R∗
that provides a maximal value of system reliability
index subject to constraints imposed on other
system parameters:

R∗ = arg{E(W, R)→max | C(W, R) < C∗}
(4.25)

where C* is the maximal allowable value of the
system parameter C.

Formulation 2. Find a system configuration R∗
that minimizes the system characteristic C =

(W, R) while providing a desired level of system
reliability index E = (W, R)

R∗ = arg{C(W, R)→min | E(W, R) ≥ E∗}
(4.26)

where E∗ is the minimal allowable level of system
reliability index.

4.6.1 Optimization Technique

Equations 4.25 and 4.26 formulate a complicated
optimization problem having an enormous num-
ber of possible solutions. An exhaustive exam-
ination of all these solutions is not realistic,
considering reasonable time limitations. As in
most optimal allocation problems, the quality of
a given solution is the only information avail-
able during the search for the optimal solution.
Therefore, a heuristic search algorithm is needed
that uses only estimates of solution quality and
which does not require derivative information to
determine the next direction of the search.

The recently developed family of GAs is based
on the simple principle of evolutionary search
in solution space. GAs have been proven to be
effective optimization tools for a large number of
applications.

It is recognized that GAs have the theoretical
property of global convergence [33]. Despite the
fact that their convergence reliability and conver-
gence velocity are contradictory, for most practi-
cal, moderately sized combinatorial problems, the
proper choice of GA parameters allows solutions
close enough to the global optimum to be obtained
in a relatively short time.

4.6.1.1 Genetic Algorithm

The basic notions of GAs were originally in-
spired by biological genetics. GAs operate with
“chromosomal” representation of solutions, where
crossover, mutation, and selection procedures are
applied. Unlike various constructive optimization
algorithms that use sophisticated methods to ob-
tain a good singular solution, the GA deals with
a set of solutions (population) and tends to ma-
nipulate each solution in the simplest manner.

74 System Reliability and Optimization

“Chromosomal” representation requires the solu-
tion to be coded as a finite length string (in our GA
we use strings of integers).

Detailed information on GAs can be found in
Goldberg’s comprehensive book [34], and recent
developments in GA theory and practice can be
found in books by Gen and Cheng [17] and
Back [33]. The basic structure of the steady-state
version of GA referred to as GENITOR [35] is as
follows.

First, an initial population of Ns randomly con-
structed solutions (strings) is generated. Within
this population, new solutions are obtained during
the genetic cycle by using crossover and mutation
operators. The crossover produces a new solution
(offspring) from a randomly selected pair of par-
ent solutions, facilitating the inheritance of some
basic properties from the parents by the offspring.
The probability of selecting the solution as a par-
ent is proportional to the rank of this solution.
(All the solutions in the population are ranked in
order of their fitness increase.) In this work, we use
the so-called two-point (or fragment) crossover
operator, which creates the offspring string for
the given pair of parent strings by copying string
elements belonging to the fragment between two
randomly chosen positions from the first parent
and by copying the rest of string elements from the
second parent. The following example illustrates
the crossover procedure (the elements belonging
to the fragment are in bold):

Parent string: 7 1 3 5 5 1 4 6
Parent string: 1 1 8 6 2 3 5 7
Offspring string: 1 1 3 5 5 1 4 7

Each offspring solution undergoes mutation,
which results in slight changes to the offspring’s
structure and maintains a diversity of solutions.
This procedure avoids premature convergence
to a local optimum and facilitates jumps in
the solution space. The positive changes in the
solution code, created by the mutation can be
later propagated throughout the population via
crossovers. In our GA, the mutation procedure
swaps elements initially located in two randomly
chosen positions on the string. The following

example illustrates the mutation procedure (the
two randomly chosen positions are in bold):

Solution encoding string before mutation:
1 1 3 5 5 1 4 7

Solution encoding string after mutation:
1 1 4 5 5 1 3 7

Each new solution is decoded and its objective
function (fitness) values are estimated. These val-
ues, which are a measure of quality, are used to
compare different solutions. The comparison is
accomplished by a selection procedure that deter-
mines which solution is better: the newly obtained
solution or the worst solution in the population.
The better solution joins the population, while
the other is discarded. If the population contains
equivalent solutions following selection, redun-
dancies are eliminated and the population size
decreases as a result.

After new solutions are produced Nrep times,
new randomly constructed solutions are gener-
ated to replenish the shrunken population, and a
new genetic cycle begins.

Note that each time the new solution has suf-
ficient fitness to enter the population, it alters
the pool of prospective parent solutions and in-
creases the average fitness of the current popula-
tion. The average fitness increases monotonically
(or, in the worst case, does not vary) during each
genetic cycle. But in the beginning of a new genetic
cycle the average fitness can decrease drastically
due to inclusion of poor random solutions into
the population. These new solutions are neces-
sary to bring into the population a new “genetic
material”, which widens the search space and, as
well as the mutation operator, prevents premature
convergence to the local optimum.

The GA is terminated after Nc genetic cycles.
The final population contains the best solution
achieved. It also contains different near-optimal
solutions, which may be of interest in the decision-
making process.

The choice of GA parameters depends on the
specific optimization problem. One can find infor-
mation about parameters choice in [4, 5, 36, 37].

Multi-state System Reliability Analysis and Optimization 75

To apply the GA to a specific problem, a
solution representation and decoding procedure
must be defined.

4.6.1.2 Solution Representation and
Decoding Procedure

To provide a possibility of choosing a combination
of elements of different versions, our GA deals
with L length integer strings, where L is the total
number of versions available:

L=
N∑
i=1

Hi (4.27)

Each solution is represented by string S=
{s1, s2, . . . , sL}, where for each

j =
n−1∑
i=1

Hi + h (4.28)

sj denotes the number of parallel elements of type
n and version h: r(n, h)= sj .

For example, for a problem with N = 3,
H1 = 3, H2 = 2, and H3 = 3, L= 8 and string
{0 2 1 0 3 4 0 0} represents a solution in which
the first component contains two elements of
version 2 and one element of version 3, the second
component contains three elements of version 2,
and the third component contains four elements
of version 1.

Any arbitrary integer string represents a
feasible solution, but, in order to reduce the
search space, the total number of parallel elements
belonging to each component should be limited.
To provide this limitation, the solution decoding
procedure transforms the string S in the following
way: for each component n for versions from h= 1
to h=Hn in sequence define

r(n, h)=min

{
sj , D −

h−1∑
i=1

r(n, i)

}
(4.29)

where D is a specified constant that limits
the number of parallel elements and j is the
number of elements of string S defined using
Equation 4.28. All the values of the elements of S
are produced by a random generator in the range
D ≥ sj ≥ 0.

For example, for a component n with Hm =
6 and D = 8 its corresponding substring of
S {1 3 2 4 2 1} will be transformed into substring
{1 3 2 2 0 0}.

In order to illustrate the MSS structure opti-
mization approach, we present three optimization
problems in which MSSs of different types are
considered. In the following sections, for each type
of MSS we formulate the optimization problem,
describe the method of quality evaluation for ar-
bitrary solution generated by the GA, and present
an illustrative example.

4.6.2 Structure Optimization of
Series–Parallel System with
Capacity-based Performance Measure

4.6.2.1 Problem Formulation

A system consisting of N components connected
in series is considered (Figure 4.7). Each com-
ponent of type n contains a number of different
elements with total failures connected in parallel.

For each component n there are a number of
element versions available in the market. A vector
of parameters gnh, anh, cnh can be specified for
each version h of element of type n. This vector
contains the nominal capacity, availability, and
cost of the element respectively. The element
capacity is measured as a percentage of nominal
total system capacity.

The entire MSS should provide capacity
level not less then W (the failure criterion is
F(G, W)=G−W < 0).

For given set of vectors r1, r2, . . . , rN the total
cost of the system can be calculated as

C =
N∑
n=1

Hi∑
h=1

r(n, h)cnh (4.30)

The problem of series–parallel system struc-
ture optimization is as follows. Find the minimal
cost system configuration R∗ that provides the
required availability level E∗A:

R∗ = arg{C(R)→min | E(W, R) ≥ E∗A} (4.31)

76 System Reliability and Optimization

Figure 4.7. Series–parallel MSS structure

4.6.2.2 Solution Quality Evaluation

Using the u-transform technique, the following
procedure for EA index evaluation is used.
Since the capacity gnh and availability anh are
given for each element of type n and version h

and the number of such elements is determined
by the j th element of string S (Equation 4.28),
one can represent the u-function of the subsystem
containing r(n, h) parallel identical elements as

unh(z)= [anhzgnh + (1− anh)]r(n,h)

=
r(n,h)∑
k=0

r(n, h)!
k!(r(n, h)− k)!

× aknh(1− anh)
r(n,h)−kzkgnh (4.32)

(This equation is obtained by using the operator
(Equation 4.15) with the function in Equation 4.16
corresponding to parallel elements with capacity-
based performance.)

To obtain the u-function for the entire compo-
nent n represented by elements of string S with
position numbers from

∑n−1
i=1 Hi + 1 to

∑n
i=1 Hi,

one can use the same operator over u-functions
unh(z) for 1≤ h≤Hn:

Un(z)=(un1(z), . . . , unHn(z))

=
Hn∏
j=1

unj (z)=
Vn∑
k=1

µkz
βk (4.33)

where Vn is the total number of different states of
the component n, βk is the output performance
rate of the component in state k, and µk is the
probability of the state k.

In the case of a capacity-based MSS in any
combination of states of components connected
in series in which at least one component has
a performance rate lower than the demand, the
output performance of the entire system is also
lower than the demand. In this case, there is no
need to obtain the u-function of the entire system
from u-functions of its components connected in
series. Indeed, if considering only that part of
the polynomial Un(z) that provides a capacity
exceeding the given demand level Wi , then one
has to take into account only elements for which
βk ≥Wi . Therefore, the following sum should be

Multi-state System Reliability Analysis and Optimization 77

calculated:

pn(Wi)= δA(Un(z), F, Wm)=
∑

βk≥Wm

µk (4.34)

One can calculate the probability of providing
capacity that exceeds the level Wi for the entire
system containing N components connected in
series as

A(Wm)=
N∏
n=1

pn(Wm) (4.35)

and obtain the total EA index for the variable
demand using Equation 4.11.

In order to let the GA look for the solution with
minimal total cost and with an EA that is not less
than the required value E∗A, the solution quality
(fitness) is evaluated as follows:

= λ−�(E∗A − EA)−
N∑
n=1

Hn∑
j=1

r(n, j)cij

(4.36)
where

�(x)=
{
θx x ≥ 0

0 x < 0
(4.37)

and θ is a sufficiently large penalty that is a
constant much greater than any possible system
cost. For solutions meeting the requirement EA >

E∗ the fitness of solution depends only on total
system cost.

Example 4. A power station coal transportation
system that supplies the boiler consists of five basic
components:

1. primary feeder, which loads the coal from the
bin to the primary conveyor;

2. primary conveyor, which transports the coal
to the stacker–reclaimer;

3. stacker–reclaimer, which lifts the coal up to
the burner level;

4. secondary feeder, which loads the secondary
conveyor;

5. secondary conveyor, which supplies the
burner feeding system of the boiler.

Each element of the system is considered as
a unit with total failures. The characteristics of

products available in the market for each type of
equipment are presented in Table 4.6. This table
shows availability a, nominal capacity g (given
as a percentage of the nominal boiler capacity),
and unit cost c. Table 4.7 contains the data of the
piecewise cumulative boiler demand curve.

For this type of problem, we define the
minimal cost system configuration that provides
the desired reliability level EA ≥ E∗A. The results
obtained for different desired values of index E∗A
are presented in Table 4.8. Optimal solutions for
a system in which each component can contain
only identical parallel elements are given for
comparison. System structure is represented by
the ordered sequence of strings. Each string has
format n: r1 ∗ h1, . . . , ri ∗ hi, . . . , rk ∗ hk , where
n is a number denoting system component, and ri
is the number of elements of version hi belonging
to the corresponding component.

One can see that the algorithm allocating
different elements within a component allows for
much more effective solutions to be obtained.
For example, the cost of the system configuration
with different parallel elements obtained for E∗ =
0.975 is 21% less than the cost of the optimal
configuration with identical parallel elements.

The detailed description of the optimization
method applied to MSSs with capacity- and
processing-speed-based performance measures
can be found in [4, 5, 36]. Structure optimization
for MSSs with bridge topology is described in
[5, 28].

4.6.3 Structure Optimization of
Multi-state System with Two Failure
Modes

4.6.3.1 Problem Formulation

Systems with two failure modes (STFMs) consist
of devices that can fail in either of two different
modes. For example, switching systems not only
can fail to close when commanded to close but
can also fail to open when commanded to open.
A typical example of a switching device with two
failure modes is a fluid flow valve. It is known that

78 System Reliability and Optimization

Table 4.6. Characteristics of the system elements available in the market

Component no. Description Version no. g (%) a c ($106)

1 Primary feeder 1 120 0.980 0.590
2 100 0.977 0.535
3 85 0.982 0.470
4 85 0.978 0.420
5 48 0.983 0.400
6 31 0.920 0.180
7 26 0.984 0.220

2 Primary conveyor 1 100 0.995 0.205
2 92 0.996 0.189
3 53 0.997 0.091
4 28 0.997 0.056
5 21 0.998 0.042

3 Stacker–reclaimer 1 100 0.971 7.525
2 60 0.973 4.720
3 40 0.971 3.590
4 20 0.976 2.420

4 Secondary feeder 1 115 0.977 0.180
2 100 0.978 0.160
3 91 0.978 0.150
4 72 0.983 0.121
5 72 0.981 0.102
6 72 0.971 0.096
7 55 0.983 0.071
8 25 0.982 0.049
9 25 0.977 0.044

5 Secondary conveyor 1 128 0.984 0.986
2 100 0.983 0.825
3 60 0.987 0.490
4 51 0.981 0.475

Table 4.7. Parameters of the cumulative demand curve

Wm (%) 100 80 50 20
Tm (h) 4203 788 1228 2536

redundancy, introduced to increase the reliability
of a system without any change in the reliability of
the individual devices that form the system, in the
case of an STFM may either increase or decrease
entire system reliability [38].

Consider a series–parallel switching system
designed to connect or disconnect its input
A1 and output BN according to a command

(Figure 4.8). The system consists of N components
connected in series. Each component contains
a number of elements connected in parallel.
When commanded to close (connect), the system
can perform the task when the nodes An and Bn

(1≤ n≤N) are connected in each component by
at least one element. When commanded to open
(disconnect), the system can perform the task
if, in at least one of the component’s nodes, An

and Bn are disconnected, which can occur only if
all elements of this component are disconnected.
This duality in element and component roles in the
two operation modes creates a situation in which
redundancy, while increasing system reliability in
an open mode, decreases it in a closed mode

Multi-state System Reliability Analysis and Optimization 79

Table 4.8. Parameters of the optimal solutions

E∗A Identical elements Different elements

EA C Structure EA C Structure

0.975 0.977 16.450 1 : 2 ∗ 2 0.976 12.855 1 : 2 ∗ 4, 1 ∗ 6
2 : 2 ∗ 3 2 : 6 ∗ 5
3 : 3 ∗ 2 3 : 1 ∗ 1, 1 ∗ 4
4 : 3 ∗ 7 4 : 3 ∗ 7
5 : 1 ∗ 2 5 : 3 ∗ 4

0.980 0.981 16.520 1 : 2 ∗ 2 0.980 14.770 1 : 2 ∗ 4, 1 ∗ 6
2 : 6 ∗ 5 2 : 2 ∗ 3
3 : 3 ∗ 2 3 : 1 ∗ 2, 2 ∗ 3
4 : 3 ∗ 7 4 : 3 ∗ 7
5 : 1 ∗ 2 5 : 2 ∗ 3, 1 ∗ 4

0.990 0.994 17.050 1 : 2 ∗ 2 0.992 15.870 1 : 2 ∗ 4, 1 ∗ 6
2 : 2 ∗ 3 2 : 2 ∗ 3
3 : 3 ∗ 2 3 : 2 ∗ 2, 1 ∗ 3
4 : 3 ∗ 7 4 : 3 ∗ 7
5 : 3 ∗ 4 5 : 3 ∗ 4

Figure 4.8. Structure of a series–parallel switching system

80 System Reliability and Optimization

and vice versa. Therefore, the optimal number
of redundant elements can be found, and this
provides the minimal probability of failures in
both states.

In many practical cases, some measures of
element (system) performance must be taken
into account. For example, fluid-transmitting
capacity is an important characteristic of a
system containing fluid valves. A system can have
different levels of output performance depending
on the combination of elements available at any
given moment. Therefore, the system should be
considered to be MSS.

Since STFMs operate in two modes, two
corresponding failure conditions should be
defined: Fo(Go, Wo) < 0 in the open mode and
Fc(Gc, Wc) < 0 in the closed mode, where Go
and Gc are the output performance of the MSS at
time t in the open and closed modes respectively,
and Wo and Wc are the required system output
performances in the open and closed modes
respectively. Since the failures in open and closed
modes, which have probabilities

Qo = Pr{Fo(Go, Wo) < 0} = 1− EAo(Fo, Wo)

and

Qc = Pr{Fc(Gc, Wc) < 0} = 1− EAc(Fc, Wc)

(4.38)
respectively, are mutually exclusive events, the
entire system reliability can be defined as

1−Qo −Qc = EAo(Fo, Wo)+ EAc(Fc, Wc)− 1
(4.39)

One can also determine the expected system
performance in the both modes EGo and EGc.

Consider two possible formulations of the
problem of system structure optimization for a
given list of elements’ versions characterized by a
vector of parameters go, gc, ao and ac, where gx is
a nominal element capacity in mode x and ax is its
availability in mode x:

Formulation 3. Find a system configuration R∗
that provides maximal system availability:

R∗ = arg{EAo(Wo, Fo, R)

+ EAc(Wc, Fc, R)− 1→max} (4.40)

Formulation 4. Find a system configuration R∗
that provides the maximal proximity of expected
system performance to the desired levels for both
modes while satisfying the reliability require-
ments:

R∗ = arg{|EGo(R)− E∗Go|
+ |EGc(R)− E∗Gc| →min | EAo(R)

≥ E∗Ao, EAc(R)≥ E∗Ac} (4.41)

4.6.3.2 Solution Quality Evaluation

To determine the u-function of an individual
flow-transmitting element with total failures
(e.g. a fluid flow valve) in the closed mode,
note that in the operational state, which has
probability ac, the element should transmit
nominal flow f and in the failure state it fails
to transmit any flow. Therefore, according to
Equation 4.17, the u-function of the element takes
the form

uc(z)= acz
f + (1− ac)z

0 (4.42)

In the open mode the element has to prevent
flow transmission through the system. If it
succeeds in doing this (with probability ao),
the flow is zero; if it fails to do so, the flow is
equal to its nominal value in the closed mode f .
The u-function of the element in the open mode
takes the form

uo(z)= aoz
0 + (1− ao)z

f (4.43)

Since the system of flow-transmitting elements
is a capacity-based MSS, one has to use operator
 with the functions in Equations 4.16 and 4.17
over u-functions of the individual elements
of Equations 4.42 and 4.43 to determine the
u-function of the entire system.

Note that the u-function of a subsystem con-
taining n identical parallel elements can be ob-
tained by applying operator (u(z), . . . , u(z))

with function ω determined in Equation 4.16
over n u-functions u(z) of an individual el-
ement represented by Equations 4.42 or 4.43.
The u-function of this subsystem takes the
form

n∑
k=0

n!
k!(n− k)!a

k
c (1− ac)

n−kzkf (4.44)

Multi-state System Reliability Analysis and Optimization 81

for the closed mode and
n∑

k=0

n!
k!(n− k)!a

n−k
o (1− ao)

kzkf (4.45)

for the open mode.
Having u-functions of individual elements and

applying corresponding composition operators

one obtains the u-functions Uc(z) and Uo(z) of
the entire system for both modes. The expected
values of flows through the system in open and
closed modes EGo and EGc are obtained us-
ing operators δG(Uo(z)) and δG(Uc(z)) (Equa-
tion 4.12).

To determine system reliability one has to
define conditions of its successful functioning.
For the flow-transmitting system it is natural to
require that in its closed mode the amount of flow
should exceed some specified value Wc, whereas
in the open mode it should not exceed a value
Wo. Therefore, the conditions of system success
are

Fc(Gc, Wc)=Gc −Wc ≥ 0

and

Fo(Go, Wo)=Wo −Go ≥ 0 (4.46)

Having these conditions one can easily
evaluate system availability using operators
δA(Uo(z), Fo, Wo) and δA(Uc(z), Fc, Wc)

(Equation 4.8).
In order to let the GA look for the solution

meeting the requirements of Equation 4.40 or 4.41,
the following universal expression of solution
quality (fitness) is used:

= λ− |EGo − E∗Go| − |EGc − E∗Gc|
− θ(max{0, E∗Ao − EAo}
+max{0, E∗Ac − EAc}) (4.47)

where θ and λ are constants much greater than
the maximal possible value of system output
performance.

Note that the case E∗Ao = E∗Ac = 1 corresponds
to the formulation in Equation 4.40. Indeed,
since θ is sufficiently large, the value to be
minimized in order to maximize
 is θ(EAo +

EAc). On the other hand, when E∗Ao = E∗Ac =
0, all reliability limitations are removed and
expected performance becomes the only factor in
determining system structure.

Example 5. Consider the optimization of a fluid-
flow transmission system consisting of four
components connected in series. Each component
can contain a number of elements connected in
parallel. The elements in each component should
belong to a certain type (e.g. each component
can operate in a different medium, which causes
specific requirements on the valves). There exists
a list of available element versions. In this
list each version is characterized by element
parameters: availability in open and close modes,
and transmitting capacity f . The problem is to
find the optimal system configuration by choosing
elements for each component from the lists
presented in Table 4.9.

We want the flow to be not less than Wc = 10
in the closed mode and not greater than Wo = 2
in the open (disconnected) mode. Three differ-
ent solutions were obtained for Formulation 3 of

Table 4.9. Parameters of elements available for flow transmission
system

Component Element f ac ao
no. version

no.

1 1 1.8 0.96 0.92
2 2.2 0.99 0.90
3 3.0 0.94 0.88

2 1 1.0 0.97 0.93
2 2.0 0.99 0.91
3 3.0 0.97 0.88

3 1 3.0 0.95 0.88
2 4.0 0.93 0.87

4 1 1.5 0.95 0.89
2 3.0 0.99 0.86
3 4.5 0.93 0.85
4 5.0 0.94 0.86

82 System Reliability and Optimization

Table 4.10. Solutions obtained for flow transmission system

Component E∗Ao = E∗Ac = 1 E∗Ao = E∗Ac = 0.95

N ≥ 13 N = 9 N = 5 N = 13 N = 9 N = 5

1 9 ∗ 1 9 ∗ 1 1 ∗ 1, 1 ∗ 2, 13 ∗ 1 6 ∗ 1, 3 ∗ 3 1 ∗ 2, 4 ∗ 3
3 ∗ 3

2 13 ∗ 1 5 ∗ 1, 4 ∗ 2 2 ∗ 2, 3 ∗ 3 7 ∗ 1, 1 ∗ 2, 3 ∗ 1, 1 ∗ 2, 5 ∗ 3
5 ∗ 3 5 ∗ 3

3 2 ∗ 1, 4 ∗ 2 2 ∗ 1, 4 ∗ 2 2 ∗ 1, 3 ∗ 2 7 ∗ 2 6 ∗ 2 5 ∗ 2
4 11 ∗ 4 8 ∗ 1, 1 ∗ 2 1 ∗ 1, 4 ∗ 4 5 ∗ 1, 4 ∗ 4 6 ∗ 1, 3 ∗ 4 1 ∗ 1, 4 ∗ 4

Qc = 1− EAc 0.001 0.002 0.026 0.0001 0.0006 0.034
Qo = 1−EAo 0.007 0.010 0.037 0.049 0.050 0.049
EAo + EAc − 1 0.992 0.988 0.937 0.951 0.949 0.917
EGc 12.569 12.669 12.026 21.689 18.125 13.078
EGo 0.164 0.151 0.118 0.390 0.288 0.156

the problem, where minimal overall failure prob-
ability was achieved (E∗Ao = E∗Ac = 1). The op-
timal solutions were obtained under constraints
on the maximal number of elements within a

Figure 4.9. Cumulative performance distribution of solutions
obtained for a flow-transmission system in closed mode (f k
stands for problem formulation k)

single component: D = 15, D = 9, and D = 5.
These solutions are presented in Table 4.10, where
system structure is represented by strings r1 ∗
h1, . . . , ri ∗ hi, . . . , rk ∗ hk for each component,
where ri is the number of elements of ver-
sion hi belonging to the corresponding compo-
nent. Table 4.10 also contains fault probabilities
1− EAc and 1− EAo, availability index EAo +
EAc − 1, and expected flows through the sys-
tem in open and closed mode EGo and EGc
obtained for each solution. Note that when the
number of elements was restricted by 15, the
optimal solution contains no more than 13 ele-
ments in each component. A further increase in
the number of elements cannot improve system
availability.

The solutions obtained for Formulation 4 of
the optimization problem for E∗Ao = E∗Ac = 0.95
are also presented in Table 4.10. Here, we desired
to obtain the flow as great as possible (E∗Gc =
25) in the closed mode and as small as possi-
ble (E∗Go = 0) in the open mode, while satisfy-
ing conditions Pr{Gc ≥ 10} ≥ 0.95 and Pr{Go <

2} ≥ 0.95. The same constraints on the number
of elements within a single component were im-
posed. One can see that this set of solutions
provides a much greater difference EGc − EGo,
while the system availability is reduced when com-
pared with Formulation 3 solutions. The proba-
bilistic distributions of flows through the system

Multi-state System Reliability Analysis and Optimization 83

Figure 4.10. Cumulative performance distribution of solutions
obtained for a flow-transmission system in open mode (f k stands
for problem formulation k)

in closed and open modes for all the solutions
obtained are presented in Figures 4.9 and 4.10 in
the form of cumulative probabilities Pr{Gc ≥Wc}
and Pr{Go ≥Wo}.

Levitin and Lisnianski [39] provide a detailed
description of the optimization method applied
to STFM with capacity-based (flow valves) and
processing-speed-based (electronic switches)
performance measures.

4.6.4 Structure Optimization for
Multi-state System with Fixed Resource
Requirements and Unreliable Sources

4.6.4.1 Problem Formulation

Although the algorithms suggested in previous
sections cover a wide range of series–parallel sys-
tems, these algorithms are restricted to systems

with continuous flows, which are comprised of
elements that can process any piece of product
(resource) within its capacity (productivity) lim-
its. In this case, the minimal amount of product,
which can proceed through the system, is not
limited.

In practice, there are technical elements that
can work only if the amount of some resources is
not lower than specified limits. If this requirement
is not met, the element fails to work. An example
of such a situation is a control system that stops
the controlled process if a decrease in its com-
putational resources does not allow the necessary
information to be processed within the required
cycle time. Another example is a metalworking
machine that cannot perform its task if the flow
of coolant supplied is less than required. In both
these examples the amount of resources necessary
to provide the normal operation of a given com-
position of the main producing units (controlled
processes or machines) is fixed. Any deficit of the
resource makes it impossible for all the units from
the composition to operate together (in parallel),
because no one unit can reduce the amount of re-
source it consumes. Therefore, any resource deficit
leads to the turning off of some producing units.

This section considers systems containing pro-
ducing elements with fixed resource consumption.
The systems consist of a number of resource-
generating subsystems (RGSs) that supply differ-
ent resources to the main producing subsystem
(MPS). Each subsystem consists of different el-
ements connected in parallel. Each element of
the MPS can perform only by consuming a fixed
amount of resources. If, following failures in the
RGSs, there are not enough resources to allow all
the available producing elements to work, then
some of these elements should be turned off.
We assume that the choice of the working MPS
elements is made in such a way as to maximize
the total performance rate of the MPS under given
resources constraints.

The problem is to find the minimal cost RGS
and MPS structure that provides the desired level
of entire system ability to meet the demand.

In spite of the fact that only two-level RGS–
MPS hierarchy is considered in this section, the

84 System Reliability and Optimization

Figure 4.11. Structure of a simpleN − 1 RGS–MPS system

method can easily be expanded to systems with
multilevel hierarchy. When solving the problem
for multilevel systems, the entire RGS–MPS system
(with OPD defined by its structure) may be
considered in its turn as one of an RGS for a higher
level MPS.

Consider a system consisting of an MPS and
N − 1 different RGSs (Figure 4.11). The MPS
can have up to D different elements connected
in parallel. Each producing element consumes
resources supplied by the RGS and produces a
final product. There are HN versions of producing
elements available. Each versionh (1≤ h≤HN) is
characterized by its availability aNh, performance
rate (productivity or capacity) gNh, cost cNh, and
vector of required resources wh = {wnh} 1≤ n≤
N − 1. An MPS element of version h can work
only if it receives the amount of each resource
defined by vector wh.

Each resource n (1≤ n≤N − 1) is generated
by the corresponding RGS, which can contain up
to Dn parallel resource-generating elements of
different versions. The total number of available
versions for the nth RGS is Hn. Each version of an
element of RGS supplying the nth resource is char-
acterized by its availability, productivity, and cost.

The problem of system structure optimization
is as follows: find the minimal cost system
configuration R∗ that provides the required
reliability level E∗A (Equation 4.31), where for any
given system structure R the total cost of the
system can be calculated using Equation 4.30.

4.6.4.2 Solution Quality Evaluation

Since the considered system contains elements
with total failure represented by two-term
u-functions and each subsystem consists of a

Multi-state System Reliability Analysis and Optimization 85

number of parallel elements, one can obtain
u-functions Un(z) for the each RGS n representing
the probabilistic distribution of the amount of nth
resource, which can be supplied to the MPS as
follows:

Un(z)=
Hn∏
h=1

[(1− anh)z
0 + anhz

gnh]r(n,h)

=
Vn∑
k=1

µnkz
βnk (4.48)

where Vn is the number of different levels of
resource n generation, βnk is the available amount
of the nth resource at state k, and µnk is the
probability of state k for RGS n.

The same equation can be used in order
to obtain the u-function representing the OPD
of the MPS UN(z). In this case, VN is the
number of different possible levels of MPS
productivity. The function UN(z) represents the
distribution of system productivity defined only
by MPS elements’ availability. This distribution
corresponds to situations in which there are no
limitations on required resources.

4.6.4.3 The Output Performance
Distribution of a System Containing Identical
Elements in the Main Producing Subsystem

If a producing subsystem contains only identical
elements, then the number of elements that can
work in parallel when the available amount of
nth resource at state k is βnk is �βnk/wn	, which
corresponds to total system productivity γnk =
g�βnk/wn	. In this expression, g and wn are
respectively the productivity of a single element of
the MPS and the amount of resource n required
for this element, and the function �x	 rounds a
number x down to the nearest integer. Note that
γnk represents the total theoretical productivity,
which can be achieved using available resource n

by an unlimited number of producing elements.
In terms of entire system output, the u-function of
the nth RGS can be obtained in the following form:

Un(z)=
Vn∑
k=1

µnkz
γnk =

Vn∑
k=1

µnkz
g�βnk/wn	 (4.49)

The RGS that provides the work of a minimal
number of producing units becomes the bottle-
neck of the system. Therefore, this RGS defines the
total system capacity. To calculate the u-function
for all the RGSs U r(z) one has to apply the

operator with the ω function in Equation 4.17.
Function U r(z) represents the entire system OPD
for the case of an unlimited number of producing
elements.

The entire system productivity is equal to the
minimum of total theoretical productivity which
can be achieved using available resources and
total productivity of available producing elements.
To obtain the OPD of the entire system taking into
account the availability of the MPS elements, the
same operator should be applied:

U(z)=(UN(z), U
r(z))

=(U1(z), U2(z), . . . , UN(z)) (4.50)

4.6.4.4 The Output Performance
Distribution of a System Containing Different
Elements in the Main Producing Subsystem

If an MPS has D different elements, there are 2D

possible states of element availability composition.
Each state k may be characterized by set πk (1≤
k ≤ 2D) of available elements. The probability of
state k can be evaluated as follows:

pk =
∏
j∈πk

aNj

∏
i /∈πk

(1− aNi) (4.51)

The maximal possible productivity of the MPS
and the corresponding resources consumption in
state k are

∑
j∈πk gj and

∑
j∈πk wnj (1≤ n < N)

respectively.
The amount of resources generated by an RGS

is defined by its OPD. There are not always
enough resources to provide the maximal possible
productivity of the MPS at state k. In order to
define the maximum possible productivity G of
the MPS under resource constraints one has to
solve the following integer linear programming
problem:

G(β1, β2, . . . , βN , πk)=max
∑
j∈πk

gjyj

86 System Reliability and Optimization

subject to∑
j∈πk

wnjyj ≤ βn for 1≤ n < N, yj ∈ {0, 1}
(4.52)

where βn is the available amount of nth resource,
yj = 1 if element j works (producing gj units of
main product and consuming wnj of each resource
(1≤ n < N)), and yj = 0 if element j is turned
off.

The OPD of the entire system can be defined by
evaluating all the possible combinations of avail-
able resources generated by the RGS and the states
of the MPS. For each combination, a solution of
the above formulated optimization problem de-
fines the system productivity. The u-function rep-
resenting the OPD of the entire system can be
defined as follows:

U(z)=
V1∑
i1=1

V2∑
i2=1

· · ·
VN−1∑
iN−1=1

{(N−1∏
n=1

µnin

)

×
2D∑
k=1

pkz
G(β1i1 ,β2i2 ,...,βN−1iN−1 ,πk)

}
(4.53)

To evaluate the EA index for the entire system
having its OPD as the probability that the total
productivity of the system is not less than a
specified demand levelW , we can use the function
F =G−W and operator δA (Equation 4.8).

To obtain the system OPD, its productivity
should be determined for each unique combina-
tion of available resources and for each unique
state of the MPS. From Equation 4.53 one can see
that in the general case the total number of integer
linear programs to be solved to obtain U(z) is
2D
∏N−1

n=1 Vn. In practice, the number of programs
to be solved can be drastically reduced using the
following rules.

1. If for the given vector (β1, . . . , βn,

. . . , βN−1) and for the given set of
MPS elements πk there exists n for
which βn < minj∈πk wnj , then the system
productivity G= 0.

2. If for each element j from πk there exists n for
which βn < wnj , then the system productivity
G= 0.

3. If there exists element j ∈ πk for which βn <

wnj for some n, this means that in the
program (Equation 4.52) yj must be zeroed.
In this case the dimension of the integer
program can be reduced by removing all such
elements from πk .

4. If for the given vector (β1, . . . , βn,

. . . , βN−1) and for the given set πk

the solution of the integer program
(Equation 4.52) determines subset π∗k of
turned on MPS elements (j ∈ π∗k if yj = 1),
the same solution must be optimal for
the MPS states characterized by any set
π ′k : π∗k ⊂ π ′k ⊂ πk . This allows one to avoid
solving many integer programs by assigning
value of G(β1, . . . , βN−1, πk) to all the
G(β1, . . . , βN−1, π

′
k).

It should be noted that, for systems with a
large number of elements and/or resources, the
required computational effort for solving the re-
dundancy optimization problem could be unaf-
fordable, even when applying the computational
complexity reduction technique presented. In this
case, the use of fast heuristics for solving integer
programs is recommended instead of exact algo-
rithms.

By applying the technique described for obtain-
ing U(z) and using the δA operator for determin-
ing the EA index, one can estimate the solution
fitness in the GA using Equation 4.36.

Example 6. The main producing component of
the system may have up to six parallel producing
elements (chemical reactors) working in parallel.
To perform their task, producing elements require
three different resources:

1. power, generated by the energy supply subsys-
tem (group of converters);

2. computational resource, provided by the
control subsystem (group of controllers);

3. cooling water, provided by the water supply
subsystem (group of pumps).

Each of these RGSs can have up to five paral-
lel elements. Both producing units and resource-
generating units may be chosen from the list

Multi-state System Reliability Analysis and Optimization 87

Table 4.11. Parameters of the MPS units available

Version no. Cost c Performance rate g Availability a Resources required w

Resource 1 Resource 2 Resource 3

1 9.9 30.0 0.970 2.8 2.0 1.8
2 8.1 25.0 0.954 0.2 0.5 1.2
3 7.9 25.0 0.960 1.3 2.0 0.1
4 4.2 13.0 0.988 2.0 1.5 0.1
5 4.0 13.0 0.974 0.8 1.0 2.0
6 3.0 10.0 0.991 1.0 0.6 0.7

Table 4.12. Parameters of the RGS units available

Type of Version Cost Performance Availability
resource no. c rate g a

1 1 0.590 1.8 0.980
2 0.535 1.0 0.977
3 0.370 0.75 0.982
4 0.320 0.75 0.978

2 1 0.205 2.00 0.995
2 0.189 1.70 0.996
3 0.091 0.70 0.997

3 1 2.125 3.00 0.971
2 2.720 2.60 0.973
3 1.590 2.40 0.971
4 1.420 2.20 0.976

Table 4.13. Parameters of the cumulative demand curve

Wm 65.0 48.0 25.0 8.0
Tm 60 10 10 20

of products available in the market. Each pro-
ducing unit is characterized by its availability,
its productivity, its cost, and the amount of re-
sources required for its work. The characteris-
tics of available producing units are presented
in Table 4.11. The resource-generating units are
characterized by their availability, their generating
capacity (productivity), and their cost. The char-
acteristics of available resource-generating units
are presented in Table 4.12. Each element of the
system is considered to be a unit with total failures.

The demand for final product varies with time.
The demand distribution is presented in Table 4.13
in the form of a cumulative demand curve.

Table 4.14 contains minimal cost solutions for
different required levels of system availability E∗A.
The structure of each subsystem is presented by
the list of numbers of versions of the elements
included in the subsystem. The actual estimated
availability of the system and its total cost are also
presented in the table for each solution.

The solutions of the system structure optimiza-
tion problem when the MPS can contain only
identical elements are presented in Table 4.15 for
comparison. Note that, when the MPS is composed
from elements of different types, the same system
availability can be achieved by much lower cost.
Indeed, using elements with different availability
and capacity (productivity) provides much greater
flexibility for optimizing the entire system per-
formance in different states. Therefore, the algo-
rithm for solving the problem for different MPS
elements, which requires much greater computa-
tional effort, usually yields better solutions then
one for identical elements.

A detailed description of the optimization
method applied to an MSS with fixed resource
requirements has been given by Levitin [40].

4.6.5 Other Problems of Multi-state
System Optimization

In this section we present a short description
of reliability optimization problems that can be

88 System Reliability and Optimization

Table 4.14. Parameters of the optimal solutions for system with different MPS elements

E∗A EA C System structure

MPS RGS 1 RGS 2 RGS 3

0.950 0.951 27.790 3, 6, 6, 6, 6 1, 1, 1, 1, 1 1, 1, 2, 3 1, 1
0.970 0.973 30.200 3, 6, 6, 6, 6, 6 1, 1, 1, 1 1, 1, 2, 3 1, 1
0.990 0.992 33.690 3, 3, 6, 6, 6, 6 1, 1, 1, 1 1, 1, 2, 3 4, 4
0.999 0.999 44.613 2, 2, 3, 3, 6, 6 1, 1, 1 1, 2, 2 4, 4, 4

Table 4.15. Parameters of the optimal solutions for system with identical MPS elements

E∗A EA C System structure

MPS RGS 1 RGS 2 RGS 3

0.950 0.951 34.752 4, 4, 4, 4, 4, 4 1, 4, 4, 4, 4 2, 2, 2 1, 3, 3, 3, 4
0.970 0.972 35.161 4, 4, 4, 4, 4, 4 1, 1, 1, 4 2, 2, 2, 2 1, 3, 3, 3, 4
0.990 0.991 37.664 2, 2, 2, 2 4, 4 3, 3, 3, 3 4, 4, 4
0.999 0.999 47.248 2, 2, 2, 2, 2 3, 4 2, 2 4, 4, 4, 4

solved using a combination of the UGF technique
and GAs.

In practice, the designer often has to include
additional elements in the existing system rather
than to develop a new one from scratch. It
may be necessary, for example, to modernize
a system according to new demand levels or
according to new reliability requirements. The
problem of optimal single-stage MSS expansion to
enhance its reliability and/or performance is an
important extension of the structure optimization
problem. In this case, one has to decide which
elements should be added to the existing system
and to which component they should be added.
Such a problem was considered by Levitin
et al. [36].

During the MSS life time, the demand and
reliability requirements can change. To provide a
desired level of MSS performance, management
should develop a multistage expansion plan.
For the problem of optimal multistage MSS
expansion [41], it is important to answer not only
the question of what must be included into the
system, but also the question of when.

By optimizing the maintenance policy one can
achieve the desired level of system reliability

(availability) requiring the minimal cost. The UGF
technique allows the entire MSS reliability to
be obtained as a function of the reliabilities of
its elements. Therefore, by having estimations of
the influence of different maintenance actions on
the elements’ reliability, one can evaluate their
influence on the entire complex MSS containing
elements with different performance rates and
reliabilities. An optimal policy of maintenance can
be developed that would answer the questions
about which elements should be the focus
of maintenance activity and what should the
intensity of this activity be [42, 43].

Since the maintenance activity serves the same
role in MSS reliability enhancement as does in-
corporation of redundancy, the question arises as
to what is more effective. In other words, should
the designer prefer a structure with more redun-
dant elements and less investment in maintenance
or vice versa? The optimal compromise should
minimize the MSS cost while providing its desired
reliability. The joint maintenance and redundancy
optimization problem [37] is to find this opti-
mal compromise taking into account differences
in reliability and performance rates of elements
composing the MSS.

Multi-state System Reliability Analysis and Optimization 89

Finally, the most general optimization prob-
lem is optimal multistage modernization of an
MSS subject to reliability and performance re-
quirements [44]. In order to solve this problem,
one should develop a minimal-cost modernization
plan that includes maintenance, modernization of
elements, and system expansion actions. The ob-
jective is to provide the desired reliability level
while meeting the increasing demand during the
lifetime of the MSS.

References
[1] Aven T, Jensen U. Stochastic models in reliability. New

York: Springer-Verlag; 1999.

[2] Billinton R, Allan R. Reliability evaluation of power
systems. Pitman; 1990.

[3] Aven T. Availability evaluation of flow networks with
varying throughput-demand and deferred repairs. IEEE
Trans Reliab 1990;38:499–505.

[4] Levitin G, Lisnianski A, Ben-Haim H, Elmakis D.
Redundancy optimization for series–parallel multi-state
systems. IEEE Trans Reliab 1998;47(2):165–72.

[5] Lisnianski A, Levitin G, Ben-Haim H. Structure optimiza-
tion of multi-state system with time redundancy. Reliab
Eng Syst Saf 2000;67:103–12.

[6] Gnedenko B, Ushakov I. Probabilistic reliability engineer-
ing. New York: John Wiley & Sons; 1995.

[7] Murchland J. Fundamental concepts and relations for
reliability analysis of multistate systems. In: Barlow R,
Fussell S, Singpurwalla N, editors. Reliability and fault
tree analysis, theoretical and applied aspects of system
reliability. Philadelphia: SIAM; 1975. p.581–618.

[8] El-Neveihi E, Proschan F, Setharaman J. Multistate
coherent systems. J Appl Probab 1978;15:675–88.

[9] Barlow R, Wu A. Coherent systems with multistate
components. Math Oper Res 1978;3:275–81.

[10] Ross S. Multivalued state component systems. Ann
Probab 1979;7:379–83.

[11] Griffith W. Multistate reliability models. J Appl Probab
1980;17:735–44.

[12] Butler D. A complete importance ranking for components
of binary coherent systems with extensions to multistate
systems. Nav Res Logist Q 1979;26:556–78.

[13] Koloworcki K. An asymptotic approach to multi-
state systems reliability evaluation. In: Limios N,
Nikulin M, editors. Recent advances in reliability theory,
methodology, practice, inference. Birkhauser; 2000.
p.163–80.

[14] Pourret O, Collet J, Bon J-L. Evaluation of the unavail-
ability of a multi-state component system using a binary
model. Reliab Eng Syst Saf 1999;64:13–7.

[15] Aven T. On performance measures for multistate
monotone systems. Reliab Eng Syst Saf 1993:41:259–66.

[16] Coit D, Smith A. Reliability optimization of series–
parallel systems using genetic algorithm, IEEE Trans
Reliab 1996;45:254–66.

[17] Gen M, Cheng R. Genetic algorithms and engineering
design. New York: John Wiley & Sons; 1997.

[18] Dengiz B, Altiparmak F, Smith A. Efficient optimization
of all-terminal reliable networks, using an evolutionary
approach. IEEE Trans Reliab 1997;46:18–26.

[19] Cheng S. Topological optimization of a reliable commu-
nication network. IEEE Trans Reliab 1998;47:23–31.

[20] Bartlett L, Andrews J. Efficient basic event ordering
schemes for fault tree analysis. Qual Reliab Eng Int
1999;15:95–101.

[21] Zhou Y-P, Zhao B-Q, Wu D-X. Application of genetic
algorithms to fault diagnosis in nuclear power plants.
Reliab Eng Syst Saf 2000;67:2:153–60.

[22] Martorell S, Carlos S, Sanchez A, Serradell V. Constrained
optimization of test intervals using a steady-state genetic
algorithm. Reliab Eng Syst Saf 2000;67:215–32.

[23] Marseguerra M, Zio E. Optimizing maintenance and
repair policies via a combination of genetic algorithms
and Monte Carlo simulation. Reliab Eng Syst Saf
2000;68:69–83.

[24] Brunelle R, Kapur K. Review and classification of relia-
bility measures for multistate and continuum models. IIE
Trans 1999;31:1171–80.

[25] Ushakov I. A universal generating function. Sov J Comput
Syst Sci 1986;24:37–49.

[26] Ushakov I. Reliability analysis of multi-state systems
by means of a modified generating function. J Inform
Process Cybernet 1988;34:24–9.

[27] Lisnianski A, Levitin G, Ben-Haim H, Elmakis D.
Power system structure optimization subject to reliability
constraints. Electr Power Syst Res 1996;39:145–52.

[28] Levitin G, Lisnianski A. Survivability maximization for
vulnerable multi-state systems with bridge topology.
Reliab Eng Syst Saf 2000;70:125–40.

[29] Birnbaum ZW. On the importance of different compo-
nents in a multicomponent system. In: Krishnaiah PR,
editor. Multivariate analysis 2. New York: Academic Press;
1969.

[30] Barlow RE, Proschan F. Importance of system com-
ponents and fault tree events. Stochast Process Appl
1975;3:153–73.

[31] Vesely W. A time dependent methodology for fault tree
evaluation. Nucl Eng Des 1970;13:337–60.

[32] Bossche A. Calculation of critical importance for
multi-state components. IEEE Trans Reliab 1987;R-36(2):
247–9.

[33] Back T. Evolutionary algorithms in theory and practice.
Evolution strategies. Evolutionary programming. Genetic
algorithms. Oxford University Press; 1996.

[34] Goldberg D. Genetic algorithms in search, optimization
and machine learning. Reading (MA): Addison Wesley;
1989.

90 System Reliability and Optimization

[35] Whitley D. The GENITOR algorithm and selective
pressure: why rank-based allocation of reproductive
trials is best. In: Schaffer D, editor. Proceedings 3rd
International Conference on Genetic Algorithms. Morgan
Kaufmann; 1989. p.116–21.

[36] Levitin G, Lisnianski A, Elmakis D. Structure optimiza-
tion of power system with different redundant elements.
Electr Power Syst Res 1997;43:19–27.

[37] Levitin G, Lisnianski A. Joint redundancy and mainte-
nance optimization for multistate series-parallel systems.
Reliab Eng Syst Saf 1998;64:33–42.

[38] Barlow R. Engineering reliability. Philadelphia: SIAM;
1998.

[39] Levitin G, Lisnianski A. Structure optimization of multi-
state system with two failure modes. Reliab Eng Syst Saf
2001;72:75–89.

[40] Levitin G. Redundancy optimization for multi-state
system with fixed resource requirements and unreliable
sources. IEEE Trans Reliab 2001;50(1):52–9.

[41] Levitin G. Multistate series–parallel system expansion
scheduling subject to availability constraints. IEEE Trans
Reliab 2000;49:71–9.

[42] Levitin G, Lisnianski A. Optimization of imperfect
preventive maintenance for multi-state systems. Reliab
Eng Syst Saf 2000;67:193–203.

[43] Levitin G, Lisnianski A. Optimal replacement scheduling
in multi-state series–parallel systems (short communica-
tion). Qual Reliab Eng 2000;16:157–62.

[44] Levitin G, Lisnianski A. Optimal multistage mod-
ernization of power system subject to reliability and
capacity requirements. Electr Power Syst Res 1999;50:
183–90.

Combinatorial Reliability
Optimization

Ch
ap

te
r5

C. S. Sung, Y. K. Cho and S. H. Song

5.1 Introduction
5.2 Combinatorial Reliability Optimization Problems of Series Structure
5.2.1 Optimal Solution Approaches
5.2.1.1 Partial Enumeration Method
5.2.1.2 Branch-and-bound Method
5.2.1.3 Dynamic Programming
5.2.2 Heuristic Solution Approach
5.3 Combinatorial Reliability Optimization Problems of a Non-series Structure
5.3.1 Mixed Series–Parallel System Optimization Problems
5.3.2 General System Optimization Problems
5.4 Combinatorial Reliability Optimization Problems with Multiple-choice Constraints
5.4.1 One-dimensional Problems
5.4.2 Multi-dimensional Problems
5.5 Summary

5.1 Introduction

Reliability engineering as a concept appeared in
the late 1940s and early 1950s and was applied first
to the fields of communication and transportation.
Reliability is understood to be a measure of how
well a system meets its design objective during
a given operation period without repair work.
In general, reliability systems are composed of
several subsystems (stages), each having more
than one component, including operating and
redundant units.

Reliability systems have become so complex
that successful operation of each subsystem
has been a significant issue in automation and
productivity management. One important design
issue is to design an optimal system having
the greatest quality of reliability or to find
the best way to increase any given system
reliability, which may be subject to various
engineering constraints associated with cost,

weight, and volume. Two common approaches to
the design issue have been postulated as follows:

1. an approach of incorporating more reliable
components (units);

2. an approach of incorporating more redundant
components.

The first approach is not always feasible, since
high cost may be involved or reliability improve-
ment may be technically limited. Therefore, the
second approach is more commonly adapted for
economical design of systems, for which optimal
redundancy is mainly concerned. In particular,
the combinatorial reliability optimization prob-
lem is defined in terms of redundancy optimiza-
tion as the problem of determining the optimal
number of redundant units of the component as-
sociated with each stage subject to a minimum
requirement for the associated whole system reli-
ability and also various resource restrictions, such
as cost, weight, and volume consumption.

91

92 System Reliability and Optimization

There are two distinct types of redundant
unit, called parallel and standby units. In parallel
redundant systems, one original operating unit
and all redundant units at each stage operate
simultaneously. However, in standby redundant
systems, any redundant units are not activated
unless the operating unit fails. If the operating unit
fails, then it will be replaced with one from among
the redundant units. Under the assumptions
that the replacement time for each failed unit is
ignored and the failure probability of each unit is
fixed at a real value, a mathematical programming
model for the standby redundancy optimization
problem can be derived as the same as that for
the parallel redundancy optimization problem.
The last assumption may be relaxed for the prob-
lem to be treated in a stochastic model approach.

The combinatorial reliability optimization is-
sues concerned with redundancy optimization
may be classified into:

1. maximization of system effectiveness (relia-
bility) subject to various resource constraints;
and

2. minimization of system cost subject to the
condition that the associated system effective-
ness (reliability) be required to be equal to or
greater than a desired level.

The associated system reliability function can
have a variety of different forms, depending on the
system structures. For example, the redundancy
optimization problem commonly considers three
types of system structure, including:

1. series structure;
2. mixed series–parallel structure;
3. general structure, which is in neither series

nor parallel, but rather in bridge network
type.

The series system has only one path between
the source and the terminal node, but the mixed
series–parallel system can have multiple paths
between them. The general-structured system can
also have multiple paths, while it is different from
the mixed series–parallel system such that at least
two subsystems (stages) are related in a non-series
and/or non-parallel structure.

The reliability function of the series system is
represented by a product form of all the associated
stage reliabilities. However, the other two systems
cannot have their reliability functions being
represented by any product forms of all stage
(subsystem) reliabilities. Rather, their reliabilities
may be computed by use of a minimal path set
or a minimal cut set. This implies that the series-
structured system has the simplest reliability
function form.

Thereby, the redundancy optimization problem
can be formulated in a variety of different math-
ematical programming expressions depending on
the associated system structures and problem ob-
jectives, as shown below.

Series system reliability maximization problem
(SRP):

ZSRP =max
∏
i∈I
[1− (1− ri)

yi]

subject to ∑
i∈I

gmi (yi)≤ Cm ∀m ∈M (5.1)

yi = non-negative integer ∀i ∈ I (5.2)

where ZSRP represents the optimal system relia-
bility of the problem (SRP), I is the set of stages,
ri is the reliability of the component used at stage
i, yi is the variable representing the number of
redundant units of the component allocated at
stage i, gmi (yi) is the consumption of resource m

for the component and its redundant units in stage
i, and Cm is the total available amount of the
resource m.

The constraints in Equation 5.1 represent
the resource constraints and the constraints in
Equation 5.2 define the decision variables to be
non-negative integers.

Non-series system reliability maximization
problem (NRP):

ZNRP =max R(R1, . . . , Ri, . . . , R|I |)

subject to the constraints in Equations 5.1
and 5.2, where ZNRP represents the optimal
system reliability of the problem (NRP), and

Combinatorial Reliability Optimization 93

R(R1, . . . , Ri, . . . , R|I |) is the system reliability
function, given the reliability of each stage i at
Ri = [1− (1− ri)

yi], which is dependent upon
the associated system structure.

Series system cost minimization problem (SCP):

ZSCP =min
∑
i∈I

gi(yi)

subject to the constraints in Equations 5.1 and 5.2:∏
i∈I
[1− (1− ri)]yi ≥ Rmin (5.3)

where ZSCP represents the optimal system cost
of the problem (SCP), gi(yi) is the cost charged
for resource consumption yi at stage i, and Rmin
is the minimum level of the system reliability
requirement. The constraints in Equation 5.3
represent the system reliability constraint.

Non-series system cost minimization problem
(NCP):

ZNCP =min
∑
i∈I

gi(yi)

subject to the constraints in Equations 5.1 and 5.2:

R(R1, . . . , Ri, . . . , R|I |)≥ Rmin (5.4)

where ZNCP represents the optimal system cost
of the problem (NCP). The constraints in Equa-
tion 5.4 represent the system reliability require-
ment.

The constraints in Equation 5.1 representing
resource consumption are given in general func-
tion forms, since the resource consumption for
improving the associated system reliability does
not increase linearly as the number of redundant
units of the component at each stage increases.
Therefore, the data of the resource consumption
rate are important for the problem formulation.
However, only few data are practically available, so
that the resource constraints are often expressed
in linear functions with the variable representing
the number of redundant units. Accordingly, the
constraints in Equation 5.1 can be specified as∑

i∈I
gmi (yi)=

∑
i∈I

cmi yi ≤ Cm

where cmi denotes the consumption of resource m

at stage i.
The proposed combinatorial reliability opti-

mization problems are now found as being ex-
pressed in nonlinear integer programming where
the associated system reliability functions are
nonlinear functions. It is also found that the
reliability function of the non-series-structured
system is not separable. In other words, the sys-
tem reliability cannot be in any product form
of all stage reliabilities. This implies that it is
not easy to evaluate the reliability of the general-
structured system. Valiant [1] has proved that
the problem of computing reliabilities (reliability
objective function values) for general-structured
systems is NP-complete. In the meantime, for
the mixed series–parallel types of system among
them, Satyanarayana and Wood [2] have proposed
a linear time algorithm to compute the reliability
objective function values, given their associated
stage reliabilities.

The complexity analysis by Chern [3] shows
that the simplest reliability maximization problem
of series systems with only one resource con-
straint incorporated is NP-complete. Therefore,
even though many algorithms have been proposed
in the literature, only a few have been proven effec-
tive for large-scale nonlinear reliability program-
ming problems, and none of them has been proven
to be superior over any of the others. A variety
of different solution approaches have been stud-
ied for the combinatorial reliability optimization
problems; these are listed as follows.

Optimal solution approaches:

• integer programming;
• partial enumeration method;
• branch-and-bound method;
• dynamic programming.

Heuristic approaches:

• greedy-type heuristics.

Continuous relaxation approaches:

• maximum principle;
• geometric programming;
• sequential unconstrained minimization

technique (SUMT);

94 System Reliability and Optimization

• modified sequential simplex pattern
search;
• Lagrangian multipliers and Kuhn–Tucker

conditions;
• generalized Lagrangian function;
• generalized reduced gradient (GRG);
• parametric programming.

The integer programming approach has been
considered for integer solutions, whereas the
associated problems have nonlinear objective
functions and/or constraints that may be too
difficult to handle in the approach. However, no
integer programming techniques guarantee that
the optimal solutions can be obtained for large-
sized problems in a reasonable time. Similarly,
the dynamic programming approach has the curse
of dimensionality, whose computation load may
increase exponentially with the number of the
associated state variables. Moreover, in general, it
gets harder to solve problems with more than two
constraints.

Heuristic algorithms have been considered to
find integer-valued solutions (local optimums) in
a reasonable time, but they do not guarantee
that their resulting solutions are globally optimal.
However, Malon [4] has shown that greedy
assembly is optimal whenever the assembly
modules have a series structure.

The continuous relaxation approaches in-
cluding the sequential unconstrained minimiza-
tion technique, the generalized reduced gradient
method, and the generalized Lagrangian func-
tion method have also been developed for reli-
ability optimization problems. Along with these
methods, rounding-off procedures have often
been applied for redundancy allocation problems
in situations where none of the relaxation ap-
proaches could yield integer solutions. The asso-
ciated reference works have been summarized in
Tables 1 and 3 of Tillman et al. [5].

Any problem with a nonlinear reliability
objective function can be transformed into a
problem with linear objective function, in a
situation where the nonlinear objective function
is separable. This has been studied in Tillman
and Liittschwager [6]. By taking logarithms

of the associated system reliability function
and considering appropriate substitutions, the
following equivalent problem (LSRP) with linear
objective function and constraints can be derived:

Problem (LSRP):

ZLSRP =max
∑
i∈I

∞∑
k=1

�fij yij

subject to∑
i∈I

∞∑
k=1

�cmikyik ≤ Cm ∀m ∈M (5.5)

yik − yi,k−1 ≤ 0 ∀k ∈ Z+, i ∈ I (5.6)

yi0 = 1 ∀i ∈ I (5.7)

yik = binary integer ∀k ∈ Z+, i ∈ I (5.8)

where yik is the variable representing the kth
redundancy at stage i,

�fik = [1− (1− ri)
k] − [1− (1− ri)

k−1]
= (1− ri)

k−1 − (1− ri)
k,

which is the change in system reliability due
to the kth redundancy added at stage i, and
�cmik = gmi (k)− gmi (k − 1), which is the change
in consumption of resource m due to the kth
redundancy added at stage i.

Likewise, the problem (SCP) can also be trans-
formed into a problem with linear constraints.
The problems (NRP) and (NCP), however, cannot
be transformed into any linear integer program-
ming problems, since the associated system relia-
bility functions are not separable.

Note that if any problem with a separable
reliability function has linear resource constraints,
then its transformed problem can be reduced to a
knapsack problem.

This chapter is organized as follows. In Sec-
tion 5.2, the combinatorial reliability optimiza-
tion problems for series structures are considered.
Various solution approaches, including optimal
solution methods and heuristics, are introduced.
Section 5.3 considers the problems (NRP) for non-
series structured systems. Section 5.4 considers a
problem with multiple-choice constraints incor-
porated and the corresponding solution approach

Combinatorial Reliability Optimization 95

is introduced, which has been studied recently.
Finally, concluding remarks are presented.

5.2 Combinatorial Reliability
Optimization Problems of Series
Structure

This section considers combinatorial reliability
optimization problems having series structures.
Many industrial systems (e.g. heavy machines
and military weapons), whose repair work is
so costly (difficult), are commonly designed in
series structures of their subsystems to have
multiple components in parallel at each stage
(subsystem) so as to maintain (increase) the whole
system reliability. For example, each combat tank
(system) is composed of three major subsystems
(including power train, suspension, and fire
control subsystems) in a series structure. In order
to increase the whole combat tank reliability,
the combat tank is designed to have multiple
blowers in parallel in the power train subsystem,
multiple torsion bars and support rollers in
parallel in the suspension subsystem, and multiple
gunner controllers in parallel in the fire control
subsystem. Thus, the associated design issue of
how many components to be installed multiply in
each subsystem for an optimal combat tank system
can be handled as a series system combinatorial
reliability optimization problem.

The approach of having multiple components
in parallel at each subsystem can also be applied
to many production systems. For example, the
common wafer-fabrication flow line is composed
of three major processes, viz. diffusion/oxidation,
photolithography, and etching, which are handled
by the three corresponding facilities called fur-
nace, stepper, and dry etcher respectively. In the
fabrication flow line, it is common to have multiple
facilities in parallel for each of the processes so
as to increase the whole line reliability. Thus, the
associated design issue of how many facilities to be
installed multiply in each process for an optimal
wafer-fabrication flow line can also be handled as

a series system combinatorial reliability optimiza-
tion problem.

5.2.1 Optimal Solution Approaches

The combinatorial reliability problem of a se-
ries structure has drawn research attention, as
shown in the literature, since 1960s. All the early
studies for the associated reliability optimiza-
tion problems were concerned with finding op-
timal solutions for them. Their representative
solution approaches include the partial enumera-
tion method, the branch-and-bound method, and
the dynamic programming algorithm.

5.2.1.1 Partial Enumeration Method

Misra [7] has applied the partial enumeration
method to the redundancy optimization problem.
The partial enumeration method was first pro-
posed by Lawler and Bell [8], and was devel-
oped for a discrete optimization problem with a
monotonic objective function and arbitrary con-
straints. Misra [7] has dealt with the problem as
maximizing reliability or optimizing some other
objective functions subject to multiple separable
constraints (not necessarily being linear func-
tions). He has transformed the problem into con-
formable forms to the method.

Using the partial enumeration method of
Lawler and Bell [8], the following types of problem
can be solved:

Minimize g0(v̄)

subject to

gm1 (v̄)− gm2 (v̄)≥ 0 ∀m ∈M
where v̄ = (v1, v2, . . . , v|I |) and vi = 0 or 1,
∀i ∈ I .

Note that each of the functions, gm1 (v̄) and
gm2 (v̄), must be monotonically non-decreasing
with each of its arguments. With some ingenuity,
many problems may be put in this form.

Let vector v̄ = (v1, v2, . . . , v|I |) be a binary
vector in the sense that each vi is either 0
or 1. Define v̄1 ≤ v̄2 iff v1

i ≤ v2
i for ∀i ∈ I,

which is called the vector partial ordering.
The lexicographic or numerical ordering of these

96 System Reliability and Optimization

vectors can also be obtained by identifying
with each v̄ the integer value N(v̄)= v12n−1 +
v22n−2 + · · · + vn20. The numerical ordering is a
refinement of the vector partial ordering such that
v̄1 ≤ v̄2 implies N(v̄1)≤N(v̄2), whereas N(v̄1) ≤
N(v̄2) does not imply v̄1 ≤ v̄2.

The partial enumeration method of Lawler and
Bell [8] is basically a search method, which starts
with (0, . . . , 0) and examines the 2|I | solution
vectors in the numerical ordering described
above. By the way, the labor of examination can
be considerably cut down by the following three
rules. As the examination proceeds, one can retain
the least costly up-to-date solution. If v̂ is the
least costly solution having cost g0(v̂) and v̄ is
the vector to be examined, then the following
steps indicate the conditions under which certain
vectors may be skipped.

Rule 1. Test if g0(v̄)≤ g0(v̂). If yes, skip to v∗ and
repeat the operation; otherwise, proceed
to Rule 2. Here, the value v∗ is the first
vector following v̄ in the numerical order
that has the property v̄ < v∗. For any v̄, v∗
is calculated by subtracting one from the
binary number v̄, and v∗ − 1 is calculated
by logical OR operation performed between
v̄ and v̄ − 1 (e.g. let us have v̄ = (1010).
Then v̄ − 1= (1001), and so v∗ − 1=
v̄ OR (v̄ − 1)= (1011)). Finally, add one to
obtain v∗.

Rule 2. Examine if gm1 (v∗ − 1)− gm2 (v̄) ≤ 0 ∀m ∈
M . If yes, proceed to Rule 3; otherwise, skip
to v∗ and go to Rule 1.

Rule 3. If gm1 (v∗ − 1)− gm2 (v̄) ≥ 0 ∀m ∈M, then
replace v̂ by v̄ and skip to v∗; otherwise,
change v̄ to v̄ + 1. In either case, transfer to
Rule 1 for further execution.

The above three rules are the so-called algo-
rithm skipping rules. By following the rules, it is
necessary to examine all the binary vectors and
continue scanning until a vector having maximum
numerical order, (1, . . . , 1), is found. In a situ-
ation where one has skipped to a vector having
numerical order higher than (1, . . . , 1), the pro-
cedure is terminated and the resulting least-costly

vector provides the optimal solution. For details,
refer to Lawler and Bell [8]. For a numerical ex-
ample, refer to Misra [7].

5.2.1.2 Branch-and-bound Method

A few researchers have considered the branch-
and-bound method for the series system relia-
bility maximization problem. They include Ghare
and Taylor [9], Sung and Lee [10], and Kuo
et al. [11]. The branch-and-bound method is
usually described by determining bounding and
branching procedures. For a general branch-and-
bound technique, refer to Lawler and Wood [12].
In Ghare and Taylor [9], the problem (SRP) was
transformed into a problem with binary variables,
and then it was proved that there is a correspon-
dence between their feasible solutions. Finally,
they proposed a branch-and-bound method for
the transformed binary problem.

The transformed binary problem is formulated
as follows:

ZSRP =max
∑
i∈I

k=∞∑
k=1

aikxik

subject to

∑
i∈I

k=∞∑
k=1

cmi xik ≤ bm ∀m ∈M (5.9)

xik = binary integer ∀k ∈ Z+, i ∈ I (5.10)

where xik indicates whether or not the kth
redundant unit is used at stage i, aik = ln[1−
(qi)

k+1] − ln[1− (qi)
k], qi = (1− ri), cmi denotes

the consumption of resource m of at stage i, and
bm = Cm −∑i∈I cmi .

Ghare and Taylor [9] have developed a branch-
and-bound method for the binary problem in
which a simple bound of the series system relia-
bility has been derived by using the inequality of
the component reliability and cost consumption.
In order to develop a bounding procedure for
the associated branch-and-bound algorithm, they
have considered a single-dimensional knapsack
problem as ZSRP =max

∑
i∈I
∑k=∞

k=1 aikxik, sub-
ject to a single constraint

∑
i∈I
∑k=∞

k=1 cmi xik ≤ bm

for a given m, and defined the ratios αik = aik/c
m
i .

Combinatorial Reliability Optimization 97

Then, for a feasible solution, the following relation
holds:

ZSRP =max
∑
i∈I

k=∞∑
k=1

aikxik

=max
∑
i∈I

k=∞∑
k=1

αikc
m
i xik

≤max
i,k

(αik)
∑
i∈I

k=∞∑
k=1

cmi xik

≤max
i,k

(αik)b
m

Moreover, since

exp(aik)= [1− (qi)
k+1]/[1− (qi)

k]
= 1+ (qi)

k/[1+ qi + · · · + (qi)
k−1]

and

exp(ai,k+1)= [1− (qi)
k+2]/[1− (qi)

k+1]
= 1+ (qi)

k+1/[1+ qi + · · · + (qi)
k]

it can be seen that aik > aik+1, which implies
αik > αik+1, or maxi,k(αik)=maxi (αi1). It follows
that ZSRP ≤maxi (αi1)bm.

In the problem, there are |M| constraints, one
for each resource m, so that for any feasible
solution for the problem, it holds that

ZSRP ≤max
i

(αi1)b
m for any m

≤ min
m∈M

[
max
i

(αi1)b
m
]

Consequently, the optimal objective value ZSRP is
bounded by the quantity minm∈M [maxi (αi1)bm],
which is the upper bound for the problem.
For the complete description of the proposed
branch-and-bound procedure, refer to Ghare and
Taylor [9] and Balas [13]. Their branch-and-
bound procedure has been modified by McLeavey
[14] in several subfunctions, including algorithm
initialization, branching variable selection, depth
of searching, and problem formulation with either
binary variables or integer variables. Moreover, in
McLeavey and McLeavey [15], all those solution
methods, in addition to the continuous relaxation
method of Luus [16], the greedy-type heuristic

method of Aggarwal et al. [17], and the branch-
and-bound method of Ghare and Talyor [9],
have been compared against one another in
performance, being measured in terms of CPU
time, optimality rate, relative error for the
optimum, and coding efforts.

Recently, a new bounding mechanism has
been proposed in Sung and Lee [10], based on
which an efficient branch-and-bound algorithm
has been developed. In developing the algorithm,
they did not deal with any transformed binary
problem, but dealt with the problem (SRP)
directly.

Given any feasible system reliability Z̄ to the
problem, Sung and Lee [10] have characterized the
two properties that the optimal system reliability
ZSRP should be equal to or greater than Z̄ and
that the system reliability can be represented
by a product form of all the stage reliabilities.
These properties are used to derive the following
relation for each stage s as

Rs(y
∗
s)≥

ZSRP∏
i �=s Ri(y

u
i)
≥ Z̄∏

i �=s Ri(y
u
i)

where Rs(y
∗
s)= 1− (1− rs)

y∗s and, y∗s and yu
s are

the optimal solution and an upper bound of ys
respectively. Accordingly, y∗s should be less than
or equal to yu

s . Therefore, the lower bound y l
s of

ys can be determined as

y l
s =max

{
ys

∣∣∣∣ Rs(ys)≥ Z̄∏
i �=s Ri(y

u
i)

}
In addition, an efficient way of determining such
upper bounds can be found based on y l

i ∀i ∈ I ,
Km, and Rm

s , where

Km =max
i∈I

{
ln[Ri(y

l
i + 1)] − ln[Ri(y

l
i)]

gmi (y
l
i + 1)− gmi (y

l
i)

}
and

Rm
s =KmCm −

∑
i �=s
{Kmgmi (y

l
i)− ln[R(y l

i)]}

− ln Z̄

Km may be interpreted as the maximum marginal
contribution to the reliability from unit addition

98 System Reliability and Optimization

of resource m and Rm
s is just a value computed in

association with Z̄ and y l
i (i �= s). Thus, the upper

bound of ys can be determined as

yu
s =max

{
ys

∣∣∣∣ ys ≥ yls;Kmgms (ys)− ln[Rs(ys)]
≤ Rm

s or gms (ys)

≤ Cm −
∑
i �=s

gmi (yi), ∀m
}

From the above discussions, the lower and
upper bound values of ys can now be summarized
as giving the basis for finding the optimal value y∗s
such that

(a) y l
s ≤ y∗s ≤ yu

s , ∀s ∈ I ;
(b) each y l

s can be determined at a specific yu
i

(i �= s) value given;
(c) each yu

s can be determined at a specific y l
i

(i �= s) value given; and
(d) the larger lower bounds lead to the smaller

upper bounds, and vice versa.

Based on these relations between the lower and
upper bounds, an efficient search procedure for
the bounds has been proposed.

Bounding procedure:

Step 1. Set t = 1, Ri(y
u
i0)= 1 (i.e. yu

i0 =∞),

where the index t represents iteration
number. Then, find Z̄ by using the greedy-
type heuristic algorithm in Sung and Lee
[10].

Step 2. Calculate y l
it ∀i ∈ I, by using yu

i,t−1 ∀i ∈ I .

Step 3. Calculate yu
it ∀i ∈ I, by using y l

it ∀i ∈ I .
If yu

it = yu
i,t−1 ∀i ∈ I, then go to Step 4;

otherwise, set t = t + 1, and then go to
Step 2.

Step 4. Set yu
i = yu

it , y
l
i = y l

it , and then terminate
the procedure.

Sung and Lee [10] have proved that both
the upper and lower bounds obtained from the
proposed bounding procedure converge to the
heuristic solution ȳi for every i.

Theorem 1. (Sung and Lee [10]) The heuristic so-
lution (ȳ1, . . . , ȳ|I |) satisfies the relations:

y l
i1 ≤ y l

i2 ≤ · · · ≤ y l
i ≤ ȳi ≤ yu

i ≤ · · · ≤ yu
i1

∀i ∈ I
In Sung and Lee [10], no theoretical compar-

ison between the bound of Ghare and Taylor [9]
and that of Sung and Lee [10] has been made, but
a relative efficiency comparison with the branch-
and-bound algorithm of Ghare and Taylor [9] for
ten-stage reliability problems has been made to
find that their proposed algorithm is about ten
times more efficient. It is seen in the numerical
test of the algorithm of Sung and Lee [10] that
the smaller-gap-first-order branching procedure
is more efficient than the larger-gap-first-order
branching procedure. The smaller-gap-first-order
branching procedure implies that the stage with
the smaller gap between upper and lower bounds
is branched earlier. For details, refer to Sung and
Lee [10].

Kuo et al. [11] have dealt with the problem
(SRP) and proposed a method incorporating a
Lagrangian relaxation method and a branch-and-
bound method. However, the method does not
guarantee the optimal solution, since the branch-
and-bound method is applied only to search for
an integer solution based on a continuous relaxed
solution obtained by the Lagrangian multiplier
method.

5.2.1.3 Dynamic Programming

Various research studies have shown how dynamic
programming could be used to solve a variety of
combinatorial reliability optimization problems.
As mentioned earlier, the dynamic programming
method is based on the principle of optimality.
It can yield an exact solution to a problem, but its
computational complexity increases exponentially
as the number of constraints or the number
of variables in the problem increases. For the
combinatorial reliability optimization problems,
two dynamic programming approaches have been
applied: one is a basic dynamic programming
approach [18], and the other is a dynamic
programming approach using the concept of

Combinatorial Reliability Optimization 99

Table 5.1. Problem data for the basic dynamic programming
algorithm

Stage 1 2 3
ri 0.8 0.9 0.85
ci (= cost) 2 4 3

Constraints: C ≤ 9

dominance sequence [19, 20]. The first of these
approaches is described in this section, but the
latter is introduced in Section 5.3, where the
computational complexity of each of the two
approaches is discussed.

The basic dynamic programming approach is
applied to the redundancy optimization problem
for a series system, which is to maximize the
system reliability subject to only the budget
constraint. The recursive formula of the problem
in the basic dynamic programming algorithm is
formulated as follows:

for stage 1;

f1(d)= max
g1(y1)≤d,y1∈Z+

[R1(y1)], 1≤ d ≤ C

for stage 2;

f2(d)= max
g2(y2)≤d,y2∈Z+

{R2(y2)f1[d − g2(y2)]},
1≤ d ≤ C

for stage i;

fi(d)= max
gi (yi)≤d,yi∈Z+

{Ri(yi)fi−1[d − gi(yi)]},
1≤ d ≤ C

for the last stage |I |;
f|I |(C)= max

y|I |∈Z+
{R|I |(y|I |) · f|I |−1[C − g|I |(y|I |)]}

where C represents the amount of budget
available, and Ri(yi) represents the reliability of
stage i when the stage i has yi redundant units.

In order to illustrate the basic dynamic
programming method algorithm, a numerical
example shall be solved with the data given in
Table 5.1. And its results are summarized in
Table 5.2.

5.2.2 Heuristic Solution Approach

This section presents a variety of heuristic
methods that can give integer solutions directly.
As discussed already, the given problems are
known to be in the class of NP-hard problems.
Therefore, all the solution methods discussed
in the previous sections may give the optimal
solutions, but their computational time to obtain
the solutions may increase exponentially as the
problem size (variables) increases. This is why a
variety of heuristic methods have been considered
as practical approaches to find approximate
solutions in a reasonable time.

Research on the heuristic approaches was
extensive from the early 1970s to the mid 1980s.
Most of these heuristic approaches are categorized
into a kind of greedy-type heuristic method.
For example, Sharma and Venkateswaran [21]
considered a problem in 1971 whose objective
was to maximize the associated system reliability
subject to nonlinear constraints, which is the
same as the problem (SRP). For the problem,
they presented a simple algorithm, that handles
the objective function being transformed into an
easier form, such as the function of the failure
probability function transformed as follows:

max
∏
i∈I
[1− (1− ri)

yi]

=min

{
1−

∏
i∈I
[1− (1− ri)

yi]
}

∼=min

{
1−

∑
i∈I
[1− (1− ri)

yi]
}

∼=min
∑
i∈I

(1− ri)
yi

=min
∑
i∈I

q
yi
i

where qi is the failure probability of the compo-
nent at stage i.

The algorithm of Sharma and Venkateswaran
[21] adds one component to the associated stage
in each iteration until no more components can
be added to the system due to the associated
resource constraints, in which the component-
adding stage has the largest failure probability

100 System Reliability and Optimization

Table 5.2. Example of the basic dynamic programming algorithm

Stage 1 Stage 2 Stage 3

d Y1 f1(d) d y2 R2(y2) f1(d − c2, y2) f2(d) y3 R3(y3) f2(d − c3, y3)

2 1 0.8 4 1 0.9 0 0 1 0.85 0.72a

4 2 0.96 6 1 0.9 0.8 0.72 2 0.978 0
6 3 0.992 8 2 0.99 0 0 3 0.997 0
8 4 0.998 — — — — — — — —

a Optimal solution value.

Table 5.3. Problem data for the heuristic algorithm

Stage 1 2 3
qi 0.1 0.2 0.15

c1
i (= cost) 5 7 7

c2
i (= weight) 8 7 8

Constraints: C1 ≤ 45 andC2 ≤ 54

among the stages in the system. For the detailed
step-by-step procedure, refer to Sharma and
Venkateswaran [21].

In order to illustrate the algorithm of Sharma
and Venkateswaran [21], a numerical example
shall be solved with the data given in Table 5.3.

Starting with a feasible solution (1, 1, 1), add
one unit at each iteration of the algorithm as
shown in Table 5.4. After four iterations, the final
solution (2, 3, 2) is obtained and its objective
function value is 0.96.

The algorithm of Sharma and Venkateswaran
[21] may not yield a good (near-optimal) solution
if only those components of similar reliability
but quite different resource consumption rate
are available to all the stages. Besides, in
certain cases, slack variables (balance of unused
resources) may prevent addition of only one
component to a particular stage having the
lowest reliability, but permit addition of more
than one component to another stage having
the highest reliability. The latter case may result
in a greater net increase in reliability than the
former. However, their discussion on component

addition is made just based on component-
wide reliability, but without considering any
effectiveness of resource utilization. In fact,
the effectiveness can be represented by the
contribution of each component addition to the
whole system reliability, so that any component
addition at the stage having the lowest reliability
will have greater effectiveness in increasing the
whole system reliability than any component
addition at any other stage. Therefore, Aggarwal
et al. [17] proposed a heuristic criterion for
solving the resource-constrained problem in
consideration of resource utilization effectiveness.
The heuristic algorithm is based on the concept
that a component is added to the stage where its
addition produces the largest ratio of increment in
reliability to the product of increments in resource
usage. Accordingly, the stage selection criterion is
defined as

Fi(yi)≡ �(q
yi
i)∏

m∈M �gmi (yi)

where �(q
yi
i)= q

yi
i − q

yi+1
i for all i and

�gmi (yi)= gmi (yi + 1)− gmi (yi) for all i and
m.

In the case of linear constraints, however, all
Fi(yi) can be evaluated by using the following
recursive relation:

Fi(yi + 1)= qiFi(yi)

For details, refer to Aggarwal et al. [17]. The
algorithm of Aggarwal et al. [17] is similarly illus-
trated with the data of Table 5.3, as summarized in
Table 5.5.

Combinatorial Reliability Optimization 101

Table 5.4. Illustration of the stepwise iteration of the algorithm of Sharma and Venkateswaran [21]

Iteration No. of units in each stage Failure probability of each stage Cost Weight

1 2 3 1 2 3

0 1 1 1 0.1 0.2a 0.15 19 23
1 1 2 1 0.1 0.04 0.15a 26 30
2 1 2 2 0.1a 0.04 0.0225 33 38
3 2 2 2 0.01 0.04a 0.0225 38 46
4 2 3 2 0.01 0.008 0.0225 45 53

a The stage to which a redundant unit is to be added.

Table 5.5. Illustration of the stepwise iteration of the algorithm of Aggarwal et al. [17]

Iteration No. of units in each stage Fi(yi) Cost Weight

1 2 3 1 2 3

0 1 1 1 0.002 25 0.003 27a 0.002 28 19 23
1 1 2 1 0.002 25 0.000 65 0.002 28a 26 30
2 1 2 2 0.002 25a 0.000 65 0.000 34 33 38
3 2 2 2 0.000 23 0.000 65a 0.000 34 38 46
4 2 3 2 — — — 45 53

a The stage to which a redundant unit is to be added.

For the example given, after four iterations the
algorithm gives the same final solution as that of
the algorithm of Sharma and Venkateswaran [21].

Some computational experience has revealed
that the performance of the algorithm of Aggarwal
et al. [17] deteriorates with an increase in
the number of constraints. The reason for this
deterioration may be due to too much emphasis on
resources in the product term in the denominator
of the selection factor, which is derived as the ratio
of increase in system reliability to the product of
increments in consumption of various resources
when one more redundant component is added
to a stage. In order to take care of this problem,
Gopal et al. [22] proposed a heuristic criterion for
selecting the stage to which a redundant unit is
to be added. Their criterion is given as the ratio
of the relative decrement in failure probability to
the largest relative increments in resources. As in
Gopal et al. [22], the relative increment in resource
consumption is defined as

�Gm
i (yi)=�gmi (yi)/max

i∈I [�gmi (yi)] ∀i and m

where �gmi (yi) represents increment in gmi (yi)

due to increasing yi by unity. A redundant unit is
then to be added to the stage where its addition
leads to the least value of the selection factor
without violating any of the |M| constraints in
Equation 5.1.

Fi(yi)= max
m∈M[�Gm

i (yi)]/�Qs(yi |ȳ)

where �Qs(yi |ȳ) represents the decrement in
system failure probability due to increasing yi by
unity.

For a system with linear constraints, the
function �Gm

i (yi) is independent of yi and hence
needs to be computed only once. Accordingly, the
selection factor Fi(yi) can be easily computed via
the following forms:

(a) Fi(yi)≈ Fi(yi − 1)/(1− ri) for yi > 1, and
(b) Fi(1)=maxm∈M [�Gm

i (yi)]/[r(1− ri)].
For details, refer to Gopal et al. [22]. With the

same data in Table 5.3, the algorithm of Gopal et al.
[22] is also illustrated in Table 5.6. Likewise, after

102 System Reliability and Optimization

Table 5.6. Illustration of the stepwise iteration of the algorithm of Gopal et al. [22]

Iteration No. of units in each stage Fi(yi) Cost Weight

1 2 3 1 2 3

0 1 1 1 11.11 6.25a 7.84 19 23
1 1 2 1 11.11 31.25 7.84a 26 30
2 1 2 2 11.11a 31.25 52.29 33 38
3 2 2 2 111.11 31.25a 52.29 38 46
4 2 3 2 — — — 45 53

a The stage to which a redundant unit is to be added.

four iterations, the algorithm of Gopal et al. [22]
gives the final solution, which is the same as those
of the algorithms of Sharma and Venkateswaran
[21] and Aggarwal et al. [17].

Other heuristic algorithms have been proposed
by Misra [23] and by Nakagawa and Nakashima
[24]. For example, Misra [23] suggested the ap-
proach of reducing one r-constraint problem from
among many r-problems, each with one con-
straint, where an r-constraint problem is a re-
duced problem with only one constraint consid-
ered out of the r constraints, and each r-problem
is such a reduced problem. In the approach, a
desirability factor (i.e. the ratio of the percentage
increase in the system reliability to the percent-
age increase of the corresponding cost) was used
to determine the stage to which a redundancy
is added. However, the approach has dealt with
linear constraint problems. As the number of con-
straints increases, the computation time becomes
remarkably larger. Nakagawa and Nakashima [24]
presented a method that can solve the reliability
maximization problem with nonlinear constraints
for a series system. Balancing between the reliabil-
ity objective function and resource constraints is
a basic consideration in the method. A limitation
to the approach is that it cannot be used to solve
any problem of complex system configuration. For
detailed algorithms and numerical examples, refer
to Misra [23] and Nakagawa and Nakashima [24].

Kuo et al. [25] have presented a note on
some of the heuristic algorithms of Sharma
and Venkateswaran [21], Aggarwal et al. [17],
Misra [23], and Nakagawa and Nakashima [24].

Nakagawa and Miyazaki [26] have compared
three heuristic algorithms, each against the other,
including those of Sharma and Venkateswaran
[21], Gopal et al. [22], and Nakagawa and
Nakashima [24], in terms of CPU time, optimality
rate, and relative error.

5.3 Combinatorial Reliability
Optimization Problems of a
Non-series Structure

This section considers problems having non-
series structures including mixed series–parallel
structures and general structures.

5.3.1 Mixed Series–Parallel System
Optimization Problems

As mentioned earlier, a mixed series–parallel
structure is defined as one in which the relation
between any two stages is in series or parallel. For
such a structure, the system reliability function is
not expressed as a product form of the reliabilities
of all stages, but as a multinomial form of
the reliabilities of multiple paths. Therefore, the
system reliability depends on its system structure,
and so is very complicated to compute. However,
it is known that the system reliability of a mixed
series–parallel structure can be figured out on the
order of a polynomial function of the number of
stages, so that the complexity of computing the

Combinatorial Reliability Optimization 103

system reliability does not increase exponentially
as the number of stages in the system increases.

One often sees mixed series–parallel structures
in international telephone systems. For example,
each international telephone system between
any two countries is composed of two major
subsystems. One of them is a wire system, and
the other one is a wireless system. In the whole
system, all calls from one country to another
country are collected together at an international
gateway; some of the calls are transmitted through
the wireless system from an earth station of one
country to the corresponding earth station of the
other country via a communications satellite; the
rest of the calls are transmitted through the wire
system (being composed of terminals and optical
cables) from the international gateway to the
corresponding international gateway of the other
country. For these international communications,
both the wire and the wireless systems are
equipped with multiple modules in parallel, each
being composed of various chipsets so as to
increase the whole system reliability. Thus, the
associated design issue of how many modules
to be installed multiply in each subsystem for
an optimal international telephone system can
be handled as a mixed series–parallel system
optimization problem.

Only a few researches have considered the re-
liability optimization issue for such mixed series–
parallel systems. For example, Burton and Howard
[27] have dealt with the problem of maximizing
system reliability subject to one resource con-
straint such as budget restriction. Their algo-
rithm is based on a basic dynamic programming.
Recently, Cho [28] has proposed a dominance-
sequence-based dynamic programming algorithm
for the problem with binary variables and an-
alyzed its computational complexity, and then
compared it with the algorithm of Burton and
Howard [27].

We now introduce the dominance-sequence-
based dynamic programming algorithm of
Cho [28]. The problem, dealt with by Cho [28],
is one with a mixed series–parallel system
structure. For developing the algorithm, the
following assumptions are made. First, the

resource consumption for the entire system is
represented by a discrete linear function. Second,
the resource coefficients are all integer valued. The
proposed algorithm is composed of two phases.
The first phase is to construct a reduction-order
graph, which is defined as a directed graph having
the precedence relation between nodes in the
proposed mixed series–parallel system. Referring
to Satyanarayana and Wood [2], the mixed series–
parallel system can be reduced to a one-node
network in the complexity order of O(|E|),
where |E| denotes the cardinality of the set of
edges in the given mixed series–parallel system.
Two examples of the reduction-order graphs are
depicted in Figure 5.1. The order of reducing the
given graph is not unique, but the structure of the
reduction-order graph remains the same as that
of the given graph, which is represented as a tree.
The number of end nodes of the graph depends
on the given system structure. The second phase
is concerned with a process of reducing two
stages (including series-stage reduction and
parallel-stage reduction) into one as follows.

Series-stage reduction. Suppose that stages i and
k are merged together in series relation and to
generate a new stage s. Then, it can be processed
as rij rkl→ rs,j×l and cmij + cmkl→ cms,j×l for all m.
Accordingly, the variable ys,j×l will be included in
the stage s with its reliability and consumption of
resource m at rs,j×l and cms,j×l , respectively.

Parallel-stage reduction. Suppose that stages i and
k are also merged together in parallel relation
and to generate a new stage s. Then, it can be
processed as rij + rkl − rij rkl→ rs,j×l and cmij +
cmkl→ cms,j×l . Accordingly, the variable xs,j×l will
be newly included in the stage s with its reliability
and consumption of resource m at rs,j×l and
cms,j×l , respectively.

The above discussions on stage reduction are
now put together to formulate the dominance-
sequence-based dynamic programming proce-
dure:

Step 0. (Ordering) Apply the algorithm of Satya-
narayana and Wood [2] to the proposed
mixed series–parallel system and find the

104 System Reliability and Optimization

Figure 5.1. Two examples of the reduction-order graph

reduction-order graph of the system. Go to
Step 1.

Step 1. (Initialization) Arrange all stages accord-
ing to the reduction-order graph, and set
σ = ∅ and σ̄ = {(1), (2), . . . , (|I |)}, which
represents the set of the reduced stages and
non-reduced ones respectively. Go to Step 2.

Step 2. (Reduction) If any two selected stages
are in series relation, then perform the
series-stage reduction procedure for the
two stages. Otherwise, perform the parallel-
stage reduction procedure. Go to Step 3.

Step 3. (Termination) As σ̄ becomes a null set,
terminate the procedure. Otherwise, go to
Step 2.

To illustrate the dominance-sequence-based
dynamic programming procedure, a numerical
example is solved. The problem data are listed in
Table 5.7. And the structure of Figure 5.1(a) is used
as representing the example.

At the first iteration, the series-stage reduction
procedure is applied to merge stages b and c into
stage 3. The variables of stage 3 are generated in
Table 5.8.

At the second iteration, the parallel-stage
reduction procedure is applied to merge stages 3
and d into stage 2. At the last iteration, the series-
stage reduction procedure is applied to merge
stages 2 and a into stage 1, whose variables are
given in Table 5.9.

The first and second variables are not feasible
because the weight consumptions are too great.
Thus, the optimal system reliability is found at
0.9761, and its cost and weight consumptions are
found at 28 and 15 respectively.

Now, the computational complexity of the
dominance-sequence-based dynamic program-
ming algorithm is analyzed and compared with
the basic dynamic programming algorithm of Bur-
ton and Howard [27]. For the one-dimensional
problem, the following properties are satisfied.

Proposition 1. (Cho [28]) If the reduction-order
graph of the given system is a tree with only one
end node, then the computational complexity of
the dominance-sequence-based dynamic program-
ming algorithm of Cho [28] is in the order of
O(|I |JC),where |I | and |Ji | denote the cardinal-
ities of I and Ji respectively; Ji represents the set of
variables used at stage i, and J =maxi∈I {|Ji |}.

Proposition 2. (Cho [28]) If the reduction-order
graph of the given system is a tree with more than
one end node, then the computational complex-
ity of the dominance-sequence-based dynamic pro-
gramming algorithm is in the order of O(|I |C2).

Proposition 3. (Cho [28]) The computational
complexity of the basic dynamic programming
algorithm of Burton and Howard [27] is in the
order of O(|I |C2) for any mixed series–parallel
network.

Combinatorial Reliability Optimization 105

Table 5.7. Problem data (reliability, cost, weight) for the dominance-sequence-
based dynamic programming algorithma

Component Stage a Stage b Stage c Stage d
type

1 0.92, 7, 5 0.90, 3, 9 0.92, 5, 11 0.80, 3, 3
2 0.98, 8, 3 0.98, 11, 4 0.90, 5, 6

a Available cost and weight are 30 and 17, respectively.

Table 5.8. Variables generated at the first iteration of the algorithm of Cho [28]

j r3j (= rbj × rcj) c3j (= cbj × ccj) w3j (=wbj ×wcj)

1 0.828 (= 0.9× 0.92)a 8 (= 3+ 5) 20 (= 9+ 11)
2 0.882 14 13
3 0.9016 13 14
4 0.9604 19 7

a The variable is fathomed because its weight consumption is not feasible (i.e. 20 > 17).

Table 5.9. Variables generated at the third iteration of the algorithm of Cho [28]

j r1j (= r2j × raj) c1j (= c2j × caj) w1j (= w2j × waj)

1 0.9569 (= 0.9764 × 0.98)a 21 (= 17+ 4) 18 (= 16+ 2)
2 0.9607a 20 19
3 0.9723 26 12
4 0.9761 28 15

a The variable is fathomed due to resource violation.

As seen in the computational complexity anal-
ysis of the one-dimensional case, the dominance-
sequence-based dynamic programming algorithm
may depend on the system structure, whereas the
basic dynamic programming algorithm of Bur-
ton and Howard [27] does not. Therefore, the
dominance-sequence-based dynamic program-
ming algorithm may require a reduced computa-
tional complexity for the systems of a tree struc-
ture with one end node. For the detailed proof,
refer to Burton and Howard [27] and Cho [28].

For multi-dimensional problems, the computa-
tional complexity is characterized below.

Proposition 4. (Cho [28]) The computational
complexity of the dominance-sequence-based dy-
namic programming algorithm of Cho [28] is in the

order of O(|M|J |I |) for any mixed series–parallel
network.

Proposition 5. (Cho [28]) The computational
complexity of the basic dynamic programming
algorithm of Burton and Howard [27] is in the
order of O(|I |C2|M|) for any mixed series–parallel
network.

In general, the number of constraints is
smaller than the number of stages, so that
the computational complexity of the proposed
algorithm is larger than that of Burton and
Howard [27], even in the situation where J � C2.
There exist a number of variables having not the
same resource consumption rate but the same
reliability, so that the number of the variables
generated is not bounded by the value C at each

106 System Reliability and Optimization

iteration of the algorithm. For the detailed proof,
refer to Burton and Howard [27] and Cho [28].

5.3.2 General System Optimization
Problems

One often sees general-structure systems in the
area of telecommunications. Telecommunication
systems are composed of many switches, which
are interconnected with one another to form
complex mesh types of network, where each
switch is equipped with multiple modules in
parallel, each being composed of many chipsets
to process traffic transmission operations so as
to increase the whole switch reliability. Thus, the
associated design issue of how many modules to
be installed multiply in each switch for an optimal
telecommunication system can be handled as a
general system reliability optimization problem.

For the reliability optimization problems of
complex system structures, no efficient optimal
solution method has yet been derived, and only
a few heuristic methods [29, 30] have been
proposed. The heuristic methods, however, have
been applied to small-sized problems, because,
as stated earlier, the computational complexity of
the system reliability of complex structures may
increase exponentially as the number of stages in
the system increases.

Aggarwal [29] proposed a simple heuristic
algorithm for a reliability maximization problem
(NRP) to select a stage having the largest
ratio of the relative increment in reliability to
the increment in resource usage and to add
a redundant unit at the stage for increasing
redundancy. That is, a redundant unit is added to
the stage where its addition has the largest value of
the selection factor Fi(yi) defined as follows:

Fi(yi)= �Qs(yi)∏
m∈M gmi (yi)

where �Qs(yi) represents increment in reliability
when a redundant unit is added to stage i having
yi redundant units such that

�Qs(yi)=Qs(Q1, . . . , Qi, . . . , Q|I |)
−Qs(Q̂1, . . . , Q̂i , . . . , Q̂|I |)

1 2

3 4

5

Figure 5.2. A bridge system

where Qs(Q1, . . . , Q|I |) and Qi = (1− ri)
yi rep-

resent the failure probabilities of the system and
stage i, respectively, and Qj = Q̂j ∀j �= i, and
Q̂i = (1− ri)

yi+1. For the detailed step-by-step
procedure, refer to Aggarwal [29].

In order to illustrate the algorithm of Aggarwal
[29] for the bridge system structure given in
Figure 5.2, a numerical example is solved with
the data of Table 5.10; the results are presented in
Table 5.11.

Shi [30] has also proposed a greedy-type
heuristic method for a reliability maximization
problem (NRP), which is composed of three
phases. The first phase is to choose the minimal
path with the highest sensitivity factor al from all
minimal paths of the system as

al =
∏

i∈l Ri(yi)∑
i∈Pl

∑
m∈M [gmi (yi)/|M|Cm] for l ∈ L

which represents the ratio of the minimal path re-
liability to the percentage of consumed resources
by the minimal path. The second phase is to find
within the chosen minimal path the stage having
the highest selection factor bi where

bi = R − i(yi)∑
m∈M [gmi (yi)/|M|Cm] for i ∈ Pl

Table 5.10. Problem data for the bridge system problem

Stage 1 2 3 4 5
ri 0.7 0.85 0.75 0.8 0.9
ci (= cost) 3 4 2 3 2

Constraints:C ≤ 19

Combinatorial Reliability Optimization 107

Table 5.11. Illustration of the stepwise iteration of the algorithm of Aggarwal [29]

Iteration Stage Fi(yi)
∑

ci Qs (%)

1 2 3 4 5 1 2 3 4 5

1 1 1 1 1 1 1.77 1.34 2.76a 1.07 0.27 14 10.9
2 1 1 2 1 1 0.53 0.62 0.69 1.15a 0.24 16 5.4
3 1 1 2 2 1 — — — — — 19 2.6

a The stage to which a redundant unit is to be added.

Table 5.12. Illustration of the stepwise iteration of the algorithm of Shi [30]

Stage al bi

1 2 3 4 5
∑

ci P1 P2 P3 P4 1 2 3 4 5

1 1 1 1 1 14 1.62 2.28a 1.20 1.36 — — 7.1b 5.1 —
1 1 2 1 1 16 1.62 2.04 1.20 1.36 — — 4.5 5.1b —
1 1 2 2 1 19 — — — — — — — — —

a The minimal path set having the largest sensitivity factor.
b The stage to which a redundant unit is to be added.

The second phase checks feasibility and, if feasi-
ble, allocates a component to the selected stage.
For the detailed step-by-step procedure, refer to
Shi [30].

In order to illustrate the algorithm of Shi [30],
a numerical example is solved with the data of
Table 5.10, and Table 5.12 shows the stepwise
results to obtain the optimal solution, which also
shows the minimal path sets P1 = {1, 2}, P2 =
{3, 4}, P3 = {1, 4, 5}, P4 = {2, 3, 5}.

As seen in the above illustration, the optimal
solution obtained from the algorithm of Shi [30] is
the same as that of the algorithm of Aggarwal [29].

Recently, Ravi et al. [31] proposed a simulated-
annealing technique for the reliability optimiza-
tion problem of a general-system structure having
the objective of maximizing the system reliability
subject to multiple resource constraints.

5.4 Combinatorial Reliability
Optimization Problems with
Multiple-choice Constraints
In considering a redundant system, the impor-
tant practical issue is concerned with handling a

variety of different design alternatives in choos-
ing each component type. That is, more than
one component type may have to be consid-
ered for choosing each redundant unit for a sub-
system. This combinatorial situation of choos-
ing each component type makes the associated
reliability optimization model incorporate a new
constraint, which is called a multiple-choice con-
straint. For example, a guided-weapons system,
such as an anti-aircraft gun, has three major sub-
systems, including the target detection/tracking
subsystem, the control console subsystem, and
the fault detection subsystem. A failure of one
of these subsystems implies the associated whole
system failure. Moreover, each subsystem can have
many components. For instance, the target de-
tection/tracking subsystem may have three im-
portant components, including radar, TV camera
and forward-looking infra-red equipment. These
components are normally assembled in a parallel-
redundant structure (rather than a standby one)
to maintain (promote) the subsystem reliability in
situations where no on-site repair work is possible.
For such subsystems, a variety of different com-
ponent types may be available to choose from for
each component.

108 System Reliability and Optimization

It is often desired at each stage to consider
the practical design issue of handling a variety
of combinations of different component types,
along with various design methods that are
concerned with parallel redundancy of two
ordinary (similar) units, standby redundancy of
main and slave units, and 2-out-of-3 redundancy
of ordinary units. For the design issue, the
associated reliability optimization problem is
required to select only one design combination
from among such a variety of different design
alternatives.

The reliability optimization problem, called
Problem (NP), is expressed in the following binary
nonlinear integer programming:

ZNP =max
∏
i∈I

(∑
j∈Ji

rij xij

)
subject to∑

i∈I

∑
j∈Ji

cmij xij ≤ Cm ∀m ∈M (5.11)∑
j∈Ji

xij = 1 ∀i ∈ I (5.12)

xij = {0, 1} ∀j ∈ Ji, i ∈ I (5.13)

where xij indicates whether or not the j th
design alternative is used at stage i; rij and
cmij represent the reliability and its consumption
of resource m of the design alternative xij ,
respectively. The constraints in Equations 5.11
and 5.12 represent the resource consumption
constraints and the multiple-choice constraints
respectively, and the constraint in Equation 5.13,
defines the decision variables.

5.4.1 One-dimensional Problems

The one-dimensional case of Problem (NP) can
have the corresponding constraints in Equa-
tion 5.11, newly expressed as∑

i∈I

∑
j∈Ji

cij xij ≤ C

The problem has been investigated in Sung and
Cho [32], who proposed a branch-and-bound
solution procedure for the problem, along with

a reduction procedure of its solution space to
improve the solution search efficiency. For the
branch-and-bound solution procedure, the lower
and the upper bounds for the optimal reliability
at each stage are derived as in Theorems 2 and 3,
given a feasible system reliability.

Theorem 2. (Sung and Cho [32]) Let Zl be a fea-
sible system reliability. Then, Rl

s , where Rl
s =

Zl/
∏

i∈I\{s} ri,|Ji |, serves as a lower bound of the
reliability at stage s in the optimal solution. The
corresponding lower bound index of xsj for j ∈ Js
is determined as j ls =min{j | rsj ≥ Rl

s, j ∈ Js}, so
that xsj = 0, ∀j < j ls .

Theorem 3. (Sung and Cho [32]) At stage s, bs =∑
i∈I/{s} min{cij | rij ≥ Rl

i , j ∈ Ji} is the mini-
mum amount of budget allocated to the system
except stage s. Given the total budget C, rs,su,

where su =max{j | csj ≤ C − bs, j ∈ Js}, is an
upper bound of the reliability at stage s in the
optimal solution, and su is an upper bound index
at stage s, so that xsj = 0, ∀j > su.

For the detailed proofs of Theorems 2 and 3,
refer to Sung and Cho [32]. The computational
complexity of one iteration of the full bounding
process for finding the stagewise lower and up-
per bounds (by Theorems 2 and 3 respectively),
starting from stage 1 through stage |I |, are both
on the order of O[max[|I |2, |I |J)], where J =
maxi∈I |Ji |. Thus, the computational complexity
concerned with the number of all the iterations of
the full bounding process required for the solution
space reduction is on the order of O(|I |J). There-
with, the total bounding process for the solution
space reduction requires a computational com-
plexity order of O[max[|I |3J, |I |2J 2)]. Table 5.13
shows how efficient Theorems 2 and 3 are in
reducing the solution space.

Sung and Cho [32] derived several different
bounds for the branch-and-bound procedure.
They include the bound derived in a continuous
relaxation approach, the bound derived in a
Lagrangian relaxation approach, and the bound
derived by use of the results of Theorems 2 and 3.
Among them, the Lagrangian relaxation approach
has been considered to find the upper bound value

Combinatorial Reliability Optimization 109

Table 5.13. Problem data (C = 24) and stepwise results of the solution space reduction procedure [31]

j Stage 1 Stage 2 Stage 3 Stage 4

R1j c1j r2j c2j r3j c3j r4j c4j

1 0.9 2a 0.85 3a 0.8 2a 0.75 3a

2 0.99 4 0.9775 6 0.96 4 0.938 6
3 0.999 6 0.9966 9 0.99 6 0.984 9
4 1− 0.14 8 0.9995 12b 0.998 8 0.996 12b

5 1− 0.15 10b 0.9999 15b 0.9997 10b 0.999 15b

6 1− 0.16 12b 0.9999 12b

7 1− 0.17 14b 1− 0.27 14b

8 1− 0.18 18b 1− 0.28 16b

J1 = {2, 3, 4} J2 = {2, 3} J3 = {2, 3, 4} J4 = {2, 3}
a Variables discarded by Theorem 2.
b Variables discarded by Theorem 3.

of the given objective function. In the continuous
relaxation approach, the Lagrangian dual problem
of the associated continuous relaxed problem with
the constraints in Equation 5.11 dualized has
been found as satisfying the integrality property.
This implies that the optimal objective value of the
Lagrangian dual problem is equal to that obtained
by the continuous relaxation approach.

In order to derive the associated solution
bounds, some notation is introduced. Let σp =
{(1), (2), . . . , (p)} denote the set of stages that
were branched already from level 0 down to
level p in the branch-and-bound tree, and
σ̄p = {(p + 1), . . . , (|I |)} denote the complement
of σp . For an upper bound derivation, let
N(j(1), j(2), . . . , j(p)) denote a (branched) node
in level p of the branch-and-bound tree. The node
represents a partial solution in which the variables
of the stages in σp have the values being
determined already as x(1),j(1) = 1, . . . , x(p),j(p) =
1, but those of the stages in σ̄p are not yet
determined. Then, any one of the following three
equations can be used as a bound at the branching
node N(j(1), j(2), . . . , j(p)):

(b.1) B1(j(1), j(2), . . . , j(p))

=
∏
i∈σp

ri,ji

∏
i∈σ̄p

ri,ju
i

(b.2) B2(j(1), j(2), . . . , j(p))

=
∏
i∈σp

ri,ji

∏
i∈σ̄p

ri,j̄i

(b.3) B3(j(1), j(2), . . . , j(p))

=
∏
i∈σp

ri,ji eZ
∗
CLNP(j(1),j(2),...,j(p))

where ju
i , ∀i ∈ σ̄p, represents the upper bound

derived by using the results of Theorems 2 and 3,

j̄i =max{j | cij ≤ C − c̄i , j ∈ Ji},
c̄i =

∑
k∈σp

ck,jk +
∑

k∈σ̄p/{i}
min
j∈Jk
{ckj },

and Z∗CLNP(j(1), j(2), . . . , j(p)) denotes the op-
timal solution value for the partial LP prob-
lem (corresponding to the remaining stages from
(p + 1) through (|I |)) at the branching node
N(j(1), j(2), . . . , j(p)) to be solved by relaxing the
variables in σ̄p to become continuous ones.

Bound (b.1) can be obtained from the proposed
problem, based on the associated reduced solution
space (Theorems 2 and 3), and bound (b.2) can be
derived by applying the results of Theorem 3 to
node N(j(1), j(2), . . . , j(p)). It is easily seen that
B1(j(1), j(2), . . . , j(p)) ≥ B2(j(1), j(2), . . . , j(p)).

For bounds (b.2) and (b.3), it has not been
proved that the value of bound (b.3) is always less
than or equal to that of bound (b.2). However,

110 System Reliability and Optimization

it is proved that the upper bound value of one
of the integer-valued stages in bound (b.3) is less
than that of the stage in bound (b.2) under the
condition that some stages have integer solution
values in the optimal solution for the continuous
relaxed problem. This implies that the value
of bound (b.3) is probably less than that of
bound (b.2). This conclusion is also revealed in the
numerical tests. For the detailed derivation, refer
to Sung and Cho [32].

Based on the above discussion, Sung and Cho
[32] derived a branch-and-bound procedure in the
depth-first-search principle.

Branching strategy. At each step of branching,
select a node with the largest upper bound
value (not fathomed) for the next branching
based on the depth-first-search principle. Then,
for a such selected node N(j(1), j(2), . . . , j(p)),

branch all of its immediately-succeeding nodes
N(j(1), . . . , j(p), j

′), ∀j ′ ∈ J(p+1).

Fathoming strategy. For each currently branched
node, compute the bound B(j(1), . . . , j(p)). If the
bound satisfies the following condition (a), then
fathom the node:

condition (a) B(j(1), . . . , j(p))≤ Zopt

where Zopt represents the current best feasible
system reliability obtained from the branch-and-
bound procedure. Moreover, any node satisfying
the following Proposition 6 needs to be fathomed
from any further consideration in the solution
search.

Proposition 6. (Sung and Cho [32]) Each branch
node N(j(1), . . . , j(p), j

∗) for j∗ ∈ J(p+1) and
j∗ > j̄(p+1) needs to be removed form the solution
search tree.

The variables satisfying the inequality j∗>
j̄(p+1) will lead to an infeasible leaf solution in
the associated branch-and-bound tree, so that
any branching node with such variables can be
eliminated from any further consideration in
finding the optimal solution, where a leaf solution
corresponds to a node in the last (bottom) level
of the branch-and-bound tree. Thus, any currently
branched node N(j(1), . . . , j(p), j

∗), j∗ ∈ J(p+1),

satisfying the following condition (b), needs to be
removed from the solution search tree:

condition (b)

{j∗ | c(p+1),j∗ > C − c̄(p+1), j∗ ∈ J(p+1)}

Backtracking strategy. If all the currently exam-
ined nodes need to be fathomed or any currently
examined node is a leaf node, then the associ-
ated immediately preceding (parent) node will be
backtracked. This backtracking operation contin-
ues until any node to be branched is found.

The above-discussed properties are now put
together to formulate the branch-and-bound
procedure:

Step 0. (Variable Reduction) Reduce the solution
space by using Theorems 2 and 3. Go to
Step 1.

Step 1. (Initialization) Arrange all stages in the
smallest-gap-first ordered sequence. Go to
Step 2.

Step 2. (Branching) According to the branching
strategy, select the next branching node
and implement the branching process at the
selected node. Go to Step 3.

Step 3. (Fathoming) For each currently branched
node, check if it satisfies the fathoming
condition (b). If it does, then it needs to
be fathomed; otherwise, compute the upper
bound associated with the node, and then
use it to decide whether or not the node
needs to be fathomed ,according to the
fathoming condition (a). If all the currently
branched nodes need to be fathomed, then
go to Step 5. Otherwise, go to Step 2. If the
currently examined (not fathomed) node is
a leaf node, then go to Step 4. Otherwise, go
to Step 2.

Step 4. (Updating) Whenever a solution (leaf
node) is newly found, compare it with the
current best solution. Update the current
best solution by replacing it with the newly
obtained solution and fathom every other

Combinatorial Reliability Optimization 111

Figure 5.3. The illustrative tree of the branch-and-bound procedure

node that has its bound less than or equal
to the reliability of the newly updated best
solution. Go to Step 5.

Step 5. (Backtracking and Terminating) Back-
track according to the backtracking strat-
egy. If there are no more branching nodes to
be examined, then terminate the search pro-
cess and the current best solution is optimal.
Otherwise, go to Step 2.

The smaller problem resulting from Table 5.13
is then solved by employing the branch-and-
bound procedure with bound (b.2). This is
depicted in Figure 5.3 for illustration, where the
number in each circle denotes the node number.
As seen from Figure 5.3, the stage ordering in
the branch-and-bound process can be decided
as sequencing the associated tree levels in the
smallest-gap-first order as 2–4–1–3, since |J2| = 2,

|J4| = 2, |J1| = 3, and |J3| = 3. For details, refer to
Sung and Cho [32].

5.4.2 Multi-dimensional Problems

The extension of the problem of Section 5.4.1
to a problem with multiple resource constraints,
called a multi-dimensional problem, has been
handled by Chern and Jan [33] and by Sung and
Cho [34], who have proposed branch-and-bound
methods for the multi-dimensional problem. Sung
and Cho [34] derived solution bounds based on
some solution properties and compared them with
those of Chern and Jan [33].

For a cost minimization problem with multiple
resource constraints, Sasaki et al. [35] presented
a partial enumeration method referring to the
algorithm of Lawler and Bell [8], in which the
objective is to minimize the system cost subject to
a target system reliability.

112 System Reliability and Optimization

Table 5.14. Illustration of the solution space reduction by Theorems 4 and 5 [33]

j Stage 1 Stage 2 Stage 3

x1j r1j c1
1j c2

1j x2j r2j c1
2j c2

2j x3j r3j c1
3j c2

3j

1 0.99 4 2 0.8a 3 3 0.92a 5 6
2 0.9999 8 4 0.9a 3 9 0.98 11 4
3 1− 10−6 12 6 0.96a 6 6 0.9936 10 12
4 1− 10−8 a 16 8 0.98 8 3 0.9984 16 10
5 1− 10−10 a 20 10 0.992 9 9 0.9996a 22 8
6 0.996 11 6
7 0.9992 14 9
8 0.9996 16 6
9 0.9999a 19 9

J1 = {1, 2, 3} J2 = {3, 4, . . . , 8} J3 = {2, 3, 4}
a Variables discarded by the reduction properties.

Sung and Cho [34] have proved that the
bounding properties of Theorems 2 and 3 can
be easily extended to the multi-dimensional
problems. Accordingly, Theorems 4 and 5 can
be used for reducing the solution space by
eliminating the unnecessary variables in order to
find the optimal solution.

Theorem 4. (Sung and Cho [34]) Define

R̃s = Z̄/
∏

i∈I\{s}
ri,|Ji |

for any stage s, where Z̄ is a feasible system
reliability of the multi-dimensional problem. Then,
the reliability R∗s of stage s in the optimal solution
to the problem satisfies the relation R∗s ≥ R̃s .
Moreover, the set of variables {xsj , j ∈ Js : rsj <
R̃s} take on values of zero in the optimal solution.

Theorem 5. (Sung and Cho [34]) Define

b̄ms =
∑

i∈I\{s}
min
j∈J {c

m
ij : rij ≥ R̃i}

and

su = arg max
j∈Js
{xsj : cmsj ≤ Cm − b̄ms , ∀m ∈M}

Then the reliability R∗s of stage s in the optimal
solution to the problem satisfies the relation R∗s ≤
rs,su . Moreover, the set of variables {xsj , j ∈ Ji :

rsj > rs,su} take on the values of zero in the optimal
solution.

Table 5.14 shows how efficient Theorems 4
and 5 are in reducing the solution space.

Sung and Cho [34] derived a bounding strategy
by using the results of Theorem 5. For an
upper bound derivation, letN(j(1), j(2), . . . , j(p))

denote a node in level p of the associated branch-
and-bound tree. The node represents a partial
solution in which the variables of the stages in
σp have the values being determined already
as x(1),j(1) = 1, . . . , x(p),j(p) = 1, but those of the
stages in σ̄p not determined yet. Thus, an upper
bound B(j(1), j(2), . . . , j(p)) on the objective
function at the node N(j(1), j(2), . . . , j(p)) can be
computed as

B(j(1), j(2), . . . , j(p))=
∏
i∈σp

ri,ji

∏
i∈σ̄p

ri,j̄i

where

j̄i = arg max
j∈Ji
{xij : cmij ≤ Cm − c̄mi , ∀m ∈M}

and

c̄mi =
∑
k∈σp

cmk,jk +
∑

k∈σ̄p\{i}
min
j∈Jk
{cmkj }

Combinatorial Reliability Optimization 113

Note that the upper bound is less than or equal to
that suggested by Chern and Jan [33], since

B(j(1), j(2), . . . , j(p))=
∏
i∈σp

ri,ji

∏
i∈σ̄p

ri,j̄i

≤
∏
i∈σp

ri,ji

∏
i∈σ̄p

max
j∈Ji
{rij }

For the problem, Sung and Cho [34] proposed
a branch-and-bound procedure based on the
depth-first-search principle, as done for the one-
dimensional case, whereas Chern and Jan [33]
suggested a branch-and-bound procedure in a
binary tree, referred to as a tree of Murphee
[36]. It has been shown in numerical tests that
the branch-and-bound procedure of Sung and
Cho [34] finds the optimal solution much quicker
than that of Chern and Jan [33]. For the detailed
illustration, refer to Chern and Jan [33] and Sung
and Cho [34].

5.5 Summary
This chapter considers various combinatorial re-
liability optimization problems with multiple re-
source constraints or multiple-choice constraints
incorporated for a variety of different system
structures, including series systems, mixed series–
parallel systems, and general systems.

Each of the problems is known as an NP-hard
problem. This provided us with the motivation
to develop various solution approaches, including
optimal solution approaches, continuous relax-
ation approaches, and heuristic approaches, based
on various problem-dependent solution proper-
ties. In particular, owing to the combinatorial
nature of the problems, this chapter focuses on
some combinatorial solution approaches, includ-
ing the branch-and-bound method, the partial
enumeration method, the dynamic programming
method, and the greedy-type heuristic method,
which can give integer optimal or heuristic solu-
tions.

These days, metaheuristic approaches, includ-
ing the simulated annealing method, the tabu
search method, the neural network approach, and
genetic algorithms, have been getting popular for

combinatorial optimization. However, not many
applications of those approaches have been made
to the combinatorial reliability optimization prob-
lems yet. Thus, those approaches are not discussed
here.

References
[1] Valiant LG. The complexity of enumeration and reliability

problems. SIAM J Comput 1979;8:410–21.
[2] Satyanarayana A, Wood RK. A linear-time algorithm

for computing K-terminal reliability in series–parallel
networks. SIAM J Comput 1985;14:818–32.

[3] Chern CS. On the computational complexity of reliability
redundancy allocation in a series system. Oper Res Lett
1992;11:309–15.

[4] Malon DM. When is greedy module assembly optimal?
Nav Res Logist 1990;37:847–54.

[5] Tillman IA, Hwang CL, Kuo W. Optimization techniques
for system reliability with redundancy: a review. IEEE
Trans Reliab 1977;R-36:148–55.

[6] Tillman FA, Liittschwager JM. Integer programming
formulation of constrained reliability problems. Manage
Sci 1967;13:887–99.

[7] Misra KB. A method of solving redundancy optimization
problems. IEEE Trans Reliab 1971;R-20:117–20.

[8] Lawler EL, Bell MD. A method of solving discrete
optimization problems. Oper Res 1966;14:1098–112.

[9] Ghare PM, Talyer RE. Optimal redundancy for reliability
in series systems. Oper Res 1969;17:838–47.

[10] Sung CS, Lee HK. A branch-and-bound approach for
spare unit allocation in a series system. Eur J Oper Res
1994;75:217–32.

[11] Kuo E, Lin HH, Xu Z, Zhang W. Reliability optimization
with the Lagrange-multiplier and branch-and-bound
technique. IEEE Trans Reliab 1987;R-36:624–30.

[12] Lawler EL, Wood DE. Branch-and-bound method: a
survey. Oper Res 1966;14:699–719.

[13] Balas E. A note on the branch-and-bound principle. Oper
Res 1968;16:442–5.

[14] McLeavey DW. Numerical investigation of optimal paral-
lel redundancy in series systems. Oper Res 1974;22:1110–
7.

[15] McLeavey DW, McLeavey JA. Optimization of system
reliability by branch-and-bound. IEEE Trans Reliab
1976;R-25:327–9.

[16] Luus R. Optimization of system reliability by a new
nonlinear programming procedure. IEEE Trans Reliab
1975;R-24:14–6.

[17] Aggarwal AK, Gupta JS, Misra KB. A new heuristic
criterion for solving a redundancy optimization problem.
IEEE Trans Reliab 1975;R-24:86–7.

[18] Bellman R, Dreyfus S. Dynamic programming and
the reliability of multicomponent devices. Oper Res
1958;6:200–6.

114 System Reliability and Optimization

[19] Kettelle JD. Least-cost allocation of reliability investment.
Oper Res 1962;10:249–65.

[20] Woodhouse CF. Optimal redundancy allocation by dy-
namic programming. IEEE Trans Reliab 1972;R-21:60–2.

[21] Sharma J, Venkateswaran KV. A direct method for
maximizing the system reliability. IEEE Trans Reliab
1971;R-20:256–9.

[22] Gopal D, Aggarwal KK, Gupta JS. An improved algorithm
for reliability optimization. IEEE Trans Reliab 1978;R-
27:325–8.

[23] Misra KB. A simple approach for constrained redundancy
optimization problem. IEEE Trans Reliab 1972;R-21:30–4.

[24] Nakagawa Y, Nakashima K. A heuristic method for
determining optimal reliability allocation. IEEE Trans
Reliab 1977;R-26:156–61.

[25] Kuo W, Hwang CL, Tillman FA. A note on heuristic
methods in optimal system reliability. IEEE Trans Reliab
1978;R-27:320-324.

[26] Nakagawa Y, Miyazaki S. An experimental comparison of
the heuristic methods for solving reliability optimization
problems. IEEE Trans Reliab 1981;R-30:181–4.

[27] Burton RM, Howard GT. Optimal system reliability for
a mixed series and parallel structure. J Math Anal Appl
1969;28:370–82.

[28] Cho YK. Redundancy optimization for a class of relia-
bility systems with multiple-choice resource constraints.
Unpublished PhD Thesis, Department of Industrial Engi-
neering, KAIST, Korea, 2000; p.66–75.

[29] Aggarwal KK. Redundancy optimization in general
systems. IEEE Trans Reliab 1976;R-25: 330–2.

[30] Shi DH. A new heuristic algorithm for constrained
redundancy-optimization in complex system. IEEE Trans
Reliab 1987;R-36:621–3.

[31] Ravi V, Murty BSN, Reddy PJ. Nonequilibrium simulated
annealing-algorithm applied to reliability optimization of
complex systems. IEEE Trans Reliab 1997;46:233–9.

[32] Sung CS, Cho YK. Reliability optimization of a series
system with multiple-choice and budget constraints.
Eur J Oper Res 2000;127:159–71.

[33] Chern CS, Jan RH. Reliability optimization problems with
multiple constraints. IEEE Trans Reliab 1986;R-35:431–6.

[34] Sung CS, Cho YK. Branch-and-bound redundancy
optimization for a series system with multiple-choice
constraints. IEEE Trans Reliab 1999;48:108–17.

[35] Sasaki G, Okada T, Shingai S. A new technique to optimize
system reliability. IEEE Trans Reliab 1983;R-32:175–82.

[36] Murphee EL, Fenves S. A technique for generating
interpretive translators for problem oriented languages.
BIT 1970:310–23.

Statistical Reliability
TheoryP

A
R

T
I I

6 Modeling the Observed Failure Rate
6.1 Introduction
6.2 Survival in the Plane
6.3 Multiple Availability
6.4 Modeling the Mixture Failure Rate

7 Concepts of Stochastic Dependence in Reliability Analysis
7.1 Introduction
7.2 Important Conditions Describing Positive Dependence
7.3 Positive Quadrant Dependent Concept
7.4 Families of Bivariate Distributions that are Positive Quadrant

Dependent
7.5 Some Related Issues on Positive Dependence
7.6 Positive Dependence Orderings
7.7 Concluding Remarks

8 Statistical Reliability Change-point Estimation Models
8.1 Introduction
8.2 Assumptions in Reliability Change-point Models
8.3 Some Specific Change-point Models
8.4 Maximum Likelihood Estimation
8.5 Application
8.6 Summary

9 Concepts and Applications of Stochastic Aging in Reliability
9.1 Introduction
9.2 Basic Concepts for Univariate Reliability Classes
9.3 Properties of the Basic Concepts
9.4 Distributions with Bathtub-shaped Failure Rates
9.5 Life Classes Characterized by the Mean Residual Lifetime
9.6 Some Further Classes of Aging
9.7 Partial Ordering of Life Distributions
9.8 Bivariate Reliability Classes
9.9 Tests of Stochastic Aging
9.10 Concluding Remarks on Aging

10 Class of NBU-t0 Life Distribution
10.1 Introduction
10.2 Characterization of NBU-t0 Class
10.3 Estimation of NBU-t0 Life Distribution
10.4 Tests for NBU-t0 Life Distribution

Modeling the Observed Failure Rate

Ch
ap

te
r6

M. S. Finkelstein

6.1 Introduction
6.2 Survival in the Plane
6.2.1 One-dimensional Case
6.2.2 Fixed Obstacles
6.2.3 Failure Rate Process
6.2.4 Moving Obstacles
6.3 Multiple Availability
6.3.1 Statement of the Problem
6.3.2 Ordinary Multiple Availability
6.3.3 Accuracy of a Fast Repair Approximation
6.3.4 Two Non-serviced Demands in a Row
6.3.5 Not More thanN Non-serviced Demands
6.3.6 Time Redundancy
6.4 Modeling the Mixture Failure Rate
6.4.1 Definitions and Conditional Characteristics
6.4.2 Additive Model
6.4.3 Multiplicative Model
6.4.4 Some Examples
6.4.5 Inverse Problem

6.1 Introduction

The notion of failure rate is crucial in reliability
and survival analysis. However, obtaining the
failure rate in many practical situations is often
not so simple, as the structure of the system to be
considered, for instance, can be rather complex, or
the process of the failure development cannot be
described in a simple way. In these cases a “proper
model” can help a lot in deriving reliability
characteristics. In this chapter we consider several
models that can be effectively used for deriving
and analyzing the corresponding failure rate,
and eventually the survival function. The general
approach developed eventually boils down to
constructing an equivalent failure rate for different
settings (survival in the plane, multiple availability
on demand, mixtures of distributions). It can be
used for other applications as well.

Denote by T ≥ 0 a lifetime random variable
and assume that the corresponding cumulative
distribution function (cdf) F(t) is absolutely con-
tinuous. Then the following exponential formula
exists:

F(t) = 1− exp

[
−
∫ t

0
λ(u) du

]
(6.1)

where λ(t), t ≥ 0, is the failure rate. In many
instances a conventional statistical analysis of
the overall random variable T presents certain
difficulties, as the corresponding data can be
scarce (e.g. the failure times of the highly reliable
systems). On the other hand, information on the
structure of the system (object) or on the failure
process can often be available. This information
can be used for modeling λ(t), to be called the
observed (equivalent) failure rate, and eventually,
for estimation of F(t). The other important
problem that can be approached in this way is

117

118 Statistical Reliability Theory

the analysis of the shape of the failure rate, which
is crucial for the study of the aging properties
of the cumulative distribution functions under
consideration.

The simplest reliability example of this kind is a
system of two independent components in parallel
with exponentially distributed lifetimes. In this
case, the system’s lifetime cumulative distribution
function is

F(t)= 1− exp(−λ1t)− exp(−λ2t)

+ exp[−(λ1 + λ2)t]
where λ1 (λ2) is a failure rate of the first (second)
component. It can be easily seen that the following
relation defines the system’s observed (equivalent)
failure rate:

λ(t)= {λ1 exp(−λ1t)+ λ2 exp(−λ2t)

− (λ1 + λ2) exp[−(λ1 + λ2)t]}
× {exp(−λ1t)+ exp(−λ2t)

− exp[−(λ1 + λ2)t]}−1

A simple analysis of this relation shows that the
observed failure rate λ(t) (λ(0)= 0) is monoton-
ically increasing in [0, t0) and monotonically de-
creasing in [t0,∞), asymptotically approaching
λ1 from above as t→∞ (λ1 < λ2). The maxi-
mum t0 is uniquely obtained from the equation:

λ2
2 exp(−λ1t)+ λ2

1 exp(−λ2t)= (λ1 − λ2)
2

λ1 �= λ2

It is also evident that λ(t) < λ2, because the
reliability of the considered system cannot be
worse than the reliability of a component.

Thus, a given structure of the system creates
a possibility of obtaining and analyzing λ(t)

analytically. There are situations, however, when
deriving the observed (equivalent) failure rate is
not so straightforward. In this chapter, several
applications of this kind are considered where the
observed failure rate can be effectively constructed
via the specific models describing the process of
“failure development”.

Sections 6.2 and 6.3 are devoted to two different
applications of a method of the per demand failure
rate [1]. The first one presents a probabilistic

description for the survival in the plane, when a
small normally or tangentially oriented interval is
moving along a fixed route in the plane, crossing
points of initial Poisson random processes. Each
crossing leads to a termination of the process
with a given probability, and the probability of
passing the route without termination is derived.
The second one deals with the, so-called, multiple
availability, when the system should be available
at each instant of demand, and the probability of
this event is of interest. The demands occur in
accordance with the Poisson process. Some weaker
criteria of failure are also considered when it is not
necessary that all demands should be serviced in a
given interval of time. Though these applications
are different in nature, mathematical approaches
for obtaining characteristics of interest are similar.

Finally, in Section 6.4, a mixture of distribu-
tions is studied. The analysis of the observed fail-
ure rate, which in this case is a mixture failure
rate, is performed for the given governing and
mixing distributions. It appears that the shape
of the observed failure rate can dramatically dif-
fer from the shape of the governing distribution.
This fact is rather surprising, and should be taken
into account in practical applications.

6.2 Survival in the Plane

6.2.1 One-dimensional Case

A model of survival in the plane is described
in this section, which is based on the following
simple reasoning used in the one-dimensional
case. Consider a system subject to stochastic point
influences (shocks). Each shock can lead with a
given probability to a fatal failure of a system,
resulting in a termination of the process, and
this will be called an “accident”. The probability
of performance without accidents in the time
interval (0, t] is of interest. It is natural to
describe the situation in terms of stochastic
point processes. Let {N(t); t > 0} be a point
process of shocks, occurring at times 0 < t1 < t2 <

· · · , where N(t) is the corresponding counting
measure in (0, t].

Modeling the Observed Failure Rate 119

Denote by h(t) the rate function of a point
process. For orderly processes, assuming the limits
exist [2]:

h(t)= lim
�t→0

Pr{N(t, t +�t)= 1}
�t

= lim
�t→0

E[N(t, t +�t)]
�t

Thus, h(t) dt can be interpreted as an approximate
probability of a shock occurrence in (t, t + dt].

Assume now that a shock, which occurs in
(t, t + dt] independently of the previous shocks,
leads to an accident with probability θ(t), and
does not cause any changes in the system with
the complementary probability 1− θ(t). Denote
by Ta a random time to an accident and by Fa(t)=
Pr{Ta ≤ t} the corresponding cumulative distribu-
tion function. If Fa(t) is absolutely continuous,
then similar to Equation 6.1

P(t) = 1− Fa(t)= exp

[
−
∫ t

0
λa(x) dx

]
(6.2)

where λa(t) is a failure (accident) rate, corre-
sponding to Fa(t), and P(t) is the survival func-
tion: the probability of performance without ac-
cidents in (0, t]. Assume that {N(t); t > 0} is a
non-homogeneous Poisson process, θ(x)h(x) is
integrable in [0, t) ∀t ∈ (0,∞) and∫ ∞

0
θ(x)h(x) dx =∞

Then the following important relation takes place
[3, 4]:

λa(t)= θ(t)h(t) (6.3)

For the time-independent case θ(t)≡ θ , this
approach has been widely used in the literature.
In [1], for instance, it was called the method of
the per demand failure rate. This name comes
from the following simple reasoning. Let h(t) be
the rate of the non-homogeneous Poisson process
of demands and θ be the probability that a
single demand is not serviced (it is serviced with
probability 1− θ). Then the probability that all

demands in [0, t) are serviced is given by

1− Fa(t)=
∞∑
0

(1− θ)k exp

[
−
∫ t

0
h(u) du

]

×
[∫ t

0 h(u) du
]k

k!
= exp

[
−
∫ t

0
θh(u) du

]
Therefore, θh(t) can be called the per demand
failure rate.

As in Section 6.1, the failure rate in Equation 6.2
is called the observed failure rate, and the relation
in Equation 6.3 gives its concrete expression for
the setting under consideration. In other words,
the modeling of the observed failure rate is
performed via the relation in Equation 6.3. This
concept will be exploited throughout the current
chapter. Considering the Poisson point processes
of shocks in the plane (which will be interpreted
as obstacles) in the next section will lead to
obtaining the corresponding observed failure rate
“along the fixed curve”. An important application
of this model results in deriving the probability
of a safe passage for a ship in a field of obstacles
with fixed (shallows) or moving (other ships)
coordinates [4].

6.2.2 Fixed Obstacles

Denote by {N(B)} a non-homogeneous Poisson
point process in the plane, where N(B) is the
corresponding random measure: i.e. the random
number of points in B ⊂�2, where B belongs to
the Borel σ -algebra in�2. We shall consider points
as prospective point influences on the system
(shallows for the ship, for instance). Similar to
the one-dimensional definition (Equation 6.1), the
rate hf(ξ) can be formally defined as [2]

hf(ξ)= lim
S(δ(ξ))→0

E[N(δ(ξ))]
S(δ(ξ))

(6.4)

whereB = δ(ξ) is the neighborhood of ξ with area
S(δ(ξ)) and the diameter tending to zero, and the
subscript “f” stands for “fixed”.

120 Statistical Reliability Theory

Assume for simplicity that hf(ξ) is a continuous
function of ξ in an arbitrary closed circle in �2.
Let Rξ1,ξ2 be a fixed continuous curve to be called
a route, connecting ξ1 and ξ2-two distinct points
in the plane. A point (a ship in the application)
is moving in one direction along the route. Every
time it “crosses the point” of the process {N(B)}
an accident can happen with a given probability.
Let r be the distance from ξ1 to the current point of
the route (coordinate) and hf(r) denote the rate of
the process in (r, r + dr]. Thus, a one-dimensional
parameterization is considered. For defining the
corresponding Poisson measure, the dimensions
of objects under consideration should be taken
into account.

Let (γ+n (r), γ−n (r)) be a small interval of length
γn(r)= γ+n (r)+ γ−n (r) in a normal toRξ1,ξ2 in the
point with coordinate r , where the upper indexes
denote the corresponding direction (γ+n (r) is on
one side of Rξ1,ξ2 , and γ−n (r) is on the other). Let
R̄ be the length of Rξ1,ξ2 : R̄ ≡ |Rξ1,ξ2| and assume
that

R̄� γn(r), ∀r ∈ [0, R]

The interval (γ+n (r), γ−n (r)) is moving along
Rξ1,ξ2 , crossing points of a random field. For
the application, it is reasonable to assume the
following model for the symmetrical (γ+n (r)=
γ−n (r)) equivalent interval: γn(r)= 2δs + 2δo(r),
where 2δs and 2δo(r) are the diameters of a ship
and of an obstacle respectively. It is assumed
for simplicity that all obstacles have the same
diameter. There can be other models as well.
Using the definition in Equation 6.4 for the
specific domain B and the r-parameterization, the
corresponding equivalent rate of occurrence of
points, hef(r) can be obtained:

hef(r)= lim
�r→0

E[N(B(r, �r, γn(r)))]
�r

(6.5)

where N(B(r, �r, γn(r))) is the random number
of points crossed by the interval γn(r), moving
from r to r +�r .

When �r→ 0 and γn(r) is sufficiently
small [4]:

E[N(B(r, �r, γn(r)))]
=
∫
B(r,�r,γn(r))

hf(ξ) dS(δ(ξ))

�r→0= γn(r)hf(r) dr[1+ o(1)]
which leads to the following relation for the equiv-
alent rate of the corresponding one-dimensional
non-homogeneous Poisson process:

hef(r)= γn(r)hf(r)[1+ o(1)] (6.6)

It was also assumed, while obtaining Equation 6.6,
that the radius of curvature of the route Rc(r) is
sufficiently large compared with γn(r):

γn(r)� Rc(r)

uniformly in r ∈ [0, R̄]. This means that the
domain covered by the interval (γ+n (r), γ−n (r))

while it moves from r to r +�r along the route is
asymptotically rectangular with an area γn(r)�r ,
�r→ 0. The generalization allowing small values
of radius of curvature can be considered. In this
case, some points, for instance, can be intersected
by the moving interval twice.

Hence, the r-parameterization along the fixed
route reduces the problem to the one-dimensional
setting of Section 6.2.1. As in the one-dimensional
case, assume that crossing a point with a coordi-
nate r leads to an accident with probability θf(r)

and to the “survival” with a complementary prob-
ability θ̄f(r)= 1− θf(r). Denote by R a random
distance from the initial point of the route ξ1
till a point on the route where an accident had
occurred. Similar to Equations 6.2 and 6.3, the
probability of passing the route Rξ1,ξ2 without
accidents can be derived in a following way:

Pr{R > R̄} ≡ P(R̄)= 1− Faf(R̄)

= exp

[
−
∫ R̄

0
θf(r)hef(r) dr

]
≡ exp

[
−
∫ R̄

0
λaf(r) dr

]
(6.7)

where
λaf(r)≡ θf(r)hef(r) (6.8)

Modeling the Observed Failure Rate 121

is the corresponding observed failure rate written
in the same way as the per demand failure rate
(Equation 6.3) of the previous section.

6.2.3 Failure Rate Process

Assume that λaf(r) in Equation 6.8 is now a
stochastic process defined, for instance, by an
unobserved covariate stochastic process Y = Yr,
r ≥ 0 [5]. By definition, the observed failure
rate cannot be stochastic. Therefore, it should
be obtained via the corresponding conditioning
on realizations of Y . Denote the defined failure
(hazard) rate process by λaf(Y, r). It is well known,
e.g. [6], that in this case the following equation
holds:

P(R̄)= E

[
exp

(
−
∫ R̄

0
λaf(Y, r) dr

)]
(6.9)

where conditioning is performed with respect to
the stochastic process Y . Equation 6.9 can be
written via the conditional failure (hazard) rate
process [5] as

P(R̄)= exp

{
−
∫ R̄

0
E[λaf(Y, r) | R > r] dr

}
= exp

[
−
∫ R̄

0
λ̄af(r) dr

]
(6.10)

where λ̄af(r) now denotes the corresponding
observed hazard rate. Thus, the relation of the
observed and conditional hazard rates is

λ̄af(r)= E[λaf(Y, r | R > r)] (6.11)

As follows from Equation 6.10, Equation 6.11 can
constitute a reasonable tool for obtaining P(R̄),
but the corresponding explicit derivations can be
performed only in some of the simplest specific
cases. On the other hand, it can help to analyze
some important properties.

Consider an important specific case. Let proba-
bility θf(r) be indexed by a parameter Y : θf(Y, r),
where Y is interpreted as a non-negative random
variable with support in [0,∞) and the prob-
ability density function π(y). In the sea safety
application this randomization can be due to the

unknown characteristics of a navigation (or (and)
a collision avoidance) onboard system, for in-
stance. There can be other interpretations as well.
Thus the specific case of when Y in Equations 6.9
and 6.10 is a random variable is considered. The
observed failure rate λ̄af(r) reduces in this case to
the corresponding mixture failure rate:

λ̄af(r)=
∫ ∞

0
λaf(y, r)π(y | r) dy (6.12)

where p(y | r) is the conditional probability
density function of Y given that R > r . As in [7], it
can be defined in the following way:

π(y | r)= π(y)P (y, r)∫∞
0 P(y, r)π(y) dy

(6.13)

where P(y, r) is defined as in Equation 6.7,
and λaf(r) is substituted by θf(y, r)hef(r) for the
fixed y.

The relations in Equations 6.12 and 6.13
constitute a convenient tool for analyzing the
shape of the observed failure rate λ̄af(r). This
topic will be considered in a more detailed way
in Section 6.3. It is only worth noting now that
the shape of λ̄af(r) can differ dramatically from
the shape of the conditional failure rate λaf(y, r),
and this fact should be taken into consideration
in applications. Assume, for instance, a specific
multiplicative form of parameterization:

θf(Y, r)hef(r)= Yθf(r)hef(r)

It is well known that if θf(r)hf(r) is constant,
then the observed failure rate is decreasing [8].
But it turns out that even if θf(r)hef(r) is sharply
increasing, the observed failure rate λ̄af(r) can
still decrease, at least for sufficiently large r !
Thus, the random parameter changes the aging
properties of the governing distribution function
(Section 6.3).

A similar randomization can be performed in
the second multiplier in the right-hand side of
Equation 6.8: he ≈ γn(r)hf(r), where the length
of the moving interval γn(r) can be considered
random as well as the rate of fixed obstacles hf(ξ).
In the latter case the situation can be described in
terms of doubly stochastic Poisson processes [2].

122 Statistical Reliability Theory

For the “highly reliable systems”, when, for
instance, hf→ 0 uniformly in r ∈ [0, R̄], one
can easily obtain from Equations 6.9 and 6.11
the following obvious “unconditional” asymptotic
approximate relations:

P(R̄)=
{

1− E

[∫ R̄

0
λaf(Y, r) dr

]}
[1+ o(1)]

=
{

1−
∫ R̄

0
E[λaf(Y, r) dr]

}
[1+ o(1)]

λ̄af(r)= E[λaf(Y, r | R > r)]
= E[λaf(Y, r)][1+ o(1)]

By applying Jensen’s inequality to the right-hand
side of Equation 6.9 a simple lower bound for
P(R̄) can be also derived:

P(R̄)≥ exp

{
E

[
−
∫ R̄

0
λaf(Y, r) dr

]}
6.2.4 Moving Obstacles

Consider a random process of continuous curves
in the plane to be called paths. We shall keep
in mind an application, that the ship routes
on a chart represent paths and the rate of the
stochastic processes, to be defined later, represents
the intensity of navigation in a given sea area.
The specific case of stationary random lines in the
plane is called a stationary line process.

It is convenient to characterize a line in the
plane by its (ρ, ψ) coordinates, where ρ is
the perpendicular distance from the line to a
fixed origin, and ψ is the angle between this
perpendicular line and a fixed reference direction.
A random process of undirected lines can be
defined as a point process on the cylinder�+ × S,
where �+ = (0,∞) and S denote both the circle
group and its representations as (0, 2π] [9]. Thus,
each point on the cylinder is equivalent to the
line in �2 and for the finite case the point
process (and associated stationary line process)
can be described. Let V be a fixed line in �2

with coordinates (ρV , α) and let NV be the
point process on V generated by its intersections
with the stationary line process. Then NV is a
stationary point process on V with rate hV given

by [9]:

hV = h

∫
S

|cos(ψ − α)|P(dψ) (6.14)

where h is the constant rate of the stationary
line process and P(dψ) is the probability that an
arbitrary line has orientation ψ . If the line process
is isotropic, then the relation in Equation 6.14
reduces to:

hV = 2h/π

The rate h is induced by the random measure
defined by the total length of lines inside any
closed bounded convex set in �2. One cannot
define the corresponding measure as the number
of lines intersecting the above-mentioned set,
because in this case it will not be additive.

Assume that the line process is the homoge-
neous Poisson process in the sense that the point
process NV generated by its intersections with an
arbitrary V is a Poisson point process. Consider,
now, a stationary temporal Poisson line process
in the plane. Similar to NV , the Poisson point
process {NV (t); t > 0} of its intersections with V

in time can be defined. The constant rate of this
process, hV (1), as usual, defines the probability
of intersection (by a line from a temporal line
process) of an interval of a unit length in V and
in a unit interval of time given these units are
substantially small. As previously, Equation 6.17
results in hV (1)= 2h(1)/π for the isotropic case.

Let Vξ1,ξ2 be a finite line route, connecting ξ1
and ξ2 in �2, and r , as in the previous section,
is the distance from ξ1 to the current point of
Vξ1,ξ2 . Then hV (1) dr dt can be interpreted as the
probability of intersecting Vξ1,ξ2 by the temporal
line process in

(r, r + dr)× (t, t + dt) ∀r ∈ (0, R̄), t > 0

A point (a ship) starts moving along Vξ1,ξ2 at
ξ1, t = 0 with a given speed. We assume that an
accident happens with a given probability when
“it intersects” the line from the (initial) temporal
line process. Note that intersection in the previous
section was time independent. A regularization
procedure, involving dimensions (of a ship, in
particular) can be performed in the following way:

Modeling the Observed Failure Rate 123

an attraction interval

(r − γ−ta , r + γ+ta)⊂ Vξ1,ξ2 γ+ta , γ−ta ≥ 0

γta(r)= γ+ta (r)+ γ−ta (r)� R̄

where the subscript “ta” stands for tangential, is
considered. The attraction interval (which can be
defined by the ship’s dimensions), “attached to the
point r” is moving along the route. The coordinate
of the point is changing in time in accordance with
the following equation:

r(t)=
∫ t

0
ν(s) ds t ≤ tR̄

where tR̄ is the total time on the route.
Similar to Equations 6.5 and 6.6, the equivalent

rate of intersections hem(r) can be derived. Assume
for simplicity that the speed v(t)= v0 and the
length of the attraction interval γta are constants.
Then

E[NV ((r, r +�r), �t)] = hV (1)�r�t (6.15)

Thus, the equivalent rate is also a constant:

hem =�thV (1)= γta

v0
hV (1) (6.16)

where �t = γta/v0 is the time needed for the
moving attraction interval to pass the interval
(r, r +�r) as �r→ 0. In other words, the
number of intersections of (r, r + dr) by the lines
from the temporal Poisson line process is counted
only during this interval of time. Therefore, the
temporal component of the process is “eliminated”
and its r-parameterization is performed.

As assumed earlier, the intersection can lead to
an accident. Let the corresponding probability of
an accident θm also be a constant. Then, using the
results of Sections 6.2.1 and 6.2.2, the probability
of moving along the route Vξ1,ξ2 without accidents
can be easily obtained in a simple form:

P(R̄)= exp(−θmhemR̄) (6.17)

The nonlinear generalization, which is rather
straightforward, can be performed in the follow-
ing way. Let the line route Vξ1,ξ2 turn into the con-
tinuous curveRξ1,ξ2 and lines of the stochastic line

process also turn into continuous curves. As pre-
viously, assume that the radius of curvature Rc(r)

is bounded from the left by a positive, sufficiently
large constant (the same for the curves of the
stochastic process). The idea of this generalization
is based on the fact that for a sufficiently narrow
domain (containing Rξ1,ξ2) the paths can be con-
sidered as lines and sufficiently small portions of
the route can also be considered as approximately
linear.

Alternatively it can be assumed from the
beginning (and this seems to be quite reasonable
for our application) that the point process
generated by intersections of Rξ1,ξ2 with temporal-
planar paths is a non-homogeneous Poisson
process (homogeneous in time, for simplicity)
with the rate hR(r, 1). Similar to Equation 6.16,
an r-dependent equivalent rate can be obtained
asymptotically as γta→ 0:

hem(r)= γta

v0
hR(r, 1)[1+ o(1)] (6.18)

It is important that, once again, everything is
written in r-parameterization. Marginal cases for
Equation 6.18 are quite obvious. When v0→ 0 the
equivalent rate tends to infinity (time of exposure
of a ship to the temporal path process tends to
infinity); when v0→∞ the rate tends to zero. The
relation in Equation 6.17 can be now written in the
r-dependent way:

P(R̄)= exp

[
−
∫ R̄

0
θm(r)hem(r) dr

]
(6.19)

Similar to the previous section, the corresponding
randomization approaches can also be applied to
the equivalent failure rate θm(r)hem(r). Finally,
assuming an independence of two causes of
accidents, the probability of survival on the
route is given by the following equation, which
combines Equations 6.7 and 6.19:

P(R̄)= exp

{
−
∫ R̄

0
[θf(r)hef(r)

+ θm(r)hem(r)] dr
}

(6.20)

Other types of external point influence can also
be considered, which under certain assumptions

124 Statistical Reliability Theory

will result in additional terms in the integrand
in the right-hand side of Equation 6.20. Thus,
the method of the per demand failure rate, as in
the one-dimensional case, combined with the r-
parameterization procedure, resulted in the ob-
taining of simple relations for the observed failure
rate and eventually in deriving the probability of
survival in the plane.

6.3 Multiple Availability

6.3.1 Statement of the Problem

The main objective of this section is to show how
the method of the per demand failure rate works
as a fast repair approximation to obtain some
reliability characteristics of repairable systems
that generalize the conventional availability. At the
same time, exact solutions for the characteristics
under consideration or the corresponding integral
equations will be also derived.

Consider a repairable system, which begins
operating at t = 0. A system is repaired upon
failure, and then the process repeats. Assume
that all time intervals (operation and repair)
are s-independent, the periods of operation are
exponential, independent, identically distributed
(i.i.d.) random variables, and the periods of repair
are also exponential, i.i.d. random variables. Thus,
a specific alternating renewal process describes
the process of system’s functioning.

One of the main reliability characteristics of
repairable systems is availability—the probability
of being in the operating state at an arbitrary
instant of time t . This probability can be easily
obtained [8] for a system that is functioning and
repaired under the above assumptions:

A(t)= µ

µ+ λ
+ λ

µ+ λ
exp[−(λ+ µ)t] (6.21)

where λ and µ are parameters of exponential
distributions of times to failure and to repair
respectively.

It is quite natural to generalize the notion of
availability on a setting when a system should be
available at a number of time instants (demands).

Define a breakdown (it was called “an accident”
in the specific setting of Section 6.2) as an event
when a system is in the state of repair at the
moment of a demand occurrence. Define multiple
availability as the probability of the following
event: the system is in the operating state at each
moment of demand in [0, t).

Let, at first, the instants of demands are
fixed: 0 < t1 < t2 < · · ·< tk < t . Then, owing to
the Markovian properties of the model, multiple
availability V (t) can be obtained for this case
as:

V (t)= A(t1)A(t2 − t1) · · · A(tk − tk−1) (6.22)

Assume now that a point process of demands is
the homogeneous Poisson process with the rate λd
and it is s-independent of the process of the system
functioning and repair. The straightforward
integration of Equation 6.22 for ti, i = 1, 2, . . . , k
from the homogeneous Poisson process and
summation for all possible k from 1 to ∞ gives
the following general formula [10]:

V (t)=
∞∑
k=1

∫ ∫
· · ·
∫

Aλ,µ(t1, t2, . . . , tk)λ
k
d dt1 dt2

· · · dtk exp(−λdt)+ exp(−λdt) (6.23)

where the limits of integration for each ti,
i = 1, 2, . . . are 0 and t respectively. The term
exp(−λdt) stands for the probability of absence
of demands in [0, t). Of course, computations of
V (t) using the relation in Equation 6.23 can be
only approximate.

There are many applications, where multiple
availability can be considered as an important
probabilistic characteristic for repairable systems.
Performance of various information-measuring
systems, for instance, which operate continuously
and deliver information only on users’ demand at
some instants of time, can be adequately described
by multiple availability [11].

The criterion of a breakdown in the above
definition of multiple availability is very strong:
a system should be available at each instant
of demand. Thus, it is reasonable to con-
sider the weaker versions of this criterion,
when:

Modeling the Observed Failure Rate 125

1. not all demands need to be serviced;
2. if a demand occurs, while a system is in the

state of repair, but the time from the start
of repair (or to the completion of repair) is
sufficiently small, then this event may not
qualify as a breakdown.

These new assumptions are quite natural. The
first describes the fact that the quality of a
system performance can still be considered as
acceptable if the number of demands when a
system is in the state of repair is less than k,
k ≥ 2. The second can be applied, for instance, to
information-measuring systems when the quality
of information, measured before the system last
failure, is still acceptable after τ̃ units of repair
time (information is slowly aging). Two methods
are used for deriving expressions for multiple
availability for these criteria of a breakdown:

1. the method of integral equations to be solved
via the corresponding Laplace transforms;

2. an approximate method of the per demand
failure rate.

The method of integral equations leads to the
exact explicit solution for multiple availability
only for the simplest criterion of a breakdown and
exponential distributions of times to failure and
repair. In other cases the solution can be obtained
via the numerical inversion of Laplace transforms.

On the other hand, simple relations for multiple
availability can be obtained via the method of the
per demand failure rate on a basis of the fast repair
assumption: the mean time of repair is much less
than the mean time of a system time to failure and
the mean time between the consecutive demands.
The fast repair approximation also makes it possi-
ble to derive approximate solutions for the prob-
lems that cannot be solved by the first method,
e.g. for the case of arbitrary time to failure and
time to repair cumulative distribution functions.

6.3.2 Ordinary Multiple Availability

Multiple availability V (t) defined in Section 6.3.1
will be called ordinary multiple availability
as distinct from the availability measures of

subsequent sections. It is easy to obtain the
following integral equation for V (t) [11]

V (t)= exp(−λdt)

+
∫ t

0
λd exp(−λdx)A(x)V (t − x) dx

(6.24)

where the first term defines the probability of the
absence of demands in [0, t), and the integrand is
a joint probability of three events:

• occurrence of the first demand in [x, x + dx)
• the system is in the operation state at the time

instant x
• the system is in the operation state at each

moment of demand in [x, t) (probability:
V (t − x)).

Equation 6.4 can be easily solved via the
Laplace transform. By applying this transforma-
tion to both sides of Equation 6.24 and using the
Laplace transform of A(t), then, after elementary
transformations, the following expression for the
Laplace transform of V (t) can be obtained:

Ṽ (s)= s + λd + λ+ µ

s2 + s(λd + λ+ µ)+ λdλ
(6.25)

Finally, performing the inverse transform:

V (t)= B1 exp(s1t)+ B2 exp(s2t) (6.26)

where the roots of the denominator in Equa-
tion 6.5 are

s1,2 = −(λd + λ+ µ)±√(λd + λ+ µ)2 − 4λdλ

2
and B1 = s2/(s2 − s1) and B2 =−s1/(s2 − s1).
It is worth noting that, unlike the relation in
Equation 6.23, a simple explicit expression is
obtained in Equation 6.26.

The following assumptions are used while de-
riving approximations for V (t) and the corre-
sponding errors of approximation:

1

λ
� 1

µ
(λ� µ) (6.27)

1

λd
� 1

µ
(λd� µ) (6.28)

t � 1

µ
(6.29)

126 Statistical Reliability Theory

The assumption in Equation 6.27 implies that
the mean time to failure far exceeds the mean
time of repair, and this is obviously the case
in many practical situations. The mean time of
repair usually does not exceed several hours,
whereas it can be thousands of hours for λ−1. It
is usually referred to as a condition of the fast
repair [12]. This assumption is important for the
method of the current section, because, as it will
be shown, it is used for approximating availability
(Equation 6.11) by its stationary characteristic in
the interval between two consecutive demands
and for expansions in series as well. This means
that the interval mentioned should be sufficiently
large and this is stated by the assumption in
Equation 6.28. There exist, of course, systems with
a very high intensity of demands (a database
system, where queries arrive every few seconds,
for instance), but here we assume a sufficiently
low intensity of demands, which is relevant for a
number of applications. An onboard navigational
system will be considered in this section as
the corresponding example. The assumption in
Equation 6.29 means that the mission time t

should be much larger than the mean time of
repair, and this is quite natural for the fast repair
approximation.

With the help of the assumptions in Equa-
tions 6.28 and 6.29 [11], an approximate relation
for V (t) can be obtained via the method of the per
demand failure rate, Equations 6.2 and 6.3, in the
following way:

V (t)≡ exp

[
−
∫ t

0
λb(u) du

]
≈ exp[−(1− A)λdt]
= exp

(
− λλdt

λ+ µ

)
(6.30)

where λb(t) is the observed failure rate to be called
now the breakdown rate (notation λa(t) was used
for the similar characteristic).

The above assumptions are necessary for
obtaining Equation 6.30, as the time-dependent
availability A(t) is substituted by its stationary

characteristic A(∞)≡ A= µ/λ+ µ. Thus

λb(t)= λλd

λ+ µ

and

θ(t)= (1− A)= λ

λ+ µ
, h(t) = λd

6.3.3 Accuracy of a Fast Repair
Approximation

What is the source of an error in the approximate
relation in Equation 6.30? The error results from
the fact that the system is actually available
on demand with probability A(td), where td
is the time since the previous demand. The
assumptions in Equations 6.28 and 6.29 imply that
A(td)≈ A, and this leads to the approximation
in Equation 6.30, whereas the exact solution
is defined by Equation 6.26. When t � µ−1

(assumption in Equation 6.29), the second term in
the right-hand side of Equation 6.26 is negligible.
Then an error δ is defined as

δ = s2

s2 − s1
exp(s1t)− exp

(
− λλdt

λ+ µ

)
Using Equation 6.27 for expanding s1 and s2 in
series:

δ =
[

1+ λλd

(λ+ λd + µ)2

]
×
(

1− s1t + s1t
2

2

)
[1+ o(1)]

−
[

1− λλdt

λ+ µ
+ (λλd)

2t2

2(λ+ µ)2

]
[1+ o(1)]

= λλd

(λ+ λd + µ)2

[
1+ λdt

(
1− λλdt

λ+ µ

)]
× [1+ o(1)]
= λλd

µ2 (1+ λdt)[1+ o(1)]

Notation o(1) is understood asymptotically:
o(1)→ 0 as λ/µ→ 0.

On the other hand, a more accurate result
can easily be obtained if, instead of 1− A, “an

Modeling the Observed Failure Rate 127

averaged probability” 1− Ã is used:

1− Ã≡
∫ ∞

0
[1− A(td)]λd exp(−λdtd) dtd

= λ

λ+ λd + µ

where Equation 6.1 was taken into account. Hence

V (t)≈ exp[−(1− Ã)λdt] = exp

(
− λλdt

λ+ λd + µ

)
(6.31)

In the same way, as above, it can be shown that

δ̃ ≡ V (t)− exp

(
− λλdt

λ+ λd + µ

)
= λλd

µ2

(
1− λλdt

λ+ λd + µ

)
[1+ o(1)]

The error in Equation 6.31 results from the
infinite upper bound of integration in 1− Ã,
whereas in realizations it is bounded. Thus,
exp[−(λλdt)/(λ+ λd + µ)] is a more accurate
approximation than exp[−(λλdt)/(λ + µ)] as λdt

is not necessarily small.
Consider the following practical example [11].

Example 1. A repairable onboard navigation sys-
tem is operating in accordance with the above
assumptions. To obtain the required high preci-
sion of navigational data, corrections from the
external source are performed with rate λd, s-
independent of the process of the system func-
tioning and repair. The duration of the correction
is negligible. Corrections can be performed only
while the system is operating; otherwise it is a
breakdown. These conditions describe multiple
availability; thus V (t) can be assessed by Equa-
tions 6.30 and 6.31. Let:

λ= 10−2 h−1 µ= 2 h−1

λd ≈ 0.021 h−1 t = 103 h−1 (6.32)

This implies that the mean time between failures
is 100 h, the mean time of repair is 0.5 h, and
the mean time between successive corrections is
approximately 48 h. The data in Equation 6.32
characterize the performance of the real naviga-
tion system. On substituting the concrete values of

parameters in the exact relation (Equation 6.26):

V (t)= 0.901 812 8

whereas the approximate relation (Equation 6.31)
gives:

V (t)≈ 0.901 769 3

Thus, the “real error” is δ̃ = 0.000 043 5, and

λλd

µ2

(
1− λλdt

λ+ λd + µ

)
= 0.000 047 1

The general case of arbitrary distributions of
time to failure F(t) with mean T̄ and time
to repair G(t) with mean τ̄ under assumptions
similar to Equations 6.27–6.29 can also be
considered. This possibility follows from the fact
that the stationary value of availability A depends
only on the mean times to failure and repair.
Equation 6.30, for instance, will turn to

V (t)≡ exp

[
−
∫ t

0
λb(u) du

]
≈ exp[−(1− A)λdt]

= exp

(
− τ̄ λdt

T̄ + τ̄

)
(6.33)

Furthermore, as follows from [11], the method of
the per demand failure rate can be generalized
to the non-homogeneous Poisson process of
demands. In this case, λdt in Equation 6.33 should
be substituted by

∫ t
0 λd(u) du.

It is difficult to estimate an error of approxi-
mation for the case of arbitrary F(t) and G(t) di-
rectly. Therefore, strictly speaking, Equation 6.33
can be considered only like a heuristic result.
Similar to Equation 6.31, a more accurate solution
exp[−(1− Ã)λdt] can be formally defined, but the
necessary integration of the availability function
can be performed explicitly only for the special
choices of F(t) and G(t), like the exponential or
the Erlangian, for instance.

6.3.4 Two Non-serviced Demands in a
Row

The breakdown in this case is defined as an
event when a system is in the repair state at
two consecutive moments of demand. Multiple

128 Statistical Reliability Theory

availability V1(t) is now defined as the probability
of a system functioning without breakdowns in
[0,∞).

As was stated before, this setting can be quite
typical for some information-processing systems.
If, for instance, a correction of the navigation
system in the example above had failed (the
system was unavailable), we can still wait for
the next correction, and consider the situation as
normal, if this second correction was performed
properly.

Similar to Equation 6.24, the following integral
equation for V1(t) can be obtained:

V1(t)= exp(−λdt)

+
∫ t

0
λd exp(−λdx)A(x)V1(t − x) dx

+
∫ t

0

{
λd exp(−λdx)[1− A(x)]

×
∫ t−x

0
λd exp(−λdy)A

∗(y)

× V1(t − x − y) dy

}
dx (6.34)

where A∗(t) is the availability of the system at the
time instant t , if at t = 0 the system was in the state
of repair:

A∗(t)= µ

µ+ λ
− µ

µ+ λ
exp[−(λ+ µ)t]

The first two terms in the right-hand side of
Equation 6.34 have the same meaning as in the
right-hand side of Equation 6.24, and the third
term defines the joint probability of the following
events:

• occurrence of the first demand in [x, x + dx);
• the system is in the repair state at x

(probability: 1− A(x));
• occurrence of the second demand in [x +

y, x + y + dy), given that the first demand
had occurred in [x, x + dx);
• the system is in the operation state at x + y,

given that it was in the repair state on the
previous demand (probability: A∗(y));
• the system operates without breakdowns in
[x + y, t) (probability: V1(t − x − y)).

Equation 6.34 can also be easily solved via the
Laplace transform. After elementary transforma-
tions

Ṽ1(s)= {(s + λd)(s + λd + λ+ µ)2}
× {s(s + λd)(s + λd + λ+ µ)2

+ sλdλ(s + 2λd + λ+ µ)

+ λ2
dλ(λd + λ)}−1

= P3(s)

P4(s)
(6.35)

where P3(s) (P4(s)) denotes the polynomial
of the third (fourth) order in the numerator
(denominator).

The inverse transformation results in

V1(t)=
4∑
1

P3(si)

P ′4(si)
exp(si t) (6.36)

where P ′4(s) defines the derivative of P4(s) and si,
i = 1, 2, 3, 4, are the roots of the denominator in
Equation 6.35:

P4(s)=
4∑
0

bks
4−k = 0 (6.37)

where bk are defined as:

b0 = 1

b1 = 2λ+ 2µ+ 3λd

b2 = (λd + λ+ µ)(3λd + λ+ µ)+ λdλ

b3 = λd[(λd + λ+ µ)2

+ λ(λd + λ+ µ)+ λ(λd + λ)]
b4 = λ2

dλ(λd + λ)

Equation 6.36 defines the exact solution of the
problem. It can be easily obtained numerically
by solving Equation 6.37 and substituting the
corresponding roots in Equation 6.36. As in the
previous section, a simple approximate formula
can also be used in practice. Let the assumptions
in Equations 6.27 and 6.28 hold. All bk , k =
1, 2, 3, 4, in Equation 6.37 are positive, and
this means that there are no positive roots of
this equation. Consider the smallest in absolute

Modeling the Observed Failure Rate 129

value root s1. Owing to the assumption in
Equation 6.27, and the definitions of P3(s) and
P4(s) in Equation 6.35, it can be seen that

s1 ≈−b4

b3
≈−λλd(λ+ λd)

µ2
,

P3(s1)

P ′4(s1)
≈ 1

and that the absolute values of other roots far
exceed |s1|. Thus, Equation 6.36 can be written as
the fast repair exponential approximation:

V1(t)≈ exp

[
−λλd(λ+ λd)

µ2 t

]
(6.38)

It is difficult to assess the approximation error
of this approach directly, as it was done in the
previous section, because the root s1 is also
defined approximately.

On the other hand, the method of the per
demand failure rate can be used for obtaining
V1(t). Similar to Equation 6.10:

V1(t)≡ exp

[
−
∫ t

0
λb(u) du

]
≈ exp[−A(1− A)2λdt]

= exp

[
− µλ2λdt

(λ+ µ)3

]
(6.39)

Indeed, the breakdown can happen in [t, t + dt)
if a demand occurs in this interval (probability:
λd dt) and the system is unavailable at this
moment of time and at the moment of the previous
demand, while it was available before. Owing to
the assumptions in Equations 6.28 and 6.29, this
probability is approximately [µλ/(λ + µ)]3, as

A≡ A(∞)= A∗(∞)= µ

λ+ µ

Similar to Equation 6.31, a more accurate
approximation for V1(t) can be obtained if we
substitute in Equation 6.39 more accurate values of
unavailability at the moments of current (1− Ã∗)
and previous (1− Ã) demands. Hence

V1(t)≈ exp[−A(1− Ã)(1− Ã∗)λdt]

= exp

{
−µλλd[µ(λ+ λd)+ λλd + λ2]t

(λ+ µ)2(λ+ λd + µ)2

}
(6.40)

Actually, this is also an obvious modification
of the method of the per demand failure rate.
The analysis of accuracy of this and subsequent
models is much more cumbersome than the one
for ordinary multiple availability. Therefore, it
is not included in this chapter. The fast repair
assumption (Equation 6.27) leads to an interesting
result:

µλλd[µ(λ+ λd)+ λλd + λ2]
(λ+ µ)2(λ+ λd + µ)2

= λλd(λ+ λd)

µ2
[1+ o(1)]

Thus, Equation 6.40 and the approximate for-
mula in Equation 6.38, which was derived via the
Laplace transform, are asymptotically equivalent!
It is worth noting that a more crude relation
(Equation 6.39) does not always lead to Equa-
tion 6.38, as it is not necessarily so that λd� λ.

Taking into account the reasoning that was used
while deriving Equation 6.30, the approximation
in Equation 6.39 can be generalized to arbitrary
F(t) and G(t):

V1(t)≈ exp[−A(1− A)2λdt]

= exp

[
− λdT̄ τ̄

2t

(T̄ + τ̄)3

]
(6.41)

6.3.5 Not More thanN Non-serviced
Demands

The breakdown in this case is defined as an event,
when more than N ≥ 1 demands are non-serviced
in [0, t). Multiple availability V2,N(t) is defined as
the probability of a system functioning without
breakdowns in [0, t).

Let N = 1. Similar to Equations 6.24 and 6.34:

V2,1(t)= exp(−λdt)

+
∫ t

0
λd exp(−λdx)A(x)V2,1(t − x) dx

+
∫ t

0
λd exp(−λdx)

× [1− A(x)]V ∗(t − x) dx (6.42)

130 Statistical Reliability Theory

whereV ∗(t) is an ordinary multiple availability for
the system that is at t = 0 in the state of repair.
Similar to Equation 6.26:

V ∗(t)= B∗1 exp(s1t)+ B∗2 exp(s2t)

where s1 and s2 are the same as in Equation 6.26
and

B∗1 =
s2 + λd

s2 − s1
B∗2 =−

s1 + λd

s2 − s1

The first term in the right-hand side of Equa-
tion 6.42 determines the probability of absence
of demands in [0, t). The second term defines
the probability that the system is operable on the
first demand (renewal point) and is functioning
without breakdowns in [x, t). The third term de-
termines the probability of the system being in
the state of repair on the first demand and in the
operable state on all subsequent demands.

Applying the Laplace transform to both sides of
Equation 6.42 and solving the algebraic equation
with respect to Ṽ2,1(s):

Ṽ2,1(s)= {(s + λd + λ+ µ)

× [s2 + s(λd + λ+ µ)+ λdλ]
+ λdλ(s + λ+ µ)}
× {[s2 + s(λd + λ+ µ)+ λdλ]2}−1

(6.43)

The roots of the denominator s1 and s2 are the
same as in Equation 6.25, but two-folded. A rather
cumbersome exact solution can be obtained by
inverting Equation 6.43. The complexity will in-
crease with increase in N . The cumbersome re-
current system of integral equations for obtaining
V2,N(t) can be derived and solved in terms of the
Laplace transform (to be inverted numerically).
Hence, the fast repair approximation of the previ-
ous sections can also be very helpful in this case.

Consider a point process of breakdowns of
our system in the sense of Section 6.3.2 (each
point of unavailability on demand forms this
point process). It is clear that this is the
renewal process with 1− V (t) as the cumulative
distribution function of the first cycle and 1−
V ∗(t) as cumulative distribution functions of
the subsequent cycles. On the other hand, as

follows from Equation 6.31, the point process
can be approximated by the Poisson process
with rate (1− Ã)λd. This leads to the following
approximate result for arbitrary N :

V2,N(t)≈ exp

(
− λλd

λ+ λd + µ
t

)
×

N∑
n=0

1

n!
(

λλd

λ+ λd + µ
t

)n
N = 1, 2, . . . (6.44)

Thus, a rather complicated problem had been im-
mediately solved via the Poisson approximation,
based on the per demand failure rate λλd(λ+
λd + µ)−1. When N = 0, we arrive at the case of
ordinary multiple availability: V2,0(t)≡ V (t). As
previously:

V2,N(t)≈ exp

(
λdτ̄

T̄ + τ̄
t

)
×

N∑
n=0

1

n!
(

λdτ̄

T̄ + τ̄
t

)n
N = 1, 2, . . .

for the case of general distributions of failure and
repair times.

6.3.6 Time Redundancy

The breakdown in this case is defined as an event,
when at the moment of a demand occurrence
the system has been in the repair state for a
time exceeding τ̃ > 0. As previously, multiple
availability V3(t) is defined as the probability of a
system functioning without breakdowns in [0, t).

The definition of a breakdown for this case
means that, if the system is “not too long” in
the repair state at the moment of a demand
occurrence, then this situation is not considered
as a breakdown. Various types of sensor in
information-measuring systems, for instance, can
possess this feature of certain inertia. It is clear
that if τ̃ = 0, then V3(t)= V (t).

The following notation will be used:

V ∗3 (t) multiple availability in [0, t) in
accordance with a given definition of
a breakdown (the system is in the
repair state at t = 0)

Modeling the Observed Failure Rate 131

�(x, τ̃) probability that the system has been
in the repair state at the moment of a
demand occurrence x for a time not
exceeding τ̃ (the system is in the
operable state at t = 0)

�∗(x, τ̃) probability that the system has been
in the repair-state at the moment of a
demand occurrence x for a time not
exceeding τ̃ (the system is in the
state of repair at t = 0).

Generalizing Equation 6.24, the following
integral equation can be obtained:

V3(t)= exp(−λdt)

+
∫ t

0
λd exp(−λdx)A(x)V3(t − x) dx

+
∫ t

0
λd exp(−λdx)�(x, τ̃)V ∗3 (t − x) dx

(6.45)

where
V ∗3 (t)= exp(−λdt)

+
∫ t

0
λd exp(−λdx)A

∗(x)V3(t − x) dx

+
∫ t

0
λd exp(−λdx)�

∗(x, τ̃)V ∗3 (t−x) dx

and

�(x, τ̃)= 1− A(x)�∗(x, τ̃)= 1− A∗(x)

for x ≤ τ̃ , and

�(x, τ̃)=
∫ τ̃

0
A(x − y)

×
{ ∫ y

0
λ exp(−λz)

× exp[−µ(y − z)] dz
}

dy

�∗(x, τ̃)=
∫ τ̃

0
A∗(x − y)

×
{ ∫ y

0
λ exp(−λz)

× exp[−µ(y − z)] dz
}

dy

for x ≥ τ̃ .

The integrand in the third term in the right-
hand side of Equation 6.45, for instance, defines
the joint probability of the following events: a
demand in [x, x + dx); the system is in the repair-
state for less than τ̃ at this moment of time; the
system is operating without breakdowns in [x, t −
x) (the system was in the repair-state at t = 0). By
solving these equations via the Laplace transform,
the cumbersome exact formulas for V3(t) can also
be obtained.

To obtain a simple approximate formula by
means of the method of the per demand failure
rate, as in the previous section, consider the
Poisson process with rate (1− Ã)λd, which,
due to Equation 6.31, approximates the point
process of the non-serviced demands (each point
of unavailability on demand forms this point
process). Multiplying the rate of this initial process
(1− Ã)λd by the probability of a breakdown on a
demand exp(−µτ̃), the corresponding breakdown
rate can be obtained. Eventually:

V3(t)≡ exp

[
−
∫ t

0
λb(u) du

]
≈ exp[−λd(1− Ã) exp(−µτ̃)t]
= exp

[
− λλd

λ+ λd + µ
exp(−µτ̃)t

]
(6.46)

The definition of the breakdown will now be
changed slightly. It is defined as an event when the
system is in the repair state at the moment of a
demand occurrence and remains in this state for
at least time τ̃ after the occurrence of the demand.
The corresponding multiple availability is denoted
in this case by V4(t).

This setting describes the following situation:
a demand cannot be serviced at an instant of
its occurrence (the system is in the repair state),
but, if the remaining time of repair is less than τ̃

(probability 1− exp(−µτ̃)), it can be still serviced
after the completion of the repair operation.
The integral equation for this case can be easily
written:

V4(t)= exp(−λdt)

+
∫ t

0
λd exp(−λdx)A(x)V4(t − x) dx

132 Statistical Reliability Theory

+
∫ t

0
λd exp(−λdx)[1− A(x)]

×
∫ τ̃

0
µ exp(−µy)V4(t − x − y) dy dx

Though this equation seems to be similar to
the previous one, it cannot be solved via the
Laplace transform, as V4(t − x − y) is dependent
on y. Thus, numerical methods for solving integral
equations should be used and the importance
of the approximate approach for this setting
increases.

It can be easily seen that the method of the
per demand failure rate can also be applied in
this case, which results in the same approximate
relation (Equation 6.46) for V4(t).

6.4 Modeling the Mixture
Failure Rate

6.4.1 Definitions and Conditional
Characteristics

In most settings involving lifetimes, the popula-
tion of lifetimes is not homogeneous. That is, all
of the items in the population do not have exactly
the same distribution; there is usually some per-
centage of the lifetimes that is different from the
majority. For example, for electronic components,
most of the population might be exponential, with
long lives, while a certain percentage often has
an exponential distribution with short lives and
a certain percentage can be characterized by lives
of intermediate duration. Thus, a mixing proce-
dure arises naturally when pooling from hetero-
geneous populations. The observed failure rate,
which is actually the mixture failure rate in this
case, obtained by usual statistical methods, does
not bear any information on this mixing proce-
dure. To say more, as was stated in Section 6.1,
obtaining the observed failure rate in this way
can often present certain difficulties, because the
corresponding data can be scarce. On the other
hand, it is clear that the proper modeling can
add some valuable information for estimating the

mixture failure rate and for analyzing and com-
paring its shape with the shape of the failure rate
of the governing cumulative distribution function.
Therefore, the analysis of the shape of the ob-
served failure rate will be the main topic of this
section.

Mixtures of decreasing failure rate (DFR)
distributions are always DFR distributions [8]. It
turns out that, very often, mixtures of increasing
failure rate (IFR) distributions can decrease, at
least in some intervals of time. This means that the
operation of mixing can change the corresponding
pattern of aging. This fact is rather surprising,
and should be taken into account in various
applications owing to its practical importance.

As previously, consider a lifetime random vari-
able T ≥ 0 with a cumulative distribution func-
tion F(t). Assume, similar to Section 6.2.3, that
F(t) is indexed by a parameter θ , so that P(T ≤
t | θ)= F(t, θ) and that the probability density
function f (t, θ) exists. Then the corresponding
failure rate λ(t, θ) can be defined in the usual way
as f (t, θ)/F̄ (t, θ). Let θ be interpreted as a non-
negative random variable with a support in [0,∞)

and a probability density function π(θ). For the
sake of convenience, the same notation is used for
the random variable and its realization. A mixture
cumulative distribution function is defined by

Fm(t)=
∫ ∞

0
F(t, θ)π(θ) dθ (6.47)

and the mixture (observed) failure rate in
accordance with this definition is

λm(t)=
∫∞

0 f (t, θ)π(θ) dθ∫∞
0 F̄ (t, θ)π(θ) dθ

(6.48)

Similar to Equations 6.12 and 6.13, and using the
conditional probability density function π(θ | t)
of θ given T ≥ t :

π(θ | t)= π(θ)F̄ (t, θ)∫∞
0 F̄ (t, θ)π(θ) dθ

(6.49)

the mixture failure rate λm(t) can be written as:

λm(t)=
∫ ∞

0
λ(t, θ)π(θ | t) dθ (6.50)

Modeling the Observed Failure Rate 133

Denote by E[θ | t] the conditional expectation of
θ given T ≥ t :

E[θ | t] =
∫ ∞

0
θπ(θ | t) dθ

An important characteristic for further considera-
tion is E′[θ | t], the derivative with respect to t :

E′[θ | t] =
∫ ∞

0
θπ ′(θ | t) dθ

where

π ′(θ | t)= λm(t)π(θ | t)− f (t, θ)π(θ)∫∞
0 F̄ (t, θ)π(θ) dθ

Therefore, the following relation holds [13]:

E′[θ | t] = λm(t)E[θ | t] −
∫∞

0 θf (t, θ)π(θ) dθ∫∞
0 F̄ (t, θ)π(θ) dθ

(6.51)
In the next two sections the specific models of
mixing will be considered.

6.4.2 Additive Model

Suppose that

λ(t, θ)= α(t)+ θ (6.52)

where α(t) is a deterministic continuous increas-
ing function (α(t) ≥ 0, t ≥ 0) to be specified later.
Then, noting that f (t, θ)= λ(t, θ)F̄ (t, θ), and
applying the definition given in Equation 6.48 for
this concrete model:

λm(t)= α(t) +
∫∞

0 θF̄ (t, θ)π(θ) dθ∫∞
0 F̄ (t, θ)π(θ) dθ

= α(t) + E[θ | t] (6.53)

Using Equations 6.51 and 6.53, the specific form of
E′[θ | t] can be obtained:

E′[θ | t] = [E[θ | t]]2 −
∫ ∞

0
θ2π(θ | t) dθ

=− Var(θ | t) < 0 (6.54)

Therefore, the conditional expectation of θ for
the additive model is a decreasing function of t ∈
[0,∞).

Upon differentiating Equation 6.53, and using
Equation 6.54, the following result on the shape of
the mixture failure rate can be obtained [7]:

Let α(t) be an increasing (non-decreasing) convex
function in [0,∞). Assume that Var(θ | t) is
decreasing in t ∈ [0,∞).

If
Var(θ | 0) > α′(0)

then λm(t) decreases in [0, c) and increases in
[c,∞), where c can be uniquely defined by the
equation: Var(θ | t) (bathtub shape).

If
Var(θ | 0)≤ α′(0)

then λm(t) is increasing in [0,∞).

6.4.3 Multiplicative Model

Suppose that

λ(t, θ)= θα(t) (6.55)

where α(t) is some deterministic increasing
(non-decreasing), at least for sufficiently large t ,
continuous function (α(t) ≥ 0, t ≥ 0). The model
in Equation 6.55 is usually called a proportional
hazards (PH) model, whereas the previous one
is called an additive hazards model. Applying
Equation 6.50:

λm(t)=
∫ ∞

0
λ(t, θ)π(θ | t) dθ = α(t)E[θ | t]

(6.56)
After differentiating

λ′m(t)= α′(t)E[θ | t] + α(t)E′[θ | t]
It follows immediately from this equation that
when α(0)= 0 the failure rate λm(t) increases in
the neighborhood of t = 0. Further behavior of
this function depends on the other parameters
involved. If λ′m(t) ≥ 0, then the mixture failure rate
is increasing (non-decreasing). Thus, the mixture
will have an IFR if and only if ∀t ∈ [0,∞):

α′(t)
α(t)

≥−E′[θ | t]
E[θ | t] (6.57)

134 Statistical Reliability Theory

Similar to Equation 6.54, it can be shown
that [13]:

E′[θ | t] = −α(t) Var(θ | t) < 0 (6.58)

which means that the conditional expectation of
θ for the model (Equation 6.55) is a decreasing
function of t ∈ [0,∞). Combining this property
with Equations 6.55 and 6.56 for the specific
case α(t)= const, the well-known result that the
mixture of exponentials has a DFR can be easily
obtained. Thus, the foregoing can be considered
as a new proof of this fact.

With the help of Equation 6.58, the inequality
in Equation 6.57 can be written as

α′(t)
α2(t)

≥ Var(θ | t)
E[θ | t] (6.59)

Thus, the first two conditional moments and the
function α(t) are responsible for the IFR (DFR)
properties of the mixture distribution. These
characteristics can be obtained for each specific
case.

The following result is intuitively evident, as
it is known already that E[θ | t] is monotonically
decreasing:

E[θ | t] =
∫ ∞

0
θπ(θ | t) dθ→ 0 t→∞

(6.60)
It is clear from the definition of π(θ | t) and the
fact that the weaker populations are dying out
earlier [14], that E[θ | t] should converge to zero.
The weaker population “should be distinct” from
the stronger one as t→∞. This means that the
distance between different realizations of λ(t, θ)
should be bounded from below by some constant
d(θ1, θ2):

λ(t, θ2)− λ(t, θ1)≥ d(θ1, θ2) > 0

θ2 > θ1, θ1, θ2 ∈ [0,∞)

uniformly in t ∈ (c,∞), where c is a sufficiently
large constant. This is obviously the case for our
model (Equation 6.55), as α(t) is an increasing
function for large t . Therefore, as t→∞, the
proportion of populations with larger failure rates
λ(t, θ) (larger values of θ) is decreasing. More

precisely: for each ε > 0, the proportion of popu-
lations with θ ≥ l is asymptotically decreasing to
zero no matter how small ε is. This means that
E[θ | t] tends to zero as t→∞ [15]. Alternatively,
asymptotic convergence (Equation 6.60) can be
proved [13] more strictly based on the fact that

π(θ | t)→ δ(0) as t→∞
where δ(t) denotes the Dirac delta function.

From Equation 6.55:

lim
t→∞ λm(t)= lim

t→∞ α(t)

∫ b

a

θπ(θ | t) dθ

= lim
t→∞ α(t)E[θ | t] (6.61)

Specifically, for the mixture of exponentials when
α(t) = const, it follows from Equations 6.60
and 6.61 that the mixture failure rate λm(t)

asymptotically decreases to zero as t→∞. The
same conclusion can be made for the case
when F(t, θ) is a gamma cumulative distribution
function. Indeed, it is well known that the failure
rate of the gamma distribution asymptotically
converges to a constant.

Asymptotic behavior of λm(t) in Equation 6.61
for a general case depends on the pattern of α(t)
increasing (E[θ | t] decreasing). Hence, by using
the L’Hospital rule (α(t)→∞), the following
result can be obtained [13]:

The mixture failure rate asymptotically tends to
zero:

lim
t→∞ λm(t)= 0 (6.62)

if and only if

lim
t→∞−

α2(t)E′[θ | t]
α′(t)

= lim
t→∞

α3(t) Var(θ | t)
α′(t)

= 0

(6.63)

This convergence will be monotonic if, in
addition to Equation 6.63:

α′(t)
α2(t)

<
Var(θ | t)
E[θ | t] (6.64)

Hence, conditional characteristics E[θ | t] and
Var[θ | t] are responsible for asymptotic and

Modeling the Observed Failure Rate 135

monotonic properties of the mixture failure rate.
The failure rate of the mixture can decrease,
if E[θ | t] decreases more sharply than α(t)

increases (see Equations 6.58 and 6.61). As follows
from Equation 6.63, the variance should also
be sufficiently small for convergence to zero.
Simplifying the situation, one can say that the
mixture failure rate tends to increase but, at the
same time, another process of “sliding down”,
due to the effect of dying out of the weakest
populations, takes place. The combination of these
effects can eventually result in convergence to
zero, which is usually the case for the commonly
used lifetime distribution functions.

Results, obtained for the multiplicative model
are valid, in a simplified way, for the additive
model. Indeed:

λm(t)=
∫ b

a

[α(t)+ θ]π(θ | t) dθ

= α(t)+
∫ b

a

θπ(θ | t) dθ = α(t)+ E[θ | t]

Similar to Equation 6.60, it can be shown that
E[θ | t] → 0 as t→∞. Therefore, λm(t) as t→
∞ is asymptotically converging to the increasing
function α(t):

λm(t)− [α(t)+ a] → 0

6.4.4 Some Examples

Three simple examples analyzing the shape of
the mixture failure rate for the multiplicative
model will be considered in this section [13]. The
corresponding results will be obtained by using
the “direct” definition (Equation 6.48).

Example 2. Let F(t) be an exponential distribu-
tion with parameter λ, and π(θ) is the exponential
probability density function with parameter ϑ .
Thus, the corresponding failure rate is constant:
λ(t, θ)= θλ. Using Equation 6.48:

λm(t)= λ

λt + ϑ
→ 1

t
[1+ o(1)]→ 0 as t→∞

It can be easily shown by formal calculations
that the same asymptotic result is valid when

F(t) is a gamma distribution. This follows from
general considerations, because the failure rate
of a gamma distribution tends to a constant as
t→∞. The conditional expectation in this case is
defined by

E[θ | t] = 1

λt + ϑ

Example 3. Consider the specific type of the
Weibull distribution with linearly IFR λ(t, θ)=
2θt and assume that π(θ) is a gamma probability
density function:

π(θ)= ϑβθβ−1 exp(−θϑ)
�(β)

β, ϑ > 0, θ ≥ 0

Via direct integration, the mixture failure is
defined by

λm(t)= 2βt

ϑ + t2

It is equal to zero at t = 0 and tends to zero as
t→∞ with a single maximum at t =√θ . Hence,
the mixture of IFR distributions has a decreasing
(tending to zero!) failure rate for sufficiently
large t , and this is rather surprising. Furthermore,
the same result asymptotically holds for arbitrary
Weibull distributions with IFR.

It is surprising that the mixture failure rate is
converging to zero in both examples in a similar
pattern defined by t−1 because in the Example 2
we are mixing constant failure rates and in this
example it is IFRs. The conditional expectation in
this case is:

E[θ | t] = 2β

ϑ + t2

Example 4. Consider the truncated extreme value
distribution defined in the following way:

F(t, k, θ)= 1− exp{−θk[exp(t)− 1]} t ≥ 0

λ(t, θ)= θα(t) = θk exp(t)

where k > 0 is a constant. Assume that π(θ) is
an exponential probability density function with

136 Statistical Reliability Theory

parameter ϑ . Then:∫ ∞
0

f (t, k, θ)π(θ) dθ

=
∫ ∞

0
θk exp(t) exp{−θk[exp(t)− 1]}

× ϑ exp(−θϑ) dθ

= ϑk et

ω2

ω = k exp(t)− k + ϑ∫ ∞
0

F̄ (t, k, θ)π(θ) dθ = ϑ

∫ ∞
0

exp(−θ) dθ

= ϑ

ω

Eventually, using the definition in Equation 6.48:

λm(t)= k exp(t)

ω
= k exp(t)

k exp(t)− k + ϑ

= 1+ k − ϑ

k exp(t)− k + ϑ
(6.65)

For analyzing the shape of λm(t) it is convenient to
write Equation 6.65 in the following way:

λm(t)= 1

1+ (d/z)
(6.66)

where z = k exp(t) and d =−k + ϑ .
It follows from Equations 6.65 and 6.66

that λm(0)= k/ϑ . When d < 0 (k > ϑ), the
mixture failure rate is monotonically decreasing,
asymptotically converging to unity. For d > 0 (k <

ϑ) it is monotonically increasing, asymptotically
converging to unity. When d = 0 (k = ϑ), the
mixture failure rate is equal to unity: λm(t)≡ 1,
∀t[0,∞). The conditional expectation is defined
as

E[θ | t] = 1

k exp(t)− k + ϑ
= 1

z+ d

This result is even more surprising. The initial
failure rate is increasing extremely sharply, and
still for some values of parameters the mixture
failure rate is decreasing! On the other hand, for
k < ϑ it is increasing but has no resemblance at
all with the pattern of λ(t, θ) increasing. The most

amazing fact is that this kind of mixing can result
in a constant failure rate for k = ϑ !

The mixing rule resulting in Equation 6.66
has a very interesting interpretation in survival
analysis. Exponential failure rate (Gompertz law)
is used to model human mortality, but recent
demographic studies show that the long-term
pattern of adult mortality does not follow the
exponential shape of the corresponding failure
rate. This means that after the age of 80–85 years
a substantial deceleration in the observed failure
rate is encountered. What is the reason for this
deceleration? The model of Example 4 can explain
this. Indeed, for various reasons, the population is
not homogeneous. This means that parameter θ is
random, and the corresponding mixing leads to
a result similar to Equation 6.66. If the Weibull
cumulative distribution function is chosen as a
model for Fm(t, θ) (and this model is also used in
demographic studies), then similar to Example 3,
the failure rate can eventually decrease to zero, but
this effect can start at ages far beyond the current
human life span.

6.4.5 Inverse Problem

The following important inverse problem [15]
arises while modeling the mixture failure rate:

Given the mixture failure rate λm(t) and the mixing
distribution π(θ), obtain the failure rate λ(t) of the
governing distribution F(t).

It will be shown that this problem can be
explicitly solved for additive and proportional
failure rate models (Equations 6.52 and 6.55
respectively). In both of these cases the baseline
failure rate α(t) should be obtained.

The conditional expectation E[θ | t] in Equa-
tion 6.53 for the additive model (Equation 6.52)
can be simplified to:

E[θ | t] =
∫∞

0 θ exp(−θt)π(θ) dθ∫∞
0 exp(−θt)π(θ) dθ

(6.67)

It is important that E[θ | t] does not depend
on α(t). We want the mixture failure rate
λm(t) to be equal to some arbitrary continuous
function g(t), such that

∫∞
0 g(t) dt =∞, g(t) > 0.

Modeling the Observed Failure Rate 137

Thus, the corresponding equation for solving the
inverse problem is λm(t)= g(t). It follows from
Equation 6.53 that

α(t) = g(t) − E[θ | t] (6.68)

and this is, actually, the trivial solution of the
inverse problem for the additive model. It is clear
that for the given π(θ) the additional condition
should be imposed on g(t):

g(t) ≥ E[θ | t] ∀t ≥ 0

It is worth noting that α(t)→ g(t) as t→∞.
If, for instance, π(θ) is an exponential prob-

ability density function with parameter ϑ , then
it follows from Equation 6.67 that E[θ | t] = (t +
ϑ)−1, and

α(t)= g(t)− 1

t + ϑ

Assume that g(t) is a constant: g(t)= c. This
means that mixing will result in a constant failure
rate!

Thus, an arbitrary shape of λm(t) can be
constructed. For instance, let us consider the
modeling of the bathtub shape [7], which is
popular in many applications (decreasing in
[0, t0) and increasing in [t0,∞) for some t0 > 0).
This operation can be performed via mixing
IFR distributions. It follows from the result of
Section 6.4.2 that, if α(t) is an increasing convex
function in [0,∞) α′(0) < ϑ−2, then g(t) have a
bathtub shape.

The analysis is slightly more complicated for
the multiplicative model (Equation 6.65) [15]. As
for the additive model, the equation for obtaining
α(t) is λm(t)= g(t). It follows from Equations 6.55
and 6.56 that

β ′(t)
∫∞

0 θ exp[−θβ(t)]π(θ) dθ∫∞
0 exp[−θβ(t)]π(θ) dθ

= g(t) (6.69)

where β(t)= ∫ t0 α(u) du. Thus, unlike the first
model, the conditional expectation E[θ | t] de-
pends now on α(t).

Denote by π∗(t) the Laplace transform of π(θ)
for t ≥ 0: ∫ ∞

0
exp(−θt)π(θ) dθ ≡ π∗(t)

Taking into account that β(t) is monotonically
increasing:∫ ∞

0
exp[−θβ(t)]π(θ) dθ ≡ π∗[β(t)] ≡ S(t)

(6.70)
Differentiating both sides of Equation 6.70:

S′(t)=−β ′(t)
∫ ∞

0
θ exp[−θβ(t)]π(θ) dθ

(6.71)
Combining Equation 6.69 with Equations 6.70
and 6.71, we can obtain now a simple expected
result [15], which also follows from the definition
of the mixture failure rate. It is very convenient
that, in this specific case, the solution of the
inverse problem can be written via the Laplace
transform as

π∗[β(t)] = S(t)= exp

[
−
∫ t

0
g(u) du

]
(6.72)

⇒ β(t)= (π∗)−1
{

exp

[
−
∫ t

0
g(u) du

]}
(6.73)

Thus, obtaining π∗(t), substituting β(t) instead
of t , and solving Equation 6.72 with respect
to β(t)= ∫ t0 α(u) du leads to the solution of
the inverse problem for this case: obtaining
the governing distribution, which, due to the
model in Equation 6.55, is defined by α(t).
Equation 6.72 always has a unique solution, as β(t)
is a monotonically increasing function and π∗(t)
(π∗(β(t))) is a survival function (monotonically
decreasing from unity at t = 0 (β(t)= 0) to zero
as t→∞ (β(t)→∞)). This fact is actually
stated by the inverse transform (Equation 6.73).
The solution can be easily obtained explicitly for
the mixing distributions with a “nice” Laplace
transform π∗(t).

Example 5. Let π(t)= ϑ exp(−ϑθ). Then

π∗(t)= ϑ

t + ϑ

π∗[β(t)] = ϑ

β(t)+ ϑ

138 Statistical Reliability Theory

and

π∗[β(t)] = exp

[
−
∫ t

0
g(u) du

]
⇒ β(t)= ϑ exp

[∫ t

0
g(u) du

]
− ϑ

α(t) = ϑg(t) exp

[∫ t

0
g(u) du

]
For the gamma mixing distribution:

π(θ)= exp(−ϑθ)θ
n−1ϑn

�(n)
n > 0

π∗(t)=
∫ ∞

0
exp(−θt)exp(−ϑθ)θn−1

�(n)
ϑn dθ

= ϑn

(t + ϑ)n

Thus:

π∗[β(t)] = ϑn

[β(t)+ ϑ]n
β(t)= ϑ exp

[
1

n

∫ t

0
g(u) du

]
− ϑ

Finally:

α(t) = ϑ

n
g(t) exp

[
1

n

∫ t

0
g(u) du

]
(6.74)

Example 6. Assume for the setting of the previous
example the concrete shape of the mixture failure
rate: λm(t)= t (Weibull Fm(t) with linear failure
rate). It follows from Equation 6.74 that

α(t)= ϑt

n
exp

(
t2

2n

)
And for obtaining the baselineα(t) in this case, the
mixture failure rate t should be just multiplied by
(ϑ/n) exp(t2/2n).

The corresponding equation for the general
model of mixing Equations 6.47–6.50 can be
written as∫ ∞

0
exp

[
−
∫ t

0
λ(u, θ) du

]
π(θ) dθ

= exp

[
−
∫ t

0
g(u) du

]
(6.75)

where the mixture failure rate λ(t, θ) should be
defined by the concrete model of mixing. Specifi-
cally, this model can be additive, multiplicative, or
the mixing rule, which is specified by the acceler-
ated life model [16]:

λ(t, θ)= θα(θt)

where, as in the multiplicative model, α(t) denotes
a baseline failure rate. Equation 6.75 will turn, in
this case, to:∫ ∞

0
exp

[
−
∫ tθ

0
α(u) du

]
π(θ) dθ

= exp

[
−
∫ t

0
g(u) du

]
(6.76)

In spite of a similarity with Equation 6.72,
Equation 6.76 cannot be solved for this case in an
explicit form.

References
[1] Thompson Jr WA. Point process models with applications

to safety and reliability. London: Chapman and Hall;
1988.

[2] Cox DR, Isham V. Point processes. London: Chapman and
Hall; 1980.

[3] Block HW, Savits TH, Borges W. Age dependent minimal
repair. J Appl Prob 1985;22:370–86.

[4] Finkelstein MS. A point process stochastic model of
safety at sea. Reliab Eng Syst Saf 1998;60; 227–33.

[5] Yashin AI, Manton KG. Effects of unobserved and
partially observed covariate processes on system failure:
a review of models and estimation strategies. Stat Sci
1997;12:20–34.

[6] Kebir Y. On hazard rate processes. Nav Res Logist
1991;38:865–76.

[7] Lynn NJ, Singpurwalla ND. Comment: “Burn-in” makes
us feel good. Statist Sci 1997;12:13–9.

[8] Barlow RE, Proschan F. Statistical theory of reliability:
probability models. New York: Holt, Rinehart & Winston;
1975.

[9] Daley DJ, Vere-Jones D. An introduction to the theory of
point processes. New York: Springer-Verlag; 1988.

[10] Lee WK, Higgins JJ, Tillman FA. Stochastic models
for mission effectiveness. IEEE Trans Reliab 1990;39: 321–
4.

[11] Finkelstein MS. Multiple availability on stochastic de-
mand. IEEE Trans. Reliab 1999;39:19–24.

Modeling the Observed Failure Rate 139

[12] Ushakov IA, Harrison RA. Handbook of reliability
engineering. New York: John Wiley & Sons; 1994.

[13] Finkelstein MS, Esaulova V. Why the mixture failure rate
decreases. Reliab Eng Syst Saf 2001;71:173–7.

[14] Block HW, Mi J, Savits TH. Burn-in and mixed
populations. J Appl Prob 1993; 30:692–02.

[15] Finkelstein MS, Esaulova V. On inverse problem in
mixture failure rate modeling. Appl Stochast Model Bus
Ind 2001;17;N2.

[16] Block HW, Joe H. Tail behavior of the failure
rate functions of mixtures. Lifetime Data Anal 1999;3:
269–88.

This page intentionally left blank

Concepts of Stochastic Dependence
in Reliability Analysis

Ch
ap

te
r7

C. D. Lai and M. Xie

7.1 Introduction
7.2 Important Conditions Describing Positive Dependence
7.2.1 Six Basic Conditions
7.2.2 The Relative Stringency of the Conditions
7.2.3 Positive Quadrant Dependent in Expectation
7.2.4 Associated Random Variables
7.2.5 Positively Correlated Distributions
7.2.6 Summary of Interrelationships
7.3 Positive Quadrant Dependent Concept
7.3.1 Constructions of Positive Quadrant Dependent Bivariate Distributions
7.3.2 Applications of Positive Quadrant Dependence Concept to Reliability
7.3.3 Effect of Positive Dependence on the Mean Lifetime of a Parallel System
7.3.4 Inequality Without Any Aging Assumption
7.4 Families of Bivariate Distributions that are Positive Quadrant Dependent
7.4.1 Positive Quadrant Dependent Bivariate Distributions with Simple Structures
7.4.2 Positive Quadrant Dependent Bivariate Distributions with More Complicated

Structures
7.4.3 Positive Quadrant Dependent Bivariate Uniform Distributions
7.4.3.1 Generalized Farlie–Gumbel–Morgenstern Family of Copulas
7.5 Some Related Issues on Positive Dependence
7.5.1 Examples of Bivariate Positive Dependence Stronger than Positive Quadrant

Dependent Condition
7.5.2 Examples of Negative Quadrant Dependence
7.6 Positive Dependence Orderings
7.7 Concluding Remarks

7.1 Introduction

The concept of dependence permeates the world.
There are many examples of interdependence
in the medicines, economic structures, and
reliability engineering, to name just a few.
A typical example in engineering is that all
output from a piece of equipment will depend
on the input in a broader sense, which includes
material, equipment, environment, and others.
Moreover, the dependence is not deterministic
but of a stochastic nature. In this chapter,

we limit the scope of our discussion to the
dependence notions that are relevant to reliability
analysis.

In the reliability literature, it is usually assumed
that the component lifetimes are independent.
However, components in the same system are
used in the same environment or share the same
load, and hence the failure of one component
affects the others. We also have the case of so-
called common cause failure and components
might fail at the same time. The dependence is
usually difficult to describe, even for very similar

141

142 Statistical Reliability Theory

components. From light bulbs in an overhead
projector to engines in an aeroplane, we have
dependence, and it is essential to study the effect
of dependence for better reliability design and
analysis. There are many notions of bivariate
and multivariate dependence. Several of these
concepts were motivated from applications in
reliability.

We may have seen abbreviations like PQD, SI,
LTD, RTI, etc. in recent years. As one probably
would expect, they refer to the form of positive de-
pendence between two or more variables. We shall
try to explain them and their interrelationships
in this chapter. Positive dependence means that
large values of Y tend to accompany large values
of X, and vice versa for small values. Discussion
of the concepts of dependence involves refining
this basic idea, by means of definitions and deduc-
tions.

In this chapter, we focus our attention on a
relatively weaker notion of dependence, namely
the positive quadrant dependence between two
variables X and Y . We think that this easily
verified form of positive dependence is more
relevant in the subject area under discussion. Also,
as might be expected, the notions of dependence
are simpler and their relationships are more
readily exposed in the bivariate case than the
multivariate ones.

Hutchinson and Lai [1] devoted a chapter
to reviewing concepts of dependence for a
bivariate distribution. Recently, Joe [2] gave
a comprehensive treatment of the subject on
multivariate dependence. Thus, our goal here is
not to provide another review; instead, we shall
focus our attention on the positive dependence,
in particular the positive quadrant dependence.
For simplicity, we confine ourselves mainly
to the bivariate case, although most of our
discussion can be generalized to the multivariate
situations. An important aspect of this chapter
is the availability of several examples that are
employed to illustrate the concepts of positive
dependence.

The present chapter endeavors to develop a
fundamental dependence idea with the following
structure:

• positive dependence, a general concept;
• important conditions describing positive

dependence (we state some definitions, and
examine their relative stringency and their
interrelationships);
• positive quadrant dependence—conditions

and applications;
• examples of positive quadrant dependence;
• positive dependence orderings.

Some terms that we will come across herein are
listed below:

PQD (NQD) Positive quadrant dependent
(negative quadrant dependent)

SI (alias PRD) Stochastically increasing
(positively regression
dependent)

LTD (RTI) Left-tail decreasing (right-tail
increasing)

TP2 Totally positive of order 2
PQDE Positive quadrant dependent in

expectation
RCSI Right corner set increasing
F̄ = 1− F F̄ survival function, F

cumulative distribution
function.

7.2 Important Conditions
Describing Positive Dependence

Concepts of stochastic dependence for a bivariate
distribution play an important part in statistics.
For each concept, it is often convenient to refer
to the bivariate distributions that satisfy it as a
family, a group. In this chapter, we are mainly
concerned with positive dependence. Although
negative dependence concepts do exist, they are
often obtained by negative analogues of positive
dependence via reversing the inequity signs.

Various notions of dependence are motivated
from applications in statistical reliability (e.g.
see Barlow and Proschan [3]). The baseline,
or starting point, of the reliability analysis of
systems is independence of the lifetimes of the

Concepts of Stochastic Dependence in Reliability Analysis 143

components. As noted by many authors, it is often
more realistic to assume some form of positive
dependence among components.

Around about 1970, several studies discussed
different notions of positive dependence between
two random variables, and derived some interre-
lationships among them, e.g. Lehmann [4], Esary
et al. [5], Esary and Proschan [6], Harris [7],
and Brindley and Thompson [8], among others.
Yanagimoto [9] unified some of these notions by
introducing a family of concepts of positive de-
pendence. Some further notions of positive depen-
dence were introduced by Shaked [10–12].

For concepts of multivariate dependence, see
Block and Ting [13] and a more recent text by
Joe [2].

7.2.1 Six Basic Conditions

Jogdeo [14] lists four of the following basic
conditions describing positive dependence; these
are in increasing order of stringency (see also
Jogdeo [15]).

1. Positive correlation, cov(X, Y)≥ 0.
2. For every pair of increasing functions a and

b, defined on the real line R, cov[a(X), b(Y)]
≥ 0. Lehmann [4] showed that this condition
is equivalent to

Pr(X ≥ x, Y ≥ y)≥ Pr(X ≥ x) Pr(Y ≥ y)

(7.1)
Or equivalently, Pr(X ≤ x, Y ≤ y)≥ Pr(X ≤
x) Pr(Y ≤ y).

We say that (X, Y) shows positive quadrant
dependence if and only if these inequalities
hold. Several families of PQD distributions
will be introduced in Section 7.4.

3. Esary et al. [5] introduced the following
condition, termed “association”: for every
pair of functions a and b, defined on R2,
that are increasing in each of the arguments
(separately)

cov[a(X, Y), b(X, Y)] ≥ 0 (7.2)

We note, in passing, that a direct verification
of this dependence concept is difficult in

general. However, it is often easier to verify
one of the alternative positive dependence
notions that imply association.

4. Y is right-tail increasing in X if Pr(Y > y |
X > x) is increasing in x for all y (written as
RTI(Y |X). Similarly, Y is left-tail decreasing
if Pr(Y ≤ y | X ≤ x) is decreasing in x for all y
(written as LTD(Y | X)).

5. Y is said to be stochastically increasing in x

for all y (written as SI(Y |X)) if, for every y,
Pr(Y > y |X = x) is increasing in x. Similarly,
we say that X is stochastically increasing in y

for all x (written as SI(X | Y)) if for every x,
Pr(X > x | Y = y) is increasing in y.
Note that SI(Y | X) is often simply denoted by
SI. Some authors refer to this relationship as
Y being positively regression dependent on X

(abbreviated to PRD) and similarly X being
positively regression dependent on Y .

6. Let X and Y have a joint probability density
function f (x, y). Then f is said to be totally
positive of order two (TP2) if for all x1 < x2,
y1 < y2:

f (x1, y1)f (x2, y2) ≥ f (x1, y2)f (x2, y1)

(7.3)
Note that if f is TP2, then F and F̄

(survival function) are also TP2, i.e.
F(x1, y1)F (x2, y2)≥ F(x1, y2)F (x2, y1) and
F̄ (x1, y1)F̄ (x2, y2)≥ F̄ (x1, y2)F̄ (x2, y1). It
is easy to see that either F TP2 or F̄ TP2
implies that F is PQD.

7.2.2 The Relative Stringency of the
Conditions

It is well known that these concepts are inter-
related, e.g. see Joe [2]. The six conditions we
listed above can be arranged in an increasing
order of stringency, i.e. (6)⇒ (5)⇒ (4)⇒ (3)⇒
(2)⇒ (1). More precisely:

TP2⇒ SI⇒ RTI⇒ Association

⇒ PQD⇒ cov(X, Y)≥ 0

TP2⇒ SI⇒ LTD⇒ Association

⇒ PQD⇒ cov(X, Y)≥ 0

144 Statistical Reliability Theory

Some of the proofs for the chain of implications
are not straightforward, whereas some others
are obvious (e.g. see Barlow and Proschan [3],
p.143–4). For example, it is easy to see that
PQD implies positive correlation by applying
Hoeffding’s lemma, which states:

cov(X, Y)

=
∫ ∞
−∞

∫ ∞
−∞
[F(x, y)− FX(x)FY (y)] dx dy

(7.4)

This identity is often useful in many areas of
statistics.

7.2.3 Positive Quadrant Dependent in
Expectation

We now introduce a slightly less stringent
dependence notion that would include the PQD
distributions. For any real number x, let Yx be
the random variable with distribution function
Pr(Y ≤ y |X > x). It is easy to verify that the
inequality in the conditional distribution Pr(Y ≤
y |X > x)≤ Pr(Y ≤ y) implies an inequality in
expectation E(Yx)≥ E(Y) if Y is a non-negative
random variable.

We say that Y is PQDE on X if the last
inequality involving expectation holds. Similarly,
we say that there is negative quadrant dependent
in expectation if E(Yx)≤ E(Y).

It is easy to show that PQD⇒ PQDE by
observing PQD is equivalent to Pr(Y > y | X >

x)≥ Pr(Y > y), which in turn implies E(Yx) ≥
E(Y) (assuming Y ≥ 0).

Next, we have

cov(X, Y)

=
∫ ∫
[F̄ (x, y)− F̄X(x)F̄Y (y)] dx dy

=
∫

F̄X(x)

{ ∫
[Pr(Y > y | X > x)

− F̄Y (y)] dy
}

dx

=
∫

F̄X(x)[E(Yx)− E(Y)] dx

which is greater than zero if X and Y are
PQDE. Thus, PQDE implies that cov(X, Y) ≥ 0.
In other words, PQDE lies between PQD and
positive correlation. There are many bivariate
random variables being PQDE, because all the
PQD distributions with Y ≥ 0 are also PQDE.

7.2.4 Associated Random Variables

Recall in Section 7.2.1, we say that two
random variables X and Y are associated if
cov[a(X, Y), b(X, Y)] ≥ 0. Obviously, this
expression can be represented alternatively by

E[a(X, Y)b(X, Y)] ≥ E[a(X, Y)]E[b(X, Y)]
(7.5)

where the inequality holds for all real functions
a and b that are increasing in each component
and are such that the expectations in Equation 7.5
exist.

It appears from Equation 7.5 that it is almost
impossible to check this condition for association
directly. What one normally does is to verify one of
the dependence conditions in the higher hierarchy
that implies association.

Barlow and Proschan [3], p.29, considered
some practical reliability situations for which the
components lifetimes are not independent, but
rather are associated:

1. minimal path structures of a coherent system
having components in common;

2. components subject to the same set of stresses;
3. structures in which components share the

same load, so that the failure of one compo-
nent results in increased load on each of the
remaining components.

We note that in each case the random variables
of interest tend to act similarly. In fact, all
the positive dependence concepts share this
characteristic.

An important application of the concept of
association is to provide probability bounds

Concepts of Stochastic Dependence in Reliability Analysis 145

for system reliability. Many such bounds are
presented in Barlow and Proschan [3], in section 3
of chapter 2 and section 7 of chapter 4.

7.2.5 Positively Correlated
Distributions

Positive correlation is the weakest notion of
dependence between two random variables X

and Y . We note that it is easy to construct a
positively correlated bivariate distribution. For
example, such a distribution may be obtained by
simply applying a well-known trivariate reduction
technique described as follows.

Set X =X1 + X3, Y =X2 +X3, with Xi (i =
1, 2, 3) being mutually independent, then the
correlation coefficient of X and Y is

ρ = var X3/[var(X1 +X3) var(X2 +X3)]1/2 > 0

For example, let Xi ∼ Poisson(λi), i = 1, 2, 3.
Then X ∼ Poisson(λ1 + λ3), Y ∼ Poisson(λ2 +
λ3), with ρ = λ3/[(λ1 + λ3)(λ2 + λ3)]1/2 > 0. X

and Y constructed in this manner are also PQD;
see example 1(ii) in Lehmann [4], p.1139.

7.2.6 Summary of Interrelationships

Among the positive dependence concepts we have
introduced so far, TP2 is the strongest. A slightly
weaker notion introduced by Harris [7] is called
the right corner set increasing (RCSI), meaning
Pr(X > x1, Y > y1 |X > x2, Y > y2) is increasing
in x2 and y2 for all x1 and y1. Shaked [10] showed
that TP2⇒ RCSI. By choosing x1 =−∞ and y2 =
−∞, we see that RCSI⇒ RTI.

We may summarize the chain of relations in
the following (in which Y is conditional on X

whenever there is a conditioning):

RCSI ⇒ RTI ⇒ ASSOCIATION ⇒ PQD ⇒ cov ≥ 0
⇑ ⇑ ⇑

TP2 ⇒ SI ⇒ LTD

There are other chains of relationships between
various concepts of dependence.

7.3 Positive Quadrant
Dependent Concept
There are many notions of bivariate dependence
known in the literature. The notion of positive
quadrant dependence appears to be more straight-
forward and easier to verify than other notions.
The rest of the chapter mainly focuses on this
dependence concept. The definition of PQD, which
was first given by Lehmann [4], is now reproduced
below.

Definition 1. Random variables X and Y are PQD
if the following inequality holds:

Pr(X > x, Y > y)≥ Pr(X > x) Pr(Y > y) (7.6)

for all x and y. Equation 7.6 is equivalent to
Pr(X ≤ x, Y ≤ y)≥ Pr(X ≤ x) Pr(Y ≤ y).

The reason why Equation 7.6 constitutes a
positive dependence concept is that X and Y

here are more likely to be large or small together
compared with the independent case.

If the inequality in Equation 7.6 is reversed,
then X and Y are negatively quadrant dependent.

PQD is shown to be a stronger notion of de-
pendence than the positive (Pearson) correlation
but weaker than the “association”, which is a key
concept of positive dependence in Barlow and
Proschan [3], originally introduced by Esary et al.
[5].

Consider a system of two components that
are arranged in series. By assuming that the
two components are independent, when they are
in fact PQD, we will underestimate the system
reliability. For systems in parallel, on the other
hand, assuming independence when components
are in fact PQD, will lead to overestimation
of system reliability. This is because the other
component will fail earlier knowing that the
first has failed. This, from a practical point of
view, reduces the effectiveness of adding parallel
redundancy. Thus a proper knowledge of the
extent of dependence among the components
in a system will enable us to obtain a more
accurate estimate of the reliability characteristic in
question.

146 Statistical Reliability Theory

7.3.1 Constructions of Positive
Quadrant Dependent Bivariate
Distributions

Let F(x, y) denote the distribution function of
(X, Y) having continuous marginal cumulative
distribution functions FX(x) and FY (y) with
marginal probability distribution functions fX =
F ′X and fY = F ′Y respectively. For a PQD bivariate
distribution, the joint distribution function may
be written as

F(x, y)= FX(x)FY (y)+w(x, y)

satisfying the following conditions:

w(x, y)≥ 0 (7.7)

w(x,∞)→ 0, w(∞, y)→ 0,

w(x, −∞)= 0, w(−∞, y)= 0 (7.8)

∂2w(x, y)

∂x∂y
+ fX(x)fY (y)≥ 0 (7.9)

Note that if both X ≥ 0 and Y ≥ 0, then the
condition in Equation 7.8 may be replaced
by w(x,∞)→ 0, w(∞, y)→ 0, w(x, 0)= 0,
w(0, y)= 0.

Lai and Xie [16] used these conditions to
construct a family of PQD distributions with
uniform marginals.

7.3.2 Applications of Positive
Quadrant Dependence Concept to
Reliability

The notion of association is used to establish
probability bounds on reliability systems, e.g. see
chapter 3 of Barlow and Proschan [3]. Given a
coherent system of n components with minimal
path sets Pi (i = 1, 2, . . . , p) and minimal cut
sets Kj (j = 1, 2, . . . , k). Let Ti denote the
lifetime of the ith component and thus pi =
P(Ti > t) is its survival probability at time t .
It has been shown, e.g. see [3], p.35–8, that if

components are independent, the

k∏
j=1

∐
i∈Kj

pi ≤ System Reliability ≤
p∐

j=1

∏
i∈Pj

pi

(7.10)
If, in addition, components are associated, then we
have an alternative set of bounds

max
1≤r≤p

∏
i∈Pj

pi ≤ System Reliability ≤ min
1≤s≤k

∐
i∈Kj

pi

(7.11)
As independence implies association, the bounds
given in Equation 7.11 are also applicable for a
system with independent components, although
one cannot conclude that Equation 7.11 is
tighter than Equation 7.10 or vice versa. A
closer examination on the derivations leading
to Equation 7.11 would readily reveal that the
reliability bounds presented here remain valid if
we assume only the positive quadrant dependence
of the components.

One can find details related to bounds on
reliability of a coherent system with associ-
ated components in the text by Barlow and
Proschan [3].

To our disappointment, we have not been able
to find more examples of real applications of
positive dependence in reliability contexts.

We note in passing that the concept of positive
quadrant dependence is widely used in statistics,
for example:

• partial sums [17];
• order statistics [5];
• analysis of variance [18];
• contingency tables [19].

7.3.3 Effect of Positive Dependence on
the Mean Lifetime of a Parallel System

Parallel redundancy is a common device to
increase system reliability by enhancing the mean
time to failure. Xie and Lai [20] studied the
effectiveness of adding parallel redundancy to a
single component in a complex system consisting
of several independent components. It is shown

Concepts of Stochastic Dependence in Reliability Analysis 147

that adding parallel redundancy to components
with increasing failure rate (IFR) is less effective
than that for a component with decreasing failure
rate (DFR). Motivated to enhance reliability, Mi
[21] considered the question of which component
should be “bolstered” or “improved” in order to
stochastically maximize the lifetime of a parallel
system, series system, or, in general, a k-out-of n
system.

Xie and Lai [20] assumed that the two parallel
components were independent. This assumption
is rarely valid in practice. Indeed, in reliability
analysis, the component lifetimes are usually
dependent. Two components in a reliability
structure may share the same load or may
be subject to the same set of stresses. This
will cause the two lifetime random variables to
be related to each other, or to be positively
dependent.

When the components are dependent, the
problem of effectiveness via adding a component
may be different from the case of independent
components. In particular, we are interested in
investigating how the degree of the correlation
affects the increase in the mean lifetime. A general
approach may not be possible, and at present
we can only consider typical cases when the two
components are either PQD or NQD.

Kotz et al. [22] studied the increase in the
mean lifetime by means of parallel redundancy
for several cases when the two components are
either PQD or NQD. The findings strongly sug-
gest that the effect of dependence among the
components should be taken into consideration
when designing reliability systems. The above ob-
servation is valid whenever the two components
are PQD and the result is stated in the follow-
ing.

Let X and Y be identically distributed, not nec-
essarily independent, PQD non-negative random
variables. Kotz et al. [22] showed that

E(T) < E(X)+ E(Y)−
∫ ∞

0
F̄ 2(t) dt (7.12)

where F(t) is the common distribution function
and F̄ (t)= 1− F(t). Hence, for increasing failure

rate average components that are PQD, we have

E(T) < E(X)+ E(Y)−
∫ ∞

0
F̄ 2(t) dt

= 2µ− µ

2
+ µ e−2

2

= µ

2
(3+ e−2) (7.13)

Similarly, if a pair of non-negative identically
distributed random variables X and Y is NQD,
then the inequality in Equation 7.6 is reversed, i.e.

E(T) > E(X)+ E(Y)−
∫ ∞

0
F̄ 2(t) dt (7.14)

If, in addition, both X and Y are DFR components,
then

E(T) > E(X)+ E(Y)−
∫ ∞

0
F̄ 2(t) dt

≥ µ

(
3

2
− e−2

2

)

7.3.4 Inequality Without Any Aging
Assumption

If the aging property of the marginal distributions
is unknown but the median m of the common
marginal is given, then Equation 7.14 reduces to

E(T) < E(X)+ E(Y)−
∫ m

0
F̄ (t) dt + 1

2
m

7.4 Families of Bivariate
Distributions that are Positive
Quadrant Dependent
Since the PQD concept is important in reliability
applications, it is imperative for a reliability
practitioner to know what kinds of PQD bivariate
distribution are available for reliability modeling.
In this section, we list several well-known PQD
distributions, some of which were originally
derived from a reliability perspective. Most of
these PQD bivariate distributions can be found,
for example, in Hutchinson and Lai [1].

148 Statistical Reliability Theory

7.4.1 Positive Quadrant Dependent
Bivariate Distributions with Simple
Structures

The distributions whose PQD property can be
established easily are now given below.

Example 1. The Farlie–Gumbel–Morgenstern bi-
variate distribution [23]:

F(x, y)= FX(x)FY (y)

× {1+ α[1− FX(x)][1− FY (y)]}
(7.15)

For convenience, the above family may simply be
denoted by FGM. This general system of bivariate
distributions is widely studied in the literature. It
is easy to verify that X and Y are PQD if α > 0.

Consider a special case of the FGM system
where both marginals are exponential. The joint
distribution function is then of the form (e.g. see
Johnson and Kotz [24], p.262–3):

F(x, y)

= (1− e−λ1x)(1− e−λ2y)(1+ α e−λ1x−λ2y)

Clearly

w(x, y)= F(x, y)− FX(x)FY (y)

= α e−λ1x−λ2y(1− e−λ1x)(1− e−λ2x)

0 < α ≤ 1

satisfies the conditions in Equations 7.7–7.9, and
hence X and Y are PQD.

Mukerjee and Sasmal [25] have worked out
the properties of a system of two exponential
components having the FGM distribution. The
properties are such things as the densities,
means, moment-generating functions, and tail
probabilities of min(X, Y), max(X, Y), and X +
Y , these being of relevance to series, parallel, and
standby systems respectively.

Lingappaiah [26] was also concerned with
properties of the FGM distribution relevant to the
reliability context, but with gamma marginals.

Building upon a paper by Philips [27], Kotz
and Johnson [28] considered a model in which

components 1 and 2 were subject to “revealed”
and “unrevealed” faults respectively, with (X, Y)

having an FGM distribution, where X is the time
between unrevealed faults and Y is the time from
an unrevealed fault to a revealed fault.

Example 2. The bivariate exponential distribu-
tion

F(x, y)= 1− e−x − e−y + (ex + ey − 1)−1

This distribution is not well known, and we
could not confirm its source. However, both
marginals are exponential, which is used widely
in a reliability context. This bivariate distribution
function can be rewritten as

F(x, y)= 1− e−x − e−y + e−(x+y)

+ (ex + ey − 1)−1 − e−(x+y)

= FX(x)FY (y)

+ (ex + ey − 1)−1 − e−(x+y)

Now

(ex + ey − 1)−1 − e−(x+y)

= (ex − 1)(ey − 1)

(ex + ey − 1) e(x+y)

= (1− e−x)(1− e−y)
(ex + ey − 1)

≥ 0

and therefore F is PQD.

Example 3. The bivariate Pareto distribution

F̄ (x, y)= (1+ ax + by)−λ a, b, λ > 0

(e.g. see Mardia, [29], p.91). Consider a system
of two independent exponential components that
share a common environment factor η that can be
described by a gamma distribution. Lindley and
Singpurwalla [30] showed that the resulting joint
distribution has a bivariate Pareto distribution. It
is very easy to verify that this joint distribution
is PQD. For a generalization to multivariate
components, see Nayak [31].

Example 4. The Durling–Pareto distribution

F̄ (x, y)= (1+ x + y + kxy)−a

a > 0, 0≤ k ≤ a + 1 (7.16)

Concepts of Stochastic Dependence in Reliability Analysis 149

Obviously, it is a generalization of Example 3
above.

Consider a system of two dependent exponen-
tial components having a bivariate Gumbel distri-
bution

F(x, y)= 1− e−x − e−y + e−x−y−θxy

x, y ≥ 0, 0≤ θ ≤ 1

and sharing a common environment that has a
gamma distribution. Sankaran and Nair [32] have
shown that the resulting bivariate distribution
is specified by Equation 7.16. It follows from
Equation 7.16 that

F̄ (x, y)− F̄X(x)F̄Y (y)

= 1

(1+ x + y + kxy)a
− 1

[(1+ x)(1+ y)]a
0≤ k ≤ (a + 1)

= 1

(1+ x + y + kxy)a
− 1

(1+ x + y + xy)a

≥ 0 0≤ k ≤ 1

Hence, F is PQD if 0≤ k ≤ 1.

7.4.2 Positive Quadrant Dependent
Bivariate Distributions with More
Complicated Structures

Example 5. Marshall and Olkin’s bivariate expo-
nential distribution [33]

P(X > x, Y > y)

= exp[−λ1x − λ2y − λ12 max(x, y)] λ≥ 0
(7.17)

This has become a widely used bivariate exponen-
tial distribution over the last three decades. The
Marshall and Olkin bivariate exponential distribu-
tion was derived from a reliability context.

Suppose we have a two-component system
subjected to shocks that are always fatal. These
shocks are assumed to be governed by three
independent Poisson processes with parameters
λ1, λ2, and λ12, according to whether the shock
applies to component 1 only, component 2 only,
or to both components. Then the joint survival
function is given by Equation 7.17.

Barlow and Proschan [3], p.129, show that X

and Y are PQD.

Example 6. Bivariate distribution of Block and of
Basu [34]

F̄ (x, y)= 2+ θ

2
exp[−x − y − θ max(x, y)]

− θ

2
exp[−(2+ θ) max(x, y)]

θ, x, y ≥ 0

This was constructed to modify Marshall and
Olkin’s bivariate exponential, which has a singular
part. It is, in fact, a reparameterization of a
special case of Freund’s [35] bivariate exponential
distribution. The marginal is

F̄X(x)= 1+θ
2

exp[−(1+ θ)x] − θ

2
exp[(1+ θ)x]

and a similar expression for F̄Y (y). It is easy to
show that this distribution is PQD.

Example 7. Kibble’s bivariate gamma distribu-
tion. The joint density function is

fρ(x, y; α)= fX(x)fY (y)

× exp[−ρ(x + y)/(1− ρ)] �(α)
1− ρ

× (xyρ)−(α−1)/2Iα−1

(
2
√
xyρ

1− ρ

)
0≤ ρ < 1

with, fX, fY being the marginal gamma probabil-
ity density function with shape parameter α. Here,
Iα(·) is the modified Bessel function of the first
kind and the αth order.

Lai and Moore [36] show that the distribution
function is given by

F(x, y; ρ)= FX(x)FX(y)

+ α

∫ ρ

0
ft (x, y; α + 1) dt

≥ FX(x)FY (y)

because u(x, y)= ∫ ρ0 ft (x, y; α + 1) dt is obvi-
ously positive.

For the special case of when α = 1, Kibble’s
gamma becomes the well-known Moran–
Downton bivariate exponential distribution.

150 Statistical Reliability Theory

Downton [37] presented a construction from a
reliability perspective. He assumed that the two
components C1 and C2 receive shocks occurring
in independent Poisson streams at rates λ1
and λ2 respectively, and that the numbers N1
and N2 shocks needed to cause failure of C1
and C2 respectively have a bivariate geometric
distribution.

For applications of Kibble’s bivariate gamma,
see, for example, Hutchinson and Lai [1].

Example 8. The bivariate exponential distribu-
tion of Sarmanov. Sarmanov [38] introduced a
family of bivariate densities of the form

f (x, y)= fX(x)fY (y)[1+ ωφ1(x)φ2(y)] (7.18)

where ∫ ∞
−∞

φ1(x)fX(x) dx = 0∫ ∞
−∞

φ2(y)fY (y) dy = 0

and ω satisfies the condition that
1+ ωφ1(x)φ2(y)≥ 0 for all x and y.

Lee [39] discussed the properties of the
Sarmanov family; in particular, she derived the
bivariate exponential distribution given below:

f (x, y)= λ2 e−(x+y)
[

1+ ω

(
e−x + λ1

1+ λ1

)
×
(

e−y + λ2

1+ λ2

)]
(7.19)

where
−(1+ λ1)(1+ λ2)

λ1λ2
≤ ω ≤ (1+ λ1)(1+ λ2)

max(λ1, λ2)

(Here, φ1(x)= e−x − [λ1/(1+ λ1)] and φ2(y)=
e−y − [λ2/(1+ λ2)].)

It is easy to see that, for ω > 0:

F(x, y)= (1− e−λx)(1− e−λy)+ ω

(
λ

1+ λ

)2

× [e−λx − e−(λ+1)x][e−λy − e−(λ+1)y]
≥ FX(x)FY (y)

whence X and Y are shown to be PQD if

0≤ ω ≤ (1+ λ1)(1+ λ2)

max(λ1, λ2)

Example 9. The bivariate normal distribution has
a density function given by

f (x, y)= (2π
√

1− ρ2)−1

× exp

[
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

]
− 1 < ρ < 1

X and Y are PQD for 0≤ ρ < 1 and NQD for
−1 < ρ ≤ 0. This result follows straightaway from
the following lemma:

Lemma 1. Let (X1, Y1) and (X2, Y2) be two
standard bivariate normal distributions, with
correlation coefficients ρ1 and ρ2 respectively. If
ρ1 ≥ ρ2, then

Pr(X1 > x, Y1 > y)≥ Pr(X2 > x, Y2 > y)

The above is known as the Slepian inequality
[40, p.805].

By letting ρ2 = 0 (thus ρ1 ≥ 0), we establish
that X and Y are PQD. On the other hand, letting
ρ1 = 0 (thus ρ2 ≤ 0), X and Y are then NQD.

7.4.3 Positive Quadrant Dependent
Bivariate Uniform Distributions

A copula C(u, v) is simply the uniform represen-
tation of a bivariate distribution. Hence a copula is
just a bivariate uniform distribution. For a formal
definition of a copula, see, for example, Nelsen
[41]. By a simple marginal transformation, a cop-
ula becomes a bivariate distribution with specified
marginals. There are many examples of copulas
that are PQD, such as that given in Example 10.

Example 10. The Ali–Mikhail–Haq family

C(u, v) = uv

1− θ(1− u)(1− v)
θ ∈ [0, 1]

It is clear that the copula is PQD. In fact, Bairamov
et al. [42] have shown that it is a copula that
corresponds to the Durling–Pareto distribution
given in Example 4.

Nelsen [41], p.152, has pointed out that if X

and Y are PQD, then their copula C is also PQD.
Nelsen’s book provides a comprehensive treatment

Concepts of Stochastic Dependence in Reliability Analysis 151

on copulas and a number of examples of PQD
copulas can be found therein.

7.4.3.1 Generalized
Farlie–Gumbel–Morgenstern Family of
Copulas

The so-called bivariate FGM distribution given
in Example 1 was originally introduced by Mor-
genstern [43] for Cauchy marginals. Gumbel [44]
investigated the same structure for exponential
marginals.

It is easy to show that the FGM copula is given
by

Cα(u, v)= uv[1+ α(1− u)(1− v)]
0≤ u, v ≤ 1, −1≤ α ≤ 1 (7.20)

It is clear that the FGM copula is PQD for 0≤ α

≤ 1.
It was Farlie [23] who extended the construc-

tion by Morgenstern and Gumbel to

Cα(u, v)= uv[1+ αA(u)B(v)] 0≤ u, v ≤ 1
(7.21)

where A(u)→ 0 and B(v)→ 0 as u, v→ 1, A(u)
and B(v) satisfy certain regularity conditions
ensuring that C is a copula. Here, the admissible
range of α depends on the functions A and B.

If A(u)= B(v) = 1− u, we then have the clas-
sical one-parameter FGM family Equation 7.20.

Huang and Kotz [45] consider the two types:

(i) A(u)= (1− u)p, B(v) = (1− v)p,

p > 1, −1≤ α ≤
(
p + 1

p − 1

)p−1

(ii) A(u)= (1− up), B(v) = (1− vp),

p > 0, −(max{1, p})−2 ≤ α ≤ p−1

We note that copula (ii) was investigated earlier by
Woodworth [46].

Bairamov and Kotz [47] introduce further
generalizations such that:

(iii) A(u)= (1− u)p, B(v) = (1− v)q ,

p > 1, q > 1 (p �= q),

−min

{
1,

(
1+ p

p − 1

)p−1 (1+ q

q − 1

)q−1
}

≤ α ≤min

{(
1+ p

p − 1

)p−1

,

(
1+ q

q − 1

)q−1
}

(iv) A(u)= (1− un)p, B(v) = (1− vn)q,

p ≥ 1; n≥ 1,

−min

{
1

n2

[
1+ np

n(p − 1)

]2(p−1)

, 1

}

≤ α ≤ 1

n

[
1+ np

n(p − 1)

]p−1

Recently, Bairamov et al. [48] considered a more
general model:

(v) A(u)= (1− up1)q1, B(v) = (1− vp2)q2,

p1, p2 ≥ 1; q1, q2 > 1,

−min

{
1,

1

p1p2

[
1+ p1q1

p1(q1 − 1)

]q1−1

×
[

1+ p2q2

p2(q2 − 1)

]q2−1
}

≤ α

≤min

{
1

p1

[
1+ p1q1

p1(q1 − 1)

]q1−1

,

1

p2

[
1+ p2q2

p2(q2 − 1)

]q2−1
}

Motivated by a desire to construct PQDs, Lai
and Xie [16] derived a new family of FGM copulas
that possess the PQD property with:

(vi) A(u)= ub−1(1− u)a,

B(v) = vb−1(1− v)a, a, b ≥ 1; 0≤ α ≤ 1

so that

Cα(u, v)= uv + αubvb(1− u)a(1− v)a

a, b ≥ 1, 0≤ α ≤ 1 (7.22)

152 Statistical Reliability Theory

Table 7.1. Range of dependence parameterα for some positive quadrant dependent FGM copulas

Copula type α range for which copula is PQD

(i) 0≤ α ≤
(
p + 1

p − 1

)p−1

(ii) 0≤ α ≤ p−1

(iii) 0≤ α ≤min

{(
1+ p

p − 1

)p−1
,

(
1+ q

q − 1

)q−1
}
, p > 1, q > 1

(iv) 0≤ α ≤ 1

n

[
1+ np

n(p − 1)

]p−1

(v) 0≤ α ≤min

{
1

p1

[
1+ p1q1

p1(q1 − 1)

]q1−1
,

1

p2

[
1+ p2q2

p2(q2 − 1)

]q2−1
}

(vi) 0≤ α ≤ 1

B+(a, b)B−(a, b) , B
+, B− are some functions of a and b

Bairamov and Kotz [49] have shown that the
range of α in Equation 7.22 can be extended and
they also provide the ranges of α for which the
copulas (i)–(v) are PQD. These are summarized in
Table 7.1.

In concluding this section, we note that Joe
[2], p.19, considered the concepts of PQD and
the concordance ordering (more PQD) that are
discussed in Section 7.6 as being basic to the
parametric families of copulas in determining
whether a multivariate parameter is a dependence
parameter.

7.5 Some Related Issues on
Positive Dependence

7.5.1 Examples of Bivariate Positive
Dependence Stronger than Positive
Quadrant Dependent Condition

So far, we have presented only the families
of bivariate distributions that are PQD, which
is a weaker notion of the positive dependence
discussed in this chapter. We now introduce
some bivariate distributions that also satisfy more
stringent conditions.

(i) The bivariate normal density is TP2 if
and only if their correlation coefficient 0≤ ρ < 1

(e.g. see Barlow and Proschan [3], p.149). Abdel-
Hameed and Sampson [50] have shown that
the bivariate density of the absolute normal
distribution is TP2.

(ii) X and Y of Marshall and Olkin’s bivariate
distribution are associated owing to having
a variable in common in the construction
procedure. In fact, Barlow and Proschan [3], p.132,
showed that Y is stochastically increasing in X

(SI), which, in turn, implies association.
(iii) FGM bivariate exponential distribution:

Rödel [51] showed that, for an FGM distribution,
X and Y are SI (alias positively regression
dependent) if α > 0. The following is a direct and
easy proof for the case with exponential marginals
such that α > 0:

P(Y ≤ y |X = x)= [1− α(2 e−x − 1)(1− e−y)]
+ α(2 e−x − 1)(1− e−2y)

= (1− e−y)
+ α(2 e−x − 1)(e−y − e−2y)

Thus

P(Y > y | X = x)

= e−y − α(2 e−x − 1)(e−y − e−2y) (7.23)

which is clearly increasing in x, from which we
conclude that X and Y are positively regression
dependent if α > 0.

Concepts of Stochastic Dependence in Reliability Analysis 153

(iv) Rödel [51] showed that Kibble’s bivariate
gamma distribution given in Section 7.4.2 is also
SI (alias PRD), which is a stronger concept of
positive dependence than PQD.

(v) Sarmanov bivariate exponential. The con-
ditional distribution that corresponds to Equa-
tion 7.19 is

P(Y ≤ y |X = x)

= FY (y)+ ωφ1(x)

∫ y

−∞
φ2(z)fY (z) dz

φi(x)= e−x − λi

1+ λi
i = 1, 2

It follows that

P(Y > y |X = x)= e−λ2y − ω

(
e−x − λ1

1+ λ1

)
×
∫ y

−∞
φ2(z)fY (z) dz

is increasing in x because∫ y

−∞
φ2(z)fY (z) dz≥ 0

and thus Y is SI increasing in x if

0≤ ω ≤ (1+ λ1)(1+ λ2)

max(λ1, λ2)

Further, it follows from theorem 3 of Lee [39] that
(X, Y) is TP2 since ωφ′(x)φ′(y)≥ 0 for ω ≥ 0.

(vi) Durling–Pareto distribution: Lai et al. [52]
showed that X and Y are right tail increasing if
k ≤ 1 and right tail decreasing if k ≥ 1. From the
chains of relationships in Section 7.2.6, it is known
that right tail increasing implies association. Thus
X and Y are associated if k ≤ 1.

(vii) The bivariate exponential of Example 3:

F(x, y)= 1− e−x − e−y + (ex + ey − 1)−1

It can easily be shown that

P(Y ≤ y | X = x)= 1+ 1

(ex + ey − 1)2

and hence

P(Y > y |X = x)= −1

(ex + ey − 1)2

which is increasing in x, so Y is SI in X.

7.5.2 Examples of Negative Quadrant
Dependence

Although the main theme of this chapter is on pos-
itive dependence, it is a common knowledge that
negative dependence does exist in various reliabil-
ity situations. Several bivariate distributions dis-
cussed in Section 7.4, namely the bivariate normal,
FGM family, Durling–Pareto distribution, and bi-
variate exponential distribution of Sarmanov are
NQD when the ranges of the dependence parame-
ter are appropriately specified. The two variables
of the following example can only be negatively
dependent.

Example 11. Gumbel’s bivariate exponential dis-
tribution

F(x, y)= 1− e−x − e−y + e−(x+y+θxy)

0≤ θ ≤ 1

F(x, y)− FX(x)FY (y)

= e−(x+y+θxy) − e−(x+y) ≤ 0

0≤ θ ≤ 1

showing that F is NQD. It is well known, e.g.
see Kotz et al. [53], p.351, that −0.403 65≤
corr(X, Y)≤ 0.

Lehmann [4] presented the following situations
for which negative quadrant dependence occurs:

• Consider the rankings of n objects by m

persons. Let X and Y denote the rank sum for
the ith and the j th object respectively. ThenX

and Y are NQD.
• Consider a sequence of n multinomial trials

with s possible outcomes. Let X and Y denote
the number of trials resulting in outcome i

and j respectively. Then X and Y are NQD.

7.6 Positive Dependence
Orderings
Consider two bivariate distributions having the
same pair of marginalsFX and FY ; and we assume
that they are both positively dependent. Naturally,

154 Statistical Reliability Theory

we would like to know which of the two bivariate
distributions is more positively dependent. In
other words, we wish to order the two given
bivariate distributions by the extent of their
positive dependence between the two marginal
variables with higher in ordering meaning more
positively dependent. In this section, the concept
of positive dependence ordering is introduced.
The following definition is found in Kimeldorf and
Sampson [54].

Definition 2. A relation � on a family of all
bivariate distributions is a positive dependence
ordering (PDO) if it satisfies the following ten
conditions:

(P0) F �G⇒ F(x,∞)=G(x,∞) and
F(∞, y)=G(∞, y);

(P1) F �G⇒ F(x, y)≤G(x, y) for all x, y;
(P2) F �G and G�H ⇒ F �H ;
(P3) F � F ;
(P4) F �G and G� F ⇒ F =G;
(P5) F− � F � F+, where F+(x, y)

=max[F(x,∞), F (∞, y)] and F−(x, y)
=min[F(x,∞), F (∞, y)− 1, 0];

(P6) (X, Y)� (U, V)⇒ (a(X), Y)

� (a(U), V) where the (X, Y)

� (U, V) means the relation� holds
between the corresponding bivariate
distributions;

(P7) (X, Y)� (U, V)⇒ (−U, V)� (−X, Y);
(P8) (X, Y)� (U, V)⇒ (Y, X)� (V, U);
(P9) Fn�Gn, Fn→ F in distribution,

Gn→G in distribution⇒ F �G, where
Fn, F , Gn, and G all have the same pair of
marginals.

Tchen [55] defined a bivariate distribution G

to be more PQD than a bivariate distribution F

having the same pair of marginals if G(x, y)≥
F(x, y) for all x, y ∈ R2. It was shown that PQD
partial ordering is a PDO.

Note that more PQD is also known as
“more concordant” in the dependence concepts
literature.

Example 12. Generalized FGM copula. Lai and
Xie [16] constructed a new family of PQD bivariate
distributions that is a generalization of the FGM

copula:

Cθ(u, v)= uv + θubvb(1− u)a(1− v)a

a, b ≥ 1, 0≤ θ ≤ 1 (7.24)

Let the dependence ordering be defined through
the ordering of θ . It is clear from Equation 7.24
that, when θ < θ ′, then Cθ (u, v)� Cθ ′(u, v).

Example 13. Bivariate normal with positive cor-
relation coefficient ρ. The Slepian inequality in
Section 7.4.2 says

Pr(X1 > x, Y1 > y)≥ Pr(X2 > x, Y2 > y)

if ρ1 ≥ ρ2. Thus a more PQD ordering can
be defined in terms of the positive correlation
coefficient ρ.

Example 14. Cθ(u, v)= uv/[1− θ(1− u)

(1− v)], θ ∈ [0, 1] (the Ali–Mikhail–Haq family).
It is easy to see that Cθ � Cθ ′ if θ > θ ′, i.e. Cθ is
more PQD than Cθ ′ .

There are several other types of PDO in the
literature and we recommend the reader to consult
the text by Shaked and Shantikumar [56], who
gave a comprehensive treatment on stochastic
orderings.

7.7 Concluding Remarks
Concepts of stochastic dependence are widely
applicable in statistics. Given that some of these
concepts have arisen from reliability contexts, it
seems rather unfortunate that not many reliability
practitioners have caught onto this important
subject. This observation is transparent, since the
assumption of independence is still prevailing in
many reliability analyses. Among the dependence
concepts, the correlation is a widely used concept
in applications. Association is advocated and
studied in Barlow and Proschan [3]. On the
other hand, PQD is a weaker condition and also
seems to be easier to verify. On reflection, this
phenomenon may be due in part to the fact that
many of the proposed dependence models are
often not readily applicable. One would hope that,
in the near future, more applied probabilists and

Concepts of Stochastic Dependence in Reliability Analysis 155

reliability engineers would get together to forge a
partnership to bridge the gap between the theory
and applications of stochastic dependence.

References
[1] Hutchinson TP, Lai CD. Continuous bivariate distri-

butions, emphasising applications. Adelaide, Australia:
Rumsby Scientific Publishing; 1990.

[2] Joe H. Multivariate models and dependence concepts.
London: Chapman and Hall; 1997.

[3] Barlow RE, Proschan F. Statistical theory of reliability and
life testing: probability models. Silver Spring (MD): To
Begin With; 1981.

[4] Lehmann EL. Some concepts of dependence. Ann Math
Stat 1966;37:1137–53.

[5] Esary JD, Proschan F, Walkup DW. Association of random
variables, with applications. Ann Math Stat 1967;38:1466–
74.

[6] Esary JD, Proschan F. Relationships among some
bivariate dependence. Ann Math Stat 1972;43:651–5.

[7] Harris R. A multivariate definition for increasing hazard
rate distribution. Ann Math Stat 1970;41:713–7

[8] Brindley EC, Thompson WA. Dependence and aging
aspects of multivariate survival. J Am Stat Assoc
1972;67:822–30.

[9] Yanagimoto T. Families of positive random variables.
Ann Inst Stat Math 1972;26:559–73.

[10] Shaked M. A concept of positive dependence for
exchangeable random variables. Ann Stat 1977;5:505–15.

[11] Shaked M. Some concepts of positive dependence for
bivariate interchangeable distributions. Ann Inst Stat
Math 1979;31:67–84.

[12] Shaked M. A general theory of some positive dependence
notions. J Multivar Anal 1982;12 : 199–218.

[13] Block HW, Ting, ML. Some concepts of multivariate de-
pendence. Commun Stat A: Theor Methods 1981;10:749–
62.

[14] Jogdeo K. Dependence concepts and probability inequal-
ities. In: Patil GP, Kotz S, Ord JK, editors. A modern
course on distributions in scientific work – models and
structures, vol. 1. Dordrecht: Reidel; 1975. p.271–9.

[15] Jogdeo K. Dependence concepts of. In: Encyclopedia of
statistical sciences, vol. 2. New York: Wiley; 1982. p.324–
34.

[16] Lai CD, Xie M. A new family of positive dependence
bivariate distributions. Stat Probab Lett 2000;46:359–64.

[17] Robbins H. A remark on the joint distribution of
cumulative sums. Ann Math Stat 1954;25:614–6.

[18] Kimball AW. On dependent tests of significance in
analysis of variance. Ann Math Stat 1951;22:600–2.

[19] Douglas R, Fienberg SE, Lee MLT, Sampson AR,
Whitaker LR. Positive dependence concepts for ordinal
contingency tables. In: IMS lecture notes monograph
series: topics in statistical dependence, vol. 16. Hayward
(CA): Institute of Mathematical Statistics; 1990. p.189–
202.

[20] Xie M, Lai, CD. On the increase of the expected lifetime by
parallel redundancy. Asia–Pac J Oper Res 1996;13:171–9.

[21] Mi J. Bolstering components for maximizing system
lifetime. Nav Res Logist 1998;45:497–509.

[22] Kotz S, Lai CD, Xie, M. The expected lifetime when
adding redundancy in systems with dependent compo-
nents. IIE Trans 2003;in press.

[23] Farlie DJG. The performance of some correlation coef-
ficients for a general bivariate distribution. Biometrika
1960;47:307–23.

[24] Johnson NL, Kotz S. Distributions in statistics: continu-
ous multivariate distributions. New York: Wiley; 1972.

[25] Mukerjee SP, Sasmal BC. Life distributions of coherent
dependent systems. Calcutta Stat Assoc Bull 1977;26:39–
52.

[26] Lingappaiah GS. Bivariate gamma distribution as a life
test model. Aplik Mat 1983;29:182–8.

[27] Philips MJ. A preventive maintenance plan for a system
subject to revealed and unrevealed faults. Reliab Eng
1981;2:221–31.

[28] Kotz S, Johnson NL. Some replacement-times distribu-
tions in two-component systems. Reliab Eng 1984;7:151–
7.

[29] Mardia KV. Families of bivariate distributions. London:
Griffin; 1970.

[30] Lindley DV, Singpurwalla ND. Multivariate distributions
for the life lengths of components of a system sharing a
common environment. J Appl Probab 1986;23:418–31.

[31] Nayak TK. Multivariate Lomax distribution: properties
and usefulness in reliability theory. J Appl Probab
1987;24:170–7.

[32] Sankaran PG, Nair NU. A bivariate Pareto model and its
applications to reliability. Nav Res Logist 1993;40:1013–
20.

[33] Marshall AW, Olkin I. A multivariate exponential
distribution. J Am Stat Assoc 1967;62:30–44.

[34] Block HW, Basu AP. A continuous bivariate exponential
distribution. J Am Stat Assoc 1976;64:1031–7.

[35] Freund J. A bivariate extension of the exponential
distribution. J Am Stat Assoc 1961;56:971–7.

[36] Lai CD, Moore T. Probability integrals of a bivariate
gamma distribution. J Stat Comput Simul 1984;19:205–
13.

[37] Downton F. Bivariate exponential distributions in relia-
bility theory. J R Stat Soc Ser B 1970;32:408–17.

[38] Sarmanov OV. Generalized normal correlation and
two-dimensional Frechet classes. Dokl Sov Math
1966;168:596–9.

[39] Lee MLT. Properties and applications of the Sarmanov
family of bivariate distributions. Commun Stat A: Theor
Methods 1996;25:1207–22.

[40] Gupta SS. Probability integrals of multivariate normal
and multivariate t . Ann Math Stat 1963;34:792–828.

[41] Nelsen RB. An introduction copulas. Lecture notes in
statistics, vol. 139,: New York: Springer-Verlag; 1999.

[42] Bairamov I, Lai CD, Xie M. Bivariate Lomax distribution
and generalized Ali–Mikhail–Haq distribution. Unpub-
lished results.

156 Statistical Reliability Theory

[43] Morgenstern D. Einfache Beispiele zweidimensionaler
Verteilungen. Mitteilungsbl Math Stat 1956;8:234–5.

[44] Gumbel EJ. Bivariate exponential distributions. J Am Stat
Assoc 1960;55:698–707.

[45] Huang JS, Kotz S. Modifications of the Farlie–Gumbel–
Morgenstern distributions. A tough hill to climb. Metrika
1999;49:135–45.

[46] Woodworth GG. On the asymptotic theory of tests of
independence based on bivariate layer ranks. Technical
Report No 75, Department of Statistics, University of
Minnesota. See also Abstr Ann Math Stat 1966;36:1609.

[47] Bairamov I, Kotz S. Dependence structure and symmetry
of Huang–Kotz FGM distributions and their extensions.
Metrika 2002;in press.

[48] Bairamov I, Kotz S, Bekci M. New generalized Farlie–
Gumbel–Morgenstern distributions and concomitants of
order statistics. J Appl Stat 2001;28:521–36.

[49] Bairamov I, Kotz S. On a new family of positive quadrant
dependent bivariate distributions. GWU/IRRA/TR No
2000/05. The George Washington University, 2001.

[50] Abdel-Hameed M, Sampson AR. Positive dependence of
the bivariate and trivariate absolute normal t, χ2 and F

distributions. Ann Stat 1978;6:1360–8.
[51] Rödel E. A necessary condition for positive dependence.

Statistics 1987;18 :351–9.
[52] Lai CD, Xie M, Bairamov I. Dependence and ageing prop-

erties of bivariate Lomax distribution. In: Hayakawa Y,
Irony T, Xie M, editors. A volume in honor of Professor
R. E. Barlow on his 70th birthday. Singapore: WSP; 2001.
p.243–55.

[53] Kotz S, Balakrishnan N, Johnson NL. Continuous mul-
tivariate distributions, vol. 1: models and applications.
New York: Wiley; 2000.

[54] Kimeldorf G, Sampson AR. Positive dependence order-
ings. Ann Inst Stat Math 1987;39:113–28.

[55] Tchen A. Inequalities for distributions with given
marginals. Ann Probab 1980;8:814–27.

[56] Shaked M, Shantikumar JG, editors. Stochastic
orders and their applications. New York: Academic
Press; 1994.

Statistical Reliability Change-point
Estimation Models

Ch
ap

te
r8

Ming Zhao

8.1 Introduction
8.2 Assumptions in Reliability Change-point Models
8.3 Some Specific Change-point Models
8.3.1 Jelinski–Moranda De-eutrophication Model with a Change Point
8.3.1.1 Model Review
8.3.1.2 Model with One Change Point
8.3.2 Weibull Change-point Model
8.3.3 Littlewood Model with One Change Point
8.4 Maximum Likelihood Estimation
8.5 Application
8.6 Summary

8.1 Introduction

The classical change-point problem arises
from the observation of a sequence of
random variables X1, X2, . . . , Xn, such that
X1, X2, . . . , Xτ have a common distribution F

while Xτ+1, Xτ+2, . . . , Xn have the distribution
G with F �=G. The index τ , called the change
point, is usually unknown and has to be estimated
from the data.

The change-point problem has been widely
discussed in the literature. Hinkley [1] used
the maximum likelihood (ML) method to esti-
mate the change-point τ in the situations where
F and G can be arbitrary known distribu-
tions and belong to the same parametric fam-
ily. The non-parametric estimation of the change
point has been discussed by Carlstein [2]. Joseph
and Wolfson [3] generalized the change-point
problem by studying multipath change points
where several independent sequences are consid-
ered simultaneously and each sequence has one
change point. The bootstrap and empirical Bayes
methods are also suggested for estimating the
change points. If the sequence X1, X2, . . . , Xn

is the observation of arrival times at which n

events occur in a Poisson process, which is widely
applied in reliability analysis, this is a Poisson
process model with one change point. Raftery
and Akiman [4] proposed using Bayesian analy-
sis for the Poisson process model with a change
point. The parametric estimation in the Poisson
process change-point model has been given by
Leonard [5].

In reliability analysis, change-point models can
be very useful. In software reliability modeling,
the initial number of faults contained in a program
is always unknown and its estimation is a great
concern. One has to execute the program in a
specific environment and improve its reliability by
detecting and correcting the faults. Many software
reliability models assume that, during the fault
detection process, each failure caused by a fault
occurs independently and randomly in time
according to the same distribution, e.g. see Musa
et al. [6]. The failure distribution can be affected
by many different factors, such as the running
environment, testing strategy, and the resource.
Generally, the running environment may not
be homogeneous and can be changed with the

157

158 Statistical Reliability Theory

human learning process. Hence, the change-
point models are of interest in modeling the
fault detection process. The change point can
occur when the testing strategy and the resource
allocation are changed. Also, with increasing
knowledge of the program, the testing facilities
and other random factors can be the causes of
change points. Zhao [7] has discussed different
software reliability change-point models and the
method of parametric estimation. The non-
homogeneous Poisson process (NHPP) model
with change points has been studied by Chang [8]
and the parameters in NHPP change-point model
are estimated by the weighted least-squares
method.

Change-point problems can also arise in
hardware reliability and survival analysis, for
example, when reliability tests are conducted
in a random testing environment. Nevertheless,
the problem may not be as complex as with
the software reliability problem. This is because
the sample size in a lifetime test, which is
comparable to the initial number of faults in
software that needs to be estimated, is usually
known in hardware reliability analysis. Unlike
the common change-point models, the observed
data in hardware reliability or survival analysis
are often grouped and dependent. For example,
if we are investigating a new treatment against
some disease, the observed data may be censored
because some patients may be out of the trials
and new patients may come into the trials. There
is a need to develop new models for a reliability
change-point problem.

In this chapter, we address the change-point
problems in reliability analysis. A change-point
model, which is applicable for both software
and hardware reliability systems, is considered
in a general form. Nevertheless, more focus
is given to software reliability change-point
models, since the hardware reliability change-
point models can be analyzed as a special case
where the sample size is assumed to be known.
When it is necessary, however, some discussion
is given on the differences between hardware
and software reliability models. The ML method
is considered to estimate the change-point and

model parameters. A numerical example is also
provided to show the application.

8.2 Assumptions in Reliability
Change-point Models

Let F and G be two different lifetime
distributions with density functions f (t) and
g(t), X1, X2, . . . , Xτ , Xτ+1, Xτ+2, . . . , Xn be
the inter-failure times of the sequential failures in
a lifetime testing. Before we consider a number of
specific reliability change-point models, we need
to make some assumptions.

Assumption 1. There are a finite number of items
N under reliability test; the parameter N may be
unknown.

In hardware reliability analysis, the parame-
ter N , which is usually assumed to be known, is
the total number of units under the test. However,
where software reliability analysis is concerned,
the parameterN , the initial number of faults in the
software, is assumed to be unknown.

Assumption 2. At the beginning, all of the items
have the same lifetime distribution F . After τ

failures are observed, the remaining (N − τ) items
have the distribution G. The change point τ is
assumed unknown.

In software reliability, this assumption means
that all faults in software have the same detection
rate, but it is changed when a number of faults
have been detected. The most common reason
is that the test team has learned a lot from the
testing process, so that the detection process is
more efficient. On the other hand, it could be that
the fault detection becomes increasingly difficult
due to the complexity of the problem. In both
situations, a change-point model is an alternative
to apply.

Assumption 3. The sequence {X1, X2, . . . , Xτ }
is statistically independent of the sequence
{Xτ+1, Xτ+2, . . . , Xn}.

Statistical Reliability Change-point Estimation Models 159

This assumption may not be realistic in some
cases. We use it only for the sake of model sim-
plicity. However, it is easy to modify this as-
sumption. Note that we do not assume the inde-
pendence between the variables within sequence
{X1, X2, . . . , Xτ } or {Xτ+1, Xτ+2, . . . , Xn}, be-
cause the inter-failure times of failures in lifetime
testing are usually dependent.

8.3 Some Specific Change-point
Models
To consider the reliability change-point model, we
further assume that a lifetime test is performed
according to the Type-II censoring plan, in which
the number of failures n is determined in advance.

Denote by T1, T2, . . . , Tn the arrival times of
sequential failures in the lifetime test. Then we
have

T1 =X1

T2 =X2

...

Tn =X1 + X2 + · · · +Xn (8.1)

According to Assumptions 1–3, the failure times
T1, T2, . . . , Tτ are the first τ order statistics of a
sample with size N from parent distribution F ,
Tτ+1, Tτ+2, . . . , Tn are the first (n− τ)-order
statistics of a sample with size (N − τ) from
parent distribution G.

8.3.1 Jelinski–Moranda
De-eutrophication Model with a Change
Point

8.3.1.1 Model Review

One of the earliest software reliability models is
the de-eutrophication model developed by Jelinski
and Moranda [9]. It was derived based on the
following assumptions.

Assumption 4. There are N initial faults in the
program.

Assumption 5. A detected fault is removed instan-
taneously and no new fault is introduced.

Assumption 6. Each failure caused by a fault
occurs independently and randomly in time
according to an exponential distribution.

Based on the model assumptions, we can deter-
mine that the inter-failure times Xi = Ti − Ti−1,
i = 1, 2, . . . n, are independent exponentially dis-
tributed random variables with failure rate λ(N −
i + 1), where λ is the initial fault detection rate.
One can see that each fault is discovered with a
failure rate reduced by the proportionality con-
stant λ. This means that the impact of each fault
removal is the same and the faults are of equal size;
see [10, 11] for details.

The Jelinski–Moranda de-eutrophication
model is the simplest and most cited software
reliability model. It is also the most criticized
model, because Assumptions 5 and 6 imply that
all faults in a program have the same size and
each removal of the detected faults reduces the
failure intensity by the same amount. However,
the model remains central to the topic of software
reliability. Many other models are derived
based on assumptions similar to that of the
de-eutrophication model.

8.3.1.2 Model with One Change Point

We assume that F and G are exponential
distributions with failure rate parameters λ1
and λ2 respectively. From Assumptions 1–3,
it is easy to show that the inter-failure
times X1, X2, . . . , Xn are independently
exponentially distributed. Specifically,
Xi = Ti − Ti−1, i = 1, 2, . . . , τ , are exponentially
distributed with parameter λ1(N − i + 1)
and Xj = Tj − Tj−1, j = τ + 1, τ + 2, . . . , n,
are exponentially distributed with parameter
λ2(N − τ − j + 1).

Note that the original Jelinski–Moranda de-
eutrophication model implies that all faults are of
the same size; the debugging process is perfect.
However, an imperfect debugging assumption is
more realistic; see [10] for details. By considering
the change point in this model, this implies that

160 Statistical Reliability Theory

there are at least two groups of faults with different
size. If more change points are considered in the
model, one can think that the debugging could be
imperfect and the faults are of different size. The
proposed model is expected to be closer to the
reality.

8.3.2 Weibull Change-point Model

A Weibull change-point model appears when F

and G are Weibull distribution functions with
parameters (λ1, β1) and (λ2, β2) respectively.
That is

F(t) = 1− exp(−λ1t
β1) (8.2)

G(t)= 1− exp(−λ2t
β2) (8.3)

In this case, the sequence {X1, X2, . . . , Xτ } is not
independent. The Weibull model without change
points has been used by Wagoner [12] to describe
the fault detection process. In particular, when the
shape parameter β = 2, the Weibull model is the
model proposed by Schick and Wolverton [13].
In application, one can use the simplified model
in which the shape parameters β1 and β2 are
assumed to be equal.

8.3.3 Littlewood Model with One
Change Point

Assume that F and G are Pareto distribution
functions given by

F(t)= 1− (1+ t/λ1)
β1 (8.4)

G(t)= 1− (1+ t/λ2)
β2 (8.5)

Then we have a Littlewood model with one change
point. The model without a change point was
given by Littlewood [14]. It is derived using
Assumptions 4–6, but the failure rates associated
with each fault are assumed to be identical
and independent random variables with gamma
distributions. Under the Bayesian framework, the
failure distribution is shown to be a Pareto
distribution; see [14] for details. This model tries
to account for the possibility that the software
program could become less reliable than before.

8.4 Maximum Likelihood
Estimation

In previous sections we have presented some re-
liability change-point models. In order to con-
sider the parametric estimation, we assume that
the distributions belong to parametric families
{F(t | θ1), θ1 ∈�1} and {G(t | θ2), θ2 ∈�2}. Be-
cause T1, T2, . . . , Tτ are the first τ -order statistics
of a sample with size N from parent distribution
F , Tτ+1, Tτ+2, . . . , Tn are the first (n− τ)-order
statistics of a sample with size (N − τ) from par-
ent distribution G, then the log-likelihood without
the constant term is given by

L(τ, N, θ1, θ2|T1, T2, . . . , Tn)

=
n∑

i=1

(N − i + 1)+
τ∑

i=1

f (Ti | θ1)

+
n∑

i=τ+1

g(Ti | θ2)

+ (N − τ) log[1− F(Tτ | θ1)]
+ (N − n) log[1−G(Tn | θ2)] (8.6)

Note that where hardware reliability analysis is
concerned, the simple size N is known, and the
likelihood function is then given by

L(τ, θ1, θ2 | T1, T2, . . . , Tn)

=
τ∑

i=1

f (Ti | θ1)+
n∑

i=τ+1

g(Ti | θ2)

+ (N − τ) log[1− F(Tτ | θ1)]
+ (N − n) log[1−G(Tn | θ2)]

In the following, we consider only the case where
the sample size N is unknown because it is more
general.

The ML estimator (MLE) of the change point
is the value τ̂ that together with (N̂, θ̂1, θ̂2) maxi-
mizes the function in Equation 8.6. Unfortunately,
there is no closed form for τ̂ . However, it can be
obtained by calculating the log-likelihood for each
possible value of τ , 1≤ τ ≤ (n− 1), and selecting
as τ̂ the value that maximizes the log-likelihood
function.

Statistical Reliability Change-point Estimation Models 161

Figure8.1. The plot of cumulative number of failures against their
occurrence times in the SYS1 data set

In principle, the likelihood function (Equa-
tion 8.6) is valid for the change-point models
discussed in the previous section. Here, we only
consider the estimation for the Jelinski–Moranda
de-eutrophication model with one change-point.

For this model, the MLEs of
parameters(N, λ1, λ2), given the change-point τ
in terms of the inter-failure times, are determined
by the following equations:

λ̂1 = τ∑τ
i=1 (N̂ − i + 1)xi

(8.7)

λ̂2 = (n− τ)∑n
i=τ+1 (N̂ − i + 1)xi

(8.8)

n∑
i=1

1

(N̂ − i + 1)
= λ̂1

τ∑
i=1

xi + λ̂2

n∑
i=τ+1

xi (8.9)

In order to find out the estimation, the numerical
method has to be applied. In a regular situation,
one can expect that the MLEs exist. Therefore,
we can see that the likelihood function is only
dependent on τ , since the other parameters can be
determined from Equations 8.7–8.9 if τ is given.
Consequently, we can compare the values of the
likelihood function taken at τ = 1, 2, . . . , n− 1
respectively. The value of τ that makes the
likelihood maximum is therefore the MLE of τ .

Figure 8.2. The values of the log-likelihood function against the
change points

On the distribution of τ̂ , it is not easy to have
a general conclusion. The asymptotic distribution
of τ̂ may be obtained using the method in [1].
It is also possible to use the bootstrap approach
to estimate the distribution of τ̂ following the
method in [3]. We do not discuss these topics
further here, but we should point out that there
exists a serious problem when the parameter N

is unknown. In some cases, the MLE of N does
not exist; e.g. see [15–17], where the Jelinski–
Moranda model and other models are considered.
The conditions for the existence of the MLE of N
have been given. Consequently, when the MLE of
N does not exist for some data set, the MLE of τ
does not exist either.

8.5 Application

In this section, we use a real data set in software
reliability engineering to the Jelinski–Moranda
de-eruphication model. The data set we used is
called SYS1, from Musa [18], and has frequently
been analyzed in the literature. Figure 8.1 shows
the plot of the cumulative failure numbers against
their occurrence times in seconds. There are 136
failures in total in the data set.

The log-likelihood for the SYS1 data set is
plotted in Figure 8.2 for possible values of the
change-point τ . We can see that the log-likelihood

162 Statistical Reliability Theory

takes a maximum value near to 20. Actually, the
MLEs of these parameters in the model with one
change point are

τ̂ = 16, N̂ = 145, λ̂1 = 1.1086× 10−4,

λ̂2 = 2.9925× 10−5

When no change points are considered, the MLEs
of parameters N and λ are

N̂ = 142, λ̂= 3.4967× 10−5

We can see that the estimates for the number of
faults N by these two models are slightly different.

In order to see the differences between these
two models we can check out the prediction
ability, which is a very important criterion for
evaluating the models, since the main objective
in software reliability is to predict the behavior
of future failures as precisely as possible; e.g. see
[19, 20] for more discussion on the prediction
ability.

The u-plot and prequential likelihood tech-
niques [21, 22] are used to evaluate the prediction
ability in this case. In general, the u-plot of a good
predicting system should be close to the diagonal
line with unit slope, and the maximum vertical
distance between the u-plot and the diagonal line,
which is called the Kolmogrov distance, is a mea-
surement of the closeness. On the other hand, it
can be shown that model A is favored of model
B if the prequential likelihood ratio PLA/PLB is
consistently increasing as the predicting process
continues.

Figure 8.3 shows the u-plots of the change-
point model and the original model starting
after 35 failures. The Kolmogrov distance for the
change-point model is equal to 0.088 and for the
original model the distance is 0.1874.

Figure 8.4 is the plot of the log prequential
likelihood ratio between the change-point model
and the Jelinski–Moranda model. The increasing
trend is strong, so the change-point model makes
the prediction better.

The analysis above has shown that the fitness
and the prediction have been greatly improved
by considering the change point in the Jelinski–
Moranda model for this specific data set.

Figure 8.3. A comparison of the u-plots between the change-
point model and the Jelinski–Moranda model

Figure 8.4. The log-prequential likelihood ratios between the
change-point model and the Jelinski–Moranda model

8.6 Summary

We have presented some change-point models
that can be used in reliability analysis. The main
differences between the models discussed and the
classical change-point model are the dependent
sample and the unknown sample size, which is
particular to software reliability analysis. When
the sample size is assumed to be known, the
model discussed is the one used for hardware
reliability analysis. By using a classical software
reliability model, we have shown how a change-
point model can be developed and applied for
real failure data. The improvement in modeling
and prediction by introducing the change point

Statistical Reliability Change-point Estimation Models 163

has been demonstrated for one data set. The
MLEs of the change point are yet to be solved,
because in some software reliability models the
ML estimation of the number of faults can
be infinity. In such cases, another estimation
procedure has to be developed. An extension of
the change-point problems in reliability analysis
could be made by considering multipath change
points.

References
[1] Hinkley DV. Inference about the change-point in a

sequence of random variables. Biometrika 1970;57:1–16.
[2] Carlstein E. Nonparametric change-point estimation.

Ann Stat 1988;16:188–97.
[3] Joseph L, Wolfson DB. Estimation in multi-path

change-point problems. Commun Stat Theor Methods
1992;21:897–913.

[4] Raftery AE, Akiman VE. Bayesian analysis of a Poisson
process with a change-point. Biometrika 1986;73:85–9.

[5] Leonard T. Density estimation, stochastic processes and
prior information (with discussion). J R Stat Soc B
1978;40:113–46.

[6] Musa JD, Iannino A, Okumoto K. Software reliabil-
ity: measurement, prediction, application. New York:
McGraw-Hill; 1987.

[7] Zhao M. Statistical reliability change-point estimation
models. Commun Stat Theor Methods 1993;22:757–68.

[8] Chang YP. Estimation of parameters for nonhomoge-
neous Poisson process: software reliability with change-
point model. Commun Stat Simul C 2001;30(3):623–35.

[9] Jelinski Z, Moranda PB. Software reliability research. In:
Freiberger W, editor. Statistical computer performance
evaluation. New York: Academic Press; 1972. p.465–97.

[10] Pham H. Software reliability. Singapore: Springer-Verlag;
2000.

[11] Xie M. Software reliability modelling. Singapore: World
Scientific; 1991.

[12] Wagoner WL. The final report on a software relia-
bility measurement study. In: Report TOR-007(4112)-1.
Aerospace Corporation, 1973.

[13] Schick GJ, Wolverton RW. Assessment of software reli-
ability. In: Proceedings, Operations Research. Wurzburg
Wein: Physica-Verlag; 1973. p.395–422.

[14] Littlewood B. Stochastic reliability growth: a model
for fault-removal in computer-programs and hardware-
design. IEEE Trans Reliab 1981;30:312–20.

[15] Joe H, Reid, N. Estimating the number of faults in a
system. J Am Stat Assoc 1985;80:222–6.

[16] Wright DE, Hazelhurst CE. Estimation and prediction
for a simple software reliability model. Statistician
1988;37:319–25.

[17] Huang XZ. The limit conditions of some time between
failure models of software reliability. Microelectron
Reliab 1990;30:481–5.

[18] Musa, JD. Software reliability data. New York: RADC;
1979.

[19] Musa JD. Software reliability engineered testing. UK:
McGraw-Hill; 1998.

[20] Zhao M. Nonhomogeneous Poisson processes and their
application in software reliability. PhD Dissertation,
Linköping University, 1994.

[21] Littlewood B. Modelling growth in software reliability.
In: Rook P, editor. Software reliability handbook. UK:
Elsevier Applied Science; 1991. p.111–36.

[22] Dawid AP. Statistical theory: the prequential approach.
J R Stat Soc A 1984;147:278–92.

This page intentionally left blank

Concepts and Applications
of Stochastic Aging in Reliability

Ch
ap

te
r9

C. D. Lai and M. Xie

9.1 Introduction
9.2 Basic Concepts for Univariate Reliability Classes
9.2.1 Some Acronyms and the Notions of Aging
9.2.2 Definitions of Reliability Classes
9.2.3 Interrelationships
9.3 Properties of the Basic Concepts
9.3.1 Properties of Increasing and Decreasing Failure Rates
9.3.2 Property of Increasing Failure Rate on Average
9.3.3 Properties of NBU, NBUC, and NBUE
9.4 Distributions with Bathtub-shaped Failure Rates
9.5 Life Classes Characterized by the Mean Residual Lifetime
9.6 Some Further Classes of Aging
9.7 Partial Ordering of Life Distributions
9.7.1 Relative Aging
9.7.2 Applications of Partial Orderings
9.8 Bivariate Reliability Classes
9.9 Tests of Stochastic Aging
9.9.1 A General Sketch of Tests
9.9.2 Summary of Tests of Aging in Univariate Case
9.9.3 Summary of Tests of Bivariate Aging
9.10 Concluding Remarks on Aging

9.1 Introduction

The notion of aging plays an important role in
reliability and maintenance theory. “No aging”
means that the age of a component has no
effect on the distribution of residual lifetime of
the component. “Positive aging” describes the
situation where residual lifetime tends to decrease,
in some probabilistic sense, with increasing age
of the component. This situation is common in
reliability engineering, as systems or components
tend to become worse with time due to increased
wear and tear. On the other hand, “negative aging”
has an opposite effect on the residual lifetime.
Although this is less common, when a system
undergoes regular testing and improvement, there

are cases for which we have reliability growth
phenomena.

Concepts of aging describe how a component
or system improves or deteriorates with age.
Many classes of life distributions are categorized
or defined in the literature according to their
aging properties. The classifications are usually
based on the behavior of the conditional survival
function, the failure rate function, or the mean
residual life of the component concerned. Within a
given class of life distributions, closure properties
under certain reliability operations are often
investigated. In several cases, for example, the
increasing failure rate average, arise naturally
as a result of damages being accumulated from
random shocks. Moreover, there are a number of

165

166 Statistical Reliability Theory

chains of implications among these aging classes.
The exponential distribution is the simplest life
distribution that is characterized by a constant
failure rate or no aging. It is also nearly always
a member of every known aging class, and thus
several tests have been proposed for testing a
life distribution being exponential against an
alternative that it belongs to a specified aging
class. Some of the life classes have been derived
more recently and, as far as we know, no test
statistics have been proposed. On the other hand,
there are several tests available for some classes.

By “life distributions” we mean those for which
negative values do not occur, i.e. F(x)= 0 for
x < 0. The non-negative variate X is thought of as
the time to failure (or death) of an electrical or
mechanical component (or organism), but other
interpretations may be possible-an inter-event
time is normally necessarily positive.

In this chapter, we focus on classes of life
distributions based on notions of aging; increasing
failure rate (IFR) is perhaps the best known,
but we shall meet many others also, and study
their interrelationships whenever possible. The
major parts of the chapter are devoted to: (i) the
naming and interpretation of univariate reliability
classes, and showing how these notions may be
extended to the bivariate case; (ii) presenting the
interrelationships between different classes; and
(iii) summarizing various statistical tests on aging
in three tables for various univariate and bivariate
aging classes. An expository paper by Bergman [1]
and chapter 18 of Hutchinson and Lai [2] are
helpful for (i) and (ii); details on (iii) can be found
in Lai [3].

From the definitions of the life distribution
classes, results may be derived concerning such
things as properties of systems (based upon
properties of components), bounds for survival
functions, moment inequalities, and algorithms
for use in maintenance policies [4].

Most readers will know that statistical theory
applied to distributions of lifetime lengths plays an
important part in both the reliability engineering
literature and the biometrics literature. We may
also note a third applications area: Heckman and
Singer [5] review econometric work on duration

variables (e.g. lengths of periods of unemploy-
ment, or time intervals between purchases of a cer-
tain good), much of which, they say, has borrowed
freely and often uncritically from reliability the-
ory and biostatistics. We believe the topics under
discussion are indeed important, and hope that
this brief review will provide a clear picture of the
recent developments in this area.

The chapter considers the following aspects:

• univariate reliability classes;
• interrelationship between the classes;
• bathtub-shaped life distributions;
• life classes based on mean residual lifetime;
• partial ordering of life distributions;
• bivariate reliability classes;
• tests of univariate and bivariate aging.

In Section 9.2 we begin with giving a review
of some basic aging notions and their interre-
lationships, together with some key references.
Section 9.3 discusses the properties of these basic
aging classes and Section 9.4 is devoted to the
bathtub-shaped life distributions that are impor-
tant in reliability applications. Section 9.5 charac-
terizes life classes based on their mean residual
lifetimes, and Section 9.6 tidies up the aging clas-
sifications with the inclusion of some further, but
less well known, classes. Section 9.7 provides an
introduction to partial ordering, through which
the strength of the aging property of the two
life distributions within the same class is com-
pared. Univariate aging concepts are extended in
Section 9.8, in which bivariate aging classes are
introduced. Section 9.9 considers the subject of
tests of aging, with the exponential distribution
being taken as the null hypothesis against various
alternatives. We omit details of these test proce-
dures, as the subject matter may have less appeal to
engineers than to statisticians. Finally, in Section
9.10, we tidy up the loose ends on stochastic aging
and the section ends with some remarks concern-
ing future research directions that may bridge the
theory and applications.

The following notation is adopted herein:

F cumulative distribution function
f density function given by F ′

Concepts and Applications of Stochastic Aging in Reliability 167

F̄ reliability function given 1− F (also
known as the survival probability)

X̄ sample mean
ψ indicator function
H0 null hypothesis
H1 alternative hypothesis
φ non-negative function
r(t) hazard rate (or failure rate) function
m(t) mean residual lifetime.

A list of abbreviations used in the text is given
Table 9.1.

9.2 Basic Concepts for
Univariate Reliability Classes

9.2.1 Some Acronyms and the Notions
of Aging

The concepts of increasing and decreasing failure
rates for univariate distributions have been found
very useful in reliability theory. The classes of
distributions having these aging properties are
designated the IFR and DFR distributions respec-
tively, and they have been studied extensively.
Other classes, such as “increasing failure rate on
average” (IFRA), “new better than used” (NBU),
“new better than used in expectation” (NBUE),
and “decreasing mean residual life” (DMRL), have
also been of much interest. For fuller accounts of
these classes see, for example, Bryson and Sid-
diqui [6], Barlow and Proschan [7], Klefsjö [8],
and Hollander and Proschan [4].

A class that slides between NBU and NBUE,
known as “new better than used in convex
ordering” (NBUC), has also attracted some
interest recently.

The notion of “harmonically new better than
used in expectation” (HNBUE) was introduced
by Rolski [9] and studied by Klefsjö [10, 11].
Further generalizations along this line were given
by Basu and Ebrahimi [12]. A class of distributions
denoted by L has an aging property that is
based on the Laplace transform, and was put
forward by Klefsjö [8]. Deshpande et al. [13] used

stochastic dominance comparisons to describe
positive aging and suggested several new positive
aging criteria based on these ideas (see their paper
for details). Two further classes, NBUFR (“new
better than used in failure rate”) and NBUFRA
(“new better than used in failure rate average”)
require the absolute continuity of the distribution
function, and have been discussed by Loh [14,15],
Deshpande et al. [13], Kochar and Wiens [16], and
Abouammoh and Ahmed [17].

Rather than F(x), we often think of F̄ (x)=
Pr(X > x)= 1− F(x), which is known as the
survival distribution or reliability function. The
expected value of X is denoted by µ. The function

F̄ (t | x)= F̄ (x + t)/F̄ (x) (9.1)

represents the survival function of a unit of age x,
i.e. the conditional probability that a unit of age x

will survive for an additional t units of time. The
expected value of the remaining (residual) life, at
age x, is m(x)= E(X − x | X > x), which may be
shown to be

∫∞
0 F̄ (t | x) dt .

When F ′(x)= f (x) exists, we can define the
failure rate (or hazard rate, or force of mortality)
as

r(x)= f (x)/F̄ (x) (9.2)

for x such that F̄ (x) > 0. It follows that, if r(x)

exists:

−log F̄ (t)=
∫ t

0
r(x) dx (9.3)

which represents the cumulative failure rate. We
are now ready to define several reliability classes.

9.2.2 Definitions of Reliability Classes

Most of the reliability classes are defined in
terms of the failure rate r(t), conditional survival
function F̄ (t | x), or the mean residual life m(t).
All these three functions provide probabilistic
information on the residual lifetime, and hence
aging classes may be formed according to the
behavior of the aging effect on a component. The
ten reliability classes mentioned above are defined
as follows.

Definition 1. F is said to be IFR if F̄ (t | x) is
decreasing in 0≤ x <∞ for each t ≥ 0.

168 Statistical Reliability Theory

Table 9.1. List of abbreviations used in the text

Abbreviation Aging class

BFR Bathtub-shaped failure rate
DMRL (IMRL) Decreasing mean residual life (Increasing mean residual life)
HNBUE Harmonically new better than used in expectation
IFR (DFR) Increasing failure rate (Decreasing failure rate)
IFRA (DFRA) Increasing failure rate average (Decreasing failure rate average)
L-class Laplace class of distributions
NBU (NWU) New better than used (New worse than used)
NBUE (NWUE) New better than used in expectation (New better than used in expectation)
NBUC New better than used in convex ordering
NBUFR New better than used in failure rate
NBUFRA New better than used in failure rate average
NBWUE (NWBUE) New better then worse than used in expectation (New worse then better than used in expectation)

When the density exists, this is equivalent to
r(x)= f (x)/F̄ (x) being increasing in x ≥ 0 [7].

Definition 2. F is said to be IFRA if −(1/t)
× log F̄ (t) is increasing in t . (That is, if −log F̄

is a star-shaped function; for this notion, see
Dykstra [18].)

As −log F̄ given in Equation 9.3 represents
the cumulative failure rate, the name given to
this class is appropriate. Block and Savits [19]
showed that IFRA is equivalent to Eα[h(X)] ≤
E[hα(X/α)] for all continuous non-negative
increasing functions h and all such that 0 < α

< 1. This class is perhaps the most important in
reliability analysis. It is the smallest closed class
containing an exponential distribution under the
formation of coherent systems. It has been shown
that a device subject to shocks governed by a
Poisson process, which fails when the accumulated
damage exceeds a fixed threshold, has an IFRA
distribution [20].

Definition 3. F is said to be DMRL if the
mean remaining life function

∫∞
0 F̄ (x | t) dt is

decreasing in x, i.e. the older the device is, the
smaller is its mean residual life [6].

Definition 4. F is said to be NBU if F̄ (t | x)≤
F̄ (t) for x ≥ 0, t ≥ 0.

This means that a device of any particular age
has a stochastically smaller remaining lifetime
than does a new device [7].

Definition 5. F is said to be NBUE if
∫∞

0 F̄ (t | x)
dt ≤ µ for x ≥ 0.

This means that a device of any particular age
has a smaller mean remaining lifetime than does a
new device [7].

Definition 6. F is said to be HNBUE if
∫∞
x F̄ (t

| x) dt ≤ µ exp(−x/µ) for x ≥ 0. There is an
alternative definition in terms of the mean residual
life [9].

Definition 7. F is said to be an L-distribution if∫∞
0 e−st F̄ (t) dt ≥ µ/(1+ s) for s ≥ 0.

The expression µ/(1+ s) can be written as∫
exp(−sx)Ḡ(x) dx, where Ḡ(x)= exp(−x/µ).

This means that the inequality is one between the
Laplace transforms of F̄ and of an exponential
survival function with the same mean as F [8].

Definition 8. F is said to be NBUFR if r(x) > r(0)
for x > 0 [13].

Definition 9. F is said to be NBUFRA if r(0)≤
(1/x)

∫∞
0 r(t) dt =− log[F̄ (x)]/x [14].

Using Laplace transforms, Block and Sav-
its [21] established necessary and sufficient con-
ditions for the IFR, IFRA, DMRL, NBU, and NBUE
properties to hold.

Definition 10. F is NBUC if
∫∞
x

F̄ (t | x) dt ≤∫∞
x F̄ (t) dt [22].

Concepts and Applications of Stochastic Aging in Reliability 169

Hendi et al. [23] have shown that the new
better than used in convex ordering is closed un-
der the formation of parallel systems with inde-
pendent and identically distributed components.
Li et al. [24] presented a lower bound of the relia-
bility function for this class based upon the mean
and the variance. Cao and Wang [22] have proved
that

NBU⇒ NBUC⇒ NBUE⇒HNBUE

9.2.3 Interrelationships

The following chain of implications exists among
the aging classes [13, 16]:

IFR ⇒ IFRA ⇒ NBU ⇒ NBUFR ⇒ NBUFRA

⇓ ⇓ ⇓
⇓ NBUC ⇓
⇓ ⇓ ⇓

DMRL ⇒ NBUE ⇒ HNBUE ⇒ L

In Definitions 1–10, if we reverse the inequalities
and interchange “increasing” and “decreasing”,
we obtain the classes DFR, DFRA, NWU, IMRL,
NWUE, HNWUE, L̄, NWUFR, NWUFRA, and
NWUC. They satisfy the same chain of implica-
tions.

9.3 Properties of the Basic
Concepts

9.3.1 Properties of Increasing and
Decreasing Failure Rates

Patel [25] gives the following properties of the IFR
and DFR concepts.

1. If X1 and X2 are both IFR, so is X1 +X2; but
the DFR property is not so preserved.

2. A mixture of DFR distributions is also DFR;
but this is not necessarily true of IFR
distributions.

3. Parallel systems of identical IFR units are IFR.
4. Series systems of (not necessarily identical)

IFR units are IFR.

5. Order statistics from an IFR distribution
have IFR distributions, but this is not true
for spacings from an IFR distribution; order
statistics from a DFR distribution do not
necessarily have a DFR distribution, but
spacings from a DFR distribution are DFR.

6. The probability density function (p.d.f.) of an
IFR distribution need not be unimodal.

7. The p.d.f. of a DFR distribution is a decreasing
function.

9.3.2 Property of Increasing Failure
Rate on Average

This aging notion is fully investigated in the book
by Barlow and Proschan [7]; in particular, IFRA is
closed under the formation of coherent systems,
as well as under convolution. The IFRA closure
theorem is pivotal to many of the results given in
Barlow and Proschan [7].

9.3.3 Properties of NBU, NBUC, and
NBUE

The properties of NBU, NWU, NBUE, and NWUE
are also well documented in the book by Barlow
and Proschan [7]. Chen [26] showed that the
distributions of these classes may be characterized
through certain properties of the corresponding
renewal functions.

Li et al. [24] gave a lower bound of the reliability
of the NBUC class based on the first two moments.
Among other things, they also proved that the
NBUC class is preserved under the formation of
parallel systems. The last property was also proved
earlier by Hendi et al. [23].

9.4 Distributions with
Bathtub-shaped Failure Rates

A failure rate function falls into one of three
categories: (a) monotonic failure rates, where r(t)

is either increasing or decreasing; (b) bathtub
failure rates, where r(t) has a bathtub or a U shape;
and (c) generalized bathtub failure rates, where

170 Statistical Reliability Theory

Figure 9.1. A bathtub failure rate r(t)

r(t) is a polynomial, or has a roller-coaster shape
or some generalization.

The main theme of this section is to give an
overview on the class of bathtub-shaped (BFR) life
distributions having non-monotonic failure rate
functions. For a recent review, see Lai et al. [27].

There are several definitions of bathtub-shaped
life distributions. Below is the one that gives rise
to curves having definite “bathtub shapes”.

Definition 11. (Mi [28]) A distribution F is a
bathtub-shaped life distribution if there exists
0≤ t ≤ t0 such that:

1. r(t) is strictly decreasing, if 0≤ t ≤ t1;
2. r(t) is a constant if t1 ≤ t ≤ t2;
3. strictly increasing if t ≥ t2.

The above definition may be rewritten as

r(t)=

r1(t) for t ≤ t1

λ for t1 ≤ t ≤ t2

r2(t) for t ≥ t2

(9.4)

where r1(t) is strictly decreasing in [0, t1] and
r2(t) is strictly increasing for t ≥ t2. We do
not know of many parametric distributions that
possess this property, except for some piecewise
continuous distributions. One example is the
sectional Weibull in Jiang and Murthy [29]
involving three Weibull distributions.

A typical bathtub-shaped failure rate function
is shown in Figure 9.1. Several comments are in
order.

In Definition 11, Mi [28] called the points t1
and t2 the change points of r(t). If t1 = t2 = 0,
then a BFR becomes an IFR; and if t1 = t2→∞,
then r(t) is strictly decreasing, so becoming a
DFR. In general, if t1 = t2, then the interval for
which r(t) is a constant degenerates to a single
point. In other words, the strict monotonic failure
rate distributions IFR and DFR may be treated as
the special cases of BFR in this definition. Park
[30] also used the same definition. The reader
will find more information on bathtub-shaped life
distributions in Lai et al. [27].

The class of lifetime distributions having
a bathtub-shaped failure rate function is very
important because the lifetimes of electronic,
electromechanical, and mechanical products are
often modeled with this feature. In survival
analysis, the lifetime of human beings exhibits
this pattern. Kao [31], Lieberman [32], Glaser
[33], and Lawless [34] give many examples
of bathtub-shaped life distributions. For more
recent examples, see Chen [35] and Lai et al.
[27]. For applications of the bathtub-shaped life
distributions, see Lai et al. [27].

9.5 Life Classes Characterized
by the Mean Residual Lifetime

Recall, the mean residual lifetime is defined as
m(t)= E(X − x |X > x) which is equivalent to∫∞

0 F̄ (t | x) dt . Recall also that F is said to
be DMRL if the mean remaining life function∫∞

0 F̄ (x | t) dt is decreasing in x. That is, the older
the device is, the smaller is its mean residual life
and hence m(t) is monotonic. However, in many
real life situations, the mean residual lifetime is
non-monotonic, and thus there arise several aging
notions defined in terms of the non-monotonic
behavior of m(t).

Definition 12. (Guess et al. [36]) A life distribu-
tion with a finite first moment is called an increas-
ing then decreasing mean residual life (IDMRL) if

Concepts and Applications of Stochastic Aging in Reliability 171

there exists a turning point τ ≥ 0 such that

m(s)

{
≤m(t) for 0≤ s ≤ t < τ

≥m(t) for τ ≤ s ≤ t
(9.5)

The dual class of “decreasing initially, then in-
creasing mean residual life” (DIMRL) is obtained
by reversing the above inequality (Equation 9.5).

Gupta and Akman [37] showed that the
non-monotonic behavior is related to the non-
monotonic failure rates. Their results are summa-
rized below.

Case (A): r(t) is BFR, then:

1. m(t) is decreasing if r(0)≤ 1/µ;
2. IDMRL if r(0)≥ 1/µ.

Case (B) r(t) has an upside-down bathtub
shape, then:

1. m(t) is increasing if r(0)≥ 1/µ;
2. m(t) is bathtub shaped if r(0)≤ 1/µ.

A similar result is also given by Mi [28], who
stated “if the failure rate has a bathtub-shape, then
the associated MRL has an upside-down bathtub-
shape”.

Mitra and Basu [38] defined another aging
notion based on non-monotonic MRL:

Definition 13. A life distribution F having sup-
port on [0,∞) (and finite mean µ) is said to be
“new worse then better than used in expectation”
(NWBUE) (“new better then worse than used in
expectation” (NBWUE)) if there exists a point τ ≥
0 such that

m(t)

{
≥ (≤)m(0) for t < τ

≤ (≥)m(0) for t ≥ τ

They showed that non-monotonic aging classes
such as BFR and NWBUE arise from the shock
model under consideration.

For applications of concepts based on the mean
residual life, see Guess and Proschan [39]. See
Newby [40] for some simple explanations and
examples of analyses in terms of mean residual
life, hazard, and hazard rate average.

9.6 Some Further Classes of
Aging

In addition to those lifetime classes defined above,
there are a number of other aging classes that
have been investigated over the years. Without
giving details, we just present their acronyms and
references in Table 9.2.

Other chains of relationships are given in Joe
and Proschan [46]:

NBU⇔ NBUP-α for all 0 < α < 1⇒ NBUE
IFR⇔ DPRL-α for all 0 < α < 1
DPRL⇒ DPRL-α⇒ NBUP-α for any
0 < α < 1

There are other chains of relationships, but we will
not elaborate on them here.

9.7 Partial Ordering of Life
Distributions

A distribution F is said to be more IFR than G if
the ratio of hazard

rF [F−1(t)]
rG[G−1(t)]

is non-decreasing in t . (This definition has
assumed that the failure rates exist.) Orderings of
each of the other reliability classes may also be
defined.

There is a chain of implications connecting
the orderings of the classes, that is similar but
not identical to that which connects the classes
(Section 9.2.3) [16].

Let X and Y be two random variables with
distribution functions G and H respectively.
We say that X is stochastically larger than Y if
G(x)≤H(x), for all x. In economic theory, this
is known as the first-order stochastic dominance.
Higher orders of stochastic dominance are defined
in Deshpande et al. [13].

172 Statistical Reliability Theory

Table 9.2. Table of further aging classes

IFR(2) Increasing failure rate (of second order) [13, 41]
NBU(2) New better than used (of second order) [13, 41, 42]
HNBUE(3) Harmonic new better than used (of third order) [13]
DMRLHA Decreasing mean residual life in harmonic average [13]
SIFR Stochastically increasing failure rate [43]
SNBU Stochastically new better than used [43]
NBU-t0 New better than used of age t0 [4]
BMRL-t0 Better mean residual life at t0 (i.e. the mean residual life declines during the time 0 to t0 , [44]

and thereafter is no longer greater than what it was at t0)
DVRL Decreasing variance of residual life [45]
DPRL-α Decreasing 100α percentile residual life [46]
NBUP-α New better than used with respect to the 100α percentile [46]

9.7.1 Relative Aging

Recently, Sengupta and Deshpande [47] studied
three types of relative aging of two life distribu-
tions. The first of these relative aging concepts
is the partial ordering originally proposed by
Kalashnikov and Rachev [48], which is defined as
follows:

Definition 14. Let F and G be the distribution
functions of the random variables X and Y

respectively. X is said to be aging faster than
Y if the random variable Z =
G(X) has an
IFR distribution. Here
G = −log Ḡ and Ḡ(t) =
1−G(t).

If the failure rates rF (t) and rG(t) both
exist with rF (t)= f (t)/[1 − F(t)] and rG(t)=
g(t)/[1−G(t)], then the above definition is
equivalent to rF (t)/rG(t) being an increasing
function of t .

Several well-known partial orderings are given
in Table 9.3 (assuming both failure rates of both
distributions do exist).

Lai and Xie [51] established some results on
relative aging of two parallel structures. It is
observed that the relative aging property may
be used to allocate resources and can be used
for failure identification when two components
(systems) have the same mean. In particular, if
“X ages faster than Y ” and they have the same
mean, then Var(X) ≤ Var(Y). Several examples
are given. In particular, it is shown that when two

Weibull distributions have equal means, the one
that ages faster has a smaller variance.

9.7.2 Applications of Partial Orderings

Most of the stochastic aging definitions involve
failure rate in some way. The partial orderings
discussed above have important applications in
reliability.

Design engineers are well aware that a system
where active spare allocation is made at the com-
ponent level has a lifetime stochastically larger
than the corresponding system where active spare
allocation is made at the system level. Boland
and El-Neweihi [52] investigated this principle in
hazard rate ordering and demonstrated that it
does not hold in general. However, they discov-
ered that for a 2-out-of-n system with independent
and identical components and spares, active spare
allocation at the component level is superior to
active spare allocation at the system level. They
conjectured that such a principle holds in general
for a k-out-of-n system. Singh and Singh [50] have
proved that for a k-out-of-n system where com-
ponents and spares have independent and iden-
tical life distributions, active spare allocation at
the component level is superior to active spare
allocation at the system level in likelihood ratio or-
dering. This is stronger than hazard rate ordering
and thus establishes the conjecture of Boland and
El-Neweihi [52].

Concepts and Applications of Stochastic Aging in Reliability 173

Table 9.3. Partial orderings on aging

Partial ordering Condition Reference

X ≤st Y F̄ (t)≤ Ḡ(t), for all t [7] p.110
(Y > X in stochastic order)

X ≤hr Y rF (t)≥ rG(t), for all t [49]
(Y > X in hazard order)

X ≤c Y G−1F(t) is convex in t [7] p.106
(F is convex with respect toG)

X ≤∗ Y (1/t)G−1F(t) is↑ in t [7] p.106
(F is star shaped with respect toG)

X ≺c Y rF (t)/rG(t) is↑ in t [47]
(X is aging faster than Y)

X ≺∗ Y Z =
G(X) has an IFRA [47]
(X is aging faster than Y on average)

X ≺lr Y f (t)/g(t) is↑ in t [50]
(X is smaller than Y in likelihood ratio)

Boland and El-Neweihi [52] has also estab-
lished that the active spare allocation at the com-
ponent level is better than the active spare allo-
cation at the system level in hazard rate order-
ing for a series system when the components are
matching although the components may not be
identically distributed. Boland [49] gave an exam-
ple to show that the hazard rate comparison is
what people really mean when they compare the
performance of two products. For more on the
hazard rate and other stochastic orders, the read-
ers should consult Shaked and Shanthikumar [53].

9.8 Bivariate Reliability Classes
In dealing with multicomponent systems, one
wants to extend the whole univariate aging prop-
erties to bivariate and multivariate distributions.
Consider, for example, the IFR concept in the
bivariate case. Let us use the notation F̄ (x1, x2) to
mean the probability that item 1 survives longer
than time x1 and item 2 survives longer than time
x2. Then a possible definition of bivariate IFR is
that F̄ (x1 + t, x2 + t)/F̄ (x1, x2) decreases in x1
and x2 for all t .

Bivariate as well as multivariate versions of
IFR, IFRA, NBU, NBUE, DMRL, HNBUE and of

Table 9.4. Bivariate versions of univariate aging concepts

Ageing Reference

Bivariate IFR [58–67]
Bivariate IFRA [55, 68–73]
Bivariate NBU [69, 74–76]
Bivariate NBUE [56]
Bivariate DMRL [54, 77, 78]
Bivariate HNBUE [57, 79, 80]

their duals have been defined and their properties
have been developed by several authors. In each
case, however, several definitions are possible,
because of different requirements imposed by
various authors. For example, Buchanan and
Singpurwalla [54] used one set of requirements
whereas Esary and Marshall [55] used a different
set. For a bibliography of available results, see
Block and Savits [56], Basu et al. [57], and
Hutchinson and Lai [2]. Table 9.4 gives the relevant
references for different bivariate aging concepts.

9.9 Tests of Stochastic Aging
Tests of stochastic aging play an important
part in reliability analysis. Usually, the null

174 Statistical Reliability Theory

hypothesis is that the lifetime distribution follows
an exponential distribution, i.e. there is no aging.
Let T have the exponential distribution function
F(t)= 1− e−λt for t ≥ 0. A property of the
exponential distribution that makes it especially
important in reliability theory and application
is that the remaining life of a used exponential
component is independent of its initial age (i.e. it
has the memoryless property). In other words:

Pr{T > t + x | T > t} = e−λx x ≥ 0 (9.6)

(independent of t). It is easy to verify that the
exponential distribution has a constant failure
rate, i.e. r(t)= λ, and is the only life distribution
with this property.

The exponential distribution is characterized
by having a constant failure rate, and thus stands
at the boundary between the IFR and DFR
classes. For a review of goodness-of-fit tests of the
exponential distribution, see Ascher [81].

9.9.1 A General Sketch of Tests

In developing tests for different classes of life
distributions, it is almost without exception
that the exponential distribution is used as a
strawman to be knocked down. As the exponential
distribution is always a boundary member of an
aging class C (in the univariate case), a usual
format for testing is

H0 (null hypothesis):
F is exponential versus

H1 (alternative):
F ∈ C but F is not exponential.

If one is merely interested to test whether
F is exponential, then no knowledge of the
alternative is required; in such a situation, a two-
tailed test is appropriate. Recently, Ascher [81]
discussed and compared a wide selection of tests
for exponentiality. Power computations, using
simulations, were done for each procedure. In
short, he found:

1. certain tests performed well for alternative
distributions with non-monotonic hazard
(failure) rates, whereas others fared well for
monotonic hazard rates;

2. of all the procedures compared, the score test
presented in Cox and Oakes [82] appears to
be the best if one does not have a particular
alternative in mind.

In what follows, our discussion will focus on
tests with alternatives being specified. In other
words, our aim is not to test exponentiality, but
rather to test whether a life distribution belongs
to a specific aging class. A general outline of these
procedures is as follows.

1. Find an appropriate measure of deviation
from the null hypothesis of exponentiality to-
ward the alternative (under H1). The measure
of deviation is usually based on some charac-
teristic property of the aging class we wish to
test against.

2. Based on this measure, some statistics, such as
the U -statistic, are proposed. A large value of
this statistic often (but not always) indicates
the distribution belongs to class C.

3. Large-sample properties, such as asymptotic
normality and consistency, are proved.

4. Pitman’s asymptotic relative efficiencies are
usually calculated for the following families of
distributions (with scale factor of unity, θ ≥ 0,
x ≥ 0):

(a) the Weibull distribution F̄1(x)=
exp(−xθ);

(b) the linear failure rate distribution:

F̄2(x)= exp(−x − θx2/2)

(c) the Makeham distribution:

F̄3(x)= exp{−[x + θ(x + e−x − 1)]}
(d) the Gamma distribution with density

f (x)= [xθ−1/�(θ)] e−x.
The above distributions are well known except
for the Makeham distribution, which is widely
used in life insurance and mortality studies
(see [7], p.229). All these distributions are IFR
(for an appropriate restriction on θ); hence they
all belong to a wider class. Moreover, all these
reduce to the exponential distribution with an
appropriate value of θ .

Concepts and Applications of Stochastic Aging in Reliability 175

Table 9.5. Tests on univariate aging

Test name Basic statistics Aging Key
alternatives references

TTT plot τ(Xi)=
i∑

j=1

(n− j + 1)(Xj −Xj−1), j = i, . . . n IFR, IFRA, [57]

Ui = τ(Xi)/τ(Xn), T =
n∑

j=1

ajUj

NBUE
DMRL
HNBUE [84]

Each test has a different set of ai values

Un Un = [4/n(n− 1)(n− 2)(n− 3)]
∑

ψ[min(Xγ1Xγ2), (Xγ3 +Xγ4)/2] IFR [85–87]

sum over= {γi �= γj } ∩ {γ1 < γ2} ∩ {γ3 < γ4}
Jb Jb = n

(n− 1)

∑
ψ(Xi, bXj), 0 < b < 1 IFRA [88]

Qn Qn =
n∑

i=1

J

(
i

n+ i

)/
nX̄, J (u)= 2(1− u)[1− log(1− u)] − 1 IFRA [89]

Link
2

n(n− 1)

∑
i<j

Xi/Xj IFRA [90]

V ∗ V ∗ = V/X̄,V = n−4
n∑

i=1

Ci,nXi DMRL [91, 92]

Ci,n = 4

3
i3 − 4ni2 + 3n2i − 1

2
n3 + 1

2
n2 − 1

2
i2 + 1

6
i

Jn or J Jn = 2[n(n− 1)(n− 2)]−1
∑

ψ(Xγ1, Xγ2 +Xγ3), 1≤ γ ≤ n, NBU [93]

γ1 �= γ2, γ1 �= γ3, γ2 < γ3

δ δn = n−2
n∑
i

n∑
j

φ(Sij /n), φ increasing; Sij =
n∑

k=1

ψ(Xk, Xi +Xj) NBU [94, 95]

Generalized J J test together with a two-stage test procedure NBU [96]

S S =U − J , see above for J test NBU [97]

Ln Ln(ψ, m)= n−1
n∑

i=1

φ(n−1S
(m)
i), S(m)

i =
n∑

j=1

ψ(Xj , mX) NBU [98]

K∗ K∗ =K/X̄,K = 1

2n2

n∑
i=1

(
3n

2
− 2i + 1

2

)
Xi NBUE [91]

CV S/X̄, S2 =
n∑

i=1

(Xi − X̄)2/n NBUE, NWUE [10]

Tn Tn = 1

n

n∑
i=1

exp(−Xi/X̄) HNBUE [101]

En En = 1

n

n−1∑
i=1

log[1− τ(Xi)], τ(Xi)=
∑i

j=1 (n− j + 1)(Xj −Xj−1) HNBUE [102]

176 Statistical Reliability Theory

Table 9.5. Continued.

Test name Basic statistics Aging Key
alternatives references

T T = [n(n− 1)]−1
∑

ψ(Xα1 , Xα2 + t0)− (2n)−1
n∑

i=1

ψ(Xi, t0) NBU-t0 [103]

Tk Tk = T1k − T2k , T1k =
∑

i=j=n
ψ(Xi, Xj + kt0)

/
2

n(n− 1)
NBU-t0 [104]

T2k = 1

2

∑
ψk(Xi1 , . . . , Xik)

/(
n
k

)
ψk(a1, . . . , ak)=

{
1 if min ai > t0
0 otherwise

W1:n W1n = 1

4

n−1∑
i=0

B1
i

n
(Xi+1 −Xi), DPRL-α [105, 106]

B1(t)=
{
−t̄2(t̄2 − 1) 0≤ t < α

t̄2(ᾱ−2 − 1)[2(ᾱ−2 + 1)t̄2 − 1] α < t < 1
t̄ = 1− t

ᾱ = 1− α

W2:n W2:n = 1

2
F−1
n (α)− 1

2

n∑
i=1

[B2[(i − 1)/n)− B2(i/n)] NBUP-α [105, 106]

B2(t)=

−1

2
[(1− t)2 − 1] 1≤ t < α

1

2
[(1− α)−2 − 1](1− t)2 α < t ≤ 1

TTT T =
n∑

j=1

ajUj , Ui = τ(Xi)/τ(Xn) BFR [107]

Stochastic Residual lifeXt = {X − t |X > t}with cumulative distribution [108]
order function F̄X(t + x)/F̄X(t), x ≥ 0. For 0≤ s < t

F IFR ifXt ≤st Xs ; F DFR ifXs ≤st Xt ; IFR, DFR

F NBU ifXt ≤st X; F NWU ifX ≤st Xt . NBU, NWU

Test statistics based on testing stochastic order

Right
censored

F̂n(x) = 1−
∏

{i:Z(i)≤x}

(
n− i

n− i + 1

)δ(i)
(Kaplan–Meier estimator [111]), IFRA [109]

δi = 0 or 1 depending on whether object i is censored on the right or NBU [110]
not,Zi =min(Xi, Yi), Yi is random time to the right censorship NBUE [112]

NBU-t0 [113]
DPRL-α [105]
NBUP-α [105]

Concepts and Applications of Stochastic Aging in Reliability 177

9.9.2 Summary of Tests of Aging in
Univariate Case

We shall now present several statistical procedures
for testing exponentiality of a life distribution
against different alternatives.

Let ψ be the indicator function defined as

ψ(a, b)=
{

1 if a > b

0 otherwise

φ denotes an increasing function (i.e. φ(x) ≤
φ(y), for x < y), and X1 <X2 < · · ·< Xn are the
order statistics.

Table 9.5 gives an overview of the tests available
for various aging classes. We refer our readers to
Lai [3] for details.

9.9.3 Summary of Tests of Bivariate
Aging
Let X and Y denote the lifetimes of two
components having a joint distribution function
F(x, y). The joint survival function is given by
F̄ (x, y)= Pr(X > x, Y > y).

In testing bivariate aging properties, there are
two problems facing us:

• Which bivariate exponential distribution is
the null distribution?
• Which version of bivariate aging property in

a given class are we dealing with? (There
are several versions of bivariate IFR, bivariate
NBU, etc.)

Generally, the bivariate exponential distribution of
Marshall and Olkin [61] (denoted by BVE) is used
as the null distribution. This joint distribution has
the survival function given by

F̄ (x, y)= exp[−λ1x − λ2y − λ12 max(x, y)]
x, y ≥ 0 (9.7)

λ1, λ2 > 0, λ12 ≥ 0.
BVE is chosen presumably because:

• it was derived from a reliability context;
• it has the property of bivariate lack of

memory:

F̄ (x + t, y + t)= F̄ (x, y)F̄ (t, t) (9.8)

Table 9.6. Tests of bivariate aging

Bivariate version Key references on bivariate
tests

IFR [114, 115]
IFRA [116]
DMRL [117]
NBU [118, 119]
NBUE [117]
HNBUE [120]

Most of the test statistics listed in Table 9.6
are bivariate generalizations of the univariate tests
discussed in Section 9.9.2.

It is our impression that tests for bivariate and
multivariate stochastic aging are more difficult
than for the univariate case; however, they would
probably offer a greater scope for applications. We
anticipate that more work will be done in this area.

9.10 Concluding Remarks on
Aging

It is clear from the material presented in this
chapter that research on aging properties (univari-
ate, bivariate, and multivariate) is currently being
pursued vigorously. Several surveys are given, e.g.
see Block and Savits [56,121,122], Hutchinson and
Lai [2], and Lai [3].

The simple aging concepts such as IFR, IFRA,
NBU, NBUE, DMRL, etc., have been shown to be
very useful in reliability-related decision making,
such as in replacement and maintenance studies.
For an introduction on these applications, see
Bergman [1] or Barlow and Proschan [7].

It is our impression that the more advanced
univariate aging concepts exist in something
of a mathematical limbo, and have not yet
been applied by the mainstream of reliability
practitioners. Also, it seems that, at present,
many of the multivariate aging definitions given
above lack clear physical interpretations, though
it is true that some can be deduced from shock
models. The details of these derivations can be

178 Statistical Reliability Theory

found in Marshall and Shaked [73], Ghosh and
Ebrahimi [123], and Savits [124].

It is our belief that practical concern is very
much with multicomponent systems—in which
case, appreciation and clarification of the bivariate
concepts (and hence of the multivariate concepts)
could lead to greater application of this whole
body of work.

References
[1] Bergman B. On reliability theory and its applications.

Scand J Stat 1985;12:1–30 (discussion: 30–41).
[2] Hutchinson TP, Lai CD. Continuous bivariate distribu-

tions, emphasising applications. Adelaide: Rumsby Sci-
entific Publishing; 1990.

[3] Lai CD. Tests of univariate and bivariate stochastic
ageing. IEEE Trans Reliab 1994;R43:233–41.

[4] Hollander M, Proschan F. Nonparametric concepts and
methods in reliability. In: Krishnaiah PR, Sen PK, ed-
itors. Handbook of statistics: nonparametric methods,
vol. 4. Amsterdam: North Holland; 1984. p.613–55.

[5] Heckman JJ, Singer B. Economics analysis of longi-
tudinal data. In: Griliches Z, Intriligator MD, editors.
Handbook of econometrics, vol. 3. Amsterdam: North-
Holland; 1986. p.1689–763.

[6] Bryson MC, Siddiqui MM. Some criteria for aging. J Am
Stat Assoc 1969;64:1472–83.

[7] Barlow RE, Proschan F. Statistical theory of reliability
and life testing. Silver Spring: To Begin With; 1981.

[8] Klefsjö B. A useful ageing property based on the Laplace
transform. J Appl Probab 1983;20:615–26.

[9] Rolski T. Mean residual life. Bull Int Stat Inst
1975;46:266–70.

[10] Klefsjö B. HNBUE survival under shock models. Scand J
Stat 1981;8:39–47.

[11] Klefsjö B. HNUBE and HNWUE classes of life distribu-
tions. Nav Res Logist Q 1982;29:615–26.

[12] Basu, AP, Ebrahimi N. On k-order harmonic new better
than used in expectation distributions. Ann Inst Stat
Math 1984;36:87–100.

[13] Deshpande JV, Kochar SC, Singh H. Aspects of positive
ageing. J Appl Probab 1986;23:748–58.

[14] Loh WY. A new generalisation of NBU distributions.
IEEE Trans Reliab 1984;R-33:419–22.

[15] Loh WY. Bounds on ARE’s for restricted classes
of distributions defined via tail orderings. Ann Stat
1984;12:685–701.

[16] Kochar SC, Wiens DD. Partial orderings of life
distributions with respect to their ageing properties.
Nav Res Logist 1987;34:823–9.

[17] Abouammoh AM, Ahmed AN. The new better than used
failure rate class of life distributions. Adv Appl Probab
1988;20:237–40.

[18] Dykstra RL. Ordering, starshaped. In: Encyclopedia of
statistical sciences, vol. 6. New York: Wiley; 1985. p.499–
501.

[19] Block HW, Savits TH. The IFRA closure problem. Ann
Probab 1976;4:1030–2.

[20] Esary JD, Marshall AW, Proschan F. Shock models and
wear processes. Ann Probab 1973;1:627–47.

[21] Block HW, Savits TH. Laplace transforms for classes of
life distributions. Ann Probab 1980;8:465–74.

[22] Cao J, Wang Y. The NBUC and NWUC classes of life
distributions. J Appl Probab 1991;28:473–9.

[23] Hendi MI, Mashhour AF, Montassser MA. Closure of the
NBUC class under formation of parallel systems. J Appl
Probab 1993;30:975–8.

[24] Li X, Li Z, Jing B. Some results about the NBUC class of
life distributions. Stat Probab Lett 2000;46:229–37.

[25] Patel JK. Hazard rate and other classifications of
distributions. In: Encyclopedia in statistical sciences,
vol. 3. New York: Wiley; 1983. p.590–4.

[26] Chen Y. Classes of life distributions and renewal
counting process. J Appl Probab 1994;31:1110–5.

[27] Lai CD, Xie M, Murthy DNP. Bathtub-shaped failure
life distributions. In: Balakrishnan N, Rao CR, editors.
Handbook of statistics, vol. 20. Amsterdam: Elsevier
Science; 2001. p.69–104.

[28] Mi J. Bathtub failure rate and upside-down bathtub
mean residual life. IEEE Trans Reliab 1995;R-44:388–91.

[29] Jiang R, Murthy DNP. Parametric study of competing
risk model involving two Weibull distributions. Int J
Reliab Qual Saf Eng 1997;4:17–34.

[30] Park KS. Effect of burn-in on mean residual life. IEEE
Trans Reliab 1985;R-34:522–3.

[31] Kao JHK. A graphical estimation of mixed Weibull pa-
rameters in life testing of electronic tubes. Technomet-
rics 1959;1:389–407.

[32] Lieberman GJ. The status and impact of reliability
methodology. Nav Res Logist Q 1969;14:17–35.

[33] Glaser RE. Bathtub and related failure rate characteriza-
tions. J Am Stat Assoc 1980;75:667–72.

[34] Lawless JF. Statistical models and methods for life time
data. New York: John Wiley; 1982.

[35] Chen Z. A new two-parameter lifetime distribution with
bathtub shape or increasing failure rate function. Stat
Probab Lett 2000;49:155–61.

[36] Guess F, Hollander M, Proschan F. Testing exponential-
ity versus a trend change in mean residual life. Ann Stat
1986;14:1388–98.

[37] Gupta RC, Akman HO. Mean residual life function for
certain types of non-monotonic ageing. Commun Stat
Stochast Models 1995;11:219–25.

[38] Mitra M, Basu SK. Shock models leading to non-
monotonic aging classes of life distributions. J Stat Plan
Infer 1996;55:131–8.

[39] Guess F, Proschan F. Mean residual life: theory and
applications. In: Krishnaiah PR, Rao CR, editors.
Handbook of statistics, vol. 7. Amsterdam: Elsevier
Science; 1988. p.215–24.

Concepts and Applications of Stochastic Aging in Reliability 179

[40] Newby M. Applications of concepts of ageing in
reliability data analysis. Reliab Eng 1986;14:291–308.

[41] Franco M, Ruiz JM, Ruiz MC. On closure of the IFR(2)
and NBU(2) classes. J Appl Probab 2001;38:235–41.

[42] Li XH, Kochar SC. Some new results involving the
NBU(2) class of life distributions. J Appl Probab
2001;38:242–7.

[43] Singh H, Deshpande JV. On some new ageing properties.
Scand J Stat 1985;12:213–20.

[44] Kulaseker KB, Park HD. The class of better mean
residual life at age t0 . Microelectron Reliab 1987;27:725–
35.

[45] Launer RL. Inequalities for NBUE and NWUE life
distributions. Oper Res 1984;32:660–7.

[46] Joe H, Proschan F. Percentile residual life functions.
Oper Res 1984;32:668–78

[47] Sengupta D, Deshpande JV. Some results on relative age-
ing of two life distributions. J Appl Probab 1994;31:991–
1003.

[48] Kalashnikov VV, Rachev ST. Characterization of queu-
ing models and their stability. In: Prohorov YuK, Stat-
ulevicius VA, Sazonov VV, Grigelionis B, editors. Proba-
bility theory and mathematical statistics, vol. 2. Amster-
dam: VNU Science Press; 1986. p.37–53.

[49] Boland PJ. A reliability comparison of basic systems
using hazard rate functions. Appl Stochast Models Data
Anal 1998;13:377–84.

[50] Singh H, Singh RS. On allocation of spares at component
level versus system level. J Appl Probab 1997;34:283–7.

[51] Lai CD, Xie M. Relative ageing for two parallel systems
and related problems. Math Comput Model 2002;in
press.

[52] Boland PJ, El-Neweihi E. Component redundancy versus
system redundancy in the hazard rate ordering. IEEE
Trans Reliab 1995;R-8:614–9.

[53] Shaked M, Shanthikumar JG. Stochastic orders and their
applications. San Diego: Academic Press; 1994.

[54] Buchanan WB, Singpurwalla ND. Some stochastic
characterizations of multivariate survival. In: Tsokos CP,
Shimi IN, editors. The theory and applications of
reliability. New York: Academic Press; 1977. p.329–48.

[55] Esary JD, Marshall AW. Multivariate distributions with
increasing hazard average. Ann Probab 1979;7:359–70.

[56] Block HW, Savits TH. Multivariate classes in reliability
theory. Math Oper Res 1981;6:453–61.

[57] Basu AP, Ebrahimi N, Klefsjö B. Multivariate harmonic
new better than used in expectation distributions.
Scand J Stat 1983;10:19–25.

[58] Harris R. A multivariate definition for increasing hazard
rate distribution. Ann Math Stat 1970;41:713–7.

[59] Brindley EC, Thompson WA. Dependence and ageing
aspects of multivariate survival. J Am Stat Assoc
1972;67:822–30.

[60] Marshall AW. Multivariate distributions with monotonic
hazard rate. In: Barlow RE, Fussel JR, Singpurwalla ND,
editors. Reliability and fault tree analysis—theoretical
and applied aspects of system reliability and safety
assessment. Philadelphia: Society for Industrial and
Applied Mathematics; 1975. p.259–84.

[61] Marshall AW, Olkin I. A multivariate exponential
distribution. J Am Stat Assoc 1967;62:291–302.

[62] Basu AP. Bivariate failure rate. J Am Stat Assoc
1971;66:103–4.

[63] Block HW. Multivariate reliability classes. In: Krishna-
iah PR, editor. Applications of statistics. Amsterdam:
North-Holland; 1977. p.79–88.

[64] Johnson NL, Kotz S. A vector multivariate hazard rate.
J Multivar Anal 1975;5:53–66.

[65] Johnson NL, Kotz S. A vector valued multivariate hazard
rate. Bull Int Stat Inst 1973;45(Book 1): 570–4.

[66] Savits TH. A multivariate IFR class. J Appl Probab
1985:22:197–204.

[67] Shanbhag DN, Kotz S. Some new approaches to
multivariate probability distributions. J Multivar Anal
1987;22:189–211

[68] Block HW, Savits TH. Multivariate increasing failure rate
distributions. Ann Probab 1980;8:730–801.

[69] Buchanan WB, Singpurwalla ND. Some stochastic char-
acterizations of multivariate survival. In: Tsokos CP,
Shimi IN, editors. The theory and applications of reli-
ability, with emphasis on Bayesian and nonparametric
methods, vol. 1. New York: Academic Press; 1977. p.329–
48.

[70] Block HW, Savits TH. The class of MIFRA lifetime and
its relation to other classes. Nav Res Logist Q 1982;29:55–
61.

[71] Shaked M, Shantikumar JG. IFRA processes. In: Basu AP,
editor. Reliability and quality control. Amsterdam:
North-Holland; 1986. p.345–52.

[72] Muhkerjee SP, Chatterjee A. A new MIFRA class of life
distributions. Calcutta Stat Assoc Bull 1988;37:67–80.

[73] Marshall AW, Shaked M. Multivariate shock models for
distribution with increasing failure rate average. Ann
Probab 1979;7:343–58.

[74] Marshall AW, Shaked M. A class of multivariate new
better than used distributions. Ann Probab 1982;10:259–
64.

[75] Marshall AW, Shaked M. Multivariate new better than
used distributions. Math Oper Res 1986;11:110–6.

[76] Marshall AW, Shaked M. Multivariate new better than
used distributions: a survey. Scand J Stat 1986;13:277–
90.

[77] Arnold BC, Zahedi H. On multivariate mean remaining
life functions. J Multivar Anal 1988:25:1–9.

[78] Zahedi H. Some new classes of multivariate survival
distribution functions. J Stat Plan Infer 1985;11:171–88.

[79] Klefsjö B. On some classes of bivariate life distributions.
Statistical Research Report 1980-9, Department of
Mathematical Statistics, University of Umea, 1980.

[80] Basu AP, Ebrahimi N. HNBUE and HNWUE
distributions—a survey. In: Basu AP, editor. Reliability
and quality control. Amsterdam: North-Holland; 1986.
p.33–46.

[81] Ascher S. A survey of tests for exponentiality. Commun
Stat Theor Methods 1990;19:1811–25.

[82] Cox DR, Oakes D. Analysis of survival data. London:
Chapman and Hall; 1984.

180 Statistical Reliability Theory

[83] Klefsjö B. Some tests against ageing based on the total
time on test transform. Commun Stat Theor Methods
1983;12:907–27.

[84] Klefsjö B. Testing exponentiality against HNBUE.
Scand J Stat 1983;10:67–75.

[85] Ahmad IA. A nonparametric test for the monotonicity
of a failure rate function. Commun Stat 1975;4:967–74.

[86] Ahmad IA. Corrections and amendments. Commun Stat
Theor Methods 1976;5:15.

[87] Hoeffiding W. A class of statistics with asymptotically
normal distributions. Ann Math Stat 1948;19:293–325.

[88] Deshpande JV. A class of tests for exponentiality against
increasing failure rate average alternatives. Biometrika
1983;70:514–8.

[89] Kochar SC. Testing exponentiality against monotone
failure rate average. Commun Stat Theor Methods
1985;14:381–92.

[90] Link WA. Testing for exponentiality against monotone
failure rate average alternatives. Commun Stat Theor
Methods 1989;18:3009–17.

[91] Hollander M, Proschan F. Tests for the mean residual
life. Biometrika 1975;62:585–93.

[92] Hollander M, Proschan F. Amendments and corrections.
Biometrika 1980;67:259.

[93] Hollander M, Proschan F. Testing whether new is better
than used. Ann Math Stat 1972;43:1136–46.

[94] Koul HL. A test for new is better than used. Commun
Stat Theor Methods 1977;6:563–73.

[95] Koul HL. A class of testing new is better than used. Can J
Stat 1978;6:249–71.

[96] Alam MS, Basu AP. Two-stage testing whether new is
better than used. Seq Anal 1990;9:283–96.

[97] Deshpande JV, Kochar SC. A linear combination of two
U-statistics for testing new better than used. Commun
Stat Theor Methods 1983;12:153–9.

[98] Kumazawa Y. A class of test statistics for testing whether
new better than used. Commun Stat Theor Methods
1983;12:311–21.

[99] Hollander M, Proschan F. Testing whether new is better
than used. Ann Math Stat 1972;43:1136–46.

[100] De Souza Borges W, Proschan F. A simple test for new
better than used in expectation. Commun Stat Theor
Methods 1984;13:3217–23.

[101] Singh H, Kochar SC. A test for exponentiality against
HNBUE alternative. Commun Stat Theor Methods
1986;15:2295–2304.

[102] Kochar SC, Deshpande JV. On exponential scores
statistics for testing against positive ageing. Stat Probab
Lett 1985;3:71–3.

[103] Hollander M, Park HD, Proschan F. A class of life
distributions for ageing. J Am Stat Assoc 1986;81:91–5.

[104] Ebrahimi N, Habibullah M. Testing whether survival
distribution is new better than used of specific age.
Biometrika 1990;77:212–5.

[105] Joe H, Proschan F. Tests for properties of the percentile
residual life function. Commun Stat Theor Methods
1983;12:1087–119.

[106] Joe H, Proschan F. Percentile residual life functions.
Oper Res 1984;32:668–78.

[107] Xie M. Some total time on test quantiles useful for
testing constant against bathtub-shaped failure rate
distributions. Scand J Stat 1988;16:137–44.

[108] Belzunce F, Candel J, Ruiz JM. Testing the stochastic
order and the IFR, DFR, NBU, NWU ageing classes. IEEE
Trans Reliab 1998;R47:285–96.

[109] Wells MT, Tiware RC. A class of tests for testing
an increasing failure rate average distributions with
randomly right-censored data. IEEE Trans Reliab 1991;R
40:152–6.

[110] Chen YY, Hollander M, Langberg NA. Testing whether
new is better than used with randomly censored data.
Ann Stat 1983;11:267–74.

[111] Kaplan EL, Meier P. Nonparametric estimation from in-
complete observations. J Am Stat Assoc 1958;53:457–81.

[112] Koul HL, Susarla V. Testing for new better than used
in expectation with incomplete data. J Am Stat Assoc
1980;75:952–6.

[113] Hollander M, Park HD, Proschan F. Testing whether new
is better than used of a specified age, with randomly
censored data. Can J Stat 1985;13:45–52.

[114] Sen K, Jain MB. A test for bivariate exponentiality
against BIFR alternative. Commun Stat Theor Methods
1991;20:3139–45.

[115] Bandyopadhyay D, Basu AP. A class of tests for
exponentiality against bivariate increasing failure rate
alternatives. J Stat Plan Infer 1991;29:337–49.

[116] Basu AP Habibullah M. A test for bivariate exponential-
ity against BIFRA alternative. Calcutta Stat Assoc Bull
1987;36:79–84.

[117] Sen K, Jain MB. Tests for bivariate mean residual life.
Commun Stat Theor Methods 1991;20:2549–58.

[118] Basu AP, Ebrahimi N. Testing whether survival function
is bivariate new better than used. Commun Stat
1984;13:1839–49.

[119] Sen K, Jain MB. A new test for bivariate distributions:
exponential vs new-better-than-used alternative. Com-
mun Stat Theor Methods 1991;20:881–7.

[120] Sen K, Jain MB. A test for bivariate exponentiality
against BHNBUE alternative. Commun Stat Theor
Methods 1990;19:1827–35.

[121] Block HW, Savits TH. Multivariate distributions in
reliability theory and life testing. In: Taillie C, Patel GP,
Baldessari BA, editors. Statistical distributions in
scientific work, vol. 5. Dordrecht, Boston (MA): Reidel;
1981. p.271–88.

[122] Block HW, Savits, TH. Multivariate nonparametric
classes in reliability. In: Krishnaiah PR, Rao CR, editors.
Handbook of statistics, vol. 7. Amsterdam: North-
Holland; 1988. p.121–9.

[123] Ghosh M, Ebrahimi N. Shock models leading multivari-
ate NBU and NBUE distributions. In: Sen PK, editor.
Contributions to statistics: essays in honour of Nor-
man Lloyd Johnson. Amsterdam: North-Holland; 1983.
p.175–84.

[124] Savits TH. Some multivariate distributions derived from
a non-fatal shock model. J Appl Probab 1988;25:383–90.

Class of NBU-t0 Life Distribution

Ch
ap

te
r1

0Dong Ho Park

10.1 Introduction
10.2 Characterization of NBU-t0 Class
10.2.1 Boundary Members of NBU-t0 and NWU-t0
10.2.2 Preservation of NBU-t0 and NWU-t0 Properties under Reliability Operations
10.3 Estimation of NBU-t0 Life Distribution
10.3.1 Reneau–Samaniego Estimator
10.3.2 Chang–Rao Estimator
10.3.2.1 Positively Biased Estimator
10.3.2.2 Geometric Mean Estimator
10.4 Tests for NBU-t0 Life Distribution
10.4.1 Tests for NBU-t0 Alternatives Using Complete Data
10.4.1.1 Hollander–Park–Proschan Test
10.4.1.2 Ebrahimi–Habibullah Test
10.4.1.3 Ahmad Test
10.4.2 Tests for NBU-t0 Alternatives Using Incomplete Data

10.1 Introduction

The notion of aging plays an important role
in reliability theory, and several classes of
life distributions (i.e. distributions for which
F(t)= 0 for t < 0) have been proposed and
discussed to categorize different aspects of aging.
Among those, the classes of life distributions that
have been shown to be fundamental in the study of
maintenance policies are the new better than used
(NBU) and the new better than used in expectation
(NBUE) classes. Marshall and Proschan [1] and
Esary et al. [2] discuss the maintenance policy of
a system when the underlying life distributions
belong to either the NBU class or the NBUE class.

Definition 1. A life distribution F is an NBU dis-
tribution if F̄ (x + y)≤ F̄ (x)F̄ (y) for all x, y ≥ 0,
where F̄ ≡ 1− F denotes the survival function.
The dual concept of a new worse than used (NWU)
distribution is defined by reversing the inequality
(i.e. F is NWU if F̄ (x + y)≥ F̄ (x)F̄ (y) for all
x, y ≥ 0).

Definition 2. A life distribution F is an NBUE dis-
tribution if

∫∞
0 F̄ (x) dx <∞ and εF (0)≥ εF (t)

for all t ≥ 0, where εF (t)=
∫∞
t

F̄ (x) dx/F̄ (t) is
the mean residual life at age t . It is new worse than
used in expectation (NWUE) if εF (0)≤ εF (t) for
all t ≥ 0.

The NBU property may be interpreted as
stating that a used item of any age has a
stochastically smaller residual life length than
does a new item, and the NBUE property implies
that the mean residual life length at any age t ≥ 0 is
less than or equal to the mean life length of a new
item, i.e. the mean residual life length at age zero.
The boundary members of the NBU and NBUE
classes are the exponential distributions, for which
residual life lengths do not improve or deteriorate
with age.

Other well-known classes of life distributions
that have been categorized according to mono-
tonicity properties of the failure rate, the average
failure rate, and the mean residual life length in-
clude the following:

181

182 Statistical Reliability Theory

Definition 3. A life distribution F is an increasing
failure rate (IFR) distribution if F(0)= 0 and
F̄ (x + t)/F̄ (t) is decreasing in t for 0 < t <

F−1(1) and x > 0. Here F−1(1) is defined as
supt {t : F(t) < 1}. It is a decreasing failure rate
(DFR) distribution if F̄ (x + t)/F̄ (t) is increasing
in t for 0 < t < F−1(1). If F has a density f , then
F is IFR (DFR) if the failure rate r(t)= f (t)/F̄ (t)

is increasing (decreasing) for 0 < t < F−1(1).

Definition 4. A life distribution F is an increas-
ing failure rate average (IFRA) distribution if
F(0)= 0 and −(1/t) log F̄ (t) is increasing in t

for 0 < t < F−1(1). It is a decreasing failure rate
average (DFRA) distribution if −(1/t) log F̄ (t) is
decreasing in t for 0 < t < F−1(1). If F has a
density f , then F is IFRA (DFRA) if the average
failure rate (1/t)

∫ t
0 r(u) du is increasing (decreas-

ing) for 0 < t < F−1(1).

Definition 5. A life distribution F is a decreas-
ing mean residual life (DMRL) distribution if∫∞

0 F̄ (t) dt <∞ and εF (s) ≥ εF (t) for all 0≤ s ≤
t . It is an increasing mean residual life (IMRL)
distribution if εF (0)≤ εF (t) for all 0≤ s ≤ t .

It is well known [3] that the following implica-
tions among these classes of life distributions hold
if F has a finite mean:

IFR ⇒ IFRA ⇒ NBU ⇒ NBUE
IFR ⇒ DMRL ⇒ NBUE

Similar relationships exist for the dual classes,
DFR, DFRA, IMRL, NWU, and NWUE. It is also
known that the exponential distributions are the
only distributions that are both IFR and DFR,
both IFRA and DFRA, both NBU and NWU, both
DMRL and IMRL, and both NBUE and NWUE.

We introduce a new class of life distributions,
which is obtained by relaxing the conditions for
the NBU (NWU) class somewhat.

Definition 6. Let t0 ≥ 0. A life distribution F is
new better than used at t0 (NBU-t0) if

F̄ (x + t0) ≤ F̄ (x)F̄ (t0) for all x ≥ 0 (10.1)

The dual notion of new worse than used at t0
(NBU-t0) is defined analogously by reversing the
first inequality in Equation 10.1.

It is obvious that the NBU-t0 class is related
to, but contains and is much larger than, the
NBU class. The NBU-t0 property states that
a used item of age t0 has a stochastically
smaller residual life length than does a new
item, whereas the NBU property states that
a used item of any age has a stochastically
smaller residual life length than does a new
item. Section 10.2 characterizes the NBU-t0 and
NWU-t0 classes and considers their preservation
properties under several reliability operations.
The boundary members of the NBU-t0 and
NWU-t0 classes are also discussed. In Section 10.3,
the estimation of the NBU-t0 (NWU-t0) life
distribution is described. Section 10.4 presents
various nonparametric tests of exponentiality
against the NBU-t0 (NWU-t0) alternatives based
on complete and incomplete data.

10.2 Characterization of
NBU-t0 Class

10.2.1 Boundary Members of NBU-t0
and NWU-t0

It is well known that the only life distributions
that belong to both IFR and DFR, IFRA and
DFRA, NBU and NWU, DMRL and IMRL, and
NBUE and NWUE are the class of exponential
distributions. However, not only the class of
exponential distributions, but also some other life
distributions belong to the boundary members of
NBU-t0 and NWU-t0.

Let C denote the class of boundary members of
NBU-t0 and NWU-t0. That is, for t0 > 0

C0 = {F : F̄ (x + t0)= F̄ (x)F̄ (t0) for all x ≥ 0}
(10.2)

Using theorem 2 of Marsaglia and Tubilla [4], we
may easily verify that the following distributions
F1, F2, and F3 are in C0:

F̄1(x)= exp(−λx) λ > 0, x ≥ 0

F̄2(x)= Ḡ(x) 0≤ x <∞ (10.3)

Class of NBU-t0 Life Distribution 183

where Ḡ(x) is a survival function for which
Ḡ(0)= 1 and Ḡ(t0)= 0.

F̄3 = Ḡ(x) for 0≤ x < t0

= Ḡ(t0)Ḡ(x − t0) for t0 ≤ x < 2t0

= Ḡ2(t0)Ḡ(x − 2t0) for 2t0 ≤ x < 3t0
...

= Ḡn(t0)Ḡ(x − nt0) for nt0 ≤ x < (n+ 1)t0
...

where Ḡ(x) is a survival function defined for
x ≥ 0. Note that if G has a density function on
[0, t0], then the failure rate of F3 is periodic with
period t0.

Since the NBU-t0 class contains the NBU
class, it is of interest to find what kinds of life
distributions belong to the NBU-t0 class, but not
to the NBU class. We consider

Ca ={F : F̄ (x + t0) ≤ F̄ (x)F̄ (t0) for all x ≥ 0,

and equality holds for some x ≥ 0} (10.4)

Then Ca is the class of NBU-t0 life distributions
excluding the boundary members of NBU-t0 and
NWU-t0, defined in Equation 10.2. Let C∗ be the
class of life distributions that are not NBU, but are
in Ca . Theorem 1 gives a method of constructing
some distribution functions in C∗.

Given a survival function H̄ , let H̄t (x)≡
H̄ (t + x)/H̄ (t) be the conditional survival
function. Recall that for x ≥ 0:

H̄ (x)= exp

[
−
∫ x

0
rH (u) du

]
(10.5)

H̄t (x)= exp

[
−
∫ t+x

t

rH (u) du

]
(10.6)

when H has a failure rate function rH .

Theorem 1. Let G be NBU with failure rate
function rG(x) > 0 for 0≤ x <∞ and let F have
a failure rate function rF satisfying:

rF (x)≤ rG(x) for 0≤ x ≤ t0 (10.7)

rF (x)= rG(x) for t0 ≤ x ≤∞ (10.8)

Figure 10.1. Failure rates forF andG of Example 1

and

rF (x) is strictly decreasing for 0≤ t ≤ t1 (10.9)

where 0 < t1 < t0. Then F is NBU-t0 but not NBU.

Proof. F is not NBU by Equation 10.9.
To show that F is NBU-t0, note that for x ≥ 0,
F̄t0(x)= Ḡt0(x) by Equations 10.6 and 10.8. Also,
Ḡt0(x)≤ Ḡ(x) since G is NBU, and Ḡ(x)≤ F̄ (x)

by Equations 10.7 and 10.8. Thus, we conclude
that, for x ≥ 0, F̄t0(x)≤ F̄ (x); i.e. F is NBU-t0. �

Example 1. As an example of Theorem 1,
let rG(x)= 1 for 0≤ x <∞, and let
rF (x)= 1− (θ/t0)x for 0≤ x < t0 and 0 < θ ≤ 1,
and rF (x)= 1 for t0 ≤ x <∞. We do not let
θ exceed unity, since we want to ensure that
rF (x) remains positive as x→ t0. Then rF
satisfies Equations 10.7–10.9 and thus F is in C∗.
(See Figure 10.1.)

Using Equation 10.3 and the failure rates
defined in Example 1, if we extend the range of θ
to include θ = 0, we can construct

F̄ (x; θ)= exp{−[x − θ(2t0)−1x2]} 0≤ x < t0

= exp{−[x − θ(2)−1t0]} x ≥ t0

for 0≤ θ ≤ 1. For θ = 0, F is reduced to the
exponential distribution which is both NBU and
NBU-t0. For 0 < θ ≤ 1, F is NBU-t0, but not NBU.
Another possible NBU-t0 life distribution that is
not NBU can be constructed as in the following
example.

Example 2. Consider a distribution function F

with the following failure rate rF (t) shown in

184 Statistical Reliability Theory

Figure 10.2. Failure rate forF of Example 2

Figure 10.2. Then for n≥ 1

F̄ (x)= exp[−(θ/2t0)x2]
for 0≤ x < t0

= exp{−[−θt0 + (1+ θ)x − (θ/2t0)x2]}
for t0 ≤ x < 2t0

= exp{−[−3θt0 + (1+ 2θ)x − (θ/2t0)x2]}
for 2t0 ≤ x < 3t0

...

= exp(−{−[n(n− 1)θ/2]t0
+ [1+ (n− 1)θ]x − (θ/2t0)x2})

for (n− 1)t0 ≤ x < nt0

= exp{−[−(n/2)θt0 + x]}
for x ≥ nt0

To see that F is inCa , we note that, for x + t0 ≤ nt0

F̄ (x + t0)= F̄ (t0)F̄ (x + t0 − t0)= F̄ (t0)F̄ (x)

and for x + t0 > nt0

F̄ (x + t0)= exp{−[−(n/2)θt0 + t0 + x]}
= F̄ (t0) exp(−{−[(n− 1)/2]θt0 + x})

Case 1. (n− 1)t0 ≤ x < nt0:

F̄ (x)= exp(−{−[n(n− 1)/2]θt0
+ [1+ (n− 1)θ]x − (θ/2t0)x

2})
= exp{−[−(n− 1)/2]θt0 + x}
× exp{(θ/2t0)[x − (n− 1)t0]2}
≥ exp{−[−(n− 1)/2]θt0 + x}

Thus F̄ (x + t0) ≤ F̄ (x)F̄ (t0).

Case 2. x ≥ nt0:

F̄ (x)= exp{−[−(n/2)θt0 + x]}
≥ exp{−[−(n− 1)/2]θt0 + x}

Thus F̄ (x + t0) ≤ F̄ (x)F̄ (t0). In both cases
F̄ (x + t0) ≤ F̄ (x)F̄ (t0) and so F is in Ca . It is
obvious that F is not an NBU distribution.

10.2.2 Preservation of NBU-t0 and
NWU-t0 Properties under Reliability
Operations

Table 10.1 summarizes the preservation properties
of several known classes of life distributions
under reliability operations. With the exception
of the DMRL class, each class representing
adverse aging is closed under convolution of
distributions. On the other hand, none of these
classes is closed under mixture of distributions.
For the classes representing beneficial aging, the
reverse is true: Each is closed under mixture
of distributions (in the NWU and NWUE cases,
the distributions being mixed are non-crossing).
On the other hand, none of these beneficial
aging life distribution classes is closed under
convolution of distributions.

We now consider preservation properties of the
NBU-t0 and NWU-t0 classes under those reliability
operations specified in Table 10.1.

Theorem 2. The NBU-t0 class is preserved under
the formation of coherent system.

Proof. The proof is exactly analogous to that of
the corresponding result for the NBU class. In the
proof of theorem 5.1 of Barlow and Proschan [5],
p.182–3, simply replace s by x and t by t0. �

Theorem 3. The NWU-t0 class is (a) preserved
under mixture of non-crossing distributions and
(b) not preserved under arbitrary mixtures.

Proof. (a) In the proof of the corresponding result
for the NWU class (Barlow and Proschan [5],
p.186, theorem 5.7), substitute x for s and t0

Class of NBU-t0 Life Distribution 185

Table 10.1. Preservation properties of classes of life distributions

Class of life Reliability Formation of Convolution of Mixture of life Mixture of
distribution operation coherent structure life distributions distributions non-crossing life

distributions

Adverse aging IFR Not closed Closed Not closed Not closed
IFRA Closed Closed Not closed Not closed
NBU Closed Closed Not closed Not closed
NBUE Not closed Closed Not closed Not closed
DMRL Not closed Not closed Not closed Not closed
HNBUE Not closed Closed Not closed Not closed

Beneficial aging DFR Not closed Not closed Closed Closed
DFRA Not closed Not closed Closed Closed
NWU Not closed Not closed Not closed Closed
NWUE Not closed Not closed Not closed Closed
IMRL Not closed Not closed Closed Closed
HNWUE Not closed Not closed Closed Not closed

for t . (b) The example given in 5.9, Barlow and
Proschan [5], p.197, may be used. �

Both NBU-t0 and NWU-t0 classes are not
closed under other reliability operations and
such properties are exhibited by providing the
following counter examples in those reliability
operations.

Example 3. The NBU-t0 class is not preserved
under convolution. Let F be the distribution that
places mass 1

2 − ε at the point �1, mass 1
2 − ε

at the point 5
8 −�2, and mass 2ε at the point

1+ 1
2�1, where �1, �2, and ε are “small” positive

numbers. Let t0 = 1. Then it is obvious that F is
NBU-t0, since a new item with life distribution F

survives at least until time �1 with probability of
unity, whereas an item of age t0 has residual life
1
2�1 with probability unity.

Next, consider F (2)(t0 + x)= P [X1 +X2 >

t0 + x], where X1 and X2 are independent,
identically distributed (i.i.d.) ∼ F , t0 = 1
(as above), and x = 1

4 . Then F (2)(5
4)= (1

2 + ε)2,
since X1 +X2 >

5
4 if and only if X1 ≥ 5

8 −�2

and X2 ≥ 5
8 −�2. Similarly, F (2)(t0)=

F (2)(1)= P [X1 +X2 > 1] = (2ε)2 + 2(2ε), since
X1 +X2 > 1 if and only if: (a) X1 >

5
8 −�2 and

X2 >
5
8 −�2; (b) X1 = 1+ 1

2�1 and X2 is any
value; or (c) X2 = 1+ 1

2�2 and X1 is any value.

Finally, F (2)(1
4)= 1− (1

2 − ε)2, since X1 +X2

> 1
4 except when X1 =�1 and X2 =�1. It follows

that, for t0 = 1 and x = 1
4 , we have

F (2)(t0 + x)− F (2)(t0)F
(2)(x)

= (1
2 + ε)2 − {[(1

2 + ε)2 + 2(2ε)]
× [1− (1

2 − ε)2]}
= 1

4 − (1
4

3
4)+ o(ε)

which is greater than zero for sufficiently small ε.
Thus F (2) is not NBU-t0.

Example 4. The NWU-t0 class is not preserved
under convolution. The exponential distribution
F(x)= 1− e−x is NWU-t0. The convolution F (2)

of F with itself is the gamma distribution of
order two:F (2)(x)= 1− (1+ x) e−x , with strictly
increasing failure rate. Thus F (2) is not NWU-t0.

Example 5. The NWU-t0 class is not preserved
under the formation of coherent systems.
This may be shown using the same example as is
used for the analogous result for NWU systems in
Barlow and Proschan [5], p.183.

Example 6. The NBU-t0 class is not preserved
under mixtures. The following example shows
that a mixture of NBU-t0 distributions need
not be NBU-t0. Let F̄α(x)= e−αx and Ḡ(x)=∫∞

0 F̄α(x) e−α dα = (x + 1)−1. Then the density

186 Statistical Reliability Theory

Table 10.2.

Class of life Formation of Convolution of Mixture of life Mixture of
distribution coherent structure life distributions distributions non-crossing life

distributions

NBU-t0 Closed Not closed Not closed Not closed
NWU-t0 Not closed Not closed Not closed Closed

function is g(x)= (x + 1)−2 and the failure rate
function is rg(x)= (x + 1)−1, which is strictly
decreasing in x ≥ 0. Thus G is not NBU-t0.

In summary, we have Table 10.2.

10.3 Estimation of NBU-t0 Life
Distribution

In this section we describe the known estimators
of the survival function when the underlying life
distribution belongs to the class of NBU-t0 distri-
butions. Reneau and Samaniego [6] proposed an
estimator of the survival function that is known
to be a member of the NBU-t0 class and stud-
ied many properties, including the consistency of
the estimator and convergence rates. Confidence
procedures based on the estimator were also dis-
cussed. The Reneau and Samaniego (RS) estima-
tor is shown to be negatively biased in the sense
that the expectation of the estimator is bounded
above by its survival function. Chang [7] provides
sufficient conditions for the weak convergence for
the RS estimator to hold. Chang and Rao [8]
modified the RS estimator to propose a new esti-
mator, which improved the optimality properties
such as mean-squared error and goodness of fit.
They also developed an estimator that is positively
biased.

Let X1, . . . , Xn be a random sample from the
survival function F̄ , which is known to be a
member of the NBU-t0 class. Denote the empirical
survival function by F̄n. It is well known that F̄n

is an unbiased estimator of F̄ and almost surely
converges to F̄ at an optimal rate (see Serfling [9],
theorem 2.1.4B). However, F̄n is, in general, not a
member of the NBU-t0 class.

10.3.1 Reneau–Samaniego Estimator

The first non-parametric estimator of F̄ when
F̄ belongs to the NBU-t0 class was proposed by
Reneau and Samaniego [6]. Let t0 > 0 be fixed.
To find an NBU-t0 estimator of F̄ , the condition
in Equation 10.1 can be rewritten as

F̄ (x)≤ F̄ (x − t0)F̄ (t0) for all x ≥ t0 (10.10)

The procedure to construct an NBU-t0 estimator

is as follows. For x ∈ [0, t0], we let ˆ̄F(x)= F̄n(x).

Since ˆ̄F(x)≤ ˆ̄F(x − t0)
ˆ̄F(t0)= F̄n(x − t0)F̄n(t0)

for t0 ∈ [t0, 2t0], we let ˆ̄F(x)= F̄n(x) if F̄n(x)≤
F̄n(x − t0)F̄n(t0). Otherwise, we define ˆ̄F(x)=
F̄n(x − t0)F̄n(t0). The procedure continues in this
fashion for x ∈ (kt0, (k + h)t0], where k ≥ 2 is an
integer, and consequently we may express the
estimator by the following recursion:

ˆ̄F(x)= F̄n(x) for 0≤ x ≤ t0

=min{F̄n(x),
ˆ̄F(x − t0)

ˆ̄F(t0)}
for x > t0 (10.11)

Theorem 4. The estimator, given in Equation
10.11, uniquely defines an NBU-t0 survival function
that may be written as a function of F̄n as follows:

ˆ̄F(x)= min
0≤k≤[x/t0]

{F̄ k
n (t0)F̄n(x − kt0)}

where [u] denotes the greatest integer less than or
equal to u.

Proof. See Reneau and Samaniego [6]. �
Theorem 4 assures that the estimator of

Equation 10.11 is indeed in the NBU-t0 class. It is
obvious by the method of construction of the

estimator that ˆ̄F(x)= F̄n(x) for 0≤ x ≤ t0 and

Class of NBU-t0 Life Distribution 187

ˆ̄F(x)≤ F̄n(x) for x > t0. Thus it is shown that
ˆ̄F(x) is the largest NBU-t0 survival function that

is everywhere less than or equal to F̄n for all x ≥ 0.
As a result, the RS estimator is a negatively biased

estimator and the expectation of ˆ̄F(x) is bounded
above by F̄ (x) for all x ≥ 0.

The following results show that the estimator
of Equation 10.11 is uniformly consistent and
converges uniformly to F̄ with probability of one.
For the proofs, see Reneau and Samaniego [6].

Lemma 1. Define

Dn ≡ sup
x≥0
|F̄n(x)− F̄ (x)|

T (x)= F̄ k(t0)F̄ (x − kt0)

and

Tn(x)= F̄ k
n (t0)F̄n(x − kt0) for 0≤ k ≤ [x/t0]

Then

|Tn(x)− T (x)| ≤Dn{k[F̄ (t0)+Dn]k−1 + 1}
Theorem 5. If F̄ is in the NBU-t0 class, then ˆ̄F
converges uniformly to F̄ with probability of one.

It is well known that the empirical survival
function F̄n is mean squared, consistent with rate
O(n−1) and almost surely uniformly consistent
with rate O[n−1/2(log log n)1/2]. The following
results show that the RS estimator converges to F̄

at these same rates when F̄ is in the NBU-t0 class.

Theorem 6. E| ˆ̄F(x)− F̄ (x)|2 =O(n−1).

Theorem 7.

sup
x≥0
| ˆ̄F(x)− F̄ (x)| =O[n−1/2(log log n)1/2]

almost surely.

Reneau and Samaniego [6] also show that,

for fixed x ≥ 0, ˆ̄F(x) has the same asymptotic
distribution as F̄n(x), which is

ˆ̄F(x)→ N

(
F̄ (x),

1

n
F̄ (x)[1− F̄ (x)]

)
as n→∞ and, based on the asymptotic distribu-

tion of ˆ̄F(x), the large sample confidence proce-
dures are discussed using the bootstrap method.

Reneau and Samaniego [6] presented a simulation
study showing that the mean-squared errors of the
RS estimator are smaller than those of the empiri-
cal survival function in all cases. Such a simulation
study implies that the RS estimator, given in Equa-
tion 10.11, estimates the NBU-t0 survival function
more precisely than does the empirical survival
function. For the simulation study, Reneau and
Samaniego [6] used three NBU-t0 distributions: a
linear failure rate distribution, a Weibull distribu-
tion, and

F̄ = exp[−x + (θ/2t0)x2] for 0≤ x < t0

= exp[−x + (θ/2t0)] for x ≥ t0

(10.12)

which is in the NBU-t0 class, but not in the
NBU class, Such a distribution was originally
introduced by Hollander et al. [10]. For all three
distributions, t0 is taken to be equal to one.

Although Reneau and Samaniego [6] proved

that ˆ̄F(x) is the largest NBU-t0 survival function

such that ˆ̄F(x)≤ F̄ (x) for every x ≥ 0 and ˆ̄F
strongly uniformly converges to F̄ at an optimal
rate, the weak convergence of the stochastic pro-

cess Wn =√n(ˆ̄F − F̄) was not solved. Chang [7]
discussed such a weak convergence of Wn. For this
purpose, Chang [7] defined two new subclasses of
survival functions as follows.

A survival function is said to be New Strictly
Better than Used of age t0 if F̄ (x + t0) <

F̄ (x)F̄ (t0) for all x > 0. A survival function is
said to be New is the Same as Used of age t0 if
F̄ (x + t0)= F̄ (x)F̄ (t0) for all x ≥ 0.

Chang [7] showed that the weak convergence
of Wn does not hold in general and established
sufficient conditions for the weak convergence
to hold. Three important cases are as follows.
(1) If the underlying survival function F̄ is from
the subclass of New Strictly Better than Used of
age t0 (e.g. gamma and Weibull distributions),
then Wn converges weakly with the same limiting
distribution as that of the empirical process. (2) If
F̄ is from the subclass of New is the Same as Used
of age t0 (e.g. exponential distributions), then the
weak convergence of Wn holds, and the finite-
dimensional limiting distribution is estimable.

188 Statistical Reliability Theory

Wn does not converge weakly to a Brownian
bridge, however. (3) If F̄ satisfies neither (1)
nor (2), then the weak convergence of Wn fails to
hold. For more detailed discussions on the weak
convergence of Wn, refer to Chang [7].

10.3.2 Chang–Rao Estimator

10.3.2.1 Positively Biased Estimator

Chang and Rao [8] modified the RS estimator to
propose several estimators of an NBU-t0 survival
function, which is itself in an NBU-t0 class.
Derivation of an estimator of an NBU-t0 survival
function is motivated by rewriting the NBU-t0
condition of Equation 10.1 as

F̄ (x)≥ F̄ (x + t0)

F̄ (t0)
for all x ≥ 0

Define ˜̄F0 = F̄n and for i = 1, 2, . . . , we let

˜̄Fi(x)= F̄n(x) if F̄n(t0)= 0

=max{ ˜̄Fi−1(x), [˜̄Fi−1(x + t0)]/ ˜̄Fi−1(t0)}
if F̄n(t0) > 0

Then, it is obvious that the functions ˜̄Fi satisfies
the inequalities

F̄n = ˜̄F0 ≤ · · · ≤ ˜̄Fi ≤ ˜̄Fi+1 ≤ · · · ≤ 1

Define ˜̄F = lim
i→∞

˜̄Fi (10.13)

Then, ˜̄F is a well-defined function, and Chang and

Rao [8] refer to ˜̄F as a positively based NBU-t0
estimator. The following results show that ˜̄F is
in the NBU-t0 class and is a positively biased
estimator of F̄ .

Theorem 8. The estimator ˜̄F , defined in Equa-
tion 10.13, is an NBU-t0 survival function such that

E[˜̄F(x)− F̄ (x)] ≥ 0 for all x ≥ 0. The empirical
survival function F̄n is a member of an NBU-t0
class if and only if ˜̄F = F̄n.

Proof. See Chang and Rao [8]. �

Under the assumption that F̄ is an NBU-t0
survival function with compact support, the

consistency of ˜̄F and the convergence rate are
stated in Theorem 9. For the proof, refer to Chang
and Rao [8].

Theorem 9. Suppose that F̄ is an NBU-t0 survival
function such that T = sup{x : F̄ (x) > 0}<∞.

Then, ˜̄F converges uniformly to F̄ with probability
of one.

Theorem 10. Under the same conditions
as in Theorem 9, supx≥0 | ˜̄F(x)− F̄ (x)| =
O[n−1/2(log log n)1/2] almost surely.

10.3.2.2 Geometric Mean Estimator

Let 0≤ α ≤ 1 and define the weighted geometric
average of the RS estimator and positively biased
estimator, i.e.

ˆ̄Fα = [ˆ̄F]α[˜̄F]1−α (10.14)

For α = 1 and α = 0, ˆ̄Fα is reduced to the RS
estimator and the positively biased estimator
respectively. Consider the class

N = { ˆ̄Fα : 0≤ α ≤ 1}
Then, each member of N is a survival function
and is in an NBU-t0 class since

ˆ̄Fα(x + t0)

= [ˆ̄F(x + t0)]α[˜̄F(x + t0)]1−α

≤ [ˆ̄F(x) ˆ̄F(t0)]α[˜̄F(x) ˜̄F(t0)]1−α

= [ˆ̄F(x)]α[˜̄F(x)]1−α[ˆ̄F(t0)]α[˜̄F(t0)]1−α

= ˆ̄Fα(x)
ˆ̄Fα(t0) (10.15)

which shows that ˆ̄Fα satisfies the NBU-t0 condition
of Equation 10.1. The inequality of Equation

10.15 holds since ˆ̄F and ˜̄F are the members
of the NBU-t0 class. For the estimator ˆ̄Fα of
Equation 10.14 to be practical, the value of α must

be estimated, denoted by α̂, so that ˆ̄Fα̂ can be used
as an estimator of F̄ .

Class of NBU-t0 Life Distribution 189

Chang and Rao [8] recommend the estimator
ˆ̄Fα̂ where α̂ satisfies the minimax criterion

| ˆ̄Fα̂ − F̄n| = inf
0≤α≤1

sup
x≥0
| ˆ̄Fα(x)− F̄n(x)| (10.16)

where F̄n is the empirical survival function.
The minimizing value α̂ can be found by any

standard grid search program. The estimator ˆ̄Fα̂ is
referred to as the geometric mean (GM) estimator.

Theorems 11 and 12 prove that ˆ̄Fα̂ is a strongly
consistent NBU-t0 estimator of F̄ and converges
to F̄ at an optimal rate. The proofs are given in
Chang and Rao [8].

Theorem 11. The estimator ˆ̄Fα̂ converges uni-
formly to F̄ with probability of one.

Theorem 12. The estimator ˆ̄Fα̂ converges to F̄

at an optimal rate, i.e. supx≥0 | ˆ̄Fα̂(x)− F̄ (x)| =
O[n−1/2(log log n)1/2] almost surely.

Note that neither Theorem 11 nor Theorem 12
requires the assumption that F̄ possesses a
compact support.

A simulation study is conducted to compare
the RS estimator and the GM estimator. For this
purpose, the simulated values of the RS and GM
estimators are used to calculate four measures of
performance of the two estimation procedures.
They are bias, mean-squared error, sup-norm
and L-2 norm. As an NBU-t0 life distribution
for the simulation study, the distribution given
in Equation 10.12 is used. In summary, the
simulation study shows that, in addition to having
a smaller mean-squared error at all time points
of practical interest, the GM estimator provides
an improved overall estimate of the underlying
NBU-t0 survival function, as measured in terms of
sup-norm and L-2 norm.

10.4 Tests for NBU-t0 Life
Distribution
Since the class of NBU-t0 life distributions was first
introduced in Hollander et al. [10], several non-
parametric tests dealing with the NBU-t0 class

have been proposed in the literature. The tests of
exponentiality versus (non-exponential) NBU-t0
alternatives on the basis of complete data were
proposed by Hollander et al. [10], Ebrahimi and
Habibullah [11], and Ahmad [12]. Hollander et al.
[13] also discussed the NBU-t0 test when the data
are censored.

10.4.1 Tests for NBU-t0 Alternatives
Using Complete Data

Let X1, . . . , Xn be a random sample from a
continuous life distribution F . Based on these
complete data, the problem of our interest is to test

H0 : F is in C0 versus Ha : F is in Ca

for t0 > 0 being fixed, whereC0 andCa are defined
in Equations 10.3 and 10.5 respectively. The null
hypothesis asserts that a new item is as good as
a used item of age t0, whereas the alternative Ha

states that a new item has stochastically greater
residual life than does a used item of age t0.

Examples of situations where it is reasonable to
use the NBU-t0 (NWU-t0) tests are as follows.

(i) From experience, cancer specialists believe
that a patient newly diagnosed as having a certain
type of cancer has a distinctly smaller chance of
survival than does a patient who has survived
5 years (= t0) following initial diagnosis. (In fact,
such survivors are often designated as “cured”.)
The cancer specialists may wish to test their
beliefs. Censorship may occur at the time of data
analysis because some patients may still be alive.

(ii) A manufacturer believes that a certain
component exhibits “infant mortality”, e.g. has
a decreasing failure rate over an interval [0, t0].
This belief stems from experience accumulated
for similar components. He wishes to determine
whether a used component of age t0 has stochasti-
cally greater residual life length than does a new
component. If so, he will test over the interval
[0, t0] a certain percentage of his output, and
then sell the surviving components of age t0 at
higher prices to purchasers who must have high-
reliability components (e.g. a spacecraft assem-
bler). He wishes to test such a hypothesis to reject
or accept his a priori belief.

190 Statistical Reliability Theory

10.4.1.1 Hollander–Park–Proschan Test

The first non-parametric test of H0 versus Ha

was introduced by Hollander et al. [10]. Their test
statistic (termed HPP here) is motivated by
considering the following parameter as a measure
of deviation. Let

T (F)≡
∫ ∞

0
[F̄ (x + t0)− F̄ (x)F̄ (t0)] dF(x)

=
∫ ∞

0
F̄ (x + t0) dF(x)− 1

2
F̄ (t0)

≡ T1(F)− T2(F)

Observe that under H0, T1(F)= T2(F), and that
under Ha , T1(F)≤ T2(F), and thus T (F)≤ 0.
In fact, T (F) is strictly less than zero under
Ha if F is continuous. T (F) gives a measure of
the deviation of F from its specification under
H0, and, roughly speaking, the more negative
T (F) is, the greater is the evidence in favor
of Ha . It is reasonable to replace F of T (F)

by the empirical distribution function Fn of
X1, . . . , Xn and reject H0 in favor of Ha if
T (Fn)= T1(Fn)− T2(Fn) is too small. Instead of
using this test statistic, the HPP test uses the
asymptotically equivalent U -statistic Tn given in
Equation 10.17. Hoeffding’sU -statistic theory [14]
yields asymptotic normality of Tn and the HPP test
is based on this large sample approximation.

Let

h1(x1, x2)= 1
2 [ψ(x1, x2 + t0)+ ψ(x2, x1 + t0)]

and
h2(x1)= 1

2ψ(x1, t0)

be the kernels of degrees 2 and 1 corresponding to
T1(F) and T2(F) respectively, where ψ(a, b)= 1
if a > b, and ψ(a, b)= 0 if a ≤ b. Let

Tn = [n(n− 1)]−1
∑′

ψ(xα1 , xα2 + t0)

− [2n]−1
n∑

i=1

ψ(xi, t0) (10.17)

where
∑′ is the sum taken over all n(n− 1) sets

of two integers (α1, α2) such that 1≤ αi ≤ n, i =
1, 2, and α1 �= α2. To apply Hoeffding’s U -statistic

theory, we let

ξ
[1]
1 = E[h1(x1, x2)h1(x1, x3)] − [T1(F)]2
ξ
[1]
2 = E[h2

1(x1, x2)] − [T1(F)]2
ξ
[2]
1 = E[h2

2(x1)] − [T2(F)]2
and

ξ [1,2] = E[h1(x1, x2)− T1(F)][h2(x1)− T2(F)]
Then

var(Tn)=
(
n

2

)−1 2∑
k=1

(
2

k

)(
n− 2

2− k

)
ξ
[1]
k

+ n−1ξ
[2]
1 − (4/n)ξ [1,2]

and

σ 2 = lim
n→∞ n var(Tn)= 4ξ [1]1 + ξ

[2]
1 − 4ξ [1,2]

(10.18)
It follows from Hoeffding’s U -statistic theory that
if F is such that σ 2 > 0, where σ 2 is given in
Equation 10.18, then the limiting distribution of
n1/2[Tn − T (F)] is normal with mean zero and
variance σ 2. Straightforward calculations yield,
under H0

var0(Tn)= (n+ 1)[n(n− 1)]−1

× [(1/12)F̄ (t0)+ (1/12)F̄ 2(t0)

− (1/6)F̄ 3(t0)]
and

σ 2
0 = (1/12)F̄ (t0)+ (1/12)F̄ 2(t0)− (1/6)F̄ 3(t0)

Thus, underH0, the limiting distribution of n1/2Tn
is normal with mean zero and variance σ 2

0 .
Since the null variance σ 2

0 of n1/2Tn does depend
on the unspecified distribution F , σ 2

0 must be
estimated from the data. The consistent estimator
of σ 2

0 can be obtained by replacing F by its
empirical distribution Fn as follows:

σ 2
n = (1/12)F̄n(t0)+ (1/12)F̄ 2

n (t0)− (1/6)F̄ 3
n (t0)

(10.19)
where F̄n = 1− Fn. Using the asymptotic nor-
mality of Tn and Slutsky’s theorem, it can be
shown, under H0, that n1/2Tnσ

−1
n is asymptoti-

cally N(0, 1). Thus the approximate α-level test of

Class of NBU-t0 Life Distribution 191

Table 10.3. Asymptotic relative efficiencies

t0 F

EF1(J, T) EF1(S, T) EF2(J, T) EF2(S, T) EF3(J, T) EF3(S, T)

0.2 6.569 14.598 3.554 4.443 0.579 0.433
0.6 2.156 4.79 1.695 2.118 0.253 0.531
1.0 1.342 2.983 1.493 1.866 0 0.145
1.4 1.047 2.328 1.607 2.009 0 0
1.8 0.933 2.074 1.929 2.411 0 0
2.0 0.913 2.030 2.172 2.715 0 0

H0 versus Ha is to reject H0 in favor of Ha if

n1/2Tnσ
−1
n ≤−zα (10.20)

where zα is the upper α-percentile point of a
standard normal distribution. The test of H0
versus Ha defined by Equation 10.20 is referred
to as the HPP test. Analogously, the approximate
α-level test of H0 against the alternative that a
new item has stochastically less residual life length
than does a used item of age t0 is to reject H0 if
n1/2Tnσ

−1
n ≥ zα.

Theorem 13. If F is continuous, then the HPP test
is consistent against Ca , where Ca is the class of
non-exponential NBU-t0 life distributions defined
in Equation 10.4.

Proof. See Hollander et al. [10]. �
Note that

P {n1/2Tnσ
−1
n ≤−zα}

= P {n1/2[Tn−T (F)] ≤ −zασn − n1/2T (F)}

and for F ∈ Ca , T (F) < 0 and that σn
p→ σ0

<∞. Thus, under Ha , P {n1/2Tnσ
−1
n ≤−zα} ≥ α

for sufficiently large n, which shows that the HPP
test is asymptotically unbiased against Ca .

To evaluate the performance of the HPP test,
the Pitman asymptotic relative efficiencies are
computed for the following three distributions.

1. Linear failure rate distribution

F̄1(x; θ)= exp{−[x + (θ/2)x2]}
θ ≥ 0, x ≥ 0

2. Makeham distribution

F̄2(x; θ)= exp[−(x + {θ [x + exp(−x)− 1]})]
θ ≥ 0, x ≥ 0

3.

F̄3(x; θ)= exp[−{x − θ(2t0)−1x2}]
0≤ θ ≤ 1, 0≤ x < t0

= exp[−{x − θ(2)−1t0}]
0≤ θ ≤ 1, x ≥ t0

For θ = 0,F1,F2, andF3 reduce to the exponential
distribution. For θ > 0, F1 and F2 are NBU.
For 0 < θ ≤ 1, as shown in Example 1, F3 is in Ca

but is not NBU.
Since no other tests of H0 versus Ha have

been proposed, the HPP test is compared with
Hollander and Proschan’s NBU-test [15] (referred
to as the J test) and Bickel and Doksom’s NBU-
test [16] (referred to as the S test). Both the J

test and S test are testing the null hypothesis
H ′0 : F is exponential, versus the alternativeHa : F
is NBU and not exponential. The asymptotic
relative efficiency calculations are summarized
in Table 10.3, where T refers to the HPP
test. The values of zeros for EF3(J, T) and
EF3(S, T) indicate that the J test and T test
are not consistent against F3 when t0 exceeds a
certain value. More details are given in Hollander
et al. [10].

The HPP test based on the statistic Tn is not
intended to be a competitor of the J or S test.
The latter tests are designed for smaller classes
of alternatives, whereas the HPP test is designed

192 Statistical Reliability Theory

for the relatively large class of alternatives Ca .
As Table 10.3 indicates, when F is NBU-t0 and is
not a member of the smaller classes (such as the
NBU class), the HPP test will often be preferred to
other tests.

10.4.1.2 Ebrahimi–Habibullah Test

To develop a class of tests for testing H0 versus
Ha , Ebrahimi and Habibullah [11] consider the
parameter

�k(F)=
∫ ∞

0
[F̄ (x + kt0)− F̄ (x){F̄ (t0)}k] dF(x)

=�1k(F)−�2k(F)

where

�1k(F)=
∫ ∞

0
F̄ (x + kt0) dF(x)

�2k(F)= 1

2
{F̄ (t0)}k

�k(F) is motivated by the fact that the
NBU-t0 property implies the weaker property
F̄ (x + kt0)≤ F̄ (x)[F̄ (t0)]k for all x ≥ 0 and
k = 1, 2, They term such a property as
new better than used of order kt0. Under H0,
�k(F)= 0 and under Ha , �k(F) < 0. Thus,
�k(F) can be taken as an overall measure of
deviation from H0 towards Ha . Ebrahimi and
Habibullah [11] utilized the U -statistic to develop
a class of test statistics. Define

Tk = T1k − T2k

where

T1k =
[

1

/(
n

2

)] ∑
1≤i≤j≤n

ψ(Xi , Xj + kt0)

and

T2k =
{

1

/[
2

(
n

k

)]}∑
ψk(Xi1, . . . , Xik)

and the sum is over all combinations of k

integers (i1, . . . , ik) chosen out of (1, . . . , n).
Here ψk(a1, . . . , ak)= 1 if min1≤i≤k ai > t0, or
zero otherwise.

Note that T1k and T2k are the U -statistics
corresponding to the parameters �1k(F) and

�2k(F) with kernels ψ and ψk of degrees 2
and k respectively. Thus, Tk is a U -statistic
corresponding to �k(F) and works as a test
statistic for H0 versus Ha . It follows that E(Tk)≤
0 or E(Tk)≥ 0 according to whether F is new
better than used of age t0 or new worse than
used of age t0 respectively. If k = 1, Tk reduces
to the test statistic of Hollander et al. [10].
The asymptotic normality of Tk is established by
applying Hoeffding’s U -statistic theory [14].

Theorem 14. If F is such that

σ 2 = lim
n→∞ n var(Tk) > 0

then the asymptotic distribution of n1/2[Tk −
�k(F)] is normal with mean zero and variance σ 2.

Corollary 1. Under H0, n1/2Tk is asymptotically
normal with mean zero and variance

σ 2
0 = 1

3 [F̄ (t0)]k + (k − 2
3 − 1

4k
2)[F̄ (t0)]2k

+ 1
3 [F̄ (t0)]3k + (1

4k
2 − 1

2k)[F̄ (t0)]2k−1

− 1
2k[F̄ (t0)]2k+1

Approximate α-level tests of H0 against Ha

are obtained by replacing F̄ (t0) by its consistent
estimator F̄n(t0)= n−1 ∑ ψ(Xi, t0) in σ 2

0 . It can
be easily shown that if F is continuous, then Tk
is consistent against Ha . The Pitman asymptotic
relative efficiencies of Tk for a given k ≥ 2 relative
to the T test of Hollander et al. [10] for the
following distributions are evaluated:

F̄1(x)= exp{−x + θ [x + exp(−x)− 1]}
θ ≥ 0, x ≥ 0

F̄2(x)=
[

exp

(
−x + θx3

2t0

)]
I (0 ≤ x < t0)

+
[

exp

(
−x + θt0

2

)]
I (x ≥ t0)

0≤ θ ≤ 2

3

For θ = 0, F̄1 and F̄2 reduce to the exponential
distribution and thus satisfy H0. For θ > 0, F̄1 is
both NBU and NBU-t0 and F̄2 is NBU-t0, but not
NBU.

Class of NBU-t0 Life Distribution 193

Table 10.4. Pitman asymptotic relative efficiency of Tk with respect to T for F̄1 and F̄2

t0 (k1, k2) (EF1(Tk1 , T), EF1(Tk2 , T)) (k1, k2) (EF2(Tk1 , T), EF2(Tk2 , T))

0.2 (2, 16) (1.154, 3.187) (2, 5) (1.138, 1.205)
0.6 (2, 4) (1.221, 1.634) (2, 3) (1.665, 1.779)
1.0 (2, 3) (1.0, 1.0) (2, 2) (2.638, 2.638)
1.4 (1, 1) (1.0, 1.0) (2, 2) (4.241, 4.241)
1.8 (1, 1) (1.0, 1.0) (2, 2) (6.681, 6.681)
2.0 (1, 1) (1.0, 1.0) (2, 2) (8.271, 8.271)

Table 10.4 gives the numerical values of
EF1(Tk, T) and EF2(Tk, T) for certain specified
values of t0. In both cases, two values of k, namely
k1 and k2, are reported, where k1 is the smallest
value for which E(Tk, T) > 1 and k2 is the integer
that gives optimum Pitman asymptotic relative
efficiency. Table 10.4 shows that although the value
of k varies, there is always a k > 1 for which Tk
performs better than T for small t0. Secondly, if
the alternative is NBU-t0, but not NBU, then for
all t0, there is a k > 1 for which Tk performs better
than T .

10.4.1.3 Ahmad Test

Ahmad [12] considered the problem of testing
H0 versus Ha when the point t0 is unknown,
but which can be estimated from the data.
He proposed the tests when t0 = µ, the mean of F ,
and also when t0 = ξp , the pth percentile of F .
In particular, when t0 = ξp the proposed test is
shown to be distribution free, whereas both the
HPP test and the Ebrahimi–Habibullah test are not
distribution free.

Ahmad [12] utilized the fact that F̄ is NBU-t0
if and only if, for all integers k ≥ 1, F̄ (x + kt0)

≤ F̄ (x)[F̄ (t0)]k and considered the following
parameter as the measure of departure of F

from H0. Let

γk(F)=
∫ ∞

0
[F̄ (x)F̄ k(t0)− F̄ (x + kt0)] dF(x)

= 1

2
F̄ k(t0)−

∫ ∞
0

F̄ (x + kt0) dF(x)

(10.21)

When t0 = ξp , F̄ (t0)= 1− p and thus Equa-
tion 10.21 reduces to

γk(F)= 1

2
(1− p)k −

∫ ∞
0

F̄ (x + kξp) dF(x)

In the usual way, ξp is estimated by ξ̂p =X([np]),
where X(r) denotes the rth-order statistic in the
sample. Thus, γk(F) can be estimated by

γ̂k(Fn)= 1

2
(1− p)k

−
∫ ∞

0
F̄n(x + kX([np])) dFn(x)

= 1

2
(1− p)k

− n−2
n∑

i=1

n∑
j=1

I (Xi > Xj + kX([np]))

where Fn (F̄n) is the empirical distribution
(survival) function.

A U -statistic equivalent to γ̂k(Fn) is given by

T̂k = 1

2
(1− p)k −

(
n

2

)−1

×
∑

1≤i≤j≤n
I (Xi > Xj + kX([np]))

The statistic γ̂k is used to test H0 versus H1 :
F̄ is NBU-ξp for 0≤ p ≤ 1. The asymptotic
distribution of γ̂k is stated in the following
theorem.

Theorem 15. As n→∞, n1/2[γ̂k − γk(F)] is
asymptotically normal with mean zero and vari-
ance σ 2 > 0, provided that f = F ′ exists and is
bounded. Under H0, the variance reduces to σ 2

0 =

194 Statistical Reliability Theory

Table 10.5. Efficacies of γ̂k forF1 andF2 (the first entry is forF1 and the second
is forF2)

k P = 0.05 P = 0.25 P = 0.50 P = 0.75 P = 0.95

1 0.0919 0.1318 0.1942 0.2618 0.2319
14.4689 0.1605 0.0022 0.0002

3 0.1093 0.2160 0.2741 0.1484 0.0065
1.0397 0.0002 0.0002

5 0.1266 0.2646 0.1986 0.0288 0.0001
0.2346 0.0002

7 0.1436 0.2750 0.1045 0.0037
0.0721 0.0002

1
3 (1− p)k[1− (1− p)k]2. Here, σ 2 = V [F̄ (X1 +
kξp)+ F(X1 − kξp)].
Proof. See Ahmad [12]. �

Although there are no other tests in the
literature to compare with the Ahmad test for
the testing problem of H0 versus H1, the Pitman
asymptotic efficacies for two members of the
NBU-t0 class have been calculated. Two NBU-t0
life distributions and their calculated efficacies are
given as follows.

(i) Makehem distribution:

F̄1(x)= exp(−{x + θ [x + exp(−x)− 1]})
for θ ≥ 0, x ≥ 0

eff(F1)

= [2+ 3 log(1− p)k − 2(1− p)k]2(1−p)k
12[1− (1− p)k]2

(ii) Linear failure rate distribution:

F̄2(x)= exp[−(x + θx2/2)]})
for θ ≥ 0, x ≥ 0

eff(F2)

= 3(1− p)k[log(1− p)k]2[1+ log(1−p)k]2
64[1− (1− p)k]2

Table 10.5 offers some values of the above
efficacies for some choices of k and p. Unreported
entries in the table are zero to four decimal
places. Note that, for F1, the efficacy is increasing
in k. It also increases in p initially, and then

decreases for large p. For F2, however, the efficacy
is decreasing in both k and p.

When t0 = µ, γk(F) of Equation 10.21 becomes

γk(F)= 1

2
F̄ k(µ)−

∫ ∞
0

F̄ (x + kµ) dF(x)

Replacing µ by X̄, and F (F̄) by its corresponding
empirical distribution Fn (F̄n), γk(F) can be
estimated by

γ̂k(F)= 1

2
F̄ k
n (X̄)−

∫ ∞
0

F̄n(x + kX̄) dFn(x)

The equivalent U -statistic estimator is

T̂k = 1

2
T̂1k − T̂2k

where

T̂1k =
(
n

k

)−1 ∑
1≤i<···<ik≤n

I {min(Xi1 , . . . , Xik) > X̄}

T̂2k =
(
n

2

)−1 ∑
1≤i<j≤n

I (Xi > Xj + kX̄)

Theorem 16. As n→∞, n1/2[T̂k − γk(F)] is
asymptotically normal with mean zero and
variance σ 2, provided that f = F ′ exists and is
bounded. Under H0, the variance reduces to

σ 2
0 =

1

3
[F̄ (µ)]k +

(
k − 2

3
− k2

4

)
[F̄ (µ)]2k

+ 1

3
[F̄ (u)]3k +

(
k2

4
− k

2

)
[F̄ (µ)]2k−1

− k

2
[F̄ (µ)]2k+1

Class of NBU-t0 Life Distribution 195

Here, σ 2 = limn→∞ nV (T̂k) > 0.

Proof. See Ahmad [12]. �

10.4.2 Tests for NBU-t0 Alternatives
Using Incomplete Data

In many practical situations the data are incom-
plete due to random censoring. For example, in
a clinical study, patients may withdraw from the
study or they may not yet have experienced the
end-point event before the completion of a study.
Thus, instead of observing a complete sample
X1, . . . , Xn from the life distribution F , we are
able to observe only pairs (Zi, δi), i = 1, . . . , n,
where

Zi =min(Xi, Yi)

and

δi =
{

1 if Zi =Xi

0 if Zi = Yi

Here, we assume that Y1, . . . , Yn are i.i.d. accord-
ing to the continuous censoring distribution H

and the X and Y values are mutually independent.
Observe that δi = 1 means that the ith observation
is uncensored, whereas δi = 0 means that the ith
observation is censored on the right by Yi . The hy-
pothesis of H0 against Ha of Section 10.4.1 is
tested on the basis of the incomplete observations
(Zi, δ1), . . . , (Zn, δn). Several consistent estima-
tors of F based on the incomplete observations
have been developed by Kaplan and Meier [17],
Susarla and Van Ryzin [18], and Kitchin et al.
(1980), among others. To develop the NBU-t0 test
using a randomly censored model, the Kaplan and
Meier [17] estimator (KME) is utilized.

Under the assumption of F being continuous,
the KME is given by:

ˆ̄Fn(t)=
∏

{i:Z(i)≤t}
[(n− i)(n− i + 1)−1]δ(i)

t ∈ [0, Z(n))

where Z(0) ≡ 0 <Z(1) < · · ·<Z(n) denote the or-
dered Z values and δ(i) is the δ corresponding
to Z(i). Here, we treat Z(n) as an uncensored ob-
servation, whether it is uncensored or censored.

When censored observations are tied with uncen-
sored observations, our convention for ordering
the Z values is to treat the uncensored obser-
vations as preceding the censored observations.

Large sample properties of ˆ̄Fn have been studied
by Efron [20], Breslow and Crowley [21], Peterson

[22], and Gill [23]. In the sequel, ˆ̄Fn will denote the

KME and F̂n = 1− ˆ̄Fn. Hollander et al. [13] form
the test statistic by replacing F of T (F) defined in
Section 10.4.1.1, by F̂n, the KME of F , i.e.

T (F̂n)=
∫ ∞

0

ˆ̄Fn(x + t0) dF̂n(x)− 1

2
ˆ̄Fn(t0)

For computational purpose, we may write:

T c
n ≡ T (F̂n)

=
(n∑

i=1

∏
{k:Z(k)≤Z(i)+t0}

[(n− k)(n− k + 1)−1]δ(k)

×
{ i∏

r=1

[(n− r)(n− r + 1)−1]δ(r)
}

× {1− [(n− i)(n− i + 1)−1]δ(i)}
)

− 1

2

∏
{k:Z(k)≤t0}

[(n− k)(n− k + 1)−1]δ(k)

Asymptotic normality of n1/2[T c
n − T (F)] can be

established under the following assumptions:

Assumption 1. The support of both F and H is
[0,∞).

Assumption 2. sup{[F̄ (x)]1−ε[H̄ (x)]−1, x ∈
[0,∞)}<∞, for some ε ≥ 0.

Assumption 2 restricts the amount of cen-
soring. For example, in the proportional hazard
model where H̄ (t)= [F̄ (t)]β, Assumption 2 im-
plies that β < 1, which means that the expected
proportion of censored observations, β/(β + 1),
must be less than 0.5.

Let K̄(t)= F̄ (t)H̄ (t), t ∈ [0,∞), and let
{φ(t), t ∈ (0,∞)} be a Gaussian process with

196 Statistical Reliability Theory

mean zero and covariance kernel given by

Eφ(t)φ(s) = F̄ (t)F̄ (s)

∫ s

0
[K̄(z)F̄ (z)]−1 dF(z)

0≤ s < t <∞
Theorem 17. Assume that Assumptions 1 and 2
hold. Then n1/2[T c

n − T (F)] converges in distribu-
tion to a normal random variable with mean zero
and variance σ 2

c , where

σ 2
c =

∫ ∫
E

[
φ(x + t0)− φ(x − t0)− 1

2
φ(t0)

]
×
[
φ(u+ t0)− φ(u− t0)

− 1

2
φ(t0)

]
dF(x) dF(u)

Proof. See Hollander et al. [13]. �
The null asymptotic mean of n1/2T c

n is zero,
independent of the distributions F and H .
However, the null asymptotic variance of n1/2T c

n

depends on both F and H , and thus it must
be estimated from the incomplete observations
(Zi, δ1), . . . , (Zn, δn). Under H0, it can be shown
that the null asymptotic variance of n1/2T c

n is

σ 2
c0 =

1

4
F̄ 2(t0)

∫ ∞
0

F̄ 3(z)[K̄(z+ t0)]−1 dF(z)

+ 1

4
F̄ 2(t0)

∫ ∞
0

F̄ 3(z)[K̄(z)]−1 dF(z)

− 1

2
F̄ 4(t0)

∫ ∞
0

F̄ 3(z)[K̄(z + t0)]−1 dF(z)

(10.22)

If there is no censoring, i.e. if K̄(z)= F̄ (z) for z ∈
[0,∞), then σ 2

c0 reduces to 1
12 F̄ (t0)+ 1

12 F̄
2(t0)−

1
6 F̄

3(t0), agreeing with the null asymptotic
variance σ 2

0 of n1/2Tn for the complete data case.
By a change of variable in the first and third

terms of Equation 10.22, σ 2
c0 can be simplified to

σ 2
c0 =

1

4
[F̄ (t0)]−2

∫ ∞
t0

F̄ 3(u)[K̄(u)]−1 dF(u)

+ 1

4
F̄ 2(t0)

∫ ∞
0

F̄ 3(u)[K̄(u)]−1 dF(u)

− 1

2

∫ ∞
t0

F̄ 3(u)[K̄(u)]−1 dF(u) (10.23)

Let Z(1) ≤ · · · ≤ Z(n) denote the ordered Z values
and let Kn denote the empirical distribution
function of the Z values. Then, nKn(t)= (number
of Z values≤ t). Since T c

n = 0 when Z(n) ≤ t0, we
assume that our sample is such that Z(n) > t0.

Replacing F̄ by ˆ̄Fn, K̄ by K̄n, and ∞ by Z(n) in
Equation 10.23 yields the estimate σ̂ 2

cn defined by
Equation 10.24.

σ̂ 2
cn =

{
1

4
[ˆ̄Fn(t0)]−2 − 1

2

}
×

∑
{i:t0≤W(i)≤Z(n)}

ˆ̄F 3(W(i))[K̄n(W(i))]−1

× [F̂n(W(i))− F̂n(W(i−1))] + 1

4
ˆ̄F 2
n (t0)

×
∑

{i:1≤i≤τ (n)}
ˆ̄F 3
n (W(i))[K̄n(W(i))]−1

× [F̂n(W(i))− F̂n(W(i−1))] (10.24)

whereW(0) ≡ 0 <W(1) < W(2) < · · ·<W(τ(n)) are
the ordered observed failure times, and τ (n)=∑n

i=1 δi is the total number of failures among the
n observations. In Equation 10.24, when W(i) =
Z(n) we redefine K̄n(Z(n)), changing it from zero
to 1/n so that Equation 10.24 is well defined.

The approximate α-level test of H0 versus Ha ,
which rejects H0 in favor of Ha if n1/2T c

n σ̂
−1
cn ≤

−zα and accepts H0 otherwise, is called the
NBU-t0 test for incomplete data. The approximate
α-level test of H0 versus the alternative that a
new item has a stochastically smaller residual life
length than does a used item of age t0 is called
the NWU-t0 test for incomplete data. The NWU-t0
test rejects H0 if n1/2T c

n σ̂
−1
cn ≥ zα and accepts H0

otherwise.

References
[1] Marshall AH, Proschan F. Classes of distributions appli-

cable in replacement, with renewal theory implications.
In: Proceedings of the 6th Berkeley Symposium on Math-
ematical Statistics and Probability, vol. I. University of
California Press; 1972. p.395–415.

[2] Esary JD, Marshall AH, Proschan F. Shock models and
wear processes. Ann Prob 1973;1:627–49.

[3] Bryson MC, Siddiqui MM. Some criteria for aging. J Am
Stat Assoc 1969;64:1472–83.

Class of NBU-t0 Life Distribution 197

[4] Marsaglia G, Tubilla A. A note on the “lack of memory”
property of the exponential distribution. Ann. Prob.
1975;3:353–4.

[5] Barlow RE, Proschan F. Statistical theory of reliability and
life testing probability models. Silver Spring: To Begin
With; 1981.

[6] Reneau DM, Samaniego FJ. Estimating the survival curve
when new is better than used of a specified age. J Am Stat
Assoc 1990;85:123–31.

[7] Chang MN. On weak convergence of an estimator of
the survival function when new is better than used of a
specified age. J Am Stat Assoc 1991;86:173–8.

[8] Chang MN, Rao PV. On the estimation of a survival
function when new better than used of a specified age.
J Nonparametric Stat 1992;2:45–8.

[9] Serfling RJ. Approximation theorems of mathematical
statistics. New York: Wiley; 1980.

[10] Hollander M, Park DH, Proschan F. A class of life
distributions for aging. J. Am Stat Assoc 1986;81:91–5.

[11] Ebrahimi N, Habibullah M. Testing whether a survival
distribution is new better than used of a specified age.
Biometrika 1990;77:212–5.

[12] Ahmad IA. Testing whether a survival distribution is new
better than used of an unknown specified age. Biometrika
1998;85:451–6.

[13] Hollander M, Park DH, Proschan F. Testing whether new
is better than used of a specified age, with randomly
censored data. Can J Stat 1985;13:45–52.

[14] Hoeffding WA. A class of statistics with asymptotically
normal distribution. Ann Math Stat 1948;19:293–325.

[15] Hollander M, Prochan F. Testing whether new is better
than used. Ann Math Stat 1972;43:1136–46.

[16] Bickel PJ, Doksum KA. Tests for monotone failure
rate based on normalized spacings. Ann Math Stat
1969;40:1216–35.

[17] Kaplan EL, Meier P. Nonparametric estimation from in-
complete observations. J Am Stat Assoc 1958;53:457–81.

[18] Susarla V, Van Ryzin J. Nonparametric Bayesian estima-
tion of survival curves from incomplete observations.
J Am Stat Assoc 1976;71:897–902.

[19] Kitchin J, Langberg NA, Proschan F. A new method for es-
timating life distributions from incomplete data. Florida
State University Department of Statistics Technical Re-
port No. 548, 1980.

[20] Efron B. The two sample problem with censored data. In:
Proceedings of the 5th Berkley Symposium, vol. 4, 1967.
p.831–53.

[21] Breslow N, Crowley J. A large sample study of the life table
and product limit estimates under random censorship.
Ann Stat 1974;2:437–53.

[22] Peterson AV. Expressing the Kaplan–Meier estimator as
a function of empirical subsurvival function. J Am Stat
Assoc 1977;72:854–8.

[23] Gill RD. Large sample behaviour of the product limit
estimator on the whole line [Preprint]. Amsterdam:
Mathematisch Centrun; 1981.

This page intentionally left blank

Software ReliabilityP
A

R
T

III

11 Software Reliability Models: A Selective Survey and New Directions
11.1 Introduction
11.2 Static Models
11.3 Dynamic Models: Reliability Growth Models for Testing and

Operational Use
11.4 Reliability Growth Modeling with Covariates
11.5 When to Stop Testing Software
11.6 Challenges and Conclusions

12 Software Reliability Modeling
12.1 Introduction
12.2 Basic Concepts of Stochastic Modeling
12.3 Black-box Software Reliability Models
12.4 White-box Modeling
12.5 Calibration of Model
12.6 Current Issues

13 Software Availability Theory and its Applications
13.1 Introduction
13.2 Basic Model and Software Availability Measures
13.3 Modified Models
13.4 Applied Models
13.5 Concluding Remarks

14 Software Rejuvenation: Modeling and Applications
14.1 Introduction
14.2 Modeling-based Estimation
14.3 Measurement-based Estimation
14.4 Conclusion and Future Work

15 Software Reliability Management: Techniques and Applications
15.1 Introduction
15.2 Death Process Model for Software Testing Management
15.3 Estimation Method of Imperfect Debugging Probability
15.4 Continuous State Space Model for Large-scale Software
15.5 Development of a Software Reliability Management Tool

16 Recent Studies in Software Reliability Engineering
16.1 Introduction
16.2 Software Reliability Modeling
16.3 Generalized Models with Environmental Factors
16.4 Cost Modeling
16.5 Recent Studies with Considerations of Random Field Environments
16.6 Further Reading

Software Reliability Models:
A Selective Survey and New
Directions

Ch
ap

te
r1

1Siddhartha R. Dalal

11.1 Introduction
11.2 Static Models
11.2.1 Phase-based Model: Gaffney and Davis
11.2.2 Predictive Development Life Cycle Model: Dalal and Ho
11.3 Dynamic Models: Reliability Growth Models for Testing and Operational Use
11.3.1 A General Class of Models
11.3.2 Assumptions Underlying the Reliability Growth Models
11.3.3 Caution in Using Reliability Growth Models
11.4 Reliability Growth Modeling with Covariates
11.5 When to Stop Testing Software
11.6 Challenges and Conclusions

11.1 Introduction

Software development, design, and testing have
become very intricate with the advent of modern
highly distributed systems, networks, middleware,
and interdependent applications. The demand for
complex software systems has increased more
rapidly than the ability to design, implement, test,
and maintain them, and the reliability of software
systems has become a major concern for our
modern society. Within the last decade of the 20th
century and the first few years of the 21st century,
many reported system outages or machine crashes
were traced back to computer software failures.
Consequently, recent literature is replete with
horror stories due to software problems.

Even discounting the costly “Y2K” problem as
a design failure, a problem that occupied tens
of thousands of programmers in 1998–99 with
the costs running to tens of billions of dollars,
there have been many other critical failures.
Software failures have impaired several high-
visibility programs in space, telecommunications,

defense and health industries. The Mars Climate
Orbiter crashed in 1999. The Mars Climate Orbiter
Mission Failure Investigation Board [1] concluded
that “The ‘root cause’ of the loss of the spacecraft
was the failed translation of English units into
metric units in a segment of ground-based,
navigation-related mission software, . . . ”. Besides
the costs involved, it set back the space program by
more than a year. Current versions of the Osprey
aircraft, developed at a cost of billions of dollars,
are not deployed because of software-induced field
failures. In the health industry [2], the Therac-25
radiation therapy machine was hit by software
errors in its sophisticated control systems and
claimed several patients’ lives in 1985 and 1986.
Even in the telecommunications industry, known
for its five nines reliability, the nationwide long-
distance network of a major carrier suffered an
embarrassing network outage on 15 January 1990,
due to a software problem. In 1991, a series of
local network outages occurred in a number of US
cities due to software problems in central office
switches [3].

201

202 Software Reliability

Software reliability is defined as the probability
of failure-free software operations for a specified
period of time in a specified environment [4].
The software reliability field discusses ways of
quantifying it and using it for improvement and
control of the software development process.
Software reliability is operationally measured by
the number of field failures, or failures seen in
development, along with a variety of ancillary
information. The ancillary information includes
the time at which the failure was found, in which
part of the software it was found, the state of
software at that time, the nature of the failure, etc.

Most quality improvement efforts are triggered
by lack of software reliability. Thus, software
companies recognize the need for systematic
approaches to measuring and assuring software
reliability, and devote a major share of project
development resources to this. Almost a third of
the total development budget is typically spent
on testing, with the expectation of measuring
and improving software reliability. A number of
standards have emerged in the area of developing
reliable software consistently and efficiently. ISO
9000-3 [5] is the weakest amongst the recognized
standards, in that it specifies measurement of
field failures as the only required quality metric:
“. . . at a minimum, some metrics should be
used which represent reported field failures and/or
defects form the customer’s viewpoint. . . . The
supplier of software products should collect and
act on quantitative measures of the quality of these
software products”. The Software Engineering
Institute has proposed an elaborate standard
called the Software Capability Maturity Model
(CMM) [6] that scores software development
organizations on multiple criteria and gives a
numeric grade from one to five. A similar
approach is taken by the SPICE standards, which
are prevalent in Europe [7].

Formally, software reliability engineering is the
field that quantifies the operational behavior of
software-based systems with respect to user re-
quirements concerning reliability. It includes data
collection on reliability, statistical estimation and
prediction, metrics and attributes of product ar-
chitecture, design, software development, and the

operational environment. Besides its use for op-
erational decisions like deployment, it includes
guiding software architecture, development, test-
ing, etc. Indeed, much of the testing process is
driven by software reliability concerns, and most
applications of software reliability models are to
improve the effectiveness of testing. Many current
software reliability engineering techniques and
practices are detailed by Musa et al. [8] and Lyu
[9]. However, in this chapter we take a narrower
view and just look at models that are used in soft-
ware reliability—their efficacy and adequacy—
without going into details of the interplay between
testing and software reliability models.

Though prevalent software reliability models
have their genesis in hardware reliability models,
there are clearly a number of differences between
hardware and software reliability models. Fail-
ures in hardware are typically based on the age of
hardware and the stress of the operational envi-
ronment, whereas failures in software are due to
incorrect requirements, design, coding, or the in-
ability to interoperate with other related software.
Software failures typically manifest when the soft-
ware is operated in an environment for which it
was not designed or tested. Typically, except for
the infant mortality factor in hardware, hardware
reliability decreases with age, whereas software
reliability increases with age (due to fault fixes).

In this chapter we focus on software reliabil-
ity models and measurements. A software reli-
ability model specifies the general form of the
dependence of the failure process on the princi-
pal factors that affect it: fault introduction, fault
removal, and the operational environment. Dur-
ing the test phase, the failure rate of a software
system is generally decreasing due to the discovery
and correction of software faults. With careful
record-keeping procedures in place, it is possi-
ble to use statistical methods to analyze the his-
torical record. The purpose of these analyses is
twofold: (1) to predict the additional time needed
to achieve a specified reliability objective; (2) to
predict the expected reliability when testing is
finished.

Implicit in this discussion is the concept
of “time”. For some purposes this may be

Software Reliability Models: A Selective Survey and New Directions 203

calendar time, assuming that testing proceeds
roughly uniformly; another possibility is to use
computer execution time, or some other measure
of testing effort. Another implicit assumption is
that the software system being tested remains
fixed throughout (except for the removal of faults
as they are found). This assumption is frequently
violated.

Software reliability measurement includes two
types of model: static and dynamic reliability
estimation, used typically in the earlier and later
stages of development respectively. These will be
discussed in the following two sections. One of
the main weaknesses of many of the models
is that they do not take into account ancillary
information, like churn in system during testing.
Such a model is described in Section 11.4. A key
use of the reliability models is in the area of
when to stop testing. An economic formulation
is discussed in Section 11.5. Additional challenges
and conclusions are stated in Section 11.6.

11.2 Static Models

One purpose of reliability models is to perform
reliability prediction in an early stage of software
development. This activity determines future
software reliability based upon available software
metrics and measures. Particularly when field
failure data are not available (e.g. software is
in the design or coding stage), the metrics
obtained from the software development process
and the characteristics of the resulting product
can be used to estimate the reliability of the
software upon testing or delivery. We discuss
two prediction models: the phase-based model
by Gaffney and Davis [10] and a predictive
development life cycle model from Telcordia
Technologies by Dalal and Ho [11].

11.2.1 Phase-based Model: Gaffney
and Davis

Gaffney and Davis [10] proposed the phase-based
model, which divides the software development

cycle into different phases (e.g. requirement re-
view, design, implementation, unit test, software
integration, systems test, operation, etc.) and as-
sumes that code size estimates are available during
the early phases of development. Further, it as-
sumes that faults found in different phases follow a
Raleigh density function when normalized by the
lines of code. Their model makes use of the fault
statistics obtained during the early development
phases (e.g. requirements review, design, imple-
mentation, and unit test) to predict the expected
fault densities during a later phase (e.g. system
test, acceptance test and operation).

The key idea is to divide the stage of
development along a continuous time (i.e. t =
“0–1” means requirements analysis, and so on),
and overlay the Raleigh density function with a
scale parameter. The scale parameter, known as
the fault discovery phase constant, is estimated by
equating the area under the curve between earlier
phases with observed error rates normalized by
the lines of code. This method gives an estimate
of the fault density for any later phase. The model
also estimates the number of faults in a given
phase by multiplying the fault density estimate by
the number of lines of code.

This model is clearly motivated by the corre-
sponding model used in hardware reliability, and
the predictions are hardwired in the model based
on one parameter. In spite of this criticism, this
model is one of the first to leverage information
available in earlier development life cycle phases.

11.2.2 Predictive Development Life
Cycle Model: Dalal and Ho

In this model the development life cycle is divided
into the same phases as in Section 11.2.1. However,
unlike in Section 11.2.1, it does not postulate
a fixed relationship (i.e. Raleigh distribution)
between the numbers of faults discovered during
different phases. Instead, it leverages past releases
of similar products to determine the relationships.
The relationships are not postulated beforehand,
but are determined from data using only a few
releases per product. Similarity is measured by

204 Software Reliability

Figure 11.1. 22 Products and their releases versus Observed (+) and Predicted Fault Density connected by dash lines. Solid vertical lines
are 90% predictive intervals for Fault Density

using an empirical hierarchical Bayes framework.
The number of releases used as data is kept
minimal and, typically, only the most recent one
or two releases are used for prediction. This is
critical, since there are often major modifications
to the software development process over time,
and these modifications change the interphase
relationships between faults. The lack of data
is made up for by using as many products as
possible that were being developed in a software
organization at around the same time. In that
sense it is similar to meta analysis [12], where
a lack of longitudinal data is overcome by using
cross-sectional data.

Conceptually, the basic assumptions behind
this model are as follows:

Assumption 1. Defect rates from different prod-
ucts in the same product life cycle phase are sam-
ples from a statistical universe of products coming
from that development organization.

Assumption 2. Different releases from a given
product are samples from a statistical universe of
releases for that product.

Assumption 1 reflects the fact that the products
developed within the same organization at the
same life cycle maturity are more or less

Software Reliability Models: A Selective Survey and New Directions 205

homogeneous. Defect density for a given product
is related to covariates like lines of code and
number of faults in previous life cycle phases by
use of a regression model with the coefficients
of the regression model assumed to have a
normal prior distribution. The homogeneity
assumption is minimally restrictive, since the
Bayesian estimates we obtain depend increasingly
on the data as more data become available. Based
on the detailed model described by Dalal and
Ho [11], one obtains predictive distributions of the
fault density per life cycle phase conditionally on
observing some of the previous product life cycle
phases. Figure 11.1 shows the power of prediction
of this method. On the horizontal axis we have
22 products, each with either one or two releases
(some were new products and had no previous
release). On the vertical axis we plot the predicted
system’s test fault density per million lines of code
based on all fault information available prior to the
system’s test phase, along with the corresponding
posterior confidence intervals. A dashed line
connects the predicted fault density, and “+”
indicates the observed fault density. Except for
product number 4, all observed values are quite
close to the predicted value.

11.3 Dynamic Models:
Reliability Growth Models for
Testing and Operational Use

Software reliability estimation determines the
current software reliability by applying statistical
inference techniques to failure data obtained
during system test or during system operation.
Since reliability tends to improve over time
during the software testing and operation periods
because of removal of faults, the models are also
called reliability growth models. They model the
underlying failure process of the software, and use
the observed failure history as a guideline, in order
to estimate the residual number of faults in the
software and the test time required to detect them.
This can be used to make release and deployment
decisions. Most current software reliability models

fall into this category. Details of these models can
be found in Lyu [9], Musa et al. [8], Singpurwalla
and Wilson [13], and Gokhale et al. [14].

11.3.1 A General Class of Models

Now we describe a general class of models.
In binomial models the total number of faults is
some number N ; the number found by time t has
a binomial distribution with mean µ(t)= NF(t),
where F(t) is the probability of a particular fault
being found by time t . Thus, the number of
faults found in any interval of time (including the
interval (t,∞)) is also binomial. F(t) could be any
arbitrary cumulative distribution function. Then,
a general class of reliability models is obtained by
appropriate parameterization of µ(t) andN .

Letting N be Poisson (with some mean ν) gives
the related Poisson model; now, the number of
faults found in any interval is Poisson, and for
disjoint intervals these numbers are independent.
Denoting the derivative of F by F ′, the hazard
rate at time t is F ′(t)/[1− F(t)]. These models
are Markovian but not strongly Markovian, except
when F is exponential; minor variations of this
case were studied by Jelinski and Moranda [15],
Shooman [16], Schneidewind [17], Musa [18],
Moranda [19], and Goel and Okomoto [20]. Schick
and Wolverton [21] and Crow [22] made F a
Weibull distribution; Yamada et al. [23] made F a
Gamma distribution; and Littlewood’s model [24]
is equivalent to assuming F to be Pareto. Musa
and Okumoto [25] assumed the hazard rate to
be an inverse linear function of time; for this
“logarithmic Poisson” model the total number of
failures is infinite.

The success of a model is often judged by
how well it fits an estimated reliability curve µ(t)

to the observed “number of faults versus time”
function. On general grounds, having a good fit
may be an overfit and may have little to do with
how useful the model is in predicting future faults
in the present system, or future experience with
another system, unless we can establish statistical
relationships between the measurable attributes of
the system and the estimated parameters of the
fitted models.

206 Software Reliability

Figure 11.2. The observed versus the fitted model

Let us examine the real example plotted in
Figure 11.2 from testing a large software sys-
tem at a telecommunications research company.
The system had been developed over years, and
new releases were created and tested by the
same development and testing groups respec-
tively. In Figure 11.2, the elapsed testing time in
staff days t is plotted against the cumulative num-
ber of faults found for one of the releases. It is not
clear whether there is some “total number” of bugs
to be found, or whether the number found will
continue to increase indefinitely. However, from
data such as that in Figure 11.2, an estimation of
the tail of a distribution with a reasonable degree
of precision is not possible. We also fit a special
case of the general reliability growth model de-
scribed above corresponding to N being Poisson
and F being exponential.

11.3.2 Assumptions Underlying the
Reliability Growth Models

Different sets of assumptions can lead to equiv-
alent models. For example, the assumption that,
for each fault, the time-to-detection is a random
variable with a Pareto distribution, these random
variables being independent, is equivalent to as-
suming that each fault has an exponential lifetime,
with these lifetimes being independent, and the
rates for the different faults being distributed ac-
cording to a Gamma distribution (this is Little-
wood’s model [24]). A single experience cannot
distinguish between a model that assumes a fixed
but unknown number of faults and a model that

assumes this number is random. Little is known
about how well the various models can be distin-
guished.

Most of the published models are based on
common underlying assumptions. These com-
monly include the following.

1. The system being tested remains essentially
unchanged throughout testing, except for
the removal of faults as they are found.
Some models allow for the possibility that
faults are not corrected perfectly. Miller [26]
assumed that if faults are not removed
as they are found, then each fault causes
failures according to a stationary Poisson
process; these processes are independent of
one another and may have different rates.
By specifying the rates, many of the models
mentioned in Section 11.3.1 can be obtained.
Gokhale et al. [27] dealt with the case of
imperfect debugging.

2. Removing a fault does not affect the chance
that a different fault will be found.

3. “Time” is measured in such a way that testing
effort is constant. Musa [18] reported that
execution time (processor time) is the most
successful way to measure time. Others prefer
testing effort measured in staff hours [28].

4. The model is Markovian, i.e. at each time,
the future evolution of the testing process
depends only on the present state (the
current time, the number of faults found
and remaining, and the overall parameters
of the model) and not on details of the past
history of the testing process. In some models
a stronger property holds, namely that the
future depends only on the current state and
the parameters, and not on the current time.
We call this the “strong Markov” property.

5. All faults are of equal importance (contribute
equally to the failure rate). Some extensions
have been discussed by Dalal and Mallows
[29] in the context of when to stop testing.

6. At the start of testing, there is some finite total
number of faults, which may be fixed (known
or unknown) or random; if random, its
distribution may be known or of known form

Software Reliability Models: A Selective Survey and New Directions 207

with unknown parameters. Alternatively, the
“number of faults” is not assumed finite, so
that, if testing continues indefinitely, an ever-
increasing number of faults will be found.

7. Between failures, the hazard rate follows a
known functional form; this is often taken to
be simply a constant.

11.3.3 Caution in Using Reliability
Growth Models

Here we would also like to offer some caution
to the readers regarding the usage of software
reliability models.

In fitting any model to a given data set,
one must first bear in mind a given model’s
assumptions. For example, if a model assumes
that a fixed number of software faults will be
removed within a limited period of time, but in
the observed process the number of faults is not
fixed (e.g. new faults are inserted due to imperfect
fault removal, or new code is added), then one
should use another model that does not make this
assumption.

A second model limitation and implementation
issue concerns future predictions. If the software
is being operated in a manner different than the
way it is tested (e.g. new capabilities are being
exercised that were not tested before), the failure
history of the past will not reflect these changes,
and poor predictions may result. Development
of operational profiles, as proposed by Musa
et al. [30], is very important if one wants to
predict future reliability accurately in the user’s
environment.

Another issue relates to the software develop-
ment environment. Most reliability growth mod-
els are primarily applicable from testing onward:
the software is assumed to have matured to the
point that extensive changes are not being made.
These models cannot have a credible performance
when the software is changing and churn of soft-
ware code is observed during testing. In this
case, the techniques described in Section 11.4
should be used to handle the dynamic testing
situation.

11.4 Reliability Growth
Modeling with Covariates
We have so far discussed a number of different
kinds of reliability model of varying degrees
of plausibility, including phase-based models
depending upon a Raleigh curve, growth models
like the Goel–Okumoto model, etc. The growth
models take as input either failure time or failure
count data, and fit a stochastic process model to
reflect reliability growth. The differences between
the models lie principally in assumptions made on
the underlying stochastic process generating the
data.

However, most existing models assume that
no explanatory variables are available. This as-
sumption is assuredly simplistic, when the models
are used to model a testing process, for all but
small systems involving short development and
life cycles. For large systems (e.g. greater than
100 KNCSL, i.e. thousands of non-commentary
source lines) there are variables, other than time,
that are very relevant. For example, it is typically
assumed that the number of faults (found and
unfound) in a system under test remains stable
during testing. This implies that the code remains
frozen during testing. However, this is rarely the
case for large systems, since aggressive delivery
cycles force the final phases of development to
overlap with the initial stages of system test. Thus,
the size of code and, consequently, the number
of faults in a large system can vary widely during
testing. If these changes in code size are not con-
sidered as a covariate, one is, at best, likely to have
an increase in variability and a loss in predictive
performance; at worst, a poor fitting model with
unstable parameter estimates is likely. We briefly
describe a general approach proposed by Dalal
and McIntosh [28] for incorporating covariates
along with a case study dealing with reliability
modeling during product testing when code is
changing.

Example 1. Consider a new release of a large
telecommunications system with approximately 7
million NCSL and 300 KNCNCSL (i.e. thousands
of lines of non-commentary new or changed

208 Software Reliability

Figure 11.3. Plots of module size (NCNCSL) versus staff time
(days) for a large telecommunications software system (top).
Observed and fitted cumulative faults versus staff time (bottom).
The dotted line (barely visible) represents the fitted model, the
solid line represents the observed data, and the dashed line is the
extrapolation of the fitted model

source lines). For a faster delivery cycle, the
source code used for system test was updated
every night throughout the test period. At the
end of each of 198 calendar days in the test
cycle, the number of faults found, NCNCSL, and
the staff time spent on testing were collected.
Figure 11.3 portrays the growth of the system in
terms of NCNCSL and of faults against staff time.
The corresponding numerical data are provided in
Dalal and McIntosh [28].

Assume that the testing process is observed
at time ti , i = 0, . . . , h, and at any given time
the amount of time it takes to find a specific
bug is exponential with rate m. At time ti , the
total number of faults remaining in the system
is Poisson with mean li+1, and NCNCSL is
increased by an amount Ci . This change adds a
Poisson number of faults with mean proportional
to C, say qCi . These assumptions lead to the
mass balance equation, namely that the expected
number of faults in the system at ti (after possible
modification) is the expected number of faults
in the system at ti−1 adjusted by the expected
number found in the interval (ti−1, ti) plus the
faults introduced by the changes made at ti :

li+1 = li e−m(ti−ti−1) + qCi

for i = 1, . . . , h. Note that q represents the
number of new faults entering the system per ad-
ditional NCNCSL, and l1 represents the number of
faults in the code at the start of system test. Both of
these parameters make it possible to differentiate
between the new code added in the current release
and the older code. For the example, the estimated
parameters are q = 0.025,m= 0.002, and l1 = 41.
The fitted and the observed data are plotted
against staff time in Figure 11.3 (bottom). The fit
is evidently very good. Of course, assessing the
model on independent or new data is required for
proper validation.

Now we examine the efficacy of creating a
statistical model. The estimate of q in the example
is highly significant, both statistically and practi-
cally, showing the need for incorporating changes
in NCNCSL as a covariate. Its numerical value
implies that for every additional 10 000 NCNCSL
added to the system, 25 faults are being added
as well. For these data, the predicted number
of faults at the end of the test period is Poisson
distributed with mean 145. Dividing this quantity
by the total NCNCSL, gives 4.2 per 10 000 NCNCSL
as an estimated field fault density. These estimates
of the incoming and outgoing quality are valuable
in judging the efficacy of system testing and for
deciding where resources should be allocated to
improve the quality. Here, for example, system
testing was effective, in that it removed 21 of every
25 faults. However, it raises another issue: 25 faults
per 10 000 NCNCSL entering system test may be
too high, and a plan ought to be considered to
improve the incoming quality.

None of the above conclusions could have
been made without using a statistical model.
These conclusions are valuable for controlling and
improving the process. Further, for this analysis it
was essential to have a covariate other than time.

11.5 When to Stop Testing
Software

Dynamic reliability growth models can be used
to make decisions about when to stop testing.

Software Reliability Models: A Selective Survey and New Directions 209

Software testing is a necessary but expensive
process, consuming one-third to one-half the cost
of a typical development project. Testing a large
software system costs thousands of dollars per
day. Overzealous testing can lead to a product
that is overpriced and late to market, whereas
fixing a fault in a released system is usually an
order of magnitude more expensive than fixing the
fault in the testing laboratory. Thus, the question
of how much to test is an important economic
one. We discuss an economic formulation of the
“when to stop testing” issue as proposed by Dalal
and Mallows [29, 31]. Other formulations have
been proposed by Dalal and Mallows [32] and by
Singpurwalla [33].

Like many other reliability models, the Dalal
and Mallows stochastic model assumes that there
are N (unknown) faults in the software, and the
times to find faults are observable and are i.i.d.
exponential with rate m. N is Poisson(l), and
that l is Gamma (a, b). Further, their economic
model defines the cost of testing at time t to be
f t − cK(t), where K(t) is the number of faults
observed to time t and f is the cost of operating
the testing laboratory per unit time. The constant
c is the net cost of fixing a fault after rather than
before release. Under somewhat more general
assumptions, Dalal and Mallows [29] found the
exact optimal stopping rule. The structure of the
exact rule, which is based on stochastic dynamic
programming, is rather complex. However, for
large N , which is necessarily the case for large
systems, the optimal stopping rule is: stop as soon
as f (emt − 1)/(mc)≥K(t). Besides the economic
guarantee, this rule gives a guarantee on the
number of remaining faults, namely that this
number has a Poisson distribution with mean
f/(mc). Thus, instead of determining the ratio
f/c from economic considerations, we can choose
it so that there are probabilistic guarantees on the
number of remaining faults. Some practitioners
may find that this probabilistic guarantee on the
number of remaining faults is more relevant in
their application. (See Dalal and Mallows [32]
for a more detailed discussion.) Finally, by using
reasoning similar to that used in deriving equation
(4.5) of Dalal and Mallows [29], it can be shown

that the current estimate of the additional time
required for testing �t , is given by

1

m
log

[
cmK(t)

f (emt − 1)

]
For applications of this we refer the reader to Dalal
and Mallows [31].

11.6 Challenges and
Conclusions

Software reliability modeling and measurement
have drawn quite a bit of attention recently in
various industries due to concerns about the
quality of software. Many reliability models have
been proposed, many success stories have been
reported, several conferences and forums have
been formed, and much project experience has
been shared.

In spite of this, there are many challenges
in getting widespread use of software reliability
models. Part of the challenge is that testing and
other activities are not as compartmentalized
as assumed in the models. As discussed in
Section 11.4, code churn constantly takes place
during testing, and, except for the Dalal and
McIntosh model described in Section 11.4, there
is very little work in that area. Further, for
decision-making purposes during testing and
deployment phases one would like to have a
quick estimate of the system reliability. Waiting
to collect a substantial amount of data before
being able to fit a model is not feasible in
many settings. Leveraging information from the
early phases of the development life cycle to
come up with a quick reliable model would
ameliorate this difficulty. An extension of the
approach described in Section 11.2.2 seems to be
needed. Looking to the future, it would also be
worthwhile incorporating the architecture of the
system to come up with preliminary estimates; for
a survey of architecture-based reliability models,
see Goševa-Popstojanova and Trivedi [34]. Finally,
to a great extent, the reliability growth models
as used in the field do not leverage information

210 Software Reliability

about the test cases used. One of the reasons is
that each test case is considered to be unique.
However, as we are moving in the model-based
testing area [35], test case creation is supported
by an underlying meta model of the use cases
and constraints imposed by users. Creating new
reliability models leveraging these meta models
would be important.

In conclusion, in this chapter we have described
key software reliability models for early stages, as
well as for the test and operational phases, and
have given some examples of their uses. We have
also proposed some new research directions useful
to practitioners, which will lead to wider use of
software reliability models.

References
[1] Mars Climate Orbiter Mishap Investigation Board

Phase I Report, 1999, NASA, ftp://ftp.hq.nasa.gov/
pub/pao/reports/1999/MCO_report.pdf

[2] Lee L. The day the phones stopped: how people get hurt
when computers go wrong. New York: Donald I. Fine,
Inc.; 1992.

[3] Dalal SR, Horgan JR, Kettenring JR. Reliable software and
communication: software quality, reliability, and safety.
IEEE J Spec Areas Commun 1993;12:33–9.

[4] Institute of Electrical and Electronics Engineers.
ANSI/IEEE standard glossary of software engineering
terminology, IEEE Std. 729-1991.

[5] ISO 9000-3. Quality management and quality assurance
standard—part 3: guidelines for the application of
ISO 9001 to the development, supply and maintenance of
software. Switzerland: ISO; 1991.

[6] Paulk M, Curtis W, Chrissis M, Weber C. Capability
maturity model for software, version 1.1, CMU/SEI-93-
TR-24. Carnegie Mellon University, Software Engineering
Institute, 1993.

[7] Emam K, Jean-Normand D, Melo W. SPICE: the theory
and practice of software process improvement and
capability determination. IEEE Computer Society Press;
1997.

[8] Musa JD, Iannino A, Okumoto K. Software reliability—
measurement, prediction, application. New York:
McGraw-Hill; 1987.

[9] Lyu MR, editor. Handbook of software reliability
engineering. New York: McGraw-Hill; 1996.

[10] Gaffney JD, Davis CF. An approach to estimating software
errors and availability. SPC-TR-88-007, version 1.0, 1988.
[Also in Proceedings of the 11th Minnowbrook Workshop
on Software Reliability.]

[11] Dalal SR, and Ho YY. Predicting later phase faults
knowing early stage data using hierarchical Bayes
models. Technical Report, Telcordia Technologies, 2000.

[12] Thomas D, Cook T, Cooper H, Cordray D, Hartmann H,
Hedges L, Light R, Louis T, Mosteller F. Meta-analysis
for explanation: a casebook. New York: Russell Sage
Foundation; 1992.

[13] Singpurwalla ND, Wilson SP.Software reliability model-
ing. Int Stat Rev 1994;62(3):289–317.

[14] Gokhale S, Marinos P, Trivedi K. Important milestones in
software reliability modeling. In: Proceedings of Software
Engineering and Knowledge Engineering (SEKE 96),
1996. p.345–52.

[15] Jelinski Z, Moranda PB. Software reliability research. In:
Statistical computer performance evaluation. New York:
Academic Press; 1972. p.465–84.

[16] Shooman ML. Probabilistic models for software relia-
bility prediction. In: Statistical computer performance
evaluation. New York: Academic Press; 1972. p.485–502.

[17] Schneidewind NF. Analysis of error processes in com-
puter software. Sigplan Note 1975;10(6):337–46.

[18] Musa JD. A theory of software reliability and its
application. IEEE Trans Software Eng 1975;SE-1(3):312–
27.

[19] Moranda PB. Predictions of software reliability during
debugging. In: Proceedings of the Annual Reliability
and Maintainability Symposium, Washington, DC, 1975.
p.327–32.

[20] Goel AL, Okumoto K. Time-dependent error-detection
rate model for software and other performance measures.
IEEE Trans Reliab 1979;R-28(3):206–11.

[21] Schick GJ, Wolverton RW. Assessment of software relia-
bility. In: Proceedings, Operations Research. Wurzburg–
Wien: Physica-Verlag; 1973. p.395–422.

[22] Crow LH. Reliability analysis for complex repairable
systems. In: Proschan F, Serfling RJ, editors. Reliability
and biometry. Philadelphia: SIAM; 1974. p.379–410.

[23] Yamada S, Ohba M, Osaki S. S-shaped reliability growth
modeling for software error detection. IEEE Trans Reliab
1983;R-32(5):475–8.

[24] Littlewood B. Stochastic reliability growth: a model
for fault-removal in computer programs and hardware
designs. IEEE Trans Reliab 1981;R-30(4):313–20.

[25] Musa JD, Okumoto K. A logarithmic Poisson execution
time model for software reliability measurement. In: Pro-
ceedings Seventh International Conference on Software
Engineering, Orlando (FL), 1984. p.230–8.

[26] Miller D. Exponential order statistic models of software
reliability growth. IEEE Trans Software Eng 1986;SE-
12(1):12–24.

[27] Gokhale S, Lyu M, Trivedi K. Software reliability analysis
incorporating debugging activities. In: Proceedings
of International Symposium on Software Reliability
Engineering (ISSRE 98), 1998. p.202–11.

[28] Dalal SR, McIntosh AM. When to stop testing for
large software systems with changing code. IEEE Trans
Software Eng 1994;20:318–23.

[29] Dalal SR, Mallows CL. When should one stop software
testing? J Am Stat Assoc 1988;83:872–9.

Software Reliability Models: A Selective Survey and New Directions 211

[30] Musa JD, Fuoco G. Irving N, Kropfl D, Juhlin B. The
operational profile. In: Lyu MR, editor. Handbook of
software reliability engineering. New York: McGraw-Hill;
1996. p.167–218.

[31] Dalal SR, Mallows CL. Some graphical aids for deciding
when to stop testing software. Software Quality &
Productivity [special issue]. IEEE J Spec Areas Commun
1990;8:169–75.

[32] Dalal SR, Mallows CL. Buying with exact confidence. Ann
Appl Probab 1992;2:752–65.

[33] Singpurwalla ND. Determining an optimal time interval
for testing and debugging software. IEEE Trans Software
Eng 1991;17(4):313–9.

[34] Goševa-Popstojanova K, Trivedi K. Architecture-based
software reliability. In: Proceedings of ASSM 2000
International Conference on Applied Stochastic System
Modeling, March 2000.

[35] Dalal SR, Jain A, Karunanithi N, Leaton J, Lott C, Pat-
ton G. Model-based testing in practice. In: International
Conference in Software Engineering—ICSE ’99, 1999.

This page intentionally left blank

Software Reliability Modeling

Ch
ap

te
r1

2James Ledoux

12.1 Introduction
12.2 Basic Concepts of Stochastic Modeling
12.2.1 Metrics with Regard to the First Failure
12.2.2 Stochastic Process of Times of Failure
12.3 Black-box Software Reliability Models
12.3.1 Self-exciting Point Processes
12.3.1.1 Counting Statistics for a Self-exciting Point Process
12.3.1.2 Likelihood Function for a Self-exciting Point Process
12.3.1.3 Reliability and Mean Time to Failure Functions
12.3.2 Classification of Software Reliability Models
12.3.2.1 0-Memory Self-exciting Point Process
12.3.2.2 Non-homogeneousPoisson Process Model:

λ(t;Ht ,F0)= f (t;F0) and is Deterministic
12.3.2.3 1-Memory Self-exciting Point Process with

λ(t;Ht ,F0)= f (N(t), t − TN(t), F0)
12.3.2.4 m≥ 2-memory
12.4 White-box Modeling
12.5 Calibration of Model
12.5.1 Frequentist Procedures
12.5.2 Bayesian Procedure
12.6 Current Issues
12.6.1 Black-box Modeling
12.6.1.1 Imperfect Debugging
12.6.1.2 Early Prediction of Software Reliability
12.6.1.3 Environmental Factors
12.6.1.4 Conclusion
12.6.2 White-box Modeling
12.6.3 Statistical Issues

12.1 Introduction

This chapter proposes an overview of some
aspects of software reliability (SR) engineering.
Most systems are now driven by software. Thus,
it is well recognized that assessing the reliability
of software applications is a major issue in
reliability engineering, particularly in terms of
cost. But predicting software reliability is not
easy. Perhaps the major difficulty is that we are
concerned primarily with design faults, which is
a very different situation from that tackled by

conventional hardware theory. A fault (or bug)
refers to a manifestation in the code of a mistake
made by the programmer or designer with respect
to the specification of the software. Activation of
a fault by an input value leads to an incorrect
output. Detection of such an event corresponds
to an occurrence of a software failure. Input
values may be considered as arriving to the
software randomly. So although software failure
may not be generated stochastically, it may be
detected in such a manner. Therefore, this justifies
the use of stochastic models of the underlying

213

214 Software Reliability

random process that governs the software failures.
In Section 12.2 we briefly recall the basic
concepts of stochastic modeling for reliability. Two
approaches are used in SR modeling. The most
prevalent is the so-called black-box approach,
in which only the interactions of the software
with the environment are considered. Following
Gaudoin [1] and Singpurwalla and Wilson [2], in
Section 12.3 we use the self-exciting point processes
as a basic tool to model the failure process. This
enables an overview of most of the published
SR models. A second approach, called the white-
box approach, incorporates information on the
structure of the software in the models. This is
presented in Section 12.4. Section 12.5 proposes
basic techniques for calibrating black-box models.
The final section tries to give an account of the
current practices in SR modeling and points out
some challenging issues for future research.

Note that this chapter does not aspire to
cover the whole topic of SR engineering. In
particular, we do not discuss fault prevention,
fault removal, or fault tolerance, which are three
methods to achieve reliable software. We focus
here on methods to forecast failure times. For
a more complete view, we refer the reader to
Musa et al. [3], and the two software reliability
handbooks [4, 5]. We have used the two recent
books by Singpurwalla and Wilson [2] and
by Pham [6] to prepare this chapter. We also
recommend reading the short paper by Everett
et al. [7], which describes, in particular, the
available software reliability toolkits (see also
Ramani et al. [8]). Finally, the references of the
chapter give a good account of those journals that
propose research and tutorial papers on SR.

12.2 Basic Concepts of
Stochastic Modeling

The reliability of software, as defined by Laprie
[9], is a measure of the continuous delivery of the
correct service by the software under a specified
environment. This is a measure of the time to
failure.

12.2.1 Metrics with Regard to the First
Failure

The metrics of the first time to failure of a system,
as defined by Barlow and Proschan [10] and
Ascher and Feingold [11], are now recalled. The
first failure time is a random variable T with
distribution function

F(t)= P{T ≤ t} t ∈R

If F has a probability density function (p.d.f.) f ,
then we define the hazard rate of the random
variable T by

r(t)= f (t)

R(t)
t ≥ 0

with R(t)= 1− F(t)= P{T > t}. We will also use
the term failure rate. Function R(t) is called the
survivor function of the random variable T . The
hazard rate function is interpreted to be

r(t) dt ≈ P{t < T ≤ t + dt | T > t}
≈ P{a failure occurs in]t, t + dt]

given that no failure occurred

up to time t}
Thus, the phenomenon of reliability growth
(“wear out”) may be represented by a decreasing
(increasing) hazard rate.

When F is continuous, the hazard rate function
characterizes the probability distribution of T

through the exponentiation formula

R(t)= exp

(
−
∫ t

0
r(s) ds

)
Finally, the mean time to failure (MTTF) is the

expectation E[T] of the waiting time of the first
failure. Note that E[T] is also

∫ +∞
0 R(s) ds.

A basic model for the non-negative random
variable T is the Weibull distribution with
parameters λ, β > 0:

f (t)= λβtβ−1 exp(−λtβ)1]0,+∞[(t)
R(t)= exp(−λtβ)
r(t)= λβtβ−1

MTTF= 1

λ1/β

∫ +∞
0

u1/β exp(−u) du

Software Reliability Modeling 215

Note that the hazard rate is increasing for β >

1, decreasing for β < 1, and constant for β = 1.
For β = 1 we obtain the exponential model with
parameter λ.

12.2.2 Stochastic Process of Times of
Failure

The failure process can be thought of as a point
process, i.e. a sequence of random variables (Ti)i≥0
where Ti is the ith failure time of the software
(with T0 = 0). An equivalent point of view is to
define the sequence of random variables Xi =
Ti − Ti−1 for i ≥ 1. Xi is ith inter-failure time. We
define the counting process N(·) associated with a
point process by

N(t)=
∑
i≥0

1]0,t](Ti) (N(0)= 0)

N(t) is the number of observed failures up to
time t . A point process will refer to any of (Ti),
(Xi), or N(·). The standard metrics associated
with a counting process are [11]:

• the mean value function: M(t)= E[N(t)]
• the rate of occurrence of failures at time t :

ROCOF(t)= dM

dt
(t)

In such a context, we define the (conditional)
reliability function at time t ≥ 0 by

Rt(s)= P{N(t + s)−N(t)

= 0 | N(t), T1, . . . , TN(t)} s ≥ 0

This is a measure of the continuous delivery of
correct service during the mission interval]t, t +
s]. At time t = Ti , this function is nothing else
but the conditional survivor function of random
variable Xi+1 = Ti+1 − Ti given T1, . . . , Ti . This
will be denoted by Ri(s). We also define the
(conditional) mean time to failure at time t ,
MTTF(t), by

MTTF(t)=
∫ +∞

0
Rt (s) ds

The mean time to failure at t = Ti will also be
denoted by MTTFi and is E[Xi+1 | T1, . . . , Ti].

During the operational life of the software,
repairs are carried out when it fails to perform
correctly. In such a case, the time to repair, the
time to reboot the system, and other factors
affect the dependability of a product. Thus,
we may define the software availability as a
measure of the delivery correct service with
respect to the alternation correct and incorrect
service. Availability is highly dependent on the
maintenance policies of the software. We do not
go into further details on dependability in the
operational phase. Indeed, we focus here on the
reliability attribute of the software as most of the
literature on software reliability modeling does.
We refer the reader to Chapter 2 of Lyu [4] for an
account of dependability during the operational
phase.

12.3 Black-box Software
Reliability Models

In this section, only dynamic models will be
discussed. That is, we are only concerned with
models that consider the failure process as a
stochastic process. In other words, time is an
essential component of the description of the
models. On the other hand, static models are
essentially capture–recapture models. For a good
account of static models, we refer to Chapter 5
of Xie [12] and to Pham [6]. A recent evaluation
of capture–recapture models in the software
engineering context is that of Briand et al. [13].
Our overview of dynamic models closely follows
Chapter 2 of Gaudoin [1], Singpurwalla and
coworkers [2, 14], and Snyder and Miller [15]. We
assume throughout this section that any corrective
action is instantaneous and each detected fault is
removed.

A basic way to represent time evolution in
confidence in software is as follows. At instant
zero, the first failure occurs at time t1 according
a random variable X1 = T1 with hazard rate r1.
Given time T1 = t1, we observe a second failure at
time t2 at rate r2. Function r2 is the hazard rate
of the inter-failure random variable X2 = T2 − T1

216 Software Reliability

given T1 = t1. The choice of r2 is based on the fact
that one fault was detected at time t1. At time t2,
a third failure occurs at t3 with failure rate r3.
Function r3 is the hazard rate of the random
variable X3 = T3 − T2 given T1 = t1, T2 = t2 and
is selected according to the “past” of the failure
process at time t2: two observed failures at times t1
and t2. And so on. It is expected that, due to a
fault removal activity, confidence in the software’s
ability to deliver a proper service will be improved
during its life cycle. Therefore, a basic model in
SR has to capture the phenomenon of reliability
growth. Reliability growth will basically follow
from a sequence of inequalities of the following
form

ri+1(t − ti)≤ ri (ti) on t ≥ ti (12.1)

and/or from selection of decreasing hazard
rates ri (·). We illustrate this “modeling process” on
the celebrated Jelinski–Moranda model (JM) [16].
We assume a priori that software includes only a
finite number N of faults. The first hazard rate is
r1(t; φ, N)= φN , where φ is some non-negative
parameter. From time T1 = t1, a second failure
occurs with the constant failure rate r2(t; φ, N)=
φ(N − 1), In a more formal setting, the
two parameters N and φ will be encompassed in
what we call a background history F0, which is
any background information that we may have
about the software. Then “the failure rate” of the
software is represented by the function

∀t ≥ 0,

rC(t; F0)=
+∞∑
i=1

ri (t − Ti−1; F0)1[Ti−1,Ti [(t)

(12.2)

which is called the concatenated failure rate
function by Singpurwalla and Wilson [2]. An
appealing graphical display of a path of this
stochastic function is given in Figure 12.1 for the
JM model. We can rewrite Equation 12.2 as

λ(t; F0, N(t), T1, . . . , TN(t))= φ[N −N(t)]
(12.3)

Function λ(·) will be called the stochastic intensity
of the point process N(·). We see that the stochas-
tic intensity for the JM model is proportional to

Figure 12.1. Concatenated failure rate function for (JM)

the residual number of bugs at any time t and each
detection of failure results in a failure rate whose
value decreases by an amount φ. This suggests that
no new fault is inserted during a corrective action
and any bug contributes in the same manner to the
“failure rate” of the software.

To go further, we replace our intuitive presen-
tation in a stochastic modeling framework. Justifi-
cation for what follows is that almost all published
software reliability models can be interpreted in
the foregoing framework. Specifically, this allows
a complete overview of the stochastic properties of
the panoply of available models without referring
to their original presentations.

12.3.1 Self-exciting Point Processes

A slightly more formal presentation of the
previous construction of the point process (Ti)

would be that we have to specify all the conditional
distributions

L(Xi | F0, Ti−1, . . . T1), i ≥ 1

The sequence of conditioning F0, {F0, T1},
{F0, T1, T2}, . . . should be thought of as the
natural or internal history on the point process at
times 0, T1, T2, . . . respectively. Thus, function ri
is the hazard rate of the conditional distribution
L(Xi | F0, Ti−1, . . . , T1), i.e. when it has a p.d.f.

ri (t; F0, Ti−1, . . . , T1)= fXi |F0,Ti−1,...,T1(t)

RXi |F0,Ti−1,...,T1(t)

(12.4)

Software Reliability Modeling 217

This leads to the following expression of the
stochastic intensity:

λ(t; F0, N(t), T1, . . . , TN(t))

=
+∞∑
i=1

fXi |F0,Ti−1,...,T1(t − Ti−1)

RXi |F0,Ti−1,...,T1(t − Ti−1)
1[Ti−1,Ti [(t)

(12.5)

If we turn back to the JM model, we have F0 =
{φ, N} and

fXi |F0,Ti−1,...,T1(t)

= φ[N − (i − 1)] exp{−φ[N − (i − 1)]t}
× 1[0,+∞[(t)

Continuing in this way, this should lead to
the martingale approach for analyzing a point
process, which essentially adheres to the concepts
of compensator and stochastic intensity with
respect to the internal history of the counting
process. In particular, the left continuous version
of the stochastic intensity defined in Equation 12.5
may be thought of as the usual predictable
intensity of a point process in the martingale point
of view (e.g. see Theorem 11 of [17] and references
cited therein). Van Pul [18] gives a good account
of what can be done using the so-called dynamic
approach of a point process. We do not go into
further details here. We prefer to embrace the
engineering point of view developed by Snyder
and Miller [15].

It is clear from Equation 12.5 that the stochastic
intensity is excited by the history of the point
process itself. Such a stochastic process is usually
called a self-exciting point process (SEPP). What
follows is from Gaudoin [1], Singpurwalla and
Wilson [2], and Snyder and Miller [15].

1. Ht = {N(t), T1, . . . , TN(t)} will denote the
internal history of N(·) up to time t .

2. N(·) is said to be conditionally orderly if, for
any Qt ⊆Ht , we have

P{N(t + dt)−N(t) ≥ 2 | F0, Qt }
= P{N(t + dt)− N(t)= 1 | F0, Qt }O(dt)

where O(dt) is some real-valued function
such that limdt→0 O(dt)= 0.

With Qt = ∅ and Equation 12.6 we get P{N(t +
dt)− N(t) ≥ 2 | F0} = o(dt), where o(dt) is some
real-valued function such that limdt→0 o(dt)/dt =
0. This is the usual orderliness or regular property
of a point process [11]. Conditional orderliness
is to be interpreted as saying that, given Qt and
F0, as dt decreases to zero, the probability of at
least two failures occurring in a time interval of
length dt tends to zero at a rate higher than the
probability that exactly one failure in the same
interval does.

Definition 1. A point process N(·) is called an
SEPP if:

1. N(·) is conditionally orderly;
2. there exists a non-negative function

λ(·; F0,Ht) such that

P{N(t + dt)−N(t) = 1 | F0,Ht }
= λ(t; F0,Ht) dt + o(dt) (12.6)

and E[λ(t; F0,Ht)]<+∞ for any t > 0;
3. P{N(0)= 0 | F0} = 1.

Function λ is called the stochastic intensity of the
SEPP.

We must think of λ(t; F0,Ht) as a function
of F0, t , and N(t), T1, . . . , TN(t). The degree to
which λ(t) depends on Ht is formalized in the
notion of memory. An SEPP is of m-memory, if:

• for m= 0: λ(·) depends on Ht only through
N(t), the number of observed failures at
time t ;
• for m= 1: λ(·) depends on Ht only through

N(t) and TN(t);
• for m≥ 2: λ(·) depends on Ht only through

N(t), TN(t), . . . , TN(t)−m+1;
• for m=−∞: λ(·) is independent of the

history Ht of the point process. We also say
that the stochastic intensity has no memory.

When stochastic intensity depends only on a
background history F0, then we get a doubly
stochastic Poisson process (DSPP). Thus, the class
of SEPP also encompasses the family of Poisson
processes. If intensity is a non-random constant λ,
we have the homogeneous Poisson process (HPP).

218 Software Reliability

An SEPP with no memory and a deterministic
intensity function λ(·) is a non-homogeneous
Poisson process (NHPP). In particular, if we turn
back to the concatenated failure rate function
(see Equation 12.2), then selecting an NHPP
model corresponds to selecting some continuous
deterministic function as rC. We see that, given
Ti = ti , the hazard rate of Xi+1 is ri+1(·)= rC(· +
ti)= λ(· + ti). We retrieve a well-known fact for
an NHPP: the (conditional) hazard rate between
the ith and the i + 1th failure times and the
intensity function λ(·) only differs through the
initial time of observation of the two functions.
We now list the properties of an SEPP [15]
that are of some value for analyzing the main
characteristics of models. We will omit writing
about the dependence in F0.

12.3.1.1 Counting Statistics for a
Self-exciting Point Process

The probability distribution of random vari-
able N(t) is strongly related to the conditional
expectation

λ̂(t;N(t)) = E[λ(t;Ht) |N(t)]
This function is called the count-conditional
intensity. For an SEPP, λ̂(·;N(t)) satisfies

λ̂(t; N(t))

= lim
dt→0

P{N(t + dt)− N(t)= 1 | N(t)}
dt

= lim
dt→0

P{N(t + dt)− N(t) ≥ 1 |N(t)}
dt

.

Then we can obtain the following explicit repre-
sentation for P{N(t)= n} with n≥ 1:

P{N(t)= n} =
∫

0<t1<···<tn<t

n∏
i=1

λ̂(ti; i − 1)

× exp

[
−

n∑
i=0

∫ ti+1

ti

λ̂(u; i) du

]
dt1 . . . dtn

(12.7)

with t0 = 0 and tn+1 = t .
ROCOF(t), defined as the derivate of M(t), is

then

ROCOF(t)= E[λ̂(t;N(t))] = E[λ(t;Ht)]

We see that the notion of ROCOF(t) and
stochastic intensity coincide only if intensity is
a deterministic function of time, i.e. the point
process is an NHPP.

12.3.1.2 Likelihood Function for a
Self-exciting Point Process

Assume that we observe a fixed number i of
failures. Then the likelihood function is

fT1,...,Ti (t1, . . . , ti)

= λ(t1; 0)
i∏

k=2

λ(tk; k − 1, t1, . . . , tk−1)

× exp

[
−
∫ t1

0
λ(s; 0) ds

−
i∑

k=2

∫ tk

tk−1

λ(s; k − 1, t1, . . . , tk−1) ds

]
(12.8)

If we observe the failure process up to time t ,
the joint distribution of N(t), T1, . . . , TN(t) is
given by Theorem 6.2.2 in [15].

12.3.1.3 Reliability and Mean Time to
Failure Functions

Rt (s)

= exp

[
−
∫ t+s

t

λ(u; N(t), T1, . . . , TN(t)) du

]
In particular, at instant Ti we obtain

Ri(s)=

exp

[
−
∫ s

0
λ(u; 0) du

]
if i = 0

exp

[
−
∫ Ti+s

Ti

λ(u; i, T1, . . . , Ti) du]
if i ≥ 1.

The following characterization of 0-memory
SEPP is intuitively clear from the definition of the
stochastic intensity of an SEPP.

Theorem 1. N(·) is an SEPP with 0-memory is
equivalent to N(·) is a Markov process.

Software Reliability Modeling 219

This result explains why a very large part of SR
models may be developed in a Markov framework
(e.g. see Xie [12], and Musa et al. [3] chapter 10).
In particular, all NHPP models are of Markov type.
In fact, it can be shown [15] that an SEPP with m-
memory corresponds to a process (Ti) that is an
m-order Markov chain, i.e. L(Ti+1 | Ti, . . . , T1)=
L(Ti+1 | Ti, . . . , Ti−m+1) for i ≥m.

A final relevant result is concerned with 1-
memory SEPP.

Theorem 2. A 1-memory SEPP with a stochastic
intensity satisfying

λ(t; N(t), TN(t))= f (N(t), t − TN(t))

for some real-valued function f , is characterized by
a sequence of independent inter-failure durations
(Xi). In this case, the density probability function
of Xi is

fXi (xi)= f (i − 1; xi) exp

[
−
∫ xi

0
f (i − 1; u) du

]
(12.9)

Such an SEPP was called a generalized renewal
process [19] because Ti is the sum of independent
but not identically distributed random variables.
Moreover, it is an usual renewal process when
function f does not depend on N(t).

To close this presentation of self-exciting
processes, we point out that we only use a
“constructive” point of view. Our purpose, here,
is not to discuss the existence of point processes
with a fixed concatenated failure rate function
or stochastic intensity. However, we emphasize
that the orderliness condition and the existence
of the limit in Equation 12.6 in Definition 1
are enough to specify the point process (e.g. see
Cox and Isham [20]). It is also shown by
Chen and Singpurwalla [14] (Theorem 4.1)
that, under the conditional orderliness condition,
the concatenated failure rate function well-
defines an SEPP with respect to the operational
Definition 1. Moreover, an easily checked criterion
for conditional orderliness is given by Chen and
Singpurwalla [14] (Theorem 4.2). In particular,
if the hazard rates in Equation 12.4 are locally
bounded then conditional orderliness holds.

12.3.2 Classification of Software
Reliability Models

We obtain from the concept of memory for an
SEPP a classification of the existing models. It is
appealing to define a model with a high memory.
But, as usual, the pay-off is the complexity in the
statistical inference and the amount of data to be
collected.

12.3.2.1 0-Memory Self-exciting Point
Process

The first type of 0-memory SEPP is when
λ(t;Ht , F0)= f (N(t), F0). We obtain the major
common properties of this first class of models
from Section 12.3.1.

• N(·) is a Markov process (a pure birth Markov
process).
• (Xi) are independent (given F0). From Equa-

tion 12.9, random variableXi has an exponen-
tial distribution with parameter f (i − 1, F0).
This easily gives a likelihood function given
inter-failure durations (Xi).
• Ti =∑i

k=1 Xk is a hypoexponential dis-
tributed random variable as the sum of i in-
dependent and exponentially distributed ran-
dom variables [21].
• Rt (s)= exp[−f (N(t), F0)s]. The reliability

function only depends on the current num-
ber of failures N(t). We have MTTF(t)=
1/f (N(t), F0).

Example 1. (JM) The Jelinski–Moranda model
was introduced in Section 12.3. This model has
to be considered as a benchmark model, since
all authors designing a new model emphasize
that their model includes the JM model as a
particular case. The stochastic intensity is given
in Equation 12.3 (see Figure 12.1 for a path).
Besides the properties common to the class of
SEPP considered in this subsection, we have the
following additional assumptions: the software
includes a finite N of bugs in the program
and no new fault is inserted during debugging.
We also noted that each fault has the same
contribution to the unreliability of the software.

220 Software Reliability

These assumptions are generally considered
as questionable. We derive from Equation 12.7
that the distribution of random variable N(t) is
binomial with parameters N and 1− exp(−φt).
The main reliability metrics are:

ROCOF(t)= Nφ exp(−φt)
MTTFi = 1

N − iφ

Ri(s)= exp(−(N − iφ)s) (12.10)

We also mention the geometric model of
Moranda [22], where the stochastic intensity is
λ(t;Ht , λ, c)= λcN(t) where λ≥ 0 and c ∈]0, 1[.

A second class of 0-memory SEPP is when the
stochastic intensity is actually a function of time t ,
N(t) (and F0). In fact, we only have in this cat-
egory of models SEPP with λ(t;Ht , F0)= [N −
N(t)]ϕ(t) for some deterministic function ϕ(·) of
time t . Note that ϕ(t)= φ gives (JM).

• N(·) is a Markov process.
• Let us denote

∫ t
0 ϕ(s) ds by �(t). We deduce

from Equation 12.7 that N(t) is a binomi-
ally distributed random variable with parame-
ters N and p(t)= 1− exp[−�(t)]. This leads
to the term binomial-type model in [23]. It fol-
lows that E[N(t)] =Np(t) and ROCOF(t)=
Nϕ(t) exp[−�(t)].
• Rt(s)= exp{−[N −N(t)][�(s + t)−�(t)]}.
• We get the likelihood function given failure

times (Ti) from Equation 12.8

fT1,...,Ti (t1, . . . , ti)

= N !
(N − i)! exp[−(N − i)�(ti)]

×
i∏

j=1

ϕ(tj) exp[−�(tj)]

• The p.d.f. of random variable Ti is fTi (ti)=
i
(
N
i

)
exp[−�(ti)]ϕ(ti){exp[−�(ti)] − 1}i−1.

Littlewood’s model [24] is an instance of a
binomial model with ϕ(t)= α/(β + t) and
α, β > 0.

12.3.2.2 Non-homogeneous Poisson
Process Model: λ(t;Ht , F0)= f (t; F0)

and is Deterministic

A large number of models are of the NHPP type.
Refer to Osaki and Yamada [25] and chapter 5
of Pham [6] for a complete list of such models.
The very appealing properties of the counting
process explain the wide use of this family of point
processes in SR modeling.

• N(·) is a Markov process.
• We deduce from Definition 1 that, for any t ,

N(t) is a Poisson distributed random vari-
able with parameter
(t)= ∫ t0 f (s; F0) ds.
In fact, N(·) has independent (but non-
stationary) increments, i.e. N(t1), N(t2)−
N(t1), . . . , N(ti)−N(ti−1) are independent
random variables for any (t1, . . . , ti).
• The mean value function M(t) is
(t). Then

ROCOF(t)= f (t; F0). Such a model is called
a finite NHPP model ifM(+∞) <+∞ and an
infinite one when M(+∞)=+∞. Indeed, if
M(+∞) <+∞ then we only consider a finite
number of failure times with probability of
one.
• Rt (s)= exp{−[
(t + s)−
(t)]}.
• Likelihood function given failure times (Ti) is

from Equation 12.8

fT1,...,Ti (t1, . . . , ti)

= exp[−
(ti)]
i∏

k=1

f (tk, F0) (12.11)

Example 2. (GO) This model is characterized by
the following mean value function and in-
tensity function:
(t)=M[1− exp (−φt)] and
λ(t; φ, M)=Mφ exp(−φt) for t ≥ 0. Parameters
φ and M are the failure rate per fault and the
finite expected (initial) number of faults con-
tained in the software respectively. We see that,
at any time t , the intensity function is propor-
tional to the expected remaining number of faults
λ(t; φ, M)= φ[M −
(t)]. Thus, (GO) is essen-
tially an NHPP version of (JM).

Software Reliability Modeling 221

Example 3. (MO) For the Musa–Okumoto model
[3], the mean value function and intensity func-
tion are
(t)= ln (λθt + 1)/θ and λ(t; θ, λ)=
λ/(λθt + 1) respectively. λ is the initial value
of the intensity function and θ is called the
failure intensity decay parameter. It is easily
seen that λ(t; θ, λ)= λ exp[−θ
(t)]. Thus, the
intensity function decreases exponentially with
the expected number of failures and shows that
(MO) may be understood as an NHPP version of
Moranda’s geometric model.

As noted by Littlewood [26], using an NHPP
model may appear inappropriate to describe
reliability growth of software. Indeed, this is
debugging that modifies the reliability. Thus,
the true intensity function probably changes
in a discontinuous manner during corrective
actions. However, Miller [27] showed that the
binomial-type model of Section 12.3.2.1 may be
transformed in an NHPP variant assuming that
the initial number of faults is a Poisson distributed
random variable with expectation N . For instance,
(JM) is transformed into (GO). Moreover, Miller
showed that the binomial-type model and its
NHPP variant are indistinguishable from a single
realization of the failure process. But these two
models differ as a prediction model because the
estimates of parameters are different.

12.3.2.3 1-Memory Self-exciting Point
Process with
λ(t;Ht , F0)= f (N(t), t − TN(t), F0)

N(·) is not Markovian. But the inter-failure
durations (Xi) are independent random variables
givenF0 (see Theorem 2) and the p.d.f. of random
variable Xi is given in Equation 12.9.

Example 4. (LV) The stochastic intensity of the
Littlewood–Verrall model [28] is

λ(t;Ht , α, ψ(·))= α

ψ[N(t) + 1] + t − TN(t)

(12.12)
for some non-negative function ψ(·). We briefly
recall the Bayesian rationale underlying the
definition of this model. Uncertainty about the
debugging operation is represented by a sequence

Figure 12.2. A path of the stochastic intensity for (LV)

of stochastically decreasing failure rates (
i)i≥1,
i.e.

j ≤st
j−1

i.e. (∀t ∈ R : P{
j ≤ t} ≥ P{
j−1 ≤ t}) (12.13)

Thus, using stochastic order allows a decay of
reliability that takes place when faults are inserted.
The prior distribution of random variable
i is
Gamma with parameters α and ψ(i). It can be
shown that the inequality of Equation 12.13 holds
when ψ(·) is a monotonic increasing function
of i. Given
i = λi , random variable Xi has an
exponential distribution with parameter λi . The
unconditional distribution of random variable Xi

is a Pareto distribution with p.d.f.

f (xi; α, ψ(i))= αψ(i)α

[xi + ψ(i)]α+1

Thus, the “true” hazard rate of Xi is
ri (t; α, ψ(i))= α/[t + ψ(i)]. Mazzuchi and
Soyer [29] estimated parameters α and ψ using
a Bayesian method. The corresponding model is
called a hierarchical Bayesian model [2] and is
also a 1-memory SEPP. If ψ(·) is linear in i, we
have

Ri(t)=
[

ψ(i + 1)

t + ψ(i + 1)

]α
, MTTFi = ψ(i + 1)

α − 1

We also mention the Schick–Wolverton’s
model [30], where λ(t;Ht , �, N)=
φ[N −N(t)](t − TN(t)) and φ > 0, N are the
same parameters as for (JM).

12.3.2.4 m≥ 2-Memory

Instances of such models are rare. For m= 2, we
have the time-series models of Singpurwalla and

222 Software Reliability

Soyer [31, 32]. For m> 2, we have the adaptive
concatenated failure rate model of Al-Mutairi
et al. [33] and the Weibull models of Pham and
Pham [34]. We refer the reader to the original
contributions for details.

12.4 White-box Modeling

Most work on SR assessment adopts the black-box
view of the system, in which only the interactions
with the environment are considered. The white-
box (or structural) point of view is an alternative
approach in which the structure of the system is
explicitly taken into account. This is advocated
for instance by Cheung [35] and Littlewood [36].
Specifically, the structure-based approach allows
one to analyze the sensitivity of the reliability of
the system with respect to the reliability of its
components. Up to recently, only a few papers pro-
posed structure-based SR models. Representative
samples can be found for discrete time [35,37,38],
and continuous time [19,36,39,40]. An up-to-date
review on the architecture-based approach is
given by Goseva-Popstojanova and Trivedi [41].
We will present the main features of the basic
Littlewood model that are common to most previ-
ous cited works. The discrete time counterpart is
Cheung’s model (see Ledoux and Rubino [42]).

In a first step, Littlewood defines an execution
model of the software. The basic entity is the
standard software engineering concept of module,
e.g. see Cheung [35]. The software structure is
then represented by the call graph of the set M of
the modules. These modules interact by execution
control transfer and, at each instant, control lies in
one and only one of the modules, which is called
the active module. From such a view of the system,
we build up a continuous time stochastic process
(Xt)t≥0 that indicates the active module at each
time t . (Xt)t≥0 is assumed to be a homogeneous
Markov process on the set M.

In a second step, Littlewood describes the fail-
ure processes associated with execution actions.
Failure may happen during a control transfer be-
tween two modules or during an execution period
of any module. During a sojourn of the execution

process in the module i, failures are part of a
Poisson process having parameter λi . When con-
trol is transferred from module i ∈M to mod-
ule j ∈M, a failure may happen with probability
µ(i, j). Given a sequence of executed modules,
the failure processes associated with each state
are independent. Also, the interface failure events
are independent of each other and of the fail-
ure processes occurring when a module is ac-
tive.

The architecture of the software is combined
with the failure behavior of the modules and
that of interfaces into a single model which
can then be analyzed. This method is referred
to as the “composite-method” according to the
classification of Markov models in the white-box
approach proposed by Goseva-Popstojanova and
Trivedi [41]. Basically, we are still interested in the
counting process N(·).

Another interesting point process is obtained
by assuming that the probability of a secondary
failure during a control transfer is zero. Thus,
assuming that µ(i, j)= 0 for all i, j ∈M in
the previous context, we get a Poisson process
whose parameter is modulated by the Markov
process (Xt)t≥0. This is also called a Markov
modulated Poisson process (MMPP). It is well
known (e.g. [17]) that the stochastic intensity of
an MMPP with respect to the history Ht ∨ F0,
where F0 = σ(Xs, s ≥ 0), is λXt . Thus, N(·) is an
instance of a DSPP.

Asymptotic analysis and transient assessment
of distribution of random variable N(t) may be
carried out in observing that the bivariate process
(Xt , N(t))t≥0 is a jump Markov process with
state space M×N. Computation of all standard
reliability metrics may be performed as in [42,43].
We refer the reader to these papers for details and
for calibration of the models.

It can be argued that models of the Littlewood
type are inappropriate to capture reliability
growth of the software. In fact, Laprie et al. [19]
have developed a method to incorporate such a
phenomenon; this can be used, for instance, in the
Littlewood model to take into account reliability
growth of modules in the assessment of the overall
reliability (see Ledoux [43]).

Software Reliability Modeling 223

In the original papers about Littlewood’s
model for modular software, it is claimed that if
failure parameters decrease to zero then N(·) is
asymptotically an HPP with parameter

λ=
∑
i∈M

π(i)

[∑
j∈M,j �=i

Q(i, j)µ(i, j)+ λi

]
whereQ is the irreducible generator of the Markov
process (Xt)t≥0 and π its stationary distribution.
π(i) is to be interpreted as the proportion of time
the software passed in module i (over a long time
period). We just discuss the case of an MMPP.
Convergence to zero of the failure parameters λi
(i ∈M) may be achieved in multiplying each of
them by a positive scalar ε, and in considering
that ε decreases to zero. Hence, the new stochastic
intensity of the MMPP is ελXt . As ε tends to
zero, it is easily seen from an MMPP with a
modulating two-states Markov process (Xt)t≥0
that, for the first failure time T , probability P{T >

t} converges to unity. Therefore, we cannot obtain
an exponential approximation to the distribution
of random variable T as ε tends to zero. Thus, we
cannot expect to derive a Poisson approximation
to the distribution of N(·). In fact, the correct
statement is: if failure parameters are much
smaller than the switching rates between modules,
N(·) is approximately an HPP with parameter λ.
For an MMPP, a proof is given by Kabanov
et al. [44] using martingale theory. Moreover, the
rate of convergence in total variation of finite
dimensional-distributions of N(·) to those of
the HPP is shown to be in ε. This last fact is
important, because the user has no information
on the quality of the Poissonian approximation
given in [36]. However, there is no rule to decide
a priori if the approximation is optimistic or
pessimistic (see Ledoux [43]). A similar approach
to Kabanov et al. [44] is used by Gravereaux and
Ledoux [45] to derive the Poisson approximation
and rate of convergence for a more general
point process than MMPP, including the complete
Littlewood’s counting process [46], the counting
model of Ledoux [43]. Such asymptotic results
give a “hierarchical-method” [41] for reliability
prediction: we solve the architectural model and

superimpose the failure behavior of the modules
and that of the interfaces on to the solution to
predict reliability.

12.5 Calibration of Model

Suppose that we have selected one of the black-
box models of Section 12.3. We obtain reliability
metrics that depend on the unknown parameters
of the model. Thus, we hate to estimate these
metrics from the failure data. We briefly review
standard methods to get point estimates in
Sections 12.5.1 and 12.5.2.

One major goal of the SR modeling is to pre-
dict the future value of metrics from the gathered
failure data. It is clear from Section 12.3 that a
central problem in SR is in selecting a model,
because of the huge number of models available.
Criteria to compare SR models are listed by Musa
et al. [3]. The authors propose quality of assump-
tions, applicability, simplicity, and predictive va-
lidity. To assess the predictive validity of models,
we need methods that are not just based on a
goodness-of-fit approach. Various techniques may
be used: u-plot, prequential likelihood, etc. We do
not discuss this issue here. Good accounts of pre-
dictive validation methods are given by Abdel-
Ghaly et al. [47], Brocklehurst et al. [48], Lyu [4]
(chapter 4), Musa et al. [3], Ascher and Fein-
gold [11], where comparisons between models are
also carried out. Note also that the predictive qual-
ity of an SR model may be drastically improved
by using preprocessing of data. In particular, sta-
tistical tests have been designed to capture trends
in data. Thus, reliability trend analysis allows the
use of SR models that are adapted to reliability
growth, stable reliability, and reliability decrease.
We refer the reader to Kanoun [49], and Lyu [4]
(chapter 10) and references cited therein for de-
tails. Parameters will be denoted by θ (it can be
multivariate).

12.5.1 Frequentist Procedures

Parameter θ is considered as taking an unknown
but fixed value. Two basic methods to estimate

224 Software Reliability

the value of θ are the method of maximum
likelihood (ML) and the least squares method.
That is, we have to optimize with respect to
θ an objective function that depends on θ and
collected failure data to get a point estimate.
Another standard procedure, interval estimation,
gives an interval of values as estimate of θ . We
only present point-estimation by the ML method
on (JM) and NHPP models. Others models may
be analyzed in a similar way. ML estimations
possess several appealing properties that make
the procedure widely used. Usually, two of these
properties are the consistency and the asymptotic
normality of obtaining a confidence interval for
the point estimate. Another one is that the ML
estimates of f (θ) (for a one-to-one function f) is
simply f (θ̂), where θ̂ is the ML estimate of θ . We
refer the reader to chapter 12 of Musa et al. [3]
for a complete view of the frequentist inference
procedures in an SR modeling context.

Example 5. (JM) Parameters are φ andN . Assume
that failure data are given by observed values x =
(x1, . . . , xi) of random variables X1, . . . , Xi . If
(φ, N) are the true values of parameters, then the
likelihood to observe x is defined as

L(φ, N; x)= fX1,...,Xi (x; φ, N) (12.14)

where fX1,...,Xi (·; φ, N) is the p.d.f. of the joint
distribution of X1, . . . , Xi . The estimate (φ̂, N̂)

of (φ, N) will be the value of (φ, N) that
maximizes the likelihood to observe data x:
(φ̂, N̂)= arg maxφ,N L(φ, N; x). Maximizing the
likelihood function is equivalent to maximizing
the log-likelihood function ln L(φ, N; x). From
the independence of random variables (Xi) and
Equation 12.14, we obtain that

ln L(φ, N; x)= ln
i∏

k=1

φ[N − (k − 1)]

× exp{−φ[N − (k − 1)]xk}

Estimates (φ̂, N̂) are solutions of ∂
∂φ

ln L(φ, N; x)
= ∂

∂N
ln L(φ, N; x)= 0:

φ̂ = i

N̂
∑i

k=1 xk −
∑i

k=1(k − 1)xk
i∑

k=1

1

N̂ − (k − 1)

= i

N̂ − (∑i
k=1 xk

)−1 ∑i
k=1(k − 1)xk

The second equation here may be solved by
numerical techniques and then the solution is put
into the first equation to get φ̂. These estimates are
plugged into Equation 12.10 to get ML estimates of
reliability metrics.

Example 6. (NHPP models) Assume that failure
data are t = (t1, . . . , ti) the observed failure
times. The likelihood function is given by
Equation 12.11. Thus, for the (MO) model, ML
estimates of parameters β0 and β1 (where β0 =
1/θ and β1 = λθ) are the solution of [3]:

β̂0 = i

ln(1+ β̂1ti)

1

β̂1

i∑
k=1

1

1+ β̂1tk
= iti

(1+ β̂1ti) ln(1+ β̂1ti)

Assume now that failure data are the cumula-
tive numbers of failures n1, . . . , ni at some in-
stants d1, . . . , di . The likelihood function is from
the independence and Poisson distribution of the
increments of the counting process N(·)

L(θ; t)=
i∏

k=1

[
θ(dk)−
θ(dk−1)]nk−nk−1

(nk − nk−1)!
× exp{−[
θ(dk)−
θ(dk−1)]}
(d0 = n0 = 0)

where
θ(·) is the mean value function of N(·)
given that θ is the true value of the parameter. For
the (GO) model, parameters areM and φ and their

Software Reliability Modeling 225

ML estimates are

M̂ = ni

1− exp(−φdi)
di exp(−φdi)ni
1− exp(−φdi)

=
i∑

k=1

{(nk − nk−1)[dk exp(−φdk)

− dk−1 exp(−φdk−1)]}
× {exp(−φdk−1)− exp(−φdk)}−1

The second equation here is solved by numerical
techniques and the solution is incorporated into
the first equation to get M̂ . Estimation of
reliability metrics are obtained as for (JM).

12.5.2 Bayesian Procedure

An alternative to frequentist procedures is to
use Bayesian statistics. Parameter θ is considered
as a value of a random variable �. A prior
distribution of � has to be selected. This
distribution represents the a priori knowledge on
the parameter and is assumed to have a p.d.f.
π�(·). Now, from the failure data x, we have
to update our knowledge on �. If L(θ; x) is
the likelihood function of the data, then Bayes
theorem is used as an updating formula: the p.d.f.
of the posterior distribution of � given data x is

f�|x(θ)= L(θ; x)π�(θ)∫
R
L(θ; x)π�(θ) dθ

Now, we find an estimate θ̂ of θ by minimizing the
so-called posterior expected loss∫

R

l(θ̂ , θ)f�|x(θ) dθ

where l(·, ·) is the loss function. With a quadratic
loss function l(θ̂ , θ)= (θ̂ − θ)2, it is well known
that the minimum is obtained by the conditional
expectation

θ̂ = E[� | x] =
∫
R

θf�|x(θ) dθ

It is just the mean of the posterior distribution
of �. Note that all SR models involve two or more

parameters, so that the previous integral must
be considered as multidimensional. Therefore,
computation of such integrals is by numerical
techniques. For a decade now, progress has been
made on such methods: e.g. Monte Carlo Markov
chain (MCMC) methods (e.g. see Gilks et al. [50]).

Note that the prior distribution can also be
parametric. In general, Gamma or Beta distribu-
tions are used. Hence, additional parameters need
to be estimated. This may be carried out by using
the ML method. For instance, this is the case for
function ψ(·) in the (LV) model [28]. However,
such estimates may be derived in the Bayesian
framework, and we obtain a hierarchical Bayesian
analysis of the model. Many of the models of
Section 12.3 have been analyzed from a Bayesian
point of view using MCMC methods like Gibbs
sampling, or the data augmentation method (see
Kuo and Yang [51] for (JM) and (LV); see Kuo and
Yang [52] for the NHPP model; see Kuo et al. [53]
for S-shaped models and references cited therein).

12.6 Current Issues

12.6.1 Black-box Modeling

We list some issues that are not new, but which
cover well-documented limitations of popular
black-box models. Most of them have been
addressed recently, and practical validation is
needed. We will see that the prevalent approach
is to use the NHPP modeling framework. Indeed,
an easy way to incorporate the various factors
affecting the reliability of software in an NHPP
model is to select a suitable parameterization
of the intensity function (or ROCOF). Any
alternative model combining most of these factors
will be of value.

12.6.1.1 Imperfect Debugging

The problem of imperfect debugging may be natu-
rally addressed in a Bayesian framework. Reliabil-
ity growth is captured through a deterministically
non-increasing sequence of failure rates (ri (·))
(see Equation 12.1). In a Bayesian framework,
parameters of ri (·) are considered as random.

226 Software Reliability

Hence, we can deal with stochastically decreasing
sequence of random variables (ri)i (see Equa-
tion 12.13), which allows one to take into account
the uncertainty on the effect of a corrective action.
An instance of this approach is given by the (LV)
model (see also Mazzuchi and Soyer [29], Pham
and Pham [34]).

Note that the binomial class of models can
incorporate a defective correction of a detected
bug. Indeed, assume that each fault detected
has a probability p to be removed from the
software. The hazard rate after (i − 1) repairs
is φ[N − p(i − 1)] (see Shanthikumar [23]). But
the problem of eventual introduction of new
faults is not addressed. Kremer [54] solved
the case of a single insertion using a non-
homogeneous birth–death Markov model. This
has been extended to multiple introductions by
Gokhale et al. [55]. Shanthikumar and Sumita [56]
proposed a multivariate model where multiple
removals and insertions of faults are allowed
at each repair. This model involved complex
computational procedures and is not considered
in literature. A recent advance in addressing the
problem of eventual insertion of new faults is
concerned with finite NHPP models. It consists
in generalizing the basic proportionality between
the intensity function and the expected number of
remaining faults at time t of the (GO) model (see
Example 2) in

λ(t)= φ(t)[n(t) −
(t)]

where φ(t) represents a time-dependent detection
rate of a fault; n(t) is the number of faults in
the software at time t , including those already
detected and removed and those inserted during
the debugging process (φ(t)= φ and n(t)=M

in (GO)). Making φ(·) time dependent allows
one to represent the phenomenon of the learning
process that is closely related to the changes
in the efficiency of testing. This function can
monotonically increase during the testing period.
Select a non-decreasing S-shaped curve, as φ(·)
gives an usual S-shaped NHPP model. Further
details are given by Pham [6] (chapter 5 and
references cited therein).

Another basic way to consider insertion of new
faults is to use a marked point process (MPP)
(e.g. see chapter 4 in Snyder and Miller [15]).
We have the point process of failure detection
times T1 < T2 < · · · , and with each date Ti we
associate a markMi that represents the cumulative
number of faults removed and inserted during
the debugging phase. We retrieve a usual point
process if all marks are unity. For such a model,
we are interested in the mark-accumulator process∑N(t)

i=0 Mi (M0 = 0). A basic instance of an MPP is
the compound Poisson process where N(·) is an
HPP and Mi values are i.i.d. and independent of
N(·). This may also be used to model clustering of
failures (see Sahinoglu [57]). Such MPPs are not
an SEPP of Section 12.3.1 because the orderliness
condition fails. This framework was used by
van Pul [18] to extend models of the (JM) type to
incorporate the possibility of inserting new faults
during repair.

12.6.1.2 Early Prediction of Software
Reliability

A major limitation of the SR models of Sec-
tion 12.3 for the software engineering commu-
nity is that they provide no help for managing
in the earlier phase of development (or testing)
of a product. Indeed, calibration of these black-
box models requires a relatively large set of fail-
ure data. This is rarely encountered in the ear-
lier life-cycle of software. In some sense, we are
now concerned with the general topic of software
quality assessment (which includes dependability
concepts) with no failure data. Thus, we have to
develop statistical models of quality that are not
directly related to the knowledge of a part of the
failure process. In such a case, the model must
be based on a priori information on the product:
judgment of experts, quality of the development
process, similar existing products, software com-
plexity, etc. Incorporating subjective information
leads naturally to Bayesian statistics. We refer
the reader to chapters 5 and 6 of Singpurwalla
and Wilson [2] for discussion in this context.

Software Reliability Modeling 227

Since we are mainly interested in reliability assess-
ment, we restrict ourselves to more and less re-
cent issues relying quality control to the software
reliability.

A widespread idea is that the complexity
of software is an influencing factor of the
reliability attributes. Much work has been devoted
to quantifying the software complexity through
software metrics (e.g. see Fenton [58]). Typically,
we compute Halstead and McCabe metrics, which
are program size and control flow measures
respectively. It is worthy of note that most
software complexity metrics are strongly related
to the concept of structure of software code.
Thus, including a complexity factor in SR may
be thought of as a first attempt to take into
account the architecture of the software in
reliability assessment. We turn back to this issue
in Section 12.6.2. Now, how do we include
complexity attributes in earlier reliability analysis?
Most of the recent research focuses on the
identification of software modules that are likely
fault-prone from data of various complexity
metrics. In fact, we are faced with a typical
problem of data analysis that explains why
literature on this subject is mainly concerned
with procedures of multivariate analysis: linear
and nonlinear regression methods, classification
methods, techniques of discriminant analysis.
We refer the reader to Lyu [4] (chapter 12)
and Khoshgoftaar and coworkers [59, 60] and
references cited therein for details.

Other empirical evidence suggests that the
higher the test coverage, then the higher the re-
liability of the software would be. Thus, a model
that incorporates information on functional test-
ing as soon as it is available is of value. This
issue is addressed in an NHPP model proposed by
Gokhale and Trivedi [61]. It consists in defining
an appropriate parameterization of a finite NHPP
model which relates software reliability to the
measurements that can be obtained from the code
during functional testing. Let a be the expected
number of faults that would be detected given
infinite time testing. The intensity function λ(·) is
assumed to be proportional to the expected num-
ber of remaining failures: λ(t) = [a −
(t)]φ(t),

where φ(t) is the hazard rate per fault. Finally, the
time-dependent function φ(t) is of the form

φ(t)= dc(t)/dt

1− c(t)

where c(t) is the coverage function. That is, the
ratio of the number of potential fault sites covered
by time t divided by the total number of potential
fault sites under consideration during testing.
Function c(t) is assumed to be continuous and
monotonic as a function of testing time. Specific
forms of function c(·) allow the retrieving of some
well-known finite failure models: the exponential
function c(t)= 1− exp(−φt) corresponds to the
(GO) model; the Weibull coverage function c(t)=
1− exp(−φtγ) corresponds to the generalized
(GO) model [62]; the S-shaped coverage function
corresponds to S-shaped models [25]; etc. Gokhale
and Trivedi [61] propose the use of a log-logistic
function; see that reference for details. Such a
parameterization leads to estimate a and the
parameters of function c(·). The model may
be calibrated according to the different phase
of the software life-cycle. Here, in the early
phase of testing, an approach is to estimate
a from software metrics (using procedures of
multivariate analysis) and measure coverage
during the functional testing using a coverage
measurement tool (e.g. see Lyu [4], chapter 13).
Thus, we get early prediction of reliability (see
Xie et al. [63] for an alternative using information
from testing phases of similar past projects).

12.6.1.3 Environmental Factors

Most SR models in Section 12.3 ignore the fac-
tors affecting software reliability. In some sense,
previous issues discussed in this section can be
considered as an attempt to capture some envi-
ronmental factors. Imperfect debugging is related
to the fact that new faults may be inserted during
a repair. The complexity attributes of software
are strongly correlated to its fault-proneness. Em-
pirical investigations show that the development
process, testing procedure, programmer skill, hu-
man factors, the operational profile and many
others factors affect the reliability of a product
(e.g. see Pasquini et al. [64], Lyu [4] (chapter 13),

228 Software Reliability

Özekici and Sofer [65], Zhang and Pham [66],
and references cited therein). A major issue is to
incorporate all these attributes into a single model.
At the present time, investigations focus on the
functional relationship between the hazard rate
ri(·) of the software and quantitative measures of
the various factors. In this context, a well-known
model is the so-called Cox proportional hazard
model (PHM), where ri (·) is assumed to be an
exponential function of the environmental factors:

ri (t)= r(t) exp

(n∑
j=1

βjzj (i)

)
(12.15)

where zj (·), called explanatory variables or
covariates, are the measures of the factors, and βj
are the regression coefficients. r(·) is a baseline
hazard rate that gives the hazard rate when all
covariates are set to zero. Therefore, given z =
(z1, . . . , zn), the reliability function Ri is

Ri(t | z)= R(t) exp

(n∑
j=1

βjzj (i)

)
(12.16)

with R(t) = exp(− ∫ t0 r(s) ds). Equation 12.15
expresses the effect of accelerating or decelerating
the time to failure given z. Note that covariates
may be time-dependent, random. In this last case
the reliability function will be the expectation
of the function in Equation 12.16. The baseline
hazard rate may be any of the hazard rates used
in Section 12.3. The family of parameters can
be estimated using ML. Note that one of the
reasons for the popularity of PHM is that the
unknown βj may be estimated by the partial
likelihood approach without putting a parametric
structure on the baseline hazard rate. We refer
the reader to Kalbfleisch and Prentice [67], Cox
and Oakes [68], Ascher and Feingold [11], and
Andersen et al. [69] for a general discussion
on Cox regression models. Applications of PHM
to software reliability modeling are given by
Xie [12] (chapter 7), Saglietti [70], Wright [71],
and references cited therein. Recently, Pham [72]
derived an enhanced proportional hazard (JM)
model.

A general way to represent the influence of
environmental factors on reliability is to assume

that the stochastic intensity of the counting
process N(·) is a function of some m stochastic
processes E1(t), . . . , Em(t) or covariates

λ(t;Ht , F0)

= f (t, E1(t), . . . , Em(t), T1, . . . , TN(t), N(t))

where Ht is the past up to time t of the point pro-
cess and F0 encompasses the specification of the
paths of all covariates. Thus, function λ(t;Ht , F0)

may be thought of as the stochastic intensity of
an SEPP driven or modulated by the multivariate
environmental process (E1(t), . . . , Em(t)). The
DSPP of Section 12.3.1 is a basic instance of such
models and has been widely used in communi-
cation engineering and in reliability. Castillo and
Siewiorek [73] proposed a DSPP with a cyclo-
stationary stochastic intensity to represent the
effect of the workload (measure of system us-
age) on failure process. That is, the intensity is a
stochastic process assumed to have periodic mean
and autocorrelation function. A classic form for
intensity of an DSPP is λ(Et), where (Et) is a finite
Markov process. This is the MMPP discussed in
Section 12.4, where (Et) represented the control
flow structure of the software. In the same spirit
of system in a random environment, Özekici and
Sofer [65] use a point process whose stochastic
intensity is [N −N(t)]λ(Et), where N − N(t) is
the remaining number of faults at time t and Et

is the operation performed by the system at t .
(Et) is also assumed to be a finite Markov process.
Transient analysis of N(·) may be carried out,
as in Ledoux and Rubino [42], from the Markov
property of the bivariate process (N −N(t), Et);
see Özekici and Sofer [65] for details. Note that
both point processes are instances of SEPP with
respective stochastic intensities E[λ(Et) |Ht] and
[N −N(t)]E[λ(Et) |Ht] (Ht is the past of the
counting process up to time t). The practical pur-
pose of such models has to be addressed. In partic-
ular, further investigations are needed to estimate
parameters (see Koch and Spreij [74]).

12.6.1.4 Conclusion

There are other issues that exist which are of value
in SR engineering. In the black-box modeling

Software Reliability Modeling 229

framework, we can think about alternatives to
the approaches reported in Section 12.3. The
problem of assessing SR growth may be thought
of as a problem of statistical analysis of data.
Therefore, prediction techniques developed in this
area of research can be used. For instance, some
authors have considered neural networks (NNs).
The main interest for such an SR model is to
be non-parametric. Thus, we rejoin discussion
on the statistical issues raised in Section 12.6.3.
NNs may also be used as a classification tool.
For instance, identifying fault-prone modules
may be performed with a NN classifier. See
Lyu [4] (chapter 17) and references cited therein
for an account of the NN approach. Empirical
comparison of the predictive performance of NN
models and recalibrated standard models (as
defined in [75]) is given by Sitte [76]. NNs are
found to be a good alternative to the standard
models.

Computing dependability metrics is not an end
in itself in software engineering. A major question
is the time to release the software. In particular,
we have to decide when to stop testing. Optimal
testing time is a problem of decision making
under uncertainty. A good account of Bayesian
decision theory for solving such a problem is given
by Singpurwalla and Wilson [2] (chapter 6). In
general, software release policies are based on
reliability requirement and cost factors. We do
not go into further details here. See Xie [12]
(chapter 8) for a survey up to 1990s, and Pham
and Zhang [77, 78] for more recent contributions
to these topics.

12.6.2 White-box Modeling

A challenging issue in SR modeling is to define
models taking into account information about
the architecture of the software. To go further,
software interacts with hardware to make a
system. In order to derive a model for a system
made up of software and hardware, the approach
to take is the white-box approach (see Kanoun [49]
and Laprie and Kanoun [79] for an account on
this topic). We focus on the software product here.

Many reasons lead to advocating a structure-based
approach in SR modeling:

• advancement and widespread use of object-
oriented systems designs. Reuse of compo-
nents;
• software is developed in a heterogeneous

fashion using components-based software
development;
• early prediction methods of reliability have to

take into account information on the testing
and the reliability of the components of the
software;
• early failure data are prior to the integration

phase and thus concern testing part of the
software, not the whole product;
• addressing problem of reliability allocation,

resource allocation for modular software;
• analyze sensitivity of the reliability of the

software to the reliability of its components.

As noted in Section 12.4, the structure-based ap-
proach has been largely ignored. The foundations
of the Markovian models presented in Section 12.4
are not new. Some limitations of Littlewood’s
model have been recently addressed [43], in par-
ticular to obtain availability measures. Asymptotic
considerations [45] show that such a reliability
model tends to be of the Poisson type (homo-
geneous or not depending on stationarity or not
of the failure parameters) when the product has
achieved a good level of reliability. It is important
to point out that no experience with such kinds of
models is reported in the literature. Maybe this is
related to questionable assumptions in the mod-
eling, such as the Markov exchanges of control
between modules.

An alternative way to represent the interactions
between components of software is to use one
of the available modeling tools which are based
on stochastic Petri nets, SAN networks, etc. But
whereas many of them offer a high degree of
flexibility in the representation of the behavior of
the software, the computation of various metrics is
very often performed using automatic generation
of a Markov chain. So these approaches are subject
to the traditional limitation of Markov modeling:
the failure rate of the components is not time

230 Software Reliability

dependent; the generated state-space is intractable
from the computational point of view; etc.

To overcome the limitations of an analytic
approach, a widespread method in performance
analysis of a system is discrete-event simulation.
This point of view was initiated by Lyu [4] (chap-
ter 16) for software dependability assessment. The
idea is to represent the behavior of each com-
ponent as a non-homogeneous Markov process
whose dynamic evolution only depends on a haz-
ard rate function. At any time t , this hazard rate
function depends on the number of failures ob-
served from the component up to time t , as well
as on the execution time experienced by the com-
ponent up to time t . Then a rate-based simula-
tion technique may be used to obtain a possible
realization of such a Markovian arrivals process.
The overall hazard rate of the software is actually
a function of the number of failures observed from
each component up to time t and of the amount of
execution time experienced by each component.
See Lyu [4] (chapter 16) and Lyu et al. [80] for
details. In some sense, the approach is to simulate
the failure process from the stochastic intensity of
the counting process of failures.

For a long time now, the theory of a “coherent
system” has allowed one to analyze a system
made up of n components through the so-called
structure function. If xi (i = 1, . . . , n) denotes the
state of component i (xi = 1 if component i is up
and zero otherwise), then the state of the system
is obtained from computation of the structure
function

�(x1, . . . , xn)=
{

1 if system is up

0 if system is down

Function � describes the functional relationship
between the state of the system and the state
of its components. Many textbooks on reliability
review methods for computing reliability from the
complex function � assuming that the state of
each component is a Bernoulli random variable
(e.g. see Aven and Jensen [17] (chapter 2)). An
instance of representation of a 2-module software
by a structure function taking into account control
flow and data flow is discussed by Singpurwalla
and Wilson [2] (chapter 7). This “coherent system”

approach is widely used to analyze the reliability
of communication networks. However, it is well
known that exact computation of reliability is
then an NP-hard problem. Thus, only structure
functions of a few dozens of components can
be analyzed exactly. Large systems have to be
assessed by Monte Carlo simulation techniques
(e.g. see Ball et al. [81] and Rubino [82]).
Moreover, in the case of fault-tolerant software,
we are faced with a highly reliable system that
involves sophisticated simulation procedures to
overcome the limitations of standard ones. In
such a context, an alternative consists in using
binary decision diagrams (see Lyu [4] (chapter 15)
and Limnios and Rauzy [83]). We point out
that structure function is mainly a functional
representation of the system. Thus, many issues
discussed in the context of black-box modeling
also have to be addressed. For instance, how do
you incorporate environmental factors identified
by Pham and Pham [34]?

As we can see, a great deal of research is
needed to obtain a white-box model that offers
the advantages motivating development of such
an approach. Opening the “black box” to get
accurate models is a hard task. Many aspects have
to be addressed: the definition of what is the
structure or architecture of software; what kind
of data can be expected for future calibration of
models, and so on. A first study of the potential
sources of SR data available during development
is given by Smidts and Sova [84]. This would
help the creation of some benchmark data sets,
which will allow validation of white-box models.
What is clear is that actual progress in white-box
modeling can only be achieved from an active
interaction between the statistics and software
engineering communities. All this surely explains
why the prevalent approach in SR is the black-box
approach.

12.6.3 Statistical Issues

A delicate issue in SR is the statistical properties of
the estimators used to calibrate models. The main
drawbacks of the ML method are well documented
in the literature. Finding ML estimators requires

Software Reliability Modeling 231

solving equations that may not always have a
solution, or which may give an inappropriate
solution. For instance, Littlewood and Verrall [85]
give a criterion for N̂ =∞ and φ̂ = 0 (with finite
non-zero λ̂= N̂ φ̂) to be the unique solution of
ML equations for the (JM) model. The problem
of solving ML equations in SR modeling has
also been addressed [86–89]. Another well-known
drawback is that such ML estimators are usually
unstable with small data sets. This situation
is basic in SR. Moreover, note that certain
models, like (JM), assume that software contains
a finite number of faults. So, using the standard
asymptotic properties of ML estimators may be
questionable. Such asymptotic results are well
known in the case of an i.i.d. sample. In SR,
however, samples are not i.i.d. That explains why
recent investigations on asymptotic normality
and consistency of ML estimators for standard
SR models use the framework of martingale
theory, which allows dependence in data. Note
that overcoming a conceptually finite (expected)
number of faults needs unusual concept of
asymptotic properties. A detailed discussion is
given by van Pul [18] (and references cited
therein) and by Zhao and Xie [88] for NHPP
models. Such studies are important, because
these asymptotic properties are the foundations
of interval estimation (a standard alternative to
point estimate), of the derivation of confidence
interval for parameters, of studies on asymptotic
variance of estimators, etc. All these topics must
be addressed in detail to improve the predictive
quality of SR models.

It is clear that any model works well with failure
data that correspond to the basic assumptions of
the model. But, given data, a large number of
models are inappropriate. A natural way to over-
come too stringent assumptions, in particular of
the distributional type, is to use non-parametric
models. However, the parametric approach re-
mains highly prevalent in SR modeling. A major
attempt to gap this fill was undertaken by Miller
and Sofer [90], where a completely monotonic
ROCOF is estimated by regression techniques (see
also Brocklehurst and Littlewood [91]). A recent
study by Littlewood and co-workers [92] uses

non-parametric estimates for the distribution of
inter-failure times (Xi). This is based on kernel
methods for p.d.f. estimation (see Silverman [93]).
The conclusion of the authors is that the results are
not very impressive but that more investigation is
needed, in particular using various kernel func-
tions. We can think, for instance, of wavelets [94].
A similar discussion may be undertaken with re-
gard to the Bayesian approach of SR modeling.
Specifically, most Bayesian inference for NHPP
assumes a parametric model for ROCOF and pro-
ceeds with prior assumption on the unknown
parameters. In such a context, an instance of a
non-parametric Bayesian approach has recently
been used Kuo and Ghosh [95]. Conceptually, the
non-parametric approach is promising, but it is
computationally intensive in general and is not
easy to comprehend.

These developments may be viewed as pre-
liminary studies using statistical methods based
on the so-called dynamic approach of counting
processes, as reported for instance in the book
by Andersen et al. [69] (the bibliography gives a
large account for research in this area). The pio-
neering work of Aalen was on the multiplicative
intensity model, which, roughly speaking, writes
the stochastic intensity associated with a counting
process as

λ(t;Ht , σ (Ys, s ≤ t))= λ(t) Y (t)

where λ(·) is a non-negative deterministic func-
tion, whereas Y (·) is a non-negative observable
stochastic process whose value at any time t

is known just before t (Y (·) is a predictable
process). Non-parametric estimation for such a
model is discussed by Andersen et al. [69], chap-
ter 4. A Cox-type model may be obtained in
choosing Y (t)= exp

(∑
j βjZj (t)

)
with stochas-

tic processes as covariates Zj (see Slud [96]).
We can also consider additive intensity models
when the multiplicative form involves multivariate
functions λ(·) and Y (·) (e.g. see Pijnenburg [97]).
Conceptually, this dynamic approach is appealing
because it is well supported by a lot of theoretic
results. It is worth noting that martingale theory
may be of some value for analyzing static models

232 Software Reliability

as capture–recapture models (see Yip and cowork-
ers [98, 99] for details). Thus, the applicability of
the dynamic point of view on point processes in
the small data set context of software engineering
is clearly a direction of further investigations (e.g.
see van Pul [18] for such an account). Moreover,
if it is shown that gain in predictive validity is
high with respect to standard approaches, then a
user-oriented “transfer of technology” must fol-
low. That is, friendly tools for using such statistical
material must be developed.

References
[1] Gaudoin O. Statistical tools for software reliability

evaluation (in French). PhD thesis, Université Joseph
Fourier–Grenoble I, 1990.

[2] Singpurwalla ND, Wilson SP. Statistical methods in
software engineering: reliability and risk. Springer; 1999.

[3] Musa JD, Iannino A, Okumoto K. Software reliability:
measurement, prediction, application. Computer Science
Series. McGraw-Hill International Editions; 1987.

[4] Lyu MR, editor. Handbook of software reliability
engineering. McGraw-Hill; 1996.

[5] Software reliability estimation and prediction handbook.
American Institute of Aeronautics and Astronautics;
1992.

[6] Pham H. Software reliability. Springer; 2000.
[7] Everett W, Keene S, Nikora A. Applying software

reliability engineering in the 1990s. IEEE Trans Reliab
1998;47:372–8.

[8] Ramani S, Gokhale SS, Trivedi KS. Software reliability
estimation and prediction tool. Perform Eval 2000;39:37–
60.

[9] Laprie J-C. Dependability: basic concepts and terminol-
ogy. Springer; 1992.

[10] Barlow RE, Proschan F. Statistical theory of reliability and
life testing. New York: Holt, Rinehart and Winston; 1975.

[11] Ascher H, Feingold H. Repairable systems reliability.
Lecture Notes in Statistics, vol. 7. New York: Marcel
Dekker; 1984.

[12] Xie M. Software reliability modeling. UK: World Scientific
Publishing; 1991.

[13] Briand LC, El Emam K, Freimut BG. A comprehensive
evaluation of capture-recapture models for estimating
software defect content. IEEE Trans Software Eng
2000;26:518–40.

[14] Chen Y, Singpurwalla ND. Unification of software
reliability models by self-exciting point processes. Adv
Appl Probab 1997;29:337–52.

[15] Snyder DL, Miller MI. Random point processes in time
and space. Springer; 1991.

[16] Jelinski Z, Moranda PB. Software reliability research.
In: Freiberger W, editor. Statistical methods for the

evaluation of computer system performance. Academic
Press; 1972. p.465–84.

[17] Aven T, Jensen U. Stochastic models in reliability.
Applications of Mathematics, vol. 41. Springer; 1999.

[18] Van Pul MC. A general introduction to software
reliability. CWI Q 1994;7:203–44.

[19] Laprie J-C, Kanoun K, Béounes C, Kaâniche M. The
KAT (knowledge–action–transformation) approach to
the modeling and evaluation of reliability and availability
growth. IEEE Trans Software Eng 1991;17:370–82.

[20] Cox DR, Isham V. Point processes. Chapman and Hall;
1980.

[21] Trivedi KS. Probability and statistics with reliability,
queuing and computer science applications. John Wiley
& Sons; 2001.

[22] Moranda PB. Predictions of software reliability during
debugging. In: Annual Reliability and Maintainability
Symposium 1975; p.327–32.

[23] Shanthikumar JG. Software reliability models: a review.
Microelectron Reliab 1983;23:903–43.

[24] Littlewood B. Stochastic reliability-growth: a model
for fault-removal in computer programs and hardware
designs. IEEE Trans Reliab 1981;30:313–20.

[25] Osaki S, Yamada S. Reliability growth models for
hardware and software systems based on nonhomoge-
neous Poisson processes: a survey. Microelectron Reliab
1983;23:91–112.

[26] Littlewood B. Forecasting software reliability. In: Bittanti
S, editor. Software reliability modeling and identification.
Lecture Notes in Computer Science 341. Springer; 1988.
p.141–209.

[27] Miller DR. Exponential order statistic models for
software reliability growth. IEEE Trans Software Eng
1986;12:12–24.

[28] Littlewood B, Verrall JL. A Bayesian reliability growth
model for computer software. Appl Stat 1973;22:332–46.

[29] Mazzzuchi TA, Soyer R. A Bayes empirical-Bayes model
for software reliability. IEEE Trans Reliab 1988;37:248–54.

[30] Schick GJ, Wolverton RW. Assessment of software
reliability. In: Operation Research. Physica-Verlag; 1973.
p.395–422.

[31] Singpurwalla ND, Soyer R. Assessing (software) relia-
bility growth using a random coefficient autoregressive
process and its ramification. IEEE Trans Software Eng
1985;11:1456–64.

[32] Singpurwalla ND, Soyer R. Nonhomogeneous autore-
gressive processes for tracking (software) reliability
growth, and their Bayesian analysis. J R Stat Soc Ser B
1992;54:145–56.

[33] Al-Mutairi D, Chen Y, Singpurwalla ND. An adaptative
concatenated failure rate model for software reliability. J
Am Stat Assoc 1998; 93:1150–63.

[34] Pham L, Pham H. Software reliability models with time-
dependent hazard function based on Bayesian approach.
IEEE Trans Syst Man Cyber Part A 2000;30:25–35.

[35] Cheung RC. A user-oriented software reliability model.
IEEE Trans Software Eng 1980;6:118–25.

[36] Littlewood B. Software reliability model for modular
program structure. IEEE Trans Reliab 1979;28:241–6.

Software Reliability Modeling 233

[37] Siegrist K. Reliability of systems with Markov transfer of
control. IEEE Trans Software Eng 1988;14:1049–53.

[38] Kaâniche M, Kanoun K. The discrete time hyperexpo-
nential model for software reliability growth evaluation.
In: International Symposium on Software Reliability (IS-
SRE), 1992; p.64–75.

[39] Littlewood B. A reliability model for systems with Markov
structure. Appl Stat 1975;24:172–7.

[40] Kubat P. Assessing reliability of modular software. Oper
Res Lett 1989;8:35–41.

[41] Goseva-Popstojanova K, Trivedi KS. Architecture-based
approach to reliability assessment of software systems.
Perform Eval 2001;45:179–204.

[42] Ledoux J, Rubino G. Simple formulae for counting
processes in reliability models. Adv Appl Probab
1997;29:1018–38.

[43] Ledoux J. Availability modeling of modular software.
IEEE Trans Reliab 1999;48:159–68.

[44] Kabanov YM, Liptser RS, Shiryayev AN. Weak and strong
convergence of the distributions of counting processes.
Theor Probab Appl 1983;28:303–36.

[45] Gravereaux JB, Ledoux J. Poisson approximation for some
point processes in reliability. Technical report, Institut
National des Sciences Appliquées, Rennes, France, 2001.

[46] Ledoux J. Littlewood reliability model for modular
software and Poisson approximation. In: Mathematical
Methods for Reliability, June, 2002; p.367–370.

[47] Abdel-Ghaly AA, Chan PY, Littlewood B. Evaluation of
competing software reliability predictions. IEEE Trans
Software Eng 1986;12:950–67.

[48] Brocklehurst S, Kanoun K, Laprie J-C, Littlewood B,
Metge S, Mellor P, et al. Analyses of software failure
data. Technical report No. 91173, Laboratoire d’Analyse et
d’Architecture des Systèmes, Toulouse, France, May 1991.

[49] Kanoun K. Software dependability growth: characteriza-
tion, modeling, evaluation (in French). Technical report
89.320, LAAS, Doctor ès Sciences thesis, Polytechnic Na-
tional Institute, Toulouse, 1989.

[50] Gilks WR, Richardson S, Spiegelhalter DJ, editors.
Markov Chain Monte Carlo in practice. Chapman and
Hall; 1996.

[51] Kuo L, Yang TY. Bayesian computation of software
reliability. J Comput Graph Stat 1995;4:65–82.

[52] Kuo L, Yang TY. Bayesian computation for nonhomoge-
neous Poisson processes in software reliability. J Am Stat
Assoc 1996;91:763–73.

[53] Kuo L, Lee JC, Choi K, Yang TY. Bayes inference for s-
shaped software-reliability growth models. IEEE Trans
Reliab 1997;46:76–80.

[54] Kremer W. Birth–death and bug counting. IEEE Trans
Reliab 1983;32:37–47.

[55] Gokhale SS, Philip T, Marinos PN. A non-homogeneous
Markov software reliability model with imperfect repair.
In: International Performance and Dependability Sympo-
sium, 1996; p.262–70.

[56] Shanthikumar JG, Sumita U. A software reliability model
with multiple-error introduction and removal. IEEE
Trans Reliab 1986;35:459–62.

[57] Sahinoglu H. Compound-Poisson software reliability
model. IEEE Trans Software Eng 1992;18:624–30.

[58] Fenton NE, Pfleeger SL. Software metrics: a rigorous
and practical approach, 2nd edn. International Thomson
Computer Press; 1996.

[59] Khoshgoftaar TM, Allen EB, Wendell DJ,
Hudepohl JP. Classification-tree models of software-
quality over multiple releases. IEEE Trans Reliab
2000;49:4–11.

[60] Khoshgoftaar TM, Allen EB. A practical classification-
rule for software-quality models. IEEE Trans Reliab
2000;49:209–16.

[61] Gokhale SS, Trivedi KS. A time/structure based software
reliability model. Ann Software Eng 1999;8:85–121.

[62] Goel AL. Software reliability models: assumptions,
limitations, and applicability. IEEE Trans Software Eng
1985;11:1411–23.

[63] Xie M, Hong GY, Wohlin C. A practical method for the
estimation of software reliability growth in the early
stage of testing. In: International Symposium on Software
Reliability (ISSRE), 1997; p.116–23.

[64] Pasquini A, Crespo AN, Matrella P. Sensitivity of
reliability-growth models to operational profile errors vs.
testing accuracy. IEEE Trans Reliab 1996;45:531–40.

[65] Özekici S, Soyer R. Reliability of software with an
operational profile. Technical report, The George Wash-
ington University, Department of Management Science,
2000.

[66] Zhang X, Pham H. An analysis of factors affecting
software reliability. J. Syst Software 2000; 50:43–56.

[67] Kalbfleisch JD, Prentice RL. The statistical analysis of
failure time data. Wiley; 1980.

[68] Cox CR, Oakes D. Analysis of survival data. London:
Chapman and Hall; 1984.

[69] Andersen PK, Borgan O, Gill RD, Keiding N. Statistical
models on counting processes. Springer Series in
Statistics. Springer; 1993.

[70] Saglietti F. Systematic software testing strategies as ex-
planatory variables of proportional hazards. In SAFE-
COMP’91, 1991; p.163–7.

[71] Wright D. Incorporating explanatory variables in soft-
ware reliability models. In Second year report of PDCS,
vol. 1. Esprit BRA Project 3092, May 1991.

[72] Pham H. Software reliability. In: Webster JG, editor. Wiley
Encyclopedia of Electrical and Electronics Engineering.
Wiley; 1999. p.565–78.

[73] Castillo X, Siewiorek DP. A workload dependent software
reliability prediction model. In: 12th International
Symposium on Fault-Tolerant Computing, 1982; p.279–
86.

[74] Koch G, Spreij P. Software reliability as an application
of martingale & filtering theory. IEEE Trans Reliab
1983;32:342–5.

[75] Brocklehurst S, Chan PY, Littlewood B, Snell J. Recalibrat-
ing software reliability models. IEEE Trans Software Eng
1990;16:458–70.

[76] Sitte R. Comparison of software-reliability-growth pre-
dictions: neural networks vs parametric-recalibration.
IEEE Trans Reliab 1999;49:285–91.

234 Software Reliability

[77] Pham H, Zhang X. A software cost model with warranty
and risk costs. IEEE Trans Comput 1999;48:71–5.

[78] Pham H, Zhang X. Software release policies with gain
in reliability justifying the costs. Ann Software Eng
1999;8:147–66.

[79] Laprie J-C, Kanoun K. X-ware reliability and availability
modeling. IEEE Trans Software Eng 1992;18:130–47.

[80] Lyu MR, Gokhale SS, Trivedi KS. Reliability simulation of
component-based systems. In: International Symposium
on Software Reliability (ISSRE), 1998; p.192–201.

[81] Ball MO, Colbourn C, Provan JS. Network models. In:
Monma C, Ball MO, Magnanti T, Nemhauser G, editors.
Handbook of operations research and management
science. Elsevier; 1995. p.673–762.

[82] Rubino G. Network reliability evaluation. In: Bagchi
K, Walrand J, editors. State-of-the-art in performance
modeling and simulation. Gordon and Breach; 1998.

[83] Limnios N, Rauzy A, editors. Special issue on binary
decision diagrams and reliability. Eur J Automat
1996;30(8).

[84] Smidts C, Sova D. An architectural model for software
reliability quantification: sources of data. Reliab Eng Syst
Saf 1999;64:279–90.

[85] Littlewood B, Verrall JL. Likelihood function of a
debugging model for computer software reliability. IEEE
Trans Reliab 1981;30:145–8.

[86] Huang XZ. The limit condition of some time between
failure models of software reliability. Microelectron
Reliab 1990;30:481–5.

[87] Hossain SA, Dahiya RC. Estimating the parameters of a
non-homogeneous Poisson-process model for software
reliability. IEEE Trans Reliab 1993;42:604–12.

[88] Zhao M, Xie M. On maximum likelihood estimation for a
general non-homogeneous Poisson process. Scand J Stat
1996;23:597–607.

[89] Knafl G, Morgan J. Solving ML equations for 2-parameter
Poisson-process models for ungrouped software-failure
data. IEEE Trans Reliab 1996;45:43–53.

[90] Miller DR, Sofer A. A nonparametric software-reliability
growth model. IEEE Trans Reliab 1991;40:329–37.

[91] Brocklehurst S, Littlewood B. New ways to get accurate
reliability measures. IEEE Software 1992;9:34–42.

[92] Barghout M, Littlewood B, Abdel-Ghaly AA. A non-
parametric order statistics software reliability model.
J Test Verif Reliab 1998;8:113–32.

[93] Silverman BW. Density estimation for statistics and data
analysis. Chapman and Hall; 1986.

[94] Antoniadis A, Oppenheim G, editors. Wavelets and
statistics. Lecture Notes in Statistics, vol. 103. Springer;
1995.

[95] Kuo L, Ghosh SK. Bayesian nonparametric inference for
nonhomogeneous Poisson processes. Technical report
9718, University of Connecticut, Storrs, 1997.

[96] Slud EV. Some applications of counting process models
with partially observed covariates. Telecommun Syst
1997;7:95–104.

[97] Pijnenburg M. Additive hazard models in repairable
systems reliability. Reliab Eng Syst Saf 1991;31:369–90.

[98] Lloyd CJ, Yip PSF, Chan Sun K. Estimating the number
of errors in a system using a martingale approach. IEEE
Trans Reliab 1999;48:369–76.

[99] Yip PSF, Xi L, Fong DYT, Hayakawa Y. Sensitivity-
analysis and estimating the number-of-faults in removing
debugging. IEEE Trans Reliab 1999;48:300–5.

Software Availability Theory and Its
Applications

Ch
ap

te
r1

3Koichi Tokuno and Shigeru Yamada

13.1 Introduction
13.2 Basic Model and Software Availability Measures
13.3 Modified Models
13.3.1 Model with Two Types of Failure
13.3.2 Model with Two Types of Restoration
13.4 Applied Models
13.4.1 Model with Computation Performance
13.4.2 Model for Hardware–Software System
13.5 Concluding Remarks

13.1 Introduction

Many methodologies for software reliability
measurement and assessment have been discussed
for the last few decades. A mathematical software
reliability model is often called a software
reliability growth model (SRGM). Several books
and papers have surveyed software reliability
modeling [1–8]. Most existing SRGMs have
described stochastic behaviors of only software
fault-detection or software failure-occurrence
phenomena during the testing phase of the
software development process and the operation
phase. A software failure is defined as an
unacceptable departure from program operation
caused by a fault remaining in the software
system. These can provide several measures
of software reliability defined as the attribute
that the software-intensive systems can perform
without software failures for a given time period,
under the specified environment; for example, the
mean time between software failures (MTBSF),
the expected number of faults in the system, and
so on. These measures are developer-oriented and
utilized for measuring and assessing the degree of
achievement of software reliability, deciding the

time to software release for operational use, and
estimating the maintenance cost for faults unde-
tected during the testing phase. Therefore, the
traditional SRGMs have evaluated “the reliability
for developers” or “the inherent reliability”.

These days, the performance and quality
of software systems become evaluated from
customers’ viewpoints. For example, customers
take interest in the information on possible
utilization, not the number of faults remaining in
the system. One of the customer-oriented software
quality attributes is software availability [9–11];
this is the attribute that the software-intensive
systems are available at a given time point, under
the specified environment. Software availability is
also called “the reliability for customers” or “the
reliability with maintainability”.

When we measure and assess software avail-
ability, we need to consider explicitly not only the
up time (the software failure time) but also the
down time to restore the system and to describe
the stochastic behavior of the system alternating
between the up and down states.

This chapter surveys the current research on
the stochastic modeling for software availability
measurement techniques. In particular, we focus

235

236 Software Reliability

on the software availability modeling with Markov
processes [12] to describe the time-dependent
behaviors of the systems. The organization of this
chapter is as follows. Section 13.2 gives the basic
ideas of software availability modeling and the
several software availability measures. Based on
the basic model, Section 13.3 discusses two
modified models reflecting the software failure-
occurrence phenomenon and the restoration
scenario peculiar to the user-operational phase
since software availability is a metric applied in
the user operation phase. Section 13.4 also refers
to the applied models and considers computation
performance and combining a hardware and a
software subsystem.

13.2 Basic Model and Software
Availability Measures

Beforehand, we state the difference in the descrip-
tions of the failure/restoration characteristics be-
tween hardware and software systems. The causes
of hardware failures are the deterioration or
wearing-out of component parts due to secular
changes, and the renewal of hardware systems by
replacement of failing parts. Therefore, the failure
and the restoration characteristics of the hardware
systems are often described without consideration
of the cumulative numbers of failures or restora-
tions. On the other hand, the causes of software
failures are faults latent in the systems introduced
in the development process, and the restoration
actions include the debugging activities for the de-
tected faults. So the debugging activities decrease
the faults and improve software reliability, unless
secondary faults are introduced. Accordingly, the
failure and the restoration characteristics of soft-
ware systems are often described with relation to
the numbers of software failures and debugging
activities. The above remarks have to be reflected
in software availability modeling.

The following lists the general assumptions for
software availability modeling.

Assumption 1. A software system is unavailable
and starts to be restored as soon as a software

failure occurs, and the system cannot operate until
the restoration action is complete.

Assumption 2. A restoration action implies de-
bugging activity, which is performed perfectly with
probability a (0 < a ≤ 1) and imperfectly with
probability b (= 1− a). We call a the perfect de-
bugging rate. One fault is corrected and removed
from the software system when the debugging ac-
tivity is perfect.

Assumption 3. The software failure-occurrence
time (up time) and the restoration time (down
time) follow exponential distributions with means
1/λn and 1/µn, respectively, where n denotes the
cumulative number of corrected faults. λn and µn

are functions of n.

Assumption 4. The probability that two or more
software failures occur simultaneously is negligible.

Consider the stochastic behavior of the system
alternating between up and down states with a
Markov process. Let {X(t), t ≥ 0} be the Markov
process representing the state of the system at the
time point t and its state space Wn and Rn (n=
0, 1, 2, . . .); then denote

Wn the system is operating
Rn the system is inoperable due to the

restoration action.

In the actual debugging environment, it often
happens that some fault corrections are inexact
and that secondary faults are introduced. This is
the so-called imperfect debugging environment.
The assumption of imperfect debugging has
given rise to much controversy in software
reliability/availability modeling [1, 13]. In this
chapter the following refers to the treatment of
perfect debugging: the purpose of the debugging
activity is to improve software quality/reliability.
Therefore, we assume that a debugging activity is
perfect when it contributes to the improvement of
software reliability. That is, a perfect debugging
activity means that the hazard rate mentioned
later decreases and that one fault is corrected
and removed from the system. We also assume
that the increase of the hazard rate due to the
introduction of new faults is negligible [14].

Software Availability Theory and Its Applications 237

From Assumption 2, when the restoration action
has been complete in {X(t)= Rn},

X(t)=
{
Wn (with probability b)

Wn+1 (with probability a)
(13.1)

Next, we refer to the transition probability
between the states, i.e. the descriptions of the
failure/restoration characteristics. For describing
the software failure characteristic, several classical
SRGMs can be applied. For example, Okumoto
and Goel [15] and Kim et al. [16] have applied the
model of Jelinski and Moranda [17], i.e. they have
described the hazard rate λn as

λn = φ(N − n)

(n= 0, 1, 2, . . . , N; N > 0, φ > 0) (13.2)

where N and φ are respectively the initial fault
content prior to the testing and the hazard rate per
fault remaining in the system. Then X(t) forms a
finite-state Markov process. Tokuno and Yamada
[18–20] have applied the model of Moranda [21],
i.e. they have given λn as

λn =Dkn (n= 0, 1, 2, . . . ;D > 0, 0 < k < 1)
(13.3)

where D and k are the initial hazard rate and the
decreasing ratio of the hazard rate respectively.
Then X(t) forms an infinite-state Markov process.
Equation 13.2 assumes that any faults have
the same impact on software reliability growth.
On the other hand, Equation 13.3 means that
the perfect debugging activities for the faults
detected earlier have a higher impact on software
reliability growth than those for the later faults
[2, 22].

We also mention the restoration rate µn.
There are many cases where the difficulties of
fault isolations and debugging continue to rise
and the restoration time tends to be longer as
the fault correction progresses [23]. In order that
such situations are reflected in the modeling, the
same forms as Equations 13.2 and 13.3 that are
the decreasing functions of n are often applied to
µn. When we apply µn ≡ Ern (E > 0, 0 < r ≤ 1),
E and r denote the initial restoration rate
and the decreasing ratio of the restoration rate
respectively.

Figure 13.1. A sample realization ofY(t)

Let Y (t) be the random variable representing
the cumulative number of faults corrected up to
the time t . Figure 13.1 illustrates the sample be-
havior of Y (t), where Tn and Un (n= 0, 1, 2, . . .)
denote the random variables representing the so-
journ times in states Wn and Rn respectively. It
is noted that the cumulative number of corrected
faults is not always coincident with that of soft-
ware failures or restoration actions. Furthermore,
Figure 13.2 illustrates the sample state transition
diagram of X(t).

We can obtain the state occupancy probabilities
that the system is in the states Wn and Rn at time
point t as

PWn(t)≡ Pr{X(t)=Wn}

= gn+1(t)

aλn
+ g′n+1(t)

aλnµn
(n= 0, 1, 2, . . .)

(13.4)

PRn(t)≡ Pr{X(t)= Rn}
= gn+1(t)

aµn

(n= 0, 1, 2, . . .) (13.5)

respectively, where gn(t) is the probability density
function of the random variable Sn representing
the first passage time to the state Wn, and
g′n(t)≡ dgn(t)/dt .gn(t) and g′n(t) can be obtained
analytically.

238 Software Reliability

Figure 13.2. State transition diagram for software availability modeling

The following equation holds for the arbitrary
time t :

∞∑
n=0

[PWn(t)+ PRn(t)] = 1 (13.6)

The instantaneous software availability is de-
fined as

A(t)≡
∞∑
n=0

PWn(t) (13.7)

which represents the probability that the software
system is operating at the time point t . Further-
more, the average software availability over (0, t]
is defined as

Aav(t)≡ 1

t

∫ t

0
A(x) dx (13.8)

which represents the expected proportion of the
system’s operating time to the time interval (0, t].
Using Equations 13.4 and 13.5, we can express
Equations 13.7 and 13.8 as

A(t)=
∞∑
n=0

[
gn+1(t)

aλn
+ g′n+1(t)

aλnµn

]

= 1−
∞∑
n=0

gn+1(t)

aµn

(13.9)

Aav(t)= 1

t

∞∑
n=0

[
Gn+1(t)

aλn
+ gn+1(t)

aλnµn

]

= 1− 1

t

∞∑
n=0

Gn+1(t)

aµn

(13.10)

respectively, where Gn(t) is the distribution
function of Sn.

The proportion of the up and down times is
called the maintenance factor. Given that λn ≡
Dkn and µn ≡ Ern, the maintenance factor ρn is
expressed by

ρn ≡ E[Un]
E[Tn]

= βvn (β ≡D/E, v ≡ k/r) (13.11)

Figure 13.3. Dependence of v on A(t) (λn ≡Dkn, µn ≡
Ern; a = 0.9,D = 0.1,E = 0.3, r = 0.8)

Software Availability Theory and Its Applications 239

Figure 13.4. State transition diagram for software availability modeling with two types of failure

where β and v are the initial maintenance
factor and the availability improvement parameter
respectively [24]. In general, the maintenance
factor of the hardware system is assumed to be
constant and has no bearing on the number
of failures, whereas that of the software system
depends on n. Figure 13.3 shows the dependence
of v on A(t) in Equation 13.9. This figure tells us
that we can judge whether the software availability
increases or decreases with the value of v, i.e. A(t)
increases and decreases in the cases of v < 1 and
v > 1 respectively, and it is constant in the case
of v = 1. We must consider not only the software
reliability growth process but also the upward
tendency of the difficulty in debugging in software
availability measurement and assessment.

13.3 Modified Models

Since software availability is a quality characteris-
tic to be considered in the user operation, we need
to continue to adapt the basic model discussed
above to the actual operation environment.

13.3.1 Model with Two Types of Failure

In this section, we assume that the following two
types of software failure exist during the operation
phase [25, 26]:

F1: software failures caused by the faults that
could not be detected/corrected during
the testing phase

F2: software failures caused by the faults
introduced by deviating from the
expected operational use.

The state space of the process {X(t), t ≥ 0} in
this section is defined as follows:

Wn the system is operating
R1
n the system is inoperable due to F1 and

restored
R2
n the system is inoperable due to F2 and

restored.

The failure and the restoration characteristics of
F1 are assumed to be described by the forms
dependent on the number of corrected faults,
and those of F2 are assumed to be constant.
Then, Figure 13.4 illustrates the sample state
transition diagram of X(t), where θ and η are
the hazard rate and the restoration rate of F2
respectively.

We can express the instantaneous software
availability and the average software availability as

A(t)=
∞∑
n=0

[
gn+1(t)

aλn
+ g′n+1(t)

aλnµn

]
(13.12)

Aav(t)= 1

t

∞∑
n=0

[
Gn+1(t)

aλn
+ gn+1(t)

aλnµn

]
(13.13)

240 Software Reliability

Figure 13.5. Dependence of the ratio of hazard rates of F1 and F2
on A(t) (λn ≡Dkn, µn ≡ Ern; a = 0.9, η = 1.0, k = 0.8,
E = 0.5, r = 0.9)

respectively. The analytical solutions of Gn(t),
gn(t), and g′n(t) can also be obtained.

Figure 13.5 shows the dependence of the occur-
rence proportion of F1 and F2 on Equation 13.12.
The hazard rates of (i) and (ii) in Figure 13.5 for
the first software failure without the distinction
between F1 and F2, α0 =D + θ , are the same
value, i.e. both (i) and (ii) are α0 = 0.06. A(t)

of (ii) is smaller than (i) in the early stage of
the operation phase. However, A(t) of (ii) in-
creases more than (i) with time, since (ii), whose
D is larger than θ , means that the system has
more room for reliability growth even in the
operation phase than (i), whose D is smaller
than θ .

13.3.2 Model with Two Types of
Restoration

In Section 13.3.1, the basic model was modified
from the viewpoint of the software failure
characteristics. Tokuno and Yamada [27] have
paid attention to the restoration actions for
operational use. Cases often exist where the
system is restored without debugging activities
corresponding to software failures occurring
in the operation phase, since protracting an
inoperable time may greatly affect the customers.

This is a different policy from the testing phase.
This section considers two kinds of restoration
action during the operation phase: one involves
debugging and the other does not. Furthermore,
we assume that it is probabilistic whether or
not a debugging activity is performed and that
the restoration time without debugging has no
bearing on the number of corrected faults.

The state space of {X(t), t ≥ 0} in this section
is defined as follows:

Wn the system is operating
R1
n the system is inoperable and restored with

the debugging activity
R2
n the system is inoperable and restored

without the debugging activity.

Figure 13.6 illustrates the sample state transi-
tion diagram of X(t), where p (0 < p < 1) de-
notes the probability that a restoration action
with debugging is performed and q = 1− p, and
η denotes the restoration rate without debug-
ging.

We can express the instantaneous software
availability and the average software availability as

A(t)=
∞∑
n=0

[
gn+1(t)

paλn
+ g′n+1(t)

paλnµn

]
(13.14)

Aav(t)= 1

t

∞∑
n=0

[
Gn+1(t)

paλn
+ gn+1(t)

paλnµn

]
(13.15)

respectively. The analytical solutions of Gn(t),
gn(t), and g′n(t) can also be obtained.

Figure 13.7 shows the dependence of p in
Equation 13.14. A(t) is lower in the early
stage of the operation phase, but it increases
more with time as the value of p increases.
The larger p means that the system developer
intends to improve software reliability even during
the operation phase. However, the time of the
restoration with debugging tends to be longer than
one without debugging. Therefore, the value of
p depends on the policy of the developer and
is an important factor in software availability
assessment.

Software Availability Theory and Its Applications 241

Figure 13.6. State transition diagram for software availability modeling with two types of restoration

Figure 13.7. Dependence of p on A(t) (λn ≡Dkn,
µn ≡ Ern; a = 0.9, D = 0.1, k = 0.8, E = 0.5, r =
0.9, η = 1.0)

13.4 Applied Models

13.4.1 Model with Computation
Performance

In Section 13.3, the basic model was modified
by detailing the inoperable states. This section
discusses a new software availability measure,
noting the operable states. Tokuno and Yamada
[28] have provided a software availability measure
with computation performance by introducing

the concept of the computation capacity [29].
The computation capacity is defined as the
computation amount that the system is able to
process per unit time.

The state space of {X(t), t ≥ 0} in this section
is defined as follows:

Wn the system is operating with full
performance in accordance with the
specification

Ln the system is operating but its
performance degenerates

Rn the system is inoperable and restored.

Suppose that the sojourn times of the states Wn

and Ln are distributed exponentially with the
rates θ and η respectively. Then, Figure 13.8
illustrates the sample state transition diagram
of X(t).

Let C (>0) and Cδ (0 < δ < 1) denote the
computation capacities when the system is in
the states Wn and Ln respectively. Then the
computation software availability is given by

Ac(t)≡ C

∞∑
n=0

[Pr{X(t)=Wn} + δ Pr{X(t)= Ln}]
(13.16)

242 Software Reliability

Figure 13.8. State transition diagram for software availability modeling with computation performance

Figure 13.9. Dependence of δ on Ac(t) (λn ≡Dkn, µn ≡
Ern; C = 1.0, a = 0.9, D = 0.1, k = 0.8, E = 0.2, r =
0.9, θ = 0.1, η = 1.0)

which represents the expected value of computa-
tion capacity at the time point t . Figure 13.9 shows
a numerical example of Equation 13.16.

13.4.2 Model for Hardware–Software
System

Recently, the design of computer systems has be-
gun to attach importance to hardware/software
co-design (or simply co-design) [30]; this is
the concept that the hardware and the soft-
ware systems should be designed synchronously,
not separately, with due consideration of each
other. Co-design is not a new concept, but

Figure 13.10. Sample behavior of a hardware–software system

it has received much attention since com-
puter systems have grown in size and com-
plexity and both the hardware and the soft-
ware systems have to be designed in order to
bring out the mutual maximum performances.
The concept of co-design is also important in sys-
tem quality/performance measurement and as-
sessment. Goel and Soenjoto [31] and Tokuno
and Yamada [32] have discussed the availabil-
ity models for a system consisting of one hard-
ware and one software subsystem. Figure 13.10
shows a sample behavior of a hardware–software
system.

Software Availability Theory and Its Applications 243

The state space of {X(t), t ≥ 0} in this section is
defined as follows:

Wn the system is operating
RS
n the system is inoperable due to a software

failure
RH
n the system is inoperable due to a hardware

failure.

Suppose that the failure and the restoration
characteristics of the software subsystem depend
on the number of corrected faults and that those
of the hardware subsystem have no bearing on the
number of failures. Then the instantaneous and
the average system availabilities can be obtained in
the same forms as with the model with two types
of software failure discussed in Section 13.3.1 by
replacing the states RS

n and RH
n with the states R1

n

and R2
n respectively.

13.5 Concluding Remarks

In this chapter, we have surveyed the Markovian
models for software availability measurement
and assessment. Most of the results in this
chapter have been obtained as closed forms.
Thus we can evaluate performance measures more
easily than the simulation models. Then the
model parameters have to be estimated based
on the actual data. However, it is too difficult
to collect the failure data in the operation
phase, especially the software restoration times.
Under the present situation, we cannot help but
decide the parameters experientially from similar
systems developed before. We need to provide
collection procedures for the field data.

In addition, software safety has now begun
to draw attention as one of the user-oriented
quality characteristics. This is defined as the
characteristic that the software systems do not
induce any hazards, whether or not the systems
maintain their intended functions [33], and is
distinct from software reliability. It is of urgent
necessity to establish software safety evaluation
methodologies. We also add that studies on
software safety measurement and assessment
[34, 35] are currently being pursued.

References
[1] Goel AL. Software reliability models: assumptions,

limitations, and applicability. IEEE Trans Software Eng
1985;SE-11:1411–23.

[2] Lyu MR, editor. Handbook of software reliability
engineering. Los Alamitos (CA): IEEE Computer Society
Press, 1996.

[3] Malaiya YK, Srimani PK, editors. Software reliability
models: theoretical developments, evaluation and ap-
plications. Los Alamitos (CA): IEEE Computer Society
Press; 1991.

[4] Musa JD. Software reliability engineering. New York:
McGraw-Hill; 1999.

[5] Pham H. Software reliability. Singapore: Springer-Verlag;
2000.

[6] Xie M. Software reliability modelling. Singapore: World
Scientific; 1991.

[7] Yamada S. Software reliability models: fundamentals and
applications (in Japanese). Tokyo: JUSE Press; 1994.

[8] Yamada S. Software reliability models. In: Osaki S, editor.
Stochastic models in reliability and maintenance. Berlin:
Springer-Verlag; 2002. p.253–80.

[9] Laprie J-C, Kanoun K, Béounes C, Kaâniche M.
The KAT (knowledge–action–transformation) approach
to the modeling and evaluation of reliability and
availability growth. IEEE Trans Software Eng 1991;17:
370–82.

[10] Laprie J-C, Kanoun K. X-ware reliability and avail-
ability modeling. IEEE Trans Software Eng 1992;18: 130–
47.

[11] Tokuno K, Yamada S. User-oriented software reliability
assessment technology (in Japanese). Bull Jpn Soc Ind
Appl Math 2000;10:186–97.

[12] Ross SM. Stochastic processes, second edition. New York:
John Wiley & Sons; 1996.

[13] Ohba M, Chou X. Does imperfect debugging affect
software reliability growth?. In: Proceedings of 11th
IEEE International Conference on Software Engineering
1989;p.237–44.

[14] Tokuno K, Yamada S. An imperfect debugging model
with two types of hazard rates for software reliability
measurement and assessment. Math Comput Modell
2000;31:343–52.

[15] Okumoto K, Goel AL. Availability and other performance
measures for system under imperfect maintenance. In:
Proceedings of COMPSAC’78, 1978;p.66–71.

[16] Kim JH, Kim YH, Park CJ. A modified Markov model for
the estimation of computer software performance. Oper
Res Lett 1982;1:253–57.

[17] Jelinski Z, Moranda PB. Software reliability research.
In: Freiberger W, editor. Statistical computer perfor-
mance evaluation. New York: Academic Press, 1972.
p.465–84.

[18] Tokuno K, Yamada S. A Markovian software availability
measurement with a geometrically decreasing failure-
occurrence rate. IEICE Trans Fundam 1995;E78-A:737–
41.

244 Software Reliability

[19] Tokuno K, Yamada S. Markovian software availability
modeling for performance evaluation. In: Christer AH,
Osaki S, Thomas LC, editors. Stochastic modelling in
innovative manufacturing: proceedings. Berlin: Springer-
Verlag; 1997. p.246–56.

[20] Tokuno K, Yamada S. Software availability model with
a decreasing fault-correction rate (in Japanese). J Reliab
Eng Assoc Jpn 1997;19:3–12.

[21] Moranda PB. Event-altered rate models for general
reliability analysis. IEEE Trans Reliab 1979;R-28:376–81.

[22] Yamada S, Tokuno K, Osaki S. Software reliability
measurement in imperfect debugging environment and
its application. Reliab Eng Syst Saf 1993;40:139–47.

[23] Nakagawa Y, Takenaka I. Error complexity model for
software reliability estimation (in Japanese). Trans IEICE
D-I 1991;J74-D-I:379–86.

[24] Tokuno K, Yamada S. Markovian software availability
measurement based on the number of restoration
actions. IEICE Trans Fundam 2000;E83-A:835–41.

[25] Tokuno K, Yamada S. A Markovian software availability
model for operational use (in Japanese). J Jpn Soc
Software Sci Technol 1998;15:17–24.

[26] Tokuno K, Yamada S. Markovian availability measure-
ment with two types of software failures during the op-
eration phase. Int J Reliab Qual Saf Eng 1999;6:43–56.

[27] Tokuno K, Yamada S. Operational software availability
measurement with two kinds of restoration actions.
J Qual Mainten Eng 1998;4:273–83.

[28] Tokuno K, Yamada S. Markovian software avail-
ability modeling with degenerated performance.
In: Lydersen S, Hansen GK, Sandtorv HA, editors.
Proceedings of the European Conference on Safety and
Reliability, vol. 1. Rotterdam: AA Balkema, 1998;1:425–
31.

[29] Beaudry MD. Performance-related reliability measures
for computing systems. IEEE Trans Comput 1978;C-
27:540–7.

[30] De Micheli G. A survey of problems and methods for
computer-aided hardware/software co-design. J Inform
Process Soc Jpn 1995;36:605–13.

[31] Goel AL, Soenjoto J. Models for hardware–software
system operational-performance evaluation. IEEE Trans
Reliab 1981;R-30:232–9.

[32] Tokuno K, Yamada S. Markovian availability modeling
for software-intensive systems. Int J Qual Reliab Manage
2000;17:200–12.

[33] Leveson NG. Safeware: system safety and computers. New
York: Addison-Wesley; 1995.

[34] Tokuno K, Yamada S. Stochastic software safety/ reliabil-
ity measurement and its application. Ann Software Eng
1999;8:123–45.

[35] Tokuno K, Yamada S. Markovian reliability model-
ing for software safety/availability measurement. In:
Pham H, editor. Recent advances in reliability and quality
engineering. Singapore: World Scientific; 2001. p.181–
201.

Software Rejuvenation:
Modeling and Applications

Ch
ap

te
r1

4Tadashi Dohi, Katerina Goševa-Popstojanova,
Kalyanaraman Vaidyanathan, Kishor S. Trivedi
and Shunji Osaki

14.1 Introduction
14.2 Modeling-based Estimation
14.2.1 Examples in Telecommunication Billing Applications
14.2.2 Examples in a Transaction-based Software System
14.2.3 Examples in a Cluster System
14.3 Measurement-based Estimation
14.3.1 Time-based Estimation
14.3.2 Time- and Workload-based Estimation
14.4 Conclusion and Future Work

14.1 Introduction

Since system failures due to software faults are
more frequent than failures caused by hard-
ware faults, there is a tremendous need for im-
provement of software availability and reliabil-
ity. Present-day applications impose stringent re-
quirements in terms of cumulative downtime and
failure-free operation of software, since, in many
cases, the consequences of software failure can
lead to huge economic losses or risk to human life.
However, these requirements are very difficult to
design for and guarantee, particularly in applica-
tions of non-trivial complexity.

Recently, the phenomenon of software
aging [1–4] in which error conditions actually
accrue with time and/or load, has been observed.
In systems with high reliability/availability
requirements, software aging can cause outages
resulting in high costs. Huang and coworkers
[2, 5, 6] and Jalote et al. [7] report this
phenomenon in telecommunications billing

applications, where over time the application
experiences a crash or a hang failure. Avritzer
and Weyuker [8] and Levendel [9] discuss aging
in telecommunication switching software where
the effect manifests as gradual performance
degradation. Software aging has also been
observed in widely used software like Netscape
and xrn. Perhaps the most vivid example of
aging in safety critical systems is the Patriot’s
software [10], where the accumulated errors led to
a failure that resulted in loss of human life.

Resource leaking and other problems causing
software to age are due to the software faults
whose fixing is not always possible because, for
example, the application developer may not have
access to the source code. Furthermore, it is
almost impossible to fully test and verify if a piece
of software is fault free. Testing software becomes
harder if it is complex, and more so if testing and
debugging cycle times are reduced due to smaller
release time requirements. Common experience
suggests that most software failures are transient

245

246 Software Reliability

in nature [11]. Since transient failures will
disappear if the operation is retried in a slightly
different context, it is difficult to characterize their
root origin. Therefore, the residual faults have to
be tolerated in the operational phase. The usual
strategies to deal with failures in the operational
phase are reactive in nature; they consist of action
taken after the failure.

A complementary approach to handling
transient software failures, called software
rejuvenation, was proposed by Huang et al. [2].
Software rejuvenation is a preventive and
proactive (as opposite to being reactive) solution
that is particularly useful for counteracting
the phenomenon of software aging. It involves
stopping the running software occasionally,
cleaning its internal state and restarting it.
Garbage collection, flushing operating system
kernel tables and reinitializing internal data
structures are some examples of what cleaning the
internal state of software might involve [12].
An extreme, but well-known example of
rejuvenation is a hardware reboot.

Apart from being used in an ad hoc manner
by almost all computer users, rejuvenation has
been used to avoid unplanned outages in high
availability systems, such as telecommunication
systems [2, 8], where the cost of downtime is
extremely high. Among typical applications of
mission critical systems, periodic software and
system rejuvenation have been implemented for
long-life deep-space missions [13–15].

Recently, the use of rejuvenation was extended
to cluster systems [16]. Using the node failover
mechanisms in a high availability cluster, one
can maintain operation (though possibly at a
degraded level) while rejuvenating one node at a
time. The first commercial version of this kind
of a software rejuvenation agent for IBM cluster
servers has been implemented with collaboration
with Duke University researchers [16, 17].

Although the faults in the software still remain,
performing rejuvenation periodically removes or
minimizes potential error conditions due to these
faults, thus preventing failures that might have
unacceptable consequences. Rejuvenation has the
same motivation and advantages/disadvantages as

preventive maintenance policies in hardware sys-
tems. Rejuvenation typically involves an overhead,
but, on the other hand, it prevents more severe
failures from occurring. The application will, of
course, be unavailable during rejuvenation, but
since this is a scheduled downtime the cost is
expected to be much lower than the cost of an un-
scheduled downtime caused by failure. Hence, an
important issue is to determine the optimal sched-
ule to perform software rejuvenation in terms of
availability and cost.

In this chapter, we present an overview of the
approaches for analyzing software aging and soft-
ware rejuvenation. In the following section, we de-
scribe the model-based approach to determine the
optimal rejuvenation times, introducing the basic
software rejuvenation model, and examples from
transaction-based software systems and cluster
systems. In this approach, Markov/semi-Markov
processes, queuing processes and stochastic Petri
nets are applied to describe the system behavior.
Measures such as availability and cost are for-
mulated, and algorithms to calculate the optimal
software rejuvenation times are developed. Next,
we describe the measurement-based approach for
detection and validation of the existence of soft-
ware aging. For quantifying the effect of aging
in UNIX operating system resources, we perform
empirical studies on a purely time-based approach
and a time and workload-based approach. Here,
we periodically monitor and collect data on the
attributes responsible for determining the health
of the executing software and estimate resource
exhaustion times. Finally, the chapter is concluded
with some remarks.

14.2 Modeling-based
Estimation

The model-based approach is aimed at evaluating
the effectiveness of software rejuvenation and de-
termining the optimal schedules to perform reju-
venation. Huang et al. [2] used a continuous time
Markov chain to model software rejuvenation.
They considered the two-step failure model where

Software Rejuvenation: Modeling and Applications 247

the application goes from the initial robust (clean)
state to a failure probable (degraded) state from
which two actions are possible: rejuvenation or
transition to failure state. Both rejuvenation and
recovery from failure return the software system
to the robust state.

This model was recently generalized using
semi-Markov reward processes [18–20]. The op-
timal software rejuvenation schedules are ana-
lytically derived under the steady-state availabil-
ity and the expected cost per unit time in the
steady state. Further, non-parametric statistical
algorithms to estimate the optimal software reju-
venation schedules are also developed. Thus, this
approach does not depend on the form of the
failure time distribution function. To deal with de-
terministic interval between successive rejuvena-
tions, Garg et al. [21] used a Markov regenerative
stochastic Petri net model.

The fine-grained software rejuvenation model
presented by Bobbio and Sereno [22] takes a
different approach to characterize the effect of
software aging. It assumes that the degradation
process consists of a sequence of additive random
shocks; the system is considered out of service
as soon as the appropriate parameter reaches an
assigned threshold level. Garg et al. [23] analyzed
the effects of checkpointing and rejuvenation used
together on the expected completion time of a
software program. A fluid stochastic Petri-net-
based model that captures the behavior of ag-
ing software systems which employ rejuvenation,
restoration, and checkpointing was also proposed
[24]. The use of preventive on-board maintenance
that includes periodic software and system reju-
venation has also been proposed and analyzed
[13–15].

Garg et al. [25] include arrival and queuing of
jobs in the system and compute load and time-
dependent rejuvenation policy. The above models
consider the effect of aging as crash/hang failure,
referred to as hard failures, which result in un-
availability of the software. However, the aging of
the software system can manifest as soft failures,
i.e. performance degradation. Pfennig et al. [26]
modeled performance degradation by the gradual
decrease of the service rate. Both effects of aging,

hard failures that result in an unavailability and
soft failures that result in performance degrada-
tion, are considered in the model of a transaction-
based software system presented by Garg et al.
[27]. This model was generalized by considering
multiple servers [28] and threshold policies [29].

Recently, stochastic models of time-based and
prediction-based rejuvenation as applied to clus-
ter systems were developed [16]. These models
capture a multitude of cluster system character-
istics, failure behavior, and performability mea-
sures.

14.2.1 Examples in
Telecommunication Billing Applications

Consider the basic software rejuvenation model
proposed by Huang et al. [2]. Suppose that
the stochastic behavior of the system can be
described by a simple continuous-time Markov
chain (CTMC) with the following four states.

State 0: highly robust state
(normal operation state).

State 1: failure probable state.

State 2: failure state.

State 3: software rejuvenation state.

Figure 14.1 depicts the state transition diagram
of the CTMC. Let Z be the random time interval
when the highly robust state changes to the
failure probable state, having the exponential
distribution Pr{Z ≤ t} = F0(t)= 1− exp(−t/µ0)

(µ0 > 0). Just after the state becomes the failure
probable state, a system failure may occur with a
positive probability. Without loss of generality, we
assume that the random variable Z is observable
during the system operation.

Define the failure time X (from State 1) and the
repair time Y , having the exponential distribu-
tions Pr{X ≤ t} = Ff (t)= 1− exp(−t/λf) and
Pr{Y ≤ t} = Fa(t)= 1− exp(−t/µa) (λf > 0,
µa > 0). If the system failure occurs before trig-
gering a software rejuvenation, then the repair is
started immediately at that time and is completed

248 Software Reliability

Figure 14.1. State transition diagram of CTMC

after the random time Y elapses. Otherwise, the
software rejuvenation is started. Note that
the software rejuvenation cycle is measured from
the time instant just after the system enters State 1.
Define the distribution functions of the time to
invoke the software rejuvenation and of the time
to complete software rejuvenation by Fr(t)= 1−
exp(−t/µr) and Fc(t)= 1− exp(−t/µc) (µc >

0, µr > 0) respectively. Huang et al. [2] analyzed
the above CTMC and calculated the expected
system down time and the expected cost per
unit time in the steady state. However, it should
be noted that the rejuvenation schedule for the
CTMC model is not feasible, since the preventive
maintenance time to rejuvenate the system is an
exponentially distributed random variable.

It is not difficult to introduce the periodic
rejuvenation schedule and to extend the CTMC
model to the general one. Dohi et al. [18–20]
developed semi-Markov models with the periodic
rejuvenation and general transition distribution
functions. More specifically, let Z be the random
variable having the common distribution function
Pr{Z ≤ t} = F0(t) with finite mean µ0 (>0). Also,
let X and Y be the random variables having
the common distribution functions Pr{X ≤ t} =
Ff (t) and Pr{Y ≤ t} = Fa(t) with finite means
λf (>0) and µa (>0) respectively. Denote the
distribution function of the time to invoke the
software rejuvenation and the distribution of
the time to complete software rejuvenation by

Fr(t) and Fc(t) (with mean µc (>0)) respectively.
After completing the repair or the rejuvenation,
the software system becomes as good as new,
and the software age is initiated at the beginning
of the next highly robust state. Consequently,
we define the time interval from the beginning
of the system operation to the next one as one
cycle, and the same cycle is repeated again and
again.

If we consider the time to software rejuvenation
as a constant t0, then it follows that

Fr(t)= U(t − t0)=
{

1 if t ≥ t0

0 otherwise
(14.1)

We call t0 (≥0) the software rejuvenation interval
in this chapter and U(·) is the unit step
function.

The underlying stochastic process is a semi-
Markov process with four regeneration states.
If the sojourn times in all states are exponentially
distributed, of course, this model is the CTMC
in Huang et al. [2]. From the familiar renewal
argument [30], we formulate the steady-state
system availability as

A(t0)= Pr{software system is operative

in the steady state}

= µ0 +
∫ t0

0 F̄f (t) dt

µ0+µaFf (t0)+µcF̄f (t0)+
∫ t0

0 F̄f (t) dt

= S(t0)/T (t0) (14.2)

where in general φ̄(·)= 1− φ(·). The problem
is to derive the optimal software rejuvenation
interval t∗0 that maximizes the system availability
in the steady state A(t0).

We make the following assumption.

Assumption 1. µa > µc.

Assumption 1 means that the mean time to
repair is strictly larger than the mean time to
complete the software rejuvenation. This assump-
tion is quite reasonable and intuitive. The follow-
ing result gives the optimal software rejuvenation
schedule for the semi-Markov model.

Software Rejuvenation: Modeling and Applications 249

Theorem 1.
(1) Suppose that the failure time distribution is

strictly increasing failure rate (IFR) under
Assumption 1. Define the following nonlinear
function:

q(t0)= T (t0)− {(µa − µc)rf (t0)+ 1}S(t0)
(14.3)

where rf (t)= (dFf (t)/dt)/F̄f (t) is the failure
rate.

(i) If q(0) > 0 and q(∞) < 0, then there
exists a finite and unique optimal software
rejuvenation schedule t∗0 (0 < t∗0 <∞)

satisfying q(t∗0)= 0, and the maximum
system availability is

A(t∗0)=
1

(µa − µc)rf (t
∗
0)+ 1

(14.4)

(ii) If q(0)≤ 0, then the optimal software
rejuvenation schedule is t∗0 = 0, i.e. it is
optimal to start the rejuvenation just after
entering the failure probable state, and the
maximum system availability is A(0)=
µ0/(µ0 + µc).

(iii) If q(∞)≥ 0, then the optimal rejuvena-
tion schedule is t∗0 →∞, i.e. it is optimal
not to carry out the rejuvenation, and the
maximum system availability is A(∞)=
(µ0 + λf)/(µ0 + µa + λf).

(2) Suppose that the failure time distribution is
decreasing failure rate (DFR) under Assump-
tion 1. Then, the system availability A(t0) is a
convex function of t0, and the optimal rejuve-
nation schedule is t∗0 = 0 or t∗0 →∞.

Proof. Differentiating A(t0) with respect to t0
and setting it equal to zero implies q(t0)= 0.
Further differentiation yields

dq(t0)

dt0
=−(µa − µc)S(t0)

drf (t0)

dt0
(14.5)

If rf (t0) is strictly increasing, then the function
q1(t0) is strictly decreasing and the system
availability A(t0) is strictly concave in t0 under
Assumption 1. Further, if q(0) > 0 and q(∞) < 0,
then there exists a unique optimal software
rejuvenation schedule t∗0 (0 < t∗0 <∞) satisfying

q(t∗0)= 0. If q(0)≤ 0 or q(∞)≥ 0, then the
system availability is monotonically increasing or
decreasing in t0, and the optimal policy becomes
t∗0 = 0 or t∗0 →∞. On the other hand, if rf (t0)

is a decreasing function of t0, then A(t0) is a
convex function of t0, and the optimal software
rejuvenation schedule is t∗0 = 0 or t∗0 →∞.
The proof is thus completed. �

It is easy to check that the result above implies
the result in Huang et al. [2], although they used
the system downtime and its associated cost as
criteria of optimality. As is clear from Theorem 1,
when the failure time obeys the exponential
distribution, the optimal software rejuvenation
schedule becomes t∗0 = 0 or t∗0 →∞. This means
that the rejuvenation should be performed as
soon as the software enters the failure probable
state (t0 = 0) or should not be performed at
all (t0→∞). Therefore, the determination of
the optimal rejuvenation schedule based on the
system availability is never motivated in such a
situation. Since for a software system that ages
it is more realistic to assume that failure time
distribution is strictly IFR, our general setting is
plausible and the result satisfies our intuition.

Dohi et al. [19] developed a non-parametric
algorithm to estimate the optimal software re-
juvenation time, when the failure time data are
obtained but the underlying distribution func-
tion is unknown. Before developing the statistical
estimation algorithms for the optimal software
rejuvenation schedules, we translate the under-
lying problems max0≤t0<∞ A(t0) to a graphical
one. Following Barlow and Campo [31], define the
scaled total time on test (TTT) transform of the
failure time distribution:

φ(p)= (1/λf)
∫ F−1

f (p)

0
F̄f (t) dt (14.6)

where

F−1
f (p)= inf{t0; Ff (t0) ≥ p} (0≤ p ≤ 1)

(14.7)
It is well known [31] that Ff (t) is IFR (DFR) if
and only if φ(p) is concave (convex) on p ∈ [0, 1].
After a few algebraic manipulations, we have the
following result.

250 Software Reliability

Theorem 2. Obtaining the optimal software reju-
venation schedule t0∗maximizing the system avail-
ability A(t0) is equivalent to obtaining p∗ (0≤
p∗ ≤ 1) such as

max
0≤p≤1

φ(p) + α

p + β
(14.8)

where α = λf + µ0 and β = µc(µa − µc).

The proof is omitted for brevity. From The-
orem 2 it follows that the optimal software
rejuvenation schedule t0

∗ = F−1
f (p∗) is deter-

mined by calculating the optimal point p∗(0≤
p∗ ≤ 1) maximizing the tangent slope from
the point (−β,−α) ∈ (−∞, 0)× (−∞, 0) to the
curve (p, φ(p)) ∈ [0, 1] × [0, 1].

Suppose that the optimal software rejuvenation
schedule needs to be estimated from an ordered
sample of observations 0= x0 ≤ x1 ≤ x2 ≤ · · · ≤
xn of the failure times from an absolutely
continuous distribution Ff , which is unknown.
Then the scaled TTT statistics based on this
sample are defined by φnj = ψj/ψn, where

ψj =
j∑

k=1

(n− k + 1)(xk − xk−1)

(j = 1, 2, . . . , n; ψ0 = 0) (14.9)

The empirical distribution function Fn(x)

corresponding to the sample data xj (j = 0,
1, 2, . . . , n) is

Fn(x)=
{
j/n for xj ≤ x < xj+1

1 for xn ≤ x
(14.10)

From this, we obtain the polygon by plotting
the points (Fn(x), φnj) (j = 0, 1, 2, . . . , n) and
connecting them by line segments known as the
scaled TTT plot. In other words, the scaled TTT
plot can be regarded as a numerical counterpart
of the scaled TTT transform.

The following result gives a non-parametric
statistical estimation algorithm for the optimal
software rejuvenation schedule.

Theorem 3.
(i) Suppose that the optimal software rejuvena-

tion schedule is to be estimated from n or-
dered samples 0= x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn of

the failure times from an absolutely continuous
distribution Ff , which is unknown. Then, a
non-parametric estimator of the optimal soft-
ware rejuvenation schedule t̂∗0 that maximizes
A(t0) is given by xj∗ , where

j∗ =
{
j

∣∣∣∣ max
0≤j≤n

φnj + αi

j/n+ βi

}
(14.11)

and the theoretical mean λf is replaced by the
sample mean

∑n
k=1 xk/n.

(ii) The estimator given in (i) is strongly consis-
tent, i.e. xj∗ converges to the optimal solution
t0
∗ uniformly with probability one as n→
∞, if a unique optimal software rejuvenation
schedule exists.

It is straightforward to prove the above result
in (i) from Theorem 2. The uniform convergence
property in (ii) is due to the Glivenko–Cantelli
lemma (e.g. see [31]) and the strong law of large
numbers. The graphical procedure proposed here
has an educational value for better understanding
of the optimization problem and it is convenient
for performing sensitivity analysis of the optimal
software rejuvenation policy when different values
are assigned to the model parameters. Finally,
it enables us to estimate the optimal schedule
without specifying the failure time distribution.
Although some typical theoretical distribution
functions, such as the Weibull distribution and
the gamma distribution, are often assumed
in the reliability analysis, our non-parametric
estimation algorithm can generate the optimal
software rejuvenation schedule using the on-line
knowledge about the observed failure times.

Figure 14.2 shows the estimation result of the
optimal software rejuvenation schedule for the
semi-Markov model, where the failure time data is
generated by the Weibull distribution with shape
parameter β = 4.0 and scale parameter θ = 0.9.
For 100 failure data points, the estimates of the
optimal rejuvenation schedule and the maximum
system availability are t̂∗0 = 0.565 92 and A(t̂∗0)=
0.987 813 respectively. Actually, we examined
through a simulation study in [18–20] that the
non-parametric estimator of the optimal software

Software Rejuvenation: Modeling and Applications 251

Figure 14.2. Estimation of the optimal software rejuvenation
schedule on the two-dimensional graph: θ = 0.9, β = 4.0,
µ0 = 2.0,µa = 0.04,µc = 0.03

rejuvenation time derived using Theorem 3 has a
nice convergence property.

14.2.2 Examples in a
Transaction-based Software System

Next, consider the rejuvenation scheme for a
single server software system. Garg et al. [27]
analyzed a queuing system with preventive
maintenance as a mathematical model for a
transaction-based software system. Suppose that
the transactions arrive at the system in accordance
with the homogeneous Poisson process with rate
λ (>0). The transactions are processed with
service rate µ(·) (>0) based on the first come,
first serve (FCFS) discipline. Transactions that
arrive during the service operation of the other
transaction are accumulated in the buffer whose
maximum capacity is K (>1), where without a
loss of generality the buffer is empty at time t = 0.
If a transaction arrives at the system when K

transactions have already been accumulated in
the buffer, it will be rejected from the system
automatically. That is to say, the software system
under consideration can continue processing if
there exists at least one transaction in the buffer.
When the buffer is empty, the system will wait for
the arrival of an additional transaction, keeping
the system idle.

The service rate µ(·) is assumed to be a
function of the operation time t , the number of
transactions in the buffer, and/or other variables.
For example, let {Xt ; t ≥ 0} be the number of
transactions accumulated in the buffer at time t .
Then, the service rate may be given by µ(t),
µ(Xt) or µ(t, Xt). In this model, the software
system is assumed to be unreliable, where the
failure rate ρ(·) also depends on the operation
time t , the number of transactions in the buffer
and/or other variables, i.e. it can be described
as ρ(t), ρ(Xt) or ρ(t, Xt). The recovery (repair)
operation starts immediately when the system
fails, where the recovery time is the random
variable Yr with E[Yr] = γr (>0). A newly arriving
transaction is rejected if it arrives at the system
during the recovery operation period. Intuitively,
software rejuvenation is beneficially motivated if
the software failure rate ρ(·) increases with the
passage of time [2, 27]. Thus, it is assumed that
the system failure time distribution is IFR, i.e. the
software failure rate ρ(·) is an increasing function
of time t . Let YR, the preventive maintenance
time for the software rejuvenation, be the random
variable with E[YR] = γR (>0). Suppose that the
software system operation is started at time t = 0
with an empty buffer. The system is regarded as
good as new after both the completion of software
rejuvenation and the completion of recovery.

Garg et al. [27] consider the following software
rejuvenation schemes based on the cumulative
operation time.

Policy I: rejuvenate the system when the cumula-
tive operation time becomes T (>0). Then,
all transactions in the buffer, if any, will be
lost.

Policy II: rejuvenate the system at the beginning
of the first idle period following the
cumulative operation time T (>0).

Figure 14.3 depicts the possible behavior of soft-
ware system under the two kinds of rejuvenation
policies.

Consider three dependability measures: steady-
state availability, loss probability of transactions,
and mean response time of transactions. We will

252 Software Reliability

Figure 14.3. Possible realization of transaction-based software
system under two policies

apply the well-known theory of the Markov
regenerative process (MRGP) to derive the above
measures. First, consider a discrete-time Markov
chain (DTMC) with three states.

State A: system operation.

State B: system is recovering from failure.

State C: system is undergoing software
rejuvenation.

Figure 14.4 is the state transition diagram of
the DTMC. Let PAB and PAC denote the transition
probabilities from State A to B and from State A
to C respectively. Taking account of PAC = 1−
PAB, the transition probability matrix is given by

P=
0 PAB PAC

1 0 0
1 0 0

The steady-state probabilities for the DTMC can
be easily found as

πA = 1
2 (14.12)

πB = PAB

2
(14.13)

Figure 14.4. State transition diagram of DTMC

and

πC = PAC

2
. (14.14)

Next, define the following random variables:

U is the sojourn time in State A in the steady
state

Un is the sojourn time in State A when
n (= 0, . . . , K) transactions are
accumulated in the buffer, so that

U =
K∑
n=0

Un, almost surely (14.15)

Nl is the number of transactions lost at the
transition from State A to State B or C.

Theorem 4.
(i) The steady-state system availability is

Ass = πAE[U]
πAE[U] + πBγr + πCγR

= E[U]
E[U] + PABγr + PACγR

(14.16)

(ii) The loss probability of transactions is

Ploss = λ(PABγr + PACγR + E[UK])+ E[Nl]
λ(E[U] + PABγr + PACγR)

(14.17)
(iii) Let E and Ws be the expected number of

transactions processed by the system and the
expected total processing time for transactions
served by the system respectively, where E =
λ(E[U] − E[UK]). Then an upper bound of
the mean response time on transactions Tres =
Ws/(E − E[Nl]) is given by

Tres <
W

E − E[Nl] (14.18)

In this way, we can formulate implicitly the
steady-state availability, the loss probability of
transactions, and the upper bound of mean
response time on transactions, based on the
simple DTMC. Next, we wish to derive the optimal
rejuvenation interval T ∗ under Policy I and
Policy II. To do this, we represent the steady-state
availability, the loss probability of transactions,
and the upper bound of the mean response

Software Rejuvenation: Modeling and Applications 253

Figure 14.5. State transition diagram of Policy I

time as the functions of T , i.e. Ass(T), Ploss(T)

and Tres(T). Since these functions include the
parameters PAB, E[Un] and E[Nl] depending on
T , we need to calculate PAB, E[Un] and E[Nl]
numerically. Define the following probabilities:

pn(t) is the probability that n transactions
remain in the buffer at time t

pn′ (t) is the probability that the system fails
up to time t and that n transactions
remain in the buffer at the failure time

where n= 0, . . . , K .
First, we analyze a single server queuing system

under Policy I. Consider a non-homogeneous
continuous time Markov chain (NHCTMC) with
2K states, where:

State 0, . . . , K : 0, . . . , K denotes the number of
transactions in the buffer;

State 0′, . . . , K ′: the system fails with 0, . . . , K
transactions in the buffer (absorbing states).

Figure 14.5 illustrates the state transition dia-
gram for the NHCTMC with Policy I. Applying the
well-known state-space method to the NHCTMC,
we can formulate the difference-differential equa-
tions (Kolmogorov’s forward equations) on pn(t)

and pn′ (t) as follows:

dp0(t)

dt
= µ(·)p1(t)− {λ+ ρ(·)}p0(t) (14.19)

dpn(t)

dt
= µ(·)pn+1(t)+ λpn−1(t)

− {µ(·)+ λ+ ρ(·)}pn(t)

n= 1, . . . , K − 1 (14.20)

Figure 14.6. State transition diagram of Policy II

dpK(t)

dt
= λpK−1(t)− {µ(·)+ ρ(·)}pK(t)

(14.21)

dpn′(t)

dt
= ρ(·)pn(t) n= 0, . . . , K (14.22)

By solving the difference-differential equations
numerically, we can obtain

PAB =
K∑
n=0

pn′ (T) (14.23)

E[Un] =
∫ T

0
pn(t) dt n= 1, . . . , K (14.24)

E[Nl] =
K∑
n=0

n{pn(T)+ pn′(T)} (14.25)

and the dependability measures in Equa-
tions 14.16, 14.17 and 14.18 based on Policy I.

Figure 14.6 illustrates the state transition
diagram for the NHCTMC with Policy II. In a
fashion similar to Policy I, we derive the
difference-differential equations on pn(t) and
pn′(t) for Policy II. Since the system starts the
software rejuvenation when the buffer becomes
empty for the first time, the state transition
diagrams of Policies I and II are equivalent in
t ≤ T . In the case of t > T , we can derive the
difference-differential equations under Policy II as
follows.

dp0(t)

dt
= µ(·)p1(t) (14.26)

dp1(t)

dt
= µ(·)p2(t)− {µ(·)+ λ+ ρ(·)}p1(t)

(14.27)

254 Software Reliability

Figure 14.7. Ass andPloss for both policies plotted against T

dpn(t)

dt
= µ(·)pn+1(t)+ λpn−1(t)

− {µ(·)+ λ+ ρ(·)}pn(t)

n= 2, . . . , K − 1 (14.28)

dpK(t)

dt
= λpK−1(t)− {µ(·)+ ρ(·)}pK(t)

(14.29)

dpn′(t)

dt
= ρ(·)pn(t) n= 1, . . . , K. (14.30)

Using p
(i)
n (t) and pn′(t) in the difference-

differential equations, PAB, E[Un] and E[Nl] are
given by

PAB =
K∑
n=0

pn′(∞) (14.31)

E[U0] =
∫ T

0
p0(t) dt (14.32)

E[Un] =
∫ ∞

0
pn(t) dt n= 1, . . . , K (14.33)

E[Nl] =
K∑
n=0

npn′(∞). (14.34)

The difference-differential equations derived
here can be solved with the standard numerical
solution methods, such as the Runge–Kutta
method and Adam’s method. However, it is not

always easy to carry out the numerical calculation,
since the computation time depends on the size
of the underlying NHCTMC, i.e. the number of
states.

We illustrate the usefulness of the model
presented in determining the optimum value of
T on the example adopted from Garg et al. [27].
The failure rate and the service rate are assumed
to be functions of real time, where ρ(t) is defined
to be the hazard function of Weibull distribution,
and µ(t) is defined to be a monotone non-
increasing function that approximates the service
degradation. Figure 14.7 shows Ass and Ploss for
both policies plotted against T for different values
of the mean time to perform rejuvenation γR.
Under both policies, it can be seen that, for any
particular value of T , the higher the value of
γR, the lower is the availability and the higher
is the corresponding loss probability. It can also
be observed that the value of T which minimizes
probability of loss is much lower than that which
maximizes availability. In fact, the probability
of loss becomes very high at values of T that
maximize availability. For any specific value of
γR, Policy II results in a lower minimum in loss
probability than that achieved under Policy I.
Therefore, if the objective is to minimize long
run probability of loss, such as in the case of
telecommunication switching software, Policy II
always fares better than Policy I.

Software Rejuvenation: Modeling and Applications 255

Figure 14.8. SRN model of a cluster system employing time-based rejuvenation

14.2.3 Examples in a Cluster System

In this section we discuss software rejuvenation
as applied to cluster systems [16]. This is a novel
application, which significantly improves cluster
system availability and productivity. Cluster com-
puting [32] has been increasingly popular in the
last decade, and is being widely used in various
kinds of applications, many of which are not tol-
erant to system failures and the resulting loss of
service. By coupling software rejuvenation with
clustering, significant increases in cluster system
availability and performance can be achieved.
Taking advantage of node failovers in a cluster,
one can still maintain operation (though possibly
at a degraded level) by rejuvenating one node at
a time. The main assumptions here are that a
node rejuvenation takes less time to perform, is
less disruptive, and is less expensive than recovery
from an unplanned node failure. Simple time-
based rejuvenation policies, in which the nodes

are rejuvenated at regular intervals, can be imple-
mented easily. The cluster system availability and
service level can be further enhanced by taking a
more proactive approach to detect and predict an
impending outage of a specific server in order to
initiate planned failover in a more orderly fashion.
This approach not only improves the end user’s
perception of service provided by the system,
but also gives the system administrator additional
time to work around any system capacity issues
that may arise.

The stochastic reward net (SRN) model of
a cluster system employing simple time-based
rejuvenation is shown in Figure 14.8. The cluster
consists of n nodes that are initially in a “robust”
working state Pup. The aging process is modeled
as a two-stage hypo-exponential distribution
(increasing failure rate) with transitions Tfprob
and Tnoderepair. Place Pfprob represents a “failure-
probable” state in which the nodes are still
operational. The nodes then can eventually transit

256 Software Reliability

Figure 14.9. Cluster system employing prediction-based rejuvenation

to the fail state, Pnodefail1. A node can be repaired
through the transition Tnoderepair, with a coverage
c. In addition to individual node failures, there is
also a common-mode failure (transition Tcmode).
The system is also considered down when there
are a (a ≤ n) individual node failures. The system
is repaired through the transition Tsysrepair.

In the simple time-based policy, rejuvenation
is done successively for all the operational nodes
in the cluster, at the end of each deterministic
interval. The transition Trejuvinterval fires every
d time units, depositing a token in place Pstartrejuv.
Only one node can be rejuvenated at any time
(at places Prejuv1 or Prejuv2). Weight functions are
assigned such that the probability of selecting a
token from Pup or Pfprob is directly proportional
to the number of tokens in each. After a node
has been rejuvenated, it goes back to the “robust”
working state, represented by place Prejuved. This is
a duplicate place for Pup in order to distinguish
the nodes that are waiting to be rejuvenated from

the nodes that have already been rejuvenated.
A node, after rejuvenation, is then allowed to
fail with the same rates as before rejuvenation,
even when another node is being rejuvenated.
Duplicate places for Pup and Pfprob are needed
to capture this. Node repair is disabled during
rejuvenation. Rejuvenation is complete when the
sum of nodes in places Prejuved, Pfprobrejuv and
Pnodefail2 is equal to the total number of nodes n.
In this case, the immediate transition Timmd10 fires,
putting back all the rejuvenated nodes in places
Pup and Pfprob. Rejuvenation stops when there
are a − 1 tokens in place Pnodefail2, to prevent
a system failure. The clock resets itself when
rejuvenation is complete and is disabled when
the system is undergoing repair. Guard functions
(g1 through g7) are assigned to express complex
enabling conditions textually.

In prediction-based rejuvenation (Figure 14.9),
rejuvenation is attempted only when a node tran-
sits into the “failure probable” state. In practice,

Software Rejuvenation: Modeling and Applications 257

Figure 14.10. Time-based rejuvenation for 8/1 configuration

this degraded state could be predicted in advance
by means of analyses of some observable system
parameters [33]. In the case of a successful pre-
diction, assuming that no other node is being
rejuvenated at that time, the newly detected node
can be rejuvenated. A node is allowed to fail even
while waiting for rejuvenation.

For the analyses, the following values are
assumed. The mean times spent in places Pup
and Pfprob are 240 h and 720 h respectively.
The mean times to repair a node, to rejuvenate
a node, and to repair the system are 30 min,
10 min and 4 h respectively. In this analysis,
the common-mode failure is disabled and node
failure coverage is assumed to be perfect. All the
models were solved using the Stochastic Petri
Net Package (SPNP) tool. The measures computed
were expected unavailability and the expected cost
incurred over a fixed time interval. It is assumed
that the cost incurred due to node rejuvenation is
much less than the cost of a node or system failure,
since rejuvenation can be done at predetermined
or scheduled times. In our analysis, we fix the
value for costnodefail at $5000/h, the costrejuv at
$250/h. The value of costsysfail is computed as the
number of nodes n times costnodefail.

Figure 14.10 shows the plots for an 8/1 con-
figuration (eight nodes including one spare) sys-
tem employing simple time-based rejuvenation.
The upper and lower plots show the expected cost
incurred and the expected downtime (in hours)
respectively in a given time interval, versus reju-
venation interval (time between successive reju-
venation) in hours. If the rejuvenation interval is
close to zero, the system is always rejuvenating and
thus incurs high cost and downtime. As the rejuve-
nation interval increases, both expected unavail-
ability and cost incurred decrease and reach an
optimum value. If the rejuvenation interval goes
beyond the optimal value, the system failure has
more influence on these measures than rejuvena-
tion. The analysis was repeated for 2/1, 8/2, 16/1
and 16/2 configurations. For time-based rejuvena-
tion, the optimal rejuvenation interval was 100 h
for the one-spare clusters, and approximately 1 h
for the two-spare clusters. In our analysis of pre-
dictive rejuvenation, we assumed 90% prediction
coverage. For systems that have one spare, time-
based rejuvenation can reduce downtime by 26%
relative to no rejuvenation. Predictive rejuvena-
tion does somewhat better, reducing downtime by
62% relative to no rejuvenation. However, when
the system can tolerate more than one failure at
a time, downtime is reduced by 98% to 95% via
time-based rejuvenation, compared with a mere
85% for predictive rejuvenation.

14.3 Measurement-based
Estimation

In this section we describe the measurement-
based approach for detection and validation of
the existence of software aging. The basic idea is
to monitor periodically and collect data on the
attributes responsible for determining the health
of the executing software, in this case the UNIX
operating system. The SNMP-based distributed
resource monitoring tool discussed by Garg
et al. [33] was used to collect operating system
resource usage and system activity data from nine
heterogeneous UNIX workstations connected by

258 Software Reliability

an Ethernet LAN at the Duke Department of
Electrical and Computer Engineering. A central
monitoring station runs the manager program
which sends get requests periodically to each of
the agent programs running on the monitored
workstations. The agent programs, in turn, obtain
data for the manager from their respective
machines by executing various standard UNIX
utility programs like pstat, iostat and vmstat.
For quantifying the effect of aging in operating
system resources, the metric Estimated time to
exhaustion is proposed. The earlier work [33] used
a purely time-based approach to estimate resource
exhaustion times, whereas the work presented by
Vaidyanathan and Trivedi [34] takes into account
the current system workload as well.

14.3.1 Time-based Estimation

Data were collected from the machines at intervals
of 15 min for about 53 days. Time-ordered values
for each monitored object are obtained, constitut-
ing a time series for that object. The objective is
to detect aging or a long-term trend (increasing or
decreasing) in the values. Only results for the data
collected from the machine Rossby are discussed
here.

First, the trends in operating system resource
usage and system activity are detected using
smoothing of observed data by robust locally
weighted regression, proposed by Cleveland [35].
This technique is used to get the global trend
between outages by removing the local variations.
Then, the slope of the trend is estimated in
order to do prediction. Figure 14.11 shows the
smoothed data superimposed on the original
data points from the time series of objects
for Rossby. The amount of real memory free
(plot 1) shows an overall decrease, whereas file
table size (plot 2) shows an increase. Plots of
some other resources not discussed here also
showed an increase or decrease. This corroborates
the hypothesis of aging with respect to various
objects.

The seasonal Kendall test [36] was applied to
each of these time series to detect the presence of
any global trends at a significance level α of 0.05.

Table 14.1. Seasonal Kendall test

Resource name Rossby

Real memory free −13.668
File table size 38.001
Process table size 40.540
Used swap space 15.280
No. of disk data blocks 48.840
No. of queues 39.645

The associated statistics are listed in Table 14.1.
With Zα = 1.96, all values in the table are such
that the null hypothesis H0 that no trend exists is
rejected.

Given that a global trend is present and that
its slope is calculated for a particular resource,
the time at which the resource will be exhausted
because of aging only is estimated. Table 14.2
refers to several objects on Rossby and lists an
estimate of the slope (change per day) of the trend
obtained by applying Sen’s slope estimate for data
with seasons [33]. The values for real memory and
swap space are in kilobytes. A negative slope, as
in the case of real memory, indicates a decreasing
trend, whereas a positive slope, as in the case
of file table size, is indicative of an increasing
trend. Given the slope estimate, the table lists the
estimated time to failure of the machine due to
aging only with respect to this particular resource.
The calculation of the time to exhaustion is done
by using the standard linear approximation y =
mx + c.

A comparative effect of aging on different
system resources can be obtained from the above
estimates. Overall, it was found that file table
size and process table size are not as important
as used swap space and real memory free, since
they have a very small slope and high estimated
times to failure due to exhaustion. Based on such
comparisons, we can identify important resources
to monitor and manage in order to deal with
aging-related software failures. For example, the
resource used swap space has the highest slope
and real memory free has the second highest slope.
However, real memory free has a lower time to
exhaustion than used swap space.

Software Rejuvenation: Modeling and Applications 259

Figure 14.11. Non-parametric regression smoothing for Rossby objects

Table 14.2. Estimated slope and time to exhaustion for Rossby objects

Resource name Initial value Max value Sen’s slope Estimated time
estimation to exhaustion

Real memory free 40 814.17 84 980 −252.00 161.96
File table size 220 7110 1.33 5167.50
Process table size 57 2058 0.43 4602.30
Used swap space 39 372 312 724 267.08 1023.50

260 Software Reliability

Table 14.3. Statistics for the workload clusters

No. Cluster center % of pts

cupConSw sysCall pgOut pgIn

1 48 405.16 94 194.66 5.16 677.83 0.98
2 54 184.56 122 229.68 5.39 81.41 0.98
3 34 059.61 193 927.00 0.02 136.73 0.93
4 20 479.21 45 811.71 0.53 243.40 1.89
5 21 361.38 37 027.41 0.26 12.64 7.17
6 15 734.65 54 056.27 0.27 14.45 6.55
7 37 825.76 40 912.18 0.91 12.21 11.77
8 11 013.22 38 682.46 0.03 10.43 42.87
9 67 290.83 37 246.76 7.58 19.88 4.93

10 10 003.94 32 067.20 0.01 9.61 21.23
11 197 934.42 67 822.48 415.71 184.38 0.93

14.3.2 Time and Workload-based
Estimation

The method discussed in Section 14.3.1 assumes
that accumulated use of a resource over a
time period depends only on the elapsed time.
However, it is intuitive that the rate at which
a resource is consumed is dependent on the
current workload. In this subsection, we discuss
a measurement-based model to estimate the rate
of exhaustion of operating system resources as a
function of both time and the system workload
presented by Vaidyanathan and Trivedi [34].
The SNMP-based distributed resource monitoring
tool described previously was used for collecting
operating system resource usage and system
activity parameters (at 10 min intervals) for over
3 months. The longest stretch of sample points in
which no reboots or failures occurred were used
for building the model. A semi-Markov reward
model was constructed using the data. First,
different workload states were identified using
statistical cluster analysis and a state-space model
was constructed. Corresponding to each resource,
a reward function based on the rate of resource
exhaustion in the different states was then defined.
Finally, the model is solved to obtain trends and
time to exhaustion for the resources.

The following variables were chosen to char-
acterize the system workload: cpuContextSwitch,
sysCall, pageIn, and pageOut. Hartigan’s k-means

clustering algorithm [37] was used for partition-
ing the data points into clusters based on work-
load. The statistics for the 11 workload clus-
ters obtained are shown in Table 14.3. Clusters
whose centroids were relatively close to each other,
and those with a small percentage of data points
in them, were merged to simplify computations.
The resulting clusters are W1 = {1, 2, 3}, W2 =
{4, 5}, W3 = {6}, W4 = {7}, W5 = {8}, W6 = {9},
W7 = {10}, and W8 = {11}.

Transition probabilities from one state to
another were computed from data, resulting in
transition probability matrix P of the embedded
DTMC shown below:

P=

0.00 0.16 0.22 0.13
0.07 0.00 0.14 0.14
0.12 0.26 0.00 0.10
0.15 0.36 0.06 0.00
0.03 0.07 0.04 0.01
0.07 0.16 0.02 0.54
0.02 0.05 0.00 0.00
0.31 0.08 0.15 0.23

0.26 0.03 0.17 0.03
0.32 0.03 0.31 0.00
0.43 0.00 0.11 0.02
0.10 0.22 0.09 0.03
0.00 0.00 0.85 0.00
0.12 0.00 0.02 0.07
0.92 0.00 0.00 0.00
0.08 0.15 0.00 0.00

Software Rejuvenation: Modeling and Applications 261

Table 14.4. Sojourn time distributions

State Sojourn time distributionF(t)

W1 1− 1.602 919 e−0.9t + 0.602 9185 e−2.392 739t

W2 1− 0.9995 e−0.44 9902t − 0.0005 e−0.007 110 07t

W3 1− 0.9952 e−0.327 4977t − 0.0048 e−0.017 5027t

W4 1− 0.841 362 e−0.327 5372t − 0.158 638 e−0.038 254 29t

W5 1− 1.425 856 e−0.56t + 0.425 8555 e−1.875t

W6 1− 0.806 94 e−0.550 9307t − 0.193 06 e−0.037 057 56t

W7 1− 2.865 33 e−1.302t + 1.865 33 e−2t

W8 1− 0.9883 e−265 5196t − 0.0117 e−0.027 101 47t

Table 14.5. Slop estimates (in Kb/10 min)

State usedSwapSpace realMemoryFree

Slope estimate 95% confidence interval Slope estimate 95% confidence interval

W1 119.3 5.5 to 222.4 −133.7 −137.7 to−133.3
W2 0.57 0.40 to 0.71 −1.47 −1.78 to−1.09
W3 0.76 0.73 to 0.80 −1.43 −2.50 to−0.62
W4 0.57 0.00 to 0.69 −1.23 −1.67 to−0.80
W5 0.78 0.75 to 0.80 0.00 −5.65 to−6.00
W6 0.81 0.64 to 1.00 −1.14 −1.40 to−0.88
W7 0.00 0.00 to 0.00 0.00 0.00 to 0.00
W8 91.8 72.4 to 111.0 91.7 −369.9 to 475.2

The sojourn time distribution for each of the
workload states was fitted to either two-stage
hyper-exponential or two-stage hypo-exponential
distribution functions. The fitted distributions,
shown in Table 14.4, were tested using the
Kolmogorov–Smirnov test at a significance level of
0.01.

Two resources, usedSwapSpace and realMemo-
ryFree, are considered for the analysis, since the
previous time-based analysis suggested that they
are critical resources. For each resource, the re-
ward function is defined as the rate of corre-
sponding resource exhaustion in different states.
The true slope (rate of increase/decrease) of a re-
source at every workload state is estimated by us-
ing Sen’s non-parametric method [34]. Table 14.5
shows the slopes with 95% confidence intervals.

It was observed that slopes in a given workload
state for a particular resource during different
visits to that state are almost the same. Further,
the slopes across different workload states are

different and, generally, the higher the system
activity, then the higher is the resource utilization.
This validates the assumption that resource usage
does depend on the system workload and the rates
of exhaustion vary with workload changes. It can
also be observed from Table 14.5 that the slopes
for usedSwapSpace in all the workload states are
non-negative, and the slopes for realMemoryFree
are non-positive in all the workload states except
in one. It follows that usedSwapSpace increases,
whereas realMemoryFree decreases, over time,
which validates the software aging phenomenon.

The semi-Markov reward model was solved
using the SHARPE [38]. The slope for the
workload-based estimation is computed as the ex-
pected reward rate in steady state from the model.
As in the case of time-based estimation, the times
to resource exhaustion are computed using the
linear formula y =mx + c. Table 14.6 gives the
estimates for the slope and time to exhaustion for
usedSwapSpace and realMemoryFree. It can be

262 Software Reliability

Table 14.6. Estimates for slope (in KB/10 min) and time to exhaustion (in days)

Estimation method usedSwapSpace realMemoryFree

Slope estimate Estimated time Slope estimate Estimated time
to exhaustion to exhaustion

Time based 0.787 2276.46 −2.806 60.81
Workload based 4.647 453.62 −3.386 50.39

seen that workload-based estimations gave a lower
time to resource exhaustion than those computed
using time-based estimations. Since the machine
failures due to resource exhaustion were observed
much before the times to resource exhaustion
estimated by the time-based method, it follows
that the workload-based approach results in better
estimations.

14.4 Conclusion and Future
Work

In this chapter we have motivated the need for
pursuing preventive maintenance in operational
software systems on a scientific basis rather than
on the current ad hoc practice. Thus, an important
research issue is to determine the optimal times
to perform the preventive maintenance. In this
regard, we discuss two possible approaches:
analytical modeling, and a measurement-based
approach.

In the first part, we discuss analytical models
for evaluating the effectiveness of preventive
maintenance in operational software systems that
experience aging. The aim of the analytical
modeling approach is to determine the optimal
times to perform rejuvenation. The latter part
of the chapter deals with a measurement-based
approach for detection and validation of the
existence of software aging. Although the SNMP-
based distributed resource monitoring tool is
specific to UNIX, the methodology can also be
used for detection and estimation of aging in other
software systems.

In future, a unified approach, by taking account
of both analytical modeling and measurement-
based rejuvenations, should be established. Then,

the probability distribution function of the soft-
ware failure occurrence time has to be modeled
in a consistent way. In other words, the stochastic
models to describe the physical failure phenomena
in operational software systems should be devel-
oped under a random usage environment.

Acknowledgments

This material is based upon the support by
the Department of Defense, Alcatel, Telcordia,
and Aprisma Management Technologies via a
CACC Duke core project. The first author is
also supported in part by the Telecommunication
Advancement Foundation, Tokyo, Japan.

References
[1] Adams E. Optimizing preventive service of the software

products. IBM J Res Dev 1984;28:2–14.
[2] Huang Y, Kintala C, Kolettis N, Fulton ND. Software

rejuvenation: analysis, module and applications. In:
Proceedings of 25th International Symposium on Fault
Tolerant Computer Systems. Los Alamitos: IEEE CS Press;
1995. p.381–90.

[3] Lin F. Re-engineering option analysis for managing soft-
ware rejuvenation. Inform Software Technol 1993;35:462–
467.

[4] Parnas DL. Software aging. In: Proceedings of 16th
International Conference on Software Engineering. New
York: ACM Press; 1994. p.279–87.

[5] Huang Y, Kintala C. Software fault tolerance in the
application layer. In: Lyu MR, editor. Software fault
tolerance. Chichester: John Wiley & Sons; 1995. p.231–48

[6] Huang Y, Jalote P, Kintala C. Two techniques for transient
software error recovery. In: Banatre M, Lee PA, editors.
Hardware and software architectures for fault tolerance:
experience and perspectives. Springer Lecture Note in
Computer Science, vol. 774. Berlin: Springer-Verlag; 1995.
p.159–70.

[7] Jalote P, Huang Y, Kintala C. A framework for un-
derstanding and handling transient software failures.
In: Proceedings of 2nd ISSAT International Conference
on Reliability and Quality in Design, 1995; p.231–7.

Software Rejuvenation: Modeling and Applications 263

[8] Avritzer A, Weyuker EJ. Monitoring smoothly degrading
systems for increased dependability. Empirical Software
Eng J 1997;2:59–77.

[9] Levendel Y. The cost effectiveness of telecommunication
service. In: Lyu MR, editor. Software fault tolerance.
Chichester: John Wiley & Sons; 1995. p.279–314.

[10] Marshall E. Fatal error: how Patriot overlooked a Scud.
Science 1992;255:1347.

[11] Gray J, Siewiorek DP. High-availability computer systems.
IEEE Comput 1991;9:39–48.

[12] Trivedi KS, Vaidyanathan K, Goševa-Postojanova K.
Modeling and analysis of software aging and rejuvena-
tion. In: Proceedings of 33rd Annual Simulation Sympo-
sium. Los Alamitos: IEEE CS Press; 2000. p.270–9.

[13] Tai AT, Chau SN, Alkalaj L, Hecht H. On-board preventive
maintenance: analysis of effectiveness and optimal duty
period. In: Proceedings of 3rd International Workshop
on Object Oriented Real-Time Dependable Systems. Los
Alamitos: IEEE CS Press; 1997. p.40–7.

[14] Tai AT, Alkalaj L, Chau SN. On-board preventive
maintenance for long-life deep-space missions: a
model-based evaluation. In: Proceedings of 3rd IEEE
International Computer Performance & Dependability
Symposium. Los Alamitos: IEEE CS Press; 1998. p.196–
205.

[15] Tai AT, Alkalaj L, Chau SN. On-board preventive
maintenance: a design-oriented analytic study for long-
life applications. Perform Eval 1999;35:215–32.

[16] Vaidyanathan K, Harper RE, Hunter SW, Trivedi KS.
Analysis and implementation of software rejuvenation
in cluster systems. In: Proceedings of Joint International
Conference on Measurement and Modeling of Computer
Systems, ACM SIGMETRICS 2001/Peformance 2001. New
York: ACM; 2001. p.62–71.

[17] IBM Netfinity director software rejuvenation–white pa-
per. URL: http://www.pc.ibm.com/us/techlink/wtpapers/.

[18] Dohi T, Goševa-Popstojanova K, Trivedi KS. Analysis of
software cost models with rejuvenation. In: Proceedings
of 5th IEEE International Symposium High Assurance
Systems Engineering. Los Alamitos: IEEE CS Press; 2000.
p.25–34.

[19] Dohi T, Goševa-Popstojanova K, Trivedi KS. Statistical
non-parametric algorithms to estimate the optimal
software rejuvenation schedule. In: Proceedings of
2000 Pacific Rim International Symposium Depend-
able Computing. Los Alamitos: IEEE CS Press; 2000. p.77–
84.

[20] Dohi T, Goševa-Popstojanova K, Trivedi KS. Estimating
software rejuvenation schedule in high assurance sys-
tems. Comput J 2001;44:473–85.

[21] Garg G, Puliafito A, Trivedi KS. Analysis of software
rejuvenation using Markov regenerative stochastic Petri
net. In: Proceedings of 6th International Symposium on
Software Reliability Engineering. Los Alamitos: IEEE CS
Press; 1995. p.180–7.

[22] Bobbio A, Sereno M. Fine grained software rejuvenation
models. In: Proceedings of 3rd IEEE International
Computer Performance & Dependability Symposium.
Los Alamitos: IEEE CS Press; 1998. p.4–12.

[23] Garg S, Huang Y, Kintala C, Trivedi KS. Minimizing
completion time of a program by checkpointing and
rejuvenation. In: Proceedings of 1996 ACM SIGMETRICS
Conference. New York: ACM; 1996. p.252–61.

[24] Bobbio A, Garg S, Gribaudo M, Horvaáth A, Sereno M,
Telek M. Modeling software systems with rejuvenation,
restoration and checkpointing through fluid stochastic
Petri nets. In: Proceedings of 8th International Workshop
on Petri Nets and Performance Models. Los Alamitos:
IEEE CS Press; 1999. p.82–91.

[25] Garg S, Huang Y, Kintala C, Trivedi KS. Time and
load based software rejuvenation: policy, evaluation
and optimality. In: Proceedings of 1st Fault-Tolerant
Symposium, 1995. p.22–5.

[26] Pfening A, Garg S, Puliafito A, Telek M, Trivedi KS.
Optimal rejuvenation for tolerating soft failures. Perform
Eval 1996;27–28:491–506.

[27] Garg S, Puliafito A, Telek M, Trivedi KS. Analysis of
preventive maintenance in transactions based software
systems. IEEE Trans Comput 1998;47:96–107.

[28] Okamura H, Fujimoto A, Dohi T, Osaki S, Trivedi KS.
The optimal preventive maintenance policy for a software
system with multi server station. In: Proceedings of
6th ISSAT International Conference on Reliability and
Quality in Design, 2000; p.275–9.

[29] Okamura H, Miyahara S, Dohi T, Osaki S. Performance
evaluation of workload-based software rejuvenation
scheme. IEICE Trans Inform Syst D 2001;E84-D: 1368-75.

[30] Ross SM. Applied probability models and optimization
applications. San Francisco (CA): Holden-Day; 1970.

[31] Barlow RE, Campo R. Total time on test processes and
applications to failure data. In: Barlow RE, Fussell J,
Singpurwalla ND, editors. Reliability and fault tree
analysis. Philadelphia: SIAM; 1975. p.451–81.

[32] Pfister G. In search of clusters: the coming battle in lowly
parallel computing. Englewood Cliffs (NJ): Prentice-Hall;
1998.

[33] Garg S, van Moorsel A, Vaidyanathan K, Trivedi KS.
A methodology for detection and estimation of software
aging. In: Proceedings of 9th International Symposium
on Software Reliability Engineering. Los Alamitos: IEEE
CS Press; 1998. p.282–92

[34] Vaidyanathan K, Trivedi KS. A measurement-based
model for estimation of resource exhaustion in opera-
tional software systems. In: Proceedings of 10th IEEE
International Symposium on Software Reliability Engi-
neering. Los Alamitos: IEEE CS Press; 1999. p.84–93.

[35] Cleveland WS. Robust locally weighted regression and
smoothing scatterplots. J Am Stat Assoc 1979;74:829–36.

[36] Gilbert RO. Statistical methods for environmental pollu-
tion monitoring. New York (NY):Van Nostrand Reinhold;
1987.

[37] Hartigan JA. Clustering algorithms. New York (NY):John
Wiley & Sons; 1975.

[38] Sahner RA, Trivedi KS, Puliafito A. Performance and
reliability analysis of computer systems–an example-
based approach using the SHARPE software package.
Norwell (MA): Kluwer Academic Publishers; 1996.

This page intentionally left blank

Software Reliability Management:
Techniques and Applications

Ch
ap

te
r1

5Mitsuhiro Kimura and Shigeru Yamada

15.1 Introduction
15.2 Death Process Model for Software Testing Management
15.2.1 Model Description
15.2.1.1 Mean Number of Remaining Software Faults/Testing-cases
15.2.1.2 Mean Time to Extinction
15.2.2 Estimation Method of Unknown Parameters
15.2.2.1 Case of 0 < α < 1
15.2.2.1 Case of α = 0
15.2.3 Software Testing Progress Evaluation
15.2.4 Numerical Illustrations
15.2.5 Concluding Remarks
15.3 Estimation Method of Imperfect Debugging Probability
15.3.1 Hidden-Markov Modeling for Software Reliability Growth Phenomenon
15.3.2 Estimation Method of Unknown Parameters
15.3.3 Numerical Illustrations
15.3.4 Concluding Remarks
15.4 Continuous State Space Model for Large-scale Software
15.4.1 Model Description
15.4.2 Nonlinear Characteristics of Software Debugging Speed
15.4.3 Estimation Method of Unknown Parameters
15.4.4 Software Reliability Assessment Measures
15.4.4.1 Expected Number of Remaining Faults and Its Variance
15.4.4.2 Cumulative and Instantaneous Mean Time Between Failures
15.4.5 Concluding Remarks
15.5 Development of a Software Reliability Management Tool
15.5.1 Definition of the Specification Requirement
15.5.2 Object-oriented Design
15.5.3 Examples of Reliability Estimation and Discussion

15.1 Introduction

In this chapter we discuss three new stochastic
models for assessing software reliability and the
degree of software testing progress, and a software
reliability management tool.

Precise software reliability assessment is neces-
sary to measure and predict the reliability and per-
formance of a developed software product. Also, it
has become one of the urgent issues in software

engineering to develop quality software products
and increase the productivity of their development
processes [1–5]. In order to solve such software
quality management issues, a number of software
reliability assessment models have been developed
by many researchers over the last two decades
[2–5]. Among these models, those that have been
built based on some stochastic processes have re-
cently become to be known gradually by software
development managers and practitioners.

265

266 Software Reliability

Section 15.2 considers a model that describes
the degree of software testing progress by focusing
on the consumption process of test cases during
the software testing phase. Measuring the software
testing progress may also play a significant role
in software development management, because
one of the most important factors is traceability
in the software development process. To evaluate
the degree of the testing progress, we construct
a generalized death process model that is able
to analyze the data sets of testing time and the
number of test cases consumed during the testing
phase. The model predicts the mean number of
the consumed test cases by extrapolation and
estimates the mean completion time of the testing
phase. We show several numerical illustrations
using the actual data.

In Section 15.3, we propose a new approach
to estimating the software reliability assessment
model considering the imperfect debugging en-
vironment by analyzing the traditional software
reliability data sets. Generally, stochastic models
for software reliability assessment need several
assumptions, and some of them are too strict to
describe the actual phenomena. In the research
area of software reliability modeling, it is known
that the assumption of perfect debugging is very
useful in simplifying the models, but many soft-
ware quality/reliability researchers and practition-
ers are critical in terms of assuming perfect debug-
ging in a software testing environment. Consider-
ing such a background, several imperfect debug-
ging software reliability assessment models have
been developed [6–12]. However, it is found that
the really practical methods for estimating the
imperfect debugging probability have not been
proposed yet. We show that the hidden-Markov
estimation method [13] enables one to estimate
the imperfect debugging probability by only using
the traditional data sets.

In Section 15.4, we consider a state dependency
in the software reliability growth process. In the
literature, almost all of the software reliability
assessment models based on stochastic processes
are continuous time and discrete state space
models. In particular, the models based on a
non-homogeneous Poisson process (NHPP) are

widely known as software reliability growth
models and have actually been implemented
in several computer-aided software engineering
(CASE) tools [4, 5]. These NHPP models can
be easily applied to the observed data sets and
expanded to describe several important factors
which have an effect on software debugging
processes in the actual software testing phase.
However, the NHPP models essentially have a
linear relation on the state dependency; this is
a doubtful assumption with regard to actual
software reliability growth phenomena. That is,
these models have no choice but to use a mean
value function for describing a nonlinear relation
between the cumulative number of detected faults
and the fault detection rate. Thus we present a
continuous state space model to introduce directly
the nonlinearity of the state dependency of the
software reliability growth process.

Finally, in Section 15.5, we introduce a proto-
type of a software reliability management tool that
includes the models described in this chapter. This
tool has been implemented using JAVA and object-
oriented analysis.

15.2 Death Process Model for
Software Testing Management

In this section we focus on two phenomena
that are observable during the software testing
phase, which is the last phase of a large-
scale software development process. The first is
the software failure-occurrence or fault-detection
process, and the second is the consumption
process of test cases which are provided previously
and consumed to examine the system test of the
software system implemented. To evaluate the
quality of the software development process or
the software product itself, we describe a non-
homogeneous death process [14] with a state-
dependent parameter α (0≤ α ≤ 1).

After the model description, we derive several
measures for quantitative assessment. We show
that this model includes Shanthikumar’s binomial
reliability model [15] as a special case. The

Software Reliability Management: Techniques and Applications 267

estimation method of maximum likelihood for the
unknown parameters is also shown. Finally, we
illustrate several numerical examples for software
testing-progress evaluation by applying the actual
data sets to our model, and we discuss the
applicability of the model.

15.2.1 Model Description

We first consider a death process [16, 17]
{X(t), t ≥ 0}, which has the initial population
K (K ≥ 1) and satisfies the following assump-
tions:

• Pr[X(t +�t)= x − 1 |X(t)= x] =
(xα + 1− α)φ(t)�t + o(�t)

• Pr[X(t)−X(t +�t) ≥ 2] = o(�t)

• Pr[X(0)=K] = 1
• {X(t), t ≥ 0} has independent increments.

The term population has two meanings in this
section. The first one is the number of software
faults that are latent in the software system, if our
new model describes the software fault-detection
or failure-occurrence process. The second one
means the number of test cases for the testing
phase, if the model gives a description of the
consumption process of the test cases.

In the above assumptions, the positive function
φ(t) is called an intensity function, and α (0≤ α ≤
1) is a constant parameter and affects the state-
dependent property of the process {X(t), t ≥ 0}.
That is, the state transition probability Pr[X(t +
�t)= x − 1 | X(t)= x] does not depend on the
state x at time t but the intensity function φ(t), if
α = 0. On the other hand, when α = 1, the process
depends on residual population x and φ(t) at
time t . This model describes a generalized non-
homogeneous death process. We consider that the
residual population at time t , X(t), represents the
number of remaining software faults or remaining
test cases at the testing time t .

Under the assumptions listed above, we can
obtain the probability that the cumulative number
of deaths is equal to n at time t , Pr[X(t)=K −

n] = Pn(t | α), as follows:

Pn(t | α)=
∏n−1

i=0 [(K − i)α + 1− α]
n!

× [e−αG(t)]K−n−1

×
[

1− e−αG(t)

α

]n
e−G(t) (15.1)

(n= 0, 1, 2, . . . , K − 1)

PK(t | α)= 1−
K−1∑
n=0

Pn(t | α)

where

G(t)=
∫ t

0
φ(x) dx (15.2)

and we define

−1∏
i=0

[(K − i)α + 1− α] = 1 (15.3)

In the above, the term death means the elimina-
tion of a software fault or the consumption of a
testing case during the testing phase.

In Equation (15.1), limα→0 Pn(t | α) yields

Pn(t | 0)= G(t)n

n! e−G(t)

(n= 0, 1, 2, . . . , K − 1) (15.4)

PK(t | 0)=
∞∑
i=K

G(t)i

i! e−G(t)

since

lim
α→0

1− e−αG(t)

α
=G(t) (15.5)

Similarly, by letting α→ 1 we obtain

Pn(t | 1)=
(
K

n

)
e−G(t)(K−n)(1− e−G(t))n

(n= 0, 1, . . . , K) (15.6)

Equation 15.6 is a binomial reliability model by
Shanthikumar [15].

Based on the above, we can derive several
measures.

268 Software Reliability

15.2.1.1 Mean Number of Remaining
Software Faults/Testing Cases

The mean number of remaining software faults/
testing cases at time t , E[X(t)], is derived as

E[X(t)]

=K − e−G(t)
K∑
n=1

�(K + 1/α)

�(K + 1/α − n)(n− 1)!
× [e−αG(t)]K−n−1[1− e−αG(t)]n (15.7)

if 0 < α ≤ 1. To obtain Equation 15.7, we use the
following equation:∏n−1

i=0 [(K − i)α + 1− α]
αn

= �(K + 1/α)

�(K + 1/α − n)
(15.8)

where �(a) represents a gamma function defined
as

�(a)=
∫ ∞

0
e−xxa−1 dx (15.9)

Also, Equation 15.7 can be simplified if α = 1 as

E[X(t)]α=1 =Ke−G(t) (15.10)

In the case of α = 0, E[X(t)] yields

E[X(t)]α=0 =KA(K, G(t))

−G(t)A(K − 1, G(t)) (15.11)

where A(K, G(t)) represents the incomplete
gamma ratio which is defined as follows [14]:

A(K, G(t))= �(K, G(t))/�(K, 0) (15.12)

�(a, b)=
∫ ∞
b

e−xxa−1 dx (15.13)

15.2.1.2 Mean Time to Extinction

Let B(t) be the cumulative distribution function
(CDF) of the event that all of K are disappeared at
time t . From Equation 15.1, B(t) is represented as

B(t) = PK(t | α)=
∞∑

n=K
Pn(t | α) (15.14)

Therefore, the mean time to extinction E[T] is

E[T] =
∫ ∞

0
t dB(t) (15.15)

If the intensity function φ(t) is assumed by

φ(t)= λβtβ−1 (15.16)

two special cases of E[T] are obtained as follows:

E[T]α=0 = �(K + 1/β)

�(K)

(
1

λ

)1/β

(15.17)

E[T]α=1 =
K∑
r=1

[(
K

r

)
(−1)r+1

(
1

r

)1/β
]

×
(

1

β

)
�

(
1

β

) (
1

λ

)1/β

(15.18)

15.2.2 Estimation Method of Unknown
Parameters

We show the estimation method of unknown
parameters included in the model except for K .
We assume that a data set consists of time tj and
cumulative number of deaths yj , i.e. (tj , yj) (j =
1, 2, . . . , m) and t1 < t2 < · · ·< tm, y1 < y2 <

· · ·< ym, and the initial population K .

15.2.2.1 Case of 0 < α ≤ 1

By using the data, the likelihood function l can be
constructed as

l = Pr[X(t1)=K − y1, X(t2)

=K − y2, . . . , X(tm)=K − ym]

=
m∏

j=1

�(K + 1/α − yj−1)

(yj − yj−1)!�(K + 1/α − yj)

× (e−αG(tj−1) − e−αG(tj))yj−yj−1

× (1− e−αG(tj−1) + e−αG(tj))K+(1/α)−yj−1

(15.19)

where t0 ≡ 0, y0 ≡ 0. From the above equation, the
log-likelihood function L is represented as

L≡ log l

=
m∑

j=1

log

[
�

(
K + 1

α
− yj−1

)]

−
m∑

j=1

log[(yj − yj−1)!]

Software Reliability Management: Techniques and Applications 269

−
m∑

j=1

log

[
�

(
K + 1

α
− yj

)]

+
m∑

j=1

(yj − yj−1) log[e−αG(tj−1) − e−αG(tj)]

+
m∑

j=1

(
K + 1

α
− yj − 1

)
× log[(1− e−αG(tj−1) + e−αG(tj))] (15.20)

If the intensity function is given by Equation 15.16,
the simultaneous likelihood equations are shown
as

∂L(α, λ, β)

∂α
= 0

∂L(α, λ, β)

∂λ
= 0

∂L(α, λ, β)

∂β
= 0 (15.21)

We can solve these equations numerically to
obtain the maximum likelihood estimates.

15.2.2.2 Case of α = 0

In this case, the likelihood function l and the log-
likelihood L are rewritten respectively as

l ≡
m∏

j=1

∫ tj
tj−1

φ(x) dxyj−yj−1

(yj − yj−1)!

× exp

[
−
∫ tj

tj−1

φ(x) dx

]
(15.22)

L= log l =
m∑

j=1

(yj − yj−1) log[G(tj)−G(tj−1)]

−
m∑

j=1

log(yj − yj−1)! −G(tm) (15.23)

Substituting Equation 15.16 into Equation 15.23,
we have

L(λ, β)= ym log λ+
m∑

j=1

(yj − yj−1)

× log(tβj − t
β

j−1)

−
m∑

j=1

log(yj − yj−1)! − λtβm (15.24)

The simultaneous likelihood equations are ob-
tained as follows:

∂L(λ, β)

∂λ
= ym

λ
− tβm = 0 (15.25)

∂L(λ, β)

∂β
=

m∑
j=1

(yj − yj−1)

× t
β

j log tj − t
β

j−1 log tj−1

t
β
j − t

β

j−1

− ym log tm = 0 (15.26)

By solving Equations 15.25 and 15.26 numerically,
we obtain the maximum likelihood estimates for λ
and β .

15.2.3 Software Testing Progress
Evaluation

Up to the present, a lot of stochastic models
have been proposed for software reliability/quality
assessment. Basically, such models analyze the
software fault-detection or failure-occurrence data
which can be observed in the software testing
phase. Therefore, we first consider the applicabil-
ity of our model to the software fault-detection
process.

The meaning of the parameters included in
Equation 15.1 is as follows:

K is the total number of software faults
latent in the software system

φ(t) is the fault detection rate at testing time t
per fault

α is the degree of the relation on the
fault-detection rate affected by the
number of remaining faults.

However, it is difficult for this model to analyze
the software fault-detection data, because the
estimation for the unknown parameter K is
difficult unless α = 1. We need to use the other
estimation method for K .

We now focus on the analysis of the consump-
tion process of test cases. The software devel-
opment managers not only want to know the
software reliability attained during the testing, but

270 Software Reliability

also the testing progress. In the testing phase of
software development, many test cases provided
previously are examined as to whether each of
them satisfies the specification of the software
product or not. When the software completes the
task that is defined by each test case without
causing any software failure, the test case is con-
sumed. On the other hand, if a software failure
occurs, the software faults that cause the software
failure are detected and removed. In this situation,
{X(t), t ≥ 0} can be treated as the consumption
process of test cases. The meaning of the parame-
ters is as follows:

K is the total number of test cases provided

φ(t) is the consumption rate of test case at
time t per test case

α is the degree of the relation on the
consumption rate affected by the number
of remaining test cases.

15.2.4 Numerical Illustrations

We show several numerical examples for software
testing-progress evaluation. The data sets were
actually obtained in the actual testing processes,
and consist of testing time ti , the cumulative
number of consumed test cases yi , and the total
number of test cases K . The data sets are:

DS-2.1: (ti , yi) (i = 1, 2, . . . , 10), K = 5964. ti is
measured in days. This data appeared in
Shibata [18].

DS-2.2: (ti , yi) (i = 1, 2, . . . , 19), K = 11 855. ti
is measured in days. This data set was
observed from a module testing phase and
the modules were implemented by high-
level programming language [14].

First, we estimate the three unknown param-
eters λ, β and α using DS-2.1. The results are
λ̂= 1.764, β̂ = 1.563, and α̂ = 1.000. We illustrate
the mean number of consumed test cases and the
actual data in Figure 15.1: the small dots represent
the realizations of the number of consumed test
cases actually observed.

Figure 15.1. Estimated mean number of consumed test cases
(DS-2.1; λ̂= 1.764, β̂ = 1.563, α̂ = 1.000)

Next, we discuss the predictability of our model
in terms of the mean number of consumed test
cases by using DS-2.2. That is, we estimate the
model parameters by using the first half of DS-
2.2 (i.e. t1→ t10). The estimates are obtained as
λ̂= 4.826, β̂ = 3.104, and α̂ = 0.815. Figure 15.2
shows the estimation result for DS-2.2. The right-
hand side of the plot is the extrapolated prediction
of the test case consumption. These data sets seem
to fit our model.

Hence the software development managers may
estimate the software testing-progress quantita-
tively by using our model.

Figure 15.2. Estimated mean number of consumed test cases
(DS-2.2; λ̂= 4.826, β̂ = 3.104, α̂ = 0.815)

Software Reliability Management: Techniques and Applications 271

15.2.5 Concluding Remarks

In this section, we formulated a non-homo-
geneous death process model with a state-
dependent parameter, and derived the mean
residual population at time t and the mean
time to extinction. The estimation method of
the unknown parameters included in the model
has also been presented based on the method
of maximum likelihood. We have considered
the applicability of the model to two software
quality assessment issues. As a result, it is found
that our model is not suitable for assessing
software reliability, since the parameter K , which
represents the total number of software faults
latent in the software system, is difficult to
estimate. This difficulty remains as a future
problem to be solved. However, our model is
useful for such problems when K is known. Thus
we have shown numerical examples of testing-
progress evaluation by using the model and the
actual data.

15.3 Estimation Method of
Imperfect Debugging Probability

We study a simple software reliability assessment
model taking an imperfect debugging environ-
ment into consideration in this section. The model
was originally proposed by Goel and Okumoto
[12]. We focus on developing a practical method
for estimating the imperfect debugging software
reliability assessment model.

In Section 15.3.1 we describe the modeling and
the several assumptions required for it. We show
the Baum–Welch re-estimation procedure, which
is commonly applied in hidden-Markov modeling
[13, 19], in Section 15.3.2. Section 15.3.3 presents
several numerical illustrations based on the actual
software fault-detection data set collected. We
discuss some computational difficulties of the
estimation procedure. Finally, in Section 15.3.4, we
summarize with some remarks about the results
obtained, and express several issues remaining for
future study.

Figure 15.3. State transition diagram of the imperfect debugging
model

15.3.1 Hidden-Markov modeling for
software reliability growth phenomenon

In this section, we assume the following software
testing and debugging environment.

• Software is tested by using test cases that are
previously provided based on their specifica-
tion requirements.
• One software failure is caused by one software

fault.
• In the debugging process, a detected software

fault is fixed correctly or done correctly but
the debugging activity introduces one new
fault into the other program path in terms of
the test case.

In the usual software testing phase, software is
inspected and debugged until a test case can
be processed successfully. Consequently, when a
test case is performed correctly by the software
system, the program path of the test case must
have no fault. In other words, if a software
debugging worker fails to fix a fault, a new fault
might be introduced into the other program path,
and it may be detected by the other (later) test
case, or not be detected at all.

Based on these assumptions, Goel and
Okumoto [12] proposed a simple software reli-
ability assessment model considering imperfect
debugging environments. This model represents
the behavior of the number of faults latent in the
software system as a Markov model. The state
transition diagram is illustrated in Figure 15.3.
In this figure, the parameters p and q represent
perfect and imperfect debugging probabilities,
respectively (p + q = 1). The sojourn time

272 Software Reliability

distribution function of state j is defined as

Fj (t)= 1− exp[−λjt] (j = 0, 1, . . . , N)

(15.27)
where j represents the number of remaining
faults, λ is a constant parameter that corresponds
to the software failure occurrence rate, and N is
the total number of software faults. This simple
distribution function was first proposed by Jelin-
ski and Moranda [20]. Goel and Okumoto [12]
discussed the method of statistical inference by
the methods of maximum likelihood and Bayesian
estimation. However, the former method,
especially, needs data that includes information on
whether each software failure is caused by a fault
that is originally latent in the software system or
by an introduced one. Generally, during the actual
testing phase in the software development, it
seems very difficult for testing managers to collect
such data. We need to find another estimation
method for the imperfect debugging probability.

In this section, we consider this imperfect
debugging model as a hidden-Markov model. A
hidden-Markov model is a kind of Markov model;
however, it has hidden states in its state space.
That is, the model includes the states that are
unobservable from the sequence of results of
the process considered. The advantage of this
modeling technique is that there is a proposed
method for estimating the unknown parameters
included in the hidden states. Hidden-Markov
modeling has been mainly used in the research
area of speech recognition [13, 19]. We apply
this method to estimate the imperfect debugging
probability q and other unknown parameters.

Now we slightly generalize the sojourn time
distribution function of state j as

Fj (t)= 1− exp[−λj t] (j = 0, 1, . . . , N)

(15.28)
This Fj (t) corresponds to Equation 15.27 if λj =
λj .

We adopt the following notation:

N is the number of software faults latent in
the software system at the beginning of
the testing phase of software
development

p is the perfect debugging probability
(0 < p ≤ 1)

q is the imperfect debugging rate
(q = 1− p)

λj is the hazard rate of software failure
occurrence at state j (λj > 0)

j is the state variable representing the
number of software faults latent in the
software system (j = 0, 1, . . . , N)

Fj (t) is the sojourn time distribution in state
j , which represents the CDF of a time
interval measured from the (N − j)th to
the (N − j + 1)th fault-detection (or
failure-occurrence) time.

In our model, the state transition diagram
is the same as that of Goel and Okumoto (see
Figure 15.3). In the figure, each state represents
the number of faults latent in the software during
the testing phase. From the viewpoint of hidden-
Markov modeling, the hidden states in this model
are the states themselves. In other words, we
cannot find how the sequence of the transitions
occurred, based on the observed software fault-
detection data.

15.3.2 Estimation Method of Unknown
Parameters

We use the Baum–Welch re-estimation formulas
to estimate the unknown parameters q , λj , and
N , with fault-detection time data (i, xi) (i =
1, 2, . . . , T) where xi means the time interval
between the (i − 1)th and ith fault-detection time
(x0 ≡ 0).

By using this estimation procedure, we can re-
estimate the values of q and λj (j =N+, N+ −
1, . . . , 1, 0), where N+ represents the number of
initial faults content which is virtually given for
the procedure. We can also obtain the re-estimated
value of πj (j = N+, N+ − 1, . . . , 1, 0) through
this procedure, where πj is the initial probability

of state j
(∑N+

j=0 πj = 1
)
. The re-estimated values

are given as follows:

q̄ =
∑T−1

t=1 ξ00(t)∑T−1
t=1 γ0(t)

(15.29)

Software Reliability Management: Techniques and Applications 273

λ̄j =
∑T

t=1 αj [t]βj [t]∑T
t=1 αj [t]βj [t]xt

(15.30)

π̄j = γj (1) (15.31)

where T represents the length of the observed
data, and

aij =

1 (i = 0, j = 0)

q (i = j)

p (i − j = 1)

0 (otherwise)

(15.32)

bj (k)= dFj (k)

dk
= λj exp[−λjk]

(j =N+, N+ − 1, . . . , 1, 0)

αj (t)=

πjbj (x1)

(t = 1; j =N+, N+ − 1, . . . , 1, 0)∑N+
i=0 αi(t − 1)aij bj (xt)

(t = 2, 3, . . . , T ;
j =N+, N+ − 1, . . . , 1, 0)

(15.33)

βi(t)=

1 (t = T ; i = N+, N+−1, . . . , 1, 0)∑N+

j=0 aij bj (xt+1)βj (t + 1)

(t = T − 1, T − 2, . . . , 1;
i =N+, N+ − 1, . . . , 1, 0)

(15.34)

γi(t)= αi(t)βi(t)∑N+
i=0 αi(T)

(15.35)

ξij (t)= αi(t)aij bj (xt+1)βj (t + 1)∑N+
i=0 αi(T)

(15.36)

The initial values for the parameters q , λj ,
and π = {π0, π1, . . . , πN+} should be given
previously. After iterating these re-estimation
procedures, we can obtain the estimated values
as the convergence ones. Also, we can estimate
the optimal state sequence by using γi(t) in
Equation 15.35. The most-likely state, si , is given
as

si = argmax
0≤j≤N+

[γj (i)] (1≤ i ≤ T) (15.37)

The estimated value of the parameter N , which
is denoted N̂ , is given by N̂ = s1 from Equa-
tion 15.37.

Table 15.1. Estimation results for λ̂ and N̂

q̃ (%) λ̂ N̂ SSE

0.0 0.006 95 31 7171.9
1.0 0.006 88 31 7171.7
2.0 0.006 80 31 7172.4
3.0 0.006 74 31 7173.5
4.0 0.007 13 30 6872.0
5.0 0.007 06 30 7213.6
6.0 0.006 98 30 7182.7
7.0 0.007 40 29 7217.1
8.0 0.007 32 29 6872.7
9.0 0.007 25 29 7248.9

10.0 0.007 17 29 7218.6

15.3.3 Numerical Illustrations

We now try to estimate the unknown parameters
included in our model described in the previous
section. We analyze a data set that was cited by
Goel and Okumoto [21]. This data set (denoted
DS-3.1) forms (i, xi) (i = 1, 2, . . . , 26, i.e. T =
26). However, we have actually found some
computational difficulty in terms of the re-
estimation procedure. This arises from the fact
that there are many unknown parameters, namely
λj (j = N+, N+ − 1, . . . , 1, 0). Hence, we have
reduced our model to Goel and Okumoto’s one, i.e.
λj = λ · j (for all j).

We give the initial values for π by taking
the possible number of the initial fault content
from the data set into consideration, and λ.
For computational convenience, we give the
values of the imperfect debugging rate q as q̃ =
0, 1, 2, . . . , 10 (%), and we estimate the other
parameters for each q .

The estimation results are shown in Table 15.1.
In this table, we also calculate the sum of the
squared error (SSE), which is defined as

SSE=
26∑
i=1

(xi − E[Xi])2 (15.38)

where E[Xi] represents the estimated mean time
between the (i − 1)th and the ith fault-detection
times, i.e. E[Xi] = 1/(λ̂si) (i = 1, 2, . . . , 26).

From the viewpoint of minimizing the SSE,
the best model for this data set is N̂ = 30, q̃ =

274 Software Reliability

Table 15.2. Results of data analysis for DS-3.1

i xi Ê[xi] si

1 9 4.68 30
2 12 4.84 29
3 11 5.01 28
4 4 5.19 27
5 7 5.39 26
6 2 5.61 25
7 5 5.84 24
8 8 6.10 23
9 5 6.38 22

10 7 6.68 21
11 1 7.01 20
12 6 7.38 19
13 1 7.79 18
14 9 8.25 17
15 4 8.77 16
16 1 9.35 15
17 3 10.0 14
18 3 10.8 13
19 6 11.7 12
20 1 12.8 11
21 11 14.0 10
22 33 15.6 9
23 7 17.5 8
24 91 20.0 7
25 2 20.0 7a

26 1 23.4 6

aThe occurrence of imperfect debugging.

4.0 (%), λ̂= 0.007 13. This model fits better than
the model by Jelinski and Moranda [20] (their
model corresponds to the case of q̃ = 0.0 (%)

in Table 15.1). By using Equation 15.37, we
additionally obtain the most-likely sequence of the
(hidden) states. The result is shown in Table 15.2
with the analyzed data set. From Table 15.2, we
find that the estimated number of residual faults is
five. Figure 15.4 illustrates the cumulative testing-
time versus the number of times of fault-detection
based on the results of Table 15.2. We have used the
actual data from Table 15.2, and plotted them with
the estimated mean cumulative fault-detection
time for the first 26 faults. Since an additional
five data points are also available from Goel and
Okumoto [21], we have additionally plotted them
in Figure 15.4 with the prediction curve, which is

extrapolated by using

E[Xm] = 1

λ̂(1− q̃)(N̂ −m+ 1+ I)

(m= 27, 28, . . . , 31) (15.39)

I = 26− (N̂ − s26 + 1) (15.40)

where I denotes the estimated number of times of
imperfect debugging during the testing phase.

15.3.4 Concluding Remarks

This section considered the method of estimat-
ing the imperfect debugging probability which
appears in several software reliability assessment
models. We have applied hidden-Markov model-
ing and the Baum–Welch re-estimation procedure
to the estimation problems of the unknown model
parameters. We have found that there are still
some computational difficulties for obtaining the
estimates if the model is complicated in terms of
the model structure. However, we could estimate
the imperfect debugging probability by only using
the fault-detection time data.

It seems that hidden-Markov modeling is com-
petent for describing more complicated models for
the software fault-detection process. One area of
future study is to solve the computational prob-
lems appearing in the re-estimation procedure,
and to find some rational techniques for giving the
initial values.

15.4 Continuous State Space
Model for Large-scale Software
One of our interests here is to introduce the
nonlinear state dependency of software debugging
processes directly into the software reliability
assessment model, not as a mean behavior like
the NHPP models. By focusing on software
debugging speed, we first show the importance
of introducing the nonlinear behavior of the
debugging speed into the software reliability
modeling. The modeling needs the mathematical
theory of stochastic differential equations of
the Itô type [22–24], since a counting process

Software Reliability Management: Techniques and Applications 275

Figure 15.4. Estimated cumulative fault-detection time

(including an NHPP) cannot directly describe
the nonlinearity unless it is modeled as a mean
behavior. We derive several software reliability
assessment measures based on our new model,
and also show the estimation method of unknown
parameters included in the model.

15.4.1 Model Description

Let M(t) be the number of software faults
remaining in the software system at testing
time t (t ≥ 0). We consider a stochastic process
{M(t), t ≥ 0}, and assume M(t) takes on a
continuous real value. In past studies, {M(t), t ≥
0} has usually been modeled as a counting process
for software reliability assessment modeling [2–5,
20, 21, 25]. However, we can suppose that M(t) is
continuous when the size of the software system in
the testing phase is sufficiently large [26, 27]. The
process {M(t), t ≥ 0}may start from a fixed value
and gradually decrease with some fluctuation as
the testing phase goes on. Thus, we assume that

M(t) holds the basic equation as follows:

dM(t)

dt
=−b(t)g(M(t)) (15.41)

where b(t) (> 0) represents a fault-detection rate
per time, and M(0) (=m0 (const.)) is the number
of inherent faults at the beginning of the testing
phase. g(x) represents a nonlinear function, which
has the following required conditions:

• g(x) is non-negative and has Lipschitz conti-
nuity;
• g(0)= 0.

Equation 15.41 means that the fault-detection rate
at testing time t , dM(t)/dt , is defined as a function
of the number of faults remaining at testing time t ,
M(t). dM(t)/dt decreases gradually as the testing
phase goes on. This supposition has often been
made in software reliability growth modeling.

In this section, we suppose that b(t) in
Equation 15.41 has an irregular fluctuation, i.e. we
expand Equation 15.41 to the following stochastic

276 Software Reliability

differential equation [27]:

dM(t)

dt
=−{b(t)+ ξ(t)}g(M(t)) (15.42)

where ξ(t) represents a noise function that
denotes the irregular fluctuation. Further, ξ(t) is
defined as

ξ(t)= σγ (t) (15.43)

where γ (t) is a standard Gaussian white noise and
σ is a positive constant that corresponds to the
magnitude of the irregular fluctuation. Hence we
rewrite Equation 15.42 as

dM(t)

dt
=−{b(t)+ σγ (t)}g(M(t)) (15.44)

By using the Wong–Zakai transformation [28,
29], we obtain the following stochastic differential
equation of the Itô type.

dM(t)= {−b(t)g(M(t))

+ 1
2σ

2g(M(t))g′(M(t))} dt

− σg(M(t)) dW(t) (15.45)

where the so-called growth condition is assumed
to be satisfied with respect to the function g(x).

In Equation 15.45, W(t) represents a one-
dimensional Wiener process, which is formally
defined as an integration of the white noise γ (t)

with respect to testing time t . The Wiener process
{W(t), t ≥ 0} is a Gaussian process, and has the
following properties:

• Pr[W(0)= 0] = 1;
• E[W(t)] = 0;
• E[W(t)W(τ)] =min[t, τ].

Under these assumptions and conditions, we de-
rive a transition probability distribution function
of the solution process by solving the Fokker–
Planck equation [22] based on Equation 15.45.

The transition probability distribution func-
tion P(m, t |m0) is denoted by:

P(m, t |m0)= Pr[M(t) ≤m |M(0)=m0]
(15.46)

and its density is represented as

p(m, t |m0)= ∂

∂m
P(m, t |m0) (15.47)

The transition probability density function
p(m, t |m0) holds for the following Fokker–
Planck equation.

∂p(m, t)

∂t
= b(t)

∂

∂m
{g(m)p(m, t)}

− 1

2
σ 2 ∂

∂m
{g(m)g′(m)p(m, t)}

+ 1

2
σ 2 ∂2

∂m2
{g(m)2p(m, t)} (15.48)

By solving Equation 15.48 with the following
initial condition:

lim
t→0

p(m, t)= δ(m−m0) (15.49)

we obtain the transition probability density
function of the process M(t) as follows:

p(m, t |m0)= 1

g(m)σ
√

2πt

× exp

−
[∫ m

m0

dm′
g(m′) +

∫ t
0 b(t ′) dt ′

]2

2σ 2t

 (15.50)

Moreover, the transition probability distribution
function of M(t) is obtained as:

P(m, t |m0)= Pr[M(t) ≤m |M(0)=m0]
=
∫ m

−∞
p(m′, t |m0) dm′

=�

∫ mm0

dm′
g(m′) +

∫ t
0 b(t ′) dt ′

σ
√
t

(15.51)

where the function �(z) denotes the standard
normal distribution function defined as

�(z)= 1√
2π

∫ z

−∞
exp

[
− s2

2

]
ds (15.52)

Let N(t) be the total number of detected faults
up to testing time t . Since the condition M(t)+
N(t) =m0 holds with probability one, we have the
transition probability distribution function of the

Software Reliability Management: Techniques and Applications 277

Figure 15.5. Software debugging speed dN(t)/dt for DS-4.1

process N(t) as follows:

Pr[N(t) ≤ n |N(0)= 0, M(0)=m0]

=�

∫ n0 dn′
g(m0−n′) −

∫ t
0 b(t ′) dt ′

σ
√
t

(n < m0) (15.53)

15.4.2 Nonlinear Characteristics of
Software Debugging Speed

In order to apply the model constructed in the
previous section to the software fault-detection
data, we should determine the function g(x)

previously. First, we investigate two data sets
(denoted DS-4.1 and DS-4.2) that were collected in
the actual testing phase of software development
to illustrate the behavior of their debugging speed.
Each data set forms (tj , nj) (j = 1, 2, . . . , K ; 0 <

t1 < t2 < · · ·< tK), where tj represents testing
time and nj is the total number of detected
faults up to the testing time tj [30]. By evaluating
numerically, we obtain the debugging speed
dN(t)/dt from these data sets. Figures 15.5
and 15.6 illustrate the behavior of debugging
speed versus the cumulative number of detected
faults N(t) for the two data sets. Figure 15.5
shows an approximate linear relation between the
debugging speed and the degree of fault-detection.

Figure 15.6. Software debugging speed dN(t)/dt for DS-4.2

Therefore, we can give g(x) as:

g(x)= x (15.54)

for such a data set. On the other hand, Figure 15.6
illustrates the existence of a nonlinear relation
between them. Thus, we expand Equation 15.54
and assume the function as follows:

g(x)=

xr (0≤ x ≤ xc, r > 1)

rxc
r−1x + (1− r)xc

r

(x > xc, r > 1)

(15.55)

which is a power function that is partially revised
in x > xc so as to satisfy the growth condition.
In Equation 15.55, r denotes a shape parameter
and xc is a positive constant that is needed to
ensure the existence of the solution process M(t)

in Equation 15.45. The parameter xc can be given
arbitrarily. We assume xc =m0 in this model.

15.4.3 Estimation Method of Unknown
Parameters

We discuss the estimation method for unknown
parameters m0, b, and σ by applying the maxi-
mum likelihood method. The shape parameter r

is estimated by the numerical analysis between
dN(t)/dt and N(t), which was mentioned in the
previous section, because r is very sensitive. We
assume again that we have a data set of the form
(tj , nj) (j = 1, 2, . . . , K ; 0 < t1 < t2 < · · ·< tK).

278 Software Reliability

As a basic model, we suppose that the instanta-
neous fault-detection rate b(t) takes on a constant
value, i.e.

b(t)= b (const.) (15.56)

Let us denote the joint probability distribution
function of the process N(t) as

P(t1, n1; t2, n2; . . . ; tK, nK)

≡ Pr[N(t1)≤ n1, . . . , N(tK) ≤ nK

|N(0)= 0, M(0)=m0] (15.57)

and denote its density as

p(t1, n1; t2, n2; . . . ; tK, nK)

≡ ∂KP(t1, n1; t2, n2; . . . ; tK, nK)

∂n1∂n2 · · · ∂nK (15.58)

Therefore, we obtain the likelihood function l for
the data set as follows:

l = p(t1, n1; t2, n2; . . . ; tK, nK) (15.59)

since N(t) takes on a continuous value. For
convenience in mathematical manipulations, we
use the following logarithmic likelihood function
L:

L= log l (15.60)

The maximum-likelihood estimators m∗0, b∗,
and σ ∗ are the values making L in Equation 15.60
maximize, which can be obtained as the solutions
of the simultaneous equations as follows:

∂L

∂m0
= 0

∂L

∂b
= 0

∂L

∂σ
= 0 (15.61)

By using Bayes’ formula, the likelihood func-
tion l can be rewritten as

l = p(t1, n1; t2, n2; . . . ; tK, nK | t1, n1; t0, n0)

· p(t1, n1 | t0, n0) (15.62)

where p(·|t0, n0) is the conditional probability
density under the condition of N(t0)= n0, and we
suppose that t0 = 0 and n0 = 0. By iterating this
transformation under the Markov property, we
finally obtain the likelihood function l as follows:

l =
K∏
j=1

p(tj , nj | tj−1, nj−1) (15.63)

The transition probability of N(tj) under the
condition N(tj−1)= nj−1 can be obtained as

Pr[N(tj)≤ nj |N(tj−1)= nj−1]

=�

∫ njnj−1

dn′
g(m0−n′) − b(tj − tj−1)

σ
√
tj − tj−1

(15.64)

Partially differentiating Equation 15.64 with re-
spect to nj yields

p(tj , nj | tj−1, nj−1)

= 1

g(m0 − nj)σ
√

2π(tj − tj−1)

× exp

−
[∫ nj

nj−1

dn′
g(m0−n′) − b(tj − tj−1)

]2

2σ 2(tj − tj−1)

(15.65)

By substituting Equation 15.65 into 15.63 and
taking the logarithm of the equation, we obtain the
logarithmic likelihood function as follows:

L= log l

=−K log σ − K

2
log 2π −

K∑
j=1

log g(m0 − nj)

− 1

2

K∑
j=1

log(tj − tj−1)

− 1

2σ 2

K∑
j=1

[∫ nj

nj−1

dn′

g(m0 − n′)

− b(tj − tj−1)

]2/
(tj − tj−1) (15.66)

Substituting Equation 15.55 into Equation 15.66
yields

L= log l

=−K log σ − K

2
log 2π − r

K∑
j=1

log(m0 − nj)

− 1

2

K∑
j=1

log(tj − tj−1)

Software Reliability Management: Techniques and Applications 279

− 1

2σ 2

K∑
j=1

{
1

r − 1
[(m0 − nj)

1−r

− (m0 − nj−1)
1−r]

− b(tj − tj−1)

}2/
(tj − tj−1) (15.67)

We obtain the simultaneous likelihood equations
by applying Equation 15.67 to Equation 15.61 as
follows:

∂L

∂m0
=−r

K∑
j=1

1

m0 − nj

− 1

σ 2

K∑
j=1

SIj ∂SIj /∂m0

tj − tj−1
= 0 (15.68)

∂L

∂b
=− 1

σ 2

×
K∑
j=1

{ [(m0 − nj)
1−r − (m0 − nj−1)

1−r]
r − 1

− b(tj − tj−1)

}
= 0 (15.69)

∂L

∂σ
=−K

σ
+ 1

σ 3

K∑
j=1

S2
Ij

tj − tj−1
= 0 (15.70)

where

SIj = 1

r − 1
[(m0 − nj)

1−r − (m0 − nj−1)
1−r]

− b(tj − tj−1) (15.71)

∂SIj

∂m0
=−(m0 − nj)

−r + (m0 − nj−1)
−r

(15.72)

Since the variables b and σ can be eliminated
in Equations 15.68–15.70, we can estimate these
three parameters by solving only one nonlinear
equation numerically.

15.4.4 Software Reliability Assessment
Measures

We derive several quantitative measures to assess
software reliability in the testing and operational
phase.

15.4.4.1 Expected Number of Remaining
Faults and Its Variance

In order to assess software reliability quanti-
tatively, information on the current number of
remaining faults in the software system is useful
to estimate the situation of the progress on the
software testing phase.

The expected number of remaining faults can
be evaluated by

E[M(t)] =
∫ ∞

0
m d Pr[M(t)≤m |M(0)=m0]

(15.73)
The variance of M(t) is also obtained as

Var[M(t)] = E[M(t)2] − E[M(t)]2 (15.74)

If we assume g(x)= x as a special case, we have

E[M(t)] =m0 exp[−(b − 1
2σ

2)t] (15.75)

Var[M(t)] =m0
2 exp[−(2b− σ 2)t]{exp[σ 2t]−1}

(15.76)

15.4.4.2 Cumulative and Instantaneous
Mean Time Between Failures

In the fault-detection process {N(t), t ≥ 0},
average fault-detection time-interval per fault up
to time t is denoted by t/N(t). Hence, the
cumulative mean time between failure (MTBF),
MTBFC(t), is approximately given by

MTBFC(t)= E

[
t

N(t)

]
= E

[
t

m0 −M(t)

]
≈ t

m0 − E[M(t)]
= t

m0{1− exp[−(b − 1
2σ

2)t]}
(15.77)

when g(x)= x is assumed.
The instantaneous MTBF, MTBFI(t), can be

evaluated by

MTBFI(t)= E

[
1

dN(t)/dt

]
(15.78)

We calculate MTBFI(t) approximately by

MTBFI(t)≈ 1

E[dN(t)/dt] (15.79)

280 Software Reliability

Since the Wiener process has the independent in-
crement property, W(t) and dW(t) are statistically
independent and E[dW(t)] = 0, we have

MTBFI(t)= 1

E[−dM(t)/dt]
= 1

m0(b − 1
2σ

2) exp[−(b − 1
2σ

2)t]
(15.80)

if g(x)= x.

15.4.5 Concluding Remarks

In this section, a new model for software reliability
assessment has been proposed by using nonlinear
stochastic differential equations of the Itô type.
By introducing the debugging speed function, we
can obtain a more precise estimation in terms of
software reliability assessment. We have derived
several measures for software reliability assess-
ment based on this nonlinear stochastic model.
The method of maximum-likelihood estimation
for the model parameters has also been shown.

In any future study we must evaluate the
performance of our model in terms of software
reliability assessment and prediction by using data
actually collected in the testing phase of software
development.

15.5 Development of a
Software Reliability Management
Tool
Recently, numerous software tools that can assist
the software development process have been
constructed (e.g. see [4, 5]). The tools are
constructed as software packages to analyze
software faults data that are observed in the testing
phase, and to evaluate the quality/reliability of
the software product. In the testing phase of
the software development process, the testing
manager can perform the reliability evaluation
easily by using such tools without knowing the
details of the process of the faults data analysis.
Thus, this section aims at constructing a tool for

software management that provides quantitative
estimation/prediction of the software reliability
and testing management.

We introduce the notion of object-oriented
analysis for implementation of the software
management tool. The methodology of object-
oriented analysis has had great success in the
fields of programming language, simulation, the
graphical user interface (GUI), and construction
of databases in software development. A general
idea of object-oriented methodology is developed
as a technique that can easily construct and
maintain a complex software system. This tool
has been implemented using JAVA, which is
one of a number of object-oriented languages.
Hence we first show the definition of the
specification requirements of the tool. Then we
discuss the implementation methodology of the
software testing management tool using JAVA. An
example of software quality/reliability evaluation
is presented for a case where the tool is applied to
actual observed data. Finally, we discuss the future
problems of this tool.

15.5.1 Definition of the Specification
Requirement

The definition of the specification requirements
for this tool is as follows.

1. It should perform as a software reliabil-
ity management tool, which can analyze
the fault data and evaluate the software
quality/reliability and the degree of testing
progress quantitatively. The results should be
displayed as a window system on a PC.

2. For the data analysis required for qual-
ity/reliability and testing-progress control,
seven stochastic models should be employed
for software reliability analysis and one for
testing progress evaluation. For software reli-
ability assessment, the models are:

(i) exponential software reliability growth
(SRGM) model;

(ii) delayed S-shaped SRGM;
(iii) exponential-S-shaped SRGM [31];

Software Reliability Management: Techniques and Applications 281

Figure 15.7. Structure of the software reliability management tool

(iv) logarithmic Poisson execution time
model [32];

(v) Weibull process model [2, 33];
(vi) hidden-Markov imperfect debugging

model;
(vii) nonlinear stochastic differential equation

model.

In the above models, the first five models
belong to NHPP models. The model for testing
progress evaluation is that of the generalized
death process model.

The tool additionally examines the
goodness-of-fit test to the observed fault
data.

3. This tool should be operated by clicking of
mouse buttons and typing at the keyboard to
input the data through a GUI system.

4. JAVA, which is an object-oriented language,
should be used to implement the program.
This tool is developed as a stand-alone
application on the Windows95 operating
system.

15.5.2 Object-oriented Design

This tool should be composed of several pro-
cesses, such as fault data analysis, estimation of
unknown parameters, goodness-of-fit test for es-
timated models, graphical representation of fault
data, and their estimation results (see Figure 15.7).
As to searching for the numerical solution of the
simultaneous likelihood equations that are ob-
tained from the software reliability assessment
models based on NHPP and stochastic differential

282 Software Reliability

equation models, the bisection method is adopted.
The Baum–Welch re-estimation method is im-
plemented for the imperfect debugging model
explained in Section 15.3.

The goodness-of-fit test of each model
estimated is examined by the K–S test and the
Akaike information criterion (AIC) [34] for
the software reliability assessment models
and the testing-progress evaluation model.
To represent the results of quality/reliability
evaluation, the estimated mean value function,
the expected number of remaining faults, the
software reliability, and the MTBF are displayed
graphically for the software reliability assessment
models, except for hidden-Markov imperfect
debugging model. The imperfect debugging
model graphically gives the estimation result of
imperfect debugging probability and the expected
number of actual detected faults.

To perform the testing-progress evaluation,
the generalized death process model described
in Section 15.2 predicts the expected number of
consumed test cases at testing time t , and the
mean completion time of the testing phase.

The object-oriented methodology for imple-
mentation of a software program is defined as
the general idea that enables us to implement
the program code abstractly, and the program
logic is performed by passing messages among
the objects. This is different from the traditional
methodology of structured programming. Thus,
it combines the advantages of information hiding
and modularization. Moreover, it is comparatively
easy for programmers to construct application
software program with a GUI by using an object-
oriented language, e.g. see Arnold et al. [35].

This tool is implemented using the JAVA lan-
guage and the source code of the program
conforms to the object-oriented programming
methodology by using message communication
among the various classes. In the class construc-
tion, we implement the source program as each
class performs each function. For example, the
MOML class is constructed to perform the func-
tion of estimating the unknown parameters of the
models using the method of maximum likelihood.
To protect from improper access among classes,

one should avoid using static variables as much as
possible.

The proposed tool has been implemented on
an IBM-PC/AT compatible personal computer
with Windows95 operating system and JAVA
interpreter version 1.01 for MS-DOS. We use
the integrated JAVA development environment
package software “WinCafe”, which has a project
manager, editor, class browser, GUI debugger, and
several utilities.

15.5.3 Examples of Reliability
Estimation and Discussion

In this section we discuss a software testing-
management tool that can evaluate quantitatively
the quality/reliability and the degree of testing
progress. The tool analyzes the fault data observed
in the testing phase of software development and
displays the accompanying various information
in visual forms. Using this tool, the users can
quantitatively and easily obtain the achievement
level of the software reliability, the degree of
testing progress, and the testing stability.

By analyzing the actual fault-detection data set,
denoted DS-4.1 in Section 15.4, we performed
a reliability analysis using this tool and show
examples of the quality/reliability assessment in
Figure 15.8. This figure shows the estimation
results for the expected number of detected faults
by using the nonlinear stochastic differential
equation model.

In the following we evaluate our tool and dis-
cuss several problems. The first point concerns the
expandability of our tool. JAVA is simple and com-
pactly developed and we can easily code and de-
bug the source code. Moreover, since JAVA, like the
C++ language, is an object-oriented language, we
can easily use object-oriented techniques and their
attendant advantages, such as modularization and
reuse of existing code. We have implemented sev-
eral classes to perform various functions, such as
producing a new data file, estimating the unknown
parameters, displaying of results graphically, and

Software Reliability Management: Techniques and Applications 283

Figure 15.8. Expected cumulative number of detected faults (by SDE model with DS-4.1; m̂0 = 3569.8, b̂ = 0.000 131, σ̂ =
0.008 00, r̂ = 1.0)

several functions. If new software reliability as-
sessment techniques are developed in the field of
software reliability research, our tool can be easily
reconstructed with new software components to
perform the new assessment techniques. So we can
quickly and flexibly cope with extending the func-
tion of our tool. The second point is the portability
of the program. JAVA is a platform-free program-
ming language, and so does not depend on the
specific computer architecture. This tool can be
implemented and perform on any kind of com-
puter hardware. The final point is the processing

speed. The JAVA compiler makes use of bytecode,
which cannot be directly executed by the CPU.
This is the greatest difference from a traditional
programming language. But we do not need to pay
attention to the problem of the processing speed of
JAVA bytecode, since the processing speed of our
tool is sufficient.

In conclusion, this tool is new and has the
advantages that the results of data analysis are
represented simply and visually by GUI. The tool
is also easily expandable, it is machine portable,
and is maintainable because of the use of JAVA.

284 Software Reliability

References
[1] Pressman R. Software engineering: a practitioner’s

approach. Singapore: McGraw-Hill Higher Education;
2001.

[2] Musa JD, Iannino A, Okumoto K. Software reliabil-
ity: measurement, prediction, application. New York:
McGraw-Hill; 1987.

[3] Bittanti S. Software reliability modeling and identifica-
tion. Berlin: Springer-Verlag; 1988.

[4] Lyu M. Handbook of software reliability engineering. Los
Alamitos: IEEE Computer Society Press; 1995.

[5] Pham H. Software reliability. Singapore: Springer-Verlag;
2000.

[6] Okumoto K, Goel AL. Availability and other performance
measurement for system under imperfect debugging. In:
Proceedings of COMPSAC’78, 1978; p.66–71.

[7] Shanthikumar JG. A state- and time-dependent error
occurrence-rate software reliability model with imperfect
debugging. In: Proceedings of the National Computer
Conference, 1981; p.311–5.

[8] Kramer W. Birth–death and bug counting. IEEE Trans
Reliab. 1983;R-32:37–47.

[9] Sumita U, Shanthikumar JG. A software reliability model
with multiple-error introduction & removal. IEEE Trans
Reliab. 1986;R-35:459–62.

[10] Ohba M, Chou X. Does imperfect debugging affect
software reliability growth? In: Proceedings of the IEEE
International Conference on Software Engineering, 1989;
p.237–44.

[11] Goel AL, Okumoto K. An imperfect debugging model for
reliability and other quantitative measures of software
systems. Technical Report 78-1, Department of IE&OR,
Syracuse University, 1978.

[12] Goel AL, Okumoto K. Classical and Bayesian inference
for the software imperfect debugging model. Technical
Report 78-2, Department of IE&OR, Syracuse University,
1978.

[13] Rabinar LR, Juang BH. An introduction to hidden
Markov models. IEEE ASSP Mag 1986;3:4–16.

[14] Kimura M, Yamada S. A software testing-progress
evaluation model based on a digestion process of test
cases. Int J Reliab, Qual Saf Eng 1997;4:229–39.

[15] Shanthikumar JG. A general software reliability model
for performance prediction. Microelectron Reliab
1981;21:671–82.

[16] Ross SM. Stochastic processes. New York: John Wiley &
Sons; 1996.

[17] Karlin S, Taylor HM. A first course in stochastic
processes. San Diego: Academic Press; 1975.

[18] Shibata K. Project planning and phase management of
software product (in Japanese). Inf Process Soc Jpn
1980;21:1035–42.

[19] Rabinar LR. A tutorial on hidden Markov models and
selected applications in speech recognition. Proc IEEE
1989;7:257–86.

[20] Jelinski Z, Moranda PB. Software reliability research.
In: Freiberger W, editor. Statistical computer perfor-
mance evaluation. New York: Academic Press; 1972.
p.465–484.

[21] Goel AL, Okumoto K. Time-dependent and error-
detection rate model for software reliability and other
performance measures. IEEE Trans Reliab 1979;R-
28:206–11.

[22] Arnold L. Stochastic differential equations: theory and
applications. New York: John-Wiley & Sons; 1974.

[23] Protter P. Stochastic integration and differential equa-
tions: a new approach. Berlin Heidelberg New York:
Springer-Verlag; 1995.

[24] Karlin S, Taylor HM. A second course in stochastic
processes. San Diego: Academic Press; 1981.

[25] Goel AL, Okumoto K. A Markovian model for reliability
and other performance measures of software system. In:
Proceedings of the National Computer Conference, 1979;
p.769–74.

[26] Yamada S, Kimura M, Tanaka H, Osaki S. Software
reliability measurement and assessment with stochastic
differential equations. IEICE Trans Fundam 1994;E77-
A:109–16.

[27] Kimura M, Yamada S, Tanaka H. Software reliability
assessment modeling based on nonlinear stochastic
differential equations of Itô type. In: Proceedings of
the ISSAT International Conference on Reliability and
Quality in Design, 2000; p.160–3.

[28] Wong E, Zakai M. On the relation between ordinary and
stochastic differential equations. Int J Eng Sci 1965;3:213–
29.

[29] Wong E. Stochastic processes in information and systems.
New York: McGraw-Hill; 1971.

[30] Yamada S, Ohtera H, Narihisa H. Software reliability
growth models with testing-effort. IEEE Trans Reliab
1986;R-35:19–23.

[31] Kimura M, Yamada S, Osaki S. Software reliability as-
sessment for an exponential-S-shaped reliability growth
phenomenon. J Comput Math Appl 1992;24:71–8.

[32] Musa JD, Okumoto K. A logarithmic Poisson execution
time model for software reliability measurement. In:
Proceedings of the 7th International Conference on
Software Engineering, 1984; p.230–8.

[33] Crow LH. On tracking reliability growth. In: Proceedings
of the 1975 Annual Reliability and Maintainability
Symposium; p.438–43.

[34] Akaike H. A new look at the statistical model identifica-
tion. IEEE Trans Autom Control 1974;AC-19:716–23.

[35] Arnold K, Gosling J, Holmes D. The Java programming
language. Boston Tokyo: Addison-Wesley; 2000.

Recent Studies in Software
Reliability Engineering

Ch
ap

te
r1

6Hoang Pham

16.1 Introduction
16.1.1 Software Reliability Concepts
16.1.2 Software Life Cycle
16.2 Software Reliability Modeling
16.2.1 A Generalized Non-homogeneous Poisson Process Model
16.2.2 Application 1: The Real-time Control System
16.3 Generalized Models with Environmental Factors
16.3.1 Parameters Estimation
16.3.2 Application 2: The Real-time Monitor Systems
16.4 Cost Modeling
16.4.1 Generalized Risk–Cost Models
16.5 Recent Studies with Considerations of Random Field Environments
16.5.1 A Reliability Model
16.5.2 A Cost Model
16.6 Further Reading

16.1 Introduction

Computers are being used in diverse areas
for various applications, e.g. air traffic con-
trol, nuclear reactors, aircraft, real-time military
weapons, industrial process control, automotive
mechanical and safety control, and hospital pa-
tient monitoring systems. New computer and
communication technologies are obviously trans-
forming our daily life. They are the basis of many
of the changes in our telecommunications systems
and also a new wave of automation on the farm,
in manufacturing, hospital, transportation, and in
the office. Computer information products and
services have become a major and still rapidly
growing component of our global economy.

The organization of this chapter is divided into
five sections. Section 16.1 presents the basic con-
cepts of software reliability. Section 16.2 presents
some existing non-homogeneous Poisson process
(NHPP) software reliability models and their ap-
plication to illustrate the results. Section 16.3

presents generalized software reliability models
with environmental factors. Section 16.4 discusses
a risk–cost model. Finally, Section 16.5 presents
recent studies on software reliability and cost
models with considerations of random field envi-
ronments. Future research directions in software
reliability engineering and challenge issues are
also discussed.

16.1.1 Software Reliability Concepts

Research activities in software reliability engineer-
ing have been conducted over the past 30 years,
and many models have been developed for the
estimation of software reliability [1, 2]. Soft-
ware reliability is a measure of how closely user
requirements are met by a software system in
actual operation. Most existing models [2–16] for
quantifying software reliability are purely based
upon observation of failures during the system
test of the software product. Some companies
are indeed putting these models to use in their

285

286 Software Reliability

Table 16.1. The real-time control system data for time domain approach

Fault TBF Cumulative Fault TBF Cumulative Fault TBF Cumulative Fault TBF Cumulative
TBF TBF TBF TBF

1 3 3 35 227 5324 69 529 15806 103 108 42296
2 30 33 36 65 5389 70 379 16185 104 0 42296
3 113 146 37 176 5565 71 44 16229 105 3110 45406
4 81 227 38 58 5623 72 129 16358 106 1247 46653
5 115 342 39 457 6080 73 810 17168 107 943 47596
6 9 351 40 300 6380 74 290 17458 108 700 48296
7 2 353 41 97 6477 75 300 17758 109 875 49171
8 91 444 42 263 6740 76 529 18287 110 245 49416
9 112 556 43 452 7192 77 281 18568 111 729 50145

10 15 571 44 255 7447 78 160 18728 112 1897 52042
11 138 709 45 197 7644 79 828 19556 113 447 52489
12 50 759 46 193 7837 80 1011 20567 114 386 52875
13 77 836 47 6 7843 81 445 21012 115 446 53321
14 24 860 48 79 7922 82 296 21308 116 122 53443
15 108 968 49 816 8738 83 1755 23063 117 990 54433
16 88 1056 50 1351 10089 84 1064 24127 118 948 55381
17 670 1726 51 148 10237 85 1783 25910 119 1082 56463
18 120 1846 52 21 10258 86 860 26770 120 22 56485
19 26 1872 53 233 10491 87 983 27753 121 75 56560
20 114 1986 54 134 10625 88 707 28460 122 482 57042
21 325 2311 55 357 10982 89 33 28493 123 5509 62551
22 55 2366 56 193 11175 90 868 29361 124 100 62651
23 242 2608 57 236 11411 91 724 30085 125 10 62661
24 68 2676 58 31 11442 92 2323 32408 126 1071 63732
25 422 3098 59 369 11811 93 2930 35338 127 371 64103
26 180 3278 60 748 12559 94 1461 36799 128 790 64893
27 10 3288 61 0 12559 95 843 37642 129 6150 71043
28 1146 4434 62 232 12791 96 12 37654 130 3321 74364
29 600 5034 63 330 13121 97 261 37915 131 1045 75409
30 15 5049 64 365 13486 98 1800 39715 132 648 76057
31 36 5085 65 1222 14708 99 865 40580 133 5485 81542
32 4 5089 66 543 15251 100 1435 42015 134 1160 82702
33 0 5089 67 10 15261 101 30 42045 135 1864 84566
34 8 5097 68 16 15277 102 143 42188 136 4116 88682

software product development. For example, the
Hewlett-Packard company has been using an ex-
isting reliability model to estimate the failure in-
tensity expected for firmware, software embedded
in the hardware, in two terminals, known as the
HP2393A and HP2394A, to determine when to
release the firmware. The results of the reliability
modeling enabled it to test the modules more
efficiently and so contributed to the terminals’
success by reducing development cycle cost while
maintaining high reliability. AT&T software devel-
opers also used a software reliability model to pre-
dict the quality of software system T. The model

predicted consistently and the results were within
10% of predictions. AT&T Bell Laboratories also
predicted requested rate for field maintenance to
its 5ESS telephone switching system differed from
the company’s actual experience by only 5 to 13%.
Such accuracies could help to make warranties of
software performance practical [17].

Most existing models, however, require con-
siderable numbers of failure data in order to ob-
tain an accurate reliability prediction. There are
two common types of failure data: time-domain
data and interval-domain data. Some existing soft-
ware reliability models can handle both types of

Recent Studies in Software Reliability Engineering 287

data. The time-domain data are characterized by
recording the individual times at which the fail-
ure occurred. For example, in the real-time con-
trol system data of Lyu [18], there are a total of
136 faults reported and the times between failures
(TBF) in seconds are listed in Table 16.1. The
interval-domain data are characterized by count-
ing the number of failures occurring during a fixed
period. The time-domain data always provides
better accuracy in the parameter estimates with
current existing software reliability models, but
this involves more data collection effort than the
interval domain approach.

Information concerning the development of the
software product, the method of failure detection,
environmental factors, field environments, etc.,
however, are ignored in almost all the existing
models. In order to develop a useful software
reliability model and to make sound judgments
when using the model, one needs to have an in-
depth understanding of how software is produced;
how errors are introduced, how software is tested,
how errors occur, the types of errors, and environ-
mental factors can help us in justifying the reason-
ableness of the assumptions, the usefulness of the
model, and the applicability of the model under
given user environments [19]. These models, in
other words, would be valuable to software devel-
opers, users, and practitioners if they are capable
of using information about the software devel-
opment process, incorporating the environmental
factors, and are able to give greater confidence in
estimates based on small numbers of failure data.

Within the non-Bayes framework, the parame-
ters of the assumed distribution are thought to be
unknown but fixed and are estimated from past
inter-failure times utilizing the maximum likeli-
hood estimation (MLE) technique. A time interval
for the next failure is then obtained from the fitted
model. However, the TBF models based on this
technique tend to give results that are grossly opti-
mistic [20] due to the use of MLE. Various Bayes
predictive models [21, 22] have been proposed,
hopefully to overcome such problems, since if the
prior accurately reflects the actual failure process,
then model prediction on software reliability can
be improved while there is a reduction in total

testing time or sample size requirements. Pham
and Pham [14] developed Bayesian software re-
liability models with a stochastically decreasing
hazard rate. Within any given failure time interval,
the hazard rate is a function of both total test-
ing time and the number of failures encountered.
To improve the predictive performance of these
particular models, Pham and Pham [16] recently
presented a modified Bayesian model introduc-
ing pseudo-failures whenever there is a period
when the failure-free execution estimate equals
the interval-percentile of a predictive distribution.

In addition to those already defined, the
following acronyms will be used throughout the
chapter:

AIC the Akaike information criterion [23]
EF environmental factors
LSE least squared estimate
MVF mean value function
SRGM software reliability growth model
SSE sum of squared errors
SRE software reliability engineering.

The following notation is also used:

a(t) time-dependent fault content function:
total number of faults in the software,
including the initial and introduced
faults

b(t) time-dependent fault detection-rate
function per fault per unit time

λ(t) failure intensity function: faults per unit
time

m(t) expected number of error detected by
time t (MVF)

N(t) random variable representing the
cumulative number of errors detected
by time t

Sj actual time at which the j th error is
detected

R(x/t) software reliability function, i.e. the
conditional probability of no failure
occurring during (t, t + x) given that
the last failure occurred at time t

ˆ estimates using MLE method
yk the number of actual failures observed

at time tk

288 Software Reliability

m̂(tk) estimated cumulative number of
failures at time tk obtained from the
fitted MVFs, k = 1, 2, . . . , n.

16.1.2 Software Life Cycle

As software becomes an increasingly important
part of many different types of systems that
perform complex and critical functions in many
applications, such as military defense, nuclear
reactors, etc., the risk and impacts of software-
caused failures have increased dramatically. There
is now general agreement on the need to increase
software reliability by eliminating errors made
during software development.

Software is a collection of instructions or
statements in a computer language. It is also called
a computer program, or simply a program. A
software program is designed to perform specified
functions. Upon execution of a program, an
input state is translated into an output state.
An input state can be defined as a combination
of input variables or a typical transaction to
the program. When the actual output deviates
from the expected output, a failure occurs.
The definition of failure, however, differs from
application to application, and should be clearly
defined in specifications. For instance, a response
time of 30 s could be a serious failure for an air
traffic control system, but acceptable for an airline
reservation system.

A software life cycle consists of five successive
phases: analysis, design, coding, testing, and
operation [2]. The analysis phase is the most
important phase; it is the first step in the software
development process and the foundation of build-
ing a successful software product. The purpose of
the analysis phase is to define the requirements
and provide specifications for the subsequence
phases and activities. The design phase is
concerned with how to build the system to behave
as described. There are two parts to design: system
architecture design and detailed design. The
system architecture design includes, for example,
system structure and the system architecture doc-
ument. System structure design is the process of
partitioning a software system into smaller parts.

Before decomposing the system, we need to do
further specification analysis, which is to examine
the details of performance requirements, security
requirements, assumptions and constraints, and
the needs for hardware and software.

The coding phase involves translating the
design into code in a programming language.
Coding can be decomposed into the following
activities: identify reusable modules, code editing,
code inspection, and final test plan. The final
test plan should provide details on what needs to
be tested, testing strategies and methods, testing
schedules and all necessary resources, and be
ready at the coding phase. The Testing phase is
the verification and validation activity for the
software product. Verification and validation are
the two ways to check if the design satisfies the
user requirements. In other words, verification
checks if the product, which is under construction,
meets the requirements definition, and validation
checks if the product’s functions are what the
customer wants. The objectives of the testing
phase are to: (1) affirm the quality of the
product by finding and eliminating faults in
the program; (2) demonstrate the presence of
all specified functionality in the product; and
(3) estimate the operational reliability of the
software. During this phase, system integration of
the software components and system acceptance
tests are performed against the requirements. The
operation phase is the final phase in the software
life cycle. The operation phase usually contains
activities such as installation, training, support,
and maintenance. It involves the transfer of
responsibility for the maintenance of the software
from the developer to the user by installing
the software product and it becomes the user’s
responsibility to establish a program to control
and manage the software.

16.2 Software Reliability
Modeling

Many NHPP software reliability growth models
[2, 4, 6–11, 14, 24] have been developed over the

Recent Studies in Software Reliability Engineering 289

past 25 years to assess the reliability of software.
Software reliability models based on the NHPP
have been quite successful tools in practical
software reliability engineering [2]. In this section,
we only discuss software reliability models based
on NHPP. These models consider the debugging
process as a counting process characterized by its
MVF. Software reliability can be estimated once
the MVF is determined. Model parameters are
usually estimated using either the MLE or LSE.

16.2.1 A Generalized
Non-homogeneous Poisson Process
Model

Many existing NHPP models assume that failure
intensity is proportional to the residual fault
content. A general class of NHPP SRGMs can
be obtained by solving the following differential
equation [7]:

dm(t)

dt
= b(t)[(a(t)−m(t)] (16.1)

The general solution of the above differential
equation is given by

m(t)= e−B(t)
[
m0 +

∫ t

t0

a(τ)b(τ) eB(τ) dτ

]
(16.2)

where B(t) = ∫ tt0 b(τ) dτ and m(t0)=m0 is the
marginal condition of Equation 16.1 with t0
representing the starting time of the debugging
process. The reliability function based on the
NHPP is given by:

R(x/t)= e−[m(t+x)−m(t)] (16.3)

Many existing NHPP models can be considered
as a special case of Equation 16.2. An increasing
function a(t) implies an increasing total number
of faults (note that this includes those already de-
tected and removed and those inserted during the
debugging process) and reflects imperfect debug-
ging. An increasing b(t) implies an increasing fault
detection rate, which could be attributed either
to a learning curve phenomenon, or to software
process fluctuations, or to a combination of both.

Different a(t) and b(t) functions also reflect differ-
ent assumptions of the software testing processes.
A summary of the most NHPP existing models is
presented in Table 16.2.

16.2.2 Application 1: The Real-time
Control System

Let us perform the reliability analysis using the
real-time control system data given in Table 16.1.
The first 122 data points are used for the goodness
of fit test and the remaining data (14 points) are
used for the predictive power test. The results for
fit and prediction are listed in Table 16.3.

Although software reliability models based on
the NHPP have been quite successful tools in
practical software reliability engineering [2], there
is a need to fully validate their validity with respect
to other applications, such as in communications,
manufacturing, medical monitoring, and defense
systems.

16.3 Generalized Models with
Environmental Factors
We adopt the following notation:

z̃ vector of environmental factors
β̃ coefficient vector of environmental

factors
�(β̃z̃) function of environmental factors
λ0(t) failure intensity rate function

without environmental factors
λ(t, z̃) failure intensity rate function with

environmental factors
m0(t) MVF without environmental factors
m(t, z̃) MVF with environmental factors
R(x/t, z̃) reliability function with

environmental factors.

The proportional hazard model (PHM), which was
first proposed by Cox [25], has been successfully
utilized to incorporate environmental factors in
survival data analysis, in the medical field and
in the hardware system reliability area. The basic
assumption for the PHM is that the hazard rates
of any two items associated with the settings

290 Software Reliability

Table 16.2. Summary of the MVFs [8]

Model name Model type MVF (m(t)) Comments

Goel–Okumoto (G–O) Concave m(t)= a(1− e−bt) Also called the exponential
a(t)= a model
b(t)= b

Delayed S-shaped S-shaped m(t)= a[1− (1+ bt) e−bt] Modification of G–O model
to make it S-shaped

Inflection S-shaped S-shaped m(t)= a(1− e−bt)
1+ β e−bt Solves a technical condition

SRGM a(t)= a with the G–O model. Becomes

b(t)= b

1+ β e−bt the same as G–O ifβ = 0

Yamada exponential S-shaped m(t)= a{1− e−rα[1−exp(−βt)]} Attempt to account for
a(t)= a testing effort
b(t)= rαβ e−βt

Yamada Rayleigh S-shaped m(t)= a{1− e−rα[1−exp(−βt2/2)]} Attempt to account for
a(t)= a testing effort

b(t)= rαβt e−βt2/2

Yamada exponential Concave m(t)= ab

α + b
(eαt − e−bt) Assume exponential fault

imperfect debugging a(t)= a eαt content function and
model (Y-ExpI) b(t)= b constant fault detection

rate

Yamada linear imperfect Concave m(t)= a(1− e−bt)
(

1− α

b

)
+ αat Assume constant

debugging model (Y-LinI) a(t)= a(1 + αt) introduction rate α and
b(t)= b the fault detection rate

Pham–Nordmann–Zhang S-shaped m(t)= a(1− e−bt)(1− α/b) + αat

1+ β e−bt Assume introduction rate

(P–N–Z) model and concave a(t)= a(1 + αt) is a linear function of

b(t)= b

1+ β e−bt testing time, and the fault

detection rate function is
non-decreasing with an
inflexion S-shaped model

Pham–Zhang (P–Z) S-shaped m(t)= 1

1+ β e−bt
[
(c + a)(1− e−bt) Assume introduction rate

model and concave − a

b − α
(e−αt − e−bt)

]
is exponential function of

a(t)= c + a(1 − e−αt) the testing time, and the

b(t)= b

1+ β e−bt fault detection rate is

non-decreasing with an
inflexion S-shaped model

Recent Studies in Software Reliability Engineering 291

Table 16.3. Parameter estimation and model comparison

Model name SSE (fit) SSE (Predict) AIC MLEs

G–O model 7615.1 704.82 426.05 â = 125
b̂ = 0.00006

Delayed S-shaped 51729.23 257.67 546 â = 140
b̂ = 0.00007

Inflexion S-shaped 15878.6 203.23 436.8 â = 135.5
b̂ = 0.00007
β̂ = 1.2

Yamada exponential 6571.55 332.99 421.18 â = 130
α̂ = 10.5
β̂ = 5.4× 10−6

Yamada Rayleigh 51759.23 258.45 548 â = 130
α̂ = 5× 10−10

β̂ = 6.035

Y-ExpI model 5719.2 327.99 450 â = 120
b̂ = 0.00006
α̂ = 1× 10−5

Y-LinI model 6819.83 482.7 416 â = 120.3
b̂ = 0.00005
α̂ = 3× 10−5

P–N–Z model 5755.93 106.81 415 â = 121
b̂ = 0.00005
α̂ = 2.5× 10−6

β̂ = 0.002

P–Z model 14233.88 85.36 416 â = 20
b̂ = 0.00007
α̂ = 1.0× 10−5

β̂ = 1.922
ĉ = 125

of environmental factors, say z1 and z2, will be
proportional to each other. The environmental
factors are also known as covariates in the PHM.
When the PHM is applied to the NHPP it becomes
the proportional intensity model (PIM). A general
fault intensity rate function incorporating the
environmental factors based on PIM can be
constructed using the following assumptions.

(a) The new fault intensity rate function con-
sists of two components: the fault intensity

rate functions without environmental factors,
λ0(t), and the environmental factor function
�(β̃z̃).

(b) The fault intensity rate function λ0(t) and
the function of the environmental factors are
independent. The function λ0(t) is also called
the baseline intensity function.

Assume that the fault intensity function λ(t, z̃)

is given in the following form:

λ(t, z̃)= λ0(t) ·�(β̃z̃)

292 Software Reliability

Typically, �(β̃z̃) takes an exponential form, such
as:

�(β̃z̃)= exp(β0 + β1z1 + β2z2 + . . .)

The MVF with environmental factors can then be
easily obtained:

m(t, z̃)=
∫ t

0
λ0(s)�(β̃z̃) ds

=�(β̃z̃)

∫ t

0
λ0(s) ds

=�(β̃z̃)m0(t)

Therefore, the reliability function with environ-
mental factors is given by [9]:

R(x/t, z̃)= e−[m(t+x,z̃]−m(t,z̃)]

= e−[�(β̃z̃)m0(t+x,z̃)−�(β̃z̃)m0(t,z̃)]

= (exp{−[m0(t + x)−m0(t)]})�(β̃z̃)

= [R0(x/t)]�(β̃z̃)

16.3.1 Parameters Estimation

The MLE is a widely used method to estimate
unknown parameters in the models and will
be used to estimate the model parameters in
Section 16.3. Since the environmental factors
are considered here, the parameters that need
to be estimated include not only those in
baseline intensity rate function λ0(t), but also
the coefficients βi in the link function of the
environmental factors introduced. For example,
we have m unknown parameters in function
λ0(t) and we introduced k environmental factors
into the model, β1, β2, . . . , βk ; thus we have
(m+ k) unknown parameters to estimate. The
maximum likelihood function for this model can
be expressed as follows:

L(θ̃, β̃, t, z)

= P

{ n∏
j=1

[m(0, zj)= 0, m(t1,j , zj)= y1,j ,

m(t2,j , zj)= y2,j , . . . ,

m(tn,j , zj)= yn,j]
}

=
n∏

j=1

kj∏
i=1

[m(ti,j , zj)−m(ti−1,j , zj)](yi,j−yi−1,j)

(yi,j − yi−1,j)!
× e−[m(ti,j ,zj)−m(ti−1,j ,zj)]

where n is the number of total failure data
groups, kj is the number of faults in group
j , (j = 1, 2, . . . , n), zj is the vector variable
of the environmental factors in data group
j and m(ti,j , zj) is the mean value function
incorporating the environmental factors.

The logarithm likelihood function is given by

ln[L(θ̃, β̃, t, z̃)]

=
n∑

j=1

kj∑
i=1

{(yi,j − yi−1,j)

× ln[m(ti,j , zj)−m(ti−1,j , zj)]
− ln[yi,j − yi−1,j)!]
− [m(ti,j , zj)−m(ti−1,j , zj)]}

A series of differential equations can be con-
structed by taking the derivatives of the log likeli-
hood function with respect to each parameter, and
set them equal to zero. The estimates of unknown
parameters can be obtained by solving these dif-
ferential equations.

A widely used method, which is known as
the partial likelihood estimate method, can be
used to facilitate the parameter estimate process.
The partial likelihood method estimates the
coefficients of covariates, the β1 values, separately
from the parameters in the baseline intensity
function. The likelihood function of the partial
likelihood method is given by [25]:

L(β)=
∏
i

exp(βzi)[∑
m∈R exp(βzm)

]di
where di represents the tie failure times.

16.3.2 Application 2: The Real-time
Monitor Systems

In this section we illustrate the software reliability
model with environmental factors based on the
PIM method using the software failure data

Recent Studies in Software Reliability Engineering 293

collected from real-time monitor systems [26].
The software consists of about 200 modules and
each module has, on average, 1000 lines of a
high-level language like FORTRAN. A total of
481 software faults were detected during the
111 days testing period. Both the information of
the testing team size and the software failure data
are recorded.

The only environmental factor available in
this application is the testing team size. Team
size is one of the most useful measures in
the software development process. It has a
close relationship with the testing effort, testing
efficiency, and the development management
issues. From the correlation analysis of the 32
environmental factors [27], team size is the only
factor correlated to the program complexity,
which is the number one significant factor
according to our environmental factor study.
Intuitively, the more complex the software, the
larger the team that is required. Since the testing
team size ranges from one to eight, we first
categorize the factor of team size into two levels.
Let z1 denote the factor of team size as follows:

z1 =
{

0 team size ranges from 1 to 4

1 team size ranges from 5 to 8

After carefully examining the failure data, we find
that, after day 61, the software becomes stable and
the failures occur with a much slower frequency.
Therefore, we use the first 61 data points for
testing the goodness-of-fit and estimating the
parameters, and use the remaining 50 data
points (from day 62 to day 111) as real data
for examining the predictive power of software
reliability models.

In this application, we use the P–Z model listed
in Table 16.2 as the baseline mean value function,
i.e.,

m0(t)= 1

1+ β e−bt

[
(c + a)(1− e−bt)

− ab

b − α
(e−αt − e−bt)

]

and the corresponding baseline intensity function
is:

λ0(t)= 1

1+ β e−bt

[
(c + a)(1− e−bt)

− ab

b − α
(e−αt − e−bt)

]
+ −βb e−bt

(1+ β e−bt)2

[
(c + a)(1− e−bt)

− ab(e−αt − e−bt)
b − α

]

Therefore, the intensity function with environ-
mental factor is given by [28]:

λ(t)= λ0(t) eβ1z1

=
{

1

1+ β e−bt

[
(c + a)(1− e−bt)

− ab

b − α
(e−αt − e−bt)

]
+ −βb e−bt

(1+ β e−bt)2

[
(c + a)(1− e−bt)

− ab(e−αt − e−bt)
b − α

]}
eβ1z1

The estimate of β1 using the partial likelihood
estimate method is β̂1 = 0.0246, which indicates
that this factor is significant to consider. The
estimates of parameters in the baseline intensity
function are given as follows: â = 40.0, b̂ = 0.09,
β̂ = 8.0, α̂ = 0.015, ĉ = 450.

The results of several existing NHPP models are
also listed in Table 16.4.

The results show that incorporating the factor
of team size into the P–Z model explains the
fault detection better and thus enhances the
predictive power of this model. Further research
is needed to incorporate application complexity,
test effectiveness, test suite diversity, test coverage,
code reused, and real application operational
environments into the NHPP software reliability
models and into the software reliability model in
general. Future software reliability models must
account for these important situations.

294 Software Reliability

Table 16.4. Model evaluation

Model name MVF (m(t)) SSE (Prediction) AIC

G–O Model m(t)= a(1− e−bt) 1052528 978.14
a(t)= a
b(t)= b

Delayed S-shaped m(t)= a[1− (1+ bt) e−bt] 83929.3 983.90
a(t)= a

b(t)= b2t

1+ bt

Inflexion S-shaped m(t)= a(1− e−bt)
1+ β e−bt 1051714.7 980.14

a(t)= a

b(t)= b

1+ β e−bt
Yamada exponential m(t)= a{1− e−rα[1−exp(−βt)]} 1085650.8 979.88

a(t)= a

b(t)= rαβ e−βt
Yamada Rayleigh m(t)= a{1− e−rα[1−exp(−βt2/2)]} 86472.3 967.92

a(t)= a

b(t)= rαβt e−βt2/2

Y-ExpI model m(t)= ab

α + b
(eαt − e−bt) 791941 981.44

a(t)= a eαt

b(t)= b

Y-LinI model m(t)= a(1− e−bt)
(

1− α

b

)
+ αat 238324 984.62

a(t)= a(1 + αt)
b(t)= b

P–N–Z model m(t)= a

1+ β e−bt
[
(1− e−bt)

(
1− α

b

)
+ αt

]
94112.2 965.37

a(t)= a(1 + αt)

b(t)= b

1+ β e−bt

P–Z model m(t)= 1

1+ β e−bt
[
(c + a)(1− e−bt) 86180.8 960.68

− ab

b − α
(e−αt − e−bt)

]
a(t)= c + a(1 − e−αt)
b(t)= b

1+ β e−bt

Environmental factor model m(t)= 1

1+ β e−bt
[
(c + a)(1− e−bt) 560.82 890.68

− ab

b − α
(e−αt − e−bt)

]
eβ1z1

a(t)= c + a(1 − e−αt)
c(t)= 1− 1+ β

ebt + β

Recent Studies in Software Reliability Engineering 295

16.4 Cost Modeling
The quality of the software system usually depends
on how much time testing takes and what testing
methodologies are used. On the one hand, the
longer time people spend in testing, the more
errors can be removed, which leads to more
reliable software; however, the testing cost of the
software will also increase. On the other hand,
if the testing time is too short, the cost of the
software could be reduced, but the customers may
take a higher risk of buying unreliable software
[29–31]. This will also increase the cost during
the operational phase, since it is much more
expensive to fix an error during the operational
phase than the testing phase. Therefore, it is
important to determine when to stop testing and
release the software. In this section, we present a
recent generalized cost model and also some other
existing cost models.

16.4.1 Generalized Risk–Cost Models

In order to improve the reliability of software
products, testing serves as the main tool to
remove faults in software products. However,
efforts to increase reliability will require an
exponential increase in cost, especially after
reaching a certain level of software refinement.
Therefore, it is important to determine when
to stop testing based on the reliability and cost
assessment. Several software cost models and
optimal release policies have been studied in
the past two decades. Okumoto and Goel [32]
discussed a simple cost model addressing a linear
developing cost during the testing and operational
periods. Ohtera and Yamada [33] also discussed
the optimum software-release time problem with
a fault-detection phenomenon during operation.
They introduced two evaluation criteria for the
problem: software reliability and mean time
between failures. Leung [34] discussed the optimal
software release time with consideration of a given
cost budget. Dalal and McIntosh [35] studied the
stop-testing problem for large software systems
with changing code using graphical methods.
They reported the details of a real-time trial of

a large software system that had a substantial
amount of code added during testing. Yang and
Chao [36] proposed two criteria for making
decisions on when to stop testing. According
to them, software products are released to the
market when (1) the reliability has reached a given
threshold, and (2) the gain in reliability cannot
justify the testing cost.

Pham [6] developed a cost model with an
imperfect debugging and random life cycle as
well as a penalty cost to determine the optimal
release policies for a software system. Hou et al.
[37] discussed optimal release times for software
systems with scheduled delivery time based on
the hyper-geometric software reliability growth
model. The cost model included the penalty
cost incurred by the manufacturer for the delay
in software release. Recently, Pham and Zhang
[38] developed the expected total net gain in
reliability of the software development process (as
the economical net gain in software reliability that
exceeds the expected total cost of the software
development), which is used to determine the
optimal software release time that maximizes the
expected total gain of the software system.

Pham and Zhang [29] also recently developed
a generalized cost model addressing the fault
removal cost, warranty cost, and software risk cost
due to software failures for the first time. The
following cost model calculates the expected total
cost:

E(T)= C0 + C1T
α + C2m(T)µy

+ C3µw[m(T + Tw)−m(T)]
+ CR[1− R(x | T)]

where C0 is the set-up cost for software testing, C1
is the software test cost per unit time, C2 is the
cost of removing each fault per unit time during
testing, C3 is the cost to remove an fault detected
during the warranty period, CR is the loss due to
software failure, E(T) is the expected total cost of
a software system at time T , µy is the expected
time to remove a fault during the testing period,
and µw is the expected time to remove a fault
during the warranty period.

296 Software Reliability

The details on how to obtain the optimal soft-
ware release policies that minimize the expected
total cost can be obtained in Pham and Zhang [29].
The benefits of using the above cost models are
that they provide:

1. an assurance that the software has achieved
safety goals;

2. a means of rationalizing when to stop testing
the software.

In addition, with this type of information, a
software manager can determine whether more
testing is warranted or whether the software
is sufficiently tested to allow its release or
unrestricted use Pham and Zhang [29].

16.5 Recent Studies with
Considerations of Random Field
Environments

In this section, a generalized software reliability
study under a random field environment will be
discussed with consideration of not only the time
to remove faults during in-house testing, the cost
of removing faults during beta testing, and the
risk cost due to software failure, but also the
benefits from reliable executions of the software
during the beta testing and final operation. Once
a software product is released, it can be used
in many different locations, applications, tasks
and industries, etc. The field environments for
the software product are quite different from
place to place. Therefore, the random effects of
the end-user environment will affect the software
reliability in an unpredictable way.

We adopt the following notation:

R(x | T) software reliability function; this is
defined as the probability that a
software failure does not occur in time
interval [t, t + x], where t ≥ 0, and
x > 0

G(η) cumulative distribution function of
random environmental factor

γ shape parameter of field environmen-
tal factor (gamma density variable)

θ scale parameter of field environmental
factor (gamma density variable)

N(T) counting process, which counts the
number of software failures discovered
by time T

m(T) expected number of software failures
by time T , m(T)= E[N(T)]

m1(T) expected number of software failures
during in-house testing by time T

m2(T) expected number of software failures
in beta testing and final field operation
by time T

mF(t | η) expected number of software failures
in field by time t

C0 set-up cost for software testing
C1 software in-house testing per unit time
C2 cost of removing a fault per unit time

during in-house testing
C3 cost of removing a fault per unit time

during beta testing
C4 penalty cost due to software failure
C5 benefits if software does not fail during

beta testing
C6 benefits if software does not fail in

field operation
µy expected time to remove a fault during

in-house testing phase
µw expected time to remove a fault during

beta testing phase
a number of initial software faults at the

beginning of testing
aF number of initial software faults at the

beginning of the field operations
t0 time to stop testing and release the

software for field operations
b fault detection rate per fault
Tw time length of the beta testing
x time length that the software is going

to be used
p probability that a fault is successfully

removed from the software
β probability that a fault is introduced

into the software during debugging,
and β � p.

Recent Studies in Software Reliability Engineering 297

16.5.1 A Reliability Model

Teng and Pham [39] recently propose an NHPP
software reliability model with consideration of
random field environments. This is a unified
software reliability model that covers both testing
and operation phases in the software life cycle.
The model also allows one to remove faults if a
software failure occurs in the field and can be
used to describe the common practice of so-called
‘beta testing’ in the software industry. During beta
testing, software faults will still be removed from
the software after failures occur, but beta testing
is conducted in an environment that is the same
as (or close to) the end-user environment, and
it is commonly quite different from the in-house
testing environment.

In contrast to most existing NHPP models,
the model assumes that the field environment
only affects the unit failure detection rate b by
multiplying by a random factor η. The mean value
function mF(t | η) in the field can be obtained as
[39]:

mF(t | η)= aF

p − β
{1− exp[−ηb(p − β)t]}

(16.4)
where η is the random field environmental factor.

The random factor η captures the random field
environment effects on software reliability. If η

is modeled as a gamma distributed variable with
probability density function G(γ, θ), the MVF of
this NHPP model becomes [39]:

m(T)

=

a

p − β
[1− e−b(p−β)T] T ≤ t0

a

p − β

{
1− e−b(p−β)t0

×
[

θ

θ + b(p − β)(T − t0)

]γ}
T ≥ t0

(16.5)

Generally, the software reliability prediction is
used after the software is released for field
operations, i.e. T ≥ t0. Therefore, the reliability of

the software in the field is

R(x | T)= exp

(
a e−b(p−β)t0

×
{[

θ

θ + b(p − β)(T + x − t0)

]γ
−
[

θ

θ + b(p − β)(T − t0)

]γ})
We now need to determine the time when to stop
testing and release the software. In other words,
we only need to know the software reliability
immediately after the software is released. In this
case, T = t0; therefore

R(x | T)= exp

(
−a e−b(p−β)T

×
{

1−
[

θ

θ + b(p − β)x

]γ})
16.5.2 A Cost Model

The quality of the software depends on how much
time testing takes and what testing methodologies
are used. The longer time people spend in testing,
the more faults can be removed, which leads to
more reliable software; however, the testing cost
of the software will also increase. If the testing
time is too short, the cost of the development
cost is reduced, but the risk cost in the operation
phase will increase. Therefore, it is important to
determine when to stop testing and release the
software [29].

Figure 16.1 shows the entire software develop-
ment life cycle considered in this software cost
model: in-house testing, beta testing, and opera-
tion; beta testing and operation are conducted in
the field environment, which is commonly quite
different from the environment where the in-
house testing is conducted.

Let us consider the following.

1. There is a set-up cost at the beginning of
the in-house testing, and we assume it is a
constant.

2. The cost to do testing is a linear function of
in-house testing time.

298 Software Reliability

Figure 16.1. Software gain model

3. The cost to remove faults during the in-house
testing period is proportional to the total time
of removing all faults detected during this
period.

4. The cost to remove faults during the beta
testing period is proportional to the total time
of removing all faults detected in the time
interval [T , T + Tw].

5. It takes time to remove faults and it is assumed
that the time to remove each fault follows a
truncated exponential distribution.

6. There is a penalty cost due to the software
failure after formally releasing the software,
i.e. after the beta testing.

7. Software companies receive the economic
profits from reliable executions of their
software during beta testing.

8. Software companies receive the economic
profits from reliable executions of their
software during final operation.

From point 5, the expected time to remove each
fault during in-house testing is given by [29]:

µy = 1− (λyT0 + 1) e−λyT0

λy(1− e−λyT0)

where λy is a constant parameter associated with
a truncated exponential density function for the
time to remove a fault during in-house testing,
and T0 is the maximum time to remove any fault
during in-house testing.

Similarly, the expected time to remove each
fault during beta testing is given by:

µw = 1− (λwT1 + 1) e−λwT1

λw(1− e−λwT1)

where λw is a constant parameter associated with
a truncated exponential density function for the
time to remove a fault during beta testing, and T1
is the maximum time to remove any fault during
beta testing.

The expected net gain of the software develop-
ment process E(T) is defined as the economical
net gain in software reliability that exceeds the
expected total cost of the software development
[38]. That is

E(T)= Expected Gain in Reliability

− (Total Development Cost+ Risk Cost)

Based on the above assumptions, the expected
software system cost consists of the following.

1. Total development cost EC(T), including:

(a) A constant set-up cost C0.
(b) Cost to do in-house testing E1(T). We

assume it is a linear function of time to do
in-house testing T ; then

E1(T)= C1T

In some previous literature the testing
cost has been assumed to be proportional
to the testing time. Here, we keep using
this assumption.

(c) Fault removal cost during in-house testing
period E2(T). The expected total time to
remove all faults during in-house testing
period is

E

[N(T)∑
i=1

Yi

]
= E[N(T)]E[Yi] =m(T)µy

Hence, the expected cost to remove all
faults detected by time T , E2(T), can be

Recent Studies in Software Reliability Engineering 299

expressed as

E2(T)= C2E

[N(T)∑
i=1

Yi

]
= C2m(T)µy

(d) Fault removal cost during beta testing
period E3(T). The expected total time to
remove all faults detected during the beta
testing period [T , T + Tw] is given by

E

[N(T+Tw)∑
i=N(T)

Wi

]
= E[N(T + Tw)−N(T)]E[Wi]
= (m(T + Tw)−m(T))µw

Hence, the expected total time to remove
all faults detected by time T , E3(T), is:

E3(T)= C3E

[N(T+Tw)∑
i=N(T)

Wi

]
= C3µw(m(T + Tw)−m(T))

Therefore, the total software development
cost is

EC(T)= C0 + E1(T)+ E2(T)+ E3(T)

2. Penalty cost due to software failures after
releasing the software E4(T) is given by

E4(T)= C4(1− R(x | T + Tw))

3. The expected gain Ep(T), including:

(a) Benefits gained during beta testing due to
reliable execution of the software, E5(T)

is

E5(T)= C5R(Tw | T)
(b) Benefits gained during field operation

due to reliable execution of the software,
E6(T), is

E6(T)= C6R(x | T + Tw)

Therefore, the expected net gain of the
software development process E(T) can

be expressed as:

E(T)= Ep(T)− (EC(T)+ E4(T))

= (E5(T)+ E6(T))

− (C0 + E1(T)+ E2(T)

+ E3(T)+ E4(T))

= C5R(Tw | T)+ C6R(x | T + Tw)

− C0 − C1T − C2µym(T)

− C3µw(m(T + Tw)−m(T))

− C4(1− R(x | T + Tw))

or, equivalently, as

E(T)= C5R(Tw | T)
+ (C4 + C6)R(x | T + Tw)

− (C0 + C4)− C1T − C2m1(T)µy

− C3µw(m2(T + Tw)−m2(T))

where

m1(T)= a

p − β
[1− e−b(p−β)T]

m2(T)= a

p − β

{
1− e−b(p−β)t0

×
[

θ

θ + b(p − β)(T − t0)

]γ}
The optimal software release time T ∗, that

maximizes the expected net gain of software
development process can be obtained as follows.

Theorem 1. Given C0, C1, C2, C3, C4, C5, C6, x,
µy , µw, Tw, the optimal value of T , say T ∗, that
maximizes the expected net gain of the software
development process E(T), is as follows:

1. If u(0)≤ C and:

(a) if y(0)≤ 0, then T ∗ = 0;
(b) if y(∞) > 0, then T ∗ =∞;
(c) if y(0) > 0, y(T)≥ 0 for T ∈ (0, T ′] and

y(T) < 0 for T ∈ (T ′,∞], then T ∗ = T ′
where T ′ = y−1(0).

2. If u(∞) > C and:

(a) if y(0)≥ 0, then T ∗ =∞;
(b) if y(∞) < 0, then T ∗ = 0;

300 Software Reliability

(c) if y(0) < 0, y(T) ≤ 0 for T ∈ (0, T ′′] and
y(T) > 0 for T ∈ (T ′′,∞], then

T ∗ =
{
∞ if E(0) < E(∞)

0 if E(0)≥ E(∞)

where T ′′ = y−1(0).

3. If u(0) > C, u(T) ≥ C for T ∈ (0, T 0]
and u(T) < C for T ∈ (T 0,∞], where
T 0 = u−1(C), then:

(a) if y(0) < 0, then
if y(T 0)≤ 0, then T ∗ = 0
if y(T 0) > 0, then

T ∗ =
{

0 if E(0)≥ E(Tb)

Tb if E(0) < E(Tb)

where Tb = y−1(0) and Tb ≥ T 0;
(b) if y(0)≥ 0, then T ∗ = Tc, where Tc =

y−1(0) where

y(T)=−C1 − C2µyab e−b(p−β)T

+ µwC3ab e−b(p−β)T

×
{

1−
[

θ

θ + b(p − β)Tw

]γ}
+ C5ab e−b(p−β)T R(Tw | T)
×
{

1−
[

θ

θ + b(p − β)Tw

]γ}
+ (C4 + C6)ab e−b(p−β)T

× R(x | T+Tw)
{[

θ

θ+b(p−β)Tw
]γ

−
[

θ

θ + b(p − β)(Tw + x)

]γ}

u(T)=−(C4+C6)(p−β)ab2R(x | T+Tw)
×
{[

θ

θ + b(p − β)Tw

]γ
−
[

θ

θ + b(p − β)(Tw + x)

]γ}

×
(

1− a

p − β
e−b(p−β)T

×
{[

θ

θ + b(p − β)Tw

]γ
−
[

θ

θ + b(p − β)(Tw + x)

]γ})
− C5(p − β)ab2R(Tw | T)
×
{

1−
[

θ

θ + b(p − β)Tw

]γ}
×
(

1− a

p − β
e−b(p−β)T

×
{

1−
[

θ

θ + b(p − β)Tw

]γ})
C = µwC3(p − β)ab2

×
{

1−
[

θ

θ + b(p − β)Tw

]γ}
− C2µy(p − β)ab2

This model can help developers to determine
when to stop testing the software and release it to
beta-testing users and to end-users.

Further research interest is needed to deter-
mine the following.

1. How should resources be allocated from the
beginning of the software lifecycle to ensure
the on-time and efficient delivery of a software
product?

2. What information during the system test
does a software engineer need to determine
when to release the software for a given
reliability/risk level?

3. What is the risk cost due to the software
failures after release?

4. How should marketing efforts—including
advertising, public relations, trade-show
participation, direct mail, and related
initiatives—be allocated to support the
release of a new software product effectively?

16.6 Further Reading
There are several survey papers and books on
software reliability research and software cost

Recent Studies in Software Reliability Engineering 301

published in the last five years, that can be read
at an introductory/intermediate stage. Interested
readers are referred to the following articles by
Pham [9] and Whittaker and Voas [40], Voas
[41], and the Handbook of Software Reliability
Engineering by Lyu [18], (McGraw-Hill and IEEE
CS Press, 1996); The books Software Reliability
by Pham [2] (Springer-Verlag, 2000); Software-
Reliability-Engineered Testing Practice by J. Musa,
(John Wiley & Sons, 1998), are excellent textbooks
and references for students, researchers, and
practitioners.

This list is by no means exhaustive, but I believe
it will help readers get started learning about the
subjects.

Acknowledgment

This research was supported in part by the US
National Science Foundation under INT-0107755.

References
[1] Wood A. Predicting software reliability. IEEE Comput

1996;11:69–77.

[2] Pham H. Software reliability. Springer-Verlag; 2000.

[3] Jelinski Z, Moranda PB. Software reliability research. In:
Freiberger W, editor. Statistical computer performance
evaluation. New York: Academic Press; 1972.

[4] Goel L, Okumoto K. Time-dependent error-detection rate
model for software and other performance measures.
IEEE Trans Reliab 1979;28:206–11.

[5] Pham H. Software reliability assessment: imperfect de-
bugging and multiple failure types in software develop-
ment. EG&G-RAAM-10737, Idaho National Engineering
Laboratory, 1993.

[6] Pham H. A software cost model with imperfect debug-
ging, random life cycle and penalty cost. Int J Syst Sci
1996;27(5):455–63.

[7] Pham H, Zhang X. An NHPP software reliability
models and its comparison. Int J Reliab Qual Saf Eng
1997;4(3):269–82.

[8] Pham H, Nordmann L, Zhang X. A general imperfect
software debugging model with s-shaped fault detection
rate. IEEE Trans Reliab 1999;48(2):169–75.

[9] Pham H. Software reliability. In: Webster JG, editor. Wiley
encyclopedia of electrical and electronics engineering,
vol. 19. Wiley & Sons; 1999. p.565–78.

[10] Ohba M. Software reliability analysis models. IBM J Res
Dev 1984;28:428–43.

[11] Yamada S, Ohba M, Osaki S. S-shaped reliability growth
modeling for software error detection. IEEE Trans Reliab
1983;12:475–84.

[12] Yamada S, Osaki S. Software reliability growth modeling:
models and applications. IEEE Trans Software Eng
1985;11:1431–7.

[13] Yamada S, Tokuno K, Osaki S. Imperfect debugging mod-
els with fault introduction rate for software reliability
assessment. Int J Syst Sci 1992;23(12).

[14] Pham L, Pham H. Software reliability models with time-
dependent hazard function based on Bayesian approach.
IEEE Trans Syst Man Cybernet Part A: Syst Hum
2000;30(1).

[15] Pham H, Wang H. A quasi renewal process for software
reliability and testing costs. IEEE Trans Syst Man
Cybernet 2001;31(6):623–31.

[16] Pham L, Pham H. A Bayesian predictive software
reliability model with pseudo-failures. IEEE Trans Syst
Man Cybernet Part A: Syst Hum 2001;31(3):233–8.

[17] Ehrlich W, Prasanna B, Stampfel J, Wu J. Determining the
cost of a stop-testing decision. IEEE Software 1993;10:33–
42.

[18] Lyu M., editor. Software reliability engineering hand-
book. McGraw-Hill; 1996.

[19] Pham H. Software reliability and testing. IEEE Computer
Society Press; 1995.

[20] Littlewood B, Softer A. A Bayesian modification to
the Jelinski–Moranda software reliability growth model.
Software Eng J 1989;30–41.

[21] Mazzuchi TA, Soyer R. A Bayes empirical-Bayes model for
software reliability. IEEE Trans Reliab 1988;37:248–54.

[22] Csenki A. Bayes predictive analysis of a fundamental soft-
ware reliability model. IEEE Trans Reliab 1990;39:142–8.

[23] Akaike H. A new look at statistical model identification.
IEEE Trans Autom Control 1974;19:716–23.

[24] Hossain SA, Ram CD. Estimating the parameters of a
non-homogeneous Poisson process model for software
reliability. IEEE Trans Reliab 1993;42(4):604–12.

[25] Cox DR. Regression models and life-tables (with
discussion). J R Stat Soc B 1972;34:187–220.

[26] Tohma Y, Yamano H, Ohba M, Jacoby R. The estimation
of parameters of the hypergeometric distribution and its
application to the software reliability growth model. IEEE
Trans Software Eng 1991;17(5): 483–9.

[27] Zhang X, Pham H. An analysis of factors affecting
software reliability. J Syst Software 2000;50:43–56.

[28] Zhang X. Software reliability and cost models with envi-
ronmental factors. PhD Dissertation, Rutgers University,
1999, unpublished.

[29] Pham H, Zhang X. A software cost model with warranty
and risk costs. IEEE Trans Comput 1999;48(1):71–5.

[30] Zhang X, Pham H. A software cost model with
error removal times and risk costs. Int J Syst Sci,
1998;29(4):435–42.

[31] Zhang X, Pham H. A software cost model with
warranty and risk costs. IIE Trans Qual Reliab Eng
1999;30(12):1135–42.

302 Software Reliability

[32] Okumoto K, Goel AL. Optimum release time for software
systems based on reliability and cost criteria. J Syst
Software 1980;1:315–8.

[33] Ohtera H, Yamada S. Optimal allocation and control
problems for software-testing resources. IEEE Trans
Reliab 1990;39:171–6.

[34] Leung YW. Optimal software release time with a given
cost budget. J Syst Software 1992;17:233–42.

[35] Dalal SR, McIntosh AA. When to stop testing for
large software systems with changing code. IEEE Trans
Software Eng 1994;20(4):318–23.

[36] Yang MC, Chao A. Reliability-estimation and stopping
rules for software testing based on repeated appearances
of bugs. IEEE Trans Reliab 1995;22(2):315–26.

[37] Hou RH, Kuo SY, Chang YP. Optimal release times for
software systems with scheduled delivery time based on
the HGDM. IEEE Trans Comput 1997;46(2):216–21.

[38] Pham H, Zhang X. Software release policies with gain
in reliability justifying the costs. Ann Software Eng
1999;8:147–66.

[39] Teng X, Pham H. A NHPP software reliability model
under random environment. Quality and Reliability
Engineering Center Report, Rutgers University, 2002.

[40] Whittaker JA, Voas J. Toward a more reliable theory of
software reliability. IEEE Comput 2000;(December):36–
42.

[41] Voas J. Fault tolerance. IEEE Software 2001;(July/
August):54–7.

Maintenance Theory and
TestingP

A
R

T
I V

17 Warranty and Maintenance
17.1 Introduction
17.2 Product Warranties: An Overview
17.3 Maintenance: An Overview
17.4 Warranty and Corrective Maintenance
17.5 Warranty and Preventive Maintenance
17.6 Extended Warranties and Service Contracts
17.7 Conclusions and Topics for Future Research

18 Mechanical Reliability and Maintenance Models
18.1 Introduction
18.2 Stochastic Point Processes
18.3 Perfect Maintenance
18.4 Minimal Repair
18.5 Imperfect or Worse Repair
18.6 Complex Maintenance Policy
18.7 Reliability Growth

19 Preventive Maintenance Models: Replacement, Repair, Ordering
and Inspection

19.1 Introduction
19.2 Block Replacement Models
19.3 Age Replacement Models
19.4 Ordering Models
19.5 Inspection Models
19.6 Concluding Remarks

20 Maintenance and Optimum Policy
20.1 Introduction
20.2 Replacement Policies
20.3 Preventive Maintenance Policies
20.4 Inspection Policies

21 Optimal Imperfect Maintenance Models
21.1 Introduction
21.2 Treatment Methods for Imperfect Maintenance
21.3 Some Results on Imperfect Maintenance
21.4 Future Research on Imperfect Maintenance

22 Accelerated Life Testing
22.1 Introduction
22.2 Design of Accelerated Life Testing Plans
22.3 Accelerated Life Testing Models
22.4 Extensions of the PH Model

23 Accelerated Test Models with the Birnbaum–Saunders
Distribution

23.1 Introduction
23.2 Accelerated Birnbaum–Saunders Models
23.3 Inference Procedures with Accelerated Life Models
23.4 Estimation from Experimental Data

24 Multiple-Steps Step-Stress Accelerated Life Test
24.1 Introduction
24.2 CE Models
24.3 Planning SSALT
24.4 Data Analysis in SSALT
24.5 Implementation on Microsoft Excel?
24.6 Conclusion

25 Step-Stress Accelerated Life Testing
25.1 Introduction
25.2 Step-Stress Life Testing with Constant Stress-Change Times
25.3 Step-Stress Life Testing with Random Stress-Change Times
25.4 Bibliographical Notes

Warranty and Maintenance

Ch
ap

te
r1

7D. N. P. Murthy and N. Jack

17.1 Introduction
17.2 Product Warranties: An Overview
17.2.1 Role and Concept
17.2.2 Product Categories
17.2.3 Warranty Policies
17.2.3.1 Warranties Policies for Standard Products Sold Individually
17.2.3.2 Warranty Policies for Standard Products Sold in Lots
17.2.3.3 Warranty Policies for Specialized Products
17.2.3.4 Extended Warranties
17.2.3.5 Warranties for Used Products
17.2.4 Issues in Product Warranty
17.2.4.1 Warranty Cost Analysis
17.2.4.2 Warranty Servicing
17.2.5 Review of Warranty Literature
17.3 Maintenance: An Overview
17.3.1 Corrective Maintenance
17.3.2 Preventive Maintenance
17.3.3 Review of Maintenance Literature
17.4 Warranty and Corrective Maintenance
17.5 Warranty and Preventive Maintenance
17.6 Extended Warranties and Service Contracts
17.7 Conclusions and Topics for Future Research

17.1 Introduction

All products are unreliable in the sense that they
fail. A failure can occur early in an item’s life due
to manufacturing defects or late in its life due to
degradation that is dependent on age and usage.
Most products are sold with a warranty that offers
protection to buyers against early failures over the
warranty period. The warranty period offered has
been getting progressively longer. For example,
the warranty period for cars was 3 months in
the early 1930s; this changed to 1 year in the
1960s, and currently it varies from 3 to 5 years.
With extended warranties, items are covered for
a significant part of their useful lives, and this
implies that failures due to degradation can occur
within the warranty period.

Offering a warranty implies additional costs
(called “warranty servicing” costs) to the manu-
facturer. This warranty servicing cost is the cost of
repairing item failures (through corrective main-
tenance (CM)) over the warranty period. For short
warranty periods, the manufacturer can minimize
the expected warranty servicing cost through op-
timal CM decision making. For long warranty
periods, the degradation of an item can be con-
trolled through preventive maintenance (PM), and
this reduces the likelihood of failures. Optimal
PM actions need to be viewed from a life cycle
perspective (for the buyer and manufacturer), and
this raises several new issues.

The literature that links warranty and mainte-
nance is significant but small in comparison with
the literature on these two topics. In this paper

305

306 Maintenance Theory and Testing

we review the literature dealing with warranty and
maintenance and suggest areas for future research.

The outline of the paper is as follows. In Sec-
tions 17.2 and 17.3 we give brief overviews of prod-
uct warranty and maintenance respectively, in or-
der to set the background for later discussions.
Following this, we review warranty and CM in
Section 17.4, and warranty and PM in Section 17.5.
Section 17.6 covers extended warranties and ser-
vice contracts, and in Section 17.7 we state our
conclusions and give a brief discussion of future
research topics.

17.2 Product Warranties:
An Overview

17.2.1 Role and Concept

A warranty is a contract between buyer and
manufacturer associated with the sale of a
product. Its purpose is basically to establish
liability in the event of a premature failure of an
item sold, where “failure” is meant as the inability
of the item to perform its intended function. The
contract specifies the promised performance and,
if this is not met, the means for the buyer to
be compensated. The contract also specifies the
buyer’s responsibilities with regards to due care
and operation of the item purchased.

Warranties serve different purposes for buyers
and manufacturers. For buyers, warranties serve
a dual role—protectional (assurance against un-
satisfactory product performance) and informa-
tional (better warranty terms indicating a more
reliable product). For manufacturers, warranties
also serve a dual role—promotional (to commu-
nicate information regarding product quality and
to differentiate from their competitors’ products)
and protectional (against excessive claims from
unreasonable buyers).

17.2.2 Product Categories

Products can be either new or used, and new
products can be further divided into the following
three categories.

1. Consumer durables, such as household appli-
ances, computers, and automobiles bought by
individual households as a single item.

2. Industrial and commercial products bought
by businesses for the provision of services (e.g.
equipment used in a restaurant, aircraft used
by airlines, or copy machines used in an of-
fice). These are bought either individually (e.g.
a single X-ray machine bought by a hospital)
or as a batch, or lot, of K (K > 1) items (e.g.
tires bought by a car manufacturer). Here we
differentiate between “standard” off-the-shelf
products and “specialized” products that are
custom built to buyer’s specifications.

3. Government acquisitions, such as a new fleet
of defense equipment (e.g. missiles, ships,
etc.). These are usually “custom built” and
are products involving new and evolving
technologies. They are usually characterized
by a high degree of uncertainty in the product
development process.

Used products are, in general, sold individually
and can be consumer durables, industrial, or
commercial products.

17.2.3 Warranty Policies

Both new and used products are sold with
many different types of warranty. Blischke and
Murthy [1] developed a taxonomy for new product
warranty and Murthy and Chatophadaya [2]
developed a similar taxonomy for used products.
In this section we briefly discuss the salient
features of the main categories of policies for new
products and then briefly touch on policies for
used items.

17.2.3.1 Warranties Policies for Standard
Products Sold Individually

We first consider the case of new standard
products where items are sold individually. The
first important characteristic of a warranty is
the form of compensation to the customer on
failure of an item. The most common forms
for non-repairable products are (1) a lump-sum
rebate (e.g. “money-back guarantee”), (2) a free

Warranty and Maintenance 307

replacement of an item identical to the failed item,
(3) a replacement provided at reduced cost to the
buyer, and (4) some combination of the preceding
terms. Warranties of Type (2) are called Free
Replacement Warranties (FRWs). For warranties
of Type (3), the amount of reduction is usually a
function of the amount of service received by the
buyer up to the time of failure, with decreasing
discount as time of service increases. The discount
is a percentage of the purchase price, which can
change one or more times during the warranty
period, or it may be a continuous function
of the time remaining in the warranty period.
These are called pro rata warranties (PRWs). The
most common combination warranty is one that
provides for free replacements up to a specified
time and a replacement at pro-rated cost during
the remainder of the warranty period. This is
called a combination FRW/PRW. For a repairable
product under an FRW policy, the failed item is
repaired at no cost to the buyer.

Warranties can be further divided into dif-
ferent sub-groups based on dimensionality (one-
dimensional warranties involve only age or usage;
two-dimensional warranties involve both age and
usage) and whether the warranty is renewing or
not. In a renewing warranty, the repaired or re-
placement item comes with a new warranty iden-
tical to the initial warranty.

For used products, warranty coverage may also
be limited in many ways. For example, certain
types of failure or certain parts may be specifically
excluded from coverage. Coverage may include
parts and labor or parts only, or parts and labor
for a portion of the warranty period and parts only
thereafter. The variations are almost endless.

17.2.3.2 Warranty Policies for Standard
Products Sold in Lots

Under this type of warranty, an entire batch of
items is guaranteed to provide a specified total
amount of service, without specifying a guarantee
on any individual item. For example, rather than
guaranteeing that each item in a batch of K items
will operate without failure for W hours, the batch
as a whole is guaranteed to provide at least KW

hours of service. If, after the last item in the
batch has failed, the total service time is less than
KW hours, items are provided as specified in
the warranty (e.g. free of charge or at pro rata
cost) until such time as the total of KW hours is
achieved.

17.2.3.3 Warranty Policies for Specialized
Products

In the procurement of complex military and in-
dustrial equipment, warranties play a very differ-
ent and important role of providing incentives to
the seller to increase the reliability of the items
after they are put into service. This is accom-
plished by requiring that the contractor maintain
the items in the field and make design changes as
failures are observed and analyzed. The incentive
is an increased fee paid to the contractor if it can
be demonstrated that the reliability of the item
has, in fact, been increased. Warranties of this
type are called reliability improvement warranties
(RIWs).

17.2.3.4 Extended Warranties

The warranty that is an integral part of a product
sale is called the base warranty. It is offered by the
manufacturer at no additional cost and is factored
into the sale price. An extended warranty provides
additional coverage over the base warranty and is
obtained by the buyer through paying a premium.
Extended warranties are optional warranties that
are not tied to the sale process and can either be
offered by the manufacturer or by a third party
(e.g. several credit card companies offer extended
warranties for products bought using their credit
cards, and some large merchants offer extended
warranties). The terms of the extended warranty
can be either identical to the base warranty or may
differ from it in the sense that they might include
cost limits, deductibles, exclusions, etc.

Extended warranties are similar to service
contracts, where an external agent agrees to
maintain a product for a specified time period
under a contract with the owner of the product.
The terms of the contract can vary and can include
CM and/or PM actions.

308 Maintenance Theory and Testing

17.2.3.5 Warranties for Used Products

Some of the warranty policies for second-hand
products are similar to those for new products,
whilst others are different. Warranties for second-
hand products can involve additional features,
such cost limits, exclusions, and so on. The
terms (e.g. duration and features) can vary from
item to item and can depend on the condition
of the item involved. They are also influenced
by the negotiating skills of the buyer. Murthy
and Chattopadhyay [2] proposed a taxonomy for
one-dimensional warranty policies for used items
sold individually. These include options such as
cost limits, deductibles, cost sharing, money-back
guarantees, etc.

17.2.4 Issues in Product Warranty

Warranties have been analyzed by researchers
from many different disciplines. The various
issues dealt with are given in the following list.

1. Historical: origin and use of the notion.
2. Legal: court action, dispute resolution, prod-

uct liability.
3. Legislative: Magnusson–Moss Act in the USA,

warranty requirements in government ac-
quisition (particularly military) in different
countries, EU legislation.

4. Economic: market equilibrium, social welfare.
5. Behavioral: buyer reaction, influence on pur-

chase decision, perceived role of warranty,
claims behavior.

6. Consumerist: product information, consumer
protection, and consumer awareness.

7. Engineering: design, manufacturing, quality
control, testing.

8. Statistics: data acquisition and analysis,
stochastic modeling.

9. Operations research: cost modeling, optimiza-
tion.

10. Accounting: tracking of costs, time of accrual,
taxation implications.

11. Marketing: assessment of consumer attitudes,
assessment of the marketplace, use of war-
ranty as a marketing tool, warranty and sales.

12. Management: integration of many of the
previous items, determination of warranty
policy, warranty servicing.

13. Society: public policy issues.

Blischke and Murthy [3] examined several of
these issues in depth. Here, we briefly discuss two
issues of relevance to this chapter.

17.2.4.1 Warranty Cost Analysis

We first look at warranty cost from the manu-
facturer’s perspective. There are a number of ap-
proaches to the costing of warranties, and costs are
clearly different for buyer and seller. The following
are some of the methods for calculating costs that
might be considered.

1. Cost per item sold: this per unit cost
may be calculated as the total cost of
warranty, as determined by general principles
of accounting, divided by number of items
sold.

2. Cost per unit of time.

These costs are random variables, since claims
under warranty and the cost to rectify each claim
are uncertain. The selection of an appropriate cost
basis depends on the product, the context and
perspective. The type of customer—individual,
corporation, or government—is also important, as
are many other factors.

From the buyer’s perspective, the time interval
of interest is from the instant an item is purchased
to the instant when it is disposed or replaced.
This includes the warranty period and the post-
warranty period. The cost of rectification over the
warranty period depends on the type of warranty.
It can vary from no cost (in the case of an FRW)
to cost sharing (in the case of a PRW). The cost
of rectification during the post-warranty period
is borne completely by the buyer. As such, the
variable of interest to the buyer is the cost of
maintaining an item over its useful life. Hence, the
following cost estimates are of interest.

1. Cost per item averaging over all items
purchased plus those obtained free or at
reduced price under warranty.

Warranty and Maintenance 309

2. Life cycle cost of ownership of an item with or
without warranty, including purchase price,
operating and maintenance cost, etc., and
finally the cost of disposal.

3. Life cycle cost of an item and its replacements,
whether purchased at full price or replaced
under warranty, over a fixed time horizon.

The warranty costs depend on the nature
of the maintenance actions (corrective and/or
preventive) used and we discuss this further later
in the chapter.

17.2.4.2 Warranty Servicing

Warranty servicing costs can be minimized by
using optimal servicing strategies. In the case
where only CM actions are used, two possible
strategies are as follows.

1. Replace versus repair. The manufacturer has
the option of either repairing or replacing a
failed item by a new one.

2. Cost repair limit strategy. Here, an estimate of
the cost to repair a failed item is made and,
by comparing it with some specified limit, the
failed item is either repaired or replaced by a
new one.

17.2.5 Review of Warranty Literature

Review papers on warranties include a three-
part paper in the European Journal of Operational
Research: Blischke and Murthy [1] deal with
concepts and taxonomy, Murthy and Blischke [4]
deal with a framework for the study of warranties,
and Murthy and Blischke [5] deal with warranty
cost analysis. Papers by Blischke [6] and Chukova
et al. [7] deal mainly with warranty cost analysis.
Two recent review papers are by Thomas and Rao
[8] and Murthy and Djamaludin [9], with the latter
dealing with warranty from a broader perspective.

Over the last 6 years, four books have appeared
on the subject. Blischke and Murthy [10] deal
with cost analysis of over 40 different warranty
policies for new products. Blischke and Murthy [3]
provide a collection of review papers dealing with
warranty from many different perspectives. Sahin

and Polotoglu [11] deal with the cost analysis
of some basic one-dimensional warranty policies.
Brennan [12] deals with warranty administration
in the context of defense products.

Finally, Djamaludin et al. [13] list over 1500 pa-
pers on warranties, dividing these into different
categories. This list does not include papers that
have appeared in the law journals.

17.3 Maintenance:
An Overview
As indicated earlier, maintenance can be defined
as actions (i) to control the deterioration process
leading to failure of a system, and (ii) to restore the
system to its operational state through corrective
actions after a failure. The former is called PM and
the latter CM.

CM actions are unscheduled actions intended
to restore a system from a failed state into a
working state. These involve either repair or
replacement of failed components. In contrast, PM
actions are scheduled actions carried out either to
reduce the likelihood of a failure or prolong the life
of the system.

17.3.1 Corrective Maintenance

In the case of a repairable product, the behavior of
an item after a repair depends on the type of repair
carried out. Various types of repair action can be
defined.

• Good as new repair. Here, the failure time
distribution of repaired items is identical to
that of a new item, and we model successive
failures using an ordinary renewal process.
In real life this type of repair would seldom
occur.
• Minimal repair. A failed item is returned to

operation with the same effective age as it pos-
sessed immediately prior to failure. Failures
then occur according to a non-homogeneous
Poisson process with an intensity function
having the same form as the hazard rate of the
time to first failure distribution. This type of

310 Maintenance Theory and Testing

rectification model is appropriate when item
failure is caused by one of many components
failing and the failed component being re-
placed by a new one (see Murthy [14] and
Nakagawa and Kowada [15]).
• Different from new repair (I). Sometimes

when an item fails, not only the failed
components are replaced but also others that
have deteriorated sufficiently. These major
overhauls result in F1(x), the failure time
distribution function of all repaired items,
being different from F(x), the failure time
distribution function of a new item. The mean
time to failure of a repaired item is assumed to
be smaller than that of a new item. In this case,
successive failures are modeled by a modified
renewal process.
• Different from new repair (II). In some

instances, the failure distribution of a repaired
item depends on the number of times the
item has been repaired. This situation can be
modeled by assuming that the distribution
function after the j th repair (j ≥ 1) is Fj (x)

with the mean time to failure µj decreasing as
j increases.

17.3.2 Preventive Maintenance

PM actions can be divided into the following
categories.

• Clock-based maintenance. PM actions are
carried out at set times. An example of this is
the “block replacement” policy.
• Age-based maintenance. PM actions are based

on the age of the component. An example of
this is the “age replacement” policy.
• Usage-based maintenance. PM actions are

based on usage of the product. This is appro-
priate for items such as tires, components of
an aircraft, and so forth.
• Condition-based maintenance. PM actions are

based on the condition of the component
being maintained. This involves monitoring of
one or more variables characterizing the wear
process (e.g. crack growth in a mechanical
component). It is often difficult to measure

the variable of interest directly, and in this
case some other variable may be used to
obtain estimates of the variable of interest.
For example, the wear of bearings can be
measured by dismantling the crankcase of
an engine. However, measuring the vibration,
noise, or temperature of the bearing case
provides information about wear, since there
is a strong correlation between these variables
and bearing wear.
• Opportunity-based maintenance. This is ap-

plicable for multi-component systems, where
maintenance actions (PM or CM) for a com-
ponent provide an opportunity for carrying
out PM actions on one or more of the remain-
ing components of the system.
• Design-out maintenance. This involves carry-

ing out modifications through redesigning the
component. As a result, the new component
has better reliability characteristics.

In general, PM is carried out at discrete time
instants. In cases where the PM actions are
carried out fairly frequently they can be treated as
occurring continuously over time. Many different
types of model formulations have been proposed
to study the effect of PM on the degradation and
failure occurrence of items and to derive optimal
PM strategies.

17.3.3 Review of Maintenance
Literature

Several review papers on maintenance have
appeared over the last 30 years. These include
McCall [16], Pierskalla and Voelker [17], Sherif
and Smith [18], Monahan [19], Jardine and
Buzacott [20], Thomas [21], Gits [22], Valdez-
Flores and Feldman [23], Pintelon and Gelders
[24], Dekker [25], and Scarf [26]. Cho and
Parlar [27] and Dekker et al. [28] deal with
the maintenance of multi-component systems
and Pham and Wang [29] review models with
imperfect maintenance. These review papers
contain references to the large number of papers
and books dealing with maintenance.

Warranty and Maintenance 311

17.4 Warranty and Corrective
Maintenance

The bulk of the literature on warranty and cor-
rective maintenance deals with warranty servicing
costs under different CM actions. We first review
the literature linking warranties and CM for new
products, then we consider the literature for used
items.

Although most warranted items are complex
multi-component systems, the ‘black-box’ ap-
proach has often been used to model time to
first failure. The items are viewed as single en-
tities characterized by two states—working and
failed—and F(x), the distribution function for
time to first failure, is usually selected, either on an
intuitive basis, or from the analysis of failure data.
Subsequent failures are modeled by an appropriate
stochastic point process formulation depending
on the type of rectification action used. If the times
to complete rectification actions are very small in
comparison with the times between failures, they
are ignored in the modeling.

Most of the literature on warranty servic-
ing (for one- and two-dimensional warranties) is
summarized by Blischke and Murthy [3, 10]. We
confine our discussion to one-dimensional war-
ranties, for standard products, sold individually,
and focus on issues relating to maintenance ac-
tions and optimal decision making.

Models where items are subjected to different
from new repair (I) include those of Biedenweg
[30], and Nguyen and Murthy [31, 32]. Biedenweg
[30] shows that the optimal strategy is to replace
with a new item at any failure occurring up to a
certain time measured from the initial purchase
and then repair all other failures that occur
during the remainder of the warranty period. This
technique of splitting the warranty period into
distinct intervals for replacement and repair is
also used by Nguyen and Murthy [31, 32], where
any item failures occurring during the second
part of the warranty period are rectified using a
stock of used items [31]. Nguyen and Murthy [32]
extend Biedenweg’s [30] model by adding a third
interval, where failed items are either replaced

or repaired and a new warranty is given at each
failure.

The first warranty servicing model, involving
minimal repair and assuming constant repair and
replacement costs, is that of Nguyen [33]. As in
Biedenweg [30], the warranty period is split into a
replacement interval followed by a repair interval.
Under this strategy a failed item is always replaced
by a new one in the first interval, irrespective of
its age at failure. Thus, if the failure occurs close to
the beginning of the warranty then the item will be
replaced at a higher cost than that of a repair and
yet there will be very little reduction in its effective
age. This is the major limitation of this model, and
makes the strategy clearly sub-optimal.

Using the same assumptions as Nguyen [33],
Jack and Van der Duyn Schouten [34] investigated
the structure of the manufacturer’s optimal
servicing strategy using a dynamic programming
model. They showed that the repair–replacement
decision on failure should be made by comparing
the item’s current age with a time-dependent
control limit function h(t). The item is replaced on
failure at time t if and only if its age is greater than
h(t). A new servicing strategy proposed by Jack
and Murthy [35] involves splitting the warranty
period into distinct intervals for carrying out
repairs and replacements with no need to monitor
the item’s age. In intervals near the beginning
and end of the warranty period the failed items
are always repaired, whereas in the intermediate
interval at most one failure replacement is carried
out.

Murthy and Nguyen [36] examined the optimal
cost limit repair strategy where, at each failure
during the warranty period, the item is inspected
and an estimate of the repair cost determined. If
this estimate is less than a specified limit then
the failed item is minimally repaired, otherwise a
replacement is provided at no cost to the buyer.

For used items, Murthy and Chattopadhyay [2]
deal with both FRW and PRW policies with no
cost limits. Chattopadhyay and Murthy [37] deal
with the cost analysis of limit on total cost (LTC)
policies. Chattopadhyay and Murthy [38] deal with
the following three different policies—specific
parts exclusion (SPE) policy; limit on individual

312 Maintenance Theory and Testing

cost (LIC) policy; and limit on individual and
total cost (LITC) policy—and discuss their cost
analysis.

17.5 Warranty and Preventive
Maintenance

PM actions are carried out either to reduce the
likelihood of a failure or to prolong the life of an
item. PM can be perfect (restoring the item to
“good-as-new”) or imperfect (restoring the item to
a condition that is between as “good-as new” and
as “bad-as-old”).

PM over the warranty period has an impact on
the warranty servicing cost. It is worthwhile for
the manufacturer to carry out this maintenance
only if the reduction in the warranty cost exceeds
the cost of PM. From a buyer’s perspective, a
myopic buyer might decide not to invest in any PM
over the warranty period, as item failures over this
period are rectified by the manufacturer at no cost
to the buyer. Investing in maintenance is viewed
as an additional unnecessary cost. However, from
a life cycle perspective the total life cycle cost to
the buyer is influenced by maintenance actions
during the warranty period and the post-warranty
period. This implies that the buyer needs to
evaluate the cost under different scenarios for PM
actions.

This raises several interesting questions. These
include the following:

1. Should PM be used during the warranty
period?

2. If so, what should be the optimal maintenance
effort? Should the buyer or the manufacturer
pay for this, or should it be shared?

3. What level of maintenance should the buyer
use during the post-warranty period?

PM actions are normally scheduled and carried
out at discrete time instants. When the PM is
carried out frequently and the time between the
two successive maintenance actions is small, then
one can treat the maintenance effort as being
continuous over time. This leads to two different

ways (discrete and continuous) of modeling
maintenance effort.

Another complicating factor is the information
aspect. This relates to issues such as the state of
item, the type of distribution function appropriate
for modeling failures, the parameters of the
distribution function, etc. The two extreme
situations are complete information and no
information, but often the information available
to the manufacturer and the buyer lies somewhere
between these two extremes and can vary. This
raises several interesting issues, such as the
adverse selection and moral hazard problems.
Quality variations (with all items not being
statistically similar) add yet another dimension to
the complexity.

As such, the effective study of PM for products
sold under warranty requires a framework that
incorporates the factors discussed above. The
number of factors to be considered and the nature
of their characterization result in many different
model formulations linking PM and warranty. We
now present a chronological review of the models
that have been developed involving warranty and
PM.

Ritchken and Fuh [39] discuss a preventive
replacement policy for a non-repairable item
after the expiry of a PRW. Any item failure
occurring within the warranty period results in a
replacement by a new item with the cost shared
between the producer and the buyer. After the
warranty period finishes, the item in use is either
preventively replaced by the buyer after a period T

(measured from the end of the warranty period) or
replaced on failure, whichever occurs first. A new
warranty is issued with the replacement item and
the optimal T ∗ is found by minimizing the buyer’s
asymptotic expected cost per unit time.

Chun and Lee [40] consider a repairable item
with an increasing failure rate that is subjected
to periodic imperfect PM actions both during the
warranty period and after the warranty expires.
They assume that each PM action reduces the
item’s age by a fixed amount and all failures
between PM actions are minimally repaired.
During the warranty period, the manufacturer
pays all the repair costs and a proportion of

Warranty and Maintenance 313

each PM cost, with the proportion depending
on when the action is carried out. After the
warranty expires, the buyer pays for the cost of
all repairs and PM. The optimal period between
PM actions is obtained by minimizing the buyer’s
asymptotic expected cost per unit time over an
infinite horizon. An example is given for an item
with a Weibull failure distribution.

Chun [41] dealt with a similar problem to
Chun and Lee [40], but with the focus instead
on the manufacturer’s periodic PM strategy over
the warranty period. The optimal number of
PM actions N∗ is obtained by minimizing the
expected cost of repairs and PMs over this finite
horizon.

Jack and Dagpunar [42] considered the model
studied by Chun [41] and showed that, when the
product has an increasing failure rate, a strict
periodic policy for PM actions is not the optimal
strategy. They showed that, for a warranty of
length W and a fixed amount of age reduction
at each PM, the optimal strategy is to perform
N PMs at intervals x apart, followed by a final
interval at the end of the warranty of length W −
Nx, where only minimal repairs are carried out.
Performing PMs with this frequency means that
the item is effectively being restored to as good-
as-new condition.

Dagpunar and Jack [43] assumed that the
amount of age reduction is under the control of
the manufacturer and the cost of each PM action
depends on the operating age of the item and
on the effective age reduction resulting from the
action. In this model, the optimal strategy can
result in the product not being restored to as
good as new at each PM. The optimal number
of PM actions N∗, optimal operating age to
perform a PM s∗, and optimal age reduction x∗
are obtained by minimizing the manufacturer’s
expected warranty servicing cost.

Sahin and Polatoglu [44] discussed two types of
preventive replacement policy for the buyer of a
repairable item following the expiry of a warranty.
Failures over the warranty period are minimally
repaired at no cost to the buyer. In the first model,
the item is replaced by a new item at a fixed
time T after the warranty ends. Failures before T

are minimally repaired, with the buyer paying all
repair costs. In the second model, the replacement
is postponed until the first failure after T . They
considered both stationary and non-stationary
strategies in order to minimize the long-run
average cost to the buyer. The non-stationary
strategies depend on the information regarding
item age and number of previous failures that
might be available to the buyer at the end of the
warranty period. Sahin and Polatoglu [45] dealt
with a model that examined PM policies with
uncertainty in product quality.

Monga and Zuo [46] presented a model for the
reliability-based design of a series–parallel system
considering burn-in, warranty, and maintenance.
They minimized the expected system life cycle
cost and used genetic algorithms to determine
the optimal values of system design, burn-in
period, PM intervals, and replacement time. The
manufacturer pays the costs of rectifying failures
under warranty and the buyer pays post-warranty
costs.

Finally, Jung et al. [47] determined the optimal
number and period for periodic PMs following
the expiry of a warranty by minimizing the
buyer’s asymptotic expected cost per unit time.
Both renewing PRWs and renewing FRWs are
considered. The item is assumed to have a
monotonically increasing failure rate and the PM
actions slow down the degradation.

17.6 Extended Warranties and
Service Contracts

The literature on extended warranties deals
mainly with the servicing cost to the provider of
these extended warranties. This is calculated using
models similar to those for the cost analysis of
base warranties with only CM actions.

Padmanabhan and Rao [48] and Padmanabhan
[49] examined extended warranties with hetero-
geneous customers with different attitudes to risk
and captured through a utility function. Patankar
and Mitra [50] considered the case where items are
sold with PRW where the customer is given the

314 Maintenance Theory and Testing

option of renewing the initial warranty by paying
a premium should the product not fail during the
initial warranty period.

Mitra and Patankar [51] dealt with the model
where the product is sold with a rebate policy and
the buyer has the option to extend the warranty
should the product not fail during the initial
warranty period. Padmanabhan [52] discussed
alternative theories and the design of extended
warranty policies.

Service contracts also involve maintenance
actions. Murthy and Ashgarizadeh [53, 54] dealt
with service contracts involving only CM. The
authors are unaware of any service contract
models that deal with PM or optimal decision
making with regard to maintenance actions.

17.7 Conclusions and Topics for
Future Research

In this final section we again stress the importance
of maintenance modeling in a warranty context,
we emphasize the need for model validation, and
we then outline some further research topics that
link maintenance and warranty.

Post-sale service by a manufacturer is an
important element in the sale of a new product,
but it can result in substantial additional costs.
These warranty servicing costs, which can vary
between 0.5 and 7% of a product’s sale price, have
a significant impact on the competitive behavior
of manufacturers. However, manufacturers can
reduce the servicing costs by adopting proper CM
and PM strategies, and these are found by using
appropriate maintenance models.

Models for determining optimal maintenance
strategies in a warranty context were reviewed in
Sections 17.4 and 17.5. The strategies discussed,
whilst originating from more general maintenance
models, have often had to be adapted to suit
the special finite time horizon nature of warranty
problems. However, all warranty maintenance
models will only provide useful information to
manufacturers provided they can be validated,

and this requires the collection of accurate
product failure data.

We have seen that some maintenance and
warranty modeling has already been done, but
there is still scope for new research, and we now
suggest some topics worthy of investigation.

1. For complex products (such as locomotives,
aircraft, etc.) the (corrective and preventive)
maintenance needs for different components
vary. Any realistic modeling requires grouping
the components into different categories
based on the maintenance needs. This implies
modeling and analysis at the component level
rather than the product level (see Chukova
and Dimitrov [55]).

2. The literature linking warranty and PM
deals primarily with age-based or clock-
based maintenance. Opportunity-based main-
tenance also offers potential for reducing the
overall warranty servicing costs. The study of
optimal opportunistic maintenance policies in
the context of warranty servicing is an area for
new research.

3. Our discussion has been confined to
one-dimensional warranties. Optimal
maintenance strategies for two-dimensional
warranties have received very little attention.
Iskandar and Murthy [56] deal with a simple
model, and there is considerable scope for
more research on this topic.

4. The optimal (corrective and preventive)
maintenance strategies discussed in the
literature assume that the model structure
and model parameters are known. In real life,
this is often not true. In this case, the optimal
decisions must be based on the information
available, and this changes over time as more
failure data are obtained. This implies that
the modeling must be done using a Bayesian
framework. Mazzuchi and Soyer [57] and
Percy and Kobbacy [58] dealt with this issue
in the context of maintenance, and a topic for
research is to apply these ideas in the context
of warranties and extended warranties.

5. The issue of risk becomes important in the
context of service contracts. When the attitude

Warranty and Maintenance 315

to risk varies across the population and there
is asymmetry in the information available to
different parties, several new issues (such as
moral hazard, adverse selection) need to be
incorporated into the model (see Murthy and
Padmanabhan [59]).

References
[1] Blischke WR, Murthy DNP. Product warranty

management—I. A taxonomy for warranty policies.
Eur J Oper Res 1991;62:127–48.

[2] Murthy DNP, Chattopadhyay G. Warranties for second-
hand products. In: Proceedings of the FAIM Conference,
Tilburg, Netherlands, June, 1999.

[3] Blischke WR, Murthy DNP. Product warranty handbook.
New York: Marcel Dekker; 1996.

[4] Murthy DNP, Blischke WR. Product warranty
management—II: an integrated framework for study.
Eur J Oper Res 1991;62:261–80.

[5] Murthy DNP, Blischke WR. Product warranty
management—III: a review of mathematical models.
Eur J Oper Res 1991;62:1–34.

[6] Blischke WR. Mathematical models for warranty cost
analysis. Math Comput Model 1990;13:1–16.

[7] Chukova SS, Dimitrov BN, Rykov VV. Warranty analysis.
J Sov Math 1993;67:3486–508.

[8] Thomas M, Rao S. Warranty economic decision models: a
review and suggested directions for future research. Oper
Res 2000;47:807–20.

[9] Murthy DNP, Djamaludin I. Product warranties—a
review. Int J Prod Econ 2002;in press.

[10] Blischke WR, Murthy DNP. Warranty cost analysis. New
York: Marcel Dekker; 1994.

[11] Sahin I, Polatoglu H. Quality, warranty and preventive
maintenance. Boston: Kluwer Academic Publishers; 1998.

[12] Brennan JR. Warranties: planning, analysis and imple-
mentation. New York: McGraw-Hill; 1994.

[13] Djamaludin I, Murthy DNP, Blischke WR. Bibliography
on warranties. In: Blischke WR, Murthy DNP, editors.
Product warranty handbook. New York: Marcel Dekker;
1996.

[14] Murthy DNP. A note on minimal repair. IEEE Trans Reliab
1991;R-40:245–6.

[15] Nakagawa T, Kowada M. Analysis of a system with
minimal repair and its application to replacement policy.
Eur J Oper Res 1983;12:176–82.

[16] McCall JJ. Maintenance policies for stochastically failing
equipment: a survey. Manage Sci 1965;11:493–524.

[17] Pierskalla WP, Voelker JA. A survey of maintenance
models: the control and surveillance of deteriorating
systems. Nav Res Logist Q 1976;23:353–88.

[18] Sherif YS, Smith ML. Optimal maintenance models for
systems subject to failure—a review. Nav Res Logist Q
1976;23:47–74.

[19] Monahan GE. A survey of partially observable Markov
decision processes: theory, models and algorithms.
Manage Sci 1982;28:1–16.

[20] Jardine AKS, Buzacott JA. Equipment reliability and
maintenance. Eur J Oper Res 1985;19:285–96.

[21] Thomas LC. A survey of maintenance and replacement
models for maintainability and reliability of multi-item
systems. Reliab Eng 1986;16:297–309.

[22] Gits CW. Design of maintenance concepts. Int J Prod Econ
1992;24:217–26.

[23] Valdez-Flores C, Feldman RM. A survey of preventive
maintenance models for stochastically deteriorating
single-unit systems. Nav Res Logist Q 1989;36:419–46.

[24] Pintelon LM, Gelders LF. Maintenance management
decision making. Eur J Oper Res 1992;58:301–17.

[25] Dekker R. Applications of maintenance optimization
models: a review and analysis. Reliab Eng Syst Saf
1996;51:229–40.

[26] Scarf PA. On the application of mathematical models in
maintenance. Eur J Oper Res 1997;99:493–506.

[27] Cho D, Parlar M. A survey of maintenance models for
multi-unit systems. Eur J Oper Res 1991;51:1–23.

[28] Dekker R, Wildeman RE, Van der Duyn Schouten FA.
A review of multi-component maintenance models
with economic dependence. Math Methods Oper Res
1997;45:411–35.

[29] Pham H, Wang H. Imperfect maintenance. Eur J Oper Res
1996; 94:425–38.

[30] Biedenweg FM. Warranty analysis: consumer value vs
manufacturers cost. Unpublished PhD thesis, Stanford
University, USA, 1981.

[31] Nguyen DG, Murthy DNP. An optimal policy for servicing
warranty. J Oper Res Soc 1986;37:1081–8.

[32] Nguyen DG, Murthy DNP. Optimal replace–repair
strategy for servicing items sold with warranty. Eur J
Oper Res 1989;39:206–12.

[33] Nguyen DG. Studies in warranty policies and product
reliability. Unpublished PhD thesis, The University of
Queensland, Australia, 1984.

[34] Jack N, Van der Duyn Schouten FA. Optimal repair–
replace strategies for a warranted product. Int J Prod
Econ 2000;67:95–100.

[35] Jack N, Murthy DNP. Servicing strategies for items sold
with warranty. J Oper Res 2001;52:1284–8.

[36] Murthy DNP, Nguyen DG. An optimal repair cost limit
policy for servicing warranty. Math Comput Model
1988;11:595–9.

[37] Chattopadhyay GN, Murthy DNP. Warranty cost analysis
for second hand products. J Math Comput Model
2000;31:81–8.

[38] Chattopadhyay GN, Murthy DNP. Warranty cost analysis
for second-hand products sold with cost sharing policies.
Int Trans Oper Res 2001;8:47–68.

[39] Ritchken PH, Fuh D. Optimal replacement policies for
irreparable warrantied items. IEEE Trans Reliab 1986;R-
35:621–3.

[40] Chun YH, Lee CS. Optimal replacement policy for a war-
rantied system with imperfect preventive maintenance
operations. Microelectron Reliab 1992;32:839–43.

316 Maintenance Theory and Testing

[41] Chun YH. Optimal number of periodic preventive
maintenance operations under warranty. Reliab Eng Syst
Saf 1992;37:223–5.

[42] Jack N, Dagpunar JS. An optimal imperfect maintenance
policy over a warranty period. Microelectron Reliab
1994;34:529–34.

[43] Dagpunar JS, Jack N. Preventive maintenance strategy
for equipment under warranty. Microelectron Reliab
1994;34:1089–93.

[44] Sahin I, Polatoglu H. Maintenance strategies follow-
ing the expiration of warranty. IEEE Trans Reliab
1996;45:220–8.

[45] Sahin I, Polatoglu H. Manufacturing quality, reliabil-
ity and preventive maintenance. Prod Oper Manage
1996;5:132–47.

[46] Monga A, Zuo MJ. Optimal system design consid-
ering maintenance and warranty. Comput Oper Res
1998;9:691–705.

[47] Jung GM., Lee CH, Park DH. Periodic preventive mainte-
nance policies following the expiration of warranty. Asia–
Pac J Oper Res 2000;17:17–26.

[48] Padmanabhan V, Rao RC. Warranty policy and extended
service contracts: theory and an application to automo-
biles. Market Sci 1993;12:230–47.

[49] Padmanabhan V. Usage heterogeneity and extended
warranty. J Econ Manage Strat 1995;4:33–53.

[50] Patankar JG, Mitra A. A multicriteria model for a
renewable warranty program. J Eng Val Cost Anal 1999;
2:171–85.

[51] Mitra A, Patankar JG. Market share and warranty costs
for renewable warranty programs. Int J Prod Econ
1997;50:155–68.

[52] Padmanabhan V. Extended warranties. In: Blischke WR,
Murthy DNP, editors. Product warranty handbook. New
York: Marcel Dekker; 1996. p.439–51.

[53] Murthy DNP, Ashgarizadeh E. A stochastic model for
service contracts. Int J Reliab Qual Saf Eng 1998;5:29–45.

[54] Murthy DNP, Ashgarizadeh E. Optimal decision making
in a maintenance service operation. Eur J Oper Res
1999;116:259–73.

[55] Chukova SS, Dimitrov BV. Warranty analysis for complex
systems. In: Blischke WR, Murthy DNP, editors. Product
warranty handbook. New York: Marcel Dekker; 1996.
p.543–84.

[56] Iskandar BP, Murthy DNP. Repair–replace strategies
for two-dimensional warranty policies. In: Proceedings
of the Third Australia–Japan Workshop on Stochastic
Models, Christchurch, September, 1999; p.206–13.

[57] Mazzuchi TA, Soyer R. A Bayesian perspective on some
replacement strategies. IEEE Trans Reliab 1996;R-37:248–
54.

[58] Percy DF, Kobbacy KAH. Preventive maintenance
modelling—a Bayesian perspective. J Qual Maint Eng
1996;2:44–50.

[59] Murthy DNP, Padmanabhan V. A dynamic model of
product warranty with consumer moral hazard. Research
paper no. 1263. Graduate School of Business, Stanford
University, Stanford, CA, 1993.

Mechanical Reliability and
Maintenance Models

Ch
ap

te
r1

8Gianpaolo Pulcini

18.1 Introduction
18.2 Stochastic Point Processes
18.3 Perfect Maintenance
18.4 Minimal Repair
18.4.1 No Trend with Operating Time
18.4.2 Monotonic Trend with Operating Time
18.4.2.1 The Power Law Process
18.4.2.2 The Log–Linear Process
18.4.2.3 Bounded Intensity Processes
18.4.3 Bathtub-type Intensity
18.4.3.1 Numerical Example
18.4.4 Non-homogeneousPoisson Process Incorporating Covariate Information
18.5 Imperfect or Worse Repair
18.5.1 Proportional Age Reduction Models
18.5.2 InhomogeneousGamma Processes
18.5.3 Lawless–Thiagarajah Models
18.5.4 Proportional Intensity Variation Model
18.6 Complex Maintenance Policy
18.6.1 Sequence of Perfect and Minimal Repairs Without Preventive Maintenance
18.6.2 Minimal Repairs Interspersed with Perfect Preventive Maintenance
18.6.3 Imperfect Repairs Interspersed with Perfect Preventive Maintenance
18.6.4 Minimal Repairs Interspersed with Imperfect Preventive Maintenance
18.6.4.1 Numerical Example
18.6.5 Corrective Repairs Interspersed with Preventive Maintenance Without

Restrictive Assumptions
18.7 Reliability Growth
18.7.1 Continuous Models
18.7.2 Discrete Models

18.1 Introduction

This chapter deals with the reliability modeling of
repairable mechanical equipment and illustrates
some useful models, and related statistical pro-
cedures, for the statistical analysis of failure data
of repairable mechanical equipment. Repairable

equipment is an item that may fail to perform
at least one of its required functions many times
during its lifetime. After each failure, it is not re-
placed but is restored to satisfactory performance
by repairing or by substituting the failed part
(a complete definition of repairable equipment can
be found in Ascher and Feingold [1] (p.8)).

317

318 Maintenance Theory and Testing

Many products are designed to be repaired and
put back into service. However, the distinction
between repairable and non-repairable units
sometimes depends on economic considerations
rather than equipment design, since it may be
uneconomical, unsafe, or unwanted to repair the
failed item. For example, a toaster is repaired
numerous times in a poor society (and hence
it is repairable equipment), whereas it is often
discarded when it fails and is replaced in a rich
society (therefore, it is a non-repairable item).

Apart from possible improvement phenomena
in an early phase of the operating time, me-
chanical repairable equipment is subjected, unlike
electronic equipment, to degradation phenom-
ena with operating time, so that the failures be-
come increasingly frequent with time. This makes
the definition of reliability models for mechan-
ical equipment more complicated, both due to
the presence of multiple failure mechanisms and
to the complex maintenance policy that is often
carried out. In fact, the failure pattern (i.e. the
sequence of times between successive failures) of
mechanical repairable equipment strictly depends
not only on the failure mechanisms and physical
structure of the equipment, but also on the type
of repair that is performed at failure (corrective
maintenance). Moreover, the failure pattern also
depends on the effect of preventive maintenance
actions that may be carried out in the attempt to
prevent equipment degradation.

Hence, an appropriate modeling of the failure
pattern of mechanical repairable equipment can-
not but take into account the type of maintenance
policy being employed. On the other hand, cor-
rective and preventive maintenance actions are
generally classified just in terms of their effect on
the operating conditions of the equipment (e.g. see
Pham and Wang [2]). In particular:

1. if the maintenance action restores the equip-
ment to the as same as new condition, the
maintenance is defined as a perfect mainte-
nance;

2. if the maintenance action brings the equip-
ment to the condition it was in just before the

maintenance (same as old), the maintenance
is a minimal maintenance;

3. if the maintenance action significantly im-
proves the equipment condition, even without
bringing the equipment to a seemingly new
condition (better than old), the maintenance
is an imperfect maintenance;

4. if the maintenance action brings the equip-
ment to a worse condition than it was in just
before the maintenance (worse than old), the
maintenance is a worse maintenance.

Of course, the classification of a given mainte-
nance action depends not only on the action that
is performed (repair or substitution of the failed
part, major overhaul of the equipment, and so on),
but also on the physical structure and complexity
of the equipment. For example, the substitution
of a failed part of complex equipment does not
generally produce an improvement to the equip-
ment conditions, and hence can be classified as a
minimal repair. On the contrary, if the equipment
is not complex, then the same substitution can
produce a noticeable improvement and could be
classified as an imperfect repair.

In Section 18.2, the basic concepts of stochastic
point processes are illustrated. Sections 18.3–18.6
deal with stochastic models used to describe the
failure pattern of repairable equipment subject
to perfect, minimal, imperfect or worse mainte-
nance, as well as to some complex maintenance
policies. The final section illustrates models that
describe the failure pattern of equipment under-
going development programs that are carried out
to improve reliability through design modifica-
tions (reliability growth). Of course, in this con-
text, the observed failure pattern is also strongly
influenced by design changes.

Owing to obvious limitations of space, this
discussion cannot be exhaustive, and simply
intends to illustrate those models that have been
mainly referred to in reliability analysis.

18.2 Stochastic Point Processes
The more commonly used way to model the
reliability of repairable equipment is through

Mechanical Reliability and Maintenance Models 319

stochastic point processes. A stochastic point
process is a probability model to describe a
physical phenomenon that is characterized by
highly localized events that occur randomly in
the continuum [1] (p.17). In reliability modeling,
the events are the equipment failures and the
continuum is the operating time (or any other
measure of the actual use of the equipment).

Suppose that the failures of repairable equip-
ment, observed over time t ≥ 0, occur at times
t1 < t2 < · · · . Time ti (i = 1, 2, . . .), which is
measured from zero, is called the arrival time to
the ith failure. If repair times are negligible, or are
measured on a different time scale, then the inter-
arrival times xi = ti − ti−1 (where t0 = 0 and i =
1, 2, . . .) represent the operating times between
the (i − 1)th and ith failures, and constitute the
failure pattern of the equipment.

Let N(s, t) denote the (integer valued) random
variable counting the number of failures that occur
in the time interval (s, t). It includes both the
number of failures occurring in (s, t) and the
times at which they occur. Such a point process can
be specified mathematically in several ways, e.g.
via the joint distributions of the counts of failures
in arbitrary time intervals. One convenient way
[3] is via its complete (or conditional) intensity
function (CIF) defined as [4] (p.9):

λ(t; Ht)= lim
�t→0

Pr{N(t, t +�t) ≥ 1 |Ht }
�t

(18.1)
where Ht = {N(0, s) : 0≤ s ≤ t} represents the
entire history of the process through time t .
For small �t values, the product λ(t; Ht)�t is
approximately equal to the conditional probability
that at least one failure (not necessarily the first)
occurs in the time interval (t, t +�t), given the
history up to t [3].

The expectation of the number N(t)= N(0, t)
of failures up to t , say M(t)= E{N(t)}, is a
non-decreasing right continuous function. Its
derivative µ(t)=M ′(t), if it exists, is called
the instantaneous rate of occurrence of failures
(ROCOF) and represents the time rate of change
of the expected number of failures [1] (p.19). If the
probability of a failure at any specified point is

zero, then the expected number of failures M(t)

is continuous everywhere and the process is said
to be regular [5] (p.15–16).

If simultaneous failures cannot occur, so that
the ti are distinct, then the point process is
said to be orderly [1] (p.23). Under orderliness
conditions, the ROCOF µ(t) numerically equals
the (unconditional) intensity function λ(t), if they
exist, which is defined as

λ(t)= lim
�t→0

Pr{N(t, t +�t)≥ 1}
�t

(18.2)

The intensity λ(t) can be viewed as the expectation
of the CIF (Equation 18.1) over the entire space
of possible histories. Of course, if the CIF is
independent ofHt then the two intensity functions
coincide. Also, for small �t , the product λ(t)�t

is approximately equal to the (unconditional)
probability that at least one failure occurs in the
time interval (t, t +�t) [6]. Note that, if the
process is not orderly, then the ROCOF is greater
than the intensity function λ(t) [4] (p.26) and does
not specify the process uniquely [3].

The assumption of no simultaneous failures is
usually reasonable in most applications and allows
useful distribution functions to be derived from
the CIF.

Under orderliness conditions, the CIF can be
related to the conditional distribution fi(t;Ht) of
the arrival time ti of the ith failure. Suppose that
the (i − 1)th failure has occurred at ti−1; then, for
t > ti−1:

λ(t; Ht)= fi(t;Ht)

1− Fi(t; Ht)
t ≥ ti−1 (18.3)

where Ht is the observed history that consists
of (i − 1) failures. Hence, the conditional density
function fi(t;Ht) of ti is

fi(t; Ht)= λ(t; Ht) exp

[
−
∫ t

ti−1

λ(z;Hz) dz

]
t ≥ ti−1 (18.4)

From Equation 18.4, the conditional density
function fi(x;Ht) of the ith interarrival time

320 Maintenance Theory and Testing

xi = ti − ti−1 is

fi(x;Ht)= λ(ti−1 + x;Hti−1+x)

× exp

[
−
∫ x

0
λ(ti−1 + z;Hti−1+z) dz

]
x ≥ 0 (18.5)

The equipment reliability R(t, t +w), defined
as the probability that the equipment operates
without failing over the time interval (t, t +w),
generally depends on the entire history of the
process, and hence can be expressed as [1] (p.24–
25)

R(t, t + w)≡ Pr{N(t, t +w)= 0 |Ht } (18.6)

For any orderly point process, the equipment
reliability is

R(t, t +w)= exp

[
−
∫ t+w

t

λ(x;Hx) dx

]
(18.7)

The forward waiting time wt is the time to the
next failure measured from an arbitrary time t :
wt = tN(t)+1 − t , where tN(t)+1 is the time of the
next failure. The cumulative distribution function
of wt is related to the equipment reliability
(Equation 18.6) by [1] (p.23–25):

Kt(w)= Pr{wt ≤ w |Ht }
= Pr{N(t, t + w)≥ 1 |Ht }
= 1− R(t, t +w) (18.8)

which, under orderliness conditions, becomes:

Kt(w)= 1− exp

[
−
∫ w

0
λ(t + x;Ht+x) dx

]
(18.9)

Of course, when the forward waiting time wt

is measured from a failure time, say tN(t), then
wt coincides with the interarrival time xN(t)+1 =
tN(t)+1 − tN(t).

For any orderly process, the likelihood relative
to a time-truncated sample t1 < t2 < · · ·< tn ≤ T

is expressible in the form [7]

L(θ)=
n∏

i=1

λ(ti;Hti) exp

[
−
∫ T

0
λ(t; Ht) dt

]
(18.10)

where θ is the vector of unknown parameters of
the CIF. For failure-truncated sampling, T ≡ tn.

Finally, the integrated CIF over the
time between two successive failures, say
ei =

∫ ti
ti−1

λ(t; Ht) dt , under orderliness con-
ditions, is distributed as a standard exponential
random variable. This property allows one to have
a useful graphical tool in order to check if the
assumed stochastic model describes adequately
an observed data set [3]. In fact, if the assumed
model is satisfactory, then the estimate of the
generalized residuals ei should look roughly like a
standard exponential sample.

Since the CIF characterizes the failure pattern
of the repairable equipment, its form depends
both on the failure mechanisms acting on the
equipment during its operating life and on the
maintenance policy that is performed. We assume
that the CIF can be discontinuous with operating
time and discontinuities can occur only at the
(corrective or preventive) maintenance epochs, so
that the CIF is continuous in any time interval
between two successive maintenance epochs.

In the following, some point processes that
satisfy the reasonable orderliness conditions and
meet practical applications in the reliability
analysis of mechanical equipment are shown
depending on the type of maintenance policy
being employed.

18.3 Perfect Maintenance

Perfect maintenance is a maintenance action that
brings the equipment to a like-new condition. In
other words, each time the equipment is perfectly
maintained, it is as though we are starting over
with a new piece of equipment. Then, if a perfect
maintenance is performed at time τ , the CIF at
any time t ≥ τ depends only on the history of the
process from τ up to t .

If the equipment is perfectly repaired at each
failure, then its failure pattern can be described
by a renewal process (same as new process). The
CIF of a renewal process depends on the operating
time t and on the history Ht only through the
difference t − tN(t), where tN(t) is the time of the

Mechanical Reliability and Maintenance Models 321

most recent failure prior to t :

λ(t; Ht)= h(t − tN(t)) (18.11)

The CIF (Equation 18.11) implies that the times
xi (i = 1, 2, . . .) between successive failures are
independent and identically distributed random
variables with hazard rate r(x) numerically equal
to h(x), then the failure pattern shows no trend
with time (times between failures do not tend to
become smaller or larger with operating time).

As pointed out by many authors (e.g. see
Thompson [5] (p.49) and Ascher [8]) a renewal
process is generally inappropriate to describe
the failure pattern of repairable equipment. In
fact, it is implausible that each repair actually
brings the equipment to a same as new condition,
and thus the equipment experiences deterioration
(times between failures tend to become smaller
with time) that cannot be modeled by a renewal
process. Likewise, the renewal process cannot be
used to model the failure pattern of equipment
that experiences reliability improvement during
the earlier period of its operating life.

A special form of renewal process arises
when the CIF (Equation 18.11) is constant
with the operating time t : λ(t; Ht)= ρ, so
that the interarrival times xi are independent
and identically exponentially distributed random
variables. Such a process is also a same as old
model, since each repair restores the equipment
to the condition it was in just before the repair
(each repair is both perfect and minimal). For
convenience of exposition, such a process will be
discussed later, in Section 18.4.1.

18.4 Minimal Repair
The minimal repair is a corrective maintenance
action that brings the repaired equipment to
the conditions it was in just before the failure
occurrence. Thus, if a minimal repair is carried
out at time ti , then

λ(t+i ;Ht+i
)= λ(t−i ;Ht−i

) (18.12)

and the equipment reliability is unchanged by
failure and repair (lack of memory property). If the

equipment is minimally repaired at each failure,
and preventive maintenance is not carried out,
then the CIF is continuous everywhere and does
not depend on the history of the process but only
on the operating time t :

λ(t; Ht)= ρ(t) (18.13)

In this case, ρ(t) is both the unconditional
intensity function and the ROCOF µ(t). The
assumption of minimal repair implies that the
failure process is a Poisson process [6,9], i.e. a point
process with independent Poisson distributed
increments. Thus:

Pr{N(t, t +�)= k}

= [M(t, t +�)]k
k! exp[−M(t, t +�)]

k = 0, 1, 2, . . . (18.14)

where M(t, t +�) is the expected number of
failures in the time interval (t, t +�):

M(t, t +�)= E{N(t, t +�)} =
∫ t+�

t

µ(z) dz

(18.15)
For a Poisson process, the interarrival times

xi = ti − ti−1 generally are neither identically
nor independently distributed random variables.
In fact, the conditional density function of xi
depends on the occurrence time ti−1 of the most
recent failure:

fi(x; ti−1)= ρ(ti−1 + x)

× exp

[
−
∫ x

0
ρ(ti−1 + z) dz

]
x ≥ 0 (18.16)

Then, unlike the renewal process, only the first
interarrival time x1 and, then, the arrival time t1
of the first failure have hazard rate numerically
equal to ρ(t). Also, the generalized residual ei =∫ ti
ti−1

λ(t; Ht) dt equals the expected number of
failures in the time interval (ti−1, ti), i.e. for a
Poisson process: ei =M(ti−1, ti).

The form of Equation 18.13 enables one to
model, in principle, the failure pattern of any
repairable equipment subjected to minimal repair,

322 Maintenance Theory and Testing

both when a complex behavior is observed in
failure data and when a simpler behavior arises.
Several testing procedures have been developed
for testing the absence of trend with operating
time against the alternative of a simple behavior
in failure data (such as monotonic or bathtub-type
trend).

One of the earliest tests is the Laplace test [10]
(p.47), which is based, under a failure-truncated
sampling, on the statistic [1] (p.79)

LA=
∑n−1

i=1 ti − (n− 1)tn/2

tn
√
(n− 1)/12

(18.17)

where ti (i = 1, . . . , n) are the occurrence times
of the observed failures. Under the null hypothesis
of constant intensity, LA is approximately dis-
tributed as a standard normal random variable.
Then, a large positive (large negative) value of LA
provides evidence of a monotonically increasing
(decreasing) trend with time, i.e. of deteriorating
(improving) equipment. The Laplace test is the
uniformly most powerful unbiased (UMPU) test
when the failure data come from a Poisson process
with log–linear intensity (see Section 18.4.2.2).

The test procedure, which generally performs
well in testing the null hypothesis of constant
intensity against a broad class of Poisson processes
with monotonically increasing intensity [11],
is based, for failure-truncated samples, on the
statistic

Z = 2
n−1∑
i=1

ln(tn/ti) (18.18)

Under the null hypothesis of constant intensity, Z
is exactly distributed as a χ2 random variable with
2(n− 1) degrees of freedom [12]. Small (large)
values of Z provide evidence of a monotonically
increasing (decreasing) trend. TheZ test is UMPU
when the failure data actually come from a
Poisson process with power-law intensity (see
Section 18.4.2.1).

Forms that little different for LA and Z arise
when the failure data come from a time-truncated
sampling, i.e. when the process is observed until a
prefixed time T [11]:

LA=
∑n

i=1 ti − nT/2

T
√
n/12

and

Z = 2
n∑

i=1

ln(T /ti) (18.19)

Under a time-truncated sampling, LA is still
approximately normally distributed and Z is χ2

distributed with 2n degrees of freedom.
Both LA and Z can erroneously provide

evidence of trend when data arise from the
more general renewal process, rather than from
a Poisson process with constant intensity. Then,
if a time trend is to be tested against the null
hypothesis of a general renewal process, one
should use the Lewis and Robinson test, based on
the statistic [13]

LR= LA

[
x̄2∑n

i=1(xi − x̄)2/(n− 1)

]1/2

(18.20)

where xi (i = 1, . . . , n) are the times between
successive failures and x̄ =∑n

i=1 xi/n= tn/n.
Under the null hypothesis of a general renewal
process, LR is approximately distributed as a
standard normal random variable, and then large
positive (large negative) values of LR provide
evidence of deteriorating (improving) equipment.

The above test procedures are often not
effective in detecting deviation from no trend
when there is a non-monotonic trend, i.e. when
the process has a bathtub or inverted bathtub
intensity. For testing non-monotonic trends,
Vaurio [14] proposed three different test statistics
under a time-truncated sampling. In particular,
the statistic

V1 =
∑n

i=1 |ti − T/2| − nT/4

T
√
n/48

(18.21)

under the null hypothesis of constant intensity, is
approximately distributed as a standard normal
random variable. Then, large positive (large
negative) values of V1 indicate a bathtub-type
(inverted bathtub-type) behavior in failure data.

A very useful way to investigate the presence
and nature of trend in the failure pattern is
by plotting the cumulative number i of failures
occurred until the observed failure time ti (i =
1, 2, . . . , n) against times ti . If the plot is

Mechanical Reliability and Maintenance Models 323

approximately linear, then no trend is present in
the observed data. A concave (convex) plot is
representative of an increasing (decreasing) trend,
whereas an inverted S-shaped plot suggests the
presence of a non-monotonic trend with bathtub-
type intensity.

18.4.1 No Trend with Operating Time

If the failure pattern of minimally repaired
equipment does not show any trend with time,
i.e. times between failures do not tend to become
smaller or larger with time, then it can be
described by a homogeneousPoisson process (HPP)
[4]. The HPP is a Poisson process with constant
intensity:

λ(t; Ht)= ρ (18.22)

so that the interarrival times xi are independent
and identically exponentially distributed random
variables with mean 1/ρ. Such a Poisson process
is called homogeneous since it has stationary
increments; the Pr{N(t, t +�)= k} does not
depend on time t , only on �:

Pr{N(t, t +�)= k}

= (ρ�)k

k! exp(−ρ�) k = 0, 1, 2, . . .

(18.23)

The forward waiting time wt is exponentially
distributed with mean 1/ρ, too, and the failure
times tk are gamma distributed with scale
parameter 1/ρ and shape parameter k. The
expected number of failures increases linearly
with time: M(t)= ρt . Hence, if a failure data set
follows the HPP, then the plot of the cumulative
number of failures i (i = 1, 2, . . .) versus the
observed failure times ti should be reasonably
close to a straight line with slope ρ.

Suppose that a process is observed from t = 0
until a prefixed time T , and that n failures occur
at times t1 < t2 < . . . < tn ≤ T . The likelihood
relative to this data set is

L(ρ)= ρn exp(−ρT) (18.24)

and the maximum likelihood (ML) estimate of
the intensity ρ depends only on the number of

observed failures and not on the failure times: ρ̂ =
n/T .

When data consist of interarrival times, then
statistical methods developed for the exponential
distribution can be used [15]. Methods based
on counts of failures in fixed time intervals are
discussed by Cox and Lewis [10] (p.29–36) and
Bayesian procedures for predicting the number of
failures in a future time interval are given in Beiser
and Rigdon [16].

Despite the restrictive hypotheses for it, the
HPP has been successfully used to describe
the failure pattern of repairable mechanical
equipment over portions of operating life, such
as the so-called useful life [17], i.e. the phase
that follows the initial life period of early failures
and precedes the degradation period. Likewise,
when defective parts and/or assembling defects
are screened out completely by the manufacturer
so that early failures do not occur, the HPP
can model adequately the entire initial period of
the operating life (which generally includes the
warranty period) until degradation phenomena
appear. Of course, the HPP cannot describe
reliability degradation or improvement, and then
caution has to be used in making predictions if the
HPP is used to model the failure pattern both in
the observation period and in future intervals.

Application examples of the HPP are:

• air-conditioning equipment in Boeing 720
aircraft, first given by Proschan [18] and later
analyzed by Lawless and Thiagarajah [3] and
Cox and Lewis [10]
• the hydraulic systems of some load–haul–

dump machines deployed at Kiruna mine [19]
• modified hydraulic excavators supplied to

cement plants, coal mines, and iron ore mines,
and observed during the warranty period
[20].

18.4.2 Monotonic Trend with
Operating Time

In many cases, mechanical equipment subject to
minimal repairs experiences reliability improve-
ment or deterioration with the operating time,

324 Maintenance Theory and Testing

i.e. there is a tendency toward less or more fre-
quent failures [8]. In such situations, the failure
pattern can be described by a Poisson process
whose intensity function (Equation 18.13) mono-
tonically decreases or increases with t . A Poisson
process with a non-constant intensity is called
non-homogeneous, since it does not have station-
ary increments.

18.4.2.1 The Power Law Process

The best known and most frequently used
non-homogeneous Poisson process (NHPP) is
the power law process (PLP), whose intensity
(Equation 18.13) is

ρ(t)= β

α

(
t

α

)β−1

α, β > 0 (18.25)

The intensity function (Equation 18.25) increases
(decreases) with t when the power-law parameter
β > 1 (β < 1), and thus the PLP can describe
both deterioration and reliability improvement. If
β = 1, the PLP reduces to the HPP. The expected
number of failures M(t)= (t/α)β is linear with
t in a log–log scale: ln[M(t)] = β ln(t)− β ln(α).
Hence, if a failure data set follows the PLP, then
the plot of the cumulative number of failures i

(i = 1, 2, . . .) versus the observed failure times
ti should be reasonably close to a straight line
with slope β in a coordinate system with both
logarithmic scales.

Some objections are raised to the PLP when
it describes improving equipment. In fact, in
such a situation (β < 1), the PLP intensity
(Equation 18.14) is unrealistically infinite at t =
0 and tends to zero as t approaches infinity.
Nevertheless, the PLP enjoys large popularity
in the analysis of failure data of repairable
equipment, partly due to the simplicity of
statistical inference procedures. In fact, given the
first n successive failures times t1 < t2 < · · ·< tn
in a failure-truncated sampling, the likelihood
under the hypothesis of a PLP is surprisingly
simple:

L(α, β)= (β/α)n
[n∏

i=1

(ti/α)
β−1
]

exp[−(tn/α)β]
(18.26)

so that the closed form of the ML estimators of
parameters β and α can be obtained:

β̂ = n∑n
i=1 ln(tn/ti)

α̂ = tn

n1/β̂
(18.27)

These estimators are joint sufficient statistics, and
some useful pivotal quantities can be defined.
Again, in most cases, confidence intervals can be
obtained using existing tables.

Results on ML estimation of PLP parameters,
both for time-truncated and failure-truncated
data, can be found in Crow [12], Finkelstein [21],
Lee and Lee [22], Bain and Engelhardt [23],
and Calabria et al. [24]. Testing procedures for
comparing the scale parameters α or the power-
law parameters β of several independent PLPs
were given by Crow [12], Lee [25], and Calabria
et al. [26]. Also, sequential testing procedures for
the power-law parameter of one or more PLPs can
be found in Bain and Engelhardt [27]. When only
count data from several identical PLPs are avail-
able, estimation procedures based on parametric
bootstrap are given in Calabria et al. [28].

Goodness-of-fit tests for checking the hypoth-
esis that the observed failure data came from
a PLP are discussed in Crow [12], Rigdon and
Basu [29] (who also give a complete review both
of PLP properties and of inferential and testing
procedures), Park and Kim [30], and Baker [31].
Also, methods for obtaining ML prediction limits
for future failure times of a PLP can be found in
Lee and Lee [22], Engelhardt and Bain [32], and
Calabria et al. [33].

A complete discussion on ML inferential, pre-
diction and testing procedures, both for time- and
failure-truncated sampling, can be found in Bain
and Engelhardt [34] (p.415–449). In addition, a
useful FORTRAN program is illustrated by Rigdon
et al. [35]; this allows ML estimates of PLP param-
eters and intensity function to be computed, as
well as goodness-of-fit tests to be performed, both
for single and multiple equipment.

Inferential procedures on the PLP parameters
and functions thereof, based on the Bayesian ap-
proach, can be found in Guida et al. [36], Bar-
Lev et al. [37], and Campodónico and Singpur-
walla [38]. Bayesian prediction procedures for

Mechanical Reliability and Maintenance Models 325

future failure times are given in Calabria et al.
[39] and Bar-Lev et al. [37]. Point and interval
predictions for the number of failures in some
given future interval can be found in Bar-Lev et
al. [37], Campodónico and Singpurwalla [38], and
Beiser and Rigdon [40]. These Bayes procedures
allow the unification of the two sampling protocols
(failure- and time-truncated) under a single anal-
ysis and can provide more accurate estimate and
prediction when prior information or technical
knowledge on failure mechanism is available.

Finally, graphical methods for analyzing failure
data of several independent PLPs can be found in
Lilius [41], Härtler [42], and Nelson [43] on the
basis of non-parametric estimates of the intensity
function or of the mean cumulative number of
failures.

A very large number of numerical applications
show the adequacy of the PLP in describing the
failure pattern of mechanical equipment expe-
riencing reliability improvement or degradation.
Some examples follow:

• a 115 kV transmission circuit in New Mexico
given by Martz [44] and analyzed by Rigdon
and Basu [29];
• several machines (among which are diesel

engines and loading cranes) [45];
• several automobiles (1973 AMC Ambassador)

[46];
• the hydraulic systems of some load–haul–

dump machines deployed at Kiruna mine [19];
• an airplane air-conditioning equipment [18],

denoted as Plane 6 by Cox and Lewis [10] and
analyzed by Park and Kim [30] and Ascher
and Hansen [47];
• American railroad tracks [38];
• bus engines of the Kowloon Motor Bus

Company in Hong Kong [48].

18.4.2.2 The Log–Linear Process

A second well accepted form of the NHPP is
the log–linear process (LLP), whose intensity
(Equation 18.13) has the form

ρ(t)= exp(α + βt) −∞< α, β <∞ (18.28)

This process was firstly proposed by Cox and
Lewis [10] (p.45) and can describe monotonic
trends in the failure data: reliability improvement
when β < 0, and deterioration when β > 0. When
β = 0, then the LLP reduces to the HPP. Unlike
the PLP, the LLP intensity (Equation 18.28) is
finite at t = 0 when a reliability improvement
is described, and it is greater than zero when
deterioration is described. Since the increasing
LLP intensity takes non-negligible values at the
beginning of the observed period, the LLP is able
to describe the occurrence of a small number of
failures at the beginning of the operating time,
even of equipment that on the whole deteriorates.
In addition, the LLP with β > 0 can adequately
model repairable equipment with extremely rapid
deterioration, since the intensity (Equation 18.28)
is increasing at an exponential rate with time.

The expected number of failures for an LLP
is M(t)= exp(α)[exp(βt)− 1]/β and, under a
failure-truncated sampling, the likelihood results
in

L(α, β)= exp

{
nα

+ β

n∑
i=1

ti − exp(α)[exp(βtn)− 1]/β
}

(18.29)

Since the observed data ti (i = 1, 2, . . . , n) enter
the likelihood only through (tn,

∑n
i=1 ti), these

are sufficient statistics. The ML estimates of LLP
parameters are not in closed form and can be
found from

n∑
i=1

ti + n

β̂
− ntn

1− exp(−β̂tn)
= 0

α̂ = ln

[
nβ̂

exp(β̂tn)− 1

]
(18.30)

Inferential and testing procedures can be found
in Ascher and Feingold [9], Cox and Lewis [10]
(p.45) and Lawless [15] (p.497–499). A goodness-
of-fit test based on the Cramér–von Mises statistic
was described by Ascher and Feingold [9], whereas
Lawless [15] used the ML estimates of the

326 Maintenance Theory and Testing

generalized residuals

êi = M̂(ti−1, ti)

= exp(α̂)[exp(β̂ti)− exp(β̂ti−1)]/β̂
i = 1, . . . , n (18.31)

in order to assess the adequacy of the LLP. Testing
procedures for comparing the improvement or
deterioration rate of two types of equipment op-
erating in two different environmental conditions
were given by Aven [49]. Bayesian inferential and
prediction procedures, based on prior information
on the initial intensity ρ0 = exp(α) and on the ag-
ing rate β , have recently been proposed by Huang
and Bier [50].

Since classical inferential procedures for the
LLP are not as easy as for the PLP, the LLP has
not received the large attention devoted to the
PLP. Nevertheless, the LLP has often been used to
analyze the failure data of repairable mechanical
equipment:

• the air-conditioning equipment [18] in Boe-
ing 720 airplanes, denoted as Planes 2 and 6
by Cox and Lewis [10] and analyzed also by
Lawless and coworkers [3, 15] and Aven [49];
• main propulsion diesel engines installed on

several submarines [9];
• a number of hydraulic excavator systems [20];
• a turbine-driven pump in a pressurized water

reactor auxiliary feedwater system [50].

18.4.2.3 Bounded Intensity Processes

Both the PLP and the LLP intensity functions
used to model deterioration tend to infinity
as the operating time increases. However, the
repeated application of repairs or substitutions
of failed parts in mechanical equipment subject
to reliability deterioration sometimes produces a
finite bound for the increasing intensity function.
In such a situation, the equipment, therefore,
becomes composed of parts with a randomized
mix of ages, so that its intensity settles down to
a constant value (bounded increasing intensity).
This result is known as Drenick’s theorem [1] and
can be observed when the operating time of the
equipment is very large.

A simple NHPP with bounded intensity func-
tion was suggested by Engelhardt and Bain [51]:

ρ(t)= 1

θ
[1− (1+ t/θ)−1] θ > 0 (18.32)

However, this one-parameter model does not
seem adequate in describing actual failure data
because of its analytical simplicity.

A two-parameter NHPP (called the bounded in-
tensity process (BIP)) has recently been proposed
by Pulcini [52]. Its intensity has the form

ρ(t)= α[1 − exp(−t/β)] α, β > 0 (18.33)

This increasing intensity is equal to zero at t = 0
and approaches the asymptote of α as t tends to
infinity. The parameter β is a measure of the initial
increasing rate of the intensity (Equation 18.33):
the smaller β is, the faster the intensity increases
initially until it approaches α. As β tends to zero,
the intensity (Equation 18.33) approaches α, and
then the BIP includes as a limiting form the HPP.
The expected number of failures up to a given time
t is

M(t)= α{t − β[1− exp(−t/β)]} (18.34)

and the likelihood in a time-truncated sampling is

L(α, β)= αn
n∏

i=1

[1− exp(−ti/β)]

× exp(−α{T − β[1− exp(−T/β)]})
(18.35)

The ML estimates α̂ and β̂ of the BIP parameters
are given by

α̂ = n

T − β̂[1− exp(−T/β̂)]

n[1− exp(−T/β̂)− (T /β̂) exp(−T/β̂)]
(T /β̂)− [1− exp(−T/β̂)]

=
n∑

i=1

(ti/β̂) exp(−ti/β̂)
1− exp(−ti/β̂)

(18.36)

For the case of failure-truncated sampling, T ≡ tn.
Approximate confidence intervals can be obtained
on the basis of the asymptotic distribution of α̂

Mechanical Reliability and Maintenance Models 327

and β̂, and a testing procedure for time trend
against the HPP can be performed on the basis
of the likelihood ratio statistic. The BIP has been
used in analyzing the failure data (in days) of
automobile #4 [46] and the failure data of the
hydraulic system of the load–haul–dump LHD17
machine [19].

18.4.3 Bathtub-type Intensity

In many cases, mechanical deteriorating equip-
ment is also subject to early failures, because of
the presence of defective parts or assembling de-
fects that were not screened out through burn-in
techniques by the manufacturer. Thus, the failure
pattern has a bathtub-type behavior: at first the
interarrival times increase with operating time,
and then they decrease. A bathtub-type intensity
is more typical of large and complex equipment
with many failure modes. As stated by Nelson [43],
a bathtub intensity is typical for 10 to 20% of
products.

The presence of a bathtub intensity in an
observed data set can be detected both by a
graphical technique (the plot of the cumulative
number of failures i against the failure time ti
should be inverted S-shaped) and by performing
the testing procedures of Vaurio [14].

An NHPP suitable to describe bathtub behavior
is the three-parameter process with intensity

ρ(t)= λγ tγ−1 exp(βt)

λ, γ > 0; −∞< β <∞ (18.37)

This process, for which the PLP and the LLP
are special cases, was proposed by Lee [53] in
order to assess the adequacy of the simpler
processes to analyze a given data set. Ascher
and Feingold [1] (p.85) and Lawless [15] (p.506)
showed that, for λ > 0 and γ < 1, the intensity
given by Equation 18.37 has a bathtub-type
behavior and so can model the failure pattern
of equipment subject both to early failures
and deterioration phenomena. However, to our
knowledge, statistical inference procedures for the
Lee model have not been developed yet.

Another NHPP with bathtub-type intensity,
denoted the exponential power process (EPP)

ρ(t)= (β/η)(t/η)β−1 exp[(t/η)β]
η > 0; 0≤ β ≤ 1 (18.38)

can be found in [54], where the EPP has been
proposed in a wider context that includes minimal,
perfect, and imperfect repairs. However, the EPP
does not seem adequate to describe actual failure
data because of its analytical simplicity.

More recently, an NHPP (called S-PLP) that
arises from the superposition [5] (p.68–71) of
two PLPs with different power-law parameters
has been proposed by Pulcini [55]. The S-PLP
intensity has the form

ρ(t)= β1

α1

(
t

α1

)β1−1

+ β2

α2

(
t

α2

)β2−1

α1, β1, α2, β2 > 0 (18.39)

If, and only if, either β1 or β2 < 1, the intensity
given by Equation 18.39 is non-monotonic and has
a bathtub-type behavior. The expected number of
failures up to a given time t is

M(t)=
(

t

α1

)β1

+
(

t

α2

)β2

(18.40)

and the likelihood relative to a time-truncated
sample t1 < · · ·< tn ≤ T is

L(α1, β1, α2, β2)

=
n∏

i=1

[
β1

α1

(
ti

α1

)β1−1

+ β2

α2

(
ti

α2

)β2−1]

× exp

[
−
(
T

α1

)β1

−
(
T

α2

)β2
]

(18.41)

A closed form solution for the ML estimators
of the S-PLP parameters does not exist, so that the
ML estimates can be obtained by maximization of
the modified three-parameter log-likelihood:

�′(α1, β1, β2)

=
n∑

i=1

ln

{
β1

α1

(
ti

α1

)β1−1

+
[
n−

(
T

α1

)β1
]
β2

T

(
ti

T

)β2−1}
− n

(18.42)

328 Maintenance Theory and Testing

subject to the nonlinear constraints α̂1 > T/n1/β̂1 ,
β̂1 > 0, and β̂2 > β̂1, which assure α̂2 > 0 and
allow a unique solution to be obtained. For failure-
truncated samples, T ≡ tn.

A graphical approach, based on the transfor-
mations x = ln(t) and y = ln[M(t)], allows one
to determine whether the S-PLP can adequately
describe a given data set, and to obtain, if the
sample size is sufficiently large, crude but easy
estimates of process parameters. In fact, if a data
set follows the S-PLP model, then the plot (on log–
log paper) of the cumulative number of failures
versus the observed failure times ti should be
reasonably close to a concave curve, with a slope
that increases monotonically from the smaller β

value to the larger one.
The S-PLP has been used to analyze the failure

data of a 180 ton rear dump truck [56], and
the failure data of the diesel-operated load–haul–
dump LHD-A machine operating in a Swedish
mine [57]. The application of the Laplace, Lewis
and Robinson, and Vaurio trend tests has provided
evidence, in both the failure data, of a bathtub-
type intensity in a global context of increasing
intensity.

18.4.3.1 Numerical Example

Let us consider the supergrid transmission failure
data read from plots in Bendell and Walls [58].
The data consist of 134 failures observed until
t134 = 433.7 (in thousands of unspecified time
units) and are given in Table 18.1. Bendell and
Walls [58] analyzed graphically the above data
and concluded that there was a decreasing trend
of the failure intensity in the initial period
with a global tendency for the time between
failures to become shorter, on average, over the
entire observation period. To test the graphical
conclusions of Bendell and Walls [58], the LA, Z,
LR, and V1 test statistics are evaluated

LA= 4.01 Z = 243.0 LR= 1.59 V1 = 1.62

and compared with the χ2 and standard normal
0.10 and 0.90 quantiles. The Vaurio test provides
evidence of a non-monotonic bathtub-type trend
against the null hypothesis of no trend, and

Figure 18.1. ML estimate of M(t) and observed cumulative
number of failures in a log–log plot for supergrid transmission data
in numerical example

the LR test rejects the null hypothesis of a
renewal process against the increasing trend
alternative.

The LA and Z tests provide conflicting results.
In fact, the Z test does not reject the null
hypothesis of an HPP against the PLP alternative,
whereas the LA test strongly rejects the HPP
hypothesis against the hypothesis of an increasing
log–linear intensity. The conflict between LA and
Z results depends on the fact that, unlike the PLP,
the LLP is able to describe the occurrence of a
small number of early failures in a deteriorating
process. Furthermore, the LA test can be effective
in detecting deviation from the HPP hypothesis
even in the case of bathtub intensity, provided
that early failures constitute a small part of the
observed failures.

Thus, the supergrid transmission failure data
show statistically significant evidence of a bathtub
intensity in a global context of increasing intensity.
The ML estimates of S-PLP parameters are

β̂1 = 0.40 α̂1 = 0.074 β̂2 = 2.53 α̂2 = 70

and, since β̂1 < 1 and β̂2 > 1, the bathtub behavior
is confirmed. In Figure 18.1 the ML estimate
of M(t) is shown on a log–log plot and is
compared with the observed cumulative number
of failures.

Mechanical Reliability and Maintenance Models 329

Table 18.1. Supergrid transmission failure data in numerical example (read from plots in Bendell and Walls [58])

0.1 0.2 0.3 0.4 0.6 18.6 24.8 24.9 25.0 25.1 27.1 36.1
36.2 45.7 45.8 49.0 62.1 62.2 69.7 69.8 82.0 82.1 82.2 82.3

159.5 159.6 166.8 166.9 167.0 181.2 181.3 181.4 181.5 181.6 187.6 187.7
187.8 187.9 188.0 188.1 211.5 211.7 211.9 212.0 212.1 212.2 216.5 225.1
236.6 237.9 252.1 254.6 254.8 254.9 261.1 261.3 261.4 261.8 262.8 262.9
263.0 263.1 264.6 264.7 273.5 273.6 275.6 275.7 275.9 276.0 277.5 287.5
287.7 287.9 288.0 288.1 288.2 294.2 301.4 301.5 305.0 312.2 312.7 312.8
339.1 349.1 349.2 349.3 349.4 349.8 349.9 350.0 350.2 350.3 350.4 377.4
377.5 381.5 382.5 382.6 382.7 382.8 383.5 387.5 387.6 390.9 399.4 399.6
399.7 401.5 401.6 401.8 403.3 405.1 406.2 406.4 407.4 407.6 411.4 411.5
412.1 412.7 415.9 416.0 420.3 425.1 425.2 425.3 425.6 425.7 426.1 426.5
427.7 433.7

18.4.4 Non-homogeneous Poisson
Process Incorporating Covariate
Information

The influence of the operating and environmental
conditions on the intensity function is often
significant and cannot be disregarded. One way
is to relate the intensity function not only to the
operating time but also to explanatory variables,
or covariates, that provide a measure of the
operating and environmental conditions. Several
methods of regression analysis for repairable
equipment have been discussed by Ascher and
Feingold [1] (p.96–99).

More recently, Lawless [59] gave methods
of regression analysis for minimally repaired
equipment based on the so-called proportional
intensity Poisson process, which is defined as
follows. An equipment with k × 1 covariate vector
x has repeated failures that occur according to an
NHPP with intensity:

ρx(t)= ρ0(t) exp(x′a) (18.43)

where ρ0(t) is a baseline intensity with parameter
vector θ and a is the vector of regression
coefficients (regressors). Suppose that m units
are observed over the time interval (0, Ti) (i =
1, . . . , m) and that the ith equipment experiences
ni failures at times ti,1 < ti,2 < · · ·< ti,ni . If the ith
equipment has covariate vector xi , the likelihood

is

L(θ , a)

=
m∏
i=1

[ni∏
j=1

ρxi (ti,j)

]

× exp

[
−
(∫ Ti

0
ρ0(t) dt

)
exp(x′a)

]
(18.44)

A semi-parametric analysis with ρ0(t) unspecified
has been described, as well as a fully parametric
analysis based on the assumption of a power-law
form for the baseline intensity: ρ0(t)= νβtβ−1.
ML inferential procedures, model checks, and
tests have also been discussed. Under the power-
law intensity assumption, the parameter ν is
included in the regression function by defining
exp(a0)= ν and taking the covariate x0 to be
identically equal to one. When all Ti values are
equal (Ti = T), the ML estimate of the power-law
parameter is:

β̂ = n

/ m∑
i=1

ni∑
j=1

ln(T /ti,j) (18.45)

and the ML estimate of regressors a can be
obtained by solving iteratively:

m∑
i=1

nixi,r −
m∑
i=1

T β̂xi,r exp(x′ia)= 0

r = 0, 1, . . . , k (18.46)

330 Maintenance Theory and Testing

When the Ti values are unequal, the ML estimates
can be obtained by maximization of the log-
likelihood.

On the basis of the above model, Guida and
Giorgio [60] analyzed failure data of repairable
equipment in accelerating testing, where the
covariate is the stress level at which the equipment
is tested. They obtained an estimate of the
baseline intensity ρ0(t) under use condition from
failure data obtained under higher stresses. They
assumed a power-law form for the baseline
intensity, ρ0(t)= (β/α0)(t/α0)

β−1, and a single
acceleration variable (one-dimensional covariate
vector) with two stress levels x1 and x2 > x1,
both greater than the use condition level. ML
estimations of regression coefficient a and of
parameters β and α0 were also discussed, both
when one unit and several units are tested at each
stress level. In the case of one unit tested until T1
under stress level x1 and another unit tested until
T2 under x2, the ML estimators are in closed-form:

β̂ = n

/ 2∑
i=1

ni∑
j=1

ln(Ti/ti,j)

α̂0 = (T1/n
1/β̂
1)ξ (T2/n

1/β̂
2)1−ξ

â = ln[(T1/T2)(n2/n1)
1/β̂]/(x2 − x1) (18.47)

where n1 and n2 are the number of failures
observed under x1 and x2 respectively, and ξ =
x2/(x2 − x1) is the extrapolation factor.

Proportional intensity models have found wide
application, both in the case of minimal repair
and when complex maintenance is carried out.
A complete discussion on this topic has been
presented by Kumar [61], where procedures for
the estimation of regression coefficients and for
the selection of a regression model are illustrated.
Some proportional intensity models, specifically
devoted to the analysis of complex maintenance
policy, will be illustrated in Section 18.6.

18.5 Imperfect or Worse Repair
In many cases, the repair actions produce
a noticeable improvement in the equipment

condition, even without bringing the equipment
to a new condition (imperfect repair). One
explanation for this is that often a minimum
time repair policy is performed rather than
a minimum repair policy, in order to shorten
the downtime of the equipment [62]. In other
cases, repair actions can be incorrect or inject
fresh faults into the equipment, so that the
equipment after repair is in a worse condition
than just before the failure occurrence (worse
repair). This can happen when, for example, the
repair actions are performed by inexperienced
or unauthorized maintenance staff and/or under
difficult conditions. Models that treat imperfect
or worse maintenance situations have been widely
proposed and studied. A complete discussion on
this topic is given by Pham and Wang [2].

In the following, a number of families of models
able to describe the effect of imperfect or worse
repairs on equipment conditions are illustrated,
with particular emphasis on the reliability mod-
eling. The case of complex maintenance policies,
such as those of minimal repairs interspersed with
periodic preventive overhauls or perfect repairs,
will be treated in Section 18.6.

18.5.1 Proportional Age Reduction
Models

A general approach to model an imperfect main-
tenance action was proposed by Malik [63], who
assumed that each maintenance reduces the age
of the equipment by a quantity proportional to
the operating time elapsed form the most recent
maintenance (proportional age reduction (PAR)
model). Hence, each maintenance action is as-
sumed to reduce only the damage incurred since
the previous maintenance epoch. This approach
has since been largely used to describe the ef-
fect of corrective or preventive maintenance on
the equipment condition, especially when the re-
pairable equipment is subject to complex mainte-
nance policy (see Sections 18.6.3 and 18.6.4).

In the case that, at each failure, the equipment
is imperfectly repaired, the CIF for the PAR model

Mechanical Reliability and Maintenance Models 331

is

λ(t; Ht)= h(t − ρti−1)

0≤ ρ ≤ 1, ti−1 < t ≤ ti (18.48)

where ρ is the improvement parameter. Then, the
CIF (Equation 18.48) shows jumps downward at
each failure time ti (i = 1, 2, . . .), except for the
special case of ρ = 0, when the PAR model reduces
to an NHPP with intensity h(t) (minimal repair).
The value of each jump depends on ρ and on the
operating time since the most recent failure. When
ρ = 1, the repair brings the equipment to a like-
new condition (perfect repair) and the PAR model
reduces to a renewal process.

The PAR model has been adopted by Shin et
al. [64] in their Model A, where the equipment is
assumed to be imperfectly repaired at each failure.
Two different forms for the intensity function up
to the first failure time have been considered, the
power-law and the log–linear intensities, so that
the CIF (Equation 18.48) results in

λ(t; Ht)= β

α

(
t − ρti−1

α

)β−1

0≤ ρ ≤ 1, α, β > 0, ti−1 < t ≤ ti (18.49)

and

λ(t; Ht)= exp[α + β(t − ρti−1)]
0≤ ρ ≤ 1, −∞< α, β <∞, ti−1 < t ≤ ti

(18.50)

respectively. Depending on the value of parame-
ters, both the models in Equations 18.49 and 18.50
are able to describe the failure pattern of equip-
ment subject to imperfect repairs and experi-
encing reliability improvement or deterioration.
Figure 18.2 shows the plot of the PAR model with
power-law intensity (Equation 18.49) of deteri-
orating equipment (β > 1) for arbitrary failure
times t1, . . . , t4, and compares the PAR plot with
the minimal (ρ = 0) and perfect (ρ = 1) repair
plots.

ML estimates of model parameters, which
require the maximization of the log-likelihood,
can be found in [64] when data arise from several
identical units. Since the effect of repair may be

Figure 18.2. Plot of the complete intensity function for the
PAR model (with ρ = 0.3 and power-law form) of deteriorating
equipment. Comparison with the minimal (ρ = 0) and perfect
(ρ = 1) repair plots

not uniform, the improvement factor ρ should
be interpreted as the effect on average over the
observation period.

Although the PAR model has been proposed
to describe imperfect repair, it can adequately
describe a worse maintenance by allowing the
parameter ρ to be negative. In such a way,
the effect of each maintenance action is that of
increasing the age of the equipment by a quantity
proportional to the operating time elapsed from
the most recent maintenance.

18.5.2 Inhomogeneous Gamma
Processes

The effect of imperfect or worse repairs on the
equipment condition was modeled by Berman
[65] by assuming that the equipment is subjected
to shocks that occur according to an NHPP with
intensity ρ(t). The failure occurs not at every
shock but at every kth shock. Then, if k > 1, the
equipment is in a better condition just after a
repair (and then the process describe an imperfect
repair), whereas a value of k < 1 indicates that the
system is in a worse condition just after a failure
(worse repair).

332 Maintenance Theory and Testing

The random variables zi =
∫ ti
ti−1

ρ(t) dt (i =
1, . . . , n) (where t1 < t2 < · · ·< tn are the first n
failure times) are independently and identically
distributed according to the gamma distribution
with unit scale parameter and shape parameter
k. The CIF at any time t in the interval (ti−1, ti)

depends on the history only through the time ti−1
of the most recent failure:

λ(t; Ht)= {ρ(t)[U(ti−1, t)]k−1

× exp[−U(ti−1, t)]/�(k)}
×
{ ∫ ∞

t

ρ(z)[U(ti−1, z)]k−1

× exp[−U(ti−1, z)]/�(k) dz

}−1

t > ti−1 (18.51)

where U(ti−1, t)=
∫ t
ti−1

ρ(z) dz is the expected
number of shocks from the most recent failure
time up to t . A process with CIF given by
Equation 18.51 is called an inhomogeneous gamma
process and the likelihood relative to a failure-
truncated sample t1 < t2 < · · ·< tn is

L(θ , k)= 1

[�(k)]n
{ n∏

i=1

ρ(ti)[U(ti−1, ti)]k−1
}

× exp[−U(0, tn)] (18.52)

where θ is the parameter’s vector of ρ(t).
Although lacking a shock model interpretation,
Equation 18.51 still defines the CIF of a point
process when k is positive but not an integer. If k =
1, the inhomogeneous gamma process reduces
to the NHPP (the repair is minimal), whereas
if ρ(t)= c (constant), then the process reduces
to a renewal process with times between failures
distributed as a gamma random variable with
scale parameter c and shape parameter k.

A special form of an inhomogeneous gamma
process, called the modulated gamma process,
can be found in [65]. In a modulated gamma
process the shock process is modeled by an
NHPP with intensity ρ(t)= µ exp{β ′z(t)}, where
β ′ = (β1, . . . , βp) and z(t)′ = {z1(t), . . . , zp(t)}.
Existence of time trend in the data can be modeled
simply by including a single term z1(t)= t or, less
simply, by including a further term z2(t)= t2.

Another special form of inhomogeneous
gamma process, which has been studied greatly,
is the modulated PLP (MPLP). In the MPLP
the process of shocks is modeled by a PLP
with intensity ρ(t)= (β/α)(t/α)β−1 , so that
U(ti−1, t)= (t/α)β − (ti−1/α)

β . When k = 1,
the MPLP reduces to a PLP, whereas when β = 1
the process reduces to a gamma renewal process.
Finally, when both k = 1 and β = 1, the MPLP
becomes an HPP. The likelihood relative to a
failure-truncated sample t1 < t2 < · · ·< tn results
in

L(α, β, k)= (β/α)n

[�(k)]n
{ n∏

i=1

(
ti

α

)β−1

×
[(

ti

α

)β
−
(
ti−1

α

)β]k−1}
× exp

[
−
(
tn

α

)β]
(18.53)

A complete discussion on the MPLP and ML
procedures is given by Rigdon and coworkers [66,
67]. In particular, the ML estimates of parameters
can be obtained by solving

α̂ = tn

(nk̂)1/β̂

β̂ = n

/[(
tn

α̂

)β̂
ln

(
tn

α̂

)
+ nk̂ ln α̂ −

n∑
i=1

ln ti

− (k̂ − 1)
n∑

i=1

t
β̂
i ln ti − t

β̂

i−1 ln ti−1

t
β̂
i − t

β̂

i−1

]

ψ(k̂)=
∑n

i=1 ln(t β̂i − t
β̂
i−1)

n
− β̂ ln α̂ (18.54)

where ψ denotes the di-gamma function: ψ(x)=
�′(x)/�(x). Approximate confidence intervals
and hypothesis tests for the MPLP parameters
can be obtained on the basis of the asymptotic
distribution of ML estimators.

Bayesian inference, based on non-informative
and vague prior densities, was proposed by
Calabria and Pulcini [68] to obtain point estimates
of MPLP parameters and credibility intervals
that do not rely on asymptotic results. Bayesian

Mechanical Reliability and Maintenance Models 333

prediction procedures for future failure times,
which perform well even in the case of small
samples, can be found in [68].

The MPLP expected number of failures M(t)

can be well approximated by M(t)∼= (1/k)(t/α)β ,
and hence the (unconditional) intensity function
λ(t) is approximately λ(t)∼= (1/k)(β/α)(t/α)β−1

[69]. On the basis of such approximations,
Bayesian inference on the MPLP parameters, as
well as on M(t) and λ(t), can be found in [69]
when prior information on β , k and/or M(t) is
available. Bayesian prediction on the failure times
in a future sample can also be found. Finally,
testing procedures for assessing the time trend
and the effect of repair actions in one or two MPLP
samples can be found in [70].

The MPLP model has been applied for
analyzing the failure data of several aircraft
air-conditioning equipment [18], an aircraft
generator [71] and a photocopier [31].

18.5.3 Lawless–Thiagarajah Models

A very useful family of models that incorporates
both time trend and the effect of past failures,
such as renewal-type behavior, has been proposed
by Lawless and Thiagarajah [3]. The CIF is of the
form:

λ(t; Ht)= exp{θ ′z(t)} (18.55)

where z(t)= {z1(t), . . . , zn(t)}′ is a vector of
functions that may depend on both t and the
history Ht , and θ = (θ1, . . . , θp)

′ is a vector of
unknown parameters. This model includes, as
special cases, many commonly used processes,
such as the PLP (when z(t)= {1, ln(t)}′), the LLP
(when z(t)= {1, t}′), and the renewal processes
(when z(t) is a function of the time u(t) since
the most recent repair: u(t)= t − tN(t−)). Models
with CIF given by Equation 18.55 are then suitable
for exploring failure data of repairable equipment
when a renewal-type behavior may be expected,
perhaps with a time trend superimposed.

The ML estimation procedures for the general
form given by Equation 18.55, which in general
need numerical integration, are given by Lawless

and Thiagarajah [3]. A particular form of Equa-
tion 18.55 is discussed:

λ(t; Ht)= exp{α + βt + γ u(t)}
−∞< α, β, γ <∞ (18.56)

This shows jumps at each failure time ti (i =
1, 2, . . .), except for the special case (γ =
0), when it reduces to the NHPP with log–
linear intensity (LLP). When β = 0, the process
reduces to a renewal process with interarrival
times distributed as a Gumbel random variable.
The complete intensity (Equation 18.56) is then
piecewise continuous: when the repair is effective
and produces an improvement in the conditions
of the equipment (imperfect repair), the jumps
are downward, whereas when the repair is
incorrect (worse repair) these jumps are upward.
Test procedures for time trend can be found
in [3], where adequacy of the large sample
approximation to moderate samples has been
assessed.

Other suitable forms of Equation 18.55, in par-
ticular the so-called power-law–Weibull renewal
(PL–WR) and log–linear–Weibull renewal (LL–
WR), can be found in [72]. The CIFs are

λ(t; Ht)= γ tβ−1[u(t)]δ−1

γ > 0, β + δ > 1 (18.57)

and

λ(t; Ht)= δ exp(θ + βt)[u(t)]δ−1

−∞< θ, β <∞, δ > 0 (18.58)

respectively. Both the CIFs show jumps at each
failure time ti (i = 1, 2, . . .), except for the special
case (δ = 1), when they reduce to the PLP and
the LLP respectively. The PL–WR and LL–WR
models are suitable to describe the failure pat-
tern of a wide range of repairable mechani-
cal units that experience reliability improvement
or deterioration with operating time and are
subjected to imperfect or worse repairs. For ex-
ample, when δ > 1 (δ < 1) the PL–WR model
describes a repeated beneficial (harmful) effect
of repair actions with respect to the minimal re-
pair condition. The more δ differs from unity,

334 Maintenance Theory and Testing

Figure 18.3. Plots of the complete intensity function of the PL–
WR model for deteriorating equipment under imperfect (δ > 1)
or worse (δ < 1) repairs. Comparison with the minimal repair case
(δ = 1)

the more the failure process departs from a
minimal repair condition. When β > 1 (1− δ <

β < 1) the PL–WR process describes the fail-
ure pattern of equipment experiencing reliabil-
ity deterioration (improvement) with operating
time.

Figure 18.3 shows the plots of the CIF for
arbitrary failure times t1, . . . , t4 of equipment
that experiences reliability deterioration with
operating time (β > 1) and is subject to imperfect
(δ > 1) or worse (δ < 1) repairs. The plots are also
compared with the minimal repair case (δ = 1).

Point and interval ML estimates of parameters
of PL–WR and LL–WR models can be found in
[72], as well as test procedures, based on the like-
lihood ratio statistic, for assessing the departure
from minimal or perfect repair assumption. In
particular, under a time-truncated sampling, the
ML estimators of the PL–WR parameters β and
δ can be found by maximization of the modified
two-parameter log-likelihood:

�′(β, δ)= n ln

[
n∑n+1

i=1 Ii(β, δ)

]
+ (β − 1) ln

(n∏
i=1

ti

)

+ (δ − 1) ln

[n∏
i=1

(ti − ti−1)

]
− n

(18.59)

where Ii(β, δ)=
∫ ti
ti−1

tβ−1(t − ti−1)
δ−1 dt (with

t0 = 0 and tn+1 = T), subject to the constraint β +
δ > 1. The ML estimate of γ is in closed form:

γ̂ = n∑n+1
i=1 Ii(β̂, δ̂)

(18.60)

The Lawless–Thiagarajah family of models has
been applied to several failure data, such as the
air-conditioning equipment data [18] denoted as
Planes 6 and 7 by Cox and Lewis [10], the
aircraft generator data [71], and the failure data of
automobile #3 [46].

18.5.4 Proportional Intensity Variation
Model

An alternative way to describe a beneficial effect
of preventive maintenance on the equipment re-
liability has been given by Chan and Shaw [73]
by assuming that each maintenance reduces the
(non-decreasing) intensity of a quantity that can
be constant (fixed reduction) or proportional to
the current intensity value (proportional reduc-
tion).

The latter assumption has been adopted by
Calabria and Pulcini [74] to model the failure
pattern of equipment subject to imperfect or
worse repairs. Each repair alters the CIF of the
equipment in such a way that the failure intensity
immediately after the repair is proportional to the
value just before the failure occurrence:

λ(t+i ;Ht+i
)= δλ(t−i ;Ht−i

) δ > 0 (18.61)

Hence, the CIF shows jumps at each failure
time ti , except in the case of δ = 1. Such jumps
are proportional to the value of the complete
intensity and, unlike the PAR model, do not
depend explicitly on the operating time since the
most recent failure. If ρ(t) denotes the intensity
function up to the first failure time, the CIF is

λ(t; Ht)= δiρ(t) ti < t ≤ ti+1 (18.62)

Mechanical Reliability and Maintenance Models 335

(with t0 = 0) and depends on the history of the
process only through the number i of previous
failures. The parameter δ is a measure of the
effectiveness of repair actions. When δ = 1, the
model in Equation 18.62 reduces to an NHPP
with intensity ρ(t). When δ < 1 (δ > 1), the repair
action produces an improvement (worsening) in
the equipment condition, and then the model can
describe the effect of imperfect or worse repair
for equipment that, depending on the behavior
of ρ(t), experiences reliability improvement or
deterioration.

Two different forms for ρ(t) have been
discussed, namely the power-law and the log–
linear intensity, and the ML estimators of model
parameters can be found in [74]. Procedures for
testing the departure from the minimal repair
assumption, based on the log-likelihood ratio and
Wald statistics, can be found both for large and
moderate samples. In particular, by assuming
the power-law intensity ρ(t)= (β/α)(t/α)β , the
likelihood relative to a failure-truncated sample of
size n is

L(α, β, δ)

= δν
βn

αnβ

n∏
i=1

t
β−1
i × exp

{
− δi−1

[(
ti

α

)β
−
(
ti−1

α

)β]}
(18.63)

where ν = (n2 − n)/2. The ML estimators of β and
δ can be found by maximization of the modified
two-parameter log-likelihood:

�′(β, δ)= ν ln δ − n ln

[∑n
i=1 δ

i−1(t
β
i − t

β
i−1)

nβ

]
+ (β − 1) ln

(n∏
i=1

ti

)
− n (18.64)

subject to the constraints β > 0 and δ > 0, and the
ML estimate of α:

α̂ =
[∑n

i=1 δ̂
i−1(t

β̂
i − t

β̂

i−1)

n

]1/β̂

(18.65)

Figure 18.4 shows the plots of the CIF (Equa-
tion 18.62) for arbitrary failure times t1, . . . , t4

Figure 18.4. Plots of the complete intensity function for the
proportional intensity variation model of deteriorating equipment
subject to imperfect (δ < 1) or worse (δ > 1) repairs. Comparison
with the minimal repair case (δ = 1)

of equipment that experiences reliability deteri-
oration with operating time (β > 1) and is sub-
ject to imperfect (δ < 1) or worse (δ > 1) repairs.
The plots are also compared with the minimal
repair case (δ = 1). By comparing Figure 18.2 with
Figure 18.4, one can see that the improvement
caused by the third repair is very small under
the PAR model, since the time interval (t3 − t2) is
narrow. On the contrary, the improvement of the
same third repair under the proportional intensity
variation model is more noticeable since the com-
plete intensity just before the third failure is large.

18.6 Complex Maintenance
Policy
This section illustrates some reliability models
that are able to describe the failure pattern of
repairable equipment subject to a maintenance
policy consisting in general of a sequence of
corrective repairs interspersed with preventive
maintenance.

Except for the model illustrated in
Section 18.6.5, all models discussed in
Sections 18.6.1–18.6.4 are based on specific
assumptions regarding the effect of corrective

336 Maintenance Theory and Testing

and/or preventive maintenance on the equipment
conditions. Such assumptions are summarized
in Table 18.2. In most models, the preventive
maintenance is assumed to improve the
equipment reliability significantly, until the limit
case of a complete restoration of the equipment
(complete overhaul). However, as emphasized in
Ascher and Feingold [1], not only do overhauls
not necessarily restore the equipment to a same as
new condition, but in some cases they can reduce
reliability. This may happen when overhaul is
performed by inexperienced men or/and under
difficult working conditions: reassembling injects
fresh faults into the equipment and burn-in
techniques cannot be applied before putting the
equipment in service again. Thus, the assumption
that preventive maintenance improves equipment
conditions should be assessed before using
stochastic models based on such an assumption.

18.6.1 Sequence of Perfect and
Minimal Repairs Without Preventive
Maintenance

Let us consider repairable equipment that is re-
paired at failure and is not preventively main-
tained. By using the approach proposed by Nak-
agawa [75] to model preventive maintenance,
Brown and Proschan [76] assumed that the equip-
ment is perfectly repaired with probability p and
it is minimally repaired with probability 1− p.
It is as though the equipment is subject to two
types of failure: Type I failure (catastrophic fail-
ure) occurs with probability p and requires the
replacement of the equipment, whereas Type II
failure (minor failure) occurs with probability 1−
p and is corrected with minimal repair. Note that
both Nakagawa [75] and Brown and Proschan
[76], as well as other authors, e.g. [77], use the
term “imperfect repair” when they refer to “same
as old repair”.

If p = 0, then the failure process reduces to a
minimal repair process (NHPP), whereas if p = 1
the process is a renewal one. When 0 < p < 1, the
process is a sequence of NHPPs interspersed with

perfect repairs; each NHPP starts from the time
epoch of the most recent perfect repair.

If F1(t) and r1(t) are respectively the cumula-
tive distribution and the hazard rate of the occur-
rence time of the first failure, then the distribution
of the time between successive perfect repairs is
Fp(t)= 1− [1− F1(t)]p and the corresponding
hazard rate is rp(t)= pr1(t).

Let τj (with j = 1, . . . , m) denote the time
epochs of m perfect repairs. For a generic time t

in the interval (τi−1, τi) (where τ0 = 0), the CIF
depends on the operating time t and on the history
Ht only through the difference t − τi−1:

λ(t; Ht)= h(t − τi−1) τi−1 < t ≤ τi (18.66)

It is numerically equal to the hazard rate r1(x) of
the first failure time evaluated at x = t − τi−1.

Non-parametric estimates of the cumulative
distribution function F1(t) can be found in
Whitaker and Samaniego [77] under the assump-
tion that both failure times ti (i = 1, 2, . . .) and
the repair mode (minimal or perfect) following
each failure are fully known (complete data). The
likelihood relative to a complete data set observed
until the occurrence of the nth failure is

L(p, F1)= pm(1− p)n−m−1f1(x(1))

×
n−1∏
i=1

f1(x(i+1))

[1− F1(x(i))]1−z(i)
(18.67)

where m is the number of perfect repairs, x(i) (i =
1, . . . , n) are the ordered failure times measured
from the most recent perfect repair epoch (the
equipment installation corresponds to a perfect
repair), and z(i) (i = 1, . . . , n− 1) is the (non-
ordered) indicator variable for the mode of the
ith ordered repair: z(i) = 1 for perfect repair, and
z(i) = 0 for minimal repair. Of course:

∑n−1
i=1 z(i) =

m. If z(n−1) = 1, the non-parametric ML estimate
of F1(t) is

F̂1(t)=

0 t < x(1)

1−∏i
j=1 φ̂j x(i) ≤ t < x(i+1)

1 t ≥ x(n)

(i = 1, . . . , n− 1) (18.68)

Mechanical Reliability and Maintenance Models 337

Table 18.2. Assumptions regarding the effect of corrective and/or preventive maintenance for
models in Sections 18.6.1–18.6.4

Maintenance Section 18.6.1 Section 18.6.2 Section 18.6.3 Section 18.6.4

Corrective Perfect or minimal Minimal Imperfect Minimal
Preventive No PM Perfect Perfect Imperfect

where φ̂i = ki/(ki − 1) and ki is the number
of ordered failure times greater than x(i) for
which the equipment was perfectly repaired.
When z(n−1) = 0, the non-parametric estimate
does not exist. The estimate of F1(t) allows the
CIF of Equation 18.66 between successive perfect
repairs to be estimated. Whitaker and Samaniego
[77] applied their estimation procedure to the
failure data of the air-conditioning equipment
of Boeing 720 airplane 7914 [18], by assigning
arbitrary (but seemingly reasonable) values to the
indicator variables z(i).

A Bayes procedure to estimate the unknown
and random probability p of perfect repair and
the waiting time between two successive perfect
repairs when prior information on p is available
can be found in [78].

A parametric form of the CIF (Equation 18.66)
has been studied by Lim [79], who modeled
the failure process between successive perfect
repairs through a PLP. Then, the likelihood relative
to a fully known data set, observed until the
occurrence of the nth failure, is

L(p, α, β)= pm(1− p)n−m−1 βn

αnβ

n∏
i=1

x
β−1
i

× exp

[
−

n∑
i=1

zi

(
xi

α

)β]
(18.69)

where m=∑n−1
i=1 zi is the number of perfect

repairs and zn = 1. Note that, in the parametric
formulation, the failure times xi (i = 1, . . . , n)
from the most recent perfect repair need not be
ordered. The ML estimates of model parameters

for complete data are

p̂ =m/(n− 1) α̂ =
(

1

n

n∑
i=1

zix
β̂
i

)1/β̂

β̂ =
[∑n

i=1 zix
β̂
i ln xi∑n

i=1 zix
β̂
i

− 1

n

n∑
i=1

ln xi

]−1

(18.70)

When the data set is incomplete, i.e. the repair
modes are not recorded, the inferential procedures
are much more complex. The ML estimate of the
probability p of perfect repair, as well as that
of the PLP parameters, can be obtained through
an expectation–maximization algorithm based
on an iterative performance of the expectation
step and the maximization step. The proposed
inferential procedure can be applied even when a
different NHPP from the PLP is assumed to model
the failure process between successive perfect
repairs, by just modifying the maximization
step.

When each repair mode can depend on the
mode of previous repair, so that there is a
first-order dependency between two consecutive
repair modes, the procedure recently proposed
by Lim and Lie [80] can be used. The failure
process between successive perfect repairs is still
modeled by a PLP and data can be partially
masked if all failure times are available but
some of the repair modes are not recorded.
The ML estimates of model parameters and
of transition probabilities pj,k = Pr{zi = k|zi−1 =
j } (j, k = 0, 1; i = 1, 2, . . .) of repair process
can be obtained by performing an expectation–
maximization algorithm.

In some circumstances, the choice of repair
mode does not depend only on external factors
(such as the availability of a replacement)
that are stable over time, but also on the

338 Maintenance Theory and Testing

equipment condition. For example, catastrophic
failures, which require the replacement of the
equipment, can occur with higher probability as
the equipment age increases. This age-dependent
repair mode situation has been modeled by Block
et al. [81]. By extending the Brown–Proschan
model, the repair is assumed to be perfect with
probability p(x) and minimal with probability
1− p(x), where x is the age of the equipment
measured from the last perfect repair epoch. The
likelihood relative to a complete data set observed
until the occurrence of the nth failure is given
by

L(p(·), F1)=
n−1∏
i=1

p(xi)
zi [1− p(xi)]1−zi f1(x1)

×
n−1∏
i=1

f1(xi+1)

[1− F1(xi)]1−zi−1
(18.71)

Non-parametric estimates of the cumulative dis-
tribution of the first failure time can be found
in [77].

18.6.2 Minimal Repairs Interspersed
with Perfect Preventive Maintenance

The failure pattern of repairable equipment sub-
ject to preventive maintenance that completely
regenerates the intensity function (perfect main-
tenance) has been modeled by Love and Guo [82,
83]. Between successive preventive maintenance
actions, the equipment is minimally repaired at
failure, so that within each maintenance cycle
the failure process can be regarded as a piece-
wise NHPP. In addition, the operating and envi-
ronmental conditions of the equipment are not
constant during each maintenance cycle but can
change after each repair and then affect the next
failure time. This operating and environmental
influence is then modeled through suitable covari-
ates [59].

Let yi,j denote the j th failure time in the ith
maintenance cycle measured from the most recent
maintenance epoch. Then, the CIF at any time y in

the interval (yi,j−1, yi,j) is then given by

ρi,j (y)= ρ0(y) exp(z′i,ja) yi,j−1 ≤ y < yi,j
(18.72)

where yi,0 = 0, zi,j is the k × 1 vector of explana-
tory variables (covariates) that characterize the
operating conditions of the equipment in the time
interval (yi,j−1, yi,j), and a is the vector of regres-
sion coefficients.

A non-parametric form for the baseline in-
tensity has been assumed in [82], whereas a
power-law form for the baseline intensity ρ0(y)=
(β/α)(y/α)β−1 has been chosen in [83]. In the lat-
ter case, the likelihood relative to m maintenance
cycles is

L(α, β, a)

=
(
β

α

)n[m∏
i=1

ni∏
j=1

(
yi,j

α

)β−1

exp(z′i,ja)
]

× exp

{
−

m∑
i=1

ni+1∑
j=1

[(
yi,j

α

)β
−
(
yi,j−1

α

)β]

× exp(z′i,ja)
}

(18.73)

where ni is the number of failures occurred in the
ith maintenance cycle, yi,ni+1 is the ending time
of the ith maintenance cycle, and n=∑m

i=1 ni is
the total number of observed failures. The ML
estimate of α, β , and a can be found by solv-
ing the equations ∂ ln(L)/∂β = 0, ∂ ln(L)/∂α =
0, and ∂ ln(L)/∂al = 0 (l = 1, . . . , k) through the
Newton–Raphson algorithm. Tests of the signifi-
cance of the regression model can be performed
on the basis of the log-likelihood ratio statistic un-
der the null hypothesis of constant environmental
and operating conditions (the regression coeffi-
cients are assumed to be zero). Significance tests
for individual regression coefficients are based
on the asymptotic distribution of the ML estima-
tors.

The model in Equation 18.72 has also been
applied to a large cement roller mill, whose
data are the times between corrective or preven-
tive maintenance actions. Three potential symp-
tomatic covariates were considered: instantaneous

Mechanical Reliability and Maintenance Models 339

change in pressure on the main bearing, recir-
culating load on the bucket elevator, and the
power demanded by the main motor. The sec-
ond and third covariates were found to be sig-
nificant, and both the regression models that
include one of the significant covariates fit the
observed data rather better than the baseline
model.

18.6.3 Imperfect Repairs Interspersed
with Perfect Preventive Maintenance

The failure pattern of an equipment imperfectly
repaired at failure and subject to perfect preven-
tive maintenance can be described by the model
given by Guo and Love [62]. The effect of im-
perfect repair is modeled through the PAR model
of Section 18.5.1 and the covariate structure for
the complete intensity given by Love and Guo
[82, 83] can be adopted when different environ-
mental and operating conditions have to be con-
sidered.

Let yi,j denote the j th failure time in the ith
maintenance cycle measured from the most recent
maintenance epoch. The CIF in any time interval
(yi,j−1, yi,j) (where yi,0 = 0) is then

λi,j (y;Hy)= h0[y − (1− δ)yi,j−1] exp(z′i,ja)
0≤ δ ≤ 1, yi,j−1 < y ≤ yi,j

(18.74)

where 1− δ is equal to the improvement factor
ρ of Section 18.5.1. The effect of repair may be
assumed to be constant (and unknown) over all
failures (constant repair impact), or the effect
of repair may vary from time to time (repair-
specific impact). In the latter case, the value of
the repair factor δ after each failure has to be
assigned.

The baseline intensity up to the first failure has
the power-law form and, under the assumption of
constant repair effect (δ is then an unknown pa-
rameter), the likelihood relative to m maintenance

cycles is

L(α, β, δ, a)

=
(
β

α

)n{ m∏
i=1

ni∏
j=1

[
yi,j − (1− δ)yi,j−1

α

]β−1}
× exp(z′sumfa)

× exp

{
−

m∑
i=1

ni+1∑
j=1

{[
yi,j − (1− δ)yi,j−1

α

]β
−
(
δyi,j−1

α

)β}
exp(z′i,ja)

}
(18.75)

where ni is the number of failures occurred
during the ith maintenance cycle, yi,ni+1 is the
ending time of the ith maintenance cycle, and
zsumf =∑i

∑
j zi,j is the summation vector of

the covariates over the failure set. The ML
estimate of α, β , δ, and a can be found in
the traditional way by solving the equations
∂ ln(L)/∂β = 0, ∂ ln(L)/∂α = 0, ∂ ln(L)/∂δ = 0,
and ∂ ln(L)/∂al = 0 (l = 1, . . . , k).

When the effect of repair varies from time to
time, the likelihood is conditioned on the vector
�= {δ1,1, . . . , δ1,n1, . . . , δm,1, . . . , δm,nm}′ col-
lecting the (assigned) value of the repair factors
δi,j . Then, the form of the likelihood L(α, β, a|�)

can be obtained from Equation 18.75 by substitut-
ing δ with δi,j−1.

Both the proposed models (the constant repair
impact model and the repair-specific impact one)
have been compared by Guo and Love [62] with
the minimal repair model [83] and the hybrid
model [77]. Data of the large cement roller mill
[82] have been analyzed, and it is showed that
the repair-specific impact model requires a good
management judgement on the effect of each
repair in order to be effective.

If the original intensity function (before ac-
counting for repair discontinuities) shows a
bathtub-type behavior in each maintenance cycle,
the failure pattern of imperfectly repaired equip-
ment can be described by the model given by Love
and Guo [54]. The EPP intensity (Equation 18.38)
describes the original intensity function, whereas
the imperfect repair is described through the
PAR model [63]. The conditional ML estimate of

340 Maintenance Theory and Testing

model parameters β and η, given the value of
the repair factors δi,j , can be obtained from the
first- and second-order partial derivatives of the
log-likelihood, by applying the Newton–Raphson
algorithm. The mean square error of the ordered
estimates of the generalized residuals with respect
to the expected standard exponential order statis-
tics can be used to compare the fit of different
models to a given data set.

18.6.4 Minimal Repairs Interspersed
with Imperfect Preventive Maintenance

A model suitable to describe the failure pattern
of several units subject to pre-scheduled or
random imperfect preventive maintenance has
been proposed by both Shin et al. [64] (and there
denoted as Model B) and Jack [84] (where it is
denoted as Model I). The units are minimally
repaired at failure and the effect of imperfect
preventive maintenance is modeled according to
the PAR criterion [63].

The failure pattern in each maintenance cycle
is described by an NHPP, but the actual age of the
equipment in the kth cycle is reduced by a fraction
of the most recent maintenance epoch τk−1. The
CIF at a time t in the kth maintenance cycle is

λ(t; Ht)= h(t − ρτk−1) τk−1 < t ≤ τk (18.76)

Suppose that l units are observed until Ti (i =
1, . . . , l) and that each equipment is subject to mi

preventive maintenance actions at epochs τi,1 <

· · ·< τi,mi ≤ Ti . The ith equipment experiences
ri,k failures during the kth maintenance cycle (k =
1, . . . , mi + 1). Let ti,k,j (j = 1, . . . , ri,k) denote
the j th failure experienced in the kth maintenance
cycle by the ith equipment. Then, under the
assumption that the improvement factor ρ is
constant over all units and maintenance actions,
the likelihood relative to the above data is

Li =
l∏

i=1

{ mi+1∏
k=1

[ri,k∏
j=1

h(ti,k,j − ρτi,k−1)

]

× exp

[
−

mi+1∑
k=1

∫ τi,k

τi,k−1

h(x − ρτi,k−1) dx

]}
(18.77)

where τi,0 = 0 and τi,mi+1 ≡ Ti . Since the effect
of preventive maintenance may not be uniform
over units and time, the improvement factor ρ can
be considered as the averaged effect of preventive
maintenance over the observation period.

Two different forms for the intensity function
up to the first failure, namely the power-law
and log–linear intensities, have been studied and
related ML estimates can be found in [64] and [84].
In particular, under the power-law assumption,
the likelihood results in

L(α, β, ρ)

=
(
β

α

)n[l∏
i=1

mi+1∏
k=1

ri,k∏
j=1

(
ti,k,j − ρτi,k−1

α

)β−1]

× exp

{
−

l∑
i=1

mi+1∑
k=1

[(
τi,k − ρτi,k−1

α

)β
−
(
τi,k−1 − ρτi,k−1

α

)β]}
(18.78)

where n is the total number of failures for l units
during the whole observation periods. The ML
estimate of the scale parameter α is in closed form,
given the ML estimates of β and ρ:

α̂ =
{ l∑

i=1

mi+1∑
k=1

[(τi,k − ρ̂τi,k−1)
β̂

− (τi,k−1 − ρ̂τi,k−1)
β̂]/n

}1/β̂

(18.79)

and the ML estimates β̂ and ρ̂ can be found
by maximizing the modified two-parameter log-
likelihood:

�′(β, ρ)

= n ln β − n ln

{ l∑
i=1

mi+1∑
k=1

[(τi,k − ρτi,k−1)
β

− (τi,k−1 − ρτi,k−1)
β]
}
+ n ln n+ (β − 1)

×
[l∑

i=1

mi+1∑
k=1

ri,k∑
j=1

ln(ti,k,j − ρτi,k−1)

]
− n

(18.80)

Mechanical Reliability and Maintenance Models 341

Approximate confidence on model parameters
can be obtained on the basis of the asymptotic
distribution of ML estimators [64] or by using
the likelihood ratio method [84]. Shin et al.
[64] have analyzed the failure data of a central
cooler system of a nuclear power plant subject to
major overhauls, by assuming a power-law form
for the CIF (Equation 18.76). This application
will be discussed later on. Under the same
power-law assumption, Jack [84] analyzed the
failure data of medical equipment (syringe-driver
infusion pumps) used in a large teaching hospital
and estimated the model parameters and the
expected number of failures in given future time
intervals.

Bayes inferential procedures for the above
model under the power-law intensity (denoted
as PAR–PLP model) are given by Pulcini [85,
86] when data arise from a single piece of
equipment observed until T . Point and interval
estimates of model parameters and CIF can be
obtained on the basis of a number of suitable
prior informations that reflect different degrees
of belief on the failure process and maintenance
effect [85]. Unlike the ML procedure, the Bayesian
credibility intervals do not rely on asymptotic
results, and then, when they are based on non-
informative or vague prior densities, they are a
valid alternative to the confidence intervals for
small or moderate samples. In addition, Bayes
inference on the expected number of failures in
a future time interval (T , T +�) can be made
when preventive maintenance or no maintenance
is assumed to be performed at T .

Tests on the effectiveness of preventive main-
tenance can be carried out on the basis of the
Bayes factor that measures the posterior evidence
provided by the observed data in favor of the
null hypothesis of minimal or perfect preven-
tive maintenance against the alternative of imper-
fect maintenance. Finally, Bayes prediction proce-
dures, both of the future failure times and of the
number of failures in a future time interval, can
be found in [86] on the basis both of vague and
informative prior densities on β and ρ.

The PAR criterion proposed by Malik [63] as-
sumes that maintenance reduces only the damage

incurred since the previous preventive mainte-
nance, and thus prohibits a major improvement
to the conditions of equipment that has a large
age but has recently undergone preventive main-
tenance. A different age reduction criterion, where
preventive maintenance reduces all previously in-
curred damage, has been proposed by Nakagawa
[87]. The equipment is minimally repaired at fail-
ure and the CIF at any time t in the interval
(τk−1, τk) between the (k − 1)th and the kth main-
tenance epochs is given by

λ(t; Ht)

= h

{
t − τk−1 +

k−1∑
i=1

[
(τi − τi−1)

k−1∏
j=i

bj

]}
τk−1 < t ≤ τk (18.81)

where τ0 = 0 and 0 < bj < 1(j = 1, 2, . . .) is the
improvement factor in age of the equipment
reduced by the j th preventive maintenance. This
criterion has been adopted in Model II of Jack
[84], by assuming that all improvement factors
are equal: bj = δ(j = 1, 2, . . .). Thus, the CIF
in Equation 18.81 at any time t in the interval
(τk−1, τk) becomes

λ(t; Ht)= h

[
t +

k−1∑
i=1

δi(τk−i − τk−i−1)− τk−1

]
0≤ δ ≤ 1, τk−1 < t ≤ τk (18.82)

ML estimation procedures for the model in
Equation 18.82 are similar to those for the model
in Equation 18.76.

18.6.4.1 Numerical Example

Let us consider the failure data of a central cooler
system of a nuclear power plant analyzed by Shin
et al. [64]. Data consist of n= 15 failure times
and m= 3 major overhaul epochs observed over
612 days and are given in Table 18.3. The failure
pattern between successive overhauls is modeled
through a PLP, and each overhaul reduces the age
of the equipment according to the PAR model [63].

Figure 18.5 compares the ML estimate given
by Shin et al. [64] of the CIF under the imper-
fect overhauls assumption with the alternative as-
sumptions of (a) minimal overhauls (ρ = 0), and

342 Maintenance Theory and Testing

Table 18.3. Failure data of a central cooler system in numerical
example (given in Shin et al. [64])

116 151 154∗ 213 263∗ 386
387 395 407 463 492 494
501 512∗ 537 564 590 609

∗ denotes PM epochs.

Figure 18.5. ML estimate of the complete intensity function
under imperfect, minimal, and perfect overhaul assumptions for
central cooler system data in numerical example

(b) perfect overhauls (ρ = 1). The assumption of
minimal overhauls coincides with the assumption
that the equipment is not preventively maintained
but only minimally repaired at failure, and the
whole failure process is then described by the
PLP of Section 18.4.2.1. Under the assumption of
perfect overhauls, the failure pattern is described
by the model (deprived of covariates) given by
Love and Guo [83] and discussed in Section 18.6.2.

In Table 18.4 the ML estimate of parameters
β and ρ is compared with the Bayes estimate
obtained by Pulcini [85] by assuming a uniform
prior density for β over the interval (1, 5) and a
gamma prior density for ρ with mean µρ = 0.7
and standard deviation σρ = 0.15. Such densities
formalize a prior ignorance on the value of β

(except the prior conviction that the equipment
experiences deterioration) and a vague belief that
overhauls are quite effective. Table 18.5 gives the
posterior mean and the equal-tails 0.80 credibility

Table 18.4. ML and Bayesian estimates of model parameters β
and δ

ML estimates Bayes estimates

β ρ β ρ

Point 2.93 0.77 2.79 0.72
estimate
0.95
lower
limit

1.82 0.50 1.73 0.50

0.95
upper
limit

4.00 1.00 3.98 0.89

interval of the expected number of failures in the
future time interval (612, 612+�), for selected
� values ranging from 30 to 100 days, under the
different hypotheses that a major overhaul is or is
not performed at T = 612 days.

18.6.5 Corrective Repairs Interspersed
with Preventive Maintenance Without
Restrictive Assumptions

The previously illustrated models are based
on specific assumptions regarding the effect of
corrective repairs and preventive maintenance on
the equipment conditions. A model that does
not require any restrictive assumption on the
effect of maintenance actions on the equipment
conditions is given by Kobbacy et al. [88]. The
model assumes two different forms for the CIF
after a corrective repair (CR) and a preventive
maintenance (PM). In both the intensities, their
dependence on the full history of the process
is modeled through explanatory variables. In
particular, the CIF following a CR or a PM is

λCR(t; z)= λCR,0(t) exp(z′a) (18.83)

or

λPM(t; y)= λPM,0(t) exp(y′b) (18.84)

respectively, where time t is measured from the
time of applying this CR or PM, z and y are
the k × 1 and l × 1 vectors of the explanatory
variables, and a and b are the vectors of the

Mechanical Reliability and Maintenance Models 343

Table 18.5. Bayesian estimate of the expected number of failures in the future time interval (T , T +�) when a major
overhaul is or is not performed at T = 612 days

No overhaul at T Major overhaul at T

�= 30 �= 50 �= 80 �= 100 �= 30 �= 50 �= 80 �= 100

Point estimate 1.60 2.88 5.15 6.92 0.87 1.60 2.94 4.03
0.90 lower limit 0.97 1.72 2.98 3.91 0.40 0.79 1.56 2.21
0.90 upper limit 2.34 4.23 7.70 10.49 1.41 2.54 4.57 6.19

regression coefficients. Thus, the CIF following
a failure or a preventive maintenance is given
in terms of a baseline intensity (λCR,0(t) or
λPM,0(t) respectively), which depends on the time
t measured from this event, and of the value of
the explanatory variables at a point in time just
before the event occurrence. Potential explanatory
variables are the age of the equipment (measured
from the time the equipment was put into service),
the total number of failures that have occurred,
the time since the last CR, the time since the last
PM, and so on. Hence, the explanatory variables
measure the full history of the process until each
CR and PM.

18.7 Reliability Growth

In many cases, the first prototype of mechanical
equipment contains design and engineering flaws,
and then prototypes are subjected to development
testing programs before starting mass production.
Reliability and performance problems are identi-
fied and design modifications are introduced to
eliminate the observed failure modes. As a result,
if the design changes are effective, the failure
intensity decreases at each design change and a
reliability growth is observed. Of course, in this
context, the failure pattern of the equipment is
strongly influenced by the effectiveness of design
changes, as well as by failure mechanisms and
maintenance actions. A complete discussion on
reliability growth programs is given by Benton and
Crow [89].

A large number of models that describe the
reliability growth of repairable equipment have

been proposed. Such models can be roughly
classified into continuous and discrete models.

Continuous models are mathematical tools able
to describe the design process, i.e. the decreasing
trend in the ROCOF resulting from the repeated
applications of design changes, which must not
be confused with the behavior of the underlying
failure process. Continuous models are commonly
applied in test-analyze-and-fix (TAAF) programs
when the equipment is tested until it fails; a
design modification is then introduced in order
to remove the observed failure cause, and the test
goes on. This procedure is repeated until a desired
level of reliability is achieved. The observed failure
pattern is then affected by the failure mechanisms
and design changes.

Discrete models incorporate a change in the
failure intensity at each design change, which is
not necessarily introduced at failure occurrence.
Thus, more than one failure can occur during
each development stage and the failure pattern
depends on failure mechanisms, design changes
and repair policy. In many cases, discrete models
assume explicitly that the failure intensity is
constant during each development stage, so that
the resulting plot of the failure intensity as a
function of test time is a non-increasing series
of steps (step-intensity models). Thus, the failure
process in each stage is modeled by an HPP
(e.g. see the non-parametric model of Robinson
and Dietrich [90] and the parametric model of
Sen [91]). Under the step-intensity assumption,
dealing with repairable units that, after repair
and/or design modifications, continue to operate
until the next failure is like dealing with non-
repairable units (with constant hazard rate)

344 Maintenance Theory and Testing

which are replaced at each failure. Thus, models
based on the explicit assumption of constant
intensity in each development phase could be
viewed as models for non-repairable units with
exponentially distributed lifetime and will not be
treated in this chapter, which deals with models
specifically addressing repairable equipment.

18.7.1 Continuous Models

The most commonly used continuous model in
the analysis of repairable equipment undergo-
ing a TAAF program is the PLP model of Sec-
tion 18.4.2.1, whose intensity function is

ρ(t)= β

α

(
t

α

)β−1

α > 0, 0 < β < 1 (18.85)

In the TAAF context, the power-law parameter
β is a measure of the management and engineer-
ing efforts in eliminating the failure modes during
the development program. Small β values arise
when an aggressive program is conducted by a
knowledgeable staff.

The PLP was proposed and found its first
application in a reliability growth context [12],
specifically to explain the empirical results of
Duane [71]. Duane analyzed the failure data of
five types of mechanical unit, such as complex
hydromechanical devices, aircraft generators and
jet engines, undergoing development programs,
and observed that a plot of the cumulative number
of failures N(t) observed until time t against the
ratio t/N(t) was nearly linear when a log–log plot
was used.

In the application of the PLP in a reliability
growth context, the inferential procedures are
mainly addressed to estimate the reliability of
the equipment at the end of the development
program. In fact, if no further improvement is
incorporated into the equipment design after the
development program, the reliability level at the
end of the program will characterize the reliability
of the equipment as it goes into production. In
addition, it is generally assumed that the current
intensity function of the equipment as it goes
into production remains constant during the so-
called useful life period [92] and is equal to the

intensity ρ(T) at the termination time T of the
development program. Thus, the failure process of
the equipment as it goes into production can be
modeled by an HPP with constant intensity ρ(T),
and the current reliability is given by

R0(t0)= exp(−ρ(T)t0) t0 > 0 (18.86)

ML inferential procedures for current intensity
and current reliability can be found in Lee and
Lee [22], Bain and Engelhardt [23], Crow [93, 94],
Calabria et al. [24], Tsokos and Rao [95], and Sen
and Khattree [96]. These procedures, which refer
both to failure- and time-truncated sampling, are
based on pivotal properties of certain quantities
and allow point estimates and exact confidence
intervals to be obtained. In particular, if the
development program terminates at the time tn of
the nth failure, confidence intervals on the current
intensity ρ(tn) and the current reliability R0(t0)

can be obtained by exploiting the result that [22]

ρ(tn)

ρ̂(tn)
∼ 1

4n2
ZS (18.87)

where Z and S are independent chi-squared
random variables with 2(n− 1) and 2n degrees
of freedom respectively. For single or multiple
copies undergoing a time-truncated development
program, confidence intervals on ρ(T) and R0(t0)

can be obtained by using tables given by Crow
[93, 94].

A quasi-Bayes method to estimate the current
intensity function has been proposed by Higgins
and Tsokos [97], whereas a Bayes procedure
for estimating both the current intensity and
the current reliability on the basis of prior
information on the parameter β can be found in
Calabria et al. [98].

Some prediction problems have found a solu-
tion in Calabria and Pulcini [99] and Beiser and
Rigdon [40]. In particular, Calabria and Dulcini
[99] have found prediction procedures for the
current lifetime t0, both in the ML and Bayesian
contexts. Exact confidence limits on t0 can be
computed by using a specific table, whereas, if
prior information on the parameter β is available,
prediction on t0 can be made through a Bayesian
procedure. Finally, prediction of the number of

Mechanical Reliability and Maintenance Models 345

failures that new equipment will experience in a
future time interval can be obtained by using the
Bayesian procedure given by Beiser and Rigdon
[40].

Another continuous model that has found
application in reliability growth analysis is the
NHPP with log–linear intensity of Section 18.4.2.2:

ρ(t)= exp(α + βt) −∞< α <∞, β < 0
(18.88)

Unlike the PLP, whose intensity function tends
to zero as t tends to infinity, the LLP intensity
approaches more realistically to the positive value
exp(α) as t increases. In the reliability growth
context, the LLP yields a defective distribution
for the time to first failure [100] and then there
is a positive probability that no failure will be
observed during the development program.

When the TAAF program is carried out on
several units, some of which are manufactured
while the development program goes on, the
initial reliability of all units put on test is
not yet the same. In fact, the manufacturing
process improves as the TAAF program goes on,
since process-related defects, discovered during
the TAAF program, are corrected. Thus, a unit
manufactured a little while after the beginning
of the production process will have fewer defects
than one unit manufactured exactly at the
beginning of the production process. A model
that takes into account the dependence of the
initial reliability of equipment on the age of
the manufacturing process has been proposed
by Heimann and Clark [101]. This process-
related reliability-growth model describes the
design process through a PLP (with β < 1)
and assumes that the scale parameter α is
not constant but depends on the age X of
the manufacturing process when the unit is
manufactured: α(X) = α[1 − exp(−bX)]. Thus,
the intensity function

ρ(t|X)= βtβ−1

{α[1− exp(−bX)]}β (18.89)

depends through X on the maturity level of
the manufacturing process. The ML estimates

of model parameters, and then of the process-
age-dependent intensity ρ(t|X), can be ob-
tained by maximization of the log-likelihood.
Tests to assess the null hypothesis of constant
initial reliability over all units (i.e. constant
scale parameter over X) against the process-
related model in Equation 18.89 can be per-
formed through the log-likelihood ratio statis-
tic.

18.7.2 Discrete Models

Discrete models find applications when one or
more identical copies of the equipment are put on
test and design modifications are not introduced a
few at each failure but are implemented in block
at the end of each development stage (delayed
fixes) as a result of the experience gained during
that stage. The next stage begins with new copies
that incorporate the design changes and, if those
modifications are effective, the reliability of the
new design is higher than the reliability of the
previous design.

One of the earliest models on this topic was
proposed by Robinson and Dietrich [102]. It
is based on the assumption that each time a
failure occurs the equipment is perfectly repaired,
so that the failure pattern in each development
stage is described through a renewal process.
The perfect repair assumption is not realistic
when the development program involves complex
equipment.

More recently, a discrete model based on the
assumptions that the equipment is minimally
repaired at failure and the failure process in each
stage is modeled by a PLP has been proposed
by Ebrahimi [103] and Calabria et al. [104]. The
parameter β is constant over design modifications
(changes do not alter the failure mechanism),
whereas the scale parameter α increases from one
stage to the next as a result of change effectiveness.
Thus, the intensity function in the j th stage
is

ρj (t)= β

αj

(
t

αj

)β−1

j = 1, 2, . . . (18.90)

346 Maintenance Theory and Testing

where time t is measured from the beginning
of the j th stage. ML estimates can be found
in [103] where the intensity (Equation 18.90) has
been reparameterized in terms of µj = α

−β
j (j =

1, 2, . . .). The parameters µj satisfy the condi-
tions µ1 ≥ µ2 ≥ · · · , since a reliability growth
between stages is modeled. If Tj (j = 1, 2, . . . , m)

denotes the test time of the j th stage and nj
failures occur in the j th stage at times t1,j <

t2,j < · · ·< tnj ,j , then the likelihood results in

L(β, µ1, . . . , µm)

=
[m∏

j=1

µ
nj
j

]
βn

[m∏
j=1

nj∏
i=1

t
β−1
i,j

]

× exp

(
−

m∑
j=1

µjT
β
j

)
(18.91)

where n is the total number of observed failures.
The constrained ML estimate of model parameters
can be found through a two-stage procedure that
assures µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂m, and approximate
confidence intervals can be obtained through the
asymptotic distribution of estimators.

The Bayesian approach proposed by Calabria
et al. [104] is addressed to the solution of
a decision-making problem rather than to an
inferential one. Several identical copies of the
equipment are put on test at each development
stage. At the end of each stage, depending on
the reliability level achieved, a decision between
two alternative actions is made: (a) to accept
the current design of the equipment for mass
production, or (b) to continue the development
program. The equipment reliability at stage j is
measured by the expected number of failures in a
given time interval (0, τ), say Nj (τ), so that the
decision process is based on the posterior density
of Nj (τ) and on specific loss functions that
measure the economical consequences associated
with each alternative action.

Acknowledgment

The author is indebted to Professor
Maurizio Guida for valuable discussions and sug-
gestions which helped the exposition of the article.

References
[1] Ascher H, Feingold H. Repairable systems reliability.

modeling, inference, misconceptions and their causes.
New York, Basel: Marcel Dekker; 1984.

[2] Pham H, Wang H. Imperfect maintenance. Eur J Oper
Res 1996;94:425–38.

[3] Lawless JF, Thiagarajah K. A point-process model incor-
porating renewals and time trends, with application to
repairable systems. Technometrics 1996;38:131–8.

[4] Cox DR, Isham V. Point processes. London, New York:
Chapman and Hall; 1980.

[5] Thompson WA. Point process models with applications
to safety and reliability. New York, London: Chapman
and Hall; 1988.

[6] Thompson WA. On the foundations of reliability.
Technometrics 1981;23:1–13.

[7] Berman M, Turner TR. Approximating point process
likelihoods with GLIM. Appl Stat 1992;41:31–8.

[8] Ascher HE. Reliability models for repairable systems.
In: Møltoft J, Jensen F, editors. Reliability technology—
theory and applications. Oxford: Elsevier; 1986. p.177–
85.

[9] Ascher H, Feingold H. “Bad-as-old” analysis of system
failure data. In: Proceedings of 8th Reliability and
Maintenance Conference, Denver, 1969; p.49–62.

[10] Cox DR, Lewis PAW. The statistical analysis of series of
events. London: Chapman and Hall; 1978.

[11] Bain LJ, Engelhardt M, Wright FT. Tests for an increasing
trend in the intensity of a Poisson process: a power
study. J Am Stat Assoc 1985;80:419–22.

[12] Crow LH. Reliability analysis for complex, repairable
systems. In: Proschan F, Serfling RJ, editors. Reliability
and biometry. Philadelphia: SIAM; 1974. p.379–410.

[13] Lewis PAW, Robinson DW. Testing for a monotone trend
in a modulated renewal process. In: Proschan F, Ser-
fling RJ, editors. Reliability and biometry. Philadelphia:
SIAM; 1974. p.163–82.

[14] Vaurio JK. Identification of process and distribu-
tion characteristics by testing monotonic and non-
monotonic trends in failure intensities and hazard rates.
Reliab Eng Syst Saf 1999;64:345–57.

[15] Lawless JF. Statistical models and methods for lifetime
data. New York: John Wiley and Sons; 1982.

[16] Beiser JA, Rigdon SE. Bayesian prediction for the
number of failures of a repairable system modeled
by a homogeneous Poisson process. In: Vogt WG,
Mickle MH, editors. Modeling and simulation, vol. 23,
part 4. Control, signal processing, robotics, systems,
power. Pittsburgh: Instrument Society of America; 1992.
p.1783–9.

[17] Ascher H, Feingold H. Is there repair after failure?
In: Proceedings of Annual Reliability and Maintenance
Symposium, Los Angeles, 1978; p.190–7.

[18] Proschan F. Theoretical explanation of observed de-
creasing failure rate. Technometrics 1963;5:375–83.

[19] Kumar U, Klefsjø B. Reliability analysis of hydraulic
systems of LHD machines using the power law process
model. Reliab Eng Syst Saf 1992;35:217–24.

Mechanical Reliability and Maintenance Models 347

[20] Majumdar SK. Study on reliability modelling of a
hydraulic excavator system. Qual Reliab Eng Int
1995;11:49–63.

[21] Finkelstein JM. Confidence bounds on the parameters of
the Weibull process. Technometrics 1976;18:115–7.

[22] Lee L, Lee SK. Some results on inference for the Weibull
process. Technometrics 1978;20:41–5.

[23] Bain LJ, Engelhardt M. Inferences on the parameters and
current system reliability for a time truncated Weibull
process. Technometrics 1980;22:421–6.

[24] Calabria R, Guida M, Pulcini G. Some modified
maximum likelihood estimators for the Weibull process.
Reliab Eng Syst Saf 1988;23:51–8.

[25] Lee L. Comparing rates of several independent Weibull
processes. Technometrics 1980;22:427–30.

[26] Calabria R, Guida M, Pulcini G. Power bounds for a
test of equality of trends in k independent power law
processes. Commun Stat Theor Methods 1992;21:3275–
90.

[27] Bain LJ, Engelhardt M. Sequential probability ratio tests
for the shape parameter of a nonhomogeneous Poisson
process. IEEE Trans Reliab 1982;R-31:79–83.

[28] Calabria R, Guida M, Pulcini G. Reliability analysis of
repairable systems from in-service failure count data.
Appl Stoch Models Data Anal 1994;10:141–51.

[29] Rigdon SE, Basu AP. The power law process: a model
for the reliability of repairable systems. J Qual Technol
1989;21:251–60.

[30] Park WJ, Kim YG. Goodness-of-fit tests for the power-
law process. IEEE Trans Reliab 1992;41:107–11.

[31] Baker RD. Some new tests of the power law process.
Technometrics 1996;38:256–65.

[32] Engelhardt M, Bain LJ. Prediction intervals for the
Weibull process. Technometrics 1978;20:167–9.

[33] Calabria R, Guida M, Pulcini G. Point estimation of
future failure times of a repairable system. Reliab Eng
Syst Saf 1990;28:23–34.

[34] Bain LJ, Engelhardt M. Statistical analysis of reliability
and life-testing models. Theory and methods. (Second
edition). New York, Basel, Hong Kong: Marcel Dekker;
1991.

[35] Rigdon SE, Ma X, Bodden KM. Statistical inference for
repairable systems using the power law process. J Qual
Technol 1998;30:395–400.

[36] Guida M, Calabria R, Pulcini G. Bayes inference
for a non-homogeneous Poisson process with power
intensity law. IEEE Trans Reliab 1989;38:603–9.

[37] Bar-Lev SK, Lavi I, Reiser B. Bayesian inference for the
power law process. Ann Inst Stat Math 1992;44:623–39.

[38] Campodønico S, Singpurwalla ND. Inference and
predictions from Poisson point processes incorporating
expert knowledge. J Am Stat Assoc 1995;90:220–6.

[39] Calabria R, Guida M, Pulcini G. Bayes estimation of
prediction intervals for a power law process. Commun
Stat Theor Methods 1990;19:3023–35.

[40] Beiser JA, Rigdon SE. Bayes prediction for the number
of failures of a repairable system. IEEE Trans Reliab
1997;46:291–5.

[41] Lilius WA. Graphical analysis of repairable systems.
In: Proceedings of Annual Reliability and Maintenance
Symposium, Los Angeles, USA, 1979; p.403–6.

[42] Härtler G. Graphical Weibull analysis of repairable
systems. Qual Reliab Eng Int 1985;1:23–6.

[43] Nelson W. Graphical analysis of system repair data.
J Qual Technol 1988;20:24–35.

[44] Martz HF. Pooling life test data by means of the
empirical Bayes method. IEEE Trans Reliab 1975;R-
24:27–30.

[45] Bassin WM. Increasing hazard functions and overhaul
policy. In: Proceedings of Annual Symposium on
Reliability, Chicago, USA, 1969; p.173–8.

[46] Ahn CW, Chae KC, Clark GM. Estimating parameters of
the power law process with two measures of failure time.
J Qual Technol 1998;30:127–32.

[47] Ascher HE, Hansen CK. Spurious exponentiality ob-
served when incorrectly fitting a distribution to nonsta-
tionary data. IEEE Trans Reliab 1998;47:451–9.

[48] Leung FKN, Cheng ALM. Determining replacement
policies for bus engines. Int J Qual Reliab Manage
2000;17:771–83.

[49] Aven T. Some tests for comparing reliability
growth/deterioration rates of repairable systems.
IEEE Trans Reliab 1989;38:440–3.

[50] Huang Y-S, Bier VM. A natural conjugate prior
for the nonhomogeneous Poisson process with an
exponential intensity function. Commun Stat Theor
Methods 1999;28:1479–509.

[51] Engelhardt M, Bain LJ. On the mean time between
failures for repairable systems. IEEE Trans Reliab
1986;R-35:419–22.

[52] Pulcini G. A bounded intensity process for the reliability
of repairable equipment. J Qual Technol 2001;33:480–92.

[53] Lee L. Testing adequacy of the Weibull and log linear
rate models for a Poisson process. Technometrics
1980;22:195–9.

[54] Love CE, Guo R. An application of a bathtub failure
model to imperfectly repaired systems data. Qual Reliab
Eng Int 1993;9:127–35.

[55] Pulcini G. Modeling the failure data of a repairable
equipment with bathtub type failure intensity. Reliab
Eng Syst Saf 2001;71:209–18.

[56] Coetzee JL. Reliability degradation and the equipment
replacement problem. In: Proceedings of International
Conference of the Maintenance Societies (ICOMS-96),
Melbourne, 1996; paper 21.

[57] Kumar U, Klefsjö B, Granholm S. Reliability investi-
gation for a fleet of load–haul–dump machines in a
Swedish mine. Reliab Eng Syst Saf 1989;26:341–61.

[58] Bendell A, Walls LA. Exploring reliability data. Qual
Reliab Eng Int 1985;1:37–51.

[59] Lawless JF. Regression methods for Poisson process
data. J Am Stat Assoc 1987;82:808–15.

[60] Guida M, Giorgio M. Reliability analysis of accelerated
life-test data from a repairable system. IEEE Trans Reliab
1995;44:337–46.

[61] Kumar D. Proportional hazards modelling of repairable
systems. Qual Reliab Eng Int 1995;11:361–9.

348 Maintenance Theory and Testing

[62] Guo R, Love CE. Statistical analysis of an age model
for imperfectly repaired systems. Qual Reliab Eng Int
1992;8:133–46.

[63] Malik MAK. Reliable preventive maintenance schedul-
ing. AIIE Trans 1979;11:221–8.

[64] Shin I, Lim TJ, Lie CH. Estimating parameters of
intensity function and maintenance effect for repairable
unit. Reliab Eng Syst Saf 1996;54:1–10.

[65] Berman M. Inhomogeneous and modulated gamma
processes. Biometrika 1981;68:143–52.

[66] Lakey MJ, Rigdon SE. The modulated power law process.
In: Proceedings of 45th Annual ASQC Quality Congress,
Milwaukee, 1992; p.559–63.

[67] Black SE, Rigdon SE. Statistical inference for a modu-
lated power law process. J Qual Technol 1996;28:81–90.

[68] Calabria R, Pulcini G. Bayes inference for the modulated
power law process. Commun Stat Theor Methods
1997;26:2421–38.

[69] Calabria R, Pulcini G. Bayes inference for repairable
mechanical units with imperfect or hazardous mainte-
nance. Int J Reliab Qual Saf Eng 1998;5:65–83.

[70] Calabria R, Pulcini G. On testing for repair effect and
time trend in repairable mechanical units. Commun Stat
Theor Methods 1999;28:367–87.

[71] Duane JT. Learning curve approach to reliability. IEEE
Trans Aerosp 1964;2:563–6.

[72] Calabria R, Pulcini G. Inference and test in modeling
the failure/repair process of repairable mechanical
equipments. Reliab Eng Syst Saf 2000;67:41–53.

[73] Chan J-K, Shaw L. Modeling repairable systems with
failure rates that depend on age and maintenance. IEEE
Trans Reliab 1993;42:566–71.

[74] Calabria R, Pulcini G. Discontinuous point processes for
the analysis of repairable units. Int J Reliab Qual Saf Eng
1999;6:361–82.

[75] Nakagawa T. Optimum policies when preventive mainte-
nance is imperfect. IEEE Trans Reliab 1979;R-28:331–2.

[76] Brown M, Proschan F. Imperfect repair. J Appl Prob
1983;20:851–9.

[77] Whitaker LR, Samaniego FJ. Estimating the reliability
of systems subject to imperfect repair. J Am Stat Assoc
1989;84:301–9.

[78] Lim JH, Lu KL, Park DH. Bayesian imperfect repair
model. Commun Statist Theor Meth 1998;27:965–84.

[79] Lim TJ. Estimating system reliability with fully masked
data under Brown–Proschan imperfect repair model.
Reliab Eng Syst Saf 1998;59:277–89.

[80] Lim TJ, Lie CH. Analysis of system reliability with de-
pendent repair modes. IEEE Trans Reliab 2000;49:153–
62.

[81] Block HW, Borges WS, Savits TH. Age-dependent
minimal repair. J Appl Prob 1985;22:370–85.

[82] Love CE, Guo R. Using proportional hazard modelling
in plant maintenance. Qual Reliab Eng Int 1991;7:7–17.

[83] Love CE, Guo R. Application of Weibull proportional
hazards modelling to bad-as-old failure data. Qual
Reliab Eng Int 1991;7:149–57.

[84] Jack N. Analysing event data from a repairable machine
subject to imperfect preventive maintenance. Qual
Reliab Eng Int 1997;13:183–6.

[85] Pulcini G. On the overhaul effect for repairable
mechanical units: a Bayes approach. Reliab Eng Syst Saf
2000;70:85–94.

[86] Pulcini G. On the prediction of future failures for a
repairable equipment subject to overhauls. Commun
Stat Theor Methods 2001;30:691–706.

[87] Nakagawa T. Sequential imperfect preventive mainte-
nance policies. IEEE Trans Reliab 1988;37:295–8.

[88] Kobbacy KAH, Fawzi BB, Percy DF, Ascher HE. A
full history proportional hazards model for preven-
tive maintenance scheduling. Qual Reliab Eng Int
1997;13:187–98.

[89] Benton AW, Crow LH. Integrated reliability growth
testing. In: Proceedings of the Annual Reliability and
Maintenance Symposium, Atlanta, USA, 1989; p.160–6.

[90] Robinson D, Dietrich D. A nonparametric-Bayes
reliability-growth model. IEEE Trans Reliab
1989;38:591–8.

[91] Sen A. Estimation of current reliability in a Duane-based
growth model. Technometrics 1996;40:334–44.

[92] Crow LH. Tracking reliability growth. In: Proceedings of
20th Conference on Design of Experiments. ARO Report
75-2, 1975; p.741–54.

[93] Crow LH. Confidence interval procedures for the
Weibull process with application to reliability growth.
Technometrics 1982;24:67–72.

[94] Crow LH. Confidence intervals on the reliability of
repairable systems. In: Proceedings of the Annual
Reliability and Maintenance Symposium, Atlanta, USA,
1993; p.126–33.

[95] Tsokos CP, Rao ANV. Estimation of failure intensity for
the Weibull process. Reliab Eng Syst Saf 1994;45:271–5.

[96] Sen A, Khattree R. On estimating the current intensity
of failure for the power-law process. J Stat Plan Infer
1998;74:253–72.

[97] Higgins JJ, Tsokos CP. A quasi-Bayes estimate of the
failure intensity of a reliability-growth model. IEEE
Trans Reliab 1981;R-30:471–5.

[98] Calabria R, Guida M, Pulcini G. A Bayes procedure
for estimation of current system reliability. IEEE Trans
Reliab 1992;41:616–20.

[99] Calabria R, Pulcini G. Maximum likelihood and Bayes
prediction of current system lifetime. Commun Stat
Theor Methods 1996;25:2297–309.

[100] Cozzolino JM. Probabilistic models of decreasing failure
rate processes. Nav Res Logist Q 1968;15:361–74.

[101] Heimann DI, Clark WD. Process-related reliability-
growth modeling. How and why. In: Proceedings of the
Annual Reliability and Maintenance Symposium, Las
Vegas, USA, 1992; 316–321.

[102] Robinson DG, Dietrich D. A new nonparametric growth
model. IEEE Trans Reliab 1987;R-36:411–8.

[103] Ebrahimi N. How to model reliability-growth when
times of design modifications are known. IEEE Trans
Reliab 1996;45:54–8.

[104] Calabria R, Guida M, Pulcini G. A reliability-growth
model in a Bayes-decision framework. IEEE Trans
Reliab 1996;45:505–10.

Preventive Maintenance Models:
Replacement, Repair, Ordering, and
Inspection

Ch
ap

te
r1

9Tadashi Dohi, Naoto Kaio and Shunji Osaki

19.1 Introduction
19.2 Block Replacement Models
19.2.1 Model I
19.2.2 Model II
19.2.3 Model III
19.3 Age Replacement Models
19.3.1 Basic Age Replacement Model
19.4 Ordering Models
19.4.1 Continuous-timeModel
19.4.2 Discrete-time Model
19.4.3 Combined Model with Minimal Repairs
19.5 Inspection Models
19.5.1 Nearly Optimal Inspection Policy by Kaio and Osaki (K&O Policy)
19.5.2 Nearly Optimal Inspection Policy by Munford and Shahani (M&S Policy)
19.5.3 Nearly Optimal Inspection Policy by Nakagawa and Yasui (N&Y Policy)
19.6 Concluding Remarks

19.1 Introduction

Many systems become more large-scale and
more complicated and influence our society
greatly, such as airplanes, computer networks,
etc. Reliability/maintainability theory (engineer-
ing) plays a very important role in maintaining
such systems. Mathematical maintenance poli-
cies, centering preventive maintenance, have been
developed mainly in the research area of oper-
ations research/management science, to gener-
ate an effective preventive maintenance schedule.
The most important problem in mathematical
maintenance policies is to design a maintenance
plan with two maintenance options: preventive re-
placement and corrective replacement. In preven-
tive replacement, the system or unit is replaced by
a new one before it fails. On the other hand, with

corrective replacement it is the failed unit that is
replaced. Hitherto, a huge number of replacement
methods have been proposed in the literature.
At the same time, some technical books on this
problem have been published. For example, Ar-
row et al. [1], Barlow and Proschan [2, 3], Jorgen-
son et al. [4], Gnedenko et al. [5], Gertsbakh [6],
Ascher and Feingold [7] and Osaki [8, 9] are the
classical but very important texts to study regard-
ing mathematical maintenance theory. Many au-
thors have also published several monographs on
specific topics. The reader is referred to Osaki and
Hatoyama [10], Osaki and Cao [11], Ozekici [12],
and Christer et al. [13]. Recently, Barlow [14] and
Aven and Jensen [15] presented excellent text-
books reviewing mathematical maintenance the-
ory. There are also some useful survey papers
reviewing the history of this research context, such

349

350 Maintenance Theory and Testing

as those by McCall [16], Osaki and Nakagawa [17],
Pierskalla and Voelker [18], Sherif and Smith [19],
and Valdez-Flores and Feldman [20].

Since the mechanism that causes failure in al-
most all real complex systems may be considered
to be uncertain, the mathematical technique to
deal with maintenance problems should be based
on the usual probability theory. If we are inter-
ested in the dynamic behavior of system failures
depending on time, the problems are essentially
reduced to studying the stochastic processes pre-
senting phenomena on both failure and replace-
ment. In fact, since the theory of stochastic pro-
cesses depends strongly on mathematical mainte-
nance theory, many textbooks on stochastic pro-
cesses have treated several maintenance problems.
See, for example, Feller [21], Karlin and Taylor [22,
23], Taylor and Karlin [24], and Ross [25]. In other
words, in order to design a maintenance schedule
effectively, both the underlying stochastic process
governing the failure mechanism and the role of
maintenance options carried out on the process
have to be analyzed carefully. In that sense, math-
ematical maintenance theory is one of the most
important parts in applied probability modeling.

In this tutorial article, we present the pre-
ventive maintenance policies arising in the con-
text of maintenance theory. Simple but practically
important preventive maintenance optimization
models, that involve age replacement and block
replacement, are reviewed in the framework of
the well-known renewal reward argument. Some
extensions to these basic models, as well as the
corresponding discrete time models, are also in-
troduced with the aim of the application of the
theory to the practice. In almost all textbooks
and technical papers, the discrete-time preventive
maintenance models have been paid scant atten-
tion. The main reason is that discrete-time mod-
els are ordinarily considered as trivial analogies
of continuous-time models. However, we often
face some maintenance problems modeled in the
discrete-time setting in practice. If one considers
the situation where the number of take-offs from
airports influences the damage to an airplane, the
parts comprising the airplane should be replaced
at a prespecified number of take-offs rather than

after an elapsed time. Also, in the Japanese elec-
tric power company under our investigation, the
failure time data of electric switching devices are
recorded as group data (the number of failures
per year) and it is not easy to carry out a preven-
tive replacement schedule on a weekly or monthly
basis, since the service team is engaged in other
works, too. From our questionnaire, it is helpful
for practitioners that a preventive replacement
schedule should be carried out on a near-annual
basis. This will motivate attention toward discrete-
time maintenance models.

19.2 Block Replacement Models
For block replacement models, the preventive re-
placement is executed periodically at a prespec-
ified time kt0 (t0 ≥ 0) or kN (N = 0, 1, 2, . . .),
(k = 1, 2, 3, . . .). If the unit fails during the time
interval ((k − 1)t0, kt0] or ((k − 1)N, kN], then
the corrective maintenance is made at the failure
time. The main property for the block replacement
is that it is easier to administer in general, since
the preventive replacement time is scheduled in
advance and one need not observe the age of a
unit. In this section, we develop the following
three variations of block replacement model:

1. a failed unit is replaced instantaneously at
failure (Model I);

2. a failed unit remains inoperable until the next
scheduled replacement comes (Model II);

3. a failed unit undergoes minimal repair
(Model III).

The cost components used in this section are as
follows:

cp (>0) unit preventive replacement cost at
time kt0 or kN , (k = 1, 2, 3, . . .)

cc (>0) unit corrective replacement cost at
failure time

cm (>0) unit minimal repair cost at failure
time.

19.2.1 Model I

First, we consider the continuous-time block
replacement model [2]. A failed unit is replaced

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 351

by a new one during the replacement interval t0,
and the scheduled replacement for the non-failed
unit is performed at kt0 (k = 1, 2, 3, . . .). LetF(t)

be the continuous lifetime distribution with finite
mean 1/λ (>0). From the well-known renewal
reward theorem, it is immediate to formulate the
expected cost per unit time in the steady state for
the block replacement model as follows:

Bc(t0)= ccM(t0)+ cp

t0
t0 ≥ 0 (19.1)

where the function M(t)=∑∞k=1 F
(k)(t) denotes

the mean number of failures during the time
period (0, t] (the renewal function) and F (k)(t)

the k-fold convolution of the lifetime distribution.
The problem is, of course, to derive the optimal
block replacement time t∗0 that minimizes Bc(t0).

Define the numerator of the derivative of Bc(t0)

as

jc(t0)= cc[t0m(t0)−M(t0)] − cp (19.2)

where the function m(t)= dM(t)/dt is the re-
newal density. Then, we have the optimal block
replacement time t∗0 that minimizes the expected
cost per unit time in the steady state Bc(t0).

Theorem 1.

(1) Suppose that the function m(t) is strictly
increasing with respect to t (>0).

(i) If jc(∞) > 0, then there exists one finite
optimal block replacement time t∗0 (0 <

t∗0 <∞) that satisfies jc(t
∗
0)= 0. Then the

corresponding minimum expected cost is

Bc(t
∗
0)= ccm(t∗0) (19.3)

(ii) If jc(∞)≤ 0, then t∗0 →∞, i.e. it is op-
timal to carry out only the corrective re-
placement, and the corresponding mini-
mum expected cost is

Bc(∞)= λcc (19.4)

(2) Suppose that the function m(t) is decreasing
with respect to t (> 0). Then, the optimal block
replacement time is t∗0 →∞.

Next, we formulate the discrete-time block
replacement model [29]. In the discrete-time
setting, the expected cost per unit time in the
steady state is

Bd(N)= ccM(N)+ cp

N
N = 0, 1, 2, . . .

(19.5)
where the function M(n)=∑∞k=1 F

(k)(n) is the
discrete renewal function for the discrete lifetime
distribution F(n) (n= 0, 1, 2, . . .) and F (k)(n)

is the k-fold convolution; for more details, see
Munter [26] and Kaio and Osaki [27]. Define the
numerator of the difference of Bd(N) as

jd(N)= cc[Nm(N + 1)−M(N)] − cp (19.6)

where the function m(n)=M(n)−M(n− 1) is
the renewal probability mass function. Then, we
have the optimal block replacement time N∗ that
minimizes the expected cost per unit time in the
steady state Bd(N).

Theorem 2.

(1) Suppose that the m(n) is strictly increasing
with respect to n (>0).

(i) If jd(∞) > 0, then there exists one finite
optimal block replacement time N∗ (0 <

N∗ <∞) that satisfies jd(N − 1) < 0 and
jd(N) ≥ 0. Then the corresponding mini-
mum expected cost satisfies the inequality

ccm(N∗) < Bd(N
∗)≤ ccm(N∗ + 1)

(19.7)
(ii) If jd(∞) ≤ 0, then N∗ →∞, i.e. it is op-

timal to carry out only the corrective re-
placement, and the corresponding mini-
mum expected cost is

Bd(∞)= λcc (19.8)

(2) Suppose that the function m(n) is decreasing
with respect to n (> 0). Then, the optimal block
replacement time is N∗ →∞.

Remarks. A large number of variations on the
block replacement model have been studied in
the literature. Though we assume in the model
above that the cost component is constant,

352 Maintenance Theory and Testing

some modifications are possible. Tilquin and
Cleroux [30] and Berg and Epstein [31] extended
the original model in terms of cost structure.

19.2.2 Model II

For the first model, we have assumed that a failed
unit is detected instantaneously just after failure.
This implies that a sensing device monitors the
operating unit. Since such a case is not always
general, however, we assume that the failure
is detected only at kt0 (t0 ≥ 0) or kN (N =
0, 1, 2, . . .), (k = 1, 2, 3, . . .) (see Osaki [9]).
Consequently, in Model II, a unit is always
replaced at kt0 or kN , but is not replaced at the
time of failure, and the unit remains inoperable for
the time duration from the occurrence of failure
until its detection.

In the continuous-time model, since the
expected duration from the occurrence of failure
until its detection per cycle is given by

∫ t0
0 (t0 − t)

dF(t)= ∫ t00 F(t) dt , we have the expected cost per
unit time in the steady state:

Cc(t0)= cc
∫ t0

0 F(t) dt + cp

t0
(19.9)

where cc is changed to the cost of failure per unit
time, i.e. the cost occurs per unit time for system
down. Define the numerator of the derivative of
Cc(t0) with respect to t0 as kc(t0), i.e.

kc(t0)= cc

[
F(t0)t0 −

∫ t0

0
F(t) dt

]
− cp (19.10)

Theorem 3.

(i) If kc(∞) > 0, then there exists one unique
optimal block replacement time t∗0 (0 <

t∗0 <∞) that satisfies kc(t
∗
0)= 0, and the

corresponding minimum expected cost is

Cc(t
∗
0)= ccF(t∗0) (19.11)

(ii) If kc(∞)≤ 0, then t∗0 →∞ and Cc(∞)= cc.

On the other hand, in the discrete-time setting,
the expected cost per unit time in the steady state

is

Cd(N)= cc
∑N−1

k=1 F(k)+ cp

N
N = 0, 1, 2, . . .

(19.12)
where the function F(n) is the lifetime distribu-
tion (n= 0, 1, 2, . . .). Define the numerator of
the difference of Cd(N) as

id(N) = cc

[
NF(N)−

N−1∑
k=1

F(k)

]
− cp (19.13)

Then, we have the optimal block replacement
time N∗ that minimizes the expected cost per unit
time in the steady state Cd(N).

Theorem 4.

(i) If jd(∞) > 0, then there exists one finite
optimal block replacement time N∗ (0 <N∗ <
∞) that satisfies id(N − 1) < 0 and id(N) ≥
0. Then the corresponding minimum expected
cost satisfies the inequality

ccF(N∗ − 1) < Cd(N
∗) ≤ ccF(N∗) (19.14)

(ii) If id(∞)≤ 0, then N∗ →∞.

Remarks. It is noted that Model II has not been
widely studied in the literature, since this cannot
detect the failure instantly and is not certainly
superior to Model I in terms of cost minimization.
However, as described previously, one can see that
the continuous monitoring of the operating unit is
not always possible for all practical applications.

19.2.3 Model III

In the final model, we assume that minimal repair
is performed when a unit fails and the failure rate
is not disturbed by each repair. If we consider
a stochastic process {N(t), t ≥ 0} in that N(t)

represents the number of minimal repairs up to
time t , the process {N(t), t ≥ 0} is governed by
a non-homogeneous Poisson process with mean
value function

(t)=
∫ t

0
r(x) dx (19.15)

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 353

that is also called the hazard function, where the
function r(t)= f (t)/F̄ (t) is called the failure rate
or the hazard rate; in general ψ̄(·)= 1− ψ(·).
Noting this fact, Barlow and Hunter [28] gave the
expected cost per unit time in the steady state for
the continuous-time model:

Vc(t0)= cm
(t0)+ cp

t0
(19.16)

Define the numerator of the derivative of Vc(t0)

as

lc(t0)= cm[t0r(t0)−
(t0)] − cp (19.17)

Then, we have the optimal block replacement
time (with minimal repair) t∗0 that minimizes the
expected cost per unit time in the steady state
Vc(t0).

Theorem 5.

(1) Suppose that F(t) is strictly increasing failure
rate (IFR), i.e. the failure rate is strictly
increasing.

(i) If lc(∞) > 0, then there exists one finite
optimal block replacement time with min-
imal repair t∗0 (0 < t∗0 <∞) that satisfies
lc(t
∗
0)= 0. Then the corresponding mini-

mum expected cost is

Vc(t
∗
0)= cmr(t

∗
0) (19.18)

(ii) If lc(∞) ≤ 0, then t∗0 →∞ and the corre-
sponding minimum expected cost is

Vc(∞)= cmr(∞) (19.19)

(2) Suppose that F(t) is decreasing failure rate
(DFR), i.e. the failure rate is decreasing.
Then, the optimal block replacement time with
minimal repair is t∗0 →∞.

Next, we formulate the discrete-time block
replacement model with minimal repair [29]. In
the discrete-time setting, the expected cost per
unit time in the steady state is

Vd(N)= cm
(N)+ cp

N
N = 0, 1, 2, . . .

(19.20)

where the function
(n) is the mean value func-
tion of the discrete non-homogeneous Poisson
process. Define the numerator of the difference of
Vd(N) as

ld(N)= cm[Nr(N + 1)−
(N)] − cp (19.21)

where the function r(n)=
(n)−
(n− 1)=
f (n)/F̄ (n− 1) is the failure rate function. Then,
we have the optimal block replacement time with
minimal repair N∗ that minimizes the expected
cost per unit time in the steady state Vd(N).

Theorem 6.

(1) Suppose that F(n) is strictly IFR.

(i) If ld(∞) > 0 , then there exists one
finite optimal block replacement time
with minimal repair N∗ (0 < N∗ <∞)

that satisfies ld(N − 1) < 0 and ld(N) ≥
0. Then the corresponding minimum
expected cost satisfies the inequality

cmr(N
∗) < Vd(N

∗)≤ cmr(N
∗ + 1)

(19.22)
(ii) If ld(∞)≤ 0, then N∗ →∞.

(2) Suppose that F(n) is DFR. Then, the optimal
block replacement time with minimal repair is
N∗ →∞.

Remarks. It is apparent that a great number of
papers on minimal repair models have been pub-
lished. Morimura [32], Tilquin and Cleroux [33]
and Cleroux et al. [34] involved several interesting
modifications. Later, Park [35], Nakagawa [36–
40], Nakagawa and Kowada [41], Phelps [42],
Berg and Cleroux [43], Boland [44], Boland and
Proschan [45], Block et al. [46], and Beichelt [47]
proposed extended minimal repair models from
the standpoint of generalization. The most in-
teresting of the models with minimal repair is
the (t, T) policy. The (t, T) policy is a com-
bined policy with three kinds of maintenance
options: minimal repair, failure replacement, and
preventive replacement. That is, the minimal re-
pair is executed for failures during the first period
[0, t), but the failure replacement is made for
[t, T], where T is the preventive replacement time.

354 Maintenance Theory and Testing

Tahara and Nishida [48] formulated this model
first. It was then investigated by Phelps [49] and
Segawa et al. [50]; recently, Ohnishi [51] proved
the optimality of the (t, T) policy under aver-
age cost criterion, via a dynamic programming
approach. This tells us that the (t, T) policy is
optimal if we have only three kinds of maintenance
option.

19.3 Age Replacement Models
As is well known, in the age replacement model,
if the unit does not fail until a prespecified
time t0 (t0 ≥ 0) or N (N = 0, 1, 2, . . .), then it
is replaced by a new one preventively, otherwise,
it is replaced at the failure time. Denote the
corrective and the preventive replacement costs
by cc and cp respectively, where, without loss of
generality, cc > cp. This model plays a central role
in all replacement models, since the optimality
of the age replacement model has been proved
by Bergman [52] if the replacement by a new
unit is the only maintenance option (i.e. if no
repair is considered as an alternative option). In
the remainder of this section, we introduce three
kinds of age replacement model.

19.3.1 Basic Age Replacement Model

See Barlow and Proschan [2], Barlow and
Hunter [53], and Osaki and Nakagawa [54]. From
the renewal reward theorem, it can be seen that
the expected cost per unit time in the steady state
for the age replacement model is

Ac(t0)= ccF(t0)+ cpF̄ (t0)∫ t0
0 F̄ (t) dt

t0 ≥ 0 (19.23)

If one can assume that there exists the density
f (t) for the lifetime distribution F(t) (t ≥ 0),
the failure rate r(t)= f (t)/F̄ (t) necessarily exists.
Define the numerator of the derivative of Ac(t0)

with respect to t0, divided by F̄ (t0) as hc(t0), i.e.

hc(t0)= r(t0)

∫ t0

0
F̄ (t) dt − F(t0)− cp

cc − cp
(19.24)

Then, we have the optimal age replacement time t∗0
that minimizes the expected cost per unit time in
the steady state Ac(t0).

Theorem 7.

(1) Suppose that the lifetime distribution F(t) is
strictly IFR.

(i) If r(∞) > K = λcc/(cc − cp), then there
exists one finite optimal age replace-
ment time t∗0 (0 < t∗0 <∞) that satisfies
hc(t

∗
0)= 0. Then the corresponding mini-

mum expected cost is

Ac(t
∗
0)= (cc − cp)r(t

∗
0) (19.25)

(ii) If r(∞)≤K , then t∗0 →∞ and Ac(∞)=
Bc(∞)= λcc.

(2) If F(t) is DFR, then t∗0 →∞.

Next, let us consider the case where the cost
is discounted by the discount factor α (α > 0)
(see Fox [55]). The present value of a unit cost
after t (t ≥ 0) time is exp(−αt). In the continuous-
time age replacement problem, the expected total
discounted cost over an infinite time horizon is

Ac(t0; α)= cc
∫ t0

0 e−αtf (t) dt + cp e−αt0F̄ (t0)

α
∫ t0

0 e−αt F̄ (t) dt

t0 ≥ 0 (19.26)

Define the numerator of the derivative of Ac(t0; α)
with respect to t0, divided by F̄ (t0) exp(−αt0) as
hc(t0; α):

hc(t0; α)= r(t0)

∫ t0

0
e−αt F̄ (t) dt

−
∫ t0

0
e−αtf (t) dt − cp

cc − cp

(19.27)

Then, we have the optimal age replacement time t∗0
that minimizes the expected total discounted cost
over an infinite time horizon Ac(t0; α).
Theorem 8.

(1) Suppose that the lifetime distribution F(t) is
strictly IFR.

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 355

(i) If r(∞) > K(α), then there exists one
finite optimal age replacement time t∗0
(0 < t∗0 <∞) that satisfies hc(t

∗
0 ; α)= 0,

where

K(α)= ccF
∗(α)+ cpF̄

∗(α)
(cc − cp)F̄ ∗(α)/α

(19.28)

F ∗(α)=
∫ ∞

0
e−αtf (t) dt (19.29)

Then the corresponding minimum ex-
pected cost is

Ac(t
∗
0 ; α)=

(cc − cp)r(t
∗
0)

α
− cp (19.30)

(ii) If r(∞)≤K(α), then t∗0 →∞ and

Ac(∞; α)= ccF
∗(α)/F̄ ∗(α) (19.31)

(2) If F(t) is DFR, then t∗0 →∞.

Following Nakagawa and Osaki [56], let us con-
sider the discrete-time age replacement model.
Define the discrete-time lifetime distribution F(n)

(n= 0, 1, 2, . . .), the probability mass func-
tion f (n), and the failure rate r(n)= f (n)/F̄ (n−
1). From the renewal reward theorem, it can be
seen that the expected cost per unit time in the
steady state for the age replacement model is

Ad(N)= ccF(N)+ cpF̄ (N)∑N
i=1 F̄ (i − 1)

N = 0, 1, 2, . . .

(19.32)
Define the numerator of the difference ofAd(N) as

hd(N)= r(N + 1)
N∑
i=1

F̄ (i − 1)− F(N)

− cp

cc − cp
(19.33)

Then, we have the optimal age replacement
time N∗ that minimizes the expected cost per unit
time in the steady state Ad(N).

Theorem 9.

(1) Suppose that the lifetime distribution F(N) is
strictly IFR.

(i) If r(∞) > K , then there exists one fi-
nite optimal age replacement time N∗
(0 <N∗ <∞) that satisfieshd(N

∗ − 1) <
0 and hd(N

∗) ≥ 0. Then the corresponding
minimum expected cost satisfies the fol-
lowing inequality

(cc − cp)r(N
∗) < Ad(N

∗)
≤ (cc − cp)r(N

∗ + 1)
(19.34)

(ii) If r(∞)≤K , then N∗ →∞ and
Ad(∞)= Bd(∞)= λcc.

(2) If F(N) is DFR, then N∗ →∞.

We introduce the discount factor β (0 < β < 1)
in the discrete-time age replacement problem.
The present value of a unit cost after n (n=
0, 1, 2, . . .) period is βn. In the discrete-time
age replacement problem, the expected total
discounted cost over an infinite time horizon is

Ad(N; β)=
[
cc

N∑
j=0

βjf (j)+ cpβ
NF̄ (N)

]

×
[

1− β

β

N∑
i=1

βiF̄ (i − 1)

]−1

N = 0, 1, 2, . . . (19.35)

Define the numerator of the difference of
Ad(N; β) as

hd(N; β)= r(N + 1)
N∑
i=1

βiF̄ (i − 1)

−
N∑
j=0

βjf (j)− cp

cc − cp
(19.36)

Then, we have the optimal age replacement
time N∗ that minimizes the expected total
discounted cost over an infinite time horizon
Ad(N; β).
Theorem 10.

(1) Suppose that the lifetime distribution F(N) is
strictly IFR.

(i) If r(∞) > K(β), then there exists
one finite optimal age replacement

356 Maintenance Theory and Testing

time N∗ (0 <N∗ <∞) that satisfies
hd(N

∗ − 1; β) < 0 and hd(N
∗; β)≥ 0.

Then the corresponding minimum
expected cost satisfies the following
inequalities:

(cc − cp)r(N
∗)

(1− β)/β
− cp < Ad(N

∗; β)
(19.37)

and

Ad(N
∗; β)≤ (cc − cp)r(N

∗ + 1)

(1− β)/β
− cp

(19.38)
where

K(β)

=
{
cc

∞∑
j=0

βjf (j)+ cp

∞∑
j=0

(1− βj)f (j)

}

×
{
(cc − cp)

∞∑
i=1

βiF̄ (i − 1)

}−1

(19.39)

(ii) If r(∞)≤K(β), then N∗ →∞ and

Ad(∞; β)=
cc
∑∞

j=0 βjf (j)∑∞
j=0(1− βj)f (j)

(19.40)

(2) If F(N) is DFR, then N∗ →∞.

Theorem 11.

(1) For the continuous-time age replacement
problems, the following relationships hold:

Ac(t0)= lim
α→0

αAc(t0; α) (19.41)

hc(t0)= lim
α→0

hc(t0; α) (19.42)

K = lim
α→0

K(α) (19.43)

(2) For the discrete-time age replacement prob-
lems, the following relationships hold.

Ad(N)= lim
β→1

(1− β)Ad(N; β) (19.44)

hd(N)= lim
β→1

hd(N; β) (19.45)

K = lim
β→1

K(β) (19.46)

Remarks. Glasser [57], Scheaffer [58], Cleroux
and Hanscom [59], Osaki and Yamada [60],
and Nakagawa and Osaki [61] extended the
basic age replacement model mentioned above.
Here, we introduce an interesting topic on the
age replacement policy under the different cost
criterion from the expected cost per unit time
in the steady state. Based on the seminal idea
by Derman and Sacks [62], Ansell et al. [63]
analyzed the age replacement model under an
alternative cost criterion. In the continuous-time
model with no discount, let Yi and Si denote the
total cost and the time length for ith cycle (i =
1, 2, . . .) respectively, where Yi = ccI{Xi<t0} +
cpI{Xi≥t0}, Si =min{Xi, t0}, Xi is the lifetime for
the ith cycle, and I{·} is the indicator function.

In Equation 19.23, we find that

lim
t→∞

E[total cost on (0, t]]
t

= E[Yi]/E[Si]
= Ac(t0) (19.47)

On the other hand, let NU(t) denote the number
of cycles up to time t . Then, we define

η(t)≡ 1

NU(t)

NU(t)∑
i=1

E[Yi/Si] (19.48)

where η(t) is the mean of the ratioE[Yi/Si] during
NU(t) cycles. From the independence of each
cycle, we have

A∗c(t0)= lim
t→∞ η(t)= E[Yi/Si]

=
∫ t0

0
(cc/t) dF(t)+

∫ ∞
t0

(cp/t0) dF(t)

(19.49)

This interesting cost criterion is called the
expected cost ratio and is of course different
from E[Yi]/E[Si]. Ansell et al. [63] compared
this model with an approximated age replacement
policy with finite time horizon by Christer [64,65]
and Christer and Jack [66].

19.4 Ordering Models
In both block and age replacement problems,
a spare unit is available whenever the original

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 357

unit fails. However, it should be noted that this
assumption is questionable in most practical
cases. In fact, if a sufficiently large number of
spare units is always kept on hand, a large
inventory holding cost will be needed. Hence, if
the system failure may be considered as a rare
event for the operating system, then the spare
unit can be ordered when it is required. There
were seminal contributions by Wiggins [67], Allen
and D’Esopo [68, 69], Simon and D’Esopo [70],
Nakagawa and Osaki [71], and Osaki [72]. A large
number of ordering/order replacement models
have been analyzed by many authors. For instance,
the reader should refer to Thomas and Osaki [73,
74], Kaio and Osaki [75–78] and Osaki et al. [79]. A
comprehensive bibliography in this research area
is listed in Dohi et al. [80].

19.4.1 Continuous-time Model

Let us consider a replacement problem for a one-
unit system where each failed unit is scrapped
and each spare is provided, after a lead time,
by an order. The original unit begins operating
at time t = 0, and the planning horizon is
infinite. If the original unit does not fail up to
a prespecified time t0 ∈ [0,∞), the regular order
for a spare is made at the time t0 and after a
lead time Lr (>0) the spare is delivered. Then
if the original unit has already failed by t = t0 +
Lr, the delivered spare takes over its operation
immediately. But even if the original unit is
still operating, the unit is replaced by the spare
preventively. On the other hand, if the original unit
fails before the time t0, the expedited order is made
immediately at the failure time and the spare takes
over its operation just after it is delivered after a
lead time Le (>0). In this situation, it should be
noted that the regular order is not made. The same
cycle repeats itself continually.

Under this model, define the interval from one
replacement to the following replacement as one
cycle. Let ce (>0), cr (>0), kf (>0), w (>0), and
s (<0) be the expedited ordering cost, the regular
ordering cost, the system down (shortage) cost per
unit time, the operation cost per unit time, and the
salvage cost per unit time respectively. Then, the

expected cost per unit time in the steady state is

Oc(t0)= Vc(t0)/Tc(t0) (19.50)

where

Vc(t0)= ce

∫ t0

0
dF(t)+ cr

∫ ∞
t0

dF(t)

+ kf

[∫ t0

0
Le dF(t)

+
∫ t0+Lr

t0

(t0 + Lr − t) dF(t)

]
+w

[∫ t0+Lr

0
t dF(t)

+
∫ ∞
t0+Lr

(t0 + Lr) dF(t)

]
+ s

∫ ∞
t0+Lr

(t − t0 − Lr) dF(t)

= ceF(t0)+ crF̄ (t0)

+ kf

[
(Le − Lr)F (t0)+

∫ t0+Lr

t0

F(t) dt

]
+w

∫ t0+Lr

0
F̄ (t) dt + s

∫ ∞
t0+Lr

F̄ (t) dt

t0 ≥ 0 (19.51)

and

Tc(t0)=
∫ t0

0
(t + Le) dF(t)+

∫ ∞
t0

(t0 + Lr) dF(t)

= (Le − Lr)F (t0)+ Lr +
∫ t0

0
F̄ (t) dt

(19.52)

Define the numerator of the derivative of Oc(t0)

with respect to t0, divided by F̄ (t0) as qc(t0), i.e.

qc(t0)= {(kf −w + s)R(t0)+ (w − s)

+ [kf(Le − Lr)+ (ce − cr)]r(t0)}
×
[
(Le − Lr)F (t0)+ Lr +

∫ t0

0
F̄ (t) dt

]
−
{
w

∫ t0+Lr

0
F̄ (t) dt + ceF(t0)+ crF̄ (t0)

358 Maintenance Theory and Testing

+ kf

[
(Le − Lr)F (t0)+

∫ t0+Lr

t0

F(t) dt

]
+ s

∫ ∞
t0+Lr

F̄ (t) dt

}
[(Le − Lr)r(t0)+ 1]

(19.53)

where the function

R(t0)= F(t0 + Lr)− F(t0)

F̄ (t0)
(19.54)

has the same monotone properties as the failure
rate r(t0), i.e. R(t) is increasing (decreasing) if
and only if r(t) is increasing (decreasing). Then,
we have the optimal order replacement (ordering)
time t∗0 that minimizes the expected cost per unit
time in the steady state Oc(t0).

Theorem 12.

(1) Suppose that the lifetime distribution F(t) is
strictly IFR.

(i) If qc(0) < 0 and qc(∞) > 0, then there
exists one finite optimal order replace-
ment time t∗0 (0 < t∗0 <∞) that satisfies
qc(t

∗
0)= 0. Then the corresponding mini-

mum expected cost is

Oc(t
∗
0)

= (kf −w + s)R(t∗0)+ (w − s)+ µ(t∗0)
(Le − Lr)r(t

∗
0)+ 1

(19.55)

where

µ(t0)= [kf(Le − Lr)+ (ce − cr)]r(t0)
(19.56)

(ii) If qc(∞)≤ 0, then t∗0 →∞ and

Oc(∞)= w/λ+ ce + kfLe

Le + 1/λ
(19.57)

(iii) If qc(0)≥ 0, then t∗0 = 0 and

Oc(0)= 1

Lr

[
w

∫ Lr

0
F̄ (t) dt + cr

+ kf

∫ Lr

0
F(t) dt + s

∫ ∞
Lr

F̄ (t) dt

]
(19.58)

(2) Suppose that F(t) is DFR. If the inequality[
w

∫ Lr

0
F̄ (t) dt + cr + kf

∫ Lr

0
F(t) dt

+ s

∫ ∞
Lr

F̄ (t) dt

]
(Le + 1/λ)

< (w/λ+ ce + kfLe)Lr (19.59)

holds, then t∗0 = 0, otherwise t∗0 →∞.

19.4.2 Discrete-time Model

In the discrete order-replacement model, the
function in Equation 19.54 is given by

R(N)=
∑N+Lr

n=1 f (n)−∑N
n=1 f (n)∑∞

n=N+1 f (n)
(19.60)

Then, the expected cost per unit time in the steady
state is

Od(N)= Vd(N)/Td(N) (19.61)

where

Vd(N)=w

N+Lr∑
i=1

∞∑
n=i

f (n)+ ce

N−1∑
n=1

f (n)

+ cr

∞∑
n=N

f (n)+ kf

[
(Le − Lr)

N−1∑
n=1

f (n)

+
N+Lr∑
i=N+1

i−1∑
n=1

f (n)+ s

∞∑
i=N+Lr+1

∞∑
n=i

f (n)

]
(19.62)

and

Td(N)= (Le−Lr)

N−1∑
n=1

f (n)+ Lr +
N∑
i=1

∞∑
n=i

f (n)

(19.63)
Notice in the equations above that Le and Lr are
positive integers.

Similar to Equation 19.53, define the numerator
of the difference of Od(N) with respect to N ,

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 359

divided by F̄ (N) as qd(N), i.e.

qd(N)= {(kf −w + s)R(N) + (w − s)

+ [kf(Le − Lr)+ (ce − cr)]r(N)}

×
[
(Le − Lr)

N−1∑
n=1

f (n)+ Lr

+
N∑
i=1

∞∑
n=i

f (n)

]

−
{
w

N+Lr∑
i=1

∞∑
n=i

f (n)+ ce

N−1∑
n=1

f (n)

+ cr

∞∑
n=N

f (n)+ kf

×
[
(Le−Lr)

N−1∑
n=1

f (n)+
N+Lr∑
i=N+1

i−1∑
n=1

f (n)

]

+ s

∞∑
i=N+Lr+1

∞∑
n=i

f (n)

}
× [(Le − Lr)r(N)+ 1] (19.64)

Then, we have the optimal order replacement
time N∗ that minimizes the expected cost per unit
time in the steady state Od(N).

Theorem 13.

(1) Suppose that the lifetime distribution F(N) is
strictly IFR.

(i) If qd(0) < 0 and qd(∞) > 0, then there
exists one finite optimal order replacement
time N∗ (0 < N∗ <∞) that satisfies
qd(N

∗ − 1) < 0 and qd(N
∗)≥ 0.

(ii) If qd(∞)≤ 0, then N∗ →∞.
(iii) If qd(0)≥ 0, then N∗ = 0.

(2) Suppose that F(N) is DFR. Then N∗ = 0,
otherwise N∗ →∞.

Remarks. This section has dealt with typical
order-replacement models in both continuous-
and discrete-time settings. These models can be
extended from the various viewpoints. Thomas
and Osaki [74] and Dohi et al. [80] presented
continuous models with stochastic lead times.
Recently, Dohi and coworkers [81–83] applied

the order-replacement model to analyze the
special continuous review cyclic inventory control
problems.

19.4.3 Combined Model with Minimal
Repairs

In the preceding subsections, if the original unit
fails and there is no spare on hand, the system
remains down until the spare is delivered. In
this subsection, we modify the above-mentioned
model to accommodate systems where, whenever
the original unit fails, minimal repairs are made
to the failed unit and it continues its operation
until it can be replaced by the spare. We add the
cost cm suffered for each minimal repair instead
of kf and use the uniform cannibalization cost cs
instead of s. We discuss the combined model with
minimal repairs for the continuous-time case.

Consider a one-unit system, where each spare
is only provided after a lead time by an order.
Each failure is detected instantaneously and for
each failed unit a minimal repair is executed in a
negligible time. The original unit starts operating
at time zero. The planning horizon is infinite. If the
original unit does not fail before a prespecified
time t0 ∈ [0,∞), the regular order for a spare is
made at the time t0 and the spare is delivered after
a lead time L. Then, the original unit is exchanged
by that spare immediately. If the original unit fails
up to the delivery of the spare, then the minimal
repair is executed for each failure. On the other
hand, if the original unit fails before the time t0,
then at the failure time the minimal repair and
the expedited order are executed simultaneously,
and the original unit is exchanged by the spare
as soon as it is delivered after a lead time L.
If the original unit fails up to the delivery of the
spare, then the minimal repair is executed for each
failure. In this case, the regular order is not made.
After each minimal repair, the unit continues its
operation. Each exchange is made instantaneously,
and after an exchange the system starts operating
immediately. We define an interval from one
exchange to the following exchange as one cycle.
The cycle then repeats itself continually.

360 Maintenance Theory and Testing

The lifetime for each unit obeys an identical
and arbitrary distribution F(t) with a finite
mean 1/λ and a density f (t). Let us introduce the
following four costs: cost ce is suffered for each
expedited order made before the time t0; cost cr
is suffered for each regular order made at the
time t0; the cost cm is suffered for each minimal
repair made at each failure time. Further, cost cs
is suffered as a salvage cost at each exchange time.
We assume that ce > cr. Let us define the failure
rate as follows:

r(t)= f (t)/F̄ (t) (19.65)

where F̄ (t)= 1− F(t). This failure rate r(t) is
assumed to be differentiable. These assumptions
seem to be reasonable.

Under these assumptions, we analyze this
model and discuss the optimal ordering policies,
that minimize the expected cost per unit time in
the steady state.

The expected cost per one cycle A(t0) is given
by

A(t0)= ceF(t0)+ crF̄ (t0)+ cm

[
F(t0+L)

+
∫ t0

0

∫ t+L

t

r(τ) dτ dF(t)

+
∫ t0+L

t0

∫ t0+L

t

r(τ) dτ dF(t)

]
+ cs

(19.66)

Also, the mean time of one cycle M(t0) is given by

M(t0)= L+
∫ t0

0
F̄ (t) dt (19.67)

Thus, the expected cost per unit time in the steady
state C(t0) is given by

C(t0)= A(t0)/M(t0) (19.68)

and

C(0)= cr + cm
∫ L

0 r(τ) dτ + cs

L
(19.69)

C(∞)

= ce + cm[1+
∫∞

0

∫ t+L
t r(τ) dτ dF(t)] + cs

L+ 1/λ
(19.70)

Define the following function from the numer-
ator of the derivative of C(t0):

a(t0)= [(ce − cr)r(t0)

+ cmr(t0 + L)]M(t0)− A(t0) (19.71)

The sufficient conditions for the existence of
optimal ordering policies are presented as follows.

Theorem 14.

(i) If a(0) < 0, then there exists at least an optimal
ordering time t∗0 (0 < t∗0 ≤∞) minimizing the
expected cost per unit time in the steady state
C(t0).

(ii) If a(∞) > 0, then there exists at least an opti-
mal ordering time t∗0 (0≤ t∗0 <∞)minimizing
the expected cost per unit time in the steady
state C(t0).

Next, we have the following interesting results
supposing the monotonic properties of the failure
rate.

Theorem 15.

(1) Suppose that the failure rate is strictly increas-
ing.

(i) If a(0) < 0 and a(∞) > 0, then there
exists a finite and unique optimal ordering
time t∗0 (0 < t∗0 <∞), that minimizes the
expected cost C(t0), satisfying a(t∗0)= 0
and the corresponding expected cost is
given by

C(t∗0)= (ce − cr)r(t
∗
0)+ cmr(t

∗
0 + L)

(19.72)
(ii) If a(0)≥ 0, then the optimal ordering time

is t∗0 = 0, i.e. the order for a spare is
made when the unit is put in service. The
corresponding expected cost is given by
Equation 19.69.

(iii) If a(∞)≤ 0, then the optimal ordering
time is t∗0 →∞, i.e. the order for a spare is
made at the same time as the first failure
of the original unit. The corresponding
expected cost is given by Equation 19.70.

(2) Suppose that the failure rate is decreasing.

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 361

(i) If[
cr + cm

∫ L

0
r(τ) dτ + cs

]
(L+ 1/λ)

<

{
ce + cm

[
1+
∫ ∞

0

∫ t+L

t

r(τ) dτ dF(t)

]
+ cs

}
L (19.73)

then t∗0 = 0.
(ii) If[

cr + cm

∫ L

0
r(τ) dτ + cs

]
(L+ 1/λ)

≥
{
ce + cm

[
1+
∫ ∞

0

∫ t+L

t

r(τ) dτ dF(t)

]
+ cs

}
L (19.74)

then t∗0 →∞.

So far we have treated non-negative ordering
time t0. However, if we choose an initial time zero
carefully, it can be allowed that the ordering
time t0 is negative. That is, if the regular order for
the spare is made at time t0 ∈ (−L, 0), the original
unit begins operation after time interval−t0, i.e. at
time zero, and the spare is delivered at time t0 + L

and the original unit is exchanged by that spare
immediately as the above rule. In this case the
regular order is only made for the order, since the
order, is always made before the original unit fails.

Here, we treat the ordering policy not only
with the non-negative ordering time t0 but also
with the negative one as mentioned above, i.e. the
regular ordering time t0 is over (−L,∞). Then
the expected cost per unit time in the steady
state C(t0) in Equation 19.68 is still valid for
t0 ∈ (−L,∞), since it is clear that F(t0)= 0 and
F̄ (t0)= 1 for negative t0. Furthermore, we assume
that cr + cs > 0.

Thus, we can obtain the theorems correspond-
ing to those above-mentioned, respectively.

Theorem 16. If a(∞) > 0, then there exists at least
a finite optimal ordering time t∗0 (−L < t∗0 <∞)

minimizing the expected cost per unit time in the
steady state C(t0) in Equation 19.68.

Theorem 17.

(1) Suppose that the failure rate is strictly increas-
ing.

(i) If a(∞) > 0, then there exists a finite and
unique optimal ordering time t∗0 (−L<

t∗0 <∞), that minimizes the expected cost
C(t0) in Equation 19.68, satisfying a(t∗0)=
0, and the corresponding expected cost is
given by Equation 19.72.

(ii) If a(∞)≤ 0, then the optimal ordering
time is t∗0 →∞.

(2) Suppose that the failure rate is decreasing.
Then t∗0 →∞.

Remarks. When we consider a negative ordering
time, it is of no interest if we cannot choose the
operational starting point of the system, i.e. an
initial time zero definitely. For example, it is of
no interest to consider a negative ordering time
in the ordering model that when the regular
ordered spare is delivered and the original unit
does not fail once, that spare is put into inventory
until the original one fails first, since we cannot
choose the operational starting point of the system
definitely.

19.5 Inspection Models
There are several systems where failures are not
detected immediately they occur, usually those in
that failure is not catastrophic and an inspection
is needed to reveal the fault. If we execute too
many inspections, then system failure is detected
more rapidly, but we incur a high inspection
cost. Conversely, if we execute few inspections,
the interval between the failure and its detection
increases and we incur a high cost of failure.
The optimal inspection policy minimizes the total
expected cost composed of costs for inspection
and system failure. From this viewpoint, many
authors have discussed optimal and/or nearly
optimal inspection policies [2, 84–93].

Among those policies, the inspection policy
discussed by Barlow and coworkers [2, 84] is the

362 Maintenance Theory and Testing

most famous. They have discussed the optimal
inspection policy in the following model. A one-
unit system is considered, that obeys an arbitrary
lifetime distribution F(t) with a probability den-
sity function (p.d.f.) f (t). The system is inspected
at prespecified times tk (k = 1, 2, 3, . . .), where
each inspection is executed perfectly and instanta-
neously. The policy terminates with an inspection
that can detect a system failure. The costs consid-
ered are ci (>0), the cost of an inspection, and
kf(> 0), the cost of failure per unit of time. Then
the total expected cost is

CB =
∞∑
k=0

∫ tk+1

tk

[ci(k + 1)+ kf(tk+1 − t)] dF(t)

(19.75)
They obtained Algorithm 1 to seek the optimal
inspection-time sequence that minimizes the total
expected cost in Equation 19.75 by using the
recurrence formula

tk+1 − tk = F(tk)− F(tk−1)

f (tk)
− ci

kf

k = 1, 2, 3, . . . (19.76)

where f (t) is a PF2 (Pólya frequency function of
order two) with f (t +�)/f (t) strictly decreasing
for t ≥ 0, �> 0, and with f (t) > 0 for t > 0, and
t0 = 0.

Algorithm 1.

begin:

choose t1 to satisfy ci = kf

∫ t1

0
F(t) dt ;

repeat

compute t2, t3, . . . , recursively using
Equation 19.76;
if any tk+1 − tk > tk − tk−1,
then reduce t1;
if any tk+1 − tk < 0,
then increase t1;

until t1 < t2 < · · · are determined to the
degree of accuracy required;
end.

However, Algorithm 1 by Barlow and coworkers
is complicated to execute, because one must apply

trial and error to decide the first inspection
time t1, and the assumption on f (t) is restrictive.
To overcome these difficulties, some improved
procedures to obtain the nearly optimal inspection
policy have been proposed [85, 87–93].

We review the nearly optimal inspection
policies proposed by Kaio and Osaki [85, 92, 93],
Munford and Shahani [87], and Nakagawa and
Yasui [90]. We follow the inspection model and
notation introduced by Barlow and coworkers.
For details, see each of the contributed papers in
the references.

19.5.1 Nearly Optimal Inspection
Policy by Kaio and Osaki (K&O Policy)

Introduce the inspection density at time t , n(t),
that is a smooth function and denotes the
approximate number of inspections per unit time
at time t . Then the total expected cost up to the
detection of the failure is approximately

Cn(n(t))= ci

∫ ∞
0

n(t)F̄ (t) dt

+ kf

∫ ∞
0

1

2n(t)
dF(t) (19.77)

where ψ̄ = 1− ψ , in general. The density n(t)

that minimizes the functional Cn(n(t)) in Equa-
tion 19.77 is

n(t)= [kcr(t)]1/2 (19.78)

where kc = kf/(2ci), and r(t)= f (t)/F̄ (t), a fail-
ure rate. The inspection times tk (k = 1, 2, 3, . . .)
satisfy

k =
∫ tk

0
n(t) dt k = 1, 2, 3, . . . (19.79)

Substituting n(t) in Equation 19.78 into Equa-
tion 19.79 yields the nearly optimal inspection-
time sequence.

Kaio and Osaki obtained this procedure by
developing that of Keller [91]. For details, see Kaio
and Osaki [85]. Note that the procedure does not
depend on assumptions about the p.d.f. f (t).

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 363

19.5.2 Nearly Optimal Inspection
Policy by Munford and Shahani (M&S
Policy)

Let
F(tk)− F(tk−1)

F̄ (tk−1)
= p

k = 1, 2, 3, . . . ; 0 < p < 1 (19.80)

Then the inspection times tk (k = 1, 2, 3, . . .) are

tk = F−1(1− p̄k) k = 1, 2, 3, . . . (19.81)

where the probability p is chosen such that the
nearly total expected cost up to the detection of
the failure, Cp(p), is minimized:

Cp(p)= ci

p
+ kf

[∞∑
k=1

tkp̄
k−1p −

∫ ∞
0

tf (t) dt

]
(19.82)

This procedure does not depend on assumptions
about the p.d.f. f (t). For details, see Munford
and Shahani [87]; additionally, see Munford
and Shahani [88] for the case of the Weibull
distribution and Tadikamalla [89] for the gamma
distribution.

19.5.3 Nearly Optimal Inspection
Policy by Nakagawa and Yasui (N&Y
Policy)

This procedure is based on one by Barlow and
coworkers [2, 84] (abbreviated to B policy below).
If the p.d.f. f (t) is a PF2, then Algorithm 2 is
obtained.

Algorithm 2.

begin:

choose d appropriately for 0 < d <
ci

kf
;

determine tn after sufficient time has
elapsed to give the degree of accuracy
required;
compute tn−1 to satisfy

tn − tn−1 − d = F(tn)− F(tn−1)

f (tn)
− ci

kf

repeat
compute tn−2 > tn−3 > · · ·
recursively using Equation 19.76;

until ti < 0 or ti+1 − ti > ti ;

end.

For details, see Nakagawa and Yasui [90].

Remarks. From numerical comparisons with
Weibull and gamma distributions, we conclude
that there are no significant differences between
the optimal and nearly optimal inspection poli-
cies [93], and consequently we should adopt the
simplest policy to compute, by Kaio and Os-
aki [85]. There are the following advantages when
we use the K&O policy:

(i) We can obtain the nearly optimal inspection
policy uniquely, immediately and easily from
Equations 19.78 and 19.79 for any distribu-
tions, whereas the B and N&Y policies cannot
treat non-PF2 distributions.

(ii) We can analyze more complicated models and
easily obtain their nearly optimal inspection
policies, e.g. see Kaio and Osaki [85].

19.6 Concluding Remarks
This chapter has discussed the basic preven-
tive maintenance policies and their extensions,
in terms of both continuous- and discrete-time
modeling. For further reading on the discrete
models, see Nakagawa [29, 94] and Nakagawa and
Osaki [95]. Since the mathematical maintenance
models are applicable to a variety of real prob-
lems, such a modeling technique will be useful
for practitioners and researchers. Though we have
reviewed only the limited maintenance models
in the limited space available here, a number
of earlier models should be reformulated in a
discrete-time setting, because, in most cases, the
continuous-time models can be regarded as ap-
proximated models for actual maintenance prob-
lems and the maintenance schedule is often de-
sired in discretized circumstances. These motiva-
tions for discrete-time setting will be evident from
the recent development of computer technologies
and their related computation abilities.

364 Maintenance Theory and Testing

Acknowledgments

This work was partially supported by a Grant-in-
Aid for Scientific Research from the Ministry of
Education, Sports, Science and Culture of Japan
under grant no. 09780411 and no. 09680426, and
by the Research Program 1999 under the Institute
for Advanced Studies of the Hiroshima Shudo
University, Hiroshima, Japan.

References
[1] Arrow KJ, Karlin S, Scarf H, editors. Studies in applied

probability and management science. Stanford: Stanford
University Press; 1962.

[2] Barlow RE, Proschan F. Mathematical theory of reliability.
New York: John Wiley & Sons; 1965.

[3] Barlow RE, Proschan F. Statistical theory of reliability and
life testing: probability models. New York: Holt, Rinehart
and Winston; 1975.

[4] Jorgenson DW, McCall JJ, Radner R. Optimal replacement
policy. Amsterdam: North-Holland; 1967.

[5] Gnedenko BV, Belyayev YK, Solovyev AD. Mathematical
methods of reliability theory. New York: Academic Press;
1969.

[6] Gertsbakh IB. Models of preventive maintenance. Ams-
terdam: North-Holland; 1977.

[7] Ascher H, Feingold H. Repairable systems reliability. New
York: Marcel Dekker; 1984.

[8] Osaki S. Stochastic system reliability modeling. Singa-
pore: World Scientific; 1985.

[9] Osaki S. Applied stochastic system modeling. Berlin:
Springer-Verlag; 1992.

[10] Osaki S, Hatoyama Y, editors. Stochastic models in
reliability theory. Lecture Notes in Economics and
Mathematical Systems, vol. 235. Berlin: Springer-Verlag;
1984.

[11] Osaki S, Cao J, editors. Reliability theory and applica-
tions. Singapore: World Scientific; 1987.

[12] Ozekici S, editor. Reliability and maintenance of complex
systems. NATO ASI Series. Berlin: Springer-Verlag; 1996.

[13] Christer AH, Osaki S, Thomas LC, editors. Stochastic
modelling in innovative manufacturing. Lecture Notes in
Economics and Mathematical Systems, vol. 445. Berlin:
Springer-Verlag; 1997.

[14] Barlow RE. Engineering reliability. Philadelphia: SIAM;
1998.

[15] Aven T, Jensen U. Stochastic models in reliability. New
York: Springer-Verlag; 1999.

[16] McCall JJ. Maintenance policies for stochastically failing
equipment: a survey. Manage Sci. 1965;11:493–521.

[17] Osaki S, Nakagawa T. Bibliography for reliability and
availability of stochastic systems. IEEE Trans Reliab
1976;R-25:284–7.

[18] Pierskalla WP, Voelker JA. A survey of maintenance
models: the control and surveillance of deteriorating
systems. Nav Res Logist Q 1976;23:353–88.

[19] Sherif YS, Smith ML. Optimal maintenance models for
systems subject to failure—a review. Nav Res Logist Q
1981;28:47–74.

[20] Valdez-Flores C, Feldman RM. A survey of preventive
maintenance models for stochastically deteriorating
single-unit systems. Nav Res Logist 1989;36:419–46.

[21] Feller W. An introduction to probability theory and its
applications. New York: John Wiley & Sons; 1957.

[22] Karlin S, Taylor HM. A first course in stochastic
processes. New York: Academic Press; 1975.

[23] Karlin S, Taylor HM. A second course in stochastic
processes. New York: Academic Press; 1981.

[24] Taylor HM, Karlin S. An introduction to stochastic
modeling. New York: Academic Press; 1984.

[25] Ross SM. Applied probability models with optimization
applications. San Francisco: Holden-Day; 1970.

[26] Munter M. Discrete renewal processes. IEEE Trans Reliab
1971;R-20:46–51.

[27] Kaio N, Osaki S. Review of discrete and continuous
distributions in replacement models. Int J Sys Sci
1988;19:171–7.

[28] Barlow RE, Hunter LC. Optimum preventive maintenance
policies. Oper Res 1960;8:90–100.

[29] Nakagawa T. A summary of discrete replacement policies.
Eur J Oper Res 1979;17:382–92.

[30] Tilquin C, Cleroux R. Block replacement with general cost
structure. Technometrics 1975;17:291–8.

[31] Berg M, Epstein B. A modified block replacement policy.
Nav Res Logist Q 1976;23:15–24.

[32] Morimura H. On some preventive maintenance policies
for IFR. J Oper Res Soc Jpn 1970;12:94–124.

[33] Tilquin C, Cleroux R. Periodic replacement with minimal
repair at failure and adjustment costs. Nav Res Logist Q
1975;22:243–54.

[34] Cleroux R, Dubuc S, Tilquin C. The age replacement
problem with minimal repair and random repair costs.
Oper Res 1979;27:1158–67.

[35] Park KS. Optimal number of minimal repairs before
replacement. IEEE Trans Reliab 1979;R-28:137–40.

[36] Nakagawa T. A summary of periodic replacement with
minimal repair at failure. J Oper Res Soc Jpn 1979;24:213–
28.

[37] Nakagawa T. Generalized models for determining op-
timal number of minimal repairs before replacement.
J Oper Res Soc Jpn 1981;24:325–57.

[38] Nakagawa T. Modified periodic replacement with mini-
mal repair at failure. IEEE Trans Reliab 1981;R-30:165–8.

[39] Nakagawa T. Optimal policy of continuous and discrete
replacement with minimal repair at failure. Nav Res
Logist Q 1984;31:543–50.

[40] Nakagawa T. Periodic and sequential preventive mainte-
nance policies. J Appl Prob 1986;23:536–542.

[41] Nakagawa T, Kowada M. Analysis of a system with
minimal repair and its application to replacement policy.
Eur J Oper Res 1983;12:176–82.

Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection 365

[42] Phelps RI. Replacement policies under minimal repair.
J Oper Res Soc 1981;32:549–54.

[43] Berg M, Cleroux R. The block replacement problem with
minimal repair and random repair costs. J Stat Comput
Sim 1982;15:1–7.

[44] Boland PJ. Periodic replacement when minimal repair
costs vary with time. Nav Res Logist Q 1982;29:541–6.

[45] Boland PJ, Proschan F. Periodic replacement with
increasing minimal repair costs at failure. Oper Res
1982;30:1183–9.

[46] Block HW, Borges WS, Savits TH. Age-dependent
minimal repair. J Appl Prob 1985;22:370–85.

[47] Beichelt F. A unifying treatment of replacement policies
with minimal repair. Nav Res Logist 1993;40:51–67.

[48] Tahara A, Nishida T. Optimal replacement policy for
minimal repair model. J Oper Res Soc Jpn 1975;18:113–
24.

[49] Phelps RI. Optimal policy for minimal repair. J Oper Res
Soc 1983;34:425–7.

[50] Segawa Y, Ohnishi M, Ibaraki T. Optimal minimal-repair
and replacement problem with average dependent cost
structure. Comput Math Appl 1992;24:91–101.

[51] Ohnishi M. Optimal minimal-repair and replacement
problem under average cost criterion: optimality of
(t, T)-policy. J Oper Res Soc Jpn 1997;40:373–89.

[52] Bergman B. On the optimality of stationary replacement
strategies. J Appl Prob 1980;17:178–86.

[53] Barlow RE, Hunter LC. Reliability analysis of a one-unit
system. Oper Res 1961;9:200–8.

[54] Osaki S, Nakagawa T. A note on age replacement. IEEE
Trans Reliab 1975;R-24:92–4.

[55] Fox BL. Age replacement with discounting. Oper Res
1966;14:533–7.

[56] Nakagawa T, Osaki S. Discrete time age replacement
policies. Oper Res Q 1977;28:881–5.

[57] Glasser GJ. The age replacement problem. Technometrics
1967;9:83–91.

[58] Scheaffer RL. Optimum age replacement policies with an
increasing cost factor. Technometrics 1971;13:139–44.

[59] Cleroux R, Hanscom M. Age replacement with adjust-
ment and depreciation costs and interest charges. Tech-
nometrics 1974;16:235–9.

[60] Osaki S, Yamada S. Age replacement with lead time. IEEE
Trans Reliab 1976;R-25:344–5.

[61] Nakagawa T, Osaki S. Reliability analysis of a one-unit
system with unrepairable spare units and its optimization
applications. Oper Res Q 1976;27:101–10.

[62] Derman C, Sacks J. Replacement of periodically inspected
equipment. Nav Res Logist Q 1960;7:597–607.

[63] Ansell J, Bendell A, Humble S. Age replacement under
alternative cost criteria. Manage Sci 1984;30:358–67.

[64] Christer AH. Refined asymptotic costs for renewal reward
process. J Oper Res Soc 1978;29:577–83.

[65] Christer AH. Comments on finite-period applications of
age-based replacement models. IMA J Math Appl Bus Ind
1987;1:111–24.

[66] Christer AH, Jack N. An integral-equation approach for
replacement modelling over finite time horizons. IMA
J Math Appl Bus Ind 1991;3:31–44.

[67] Wiggins AD. A minimum cost model of spare parts
inventory control. Technometrics 1967;9:661–5.

[68] Allen SG, D’Esopo DA. An ordering policy for repairable
stock items. Oper Res 1968;16:669–74.

[69] Allen SG, D’Esopo DA. An ordering policy for stock items
when delivery can expedited. Oper Res 1968;16:880–3.

[70] Simon RM, D’Esopo DA. Comments on a paper by
S.G. Allen and D.A. D’Esopo: An ordering policy for
repairable stock items. Oper Res 1971;19:986–9.

[71] Nakagawa T, Osaki S. Optimum replacement policies with
delay. J Appl Prob 1974;11:102–10.

[72] Osaki S. An ordering policy with lead time. Int J Sys Sci
1977;8:1091–5.

[73] Thomas LC, Osaki S. A note on ordering policy. IEEE
Trans Reliab 1978;R-27:380–1.

[74] Thomas LC, Osaki S. An optimal ordering policy for a
spare unit with lead time. Eur J Oper Res 1978;2:409–19.

[75] Kaio N, Osaki S. Optimum ordering policies with lead
time for an operating unit in preventive maintenance.
IEEE Trans Reliab 1978;R-27:270–1.

[76] Kaio N, Osaki S. Optimum planned maintenance with
salvage costs. Int J Prod Res 1978;16:249–57.

[77] Kaio N, Osaki S. Discrete-time ordering policies. IEEE
Trans Reliab 1979;R-28:405–6.

[78] Kaio N, Osaki S. Optimum planned maintenance with
discounting. Int J Prod Res 1980;18:515–23.

[79] Osaki S, Kaio N, Yamada S. A summary of optimal
ordering policies. IEEE Trans Reliab 1981;R-30:272–7.

[80] Dohi T, Kaio N, Osaki S. On the optimal ordering policies
in maintenance theory—survey and applications. Appl
Stoch Models Data Anal 1998;14:309–21.

[81] Dohi T, Kaio N, Osaki S. Continuous review cyclic
inventory models with emergency order. J Oper Res Soc
Jpn 1995;38:212–29.

[82] Dohi T, Shibuya T, Osaki S. Models for 1-out-of-
Q systems with stochastic lead times and expedited
ordering options for spares inventory. Eur J Oper Res
1997;103:255–72.

[83] Shibuya T, Dohi T, Osaki S. Spare part inventory models
with stochastic lead times. Int J Prod Econ 1998;55:257–
71.

[84] Barlow RE, Hunter LC, Proschan F. Optimum checking
procedures. J Soc Indust Appl Math 1963;11:1078–95.

[85] Kaio N, Osaki S. Some remarks on optimum inspection
policies. IEEE Trans Reliab 1984;R-33:277–9.

[86] Kaio N, Osaki S. Analytical considerations on inspection
policies. In: Osaki S, Hatoyama Y, editors. Stochastic
models in reliability theory. Heidelberg: Springer-Verlag;
1984. p.53–71.

[87] Munford AG, Shahani AK. A nearly optimal inspection
policy. Oper Res Q 1972;23:373–9.

[88] Munford AG, Shahani AK. An inspection policy for the
Weibull case. Oper Res Q 1973;24:453–8.

[89] Tadikamalla PR. An inspection policy for the gamma
failure distributions. J Oper Res Soc 1979;30:77–80.

366 Maintenance Theory and Testing

[90] Nakagawa T, Yasui K. Approximate calculation of optimal
inspection times. J Oper Res Soc 1980;31:851–3.

[91] Keller JB. Optimum checking schedules for systems
subject to random failure. Manage Sci 1974;21:
256–60.

[92] Kaio N, Osaki S. Optimal inspection policies: A review
and comparison. J Math Anal Appl 1986;119:3–20.

[93] Kaio N, Osaki S. Comparison of inspection policies.
J Oper Res Soc 1989;40:499–503.

[94] Nakagawa T. Modified discrete preventive maintenance
policies. Nav Res Logist Q 1986;33:703–15.

[95] Nakagawa T, Osaki S. Analysis of a repairable system
that operates at discrete times. IEEE Trans Reliab 1976;R-
25:110–2.

Maintenance and Optimum Policy

Ch
ap

te
r2

0Toshio Nakagawa

20.1 Introduction
20.2 Replacement Policies
20.2.1 Age Replacement
20.2.2 Block Replacement
20.2.2.1 No Replacement at Failure
20.2.2.2 Replacementwith Two Variables
20.2.3 Periodic Replacement
20.2.3.1 Modified Models with Two Variables
20.2.3.2 Replacement atN Variables
20.2.4 Other Replacement Models
20.2.4.1 Replacements with Discounting
20.2.4.2 Discrete Replacement Models
20.2.4.3 Replacements with Two Types of Unit
20.2.4.4 Replacement of a Shock Model
20.2.5 Remarks
20.3 Preventive Maintenance Policies
20.3.1 One-unit System
20.3.1.1 Interval Reliability
20.3.2 Two-unit System
20.3.3 Imperfect Preventive Maintenance
20.3.3.1 Imperfect with Probability
20.3.3.2 Reduced Age
20.3.4 Modified Preventive Maintenance
20.4 Inspection Policies
20.4.1 Standard Inspection
20.4.2 Inspection with Preventive Maintenance
20.4.3 Inspection of a Storage System

20.1 Introduction

It has been well known that high system reliabili-
ties can be achieved by the use of redundancy or
maintenance. These techniques have actually been
used in various real systems, such as computers,
generators, radars, and airplanes, where failures
during actual operation are costly or dangerous.

A failed system is replaced or repaired imme-
diately. But whereas the maintenance of a system
after failure may be costly, it may sometimes re-
quire a long time to undertake it. It is an important
problem to determine when to maintain a system

before its failure. However, it is not wise to main-
tain a system too often. From these viewpoints, the
following three policies are well known.

1. Replacement policy: a system with no repair is
replaced before failure with a new one.

2. Preventive maintenance (PM) policy: a system
with repair is maintained preventively before
failure.

3. Inspection policy: a system is checked to
detect its failure.

Suppose that a system has to operate for an
infinite time span. Then, it is appropriate to adopt,

367

368 Maintenance Theory and Testing

as an objective function, the expected cost per
unit of time from the viewpoint of economics,
and the availability from reliability. We summarize
the theoretical results of optimum policies that
minimize or maximize the above quantities. In
Section 20.2 we discuss (1) age replacement,
(2) block replacement, (3) periodic replacement,
and (4) modified replacements with discounting,
in discrete time, with two types of unit and of a
shock model. In Section 20.3, PMs of (1) a one-unit
system, (2) a two-unit system, (3) an imperfect PM
and (4) a modified PM are discussed. Section 20.4
covers (1) standard inspection, (2) inspection with
PM and (3) inspection of a storage system.

Barlow and Proschan [1] summarized the
known results of maintenance and their optimiza-
tion. Since then, many papers have been published
and the subject surveyed extensively by Osaki and
Nakagawa [2], Pierskalla and Voelker [3], Thomas
[4], Valdez-Flores and Feldman [5], and Cho and
Parlar [6]. The recent published books edited by
Özekici [7], Christer et al. [8] and Ben-Daya et
al. [9] and Osaki [10] collected many reliability
and maintenance models, discussed their opti-
mum policies, and applied them to actual systems.
Most contents in this chapter are based on our
original work [11–36].

The theories of renewal and Markov renewal
processes are used in analyzing maintenance
policies, and are discussed in the books by Cox
[37], Çinlar [38], and Osaki [39].

20.2 Replacement Policies

In this section, we consider a one-unit system
where a unit is replaced upon failure. It would be
wise to replace an operating unit before failure
at a small cost. We introduce a cost incurred by
failure of an operating unit and a cost incurred by
replacement before failure. Most units are replaced
at failures and their ages, or at scheduled times
according to their sizes, characters, circumstances,
and so on.

A unit has to be operating for an infinite time
span in the following replacement costs: a cost c1
is suffered for each failed unit that is replaced;

this includes all costs resulting from its failure
and replacement. A cost c2(< c1) is suffered for
each non-failed unit that is exchanged. Let N1(t)

denote the number of failures during (0, t] and
N2(t) denote the number of exchanges of non-
failed units during (0, t]. Then, the expected cost
during (0, t] is

Ĉ(t)≡ c1E{N1(t)} + c2E{N2(t)} (20.1)

When the planning horizon is infinite, it is
appropriate to adopt the expected cost per unit of
time limt→∞ Ĉ(t)/t as an objective function.

We summarize three replacement policies of
(1) age replacement, (2) block replacement, and
(3) periodic replacement with minimal repair
at failure, and moreover, consider (4) their
modified models. We discuss optimum policies
that minimize the expected costs per unit of
time of each replacement, and summarize their
derivation results.

20.2.1 Age Replacement

If the age of an operating unit is always known
and its failure rate increases with age, it may
be wise to replace it before failure on its age.
A commonly considered age replacement policy
for such a unit is made if it is replaced at time
T (0 < T ≤∞) after its installation or at failure,
whichever occurs first. We call the specified time
T a planned replacement time. Berg [40] and
Bergman [41] proved that an age replacement
policy is optimal among all reasonable policies.
It is assumed that failures are instantly detected
and a failed unit is replaced by a new unit. A
new installed unit also begins to operate instantly.
Suppose that the failure time Xk (k = 1, 2, . . .)
of each operating unit is independent and has an
identical distribution F(t) with finite mean 1/λ.

An age replacement policy has been treated
by many authors. Barlow and Proschan [1]
studied the optimum policy that minimizes
the expected cost. Cox [37] gave a sufficient
condition for a finite optimum solution to exist.
Glasser [42] gave the replacement time for
the cases of several failure time distributions.
Scheaffer [43], Cléroux and coworkers [44,45], and

Maintenance and Optimum Policy 369

Subramanian and Wolff [46] gave more general
cost structures of replacement. Fox [47] and Ran
and Rosenland [48] proposed an age replacement
with continuous discounting. Further, Berg and
Epstein [49] compared age replacement with block
replacement. Ingram and Scheaffer [50], Frees
and Ruppert [51], and Léger and Cléroux [52]
showed the confidence intervals of the optimum
age replacement policy when a failure time
distribution F is unknown. Christer [53] and
Ansell et al. [54] gave the asymptotic costs of age
replacement for a finite time span. Popova and Wu
[55] applied fuzzy set theory to age replacement
policies. Opportunistic replacement policies are
important for the PM of complex systems. This
area is omitted in this chapter; the reader is
referred to Zheng [56], for example.

A new unit begins to operate at t = 0. Then, an
age replacement procedure generates an ordinary
renewal process as follows. Let {Xk}∞k=1 be the
failure times of successive operating units, and
define a new random variable Zk ≡min{Xk, T }.
Then, {Zk}∞k=1 represent the intervals between
replacements caused by either failure or planned
replacement, and are independently, identically
distributed random variables. Thus, a sequence of
{Zk}∞k=1 forms a renewal process with

Pr{Zk ≤ t} =
{
F(t) t < T

1 t ≥ T
(20.2)

We term one cycle as being from the replace-
ment to the next one. Then, the expected cost on
one cycle is

E{c1I(Xk<T) + c2I(Xk≥T)} = c1F(T)+ c2F̄ (T)

(20.3)
and the mean time of one cycle is

E{Zk} =
∫ T

0
t dF(t)+ T F̄ (T)=

∫ T

0
F̄ (t) dt

(20.4)
where F̄ ≡ 1− F and IA is an indicator.

Therefore, from an elementary renewal theo-
rem (e.g. theorem 2.6 of Barlow and Proschan [1,
p.55]), the expected cost per unit of time for an

infinite time span is

C(T)≡ lim
t→∞

Ĉ(t)

t
= Expected cost on one cycle

Mean time of one cycle

= c1F(T)+ c2F̄ (T)∫ T
0 F̄ (t) dt

(20.5)

If T =∞ then the policy corresponds to the
replacement only at failure, and the expected cost
is C(∞)= λc1.

We derive an optimum replacement time
T ∗ that minimizes the expected cost C(T) in
Equation 20.5. It is assumed that there exists a
density f (t) of the failure time distribution F(t)

with mean 1/λ. Let r(t)≡ f (t)/F̄ (t) be the failure
rate (or the hazard rate) and its limit is r(∞)≡
limt→∞ r(t), which may possibly be infinite.

Theorem 1. Suppose that r(t) is continuous and
strictly increasing, and K ≡ λc1/(c1 − c2).

(i) If r(∞) > K then there exists a finite and
unique T ∗(0 < T ∗ <∞) that satisfies

r(T)

∫ T

0
F̄ (t) dt − F(T)= c2

c1 − c2
(20.6)

and the resulting expected cost is

C(T ∗)= (c1 − c2)r(T
∗) (20.7)

(ii) If r(∞)≤K then the optimum replacement
time is T ∗ =∞, i.e. a unit should be replaced
only at failure.

Proof. Differentiating C(T) (or log C(T)) with
respect to T and setting it equal to zero implies
Equation 20.6. Denoting the left-hand side of
Equation 20.6 byQ(T), we easily have that Q(T) is
strictly increasing since r(T) is strictly increasing,
and Q(0)= 0:

Q(∞)≡ lim
T→∞Q(T)= 1

λ
r(∞)− 1

If r(∞) > K then Q(∞) > c2/(c1 − c2). Hence,
from the monotonicity and continuity of Q(T),
there exists a finite and unique T ∗(0 < T ∗ <∞)

that satisfies Equation 20.6, and it minimizes

370 Maintenance Theory and Testing

C(T). We easily have Equation 20.7 from Equa-
tion 20.6.

Conversely, if r(∞)≤K then Q(∞) ≤
c2/(c1 − c2) for any finite T , which implies
dC(T)/dT < 0 for any T . Hence, the optimum
replacement time is T ∗ =∞, i.e. a unit is replaced
only at failure. �

20.2.2 Block Replacement

If a system consists of a block or group of
components and only their failures are known,
all components may be replaced periodically
independent of their ages in use. The policy is
commonly used with complex electronic systems
and many electrical parts.

A new unit begins to operate at t = 0, and a
failed unit is discovered instantly and replaced
by a new one. Further, a unit is replaced at
periodic times kT (k = 1, 2, . . .) independent of
its age. Suppose that each unit has an identical
failure time distribution F(t) with finite mean
1/λ, and F (n)(t) (n= 1, 2, . . .) is the n-fold
Stieltjes convolution of F(t) with itself, i.e.
F (n)(t)≡ ∫ t0 F (n−1)(t − u) dF(u) (n= 1, 2, . . .)
and F (0)(t)≡ 1 for t ≥ 0.

Barlow and Proschan [1] studied block replace-
ment and compared it with age replacement. After
that, Marathe and Nair [57] and Jain and Nair [58]
defined the n-stage block replacement and com-
pared it with other replacements. Schweitzer [59]
compared block replacement with replacement
only of individual failures for hyper-exponentially
and uniformly distributed failure times. Savits
[60] derived the cost relationship between age and
block replacements. Tilquin and Cléroux [61] in-
troduced the adjustment costs, which are increas-
ing with the age of a unit. Archibald and Dekker
[62] and Sheu [63–66] considered more general re-
placement policies and summarized their results.

Consider one cycle with a constant time T from
the planned replacement to the next one. Then,
since the expected number of failed units during
one cycle is M(T)≡∑∞n=1 F

(n)(T), the expected
cost on one cycle is

c1E{N1(T)} + c2E{N2(T)} = c1M(T)+ c2

Therefore, from Equation 20.5, the expected
cost per unit of time for an infinite time span
(Equation 20.6 of Barlow and Proschan [1, p.95])
is

C(T)≡ lim
t→∞

Ĉ(t)

t
= c1M(T)+ c2

T
(20.8)

If a unit is replaced only at failures, i.e. T =∞,
then limT→∞ M(T)/T = λ and the expected cost
is C(∞)= λc1.

We seek an optimum planned replacement
time T ∗ that minimizes the expected cost C(T)

in Equation 20.8. It is assumed that M(t) is
differentiable and define m(t)≡ dM(t)/dt , where
M(t) is called renewal function and m(t) is called
renewal density in a stochastic process. Then,
differentiating C(T) with respect to T and setting
it equal to zero, we have

Tm(T)−M(T)= c2

c1
(20.9)

This equation is a necessary condition that there
exists a finite T ∗, and in this case the resulting
expected cost is

C(T ∗)= c1m(T ∗) (20.10)

Let σ 2 be the variance of F(T). Then, from
Cox [37, p.119], there exists a large T such that
C(T) < C(∞)= λc1 if c2/c1 < (1− λ2σ 2)/2.

It may be wasteful to replace a failed unit by
a new one just before a planned replacement.
Three modified models from this viewpoint are
well known. When a failure occurs just before the
planned replacement, it remains failed until the
replacement time [37, 67, 68] or it is replaced by
a used unit [69–72]. An operating unit of young
age is not replaced at planned replacement and
remains in operation [73, 74].

We now discuss two typical modified models.

20.2.2.1 No Replacement at Failure

A unit is always replaced at times kT , but it is not
replaced at failure, and hence it remains a failure
for the time interval from the occurrence of failure
to its detection. Let c1 be the cost of the time
elapsed between failure and its detection per unit

Maintenance and Optimum Policy 371

of time, and c2 be the cost of planned replacement.
Then, the expected cost per unit of time is

C(T)= 1

T

[
c1

∫ T

0
F(t) dt + c2

]
(20.11)

Differentiating C(T) with respect to T and setting
it equal to zero, we have

T F(T)−
∫ T

0
F(t) dt = c2

c1
(20.12)

Thus, if 1/λ > c2/c1 then there exists an optimum
replacement time T ∗ uniquely that satisfies
Equation 20.12, and the resulting expected cost is

C(T ∗)= c1F(T ∗) (20.13)

20.2.2.2 Replacement with Two Variables

Cox [37] considered the modification of block
replacement in which if a failure occurs just before
a planned replacement, it may postpone replacing
a failed unit until the next replacement. That is,
if a failure occurs in an interval (kT − Td, kT),
the replacement is not made until time kT , and
a unit is down for the time interval. Suppose that
the cost suffered for unit failure is proportional
to the downtime, i.e. let c3t be the cost of time t

elapsed between failure and its detection. Then,
the expected cost is

C(T , Td)= 1

T

[
c1M(T − Td)

+ c2 + c3

∫ T

T−Td

(T − t)F̄ (T − t) dM(t)

]
(20.14)

When Td = 0, this corresponds to the block
replacement, and when Td = T , this corresponds
to the modified model in Section 20.2.2.1.
Nakagawa [28] discussed the optimum T ∗ and T ∗d
that minimize C(T , Td) in Equation 20.14.

20.2.3 Periodic Replacement

When we consider large and complex systems that
consist of many kinds of components, we should
make only minimal repair at each failure, and

make the planned replacement or PM at periodic
times. Barlow and Proschan [1] considered the
following replacement policy. A unit is replaced
periodically at periodic times kT (k = 1, 2, . . .).
After each failure, only minimal repair is made so
that the failure rate remains undisturbed by any
repair of failures between successive replacements.
This policy is commonly used with computers and
airplanes. Holland and McLean [75] provided a
practical procedure for applying the policy to large
motors and small electrical parts. Tilquin and
Cléroux [76], Boland and coworkers [77, 78] and
Chen and Feldman [79] gave more general cost
structures, and Aven [80] and Bagai and Jain [81]
considered the modification of a minimal repair
model. Dekker and coworkers [83, 84] presented a
general framework for three replacement policies.

A new unit begins to operate at t = 0 and,
when it fails, only minimal repair is made. That
is, the failure rate of a unit remains undisturbed
by repair of failures. Further, a unit is replaced
at periodic times kT (k = 1, 2, . . .) independent
of its age, and any units are as good as new after
replacement. It is assumed that the repair and
replacement times are negligible. Suppose that
the failure times of each unit are independent,
and have a distribution F(t) and the failure rate
r(t)≡ f (t)/F̄ (t), where f is a density of F . Then,
failures of a unit occur in a non-homogeneous
Poisson process with a mean-value function R(t),
where R(t)≡ ∫ t0 r(u) du and F̄ (t)= e−R(t) (e.g.
see Nakagawa and Kowada [29] and Murthy [82]).

Consider one cycle with a constant time T from
the planned replacement to the next one. Then,
since the expected number of failures during one
cycle is E{N1(T)} = R(T), the expected cost on
one cycle is

c1E{N1(T)} + c2E{N2(T)} = c1R(T)+ c2

where note that c1 is the cost of minimal repair.
Therefore, from Equation 20.5, the expected

cost per unit of time for an infinite time span
(equation (2.9) of Barlow and Proschan [1, p.99])
is

C(T)≡ lim
t→∞

Ĉ(t)

t
= 1

T
[c1R(T)+ c2] (20.15)

372 Maintenance Theory and Testing

If a unit is never replaced, i.e. T =∞, then
limT→∞ R(T)/T = r(∞), which may possibly be
infinite, and C(∞)= c1r(∞).

We seek an optimum planned replacement time
T ∗ that minimizes the expected cost C(T) in
Equation 20.15. Differentiating C(T) with respect
to T and setting it equal to zero, we have

T r(T)− R(T)= c2

c1
(20.16)

Suppose that the failure rate r(t) is continuous
and strictly increasing. Then, if a solution T ∗
to Equation 20.16 exists, it is unique, and the
resulting cost is

C(T ∗)= c1r(T
∗) (20.17)

Further, Equation 20.16 can be rewritten as∫ T
0 t dr(t)= c2/c1. Thus, if

∫∞
0 t dr(t) > c2/c1

then there exists a solution to Equation 20.16.
When r(t) is strictly increasing, we easily have

the inequality

T r(T)−
∫ T

0
r(t) dt ≥ r(T)

∫ T

0
F̄ (t) dt − F(T)

(20.18)
Thus, an optimum T ∗ is not greater than that
of an age replacement in Section 20.2.1. Further,
taking T →∞ in Equation 20.18, if r(∞) >

λ(c1 + c2)/c1 then a solution to Equation 20.16
exists.

If the cost of minimal repair depends on the age
x of a unit and is given by c1(x), the expected cost
is [77]

C(T)= 1

T

[∫ T

0
c1(x)r(x) dx + c2

]
(20.19)

Several modifications of this replacement policy
have been proposed.

20.2.3.1 Modified Models with Two
Variables

See Nakagawa [28]. (a) A used unit begins to
operate at t = 0 and is replaced at times kT by
the same used unit of age x(0≤ x <∞). Then, the
expected cost is [21]

C(T , x)= 1

T

[
c1

∫ T+x

x

r(t) dt + c2(x)

]
(20.20)

where c2(x) is an acquisition cost of a used unit of
age x.

In this case, we consider the optimum problem
of determining economically the age of a used
unit. Suppose that x is a variable for a specified
T and c2(x) is differentiable. Then, differentiating
C(T , x) with respect to x and setting it equal to
zero implies

r(T + x)− r(x)=−c′2(x)
c1

(20.21)

which is a necessary condition that a finite x

minimizes C(T , x) for a fixed T .
(b) Mine and Kawai [85] considered the

replacement of a unit with random and wearout
failures, where an operating unit enters a wearout
failure period at a fixed time T0, after it has been
operating in a random failure period. It is assumed
that a unit is replaced at planned time T + T0,
where T0 is constant and previously given, and it
undergoes only minimal repair at failures between
replacements.

Suppose that a unit has a constant failure rate
λ in a random failure period and λ+ r(t) in a
wearout failure period. Then, the expected cost is
[26]

C(T , T0)= λc1 + c1
∫ T

0 r(t) dt + c2

T + T0
(20.22)

(c) If a failure occurs in an interval (kT −
Td, kT)(0≤ Td ≤ T), a unit is not repaired in this
interval and is down for the interval from its
failure to the replacement (see Section 20.2.2.2).
Then, the expected cost is

C(T , Td)= 1

T

{
c1

∫ T−Td

0
r(t) dt + c2

+ c3
1

F̄ (T − Td)

∫ T

T−Td

[F(t)− F(T − Td)] dt
}

(20.23)

In the above policy, we may not sometimes
leave a failed unit as it is until the planned
replacement time. To overcome this, we consider
the following model. If a unit fails in (T − Td, T)

then it is replaced by a new one [86]. Tahara and

Maintenance and Optimum Policy 373

Nishida [87] termed this policy the (t, T) policy.
The expected cost is

C(T , Td)=
{
c1

∫ T−Td

0
r(t) dt + c2

+ c4[F(T)− F(T − Td)]/F̄ (T − Td)

}
×
{
T − Td +

∫ T

T−Td

F̄ (t) dt/F̄ (T − Td)

}−1

(20.24)

where c4 is an additional replacement cost
caused by failure. Note that C(T , T) agrees with
Equation 20.5. Phelps [88, 89] and Park and Yoo
[90] proposed a modification of this model.

20.2.3.2 Replacement atN Variables

See Nakagawa [27]. Morimura [91] proposed a
new replacement where a unit is replaced at the
Nth failure. This is a modification of the periodic
replacement, and would be useful in the case
where the total operating time of a unit is not
recorded or it is too time consuming and costly
to replace it in operation. Therefore, this could be
used in maintaining complex systems with a lot of
equipment of the same type.

Recalling that failures occur by a non-
homogeneous Poisson process with a mean-value
function R(t), we have

Hj(t)≡ Pr{N1(t)= j } = [R(t)]
j

j ! e−R(t)

(j = 0, 1, 2, . . .)

and hence the mean time to the Nth
failure is, from Nakagawa and Kowada [29],∑N−1

j=0

∫∞
0 Hj(t) dt . Thus, the expected cost is

C(N) = (N − 1)c1 + c2∑N−1
j=0

∫∞
0 Hj(t) dt

(N = 1, 2, . . .)

(20.25)
Suppose that r(t) is continuous and strictly

increasing. Then, if there exists a finite solution

N∗ that satisfies

1∫∞
0 HN(t) dt

N−1∑
j=0

∫ ∞
0

Hj(t) dt − (N − 1)≥ c2

c1

(N = 1, 2, . . .) (20.26)

it is unique and minimizes C(N). Further,
if r(∞) > λc2/c1, then a finite solution to
Equation 20.26 exists.

Further, suppose that a unit is replaced at time
T or at the Nth failure, whichever occurs first.
Then, the expected cost is

C(N, T)=
{
c1

[
N − 1−

N−1∑
j=0

(N − 1− j)Hj(T)

]

+ c2

∞∑
j=N

Hj(T)+ c3

N−1∑
j=0

Hj(T)

}

×
{ N−1∑

j=0

∫ T

0
Hj(t) dt

}−1

where c2 is the cost of planned replacement at
the Nth failure and c3 is the cost of planned
replacement at time T . Similar replacement
policies were discussed by Park [92], Nakagawa
[30], Tapiero and Ritchken [93], Lam [94–96],
Ritchken and Wilson [97], and Sheu [98].

20.2.4 Other Replacement Models

20.2.4.1 Replacements with Discounting

When we adopt the total expected cost as an
appropriate objective function for an infinite time
span, we have to evaluate the present values of
all replacement costs. A continuous discounting
with rate α(0 < α <∞) will be used for costs at
the replacement time. Then, the cost of one cycle
starting at time t is

c1 e−α(t+Xk)I(Xk<T) + c2 e−α(t+T)I(Xk≥T)

The cost at each cycle is the same, except for
a discount rate, and hence the total cost is equal
to the sum of discounted costs incurred on the
individual cycles. Thus, we have [13] that the

374 Maintenance Theory and Testing

expected cost of an age replacement is

C(T , α)= c1
∫ T

0 e−αt dF(t)+ c2 e−αT F̄ (T)

α
∫ T

0 e−αt F̄ (t) dt
(20.27)

and Equations 20.6 and 20.7 are

r(T)

∫ T

0
e−αt F̄ (t) dt −

∫ T

0
e−αt dF(t)

= c2

c1 − c2
(20.28)

and

C(T ∗; α)= 1

α
(c1 − c2)r(T

∗)− c2 (20.29)

respectively.
Similarly, for a block replacement:

C(T ; α) = c1
∫ T

0 e−αt dM(t)+ c2 e−αT

1− e−αT
(20.30)

1− e−αT

α
m(T)−

∫ T

0
e−αtm(t) dt = c2

c1
(20.31)

C(T ∗; α)= c1

α
m(T ∗)− c2 (20.32)

For a periodic replacement:

C(T ; α)= c1
∫ T

0 e−αt r(t) dt + c2 e−αT

1− e−αT
(20.33)

1− e−αT

α
r(T)−

∫ T

0
e−αt r(t) dt = c2

c1
(20.34)

C(T ∗; α)= c1

α
r(T ∗)− c2 (20.35)

Note that limα→0 αC(T ; α)= C(T), which is the
expected cost of three replacements with no
discounting.

20.2.4.2 Discrete Replacement Models

See Nakagawa and coworkers [18, 33]. In failure
studies, the time to unit failure is often measured
by the number of cycles to failure. In actual
situations, the tires on jet fighters are replaced
preventively at 4–14 flights, which may depend
on the kinds of use. In other cases, the life times
are sometimes not recorded at the exact instant

of failure and are collected statistically per day,
per month, or per year. In any case, it would be
interesting and possibly useful to consider discrete
time processes [99].

Consider the time over an infinitely long
cycle n (n= 1, 2, . . .) that a unit has to be
operating. Let {pn}∞n=1 be the discrete time failure
distribution with finite mean 1/λ≡∑∞n=1 npn

that a unit fails at cycle n. Further, let
{p(j)

n }∞n=1 be the j th convolution of pn, i.e.

p
(1)
n ≡ pn (n= 1, 2, . . .), p

(j)
n ≡∑n−1

i=1 pip
(j−1)
n−i

(j = 2, 3, . . . , n; n= 2, 3, . . .), p
(j)
n ≡ 0

(j = n+ 1, n+ 2, . . .), let r(n)≡ pn/
∑∞

j=n pj

(n= 1, 2, . . .) be the failure rate, and let
m(n)≡∑n

j=1 p
(j)
n (n= 1, 2, . . .) be the renewal

density of the discrete time distribution.
In an age replacement, a unit is replaced at cycle

N(1 ≤N ≤∞) after its installation or at failure,
whichever occurs first. Then, the expected cost for
an infinite time span is

C(N)= c1
∑N

j=1 pj + c2
∑∞

j=N+1 pj∑N
i=1
∑∞

j=i pj

(N = 1, 2, . . .) (20.36)

Theorem 2 can be rewritten as follows.

Theorem 2. Suppose that r(n) is strictly increasing
and r(∞)≡ limn→∞ r(n)≤ 1.

(i) If r(∞) > K then there exists a finite and
unique minimum that satisfies

r(N + 1)
N∑
i=1

∞∑
j=i

pj −
N∑
j=1

pj ≥ c2

c1 − c2

(N = 1, 2, . . .) (20.37)

(ii) If r(∞)≤K then N∗ =∞, and C(∞)= λc1.

In a block replacement, a unit is replaced at
cycle kN (k = 1, 2, . . .) independent of its age
and a failed unit is replaced by a new one between
planned replacements. Then, the expected cost is

C(N) = 1

N

[
c1

N∑
j=1

m(j)+ c2

]
(N = 1, 2, . . .) (20.38)

Maintenance and Optimum Policy 375

and Equation 20.9 is

Nm(N + 1)−
N∑
j=1

m(j)≥ c2

c1

(N = 1, 2, . . .) (20.39)

Example 1. Suppose that the failure time of a
unit has a negative binomial distribution with
a shape parameter 2, i.e. pn = np2qn−1 (n=
1, 2, . . . ; 0 < p < 1) where q ≡ 1− p. Then, we
have 1/λ= (1+ q)/p, r(n)= np2/(np + q), and
m(n)= p2 ∑n−1

j=0 q
2j .

In an age replacement, if q/(1+ q)≤ c2/c1,
then we should make no planned replacement;
conversely, if q/(1+ q) > c2/c1, then we should
adopt an optimum replacement cycle N∗ that is a
unique minimum such that

2(N + 1)p + qN+2

Np + q
≥ c1

c1 − c2
(20.40)

Note that if c2 < c1 ≤ 2c2 then a unit should be
replaced only at failure, and C(∞)= pc1/(1+ q).

In a block replacement, from Equation 20.39

p2
N∑
j=1

jq2j ≥ c2

c1
(20.41)

Thus, if q/(1+ q) >
√
c2/c1 then there exists

a finite and unique minimum N∗ that satisfies
Equation 20.41, since the left-hand side of Equa-
tion 20.41 is strictly increasing from (p/q)2 to
[q/(1+ q)]2. Conversely, if q/(1+ q)≤√c2/c1
then a unit should be replaced only at failure. Note
that for c2/c1 ≥ 1/4, no finite value of N satisfies
Equation 20.41.

In a periodic replacement, a unit is replaced at
cycle kN(k = 1, 2, . . .) and a failed unit between
planned replacements undergoes only minimal
repair. Then, the expected cost is

C(N)= 1

N

[
c1

N∑
j=1

r(j)+ c2

]
(N = 1, 2, . . .) (20.42)

and Equation 20.16 is

Nr(N + 1)−
N∑
j=1

r(j)≥ c2

c1
(N = 1, 2, . . .)

(20.43)

Example 2. Suppose that the failure time
has a discrete Weibull distribution with a
shape parameter 2, i.e. pn = q(n−1)2 − qn

2

(n= 1, 2, . . . ; 0 < q < 1) [100]. Then,
r(n)= 1− q2n−1 (n= 1, 2, . . .), which is
strictly increasing from 1− q to 1. Thus, from
Equation 20.43, if q/(1− q2) > c2/c1 then there
exists a finite and unique minimum N∗ that
satisfies

q

1− q2
{1− [1+N(1 − q2)]q2N} ≥ c2

c1
(20.44)

and, otherwise, a unit undergoes only minimal
repair at failures.

20.2.4.3 Replacements with Two Types of
Unit

See Nakagawa [35]. Most systems consist of vital
and non-vital parts or essential and non-essential
components. If vital parts fail then a system
becomes dangerous or suffers a high cost. It
would be wise to make the planned replacement
or overhaul at suitable times. We may classify
failures into two types; partial and total failures,
slight and serious failures, or simply faults and
failures. Several authors [101–107] have studied
the replacement policies for systems with two
types of unit. Beichelt and coworkers [108, 109],
Murthy and Maxwell [110], Berg [111], Block et
al. [112, 113], and Sheu [66] proposed generalized
replacement models with two types of failure.

We consider a system with unit 1 and unit 2
which operate independently, where unit 1 corre-
sponds to non-vital parts and unit 2 to vital parts.
It is assumed that unit 1 is always replaced to-
gether with unit 2. Unit i has a failure time distri-
bution Fi(t), failure rate ri (t), and cumulative haz-
ard Ri(t)(i = 1, 2), i.e. F̄i (t)= exp[−Ri(t)] and
Ri(t)=

∫ t
0 ri(u) du. Then, we consider the follow-

ing four replacement policies, which combine age,
block, and periodic replacements.

376 Maintenance Theory and Testing

Case (a). Unit 2 is replaced at failure or time
T , whichever occurs first, and when unit 1 fails
between replacements, it is replaced by a new unit.
Then, the expected cost is

C(T)= c1
∫ T

0 m1(t)F̄2(t) dt + c2F2(T)+ c3∫ T
0 F̄2(t) dt

(20.45)
where c1 is the cost of replacement for a failed
unit 1, c2 is the additional replacement for a failed
unit 2, and c3 is the cost of replacement for units 1
and 2.

Case (b). In case (a), when unit 1 fails between
replacements it undergoes only minimal repair.
Then, the expected cost is

C(T)= c1
∫ T

0 r1(t)F̄2(t) dt + c2F2(T)+ c3∫ T
0 F̄2(t) dt

(20.46)
where c1 is the cost of minimal repair for failed
unit 1, and c2 and c3 are the same costs as case (a).

Case (c). Unit 2 is replaced at periodic times
kT (k = 1, 2, . . .) and undergoes only minimal
repair at failures between planned replacements,
and when unit 1 fails between replacements it is
replaced by a new unit. Then, the expected cost is

C(T)= 1

T
[c1M1(T)+ c2R2(T)+ c3] (20.47)

where c2 is the cost of minimal repair for a failed
unit 2, and c1 and c3 are the same costs as case (a).

Case (d). In case (c), when unit 1 fails between
replacements it also undergoes minimal repair.
Then, the expected cost is

C(T)= 1

T
[c1R1(T)+ c2R2(T)+ c3] (20.48)

where c1 is the cost of minimal repair for a failed
unit 1, and c2 and c3 are the same costs as case (c).

We can similarly discuss optimum replacement
policies that minimize the expected costs C(T)

in Equations 20.45–20.48. Further, we can easily
extend these policies to the replacements of a
system with one main unit and several sub-units.

20.2.4.4 Replacement of a Shock Model

We summarize briefly the replacement policies for
a shock model. Shocks occur randomly in time
at a stochastic process and give the amount of
damage to a system. This damage accumulates
and gradually weakens the system. A system fails
when the total damage has exceeded a failure
level.

The general concept of such processes was
due to Smith [114]. Mercer [115] considered
the model where shocks occur in a Poisson
distribution and the amount of damage due to
each shock has a gamma distribution. Cox [37],
Esary et al. [116], and Nakagawa and Osaki [117]
investigated the various properties of failure time
distributions.

Suppose that a system is replaced at failure by
a new one. It may be wise to exchange a system
before failure at a smaller cost. Taylor [118] and
Feldman [119–121] derived the optimal control-
limit policies where a system is replaced before
failure when the total damage has exceeded a
threshold level. On the other hand, Zuckerman
[122–125] proposed the replacement model where
a system is replaced before failure at time T .
Recently, Wortman et al. [126] and Sheu and
coworkers [127–129] studied some replacement
models of a system subject to shocks. This section
is based on Nakagawa [15, 33], Satow et al. [130]
and Qian et al. [131].

Consider a unit that has to operate for an
infinite time span. Shocks occur by a non-
homogeneous Poisson process with an inten-
sity function r(t) and a mean-value function
R(t), i.e. R(t)≡ ∫ t0 r(u) du. Thus, the probabil-
ity that j shocks occur during (0, t] is Hj(t)≡
{[R(t)]j /j !} e−R(t) (j = 0, 1, 2, . . .). Further, the
amount Wj of damage to the j th shock has
an identical distribution G(x)≡ Pr{Wj ≤ x} (j =
1, 2, . . .). A unit fails when the total damage has
exceeded a failure level K .

A unit is replaced at time T (0 < T ≤∞) or at
failure, whichever occurs first. Let c1 and c2(< c1)

be the respective replacement costs at failure and
at time T . Then, the expected cost per unit of time

Maintenance and Optimum Policy 377

for an infinite span is

C(T)=
{
c1

∞∑
j=0

[G(j)(K)−G(j+1)(K)]

×
∫ T

0
Hj(t)r(t) dt

+ c2

∞∑
j=0

G(j)(K)Hj (T)

}

×
{ ∞∑

j=0

G(j)(K)

∫ T

0
Hj(t) dt

}−1

(20.49)

where�(j)(x) (j = 1, 2, . . .) is the j -fold Stieltjes
convolution of �(x) and �(0)(x)≡ 1 for x ≥ 0.

When successive times between shocks have an
identical distribution F(t) , the expected cost in
Equation 20.49 is rewritten as

C(T)=
{
c1

∞∑
j=0

[G(j)(K)−G(j+1)(K)]F (j+1)(T)

+ c2

∞∑
j=0

G(j)(K)[F (j)(T)− F (j+1)(T)]
}

×
{ ∞∑

j=0

G(j)(K)

×
∫ T

0
[F (j)(t)− F (j+1)(t)] dt

}−1

(20.50)

Next, a unit is replaced before failure at shock
N (N = 1, 2, . . .). Then, the expected cost is

C(N) = c1[1−G(N)(K)] + c2G
(N)(K)∑N−1

j=0 G(j)(K)
∫∞

0 Hj(t) dt

(N = 1, 2, . . .) (20.51)

Further, a unit is replaced preventively when
the total damage has exceeded a threshold level

Z(0≤ Z ≤K). Then, the expected cost is

C(Z)=
[
c1 − (c1 − c2)

{
G(K)

−
∫ Z

0
[1−G(K − x)] dM(x)

}]
×
[∞∑

j=0

G(j)(Z)

∫ ∞
0

Hj(t) dt

]−1

(20.52)

where M(x)≡∑∞j=1 G(j)(x).
By the similar methods of obtaining optimum

replacement policies, we can discuss the optimum
T ∗, N∗, and Z∗ analytically that minimize C(T),
C(N), and C(Z).

20.2.5 Remarks

It has been assumed that the time required
for replacement is negligible, and at any time
there is an unlimited supply of units available
for replacement. The results and methods in
this section could be theoretically extended and
modified in such cases, and be useful for actual
replacements in practical fields.

In general, the results of block and periodic
replacements are summarized as follows: The
expected cost is

C(T)= 1

T

[
c1

∫ T

0
ϕ(t) dt + c2

]
(20.53)

where ϕ(t) is m(t), F(t), and r(t) respectively.
Differentiating C(T) with respect to T and setting
it equal to zero:

T ϕ(T)−
∫ T

0
ϕ(t) dt = c2

c1
(20.54)

and if a solution T ∗ to Equation 20.54 exists, then
the expected cost is

C(T ∗)= c1ϕ(T
∗) (20.55)

In a discount case:

C(T ; α)= c1
∫ T

0 e−αtϕ(t) dt + c2 e−αT

1− e−αT
(20.56)

378 Maintenance Theory and Testing

1− e−αT

α
ϕ(T)−

∫ T

0
e−αtϕ(t) dt = c2

c1
(20.57)

C(T ∗; α)= c1

α
ϕ(T ∗)− c2 (20.58)

20.3 Preventive Maintenance
Policies
A unit is repaired upon failure. If a failed unit
undergoes repair, it needs a repair time that may
not be negligible. After the completion of repair,
a unit begins to operate again. A unit represents
the most fundamental unit which repeats up
and down alternately. Such a unit forms an
alternating renewal process [37] and a Markov
renewal process with two states [132, 133].

When a unit is repaired after failure, it may
require much time and high cost. In particular,
the downtime of computers and radars should
be made as short as possible by decreasing the
number of unit failures. In this case, we need to
maintain a unit to prevent failures, but not to do it
too often from the viewpoint of reliability or cost.

A unit has to be operating for an infinite
time span. We define that Xk and Yk (k =
1, 2, . . .) denote the uptime and the downtime
respectively, and A(t) is the probability that a
unit is operating at time t . Then, from Hosford
[134] and Barlow and Proschan [1], A(t) is called
the pointwise availability and

∫ t
0 A(u) du/t is the

interval availability. Further, we have

A≡ lim
t→∞

1

t

∫ t

0
A(u) du= lim

t→∞A(t)

= E{Xk}
E{Xk} + E{Yk}

(20.59)

which is called the steady-state availability and is
well known as the usual and standard definition
of availability. For an infinite time span, an
appropriate objective function is the availability A

in Equation 20.59.
Morse [135] first derived the optimum PM

policy that maximizes the steady-state availability.
Barlow and Proschan [1] pointed out that this

problem is reduced to an age replacement one
if the mean time to repair is replaced by the
replacement cost of a failed unit and the mean
time to PM by the cost of exchanging a non-
failed unit. Optimum PM policies for more general
systems were discussed by Nakagawa [17], Sherif
and Smith [136], Jardine and Buzacott [137], and
Reineke et al. [138]. Liang [139] considered the
PM policies for series systems by modifying the
opportunistic replacement policies. Aven [140]
and Smith and Dekker [141] treated the PM of
a system with spare units. Silver and Fiechter
[142] considered the PM model where the failure
time distribution is uncertain. Further, Van der
Duyn Schouten and Scarf [143] presented several
maintenance models in Europe and gave a good
survey of applied PM models. Chockie and
Bjorkelo [144], Smith [145], and Susova and
Petrov [146] gave the PM programs of plant and
aircraft.

We consider the following PM policies: (1) PM
of a one-unit system; (2) PM of a two-unit
system; (3) imperfect PM; and (4) modified PM.
We discuss optimum PM policies that maximize
the availabilities or minimize the expected costs
of each model, and summarize their derivation
results.

20.3.1 One-unit System

When a unit fails, it undergoes repair immediately,
and once repaired it is returned to the operating
state. It is assumed that the failure time X is
independent and has an identical distribution
F(t) with finite mean 1/λ, and the repair time
Y1 is also independent and has an identical
distribution G1(t) with finite mean 1/µ1.

If the operating time of a unit is always known
and its failure rate increases with time, it may be
wise to maintain preventively it at time T before
failure on its operating time. We call time T the
planned PM time. The distribution of time Y2 to
PM completion is G2(t) with finite mean 1/µ2,
which may be smaller than the repair time Y1.

A new unit begins to operate at t = 0. We define
one cycle as being from the beginning of operation
to the completion of PM or repair. Then, the mean

Maintenance and Optimum Policy 379

time of downtime of one cycle is

E{Y1I(X<T) + Y2I(X≥T)} = 1

µ1
F(T)+ 1

µ2
F̄ (T)

(20.60)
and from Equation 20.4, the mean time of uptime
of one cycle is

∫ T
0 F̄ (t) dt , where F̄ ≡ 1− F .

Therefore, from Equation 20.59, the steady-
state availability is

A(T)≡ Mean time of uptime

Mean time of one cycle

=
∫ T

0 F̄ (t) dt∫ T
0 F̄ (t) dt + 1

µ1
F(T)+ 1

µ2
F̄ (T)

(20.61)

Thus, the policy maximizing the availability is the
same one as minimizing the expected cost C(T)

in Equation 20.5, as pointed out by Barlow and
Proschan [1].

20.3.1.1 Interval Reliability

See Mine and Nakagawa [16]. Barlow and
Proschan [1] defined that interval reliability
R(x, T0) is the probability that, at a specified time
T0, a system is operating and will continue to
operate for an interval of time x. The interval
reliability is simply called reliability when T0 = 0;
furthermore, it becomes pointwise availability at
time T0 as x→ 0. Thus, the interval reliability is
an important measure from the viewpoints of both
reliability and availability.

Consider the PM of the above one-unit system,
where a unit is repaired at failure or is maintained
preventively at time T , whichever occurs first.
However, the PM of an operating unit is not made
during the interval [T0, T0 + x] even if the time
for PM comes. It is assumed that the distribution
of the time to pm is the same as the repair time
distribution G(t) with finite mean 1/µ, for the
simplicity of computations.

We set the PM time T to an operating unit
and obtain the interval reliability R(T ; x, T0) by
a method similar to Barlow and Proschan [1,
p.82]. Let D(t) be the distribution of a degenerate
random variable placing unit mass at T , i.e.
D(t) ≡ 0 for t < T , and D(t)≡ 1 for t ≥ T . Then,

we have

R(T ; x, T0)= F̄ (T0 + x)D̄(T0)

+
∫ T0

0
F̄ (T0 + x − u)D̄(T0 − u) dM11(u)

(20.62)

where D̄ ≡ 1−D, M11(t) represents the expected
number of occurrences of a completed repair
during (0, t], and from an elementary renewal
theorem (e.g. theorem 2.9 of Barlow and Proshan
[1, p.55]):

lim
t→∞

M11(t)

t
= 1∫ T

0 F̄ (t) dt + 1
µ

in which the denominator is equal to the mean
time of one cycle.

Thus, the limiting interval reliability is

R(T ; x)≡ lim
T0→∞

R(T ; x, T0)=
∫ T+x
x

F̄ (t) dt∫ T
0 F̄ (t) dt + 1

µ

(20.63)
We seek an optimum time T ∗ that maximizes

R(T ; x) in Equation 20.63 for a fixed x >

0. Let H(t)≡ [F(t + x)− F(t)]/F̄ (t) for t, x ≥
0 and F(t) < 1. Then, both H(t) and r(t)≡
f (t)/F̄ (t) are called the failure rates and have the
same properties (Barlow and Proschan [1, p.23]).
Then, we have the following similar theorem to
Theorem 1.

Theorem 3. Suppose that H(t) is continuous and
strictly increasing, where

K(x)≡
[∫ x

0
F̄ (t) dt + 1/µ

]/
(1/λ+ 1/µ).

(i) If H(∞) > K(x) then there exists a finite and
unique T ∗(0 < T ∗ <∞) that satisfies

H(T)

[∫ T

0
F̄ (t) dt + 1

µ

]
−
∫ T

0
[F̄ (t)− F̄ (t + x)] dt = 1

µ
(20.64)

and the resulting interval reliability is

R(T ∗; x)= 1−H(T ∗) (20.65)

380 Maintenance Theory and Testing

(ii) If H(∞)≤K(x) then the optimum PM time is
T ∗ =∞, and

R(∞; x)=
∫∞
x

F̄ (t) dt

(1/λ+ 1/µ)

If the time for PM has G2(t) with mean 1/µ2
and the time for repair has G1(t) with mean 1/µ1,
then the limiting interval reliability is easily given
by

R(T ; x)=
∫ T+x
x F̄ (t) dt∫ T

0 F̄ (t) dt + 1
µ1

F(T)+ 1
µ2

F̄ (T)

(20.66)
which agrees with Equation 20.61 as x→ 0, and
with Equation 20.63 when 1/µ1 = 1/µ2 = 1/µ.

Example 3. Suppose that the failure time of a unit
has a gamma distribution with order 2, i.e. f (t)=
β2t e−β t . Then, we have

H(t)= 1− e−βx − βx

1+ βt
e−βx

K(x)= (2/β)(1− e−βx)− x e−βx + 1/µ

2/β + 1/µ

The failure rate H(t) is strictly increasing from
H(0)= F(x) to H(∞)= 1− e−βx . Thus, from
Theorem 3, if x > 1/µ then the optimum time T ∗
is a unique solution of

βT

(
x − 1

µ

)
− x(1− e−βT)= 1+ βx

µ

and the interval reliability is

R(T ∗; x)= 1+ β(T ∗ + x)

1+ βT ∗
e−βx

20.3.2 Two-unit System

A two-unit standby redundant system with a
single repairman is one of the most fundamental
and important redundant systems in reliability
theory. A system consists of two units where one
unit is operating and the other is in standby as an
initial condition. If an operating unit fails, then

it undergoes repair immediately and the other
standby unit takes over its operation. Either of two
units is alternately operating. It can be said that
a system failure occurs when two units are down
simultaneously.

Gaver [147] obtained the distribution of time
to system failure and its mean time for the
model with exponential failure and general repair
times. Gnedenko [148, 149] and Srinivasan [150]
extended the results for the model with both
general failure and repair times. Further, Osaki
[151] obtained the same results by using a signal-
flow graph method.

PM policies for a two-unit standby system have
been studied by many authors. Rozhdestvenskiy
and Fanarzhi [152] obtained one method of
approximating the optimum PM policy that
minimizes the mean time to system failure. Osaki
and Asakura [153] showed that the mean time
to system failure of a system with PM is greater
than that with only repair maintenance under
suitable conditions. Berg [154–156] considered
the replacement policy for a two-unit system
where, at the failure points of one unit, the
other unit is replaced if its age exceeds a control
limit.

Consider a two-unit standby system where two
units are statistically identical. An operating unit
has a failure time distribution F(t) with finite
mean 1/λ and a failed unit has a repair time
distribution G1(t) with finite mean 1/µ1. When
an operating unit operates for a specified time T

without failure, we stop its operation. The time
for PM has a general distribution G2(t) with finite
mean 1/µ2. Further, we make the following three
assumptions:

1. A unit is as good as new upon repair or PM
completion.

2. PM of an operating unit is done only if the
other unit is in standby.

3. An operating unit, which forfeited PM because
of (1), undergoes PM just upon repair or PM
completion of the other unit.

Maintenance and Optimum Policy 381

Under the above assumptions, the steady-state
availability is [11]

A(T)=
{[

1/γ1 +
∫ T

0
F̄ (t)G1(t) dt

]
×
[

1−
∫ ∞
T

G2(t) dF(t)

]
+
[

1/γ2 +
∫ T

0
F̄ (t)G2(t) dt

]
×
∫ ∞
T

G1(t) dF(t)

}
×
{[

1/µ1 +
∫ T

0
F̄ (t)G1(t) dt

]
×
[

1−
∫ ∞
T

G2(t) dF(t)

]
+
[

1/µ2 +
∫ T

0
F̄ (t)G2(t) dt

]
×
∫ ∞
T

G1(t) dF(t)

}−1

(20.67)

where F̄ ≡ 1− F and 1/γi ≡
∫∞

0 F̄ (t)Ḡi (t) dt
(i = 1, 2).

When an operating unit undergoes PM imme-
diately upon repair or PM completion, i.e. T = 0,
the availability is

A(0)= θ2/γ1 + (1− θ1)/γ2

θ2/µ1 + (1− θ1)/µ2
(20.68)

where θi ≡
∫∞

0 Ḡi(t) dF(t) (i = 1, 2). When no
PM is done, i.e. T =∞, the availability is

A(∞)= 1/λ

1/λ+ 1/µ1 − 1/γ1
(20.69)

We find an optimum planned PM time T ∗ that
maximizes the availability A(T) in Equation 20.67.
It is assumed that G1(t) < G2(t) for 0 < t <∞.
That is, the probability that the repair is completed
up to time t is less than the probability that the PM
is completed up to time t . Let r(t)≡ f (t)/F̄ (t),
where f (t) is a density of F .

Theorem 4. Suppose that G1(t) < G2(t) for 0 <

t <∞, and r(t) is continuous and strictly increas-
ing.

(i) If r(∞) > K , β1µ1 > β2µ2 and r(0) < k, or
r(∞) > K and β1µ1 ≤ β2µ2, then there exists
a finite and unique T ∗(0 < T ∗ <∞) that
satisfies

r(T)

[∫ T

0
F̄ (t)G(t) dt +

∫ ∞
0

Ḡ(t) dt

]
−
∫ T

0
G(t) dF(t)

= β1
∫∞

0 Ḡ(t) dF(t)+ β2
∫∞

0 G(t) dF(t)

β1 − β2
(20.70)

and the resulting availability is

A(T ∗)= 1− (1/µ1 − 1/γ1)

×
{

1/µ1 − 1/γ1 + 1/λ

+
∫ ∞
T ∗

G1(t) dF(t)/r(T ∗)

−
∫ ∞
T ∗

F̄ (t)G1(t) dt

}−1

(20.71)

(ii) If r(∞) ≤K then the optimum PM time
is T ∗ =∞, i.e. no PM is done, and the
availability is given by Equation 20.69.

(iii) If β1µ1 > β2µ2 and r(0)≥ k then the opti-
mum PM time is T ∗ = 0, and the availability
is given by Equation 20.68 where

βi ≡
∫ ∞

0
F(t)Ḡi (t) dt (i = 1, 2)

G(t)≡ β1G2(t)− β2G1(t)

β1 − β2

k ≡ β1θ2 + β2(1− θ1)

β1/µ1 − β2/µ1

K ≡ λβ1

β1 − β2

20.3.3 Imperfect Preventive
Maintenance

Most PM models have assumed that a unit after
PM is as good as new. Actually, this assumption

382 Maintenance Theory and Testing

may not be true. A unit after PM usually may be
younger at PM, and occasionally it may be worse
than before PM because of faulty procedures.
Generally, the improvement of a unit by PM would
depend on the resources spent for PM.

Weiss [157] first assumed that the inspection
to detect failures may not be perfect. Chan and
Downs [158], Nakagawa [20, 24], and Murthy and
Nguyen [159] considered the imperfect PM where
a unit after PM is not like new and discussed the
optimum policies that maximize the availability
or minimize the expected cost. Further, Lie and
Chun [160] and Jayabalan and Chaudhuri [161]
introduced an improvement factor in failure rate
or age after maintenance, and Canfield [162]
considered a system degradation with time where
the PM restores the hazard function to the same
shape.

Brown and Proschan [163], Fontenot and
Proschan [164], and Bhattacharjee [165] assumed
that a failed unit is as good as new with a certain
probability and investigated some properties of
a failure time distribution. Similar imperfect
repair models were studied by Ebrahimi [166],
Kijima et al. [167], Natvig [168], Stadje and
Zuckerman [169], and Makis and coworkers
[170, 171]. Recently, Wang and Pham [172, 173]
considered extended PM models with imperfect
repair and discussed the optimum policies that
minimize the expected cost and maximize the
availability.

A unit begins to operate at time zero and has
to be operating for an infinite time span [36].
When a unit fails, it is repaired immediately and
its mean repair time is 1/µ1. To prevent failures,
a unit undergoes PM at periodic times kT (k =
1, 2, . . .), where the PM time is negligible. Then,
one of the following three cases after PM results.

(a) A unit is not changed with probability p1, i.e.
PM is imperfect.

(b) A unit is as good as new with probability p2,
i.e. PM is perfect.

(c) A unit fails with probability p3, i.e. PM
becomes failure, where p1 + p2 + p3 ≡ 1 and
p2 > 0. In this case, the mean repair time for
PM failure is 1/µ2.

The probability that a unit is renewed by repair
upon actual failure is

∞∑
j=1

p
j−1
1

∫ jT

(j−1)T
dF(t)

= (1− p1)

∞∑
j=1

p
j−1
1 F(jT) (20.72)

The probability that it is renewed by perfect PM is

p2

∞∑
j=1

p
j−1
1 F̄ (jT) (20.73)

The probability that it is renewed by repair upon
PM failure is

p3

∞∑
j=1

p
j−1
1 F̄ (jT) (20.74)

where Equations 20.72+ 20.73+ 20.74= 1.
The mean time until a unit is renewed by either

repair or perfect PM is

∞∑
j=1

p
j−1
1

∫ jT

(j−1)T
t dF(t)

+ (p2 + p3)

∞∑
j=1

(jT)p
j−1
1 F̄ (jT)

= (1− p1)

∞∑
j=1

p
j−1
1

∫ jT

0
F̄ (t) dt (20.75)

Thus, from Equations 20.59 and 20.61, the
availability is

A(T)=
{
(1− p1)

∞∑
j=1

p
j−1
1

∫ jT

0
F̄ (t) dt

}

×
{
(1− p1)

∞∑
j=1

p
j−1
1

∫ jT

0
F̄ (t) dt

+ 1− p1

µ1

∞∑
j=1

p
j−1
1 F(jT)

+ p3

µ2

∞∑
j=1

p
j−1
1 F̄ (jT)

}−1

(20.76)

which agrees with Equation 20.61 when p1 = 0
and p3 = 1.

Maintenance and Optimum Policy 383

Let

H(T ; p1)≡
∑∞

j=1 p
j−1
1 jf (jT)∑∞

j=1 p
j−1
1 j F̄ (jT)

Then, by a similar method to Theorem 1, we have
the following theorem.

Theorem 5. Suppose that H(T ; p1) is continuous
and strictly increasing, and K ≡ λ(1− p1)/p2.

(i) If H(∞; p1) > K and (1− p1)/µ1 > p3/µ2
then there exists a finite and unique T ∗ that
satisfies

H(T ; p1)

∞∑
j=1

p
j−1
1

∫ jT

0
F̄ (t) dt

−
∞∑
j=1

p
j−1
1 F(jT)

= p3

1− p1

1
µ2

1−p1
µ1
− p3

µ2

(20.77)

and the resulting availability is

A(T ∗)= 1

1+
(

1
µ1
− p3

µ2(1−p1)

)
H(T ∗)

(20.78)
(ii) If H(∞; p1)≤K or (1− p1)/µ1 ≤ p3/µ2

then the optimum time is T ∗ =∞, and
A(∞)= (1/λ)(1/λ+ 1/µ1).

We adopt the expected cost per unit of time as
an objective function and give the following two
imperfect PM models.

20.3.3.1 Imperfect with Probability

An operating unit is repaired at failure or is
maintained preventively at time T , whichever
occurs first. Then, a unit after PM has the same
age, i.e. the same failure rate, as it had before
PM with probability p (0≤ p < 1) and is as good
as new with probability q ≡ 1− p. Then, the

expected cost per unit of time is

C(T ; p)≡
{
c1q

∞∑
j=1

pj−1F(jT)

+ c2

∞∑
j=1

pj−1F̄ (jT)

}

×
{ ∞∑

j=1

pj−1
∫ jT

(j−1)T
F̄ (t) dt

}−1

(20.79)

where c1 is the cost for repair and c2 is the cost for
PM.

Next, suppose that an operating unit is main-
tained preventively at times kT (k = 1, 2, . . .)
and undergoes only minimal repair at failures
between PMs. Then the expected cost is

C(T ; p)= 1

T

[
c1q

2
∞∑
j=1

pj−1
∫ jT

0
r(t) dt + c2

]
(20.80)

where c1 is the cost for minimal repair and c2 is
the cost for PM.

20.3.3.2 Reduced Age

An operating unit is maintained preventively
at times kT (k = 1, 2, . . .) and undergoes only
minimal repair at failures between PMs. Further,
the age of a unit becomes x (0≤ x ≤ T) units of
younger at each PM, and it is replaced if it operates
for the time interval NT (N = 1, 2, . . .). Then,
the expected cost per unit of time is

C(N; T , x)= 1

NT

[
c1

N−1∑
j=0

∫ T+j (T−x)

j (T−x)
r(t) dt

+ c2 + (N − 1)c3

]
(20.81)

where c1 is the cost for minimal repair, c2 is the
cost for replacement at NT , and c3 is the cost for
PM.

In this model, if the age after PM reduces to at

(0 < a ≤ 1) when it was t before PM, the expected

384 Maintenance Theory and Testing

cost is

C(N; T , a)= 1

NT

[
c1

N−1∑
j=0

∫ (Aj+1)T

Aj T

r(t) dt

+ c2 + (N − 1)c3

]
(20.82)

where Aj ≡ a + a2 + · · · + aj (j = 1, 2, . . .)
and A0 ≡ 0.

The above model is extended to the following
sequential PM policy. The PM is done at fixed
intervals xk (k = 1, 2, . . . , N − 1) and is replaced
at the Nth PM. Further, the age after the kth PM
reduces to akt when it was t before PM, where 0=
a0 < a1 ≤ a2 ≤ · · · ≤ aN < 1. Then, the expected
cost per unit of time is

C(x1, x2, . . . , xN)

=
c1
∑N

k=1

∫ Yk
ak−1Yk−1

r(t) dt + c2 + (N − 1)c3∑N−1
k=1 (1− ak)Yk + YN

(20.83)

where

Yk ≡ xk + ak−1xk−1 + · · · + ak−1ak−2 · · · a2a1x1

(k = 1, 2, . . .)

20.3.4 Modified Preventive
Maintenance

See Nakagawa [34]. We consider the following
modified PM policy. Failures of a unit occur by
a non-homogeneous Poisson process and the PM
is made only at periodic times kT (k = 1, 2, . . .).
If the total number of failures has exceeded a
specified number N , then the PM should be made
at the next planned time, otherwise no PM should
be done. This policy was applied to the PM of hard
disks by Sandoh et al. [174].

A unit has to operate for infinite time span
and assume that failures occur by a non-
homogeneous Poisson process with an intensity
function r(t) and a mean-value function R(t),
i.e. R(t)≡ ∫ t0 r(u) du. Then, the probability that
j failures exactly occur during (0, t] is Hj(t)≡

{[R(t)]j /j !} e−R(t) (j = 0, 1, 2, . . .). The PM is
scheduled at times kT (k = 1, 2, . . .), and if
the total number of failures has exceeded a
specified number N , then the PM is made at
the next PM time. Otherwise, a unit is left as
it is. A unit undergoes minimal repair at each
failure.

The probability that the PM is done at time
(k + 1)T (k = 0, 1, 2, . . .), because more than N

failures have occurred during (0, (k + 1)T] when
the number of failures was less than N until kT ,
is

N−1∑
j=0

Hj [R(kT)]
∞∑

i=N−j
Hi[R((k + 1)T)− R(kT)]

=
N−1∑
j=0

{Hj [R(kT)] −Hj [R((k + 1)T)]}

Thus, the mean time to PM is

∞∑
k=0

[(k + 1)T]

×
N−1∑
j=0

{Hj [R(kT)] −Hj [R((k + 1)T)]}

= T

∞∑
k=0

N−1∑
j=0

Hj [R(kT)] (20.84)

Further, the expected number of failures until PM
is

∞∑
k=0

N−1∑
j=0

Hj [R(kT)]

×
∞∑

i=N−j
(i + j)Hi[R((k + 1)T)− R(kT)]

=
∞∑
k=0

[R((k + 1)T)− R(kT)]
N−1∑
j=0

Hj [R(kT)]

(20.85)

Maintenance and Optimum Policy 385

Therefore, from Equations 20.84 and 20.85, the
expected cost per unit of time is

C(N; T)=
{
c1

∞∑
k=0

[R((k + 1)T)− R(kT)]

×
N−1∑
j=0

Hj [R(kT)] + c2

}

×
{
T

∞∑
k=0

N−1∑
j=0

Hj [R(kT)]
}−1

(20.86)

where c1 is the cost for minimal repair and c2 is
the cost for planned PM.

We seek an optimum number N∗ that mini-
mizesC(N; T) in Equation 20.86 for a fixed T > 0.
By a similar method to that of Section 20.2.3.2,
we have the following results. From the inequality
C(N + 1; T) > C(N; T):

q(N)

∞∑
k=0

N−1∑
j=0

Hj [R(kT)]

−
∞∑
k=0

[R((k + 1)T)−R(kT)]
N−1∑
j=0

Hj [R(kT)]

≥ c2

c1
(N = 1, 2, . . .) (20.87)

where

q(N)≡
{ ∞∑

k=0

[R((k + 1)T)−R(kT)]HN [R(kT)]
}

×
{ ∞∑

k=0

HN [R(kT)]
}−1

When r(t) is strictly increasing, q(N) is strictly
increasing, and hence the left-hand side of
Equation 20.87 is also strictly increasing. Thus,
if there exists a finite and minimum solution N∗
which satisfies Equation 20.87, it is unique and
minimizes C(N; T).

20.4 Inspection Policies
Suppose that failures are not detected immediately
and can be done only through inspections.

A typical example is standby electric generators in
hospitals and other public facilities. It is extremely
serious if a standby generator fails at the very
moment of electric power supply stop. Similar
examples can be found in defense systems, in
which all weapons are in standby, and hence
must be checked at periodic times. For example,
missiles are in storage for a great part of their
lifetimes after delivery. It is important to test
the functions of missiles as to whether they can
operate normally or not. Therefore, we need to
check such systems at suitable times, and, if
necessary, replace or repair them.

Barlow and Proschan [1] summarized the
schedules of inspections that minimize two
expected costs until detection of failure and per
unit of time. Luss and Kander [175], Luss [176],
and Wattanapanom and Shaw [177] considered
the modified models where checking times are
non-negligible and a system is inoperative during
checking times. Platz [178] gave the availability
of periodic checks. Zacks and Fenske [179], Luss
and Kander [180], Anbar [181], Kander [182],
Zuckerman [183, 184], and Qiu [185] treated
much more complicated systems. Further, Weiss
[157], Coleman and Abrams [186], Morey [187],
and Apostolakis and Bansal [188] considered
imperfect inspections where some failures might
not be detected.

It would be especially important to check and
maintain standby and protective units. Nakagawa
[22], Thomas et al. [189], Sim [190], and
Parmigiani [191] discussed the inspection policy
for standby units, and Chay and Mazumdar [192],
Inagaki et al. [193], and Shima and Nakagawa
[194] did so for protective devices.

A unit has to be operating for an infinite time
span. Let c1 be the cost for one check and c2 be
the loss cost for the time elapsed between failure
and its detection at the next checking time per unit
of time. Then, the expected cost until detection of
failure is, from Barlow and Proschan [1]:

C ≡
∫ ∞

0
{c1[E{N(t)} + 1] + c2E{γt }} dF(t)

(20.88)

386 Maintenance Theory and Testing

where N(t) is the number of checks during (0, t],
γt is the interval from failure to its detection when
a failure occurs at time t , and F is a failure time
distribution of a unit.

We consider the following three inspection
policies: (1) standard inspection and asymptotic
checking time; (2) inspection with PM; and
(3) inspection of a storage system. We summarize
optimum policies that minimize the total expected
cost until detection of failure.

20.4.1 Standard Inspection

A unit is checked at successive times xk (k =
1, 2, . . .) where x0 ≡ 0. Any failures are detected
at the next checking time and are replaced
immediately. A unit has a failure time distribution
F(t) with finite mean 1/λ and its failure rate
r(t)≡ f (t)/F̄ (t) is not changed by any checks,
where f is a density of F and F̄ ≡ 1− F . It is
assumed that all times needed for checks and
replacement are negligible.

Then, the total expected cost until detection of
failure, from Equation 20.88, is

C(x1, x2, . . .)

=
∞∑
k=0

∫ xk+1

xk

[c1(k + 1)+ c2(xk+1 − t)] dF(t)

=
∞∑
k=0

[c1 + c2(xk+1 − xk)]F̄ (xk)− c2

λ

(20.89)

Differentiating the total expected cost
C(x1, x2, . . .) with xk and putting at zero:

xk+1 − xk = F(xk)− F(xk−1)

f (xk)
− c1

c2
(20.90)

Balrow and Proschan [1] proved that the optimum
checking intervals are decreasing when f is
PF2 and gave the algorithm for computing the
optimum schedule.

It is difficult to compute this algorithm numer-
ically, because the computations are repeated until
the procedures are determined to the required
degree by changing the first checking time. We
summarize three asymptotic calculations of opti-
mum checking procedures.

Munford and Shahani [195] suggested that,
when a unit was operating at time xk−1, the
probability that it fails during (xk−1, xk] is
constant for all k, i.e.

F(xk)− F(xk−1)

F̄ (xk)
≡ p (20.91)

Then, the total expected cost in Equation 20.89 is
rewritten as

C(p)= c1

p
+ c2

∞∑
k=1

xkq
k−1p − c2

λ
(20.92)

where q ≡ 1− p. We may seek p that minimizes
C(p).

Keller [196] defined a smooth density n(t),
which denotes the number of checks per unit of
time, expressed as∫ xk

0
n(t) dt = k (20.93)

Then, the total expected cost is approximately

C(n(t))≈ c1

∫ ∞
0

n(t)F̄ (t) dt

+ c2

2

∫ ∞
0

1

n(t)
dF(t) (20.94)

and the approximate checking times are given by
the following equation:

k =
√

c2

2c1

∫ xk

0

√
r(t) dt (k = 1, 2, . . .)

(20.95)
Finally, Nakagawa and Yasui [197] considered

that if xn is sufficiently large, we may assume
approximately that

xn+1 − xn + ε = xn − xn−1 (20.96)

where 0 < ε < c1/c2. In this case, Equation 20.90
becomes

c1

c2
− ε =

∫ xn
xn−1
[f (x)− f (xn)] dx

f (xn)
(20.97)

We can determine the asymptotic schedule by
computing xn−1 > xn−2 > · · · recursively from
Equation 20.97, from starting at some time xn of
accuracy required.

Maintenance and Optimum Policy 387

Kaio and Osaki [198, 199] and Viscolani [200]
discussed many modified inspection policies,
using the above approximation methods, and
compared them.

Munford [201] and Luss [202] proposed the
following total expected cost for a continuous
production system:

C(x1, x2, . . .)

=
∞∑
k=0

∫ xk+1

xk

[c1(k + 1)+ c2(xk+1 − xk)] dF(t)

= c1

∞∑
k=0

F̄ (xk)

+ c2

∞∑
k=0

(xk+1 − xk)[F(xk+1)− F(xk)]
(20.98)

In this case, Equation 20.90 is rewritten as

xk+1 − 2xk + xk−1

= F(xk+1)− 2F(xk)+ F(xk−1)

f (xk)
− c1

c2
(20.99)

In particular, when a unit is checked at periodic
times and the failure time is exponential, i.e.
xk = kT (k = 0, 1, 2, . . .) and F(t)= 1− e−λt ,
the total expected cost, from Equation 20.89, is

C(T)= c1 + c2

1− e−λT
− c2

λ
(20.100)

and an optimum checking time T ∗ is given by a
finite and unique solution of

eλT − (1+ λT)= λc1

c2
(20.101)

Similarly, from Equations 20.98 and 20.99, the
total expected cost is

C(T)= c1

1− e−λT
+ c2T (20.102)

and an optimum time T ∗ is a finite and unique
solution of

eλT (1− e−λT)2 = λc1

c2
(20.103)

Note that the solution to Equation 20.103 is less
than that of Equation 20.101.

20.4.2 Inspection with Preventive
Maintenance

See Nakagawa [23, 32]. We consider a modified
inspection policy in which an operating unit is
checked and maintained preventively at times
kT (k = 1, 2, . . .) and the age of a unit after
PM reduces to at when it was t before PM (see
Section 20.3.3.2). Then, we obtain the mean time
to failure and the expected number of PMs before
failure, and discuss an optimum inspection policy
that minimizes the expected cost.

A unit begins to operate at time zero, and is
checked and undergoes PM at periodic times kT

(k = 1, 2, . . .). It is assumed that the age of a unit
after PM reduces to at (0≤ a ≤ 1) when it was t

before PM. A unit has a failure time distribution
F(t) with finite mean 1/λ and the process ends
with its failure.

Let H(t, x) be the failure rate of a unit, i.e.
H(t, x)≡ [F(t + x)− F(t)]/F̄ (t) for x > 0, t ≥
0 and F(t) < 1, where F̄ ≡ 1− F . Then, the
reliability function, which is the probability that a
unit is operating at time t , is

S̄(t; T , a)= H̄ (AkT , t − kT)

k−1∏
j=0

H̄ (AjT , T)

kT ≤ t < (k + 1)T (20.104)

where Ak ≡ a + a2 + · · · + ak (k = 1, 2, . . .),
A0 ≡ 0, H̄ ≡ 1−H , and �−1

j=0 ≡ 1.
Using Equation 20.104, the mean time to failure

is

γ (T ; a)=
∞∑
k=0

∫ (k+1)T

kT

S̄(t; T , a) dt

=
∞∑
k=0

[k−1∏
j=0

H̄ (AjT , T)

]
1

F̄ (AkT)

×
∫ (Ak+1)T

AkT

F̄ (t) dt (20.105)

388 Maintenance Theory and Testing

and the expected number of PMs before failure is

M(T ; a)=
∞∑
k=0

kH(AkT , T)

k−1∏
j=0

H̄ (AjT , T)

=
∞∑
k=0

[k∏
j=0

H̄ (AjT , T)

]
(20.106)

From Equations 20.105 and 20.106, we have
the following: if the failure rate H(T , x) is
increasing in T , then both γ (T ; a) and M(T ; a)
are decreasing in a for any T > 0, and

M(T ; a)≤ γ (T ; a)
T

≤ 1+M(T ; a) (20.107)

When a unit fails, its failure is detected at the
next checking time. Then, the total expected cost
until the detection of failure, from Equation 20.88,
is

C(T ; a)=
∞∑
k=0

∫ (k+1)T

kT

{c1(k + 1)

+ c2[(k + 1)T − t]} d[−S̄(t; T , a)]
= (c1 + c2T)[M(T ; a)+ 1] − c2γ (T ; a)

(20.108)

In particular, if a = 1, i.e. a unit undergoes only
checks at periodic times, then

C(T ; 1)= (c1 + c2T)

∞∑
k=0

F̄ (kT)− c2

λ
(20.109)

If a = 0, i.e. the PM is perfect, then

C(T ; 0)= 1

F(T)

[
c1 + c2

∫ T

0
F(t) dt

]
(20.110)

Since M(T ; a) is a decreasing function of a,
and from Equation 20.107, we have the inequalities

C(T ; a)≥ c1[M(T ; a)+ 1] ≥ c1

∞∑
k=0

F̄ (kT)

Thus, limT→0 C(T ; a)= limT→∞ C(T ; a)=∞,
and hence there exists a positive and finite T ∗
that minimizes the expected cost C(T ; a) in
Equation 20.108.

Table 20.1. Optimum times T ∗ for various c2 when F̄ (t)=
e−(t/100)2

and c1 = 1

a T ∗

0.1 0.5 1.0 2.0 5.0 10.0

0 76 47 38 31 23 18
0.2 67 40 32 26 19 15
0.4 60 34 27 22 16 13
0.6 53 29 22 18 13 10
0.7 47 23 18 14 10 8
1.0 42 19 13 9 6 4

Example 4. Suppose that the failure time of a unit
has a Weibull distribution with shape parameter 2,
i.e. F̄ (T)= e−(t/100)2

, and c1 = 1. Table 20.1 gives
the optimum checking times T ∗ for several a and
c2. These times are small when a is large. The rea-
son would be that the failure rate increases quickly
with age when a is large and a unit fails easily.

20.4.3 Inspection of a Storage System

Systems like missiles and spare parts for aircraft
are stored for long periods until required.
However, their reliability deteriorates with time
[203], and we cannot clarify whether a system
can operate normally or not. The periodic
tests and maintenances of a storage system
are indispensable to obtaining a highly reliable
condition. But, because frequent tests have a cost
and may degrade a system [204], we should not
test it very frequently.

Martinez [205] studied the periodic inspection
of stored electronic equipment and showed how
to compute its reliability after 10 years of storage.
Itô and Nakagawa [206, 207] considered a storage
system that is overhauled if its reliability becomes
lower than a prespecified value, and obtained the
number of tests and the time to overhaul. They
further discussed the optimum inspection policy
that minimizes the expected cost. Wattanapanom
and Shaw [177] proposed an inspection policy for
a system where tests may hasten failures.

It is well known that large electric currents
occur in an electronic circuit containing induction

Maintenance and Optimum Policy 389

Table 20.2. Optimum timesT ∗ and expected costsC(T ∗)when
λ3 = 9.24 × 10−7 , c2 = 1, and a = 0.9

m λ c1 T ∗ C(T ∗)

1.0 29.24 × 10−6 10 510 603
15 670 764
20 800 903
25 920 1027
30 1020 1140

1.0 58.48 × 10−6 10 460 490
15 590 613
20 680 718
25 790 811
30 840 897

1.2 29.24 × 10−6 10 430 377
15 540 461
20 630 531
25 670 593
30 760 648

1.2 58.48 × 10−6 10 350 286
15 390 347
20 470 399
25 510 445
30 550 487

parts, such as coils and motors, at power on and
off. Missiles are constituted of various kinds of
electrical and electronic parts, and some of them
are degraded by power on–off cycles during each
test [204].

We consider the following inspection policy for
a storage system that has to operate when it is used
at any time.

1. A system is new at time zero, and is checked
and maintained preventively if necessary at
periodic times kT (k = 1, 2, . . .), where T (>
0) is previously specified.

2. A system consists mainly of two independent
units, where unit 1 becomes like new after
every check; however, unit 2 does not become
like new and is degraded with time and at
each check.

3. Unit 1 has a failure rate r1, which is given by
r1(t − kT) for kT < t ≤ (k + 1)T , because it
is like new at time kT .

4. Unit 2 has two failure rate functions r2 and
r3, which describe the failure rates of system
degradations with time and at each check
respectively. The failure rate r2(t) remains
undisturbed by any checks. Further, since
unit 2 is degraded by power on–off cycles
during the checking time, r3 increases by
constant rate λ3 at each check, and is defined
as r3(t)= kλ3 for kT < t ≤ (k + 1)T .

Thus, the failure rate function r(t) of a system,
from (3) and (4), is

r(t)≡ r1(t − kT)+ r2(t)+ kλ3 (20.111)

and the cumulative hazard function is

R(t)≡
∫ t

0
r(u) du

= kR1(T)+ R1(t − kT)+ R2(t)

+
k−1∑
j=0

jλ3T + kλ3(t − kT) (20.112)

for kT < t ≤ (k + 1)T (k = 0, 1, 2, . . .), where
Ri(t)≡

∫ t
0 ri(u) du (i = 1, 2).

Using Equation 20.112, the reliability of a
system at time t is

F̄ (t)≡ e−R(t)

= exp

{
− kR1(T)− R1(t − kT)− R2(t)

− kλ3

[
t − 1

2
(k + 1)T

]}
(20.113)

for kT < t ≤ (k + 1)T (k = 0, 1, 2, . . .), the
mean time to system failure is

γ (T)≡
∫ ∞

0
F̄ (t) dt

=
∞∑
k=0

exp

[
− kR1(T)− k(k − 1)

2
λ3T

]

×
∫ T

0
exp[−R1(t)− R2(t + kT)

− kλ3t] dt (20.114)

390 Maintenance Theory and Testing

and the expected number of checks before failure
is

M(T)≡
∞∑
k=1

k[F̄ (kT)− F̄ ((k + 1)T)]

=
∞∑
k=1

exp

[
− kR1(T)− R2(kT)

− k(k − 1)

2
λ3T

]
(20.115)

Therefore, the total expected cost until detection
of failure, from Equation 20.108, is

C(T)= (c1 + c2T)[M(T)+ 1] − c2γ (T)

(20.116)
Suppose that units have a Weibull distribu-

tion, i.e. Ri(t)= λit
m (i = 1, 2). Then, the total

expected cost is

C(T)= (c1 + c2T)

×
∞∑
k=0

exp

[
− kλ1T

m − λ2(kT)
m

− N(N − 1)

2
λ3T

]
− c2

∞∑
k=0

exp

[
− kλ1T

m − k(k − 1)

2
λ3T

]

×
∫ T

0
exp[−λ1t

m − λ2(t + kT)m

− kλ3t] dt (20.117)

Changing T , we can calculate numerically an
optimum T ∗ that minimizes C(T).

Bauer et al. [204] showed that the degradation
failure rate λ3 at each check is λ3 =NcKλSE where
Nc is the ratio of total cycles to checking time, K
is the ratio of cyclic failure rate to storage failure
rate, and λSE is the storage failure rate of electronic
parts; their values are Nc = 2.3× 10−14, K =
270, and λSE = 14.88× 10−6 h−1. Hence, λSE =
9.24× 10−7 h−1.

Table 20.2 gives the optimum times T ∗ and the
resulting costs C(T ∗) for λ and c1 when c2 = 1,
m= 1, 1.2 and a = 0.9, where λ1 = aλ and λ2 =
(1− a)λ. This indicates that both T ∗ and C(T ∗)
increase when c1 and 1/λ increase, and that a

system should be checked about once a month.
It is of interest that T ∗ in the case of m= 1.2
is much shorter than that for m= 1, because a
system deteriorates with time.

References
[1] Barlow RE, Proschan F. Mathematical theory of reliabil-

ity. New York: John Wiley & Sons, 1965.
[2] Osaki S, Nakagawa T. Bibliography for reliability and

availability. IEEE Trans Reliab 1976;R-25:284–7.
[3] Pierskalla WP, Voelker JA. A survey of maintenance

models: the control and surveillance of deteriorating
systems. Nav Res Logist Q 1976;23:353–88.

[4] Thomas LC. A survey of maintenance and replacement
models for maintainability and reliability of multi-item
systems. Reliab Eng 1986;16:297–309.

[5] Valdez-Flores C, Feldman RM. A survey of preventive
maintenance models for stochastically deteriorating
single-unit system. Nav Res Logist Q 1989;36:419–46.

[6] Cho DI, Parlar M. A survey of maintenance models for
multi-unit systems. Eur J Oper Res 1991;51:1–23.

[7] Özekici S. (ed.) Reliability and maintenance of complex
systems. Berlin: Springer-Verlag; 1996.

[8] Christer AH, Osaki S, Thomas LC. (eds.) Stochastic
modelling in innovative manufacturing. Lecture Notes
in Economics and Mathematical Systems, vol. 445.
Berlin: Springer-Verlag; 1997.

[9] Ben-Daya M, Duffuaa SO, Raouf A. (eds.) Maintenance,
modeling and optimization. Boston: Kluwer Academic
Publishers; 2000.

[10] Osaki S. (ed.) Stochastic models in reliability main-
tainance. Berlin: Springer-Verlag; 2002.

[11] Nakagawa T, Osaki S. Optimum preventive maintenance
policies for a 2-unit redundant system. IEEE Trans
Reliab 1974;R-23:86–91.

[12] Nakagawa T, Osaki S. Optimum preventive maintenance
policies maximizing the mean time to the first system
failure for a two-unit standby redundant system. Optim
Theor Appl 1974;14:115–29.

[13] Osaki S, Nakagawa T. A note on age replacement. IEEE
Trans Reliab 1975;R-24:92–4.

[14] Nakagawa T, Osaki S. A summary of optimum
preventive maintenance policies for a two-unit standby
redundant system. Z Oper Res 1976;20:171–87.

[15] Nakagawa T. On a replacement problem of a cumulative
damage model. Oper Res Q 1976;27:895–900.

[16] Mine H, Nakagawa T. Interval reliability and optimum
preventive maintenance policy. IEEE Trans Reliab
1977;R-26:131–3.

[17] Nakagawa T. Optimum preventive maintenance policies
for repairable systems. IEEE Trans Reliab 1977;R-
26:168–73.

[18] Nakagawa T, Osaki S. Discrete time age replacement
policies. Oper Res Q 1977;28:881–5.

Maintenance and Optimum Policy 391

[19] Mine H, Nakagawa T. A summary of optimum
preventive maintenance policies maximizing interval
reliability. J Oper Res Soc Jpn 1978;21:205–16.

[20] Nakagawa T. Optimum policies when preventive mainte-
nance is imperfect. IEEE Trans Reliab 1979;R-28:331–2.

[21] Nakagawa T. A summary of block replacement policies.
RAIRO Oper Res 1979;13:351–61.

[22] Nakagawa T. Optimum inspection policies for a standby
unit. J Oper Res Soc Jpn 1980;23:13–26.

[23] Nakagawa T. Replacement models with inspection
and preventive maintenance. Microelectron Reliab
1980;20:427–33.

[24] Nakagawa T. A summary of imperfect preventive
maintenance policies with minimal repair. RAIRO Oper
Res 1980;14:249–55.

[25] Nakagawa T. Modified periodic replacement with
minimal repair at failure. IEEE Trans Reliab 1981;R-
30:165–8.

[26] Nakagawa T. A summary of periodic replacement
with minimal repair at failure. J Oper Res Soc Jpn
1981;24:213–27.

[27] Nakagawa T. Generalized models for determining
optimal number of minimal repairs before replacement.
J Oper Res Soc Jpn 1981;24:325–37.

[28] Nakagawa T. A modified block replacement with two
variables. IEEE Trans Reliab 1982;R-31:398–400.

[29] Nakagawa T, Kowada M. Analysis of a system with
minimal repair and its application to replacement
policy. Eur J Oper Res 1983;12:176–82.

[30] Nakagawa T. Optimal number of failures before
replacement time. IEEE Trans Reliab 1983;R-32:115–6.

[31] Nakagawa T. Combined replacement models. RAIRO
Oper Res 1983;17:193–203.

[32] Nakagawa T. Periodic inspection policy with preventive
maintenance. Nav Res Logist Q 1984;31:33–40.

[33] Nakagawa T. A summary of discrete replacement
policies. Eur J Oper Res 1984;17:382–92.

[34] Nakagawa T. Modified discrete preventive maintenance
policies. Nav Res Logist Q 1986;33:703–15.

[35] Nakagawa T. Optimum replacement policies for systems
with two types of units. In: Osaki S, Cao JH, editors.
Reliability Theory and Applications Proceedings of the
China–Japan Reliability Symposium, Shanghai, China,
1987.

[36] Nakagawa T, Yasui K. Optimum policies for a system
with imperfect maintenance. IEEE Trans Reliab 1987;R-
36:631–3.

[37] Cox DR. Renewal theory. London: Methuen; 1962.
[38] Çinlar E. Introduction to stochastic processes. Engle-

wood Cliffs (NJ): Prentice-Hall; 1975.
[39] Osaki S. Applied stochastic system modeling. Berlin:

Springer-Verlag; 1992.
[40] Berg M. A proof of optimality for age replacement

policies. J Appl Prob 1976;13:751–9.
[41] Bergman B. On the optimality of stationary replacement

strategies. J Appl Prob 1980;17:178–86.
[42] Glasser GJ. The age replacement problem. Technomet-

rics 1967;9:83–91.

[43] Scheaffer RL. Optimum age replacement policies with
an increasing cost factor. Technometrics 1971;13:139–
44.

[44] Cléroux R, Hanscom M. Age replacement with adjust-
ment and depreciation costs and interest charges. Tech-
nometrics 1974;16:235–9.

[45] Cléroux R, Dubuc S, Tilquin C. The age replacement
problem with minimal repair and random repair costs.
Oper Res 1979;27:1158–67.

[46] Subramanian R, Wolff MR. Age replacement in simple
systems with increasing loss functions. IEEE Trans
Reliab 1976;R-25:32–4.

[47] Fox B. Age replacement with discounting. Oper Res
1966;14:533–7.

[48] Ran A, Rosenland SI. Age replacement with discounting
for a continuous maintenance cost model. Technomet-
rics 1976;18:459–65.

[49] Berg M, Epstein B. Comparison of age, block, and failure
replacement policies. IEEE Trans Reliab 1978;R-27:25–9.

[50] Ingram CR, Scheaffer RL. On consistent estimation of
age replacement intervals. Technometrics 1976;18:213–
9.

[51] Frees EW, Ruppert D. Sequential non-parametric age
replacement policies. Ann Stat 1985;13:650–62.

[52] Léger C, Cléroux R. Nonparametric age replacement:
bootstrap confidence intervals for the optimal cost.
Oper Res 1992;40:1062–73.

[53] Christer AH. Refined asymptotic costs for renewal
reward processes. J Oper Res Soc 1978;29:577–83.

[54] Ansell J, Bendell A, Humble S. Age replacement under
alternative cost criteria. Manage Sci 1984;30:358–67.

[55] Popova E, Wu HC. Renewal reward processes with fuzzy
rewards and their applications to T -age replacement
policies. Eur J Oper Res 1999;117:606–17.

[56] Zheng X. All opportunity-triggered replacement pol-
icy for multiple-unit systems. IEEE Trans Reliab
1995;44:648–52.

[57] Marathe VP, Nair KPK. Multistage planned replacement
strategies. Oper Res 1966;14:874–87.

[58] Jain A, Nair KPK. Comparison of replacement strategies
for items that fail. IEEE Trans Reliab 1974;R-23:247–51.

[59] Schweitzer PJ. Optimal replacement policies for hyper-
exponentially and uniform distributed lifetimes. Oper
Res 1967;15:360–2.

[60] Savits TH. A cost relationship between age and block
replacement policies. J Appl Prob 1988;25:789–96.

[61] Tilquin C, Cléroux R. Block replacement policies with
general cost structures. Technometrics 1975;17:291–8.

[62] Archibald TW, Dekker R. Modified block-replacement
for multi-component systems. IEEE Trans Reliab
1996;R-45:75–83.

[63] Sheu SH. A generalized block replacement policy with
minimal repair and general random repair costs for a
multi-unit system. J Oper Res Soc 1991;42:331–41.

[64] Sheu SH. Extended block replacement policy with used
item and general random minimal repair cost. Eur J
Oper Res 1994;79:405–16.

392 Maintenance Theory and Testing

[65] Sheu SH. A modified block replacement policy with
two variables and general random minimal repair cost.
J Appl Prob 1996;33:557–72.

[66] Sheu SH. Extended optimal replacement model for
deteriorating systems. Eur J Oper Res 1999;112:503–16.

[67] Crookes PCI. Replacement strategies. Oper Res Q
1963;14:167–84.

[68] Blanning RW. Replacement strategies. Oper Res Q
1965;16:253–4.

[69] Bhat BR. Used item replacement policy. J Appl Prob
1969;6:309–18.

[70] Tango T. A modified block replacement policy using less
reliable items. IEEE Trans Reliab 1979;R-28:400–1.

[71] Murthy DNP, Nguyen DG. A note on extended block
replacement policy with used items. J Appl Prob
1982;19:885–9.

[72] Ait Kadi D, Cléroux R. Optimal block replacement
policies with multiple choice at failure. Nav Res Logist
1988;35:99–110.

[73] Berg M, Epstein B. A modified block replacement policy.
Nav Res Logist Q 1976;23:15–24.

[74] Berg M, Epstein B. A note on a modified block
replacement policy for units with increasing marginal
running costs. Nav Res Logist Q 1979;26:157–60.

[75] Holland CW, McLean RA. Applications of replacement
theory. AIIE Trans 1975;7:42–7.

[76] Tilquin C, Cléroux R. Periodic replacement with
minimal repair at failure and adjustment costs. Nav Res
Logist Q 1975;22:243–54.

[77] Boland PJ. Periodic replacement when minimal repair
costs vary with time. Nav Res Logist Q 1982;29:541–6.

[78] Boland PJ, Proschan F. Periodic replacement with
increasing minimal repair costs at failure. Oper Res
1982;30:1183–9.

[79] Chen M, Feldman RM. Optimal replacement policies
with minimal repair and age-dependent costs. Eur J
Oper Res 1997;98: 75–84.

[80] Aven T. Optimal replacement under a minimal repair
strategy—a general failure model. Adv Appl Prob
1983;15:198–211.

[81] Bagai I, Jain K. Improvement, deterioration, and optimal
replacement under age-replacement with minimal
repair. IEEE Trans Reliab 1994;43:156–62.

[82] Murthy DNP. A note on minimal repair. IEEE Trans
Reliab 1991;40:245–6.

[83] Dekker R. A general framework for optimization pri-
ority setting, planning and combining of maintenance
activities. Eur J Oper Res 1995;82:225–40.

[84] Aven T, Dekker R. A useful framework for optimal
replacement models. Reliab Eng Syst Saf 1997;58:61–7.

[85] Mine H, Kawai H. Preventive replacement of a 1-unit
system with a wearout state. IEEE Trans Reliab 1974;R-
23:24–9.

[86] Muth E. An optimal decision rule for repair vs
replacement. IEEE Trans Reliab 1977;26:179–81.

[87] Tahara A, Nishida T. Optimal replacement policy for
minimal repair model. J Oper Res Soc Jpn 1975;18:113–
24.

[88] Phelps RI. Replacement policies under minimal repair.
J Oper Res Soc 1981;32:549–54.

[89] Phelps RI. Optimal policy for minimal repair. J Oper Res
Soc 1983;34:452–7.

[90] Park KS, Yoo YK. (τ, k) block replacement policy with
idle count. IEEE Trans Reliab 1993;42:561–5.

[91] Morimura H. On some preventive maintenance policies
for IFR. J Oper Res Soc Jpn 1970;12:94–124.

[92] Park KS. Optimal number of minimal repairs before
replacement. IEEE Trans Reliab 1979;R-28:137–40.

[93] Tapiero CS, Ritchken PH. Note on the (N , T)
replacement rule. IEEE Trans Reliab 1985;R-34:374–6.

[94] Lam Y. A note on the optimal replacement problem. Adv
Appl Prob 1988;20,479–82.

[95] Lam Y. A repair replacement model. Adv Appl Prob
1990;22:494–97.

[96] Lam Y. An optimal repairable replacement model for
deteriorating system. J Appl Prob 1991;28:843–51.

[97] Ritchken P, Wilson JG. (m, T) group maintenance
policies. Manage Sci 1990;36: 632–9.

[98] Sheu SH. A generalized model for determining optimal
number of minimal repairs before replacement. Eur J
Oper Res 1993;69:38–49.

[99] Munter M. Discrete renewal processes. IEEE Trans
Reliab 1971;R-20:46–51.

[100] Nakagawa T, Osaki S. The discrete Weibull distribution.
IEEE Trans Reliab 1975;R-24:300–1.

[101] Scheaffer RL. Optimum age replacement in the bivariate
exponential case. IEEE Trans Reliab 1975;R-24:214–5.

[102] Berg M. Optimal replacement policies for two-unit
machines with increasing running costs I. Stoch Process
Appl 1976;4:89–106.

[103] Berg M. General trigger-off replacement procedures for
two-unit systems. Nav Res Logist Q 1978;25:15–29.

[104] Yamada S, Osaki S. Optimum replacement policies for
a system composed of components. IEEE Trans Reliab
1981;R-30:278–83.

[105] Bai DS, Jang JS, Kwon YI. Generalized preventive main-
tenance policies for a system subject to deterioration.
IEEE Trans Reliab 1983;R-32.512–4.

[106] Murthy DNP, Nguyen DG. Study of two-component
system with failure interaction. Nav Res Logist Q
1985;32:239–47.

[107] Pullen KW, Thomas MU. Evaluation of an opportunistic
replacement policy for a 2-unit system. IEEE Trans
Reliab 1986;R-35:320–4.

[108] Beichelt F, Fisher K. General failure model applied
to preventive maintenance policies. IEEE Trans Reliab
1980;R-29:39–41.

[109] Beichelt F. A generalized block-replacement policy. IEEE
Trans Reliab 1981;R-30:171–2.

[110] Murthy DNP, Maxwell MR. Optimal age replacement
policies for items from a mixture. IEEE Trans Reliab
1981;R-30:169–70.

[111] Berg MP. The marginal cost analysis and its application
to repair and replacement policies. Eur J Oper Res
1995;82:214–24.

Maintenance and Optimum Policy 393

[112] Block HW, Borges WS, Savits TH. Age-dependent
minimal repair. J Appl Prob 1985;22:370–85.

[113] Block HW, Borges WS, Savits TH. A general age
replacement model with minimal repair. Nav Res
Logist Q 1988;35:365–72

[114] Smith WL. Renewal theory and its ramifications. J R Stat
Soc Ser B 1958;20:243–302.

[115] Mercer A. On wear-dependent renewal process. J R Stat
Soc Ser B 1961;23:368–76.

[116] Esary JD, Marshall AW, Proschan F. Shock models and
wear processes. Ann Prob 1973;1:627–49.

[117] Nakagawa T, Osaki S. Some aspects of damage models.
Microelectron Reliab 1974;13:253–7.

[118] Taylor HM. Optimal replacement under additive dam-
age and other failure models. Nav Res Logist Q
1975;22:1–18.

[119] Feldman RM. Optimal replacement with semi-Markov
shock models. J Appl Prob 1976;13:108–17.

[120] Feldman RM. Optimal replacement with semi-Markov
shock models using discounted costs. Math Oper Res
1977;2:78–90.

[121] Feldman RM. Optimal replacement for systems gov-
erned by Markov additive shock processes. Ann Prob
1977;5:413–29.

[122] Zuckerman Z. Replacement models under additive
damage. Nav Res Logist Q 1977;24:549–58.

[123] Zuckerman Z. Optimal replacement policy for the case
where the damage process is a one-sided Lévy process.
Stoch Process Appl 1978;7:141–51.

[124] Zuckerman Z. Optimal stopping in a semi-Markov
shock model. J Appl Prob 1978;15:629–34.

[125] Zuckerman D. A note on the optimal replacement time
of damaged devices. Nav Res Logist Q 1980;27:521–4.

[126] Wortman MA, Klutke GA, Ayhan H. A maintenance
strategy for systems subjected to deterioration governed
by random shocks. IEEE Trans Reliab 1994;43:439–45.

[127] Sheu SH, Griffith WS. Optimal number of minimal
repairs before replacement of a system subject to shocks.
Nav Res Logist 1996;43:319–33.

[128] Sheu SH. Extended block replacement policy of a system
subject to shocks. IEEE Trans Reliab 1997;46:375–82.

[129] Sheu SH. A generalized age block replacement of a
system subject to shocks. Eur J Oper Res 1998;108:345–
62.

[130] Satow T, Yasui K, Nakagwa T. Optimal garbage collection
policies for a database in a computer system. RAIRO
Oper Res 1996;30:359–72.

[131] Qian CH, Nakamura S, Nakagawa T. Cumulative damage
model with two kinds of shocks and its application to
the backup policy. J Oper Res Soc Jpn 1999;42:501–11.

[132] Pyke R. Markov renewal processes: definitions and
preliminary properties. Ann Math Stat 1961;32:1231–42.

[133] Pyke R. Markov renewal processes with finitely many
states. Ann Math Stat 1961;32:1243–59.

[134] Hosford JE. Measures of dependability. Oper Res
1960;8:53–64.

[135] Morse PM. Queues, inventories and maintenance. New
York: John Wiley & Sons; 1958. Chapter 11.

[136] Sherif YS, Smith ML. Optimal maintenance models for
systems subject to failure—a review. Nav Res Logist Q
1981;28:47–74.

[137] Jardine AKS, Buzacott JA. Equipment reliability and
maintenance. Eur J Oper Res 1985;19:285–96.

[138] Reineke DM, Murdock Jr WP, Pohl EA, Rehmert I.
Improving availability and cost performance for com-
plex systems with preventive maintenance. In: Proceed-
ings Annual Reliability and Maintainability Symposium,
1999; p.383–8.

[139] Liang TY. Optimum piggyback preventive maintenance
policies. IEEE Trans Reliab 1985;R-34:529–38.

[140] Aven T. Availability formulae for standby systems of
similar units that are preventively maintained. IEEE
Trans Reliab 1990;R-39:603–6.

[141] Smith MAJ, Dekker R. Preventive maintenance in a 1 out
of n system: the uptime, downtime and costs. Eur J Oper
Res 1997;99:565–83.

[142] Silver EA, Fiechter CN. Preventive maintenance with
limited historical data. Eur J Oper Res 1995;82:125–44.

[143] Van der Duyn Schouten, Scarf PA. Eleventh EURO
summer institute: operational research models in
maintenance. Eur J Oper Res 1997;99:493–506.

[144] Chockie A, Bjorkelo K. Effective maintenance practices
to manage system aging. In: Proceedings Annual Relia-
bility and Maintainability Symposium, 1992; p.166–70.

[145] Smith AM. Preventive-maintenance impact on plant
availability. In: Proceedings Annual Reliability and
Maintainability Symposium, 1992; p.177–80.

[146] Susova GM, Petrov AN. Markov model-based reliability
and safety evaluation for aircraft maintenance-system
optimization. In: Proceedings Annual Reliability and
Maintainability Symposium, 1992; p.29–36.

[147] Gaver Jr DP. Failure time for a redundant repairable
system of two dissimilar elements. IEEE Trans Reliab
1964;R-13:14–22.

[148] Gnedenko BV. Idle duplication. Eng Cybernet 1964;2:1–
9.

[149] Gnedenko BV. Duplication with repair. Eng Cybernet
1964;2:102–8.

[150] Srinivasan VS. The effect of standby redundancy in
system’s failure with repair maintenance. Oper Res
1966;14:1024–36.

[151] Osaki S. System reliability analysis by Markov renewal
processes. J Oper Res Soc Jpn 1970;12:127–88.

[152] Rozhdestvenskiy DV, Fanarzhi GN. Reliability of a dupli-
cated system with renewal and preventive maintenance.
Eng Cybernet 1970;8:475–9.

[153] Osaki S, Asakura T. A two-unit standby redundant
system with preventive maintenance. J Appl Prob
1970;7:641–8.

[154] Berg M. Optimal replacement policies for two-unit
machines with increasing running cost I. Stoch Process
Appl 1976;4:89–106.

[155] Berg M. Optimal replacement policies for two-unit
machines with running cost II. Stoch Process Appl
1977;5:315–22.

[156] Berg M. General trigger-off replacement procedures for
two-unit system. Nav Res Logist Q 1978;25:15–29.

394 Maintenance Theory and Testing

[157] Weiss H. A problem in equipment maintenance. Manage
Sci 1962;8:266–77.

[158] Chan PKW, Downs T. Two criteria for preventive
maintenance. IEEE Trans Reliab 1978;R-27:272–3.

[159] Murthy DNP, Nguyen DG. Optimal age-policy with
imperfect preventive maintenance. IEEE Trans Reliab
1981;R-30:80–1.

[160] Lie CH, Chun YH. An algorithm for preventive
maintenance policy. IEEE Trans Reliab 1986;R-35:71–5.

[161] Jayabalan V, Chaudhuri D. Cost optimization of
maintenance scheduling for a system with assured
reliability. IEEE Trans Reliab 1992;R-41:21–5.

[162] Canfield RV. Cost optimization of periodic preventive
maintenance. IEEE Trans Reliab 1986;R-35:78–81.

[163] Brown M, Proschan F. Imperfect repair. J Appl Prob
1983;20:851–9.

[164] Fontnot RA, Proschan F. Some imperfect maintenance
models. In: Abdel-Hameed MS, Çinlar E, Quinn J,
editors. Reliability theory and models. Orlando (FL):
Academic Press; 1984.

[165] Bhattacharjee MC. New results for the Brown–Proschan
model of imperfect repair. J Stat Plan Infer 1987;16:305–
16.

[166] Ebrahimi N. Mean time to achieve a failure-free
requirement with imperfect repair. IEEE Trans Reliab
1985;R-34:34–7.

[167] Kijima M, Morimura H, Suzuki Y. Periodic replacement
problem without assuming minimal repair. Eur J Oper
Res 1988;37:194–203.

[168] Natvig B. On information based minimal repair and
the reduction in remaining system lifetime due to the
failure of a specific module. J Appl Prob 1990;27: 365–
375.

[169] Stadje WG, Zuckerman D. Optimal maintenance strate-
gies for repairable systems with general degree of repair.
J Appl Prob 1991;28:384–96.

[170] Makis V, Jardine AKS. Optimal replacement policy for
a general model with imperfect repair. J Oper Res Soc
1992;43:111–20.

[171] Lie XG, Makis V, Jardine AKS. A replacement model
with overhauls and repairs. Nav Res Logist 1995;42:
1063–79.

[172] Wang H, Pham H. Optimal age-dependent preventive
maintenance policies with imperfect maintenance. Int J
Reliab Qual Saf Eng 1996;3:119–35.

[173] Pham H, Wang H. Imperfect maintenance. Eur J Oper
Res 1996;94:425–38.

[174] Sandoh H, Hirakoshi H, Nakagawa T. A new modified
discrete preventive maintenance policy and its appli-
cation to hard disk management. J Qual Maint Eng
1998;4:284–90.

[175] Luss H, Kander Z. Inspection policies when duration of
checkings is non-negligible. Oper Res Q 1974;25:299–
309.

[176] Luss H. Inspection policies for a system which is
inoperative during inspection periods. AIIE Trans
1976;9:189–94.

[177] Wattanapanom N, Shaw L. Optimal inspection sched-
ules for failure detection in a model where tests hasten
failures. Oper Res 1979;27:303–17.

[178] Platz O. Availability of a renewable, checked system.
IEEE Trans Reliab 1976;R-25:56–8.

[179] Zacks S, Fenske WJ. Sequential determination
of inspection epochs for reliability systems with
general lifetime distributions. Nav Res Logist Q 1973;20:
377–86.

[180] Luss H, Kander Z. A preparedness model dealing
with N systems operating simultaneously. Oper Res
1974;22:117–28.

[181] Anbar D. An aysmptotically optimal inspection policy.
Nav Res Logist Q 1976;23:211–8.

[182] Kander Z. Inspection policies for deteriorating equip-
ment characterized byN quality levels. Nav Res Logist Q
1978;25:243–55.

[183] Zuckerman D. Inspection and replacement policies.
J Appl Prob 1980;17:168–77.

[184] Zuckerman D. Optimal inspection policy for a multi-
unit machine. J Appl Prob 1989;26:543–51.

[185] Qiu YP. A note on optimal inspection policy for
stochastically deteriorating series systems. J Appl Prob
1991;28:934–9.

[186] Coleman JJ, Abrams IJ. Mathematical model for
operational readiness. Oper Res 1962;10:126–38.

[187] Morey RC. A criterion for the economic application of
imperfect inspections. Oper Res 1967;15:695–8.

[188] Apostolakis GE, Bansal PP. Effect of human error on the
availability of periodically inspected redundant systems.
IEEE Trans Reliab 1977;R-26:220–5.

[189] Thomas LC, Jacobs PA, Gaver DP. Optimal inspection
policies for standby systems. Commun Stat Stoch Model
1987;3:259–73.

[190] Sim SH. Reliability of standby equipment with periodic
testing. IEEE Trans Reliab 1987;R-36:117–23.

[191] Parmigiani G. Inspection times for stand-by units.
J Appl Prob 1994;31:1015–25.

[192] Chay SC, Mazumdar M. Determination of test intervals
in certain repairable standby protective systems. IEEE
Trans Reliab 1975;R-24:201–5.

[193] Inagaki T, Inoue K, Akashi H. Optimization of staggered
inspection schedules for protective systems. IEEE Trans
Reliab 1980;R-29:170–3.

[194] Shima E, Nakagawa T. Optimum inspection policy for a
protective device. Reliab Eng 1984;7:123–32.

[195] Munford AG, Shahani AK. A nearly optimal inspection
policy. Oper Res Q 1972;23:373–9.

[196] Keller JB. Optimum checking schedules for systems
subject to random failure. Manage Sci 1974;21:256–60.

[197] Nakagawa T, Yasui K. Approximate calculation of opt-
imal inspection times. J Oper Res Soc 1980;31:851–3.

[198] Kaio N, Osaki S. Inspection policies: Comparisons and
modifications. RAIRO Oper Res 1988;22:387–400.

[199] Kaio N, Osaki S. Comparison of inspection policies.
J Oper Res Soc 1989;40:499–503.

[200] Viscolani B. A note on checking schedules with finite
horizon. RAIRO Oper Res 1991;25:203–8.

[201] Munford AG. Comparison among certain inspection
policies. Manage Sci 1981;27:260–7.

Maintenance and Optimum Policy 395

[202] Luss H. An inspection policy model for production
facilities. Manage Sci 1983;29:1102–9.

[203] Menke JT. Deterioration of electronics in storage. In:
Proceedings of National SAMPE Symposium, 1983;
p.966–72.

[204] Bauer J et al. Dormancy and power on–off cycling effects
on electronic equipment and part reliability. RADAC-
TR-73-248(AD-768619), 1973.

[205] Martinez EC. Storage reliability with periodic test. In:
Proceedings of Annual Reliability and Maintainability
Symposium, 1984; p.181–5.

[206] Itô K, Nakagawa T. Optimal inspection policies for
a system in storage. Comput Math Appl 1992;24:87–90.

[207] Itô K, Nakagawa T. Extended optimal inspection policies
for a system in storage. Math Comput Model 1995;
22:83–7.

This page intentionally left blank

Optimal Imperfect Maintenance
Models

Ch
ap

te
r2

1Hongzhou Wang and Hoang Pham

21.1 Introduction
21.2 Treatment Methods for Imperfect Maintenance
21.2.1 Treatment Method 1
21.2.2 Treatment Method 2
21.2.3 Treatment Method 3
21.2.4 Treatment Method 4
21.2.5 Treatment Method 5
21.2.6 Treatment Method 6
21.2.7 Treatment Method 7
21.2.8 Other Methods
21.3 Some Results on Imperfect Maintenance
21.3.1 A Quasi-renewal Process and Imperfect Maintenance
21.3.1.1 Imperfect Maintenance Model A
21.3.1.2 Imperfect Maintenance Model B
21.3.1.3 Imperfect Maintenance Model C
21.3.1.4 Imperfect Maintenance Model D
21.3.1.5 Imperfect Maintenance Model E
21.3.2 Optimal Imperfect Maintenance of k-out-of-n Systems
21.4 Future Research on Imperfect Maintenance
21.A Appendix
21.A.1 Acronyms and Definitions
21.A.2 Exercises

21.1 Introduction

Maintenance involves preventive (planned) and
corrective (unplanned) actions carried out to
retain a system in or restore it to an acceptable
operating condition. Optimal maintenance poli-
cies aim to provide optimum system reliability and
safety performance at the lowest possible mainte-
nance costs. Proper maintenance techniques have
been emphasized in recent years due to increased
safety and reliability requirements of systems, in-
creased complexity, and rising costs of material
and labor [1]. For some systems, such as air-
planes, submarines, and nuclear systems, it is
extremely important to avoid failure during op-
eration because it is dangerous and disastrous.

One important research area in reliability engi-
neering is the study of various maintenance poli-
cies in order to prevent the occurrence of system
failure in the field and improve system availability.

In the past decades, maintenance, replacement,
and inspection problems have been extensively
studied in the literature, and hundreds of models
have been developed. McCall [2], Barlow and
Proschan [3], Pieskalla and Voelker [4], Sherif and
Smith [1], Jardine and Buzacott [5], Valdez-Flores
and Feldman [6], Cho and Parlar [7], Jensen [8],
Dekker [9], Pham and Wang [10], and Dekker
et al. [11] survey and summarize the research
done in this field. However, problems in this
field are still not solved satisfactorily and some
maintenance models are not realistic. Next, an

397

398 Maintenance Theory and Testing

important problem in maintenance and reliability
theory is discussed.

Maintenance can be classified into two major
categories: corrective and preventive. Corrective
maintenance (CM) occurs when the system fails.
Some researchers refer to CM as repair and
we will use them interchangeably throughout
this chapter. According to MIL-STD-721B, CM
means all actions performed as a result of failure,
to restore an item to a specified condition.
Preventive maintenance (PM) occurs when the
system is operating. According to MIL-STD-721B,
PM means all actions performed in an attempt to
retain an item in specified condition by providing
systematic inspection, detection, and prevention
of incipient failures. We believe that maintenance
can also be categorized according to the degree
to which the operating conditions of an item is
restored by maintenance in the following way.

(a) Perfect repair or perfect maintenance: a main-
tenance action that restores the system oper-
ating condition to “as good as new”, i.e. upon
perfect maintenance, a system has the same
lifetime distribution and failure rate function
as a brand new one. Complete overhaul of an
engine with a broken connecting rod is an
example of perfect repair. Generally, replace-
ment of a failed system by a new one is a
perfect repair.

(b) Minimal repair or minimal maintenance: a
maintenance action that restores the system
to the failure rate it had when it just failed.
Minimal repair was first studied by Barlow
and Proschan [3]. After this the system
operating state is often called “as bad as old”
in the literature. Changing a flat tire on a
car is an example of minimal repair, because
the overall failure rate of the car is essentially
unchanged.

(c) Imperfect repair or imperfect maintenance: a
maintenance action may not make a system
“as good as new” but younger. Usually, it is
assumed that imperfect maintenance restores
the system operating state to somewhere
between “as good as new” and “as bad as old”.
Clearly, imperfect maintenance is general,

which can include two extreme cases: minimal
and perfect repair maintenance. Engine tune-
up is an example of imperfect maintenance.

(d) Worse repair or maintenance: a maintenance
action that undeliberately makes the system
failure rate or actual age increase but the
system does not break down. Thus, upon
worse repair a system’s operating condition
becomes worse than that just prior to its
failure.

(e) Worst repair or maintenance: a maintenance
action that undeliberately makes the system
fail or break down.

Because worse and worst maintenance is less
met in practice than imperfect maintenance, the
focus of this chapter is on imperfect maintenance.

According to the above classification scheme,
we can say that a PM is a minimal, perfect,
imperfect, worst or worse PM. Similarly, a CM may
be a minimal, perfect, imperfect, worst or worse
CM. We will refer to imperfect CM and PM as
imperfect maintenance later.

The type and degree of maintenance that is
used in practice depend on the types of system,
their costs as well as system reliability and
safety requirements. In maintenance literature,
most studies assume that the system after CM
or PM is “as good as new” (perfect repair) or
“as bad as old” (minimal repair). In practice,
the perfect maintenance assumption may be
reasonable for systems with one component that
is structurally simple. On the other hand, the
minimal repair assumption seems plausible for the
failure behavior of systems when one of its many,
non-dominating components is replaced by a new
one [12]. However, many maintenance activities
may not result in such two extreme situations but
in a complicated intermediate one. For example,
an engine may not be “as good as new” or “as
bad as old” after tune-up, a type of PM. It usually
becomes “younger” than at the time just prior to
PM. Therefore, perfect maintenance and minimal
maintenance are not true in many actual instances
and realistic imperfect maintenance should be
modeled. Recently, imperfect maintenance (both
corrective and preventive) has received increasing

Optimal Imperfect Maintenance Models 399

attention in the reliability and maintenance
community. In fact, the advent of the concept
of imperfect maintenance has great meaning in
reliability and maintenance engineering. We think
that imperfect maintenance study indicates a
significant breakthrough in maintenance theory.

Brown and Proschan [13] propose some
possible causes for imperfect, worse or worst
maintenance due to the maintenance performer:

• repair of the wrong part;
• only partially repair the faulty part;
• repair (partially or completely) the faulty part

but damage adjacent parts;
• incorrectly assess the condition of the unit

inspected;
• perform the maintenance action not when

called for but at his convenience (the timing
for maintenance is off the schedule).

Nakagawa and Yasui [14] mention three possi-
ble reasons causing worse or worst maintenance:

• hidden faults and failures that are not detected
during maintenance;
• human errors, such as wrong adjustments and

further damage done during maintenance;
• replacement with faulty parts.

Helvik [15] suggests that imperfectness of
maintenance is related to the skill of the mainte-
nance personnel, the quality of the maintenance
procedure, and the maintainability of the system.

21.2 Treatment Methods for
Imperfect Maintenance
Impefect maintenance research started as early
as in the late 1970s. Kay [16] and Chan and
Downs [17] studied the worst PM. Ingle and
Siewiorek [18] examined imperfect maintenance.
Chaudhuri and Sahu [19] explored the concept of
imperfect PM. Most early research on imperfect,
worse, and worst maintenance is for a single-unit
system. Some researchers have proposed various
methods for modeling imperfect, worse, and worst
maintenance. It is useful to summarize/classify

these methods. These modeling methods can be
utilized in various maintenance and inspection
policies. Although these methods are summarized
mainly from the work of a single-unit system they
will also be useful for modeling multicomponent
systems, because the study methods of imperfect,
worse, and worst maintenance for single-unit
systems will also be effective for modeling the
imperfect maintenance of individual subsystems
that are constituting parts of multicomponent
systems. Methods for treating imperfect, worse,
and worst maintenance can be classified into eight
categories [10], which will be described next.

21.2.1 Treatment Method 1

Nakagawa [20] treats the imperfect PM in this
way: the component is returned to the “as good as
new” state (perfect PM) with probability p and it
is returned to the “as bad as old” state (minimal
PM) with probability q = 1− p upon imperfect
PM. Obviously, if p = 1 the PM coincides with
perfect PM and if p = 0 it corresponds to
minimal PM. In this sense, minimal and perfect
maintenances are special cases of imperfect
maintenance, and imperfect maintenance is a
general maintenance. Using such a method
for modeling imperfect maintenance, Nakagawa
succeeded in determining the optimum PM
policies minimizing the s-expected maintenance
cost rate for a one-unit system under both age-
dependent [20] and periodic PM [21] policies,
given that PM is imperfect.

Similar to Nakagawa’s work [20], Helvic [15]
states that, after PM, though the fault-tolerant
system is usually renewed after maintenance with
probability θ2, its operating condition sometimes
remains unchanged (as bad as old) with probabil-
ity θ1 where θ1 + θ2 = 1.

Brown and Proschan [13] contemplate the
following model of the repair process. A unit is
repaired each time it fails. The executed repair
is either a perfect one with probability p or a
minimal one with probability 1− p. Assuming
that all repair actions take negligible time, Brown
and Proschan [13] established aging preservation
properties of this imperfect repair process and the

400 Maintenance Theory and Testing

monotonicity of various parameters and random
variables associated with the failure process. They
obtained an important, useful result: if the life
distribution of a unit is F and its failure rate
is r , then the distribution function of the time
between successive perfect repairs Fp = 1− (1−
F)p and the corresponding failure rate rp =
pr . Using this result, Fontenot and Proschan
[22] and Wang and Pham [23] both obtained
optimal imperfect maintenance policies for a one-
component system. Later on, we will refer to this
method of modeling imperfect maintenance as
the (p, q) rule, i.e. after maintenance (corrective
or preventive) a system becomes “as good as
new” with probability p and “as bad as old” with
probability 1− p. In fact, quite a few imperfect
maintenance models have used this rule in recent
years.

Bhattacharjee [24] obtained the same results
as Brown and Proschan [13] and also some
new results for the Brown–Proschan model of
imperfect repair via a shock model representation
of the sojourn time.

21.2.2 Treatment Method 2

Block et al. [25] extend the above Brown–Proschan
imperfect repair model with the (p, q) rule to
the age-dependent imperfect repair for a one-unit
system: an item is repaired at failure (CM). With
probability p(t), the repair is a perfect repair;
with probability q(t)= 1− p(t), the repair is a
minimal one, where t is the age of the item in use
at the failure time (the time since the last perfect
repair). Block et al. [25] showed that if the item’s
life distribution F is a continuous function and its
failure rate is r , then the successive perfect repair
times is a renewal process with interarrival time
distribution

Fp = 1− exp

{ ∫ t

0
p(x)[1− F(x)]−1F(dx)

}
and the corresponding failure rate rp(t)=
p(t)r(t). In fact, similar results were found by
Beichelt and Fischer [26]. Block et al. [25] proved
that the aging preservation results of Brown and
Proschan [13] hold under suitable hypotheses

on p(t). This imperfect maintenance modeling
method is called the (p(t), q(t)) rule herein.

Using the (p(t), q(t)) rule, Block et al. [27]
explored a general age-dependent PM policy,
where an operating unit is replaced whenever it
reaches age T ; if it fails at age t < T , it is either
replaced by a new unit, with probability p(t), or it
undergoes minimal repair, with probability q(t)=
1− p(t). The cost of the ith minimal repair is
a function, ci(t), of age and number of repairs.
After a perfect maintenance, planned (preventive)
or unplanned (corrective), the above process is
repeated.

Both the Brown and Proschan models and the
Block et al. [25, 27] model assume that the repair
time is negligible. It is worthwhile mentioning that
Iyer [28] obtained availability results for imperfect
repair using the (p(t), q(t)) rule given the repair
time is not negligible. Obviously, his treatment
method is more realistic.

In a related study, Sumita and Shanthikumar
[29] (see Pham and Wang [10]) proposed and
studied an age-dependent counting process gen-
erated from a renewal process, and applied that
counting process to the age-dependent imperfect
repair for a one-unit system.

Whitaker and Samaniego [30] established an
estimator for the life distribution when the above
maintenance process proposed by Block et al. [25]
is observed until the time of the mth perfect
repair. This estimator was motivated by a non-
parametric maximum likelihood approach, and
was shown to be a “neighborhood maximum
likelihood estimator”. They derived large-sample
results for this estimator. Hollander et al. [31]
took the more modern approach of using a
counting process and martingale theory to analyze
these models. Their methods yielded extensions of
Whitaker and Samaniego’s results to the whole line
and provide a useful framework for further work
on the minimal repair model.

The (p, q) rule and (p(t), q(t)) rule for
modeling imperfect maintenance seem practical
and realistic. They make imperfect maintenance
be somewhere between perfect and minimal
maintenance. The degree to which the operating
condition of an item is restored by maintenance

Optimal Imperfect Maintenance Models 401

can be measured by probability p or p(t).
Especially in the (p(t), q(t)) rule, the degree
to which the operating conditions of an item
is restored by maintenance is related to its
age t . Thus, the (p(t), q(t)) rule seems more
realistic, but mathematical modeling of imperfect
maintenance through using it may be more
complicated. We think that the two rules can
be expected to be powerful in future imperfect
maintenance modeling. In fact, both rules have
received much attention and have been used in
some recent imperfect repair models.

Makis and Jardine [32] proposed a general
treatment method for imperfect maintenance and
modeled imperfect repair at failure in a way
that repair returns a system to the “as good
as new” state with probability p(n, t) or to the
“as bad as old” state with probability q(n, t),
or with probability s(n, t)= 1− p(n, t)− q(n, t)

the repair is unsuccessful, the system is scrapped
and replaced by a new one; here, t is the age of
the system and n is the number of failures since
the last replacement. This treatment method will
be referred to as the (p(n, t), q(n, t), s(n, t)) rule
later on.

21.2.3 Treatment Method 3

Malik [33] introduced the concept of improvement
factor in the maintenance scheduling problem. He
thinks that maintenance changes the system time
of the failure rate curve to some newer time but
not all the way to zero (not new), as shown in
Figure 21.1. This treatment method for imperfect
maintenance also makes the failure rate after PM
lie between “as good as new” and “as bad as
old”. The degree of improvement in failure rate
is called the improvement factor (note that PM
is only justified by an increasing failure rate).
Malik [33] contemplated that, since systems need
more frequent maintenance with increased age,
the successive PM intervals are decreasing in order
to keep the system failure rate at or below a
stated level (sequential PM policy), and proposed
an algorithm to determine these successive PM
intervals. Lie and Chun [34] presented a general

Figure 21.1. Minimal, perfect, imperfect repair versus failure rate
change

expression to determine these PM intervals. Malik
[33] relied on an expert judgment to estimate the
improvement factor, whereas Lie and Chun [34]
gave a set of curves as a function of maintenance
cost and the age of the system for the improvement
factor.

Using the improvement factor and assuming
finite planning horizon, Jayabalan and Chaudhuri
[35] introduced a branching algorithm to min-
imize the average total cost for a maintenance
scheduling model with assured reliability, and
they [36] discuss the optimal maintenance pol-
icy for a system with increased mean down time
and assured failure rate. It is worthwhile noting
that, using fuzzy set theory and an improvement
factor, Suresh and Chaudhuri [37] established a
PM scheduling procedure to assure an acceptable
reliability level or tolerable failure rate given a
finite planning horizon. They regard the starting
condition, ending condition, operating condition,
and type of maintenance of a system as fuzzy
sets. The improvement factor is used to find out
the starting condition of the system after mainte-
nance.

Chan and Shaw [38] considered that the failure
rate of an item is reduced after each PM and
this reduction of failure rate depends on the
item age and the number of PMs. They proposed
two types of failure-rate reduction. (1) Failure
rate with fixed reduction: after each PM, the
failure rate is reduced such that all jump-downs
of the failure rate are the same. (2) Failure rate

402 Maintenance Theory and Testing

with proportional reduction: after PM, the failure
rate is reduced such that each jump-down is
proportional to the current failure rate. Chan and
Shaw [38] derived the cycle-availability for single-
unit systems and discussed the design scheme to
maximize the probability of achieving a specified
stochastic-cycle availability with respect to the
duration of the operating interval between PMs.

This kind of study method for imperfect
maintenance is in terms of failure rate and seems
useful and practical in engineering, which can be
used as a general treatment method for imperfect
maintenance or even worse maintenance. This
treatment method will be called the improvement
factor method herein.

In addition, Canfield [39] observed that PM
at time t restores the failure rate function to
its shape at t − τ , whereas the level remains
unchanged where τ is less than or equal to the PM
intervention interval.

21.2.4 Treatment Method 4

Kijima et al. [40] proposed an imperfect repair
model by using the idea of the virtual age
process of a repairable system. In this imperfect
repair model, if a system has the virtual age
Vn−1 = y immediately after the (n− 1)th repair,
the nth failure-time Xn is assumed to have the
distribution function

Pr{Xn ≤ x | Vn−1 = y} = F(x + y)− F(y)

1− F(y)

whereF(x) is the distribution function of the time
to failure of a new system. Let a be the degree of
the nth repair, where 0≤ a ≤ 1. Kijima et al. [40]
constructed such a repair model: the nth repair
cannot remove the damage incurred before the
(n− 1)th repair. It reduces the additional age Xn

to aXn. Accordingly, the virtual age after the nth
repair becomes

Vn = Vn−1 + aXn

Obviously, a = 0 corresponds to a perfect repair,
whereas a = 1 is a minimal repair. In a later study
Kijima [12] extended the above model to the case

that a is a random variable taking a value between
zero and one and proposed another imperfect
repair model

Vn = An(Vn−1 + Xn)

where An is a random variable taking a value
between zero and one for n= 1, 2, 3, For
the extreme values zero and one, An = 1 means
a minimal repair and An = 0 means a perfect
repair. Comparing this treatment method with
Brown and Proschan’s [13], we can see that if
An is independently and identically distributed
(i.i.d.), then by taking the two extreme values zero
and one they are the same. Therefore, the second
treatment method by Kijima [12] is general.
He also derived various monotonicity properties
associated with the above two imperfect repair
models.

This kind of treatment method is referred to as
the virtual age method herein.

It is worth mentioning that Uematsu and
Nishida [41] considered a more general model
that includes the above two imperfect repair mod-
els by Kijima and coworkers [12, 40] as spe-
cial cases, and obtained some elementary prop-
erties of the associated failure process. Let Tn
denote the time interval between the (n− 1)th
failure and the nth failure, and Xn denote the
degree of repair. After performing the nth repair,
the age of the system is q(t1, . . . , tn; x1, . . . , xn)

given that Ti = ti and Xi = xi (i = 1, 2, . . . , n)
where Ti and Xi are random variables. On the
other hand, q(t1, . . . , tn; x1, . . . , xn−1) repre-
sents the age of the system as just before
the nth failure. The starting epoch of an in-
terval is subject to the influence of all previ-
ous failure history, i.e. the nth interval is sta-
tistically dependent on T1 = t1, . . . , Tn−1 = tn−1,
X1 = x1, . . . , Tn−1 = tn−1. For example, if

q(t1, . . . , tn; x1, . . . , xn)=
n∑

j=1

n∑
i=j

xi tj ,

then Xi = 0 (Xi = 1) represents that a perfect
repair (minimal repair) is performed at the ith
failure.

Optimal Imperfect Maintenance Models 403

21.2.5 Treatment Method 5

It is well known that the time to failure of a unit
can be represented as a first passage time to a
threshold for an appropriate stochastic process
that describes the levels of damage. Consider a
unit that is subject to shocks occurring randomly
in time. At time t = 0, the damage level of the
unit is assumed to be zero. Upon occurrence of
a shock, the unit suffers from a non-negative
random damage. Each damage, at the time of its
occurrence, adds to the current damage level of
the unit, and between shocks the damage level
stays constant. The unit fails when its accumulated
damage first exceeds a prespecified level. To keep
the unit in an acceptable operating condition, PM
is necessary [42].

Kijima and Nakagawa [42] proposed a cumula-
tive damage shock model with imperfect periodic
PM. The PM is imperfect in the sense that each PM
reduces the damage level by 100(1− b)%, 0≤ b ≤
1, of total damage. Note that if b=1 the PM is min-
imal and if b=0 the PM coincides with a perfect
PM. Obviously, this modeling approach is similar
to Treatment Method 1, the (p, q) rule. Kijima and
Nakagawa [42] derived a sufficient condition for
the time to failure to have an increasing failure
rate (IFR) distribution and discussed the problem
of finding the number of PMs that minimizes the
expected maintenance cost rate.

Later, Kijima and Nakagawa [43] established a
cumulative damage shock model with a sequential
PM policy given that PM is imperfect. They
modeled imperfect PM in a way that the amount
of damage after the kth PM becomes bkYk when
it was Yk before PM, i.e. the kth PM reduces
the amount Yk of damage to bkYk , where bk is
called the improvement factor. They assumed that
a system is subject to shocks occurring according
to a Poisson process and, upon occurrence of
shocks, it suffers from a non-negative random
damage, which is additive. Each shock causes a
system failure with probability p(z) when the total
damage is z at the shock. In this model, PM is
done at fixed intervals xk for k = 1, 2, 3, . . . , N ,
because more frequent maintenance is needed
with age, and the Nth PM is perfect. If the system

fails between PMs then it undergoes only minimal
repair. They derive the expected maintenance cost
rate until replacement assuming that p(z) is an
exponential function and damages are i.i.d., and
discussed the optimal replacement policies.

This study approach for imperfect maintenance
will be called shock method later in this chapter.

21.2.6 Treatment Method 6

Wang and Pham [23, 44] treated imperfect repair
in a way that after repair the lifetime of a
system will be reduced to a fraction α of its
immediately previous one, where 0 < α < 1, i.e.
the lifetime decreases with the number of repairs.
The interarrival times between successive repairs
constitute a quasi-renewal process, defined by
Wang and Pham [23].

Wang and Pham [45] further considered that
repair time is non-negligible, not as in most
imperfect maintenance models, upon repair the
next repair time becomes a multiple β of its
current one, where β > 1, and the time to repair
increases with the number of repairs. We refer to
this treatment method as the (α, β) rule.

21.2.7 Treatment Method 7

Shaked and Shanthikumar [46] introduced the
multivariate imperfect repair concept. They con-
sidered a system whose components have depen-
dent lifetimes where each component is subject to
an imperfect repair until it is replaced. For each
component the repair is imperfect according to
the (p, q) rule, i.e. at failure the repair is perfect
with probability p and minimal with probability
q . Assume that n components of the system start
to function at the same time zero, and no more
than one component can fail at a time. They es-
tablished the joint distribution of the times to next
failure of the functioning devices after a minimal
repair or perfect repair, and derived the joint den-
sity of the resulting lifetimes of the components
and other probabilistic quantities of interest, from
which the distribution of the lifetime of the system
can be obtained. Sheu and Griffith [47] extended

404 Maintenance Theory and Testing

this work further. This treatment method will be
termed the multiple (p, q) rule herein.

21.2.8 Other Methods

Nakagawa [20] modeled imperfect PM in a way
that, in the steady-state, PM reduces the failure
rate of a unit to a fraction of its value just
before PM and during operation the failure
rate climbs back up. He proposed that the
portion by which the failure rate is reduced is a
function of some resource consumed in PM and
a parameter. That is, after PM the failure rate of
the unit becomes λ(t)= g(c1, θ)λ(x + T), where
the fraction reduction of failure rate g(c1, θ) lies
between zero and one, T is the time interval
length between PM’s, c1 is the amount of resource
consumed in PM, and θ is a parameter.

Nakagawa [48, 49] used two other methods to
deal with imperfect PM for sequential PM policy.
(a) The failure rate after PM k becomes akh(t)

given it was h(t) in previous period, where ak ≥
1; i.e. the failure rate increases with the number
of PMs. (b) The age after PM k reduces to bkt

when it was t before PM, where 0≤ bk < 1. This
modeling method is similar to the improvement
factor method and will be called the reduction
method herein. That is, PM reduces the age. In
addition, in investigating periodic PM models,
Nakagawa [21] treated imperfect PM in a way
that the age of the unit becomes x units of time
younger by each PM and further assumed that the
x is in proportion to the PM cost, where x is less
than or equal to the PM intervention interval.

Yak et al. [50] suggested that maintenance
may result in system failure (worst maintenance),
in modeling the mean time to failure and the
availability of the system.

21.3 Some Results on Imperfect
Maintenance

Next, we summarize some important results on
imperfect maintenance from some recent work
[10, 23, 51].

21.3.1 A Quasi-renewal Process and
Imperfect Maintenance

Renewal theory had its origin in the study of
strategies for replacement of technical compo-
nents. In a renewal process, the times between
successive events are supposed to be i.i.d. Most
maintenance models using renewal theory are ac-
tually based on this assumption, i.e. “as good as
new”. However, in maintenance practice a system
may not be “as good as new” after repair. Bar-
low and Hunter [52] (see Barlow and Proschan
[3], p.89) introduced the notation of “minimal
repair” and use non-homogeneous Poisson pro-
cesses to model it. In fact, “as good as new” and
“as bad as old” represent two extreme types of
repair result. Most repair actions are somewhere
between these extremes, which are imperfect re-
pairs. Wang and Pham [23] explored a quasi-
renewal process and its applications in modeling
imperfect maintenance, which are summarized
below.

Let {N(t), t > 0} be a counting process and Xn

denote the time between the (n− 1)th and the nth
event of this process, n≥1.

Definition 1. If the sequence of non-negative ran-
dom variables {X1, X2, X3, . . . } is independent
and Xi = αXi−1 for i ≥ 2, where α > 0 is a con-
stant, then the counting process {N(t), t ≥ 0} is
said to be a quasi-renewal process with parameter
α and the first interarrival time X1.

When α = 1, this process becomes the ordi-
nary renewal process. Given that the probability
distribution function (p.d.f.), cumulative distribu-
tion function (c.d.f.), survival function and failure
rates of random variableX1 are f1(x),F1(x), s1(x)

and r1(x), the p.d.f., c.d.f., survival function, and
failure rate of Xn for n= 2, 3, 4, . . . are

fn(x)= α1−nf1(α
1−nx) Fn(x)= F1(α

1−nx)
sn(x)= s1(α

1−nx) rn(x)= α1−nr1(α
1−nx)

The following results are proved [23]:

Optimal Imperfect Maintenance Models 405

Proposition 1. If f1(x) belongs to IFR, DFR, IFRA,
DFRA, NBU, NWU1, then fn(x) is in the same
category for n= 2, 3,

Proposition 2. The shape parameter of Xn are the
same for n= 1, 2, 3, 4, . . . for a quasi-renewal
process if X1 follows the Gamma, Weibull, or
lognormal distribution.

Observe a quasi-renewal process with para-
meter α and the first interarrival time X1.
For the total number N(t) of “renewals” that have
occurred up to time t

Pr{N(t)= n} =Gn(t)−Gn+1(t)

where Gn(t) is the convolution of the interarrival
times F1, F2, . . . , Fn .

If the mean value of N(t) is defined as the
renewal function M(t) then

M(t)= E[N(t)]

=
∞∑
n=1

Gn(t)

The derivative of M(t) is known as renewal
density:

m(t)=M ′(t)
It is proved that the first interarrival distribution
of a quasi-renewal process uniquely determines its
renewal function.

Three applications of the quasi-renewal process
to imperfect maintenance are described next.

21.3.1.1 Imperfect Maintenance Model A

Suppose that a unit is preventively maintained
at times kT , k = 1, 2, . . . , at a cost cp, inde-
pendently of the unit’s failure history, where the
constant T > 0 and the PM is perfect. The unit
undergoes imperfect repair at failures between
PM’s at cost cf in the sense that after repair the
lifetime will reduce to a fraction α of the immedi-
ately previous one. Then, from the quasi-renewal
theory, the following propositions follow.

Proposition 3. The long-run expected mainte-
nance cost per unit time, or maintenance cost rate,

1See the Appendix 21.A.1 for definitions.

is

L(T)= cp + cfM(T)

T

where M(T) is the renewal function of a quasi-
renewal process with parameter α.

Proposition 4. There exists an optimum T ∗ that
minimizes L(T), where 0 < T ∗ ≤∞ and the
resulting minimum value of L(T) is cfm(T ∗).

21.3.1.2 Imperfect Maintenance Model B

This model is exactly like Model A, except that the
PM at time kT is imperfect in the sense that, after
PM, the unit is “as good as new” with probability
p and “as bad as old” with probability q = 1−
p. From the quasi-renewal theory, the following
propositions are proved.

Proposition 5. The long-run expected mainte-
nance cost per unit time is:

L(T)= cp + cfp
2[M(T)+∑∞i=2 q

i−1M(iT)]
T

where M(iT) is the renewal function of a quasi-
renewal process with parameter α.

Proposition 6. There exists an optimum T ∗
that minimizes L(T), where 0 < T ∗ ≤∞,
and the resulting minimum value of L(T) is
cfp

2 ∑n
i=1 q

i−1[iT ∗m(iT ∗)].
21.3.1.3 Imperfect Maintenance Model C

Assume that a unit is repaired at failure i at a
cost cf + (i − 1)cv if and only if i ≤ k − 1, where
i = 1, 2, . . . , and the repair is imperfect in the
sense that, after repair, the lifetime will reduce
to a fraction α of the immediately previous one
[23]. Notice that the repair cost increases by cv
for each next imperfect repair. Suppose that the
first imperfect repair time is random variable
Y1 with mean η1, the second imperfect repair
time is βY1 with mean βη1, and the (k−1)th
repair time is βk−2Y1 with mean βk−2η1, where
the constant β ≥ 1 means the repair times are
increasing as the number of imperfect repairs
increases. After the (k − 1)th imperfect repair at
failure the unit is preventively maintained at times
nT (n= 1, 2, . . .) at a cost cp, where the constant

406 Maintenance Theory and Testing

T > 0 and the PM is imperfect in the sense that,
after PM, the unit is “as good as new” with
probability p and restored to its condition just
prior to failure (minimal repair) with probability
q = 1− p. Further suppose that the PM time is
a random variable W with mean w. If there is
a failure between nT values, an imperfect repair
is performed at a cost cfr with negligible repair
time in the sense that, after repair, the lifetime
of this unit will be reduced to a fraction λ of its
immediately previous one where, 0 < λ < 1.

One possible interpretation of this model is
as follows: when a new unit is put into use, the
first k − 1 times of failure repairs, because the
unit is young at that time, will be performed at
a low cost cf + (i − 1)cv for i = 0, 1, 2, . . . , k −
2, which result in imperfect repairs. After the
(k−1)th imperfect repair at failure the unit will
be in bad condition and then a better or perfect
maintenance is necessary at a higher cost cp or cfr.

Proposition 7. The long-run expected mainte-
nance cost rate is

L(T , k)=
{
(k − 1)cf + (k − 1)(k − 2)

2
cv

+ cpp
−1 + pcfr

∞∑
i=1

qi−1M(iT)

}

×
{
µ(1− αk−1)

1− α
+ µ(1− βk−1)

1− β

+ T

p
+ w

}−1

and the asymptotic average availability is

A(T , k)=
{
µ(1− αk−1)

1− α
+ T

p

}
×
{
µ(1− αk−1)

1− α
+ η(1− βk−1)

1− β

+ T

p
+w

}−1

where M(t) is the renewal function of a quasi-
renewal process with parameter λ and the first
interarrival time distribution F1(α

1−kt).

Sometimes the optimum maintenance policy
to minimize the cost rate is desired while some

availability requirements are satisfied. Thus, the
following optimization problem can be formu-
lated in terms of decision variables T and k:

Minimize

L(T , k)

=
{
(k−1)cf + (k − 1)(k − 2)

2
cv+cpp

−1

+ pcfr

∞∑
i=1

qi−1M(iT)

}

×
{
µ(1− αk−1)

1− α
+ η(1− βk−1)

1− β

+ T

p
+w

}−1

Subject to

A(T , k)

=
{
µ(1− αk−1)

1− α
+ T

p

}
×
{
µ(1− αk−1)

1− α
+ η(1− βk−1)

1− β
+ T

p
+w

}−1

≥ A0

k = 2, 3, . . .

T > 0

where constant A0 is the prespecified availability
requirement.

Assume that the lifetime X1 of a new system
follows a normal distribution with mean µ and
variance σ 2, and

µ= 10 σ = 1 η = 0.9 cf = $1 cv = $0.06

cp = $3 cfr = $4 α = 0.95 β = 1.05

p = 0.95 w = 0.2 λ= 0.95 A0 = 0.94

From the above optimization model we can
find the globally optimal solution (T ∗, k∗) by
using commercial optimization software that
minimizes the maintenance cost rate given that the
availability is at least 0.94:

T ∗ = 7.6530 k∗ = 3

Optimal Imperfect Maintenance Models 407

and the corresponding minimum cost rate and
availability are respectively

L(T ∗, k∗)= $0.2332 A(T ∗, k∗)= 0.9426

The results indicate that the optimal maintenance
policy is to perform repair at the first two failures
of the system at a cost of $1 and $1.06 respectively,
and then do PM every 7.6530 time units at a cost
of $3 and repair the system upon failure between
PMs at a cost $4.

21.3.1.4 Imperfect Maintenance Model D

Model D is identical to Model C except that
after the (k − 1)th imperfect repair there are two
types of failure [45], and that PM’s at times
T , 2T , 3T , . . . are perfect. Type 1 failure might
be total breakdowns, whereas type 2 failure can
be interpreted as a slight and easily fixed problem.
Type 1 failures are subject to perfect repairs and
type 2 failures are subject to minimal repairs.
When a failure occurs it is a type 1 failure
with probability p(t) and a type 2 failure with
probability q(t)= 1− p(t), where t is the age of
the unit. Thus, the repair at failure can be modeled
by the (p(t), q(t)) rule. Assume that the failure
repair time is negligible, and PM time is a random
variable V with mean v.

Consider T and k as decision variables.
For this maintenance model, the times between
consecutive perfect PM’s constitute a renewal
cycle. From the classical renewal reward theory,
the long-run expected maintenance cost per
system time, or cost rate, is

L(T , k)= C(T , k)

D(T , k)

where C(T , k) is the expected maintenance cost
per renewal cycle and D(T, k) is the expected
duration of a renewal cycle.

After the (k − 1)th imperfect repair, let Yp
denote the time until the first perfect repair
without PM since last perfect repair, i.e. the time
between successive perfect repairs. As described
in Section 21.2.2, the survival distribution of Yp is

given by

S̄(t)= exp

{
−
∫ t

0
p(x)rk(x) dx

}
= exp

{
−α1−k

∫ t

0
p(x)r(α1−kx) dx

}
Assume that Zt represents the number of minimal
repairs during the time interval (0, min{t, Yp})
and S(t)= 1− S̄(t). Wang and Pham [45] show:

E{Zt | Yp < t} = 1

S(t)

∫ t

0

∫ y

0
q(x)rk(x) dx dS(y)

= α1−k

S(t)

×
∫ t

0

∫ y

0
q(x)r1(α

1−kx) dx dS(y)

E{Zt | Yp ≥ t} =
∫ t

0
q(x)rk(x) dx

= α1−k
∫ t

0
q(x)r1(α

1−kx) dx

LetN1(t) andN2(t) denote the s-expected number
of perfect repairs and minimal repairs in (0, t)
respectively; c1, c2, and cp denote costs of perfect
repair, minimal repair, and PM respectively. It is
easy to obtain

D(T, k)= µ(1− αk−1)

1− α
+ η(1− βk−1)

1− β
+ T + v

C(T , k)= (k − 1)cf + (k − 1)(k − 2)

2
cv

+ c1N1(T)+ c2N2(T)+ cp

Obviously, N1(t) is the renewal function for
the renewal process with the interarrival time
distribution S(t) and can be determined by
the solution method to the renewal function in
renewal theory. Wang and Pham [45] proved for
t ≤ T :

N2(t)= E{Zt | Yp ≥ t}S̄(t)
+
∫ t

0
[E{Zx | Yp = x} +N2(t − x)] dS(x)

Note that

E{Zt | Yp < t}S(t)=
∫ t

0
E{Zx | Yp = x} dS(x)

408 Maintenance Theory and Testing

It follows that

N2(t)= E{Zt | Yp ≥ t}S̄(t)+ E{Zt | Yp < t}S(t)
+
∫ t

0
N2(t − x) dS(t)

= E(Zt)+
∫ t

0
N2(t − x) dS(t)

= α1−k
∫ t

0
S̄(t)r1(α

1−kx) dx − S(t)

+
∫ t

0
N2(t − x) dS(t)

Therefore, N2(t) can be obtained by the Laplace
transform or solving the above integral equation
using numerical computation. The following
proposition follows from the above equations.

Proposition 8. The long-run expected mainte-
nance cost rate is given by

L(T , k)=
{
(k − 1)cf + (k − 1)(k − 2)

2
cv

+ c1N1(T)+ c2N2(T)+ cp

}
×
{
µ(1− αk−1)

1− α

+ η(1− βk−1)

1− β
+ T + v

}−1

21.3.1.5 Imperfect Maintenance Model E

This model is the same as Model C except that at
next failures, after the (k − 1)th imperfect repair
since time zero, repair cost is estimated by perfect
inspection to determine whether to replace or
imperfectly repair it [53]. Assume that the repair
cost has a cumulative distribution function C(x)

that is independent of the age of the unit. If the
estimated cost does not exceed a constant cost
limit Q, then the unit is imperfectly repaired at an
expected repair cost not exceeding Q. Otherwise,
it is replaced by a new one at a higher fixed cost
and the replacement time is W with mean w.
Imperfect repair is modeled by the (p, q) rule.
Assume that the repair time is V with mean v,

and that W and V are independent of the previous
failure history of the unit. Upon a perfect repair
or replacement the process repeats. We consider k
and Q as decision variables, and α, β , and p as
parameters.

Proposition 9. The long-run expected mainte-
nance cost per unit time is

L(k, Q; α, β, p)
=
{
(k−1)cf + (k − 1)(k − 2)

2
cv

+ c2[1− C(Q)] + c̄1C(Q)

1− pC(Q)

}
×
{
µ(1− αk−1)

1− α
+ η(1− βk−1)

1− β

+ [1− C(Q)]w + pC(Q)v

1− qC(Q)

+
∫ ∞

0
exp{−H(α1−kt)[1 − qC(Q)]} dt

}−1

and the asymptotic average availability is

A(k, Q; α, β, p)

=
{
µ(1− αk−1)

1− α

+
∫ ∞

0
exp{−H(α1−kt)[1− qC(Q)]} dt

}
×
{
µ(1− αk−1)

1− α
+ η(1− βk−1)

1− β

+ [1− C(Q)]w + pC(Q)v

1− qC(Q)

+
∫ ∞

0
exp{−H(α1−kt)[1− qC(Q)]} dt

}−1

where H(α1−kt)= ∫ t0 α1−kr1(α
1−kx) dx is the cu-

mulative hazard of the unit right after the (k − 1)th
imperfect repair and c̄1 = C−1(Q)

∫ L
0 t dC(t) is

the mean of repair costs less than Q.

The optimum maintenance policy (k∗, Q∗)
that minimizes L(k, Q; α, β, p) or maximizes
A(k, Q; α, β, p) can be obtained using any
nonlinear programming software.

Optimal Imperfect Maintenance Models 409

Figure 21.2. Imperfect maintenance policy for a k-out-of-n
system

21.3.2 Optimal Imperfect
Maintenance of k-out-of-n Systems

For a complex system, it may not be advisable to
replace the entire system just because of the failure
of one component. In fact, the system comes
back into operation on repair or replacement
of the failed component by a new one or by a
used but operative one. Such maintenance actions
do not renew the system completely but enable
the system to continue to operate. However, the
system is usually deteriorating with usage and
time. At some point of time or usage, it may
be in a bad operating condition and a perfect
maintenance is necessary. Based on this situation,
Pham and Wang [51] proposed the following
imperfect maintenance policy for a k-out-of-n
system.

A new system starts to operate at time zero.
Each failure of a component of this system in the
time interval (0, τ) is immediately removed by a
minimal repair. Components that fail in the time
interval (τ, T) can be lying idle (partial failure is
allowed). Perform CM on the failed components
together with PM on all unfailed but deteriorating
ones at a cost of cf once exactly m components
are idle, or perform PM on the whole system
at a cost of cp once the total operating time
reaches T , whichever occurs first. That is, if m

components fail in the time interval (τ, T), then
CM combined with PM is performed; if less than
m components fail in the time interval (τ, T),
then PM is carried out at time T . After a perfect
maintenance, whether this is a CM combined with
PM or a PM at T , the process repeats.

In the above maintenance policy, τ and T

are decision variables. A k-out-of-n system is

defined as a complex coherent system with n

failure-independent components such that the
system operates if and only if at least k of these
components function successfully. This chapter
assumes thatm is a predetermined positive integer
where 1≤m ≤ n− k + 1, and real numbers τ <

T . This policy is demonstrated in Figure 21.2. In
practice, m may take different values according
to different reliability and cost requirements.
Obviously, m= 1 means that the system is subject
to maintenance whenever one component fails
after τ . For a series system (n-out-of-n system) or
a system with key applications, m may basically
be required to be unity. If m is chosen as n−
k + 1, then a k-out-of-n system is maintained
once the system fails. In most applications, the
whole system is subject to a perfect CM together
with a PM upon a system failure (m= n− k + 1)
or partial failure (m< n− k + 1). Here, partial
failure means some components have failed but
the system still functions. However, if inspection
is not continuous and the system operating
condition can be known only through inspection,
m could be a number greater than (n− k + 1).
For simplicity, in this paper we assume that if CM
together with PM is carried out, then both are
perfect, given that CM combined with PM takesw1
time units and PM at time T takes w2 time units.
Further suppose that every component has IFR,
which is differentiable and remains undisturbed
by minimal repair.

The justification of this policy is as follows:
before τ , each component is “young” and no major
repair is necessary. Therefore, only minimal re-
pairs, which may not take much time and money,
are performed. The component is deteriorating
as the time passes. After τ , the component has a
larger failure rate (due to IFR) and might be in a
bad operating condition. Thus, a major or perfect
repair may be needed. Because there exist eco-
nomic dependence and availability requirements
(less frequent shut-offs for maintenance), how-
ever, we may not replace failed components im-
mediately but start CM until the number of failed
components reaches some prespecified number m.
In fact, when the number of failed components ac-
cumulates to m, the remaining (n−m) operating

410 Maintenance Theory and Testing

components may degrade to a worse operating
condition and need PM also. Note that, as long as
m is less than (n− k + 1), the system will not fail
and continue to operate.

Assume that for each component the cost of the
ith minimal repair at age t consists of two parts:
the deterministic part c1(t, i), which depends on
the age t of this component and the number i of
minimal repairs, and the age-dependent random
part c2(t). The assumption that the failure rate
of each component has IFR is essential. This is
because the system may be subject to a PM at time
T , which requires the system to be IFR after τ .
The following proposition states the relationship
between component and system IFRs.

Proposition 10. If a k-out-of-n system is composed
of independent, identical, IFR components, the
system has an IFR also.

Given that PM at time T , 2T , 3T , . . . is
imperfect, the failure rate of each component is
q(t), the survival function of the time to failure of
the k-out-of-n system is F̄n−k+1(y), and the cost
expectation at age t is µ(t), Pham and Wang [51]
derived the following results using renewal theory:

Proposition 11. If the PM is perfect with probabil-
ityp and minimal with probability q = 1− p, then
the long-run expected system maintenance cost per
unit time, or cost rate, for a k-out-of-n system:G is
given by

L(τ, T | p)=
{
n

∫ τ

0
µ(y)q(y) dy

+ cp

∞∑
j=1

qj−1F̄m(jT − τ)

+ cf

[
1− p

∞∑
j=1

qj−1F̄m(jT − τ)

]}

×
{
τ +

∫ T−τ

0
F̄m(t) dt

+
∞∑
j=2

qj−1
∫ jT−τ

(j−1)T−τ
F̄m(t) dt

+w1

[
1− p

∞∑
j=1

qj−1F̄m(jT − τ)

]

+w2

[∞∑
j=1

qj−1F̄m(jT − τ)

]}−1

and the limiting average system availability is

A(τ, T | p)=
{
τ +

∫ T−τ

0
F̄m(t) dt

+
∞∑
j=2

qj−1
∫ jT−τ

(j−1)T−τ
F̄m(t) dt

}

×
{
τ +

∫ T−τ

0
F̄m(t) dt

+
∞∑
j=2

qj−1
∫ jT−τ

(j−1)T−τ
F̄m(t) dt

+ w1

[
1− p

∞∑
j=1

qj−1F̄m(jT − τ)

]

+ w2

[∞∑
j=1

qj−1F̄m(jT − τ)

]}−1

The above model includes at least 12 existing
maintenance models as special cases. For example,
when k = 1, and n > 1, then the k-out-of-n system
is reduced to a parallel system. If we further let k =
1 and m= n, it follows that the long-run expected
system maintenance cost rate for a parallel system
with n components is

L(τ, T)

=
{
n

∫ τ

0
µ(y)q(y) dy

+ (cf − cp)[F̄ (τ)− F̄ (T)]nF̄−n(τ)+ cp

}
×
{
τ+
∫ T−τ

0
{1− [F̄ (τ)−F̄ (τ+t)]nF̄−n(τ)} dt

+ (w1 −w2)[F̄ (τ)− F̄ (T)]nF̄−n(τ)+w2

}−1

If we set τ = 0 and w1 = w2 = 0, then the above
equation becomes

L(0, T)= (cf − cp)F
n(T)+ cp∫ T

0 [1− Fn(t)] dt

Optimal Imperfect Maintenance Models 411

which coincides with the result by Yasui et al.
[54].

Sometimes, optimal maintenance policies may
be required so that the system maintenance cost
rate is minimized while some availability require-
ments are satisfied, or the system availability is
maximized given that the maintenance cost rate
is not larger than some predetermined value. For
example, for the above maintenance model, the
following optimization problem can be formu-
lated in terms of decision variables T and τ :

Minimize

L(τ, T | p)
=
{
n

∫ τ

0
µ(y)q(y) dy

+ cp

∞∑
j=1

qj−1F̄m(jT − τ)

+ cf

[
1− p

∞∑
j=1

qj−1F̄m(jT − τ)

]}

×
{
τ +

∫ T−τ

0
F̄m(t) dt

+
∞∑
j=2

qj−1
∫ jT−τ

(j−1)T−τ
F̄m(t) dt

+ w1

[
1− p

∞∑
j=1

qj−1F̄m(jT − τ)

]

+ w2

[∞∑
j=1

qj−1F̄m(jT − τ)

]}−1

Subject to

A(τ, T | p) ≥ A0

τ ≥ 0

T > 0

where constant A0 is the pre-decided minimum
availability requirement.

The optimal system maintenance policy
(T ∗, τ ∗) can be determined from the above
optimization model by using nonlinear
programming software. Similarly, other
optimization models can be formulated based on
different requirements. Such optimization models

should be truly optimal, since both availability
and maintenance costs are addressed.

An application of the above model to a 2-out-
of-3 aircraft engine system is discussed by Pham
and Wang [51], given the time to failure of each
engine follows a Weibull distribution with shape
parameter β = 2 and scale parameter θ = 500
(days). The optimal maintenance policy for this
2-out-of-3 aircraft engine system to minimize the
system maintenance cost rate is determined from
the above model: before τ ∗ = 335.32 (days), only
minimal repairs are performed; after τ ∗ = 335.32,
the failed engine will be subject to perfect repair
together with PM on the remaining two once
any engine fails; if no engine fails until time
T ∗ = 383.99 (days), then PM is carried out at
T ∗ = 383.99.

21.4 Future Research on
Imperfect Maintenance
The following further work on imperfect mainte-
nance is necessary:

• Investigate optimum PM policy and reliabil-
ity measures for multicomponent systems be-
cause most previous work on imperfect main-
tenance has been focused on a one-unit sys-
tem.
• Develop more methods for treating imperfect

maintenance.
• Establish statistical estimation of parameters

for imperfect maintenance models.
• Explore more realistic imperfect maintenance

models, e.g. including non-negligible repair
time, finite horizon. In most literature on
maintenance theory, the maintenance time is
assumed to be negligible. This assumption
makes availability and mean-time-between-
failures modeling impossible or unrealistic.
Considering maintenance time will result in
realistic system reliability measures.
• Use the reliability measures as the optimality

criteria instead of cost rates, or combine both,
as shown in Section 21.3.1: optimal main-
tenance policy to minimize cost rate under
given reliability requirement. Most existing

412 Maintenance Theory and Testing

optimal maintenance models use the opti-
mization criterion of minimizing the system
maintenance cost rate but ignoring the re-
liability performance. However, maintenance
aims to improve system reliability perfor-
mance. Therefore, the optimal maintenance
policy must be based on not only cost rate
but also on reliability measures. It is impor-
tant to note that, for multicomponent systems,
minimizing system maintenance cost rate may
not imply maximizing the system reliability
measures. Sometimes, when the maintenance
cost rate is minimized the system reliabil-
ity measures are so low that they are not
acceptable in practice [54]. This is because
various components in the system may have
different maintenance costs and a different
reliability importance in the system [53, 55,
56]. Therefore, to achieve the best operating
performance, an optimal maintenance policy
needs to consider both maintenance cost and
reliability measures simultaneously.
• Consider the structure of a system to obtain

optimal system reliability performance and
optimal maintenance policy. For example,
once a subsystem of a series system fails it is
necessary to repair it immediately. Otherwise,
the system will have longer downtime and
worse reliability measures. However, when
one subsystem of a parallel system fails,
the system will still function even if this
subsystem is not repaired right away. In fact,
its repair can be delayed until it is time to do
the PM on the system considering economic
dependence; or repair can begin at such a
time that only one subsystem operates and the
other subsystems have failed and are awaiting
repairs [51]; or at the time that all subsystems
fail, and thus the system fails, if the system
failure during actual operation is not critical.

21.A Appendix
21.A.1 Acronyms and Definitions
NBU new better than used
NWU new worse than used

NBUE new better than used in expectation
NWUE new worse than used in expectation
IFRA increasing failure rate in average
DFRA decreasing failure rate in average
IFR increasing failure rate
DFR decreasing failure rate.

Assume that lifetime has a distribution func-
tion F(t) and survival function s(t)= 1− F(t)

with mean µ. The following definitions are given
(for details see Barlow and Proschan [3]).

• s is NBU if s(x + y)≤ s(x)s(y) for all x, y ≥
0.
s is NWU if s(x + y)≥ s(x)s(y) for all x, y ≥
0.
• s is NBUE if

∫∞
t s(x) dx ≤ µs(t) for all t ≥ 0.

s is NWUE if
∫∞
t

s(x) dx ≥ µs(t) for all t ≥ 0.
• s is IFRA if [s(x)]1/x is decreasing in x for

x > 0.
s is DFRA if [s(x)]1/x is increasing in x for
x > 0.
• s is IFR if and only if [F(t + x)− F(t)]/s(t)

is increasing in t for all x > 0.
s is DFR if and only if [F(t + x)− F(t)]/s(t)
is decreasing in t for all x > 0.

21.A.2 Exercises

1. What is minimal repair? What is imperfect
repair? Their relationships?

2. Prove Proposition 1.
3. Assume the imperfect maintenance Model

C in Section 21.3.1.3 is modified, and the
new model is exactly like it except that the
imperfect PM is treated by the x rule, i.e.
the age of the unit becomes x units of time
younger after PM; that the unit undergoes
minimal repair at failures between PMs at
cost cfm instead of imperfect repairs in terms
of parameter λ in Model C. Assume further
that the Nth PM since the last perfect PM is
perfect, where N is a positive integer. A cost
cNp and an independent replacement time V

with mean v is suffered for the perfect PM
at time NT . Assume that imperfect PM at
other times takes W time with mean w and

Optimal Imperfect Maintenance Models 413

imperfect PM cost is cp. Suppose that cNp >

cp, v ≥ w, and W and V are independent
of the previous failure history of the unit.
Derive the long-run expected maintenance
cost per unit time and the asymptotic average
availability.

4. A new model is identical to imperfect
maintenance Model C in Section 21.3.1.3
except that after the (k − 1)th repair at failure
the unit will be either replaced at next failure
at a cost of cfr, or preventively replaced at
age T at a cost cp, whichever occurs first, i.e.
after time zero a unit is imperfectly repaired
at failure i at a cost cf + (i − 1)cv for i ≤ k −
1, where cf and cv are constants. The repair
is imperfect in the sense that, after repair,
the lifetime will be reduced to a fraction α

of the immediately previous lifetime, that the
repair times will be increased to a multiple
β of the immediately previous one, and that
the successive lifetimes and repair times are
independent. Note that the lifetime of the
unit after the (k − 2)th repair and the (k −
1)th repair time are respectively αk−2Zk−1
and βk−2ζk−1 with means αk−2µ and βk−2η,
where Zi and ζi are respectively i.i.d. random
variable sequences with Z1 =X1 and ζ1 =
Y1. Derive the long-run expected maintenance
cost per unit time, given T and k are decision
variables, and α and β are parameters.

5. Show Proposition 6.

References
[1] Sherif YS, Smith ML. Optimal maintenance models for

systems subject to failure—a review. Nav Res Logist Q
1981;28(1):47–74.

[2] McCall JJ. Maintenance policies for stochastically failing
equipment: a survey. Manage Sci 1965;11(5):493–524.

[3] Barlow RE, Proschan F. Mathematical theory of reliability.
New York: John Wiley & Sons; 1965.

[4] Pierskalla WP, Voelker JA. A survey of maintenance
models: the control and surveillance of deteriorating
systems. Nav Res Logist Q 1976;23:353–88.

[5] Jardine AKS, Buzacott JA. Equipment reliability and
maintenance. Eur J Oper Res 1985;19:285–96.

[6] Valdez-Flores C, Feldman RM. A survey of preventive
maintenance models for stochastically deteriorating
single-unit systems. Nav Res Logist 1989;36:419–46.

[7] Cho ID, Parlar M. A survey of maintenance models for
multi-unit systems. Eur J Oper Res 1991;51:1–23.

[8] Jensen U. Stochastic models of reliability and main-
tenance: an overview. In: Ozekici S, editor. Reliability
and maintenance of complex systems, NATO ASI Series,
vol. 154 (Proceedings of the NATO Advanced Study Insti-
tute on Current Issues and Challenges in the Reliability
and Maintenance of Complex Systems, held in Kemer–
Antalya, Turkey, June 12–22, 1995). Berlin: Springer-
Verlag; 1995. p.3–36.

[9] Dekker R. Applications of maintenance optimization
models: a review and analysis. Reliab Eng Syst Saf
1996;51(3):229–40.

[10] Pham H, Wang HZ. Imperfect maintenance. Eur J Oper
Res 1996;94:425–38.

[11] Dekker R, Wilderman RE, van der Duyn Schouten FA.
A review of multi-component maintenance models
with economic dependence. Math Methods Oper Res
1997;45(3):411–35.

[12] Kijima M. Some results for repairable systems with
general repair. J Appl Prob 1989;26:89–102.

[13] Brown M, Proschan F. Imperfect repair. J Appl Prob
1983;20:851–9.

[14] Nakagawa T, Yasui K. Optimum policies for a system
with imperfect maintenance. IEEE Trans Reliab 1987;R-
36:631–3.

[15] Helvic BE. Periodic maintenance, on the effect of
imperfectness. In: 10th International Symposium on
Fault-Tolerant Computing, 1980; p.204–6.

[16] Kay E. The effectiveness of preventive maintenance. Int J
Prod Res 1976;14:329–44.

[17] Chan PKW, Downs T. Two criteria for preventive
maintenance. IEEE Trans Reliab 1978;R-27:272–3.

[18] Ingle AD, Siewiorek DP. Reliability models for multipro-
cessor systems with and without periodic maintenance.
In: 7th International Symposium on Fault-Tolerant Com-
puting, 1977; p.3–9.

[19] Chaudhuri D, Sahu KC. Preventive maintenance intervals
for optimal reliability of deteriorating system. IEEE Trans
Reliab 1977;R-26:371–2.

[20] Nakagawa T. Imperfect preventive maintenance. IEEE
Trans Reliab 1979;R-28(5):402.

[21] Nakagawa T. Summary of imperfect maintenance policies
with minimal repair. RAIRO Rech Oper 1980;14;249–55.

[22] Fontenot RA, Proschan F. Some imperfect maintenance
models. In: Abdel-Hameed MS, Cinlar E, Quinn J, editors.
Reliability theory and models. Orlando (FL): Academic
Press; 1984.

[23] Wang HZ, Pham H. A quasi renewal process and its
application in the imperfect maintenance. Int J Syst Sci
1996;27(10):1055–62 and 1997;28(12):1329.

[24] Bhattacharjee MC. Results for the Brown–Proschan
model of imperfect repair. J Stat Plan Infer 1987;16:305–
16.

[25] Block HW, Borges WS, Savits TH. Age dependent
minimal repair. J Appl Prob 1985;22:370–85.

[26] Beichelt F, Fischer K. General failure model applied
to preventive maintenance policies. IEEE Trans Reliab
1980;R-29(1):39–41.

414 Maintenance Theory and Testing

[27] Block HW, Borges WS, Savits TH. A general age
replacement model with minimal repair. Nav Res Logist
1988;35(5):365–72.

[28] Iyer S. Availability results for imperfect repair. Sankhya:
Indian J Stat 1992;54(2):249–59.

[29] Sumita U, Shanthikumar JG. An age-dependent counting
process generated from a renewal process. Adv Appl
Probab 1988;20(4):739–755

[30] Whitaker LR, Samaniego FJ. Estimating the reliability
of systems subject to imperfect repair. J Am Stat Assoc
1989;84(405):301–9.

[31] Hollander M, Presnell B, Sethuraman J. Nonparamet-
ric methods for imperfect repair models. Ann Stat
1992;20(2):879–87.

[32] Makis V, Jardine AKS. Optimal replacement policy for
a general model with imperfect repair. J Oper Res Soc
1992;43(2):111–20.

[33] Malik MAK. Reliable preventive maintenance policy. AIIE
Trans 1979;11(3):221–8.

[34] Lie CH, Chun YH. An algorithm for preventive mainte-
nance policy. IEEE Trans Reliab 1986;R-35(1):71–5.

[35] Jayabalan V, Chaudhuri D. Cost optimization of main-
tenance scheduling for a system with assured reliability.
IEEE Trans Reliab 1992;R-41(1):21–6.

[36] Jayabalan V, Chaudhuri D. Sequential imperfect preven-
tive maintenance policies: a case study. Microelectron
Reliab 1992;32(9):1223–9.

[37] Suresh PV, Chaudhuri D. Preventive maintenance
scheduling for a system with assured reliability using
fuzzy set theory. Int J Reliab Qual Saf Eng 1994;1(4):497–
513.

[38] Chan JK, Shaw L. Modeling repairable systems with
failure rates that depend on age & maintenance. IEEE
Trans Reliab 1993;42:566–70.

[39] Canfield RV. Cost optimization of periodic preventive
maintenance. IEEE Trans Reliab 1986;R-35(1):78–81.

[40] Kijima M, Morimura H, Suzuki Y. Periodical replacement
problem without assuming minimal repair. Eur J Oper
Res 1988;37(2):194–203.

[41] Uematsu K, Nishida T. One-unit system with a failure
rate depending upon the degree of repair. Math Jpn
1987;32(1):139–47.

[42] Kijima M, Nakagawa T. Accumulative damage shock
model with imperfect preventive maintenance. Nav Res
Logist 1991;38:145–56.

[43] Kijima M, Nakagawa T. Replacement policies of a shock
model with imperfect preventive maintenance. Eur J
Oper Res 1992;57:100–10.

[44] Wang HZ, Pham H. Optimal age-dependent preventive
maintenance policies with imperfect maintenance. Int J
Reliab Qual Saf Eng 1996;3(2):119–35.

[45] Wang HZ, Pham, H. Some maintenance models and
availability with imperfect maintenance in production
systems. Ann Oper Res 1999;91:305–18.

[46] Shaked M, Shanthikumar JG. Multivariate imperfect
repair. Oper Res 1986;34:437–48.

[47] Sheu S, Griffith WS. Multivariate imperfect repair. J Appl
Prob 1992;29(4):947–56.

[48] Nakagawa T. Periodic and sequential preventive mainte-
nance policies. J Appl Prob 1986;23(2):536–42.

[49] Nakagawa T. Sequential imperfect preventive mainte-
nance policies. IEEE Trans Reliab 1988;37(3):295–8.

[50] Yak YW, Dillon TS, Forward KE. The effect of imperfect
periodic maintenance on fault tolerant computer systems.
In: 14th International Symposium on Fault-Tolerant
Computing, 1984; p.67–70.

[51] Pham H, Wang HZ. Optimal (τ, T) opportunistic
maintenance of a k-out-of-n:G system with imperfect PM
and partial failure. Nav Res Logist 2000;47:223–39.

[52] Barlow RE, Hunter LC. Optimum preventive maintenance
policies. Oper Res 1960;8:90–100.

[53] Wang HZ, Pham H. Optimal maintenance policies for
several imperfect maintenance models. Int J Syst Sci
1996;27(6):543–9.

[54] Yasui K, Nakagawa T, Osaki S. A summary of optimal
replacement policies for a parallel redundant system.
Microelectron Reliab 1988;28:635–41.

[55] Wang HZ, Pham H. Availability and optimal maintenance
of series system subject to imperfect repair. Int J Plant
Eng Manage 1997;2:75–92.

[56] Wang HZ, Pham H, Izundu AE. Optimal preparedness
maintenance of multi-unit systems with imperfect main-
tenance and economic dependence. In: Pham H, editor.
Recent advances in reliability and quality engineering.
New Jersey: World Scientific; 2001.

Accelerated Life Testing

Ch
ap

te
r2

2Elsayed A. Elsayed

22.1 Introduction
22.2 Design of Accelerated Life Testing Plans
22.2.1 Stress Loadings
22.2.2 Types of Stress
22.3 Accelerated Life Testing Models
22.3.1 Parametric Statistics-based Models
22.3.2 Acceleration Model for the Exponential Model
22.3.3 Acceleration Model for the Weibull Model
22.3.4 The Arrhenius Model
22.3.5 Non-parametric Accelerated Life Testing Models: Cox’s Model
22.4 Extensions of the Proportional Hazards Model

22.1 Introduction

The intensity of the global competition for the
development of new products in a short time
has motivated the development of new methods
such as robust design, just-in-time manufactur-
ing, and design for manufacturing and assembly.
More importantly, both producers and customers
expect that the product will perform the intended
functions for extended periods of time. Hence,
extended warranties and similar assurances of
product reliability have become standard features
of the product. These requirements have increased
the need for providing more accurate estimates of
reliability by performing testing of materials, com-
ponents, and systems at different stages of prod-
uct development. Testing under normal operating
conditions requires a very long time (possibly
years) and the use of an extensive number of units
under test, so it is usually costly and impracti-
cal to perform reliability testing under normal
conditions. This has led to the development of
accelerated life testing (ALT), where units are sub-
jected to a more severe environment (increased

or decreased stress levels) than the normal op-
erating environment so that failures can be in-
duced in a short period of test time. Informa-
tion obtained under accelerated conditions is then
used in conjunction with a reliability prediction
(inference) model to relate life to stress and to
estimate the characteristics of life distributions at
design conditions (normal operating conditions).
Conducting an accelerated life test requires careful
allocation of test units to different stress levels so
that accurate estimation of reliability at normal
conditions can be obtained using relatively small
units and short test durations.

The accuracy of the inference procedure has
a profound effect on the reliability estimates at
normal operating conditions and the subsequent
decisions regarding system configuration, war-
ranties, and preventive maintenance schedules.
Therefore, it is important that the inference pro-
cedure be robust and accurate. In this chapter
we present ALT models and demonstrate their
use in relating failure data at stress conditions
to normal operating conditions. Before presenting
such models, we briefly describe the design of ALT
plans, including methods of applying stress and

415

416 Maintenance Theory and Testing

determination of the number of units for each
stress level.

In this chapter, we introduce the subject of
ALT and its importance in assessing the reliability
of components and products under normal
operating conditions. We describe briefly the
methods of stress application and types of stress,
and focus on the reliability prediction models that
utilize the failure data under stress conditions
to obtain reliability information under normal
conditions. Several methods and examples that
demonstrate its application are also presented.
Before presenting such models, we briefly describe
the design of ALT plans, including methods of
applying stress and determination of the number
of units for each stress level.

22.2 Design of Accelerated Life
Testing Plans
A detailed test plan is usually designed before
conducting an accelerated life test. The plan
requires determination of the type of stress,
methods of applying stress, stress levels, the
number of units to be tested at each stress
level, and an applicable accelerated life testing
model that relates the failure times at accelerated
conditions to those at normal conditions. Typical
stress loadings are described in the following
section.

22.2.1 Stress Loadings

Stress in ALT can be applied in various ways. Typi-
cal loadings include constant, cyclic, step, progres-
sive, random stress loading, and combinations of
such loadings. Figure 22.1 depicts different forms
of stress loadings. The choice of a stress loading
depends on how the product or unit is used in
service and other practical and theoretical lim-
itations [1]. For example, a typical automobile
experiences extreme environmental temperature
changes ranging from below freezing to more
than 120 ◦F. Clearly, the corresponding accelerated
stress test should be cyclic with extreme tempera-
ture changes.

The stress levels range from low to high.
A low stress level should be higher than the
operating conditions to ensure failures during
the test, whereas the high stress should be
the highest possible stress that can be applied
without inducing failure mechanisms different
from those that are likely to occur under normal
operating conditions. Meeker and Hahn [2]
provide extensive tables and practical guidelines
for planning an ALT. They present a statistically
optimum test plan and then suggest an alternative
plan that meets practical constraints, and has
desirable statistical properties. Their tables allow
assessment of the effect of reducing the testing
stress levels (thereby reducing the degree of
extrapolation) on statistical precision.

Typical accelerated testing plans allocate equal
units to the test stresses. However, units tested
at stress levels close to the design or operating
conditions may not experience enough failures
that can be effectively used in the acceleration
models. Therefore, it is preferred to allocate more
test units to the low stress conditions than to the
high stress conditions so as to obtain an equal
expected number of failures at both conditions.

22.2.2 Types of Stress

The type of applied stress depends on the intended
operating conditions of the product and the
potential cause of failure. We classify the types of
the stresses as follows.

1. Mechanical stresses. Fatigue stress is the most
commonly used accelerated test for mechan-
ical components. When the components are
subject to elevated temperature, then creep
testing (which combines both temperature
and load) should be applied. Shock and
vibration testing is suitable for components or
products subject to such conditions as in the
case of bearings, shock absorbers, tires and
circuit boards in airplanes and automobiles.

2. Electrical stresses. These include power
cycling, electric field, current density, and
electromigration. Electric field is one of the
most common electrical stresses, as it induces

Accelerated Life Testing 417

Figure 22.1. Various stress loadings in ALT

failures in relatively short times; its effect is
also significantly higher than other types of
stress.

3. Environmental stresses. Temperature and ther-
mal cycling are commonly used for most
products. Of course, it is important to use
appropriate stress levels that do not induce
different failure mechanisms than those under
normal conditions. Humidity is as critical as
temperature, but its application usually re-
quires a very long time before its effect is
noticed. Other environmental stresses include
ultraviolet light, sulfur dioxide, salt and fine
particles, and alpha and gamma rays.

22.3 Accelerated Life Testing
Models

Elsayed [3] classified the inference procedures
(or models) that relate life under stress conditions
to life under normal or operating conditions
into three types: statistics-based models, physics–
statistics-based models, and physics–experimental-
based models as shown in Figure 22.2.

The statistics-based models are further clas-
sified as parametric models and non-parametric
models. The underlying assumption in relating
the failure data, when using any of the models,

418 Maintenance Theory and Testing

Figure 22.2. Classification of accelerated failure data models [3]

is that the components/products operating under
normal conditions experience the same failure
mechanism as those occurring at the accelerated
conditions.

Statistics-based models are generally used
when the exact relationship between the applied
stresses and the failure time of the component
or product is difficult to determine based on
physics or chemistry principles. In this case,
components are tested at different stress levels
and the failure times are then used to determine
the most appropriate failure time distribution
and its parameters. The most commonly used
failure time distributions are the exponential,
Weibull, normal, lognormal, gamma, and the
extreme value distributions. The failure times
follow the same general distributions for all
different stress levels, including the normal
operating conditions. When the failure time data
involve a complex lifetime distribution or when
the number of observations is small, making
it difficult to fit the failure time distribution
accurately, semiparametric or non-parametric
models appear to be a very attractive approach
to predict reliability at different stress levels.

The advantage of these models is that they are
essentially “distribution free”.

In the following sections, we present the details
of some of these models and provide numerical
examples that demonstrate the procedures for
reliability prediction under normal operating
conditions.

22.3.1 Parametric Statistics-based
Models

As stated above, statistics-based models are gener-
ally used when the exact relationship between the
applied stresses (temperature, humidity, voltage,
etc.) and the failure time of the component (or
product) is difficult to determine based on physics
or chemistry principles. In this case, components
are tested at different accelerated stress levels
s1, s2, . . . , sn. The failure times at each stress level
are then used to determine the most appropriate
failure time probability distribution, along with its
parameters. Under the parametric statistics-based
model assumptions, the failure times at different
stress levels are linearly related to each other.

Accelerated Life Testing 419

Moreover, the failure time distribution at stress
level s1 is expected to be the same at different
stress levels s2, s3, . . . as well as under the normal
operating conditions. In other words, the shape
parameters of the distributions are the same for
all stress levels (including normal conditions) but
the scale parameters may be different. Thus, the
fundamental relationships between the operating
conditions and stress conditions are summarized
as follows [4]:

• failure times
to = AFts (22.1)

where to is the failure time under operating
conditions, ts is the failure time under
stress conditions, and AF is the acceleration
factor (the ratio between product life under
normal conditions and life under accelerated
conditions);
• cumulative distribution functions (CDFs)

Fo(t)= Fs

(
t

AF

)
(22.2)

• probability density functions

fo(t)=
(

1

AF

)
fs

(
t

AF

)
(22.3)

• failure rates

ho(t)=
(

1

AF

)
hs

(
t

AF

)
(22.4)

The most widely used parametric models are
the exponential and Weibull models. Therefore,
we derive the above equations for both models and
demonstrate their use.

22.3.2 Acceleration Model for the
Exponential Model

This is the case where the time to failure under
stress conditions is exponentially distributed with
a constant failure rate λs . The CDF at stress s is

Fs(t)= 1− e−λst (22.5)

and the CDF under normal conditions is

Fo(t)= Fs

(
t

AF

)
= 1− e−λst/AF (22.6)

Table 22.1. Failure times of the capacitors in hours

Temperature Temperature Temperature
145 ◦C 240 ◦C 305 ◦C

75 179 116
359 407 189
701 466 300
722 571 305
738 755 314

1015 768 403
1388 1006 433
2285 1094 440
3157 1104 468
3547 1493 609
3986 1494 634
4077 2877 640
5447 3001 644
5735 3160 699
5869 3283 781
6242 4654 813
7804 5259 860
8031 5925 1009
8292 6229 1176
8506 6462 1184
8584 6629 1245

11 512 6855 2071
12 370 6983 2189
16 062 7387 2288
17 790 7564 2637
19 767 7783 2841
20 145 10 067 2910
21 971 11 846 2954
30 438 13 285 3111
42 004 28 762 4617

mean= 9287 mean= 5244 mean= 1295

The failure rates are related as

λo = λs

AF
(22.7)

Example 1. In recent years, silicon carbide (SiC)
is used as an optional material for semiconductor
devices, especially for those devices operating un-
der high temperatures and high electric fields con-
ditions. An extensive accelerated life experiment
is conducted by subjecting 6H-SiC metal–oxide–
silicon (MOS) capacitors to temperatures of 145,
240, and 305 ◦C. The failure times are recorded in
Table 22.1.

420 Maintenance Theory and Testing

Table 22.2. Temperatures and the 50th percentiles

Temperature (◦C) 145 240 305
50th percentile 6437 3635 898

Determine the mean time to failure (MTTF)
of the capacitors at 25 ◦C and plot the reliability
function.

Solution. The data for every temperature are fitted
using an exponential distribution and the means
are shown in Table 22.1. In order to estimate
the acceleration factor we chose some percentile
of the failed population, which can be done
non-parametrically using the rank distribution
or a parametric model. In this example, the
exponential distribution is used and the time at
which 50% of the population fails is

t = λ(−ln 0.5) (22.8)

The 50th percentiles are given in Table 22.2.
We use the Arrhenius model to estimate the

acceleration factor

t = k ec/T

where t is the time at which a specified portion of
the population fails, k and c are constants and T is
the absolute temperature (measured in degrees
kelvin). Therefore

ln t = ln k + c

T

Using the values in Table 22.2 and least-squares
regression we obtain c = 2730.858 and k =
15.844 32. Therefore, the estimated 50th per-
centile at 25 ◦C is

t25 ◦C = 15.844 32 e2730.858/(25+273)= 151 261 h

The acceleration factor at 25 ◦C is

AF = 151 261

6437
= 23.49

and the failure rate under normal operating
conditions is 1/(1295× 23.49)= 3.287× 10−5

failures/h, the mean time to failure is 30 419 h
and the plot of the reliability function is shown in
Figure 22.3.

Figure 22.3. Reliability function for the capacitors

22.3.3 Acceleration Model for the
Weibull Model

Again, we consider the true linear acceleration
case. Therefore, the relationships between the
failure time distributions at the accelerated
and normal conditions can be derived using
Equations 22.2–22.4. Thus

Fs(t)= 1− e−(t/θs)γs t ≥ 0, γs ≥ 1, θs > 0
(22.9)

where γs is the shape parameter of the Weibull
distribution under stress conditions and θs is the
scale parameter under stress conditions. The CDF
under normal operating conditions is

Fo(t)= Fs

(
t

AF

)
= 1− e−[t/AFθs]γs

= 1− e−[t/θo]γo
(22.10)

The underlying failure time distributions under
both the accelerated stress and operating condi-
tions have the same shape parameters, i.e. γs = γo,
and θo = AFθs . If the shape parameters at different
stress levels are significantly different, then either
the assumption of true linear acceleration is in-
valid or the Weibull distribution is inappropriate
to use for analysis of such data.

Let γs = γo = γ ≥ 1. Then the probability den-
sity function under normal operating conditions

Accelerated Life Testing 421

is

fo(t)= γ

AFθs

(
t

AFθs

)γ−1

e−[t/AFθs]γ

t ≥ 0, θs ≥ 0 (22.11)

The MTTF under normal operating conditions is

MTTFo = θ
1/γ
o �

(
1+ 1

γ

)
(22.12)

The failure rate under normal operating condi-
tions is

ho(t)= γ

AFθs

(
t

AFθs

)γ−1

= hs(t)

A
γ

F

(22.13)

Example 2. A manufacturer of Bourdon tubes
(used as a part of pressure sensors in avionics)
wishes to determine its MTTF. The manufacturer
defines the failure as a leak in the tube. The tubes
are manufactured from 18 Ni (250) maraging steel
and operate with dry 99.9% nitrogen or hydraulic
fluid as the internal working agent. Tubes fail as a
result of hydrogen embrittlement arising from the
pitting corrosion attack. Because of the criticality
of these tubes, the manufacturer decides to
conduct ALT by subjecting them to different levels
of pressures and determining the time for a leak
to occur. The units are continuously examined
using an ultrasound method for detecting leaks,
indicating failure of the tube. Units are subjected
to three stress levels of gas pressures and the times
for tubes to show leak are recorded in Table 22.3.

Determine the mean lives and plot the reliabil-
ity functions for design pressures of 80 and 90 psi.

Solution. We fit the failure times to Weibull
distributions, which results in the following
parameters for pressure levels of 100, 120, and
140 psi.

For 100 psi: γ1 = 2.87, θ1 = 10 392

For 120 psi: γ2 = 2.67, θ2 = 5375

For 140 psi: γ3 = 2.52, θ3 = 943

Since γ1 = γ2 = γ3 ∼= 2.65, then the Weibull model
is appropriate to describe the relationship between

Table 22.3. Time (hours) to detect leak

100 psi 120 psi 140 psi

1557 1378 215
4331 2055 426
5725 2092 431
5759 2127 435
6207 2656 451
6529 2801 451
6767 3362 496
6930 3377 528
7146 3393 565
7277 3433 613
7346 3477 651
7668 3947 670
7826 4101 708
7885 4333 710
8095 4545 743
8468 4932 836
8871 5030 865
9652 5264 894
9989 5355 927

10 471 5570 959
11 458 5760 966
11 728 5829 1067
12 102 5968 1124
12 256 6200 1139
12 512 6783 1158
13 429 6952 1198
13 536 7329 1293
14 160 7343 1376
14 997 8440 1385
17 606 9183 1780

Table 22.4. Percentiles at different pressures

Pressure (psi) 100 120 140
50th percentile 9050 4681 821

failure times under accelerated conditions and
normal operating conditions. Moreover, we have a
true linear acceleration. Following Example 1, we
determine the time at which 50% of the population
fails as

t = θ [−ln(0.5)]1/γ

The 50th percentiles are shown in Table 22.4.
The relationship between the failure time t and

the applied pressure P can be assumed to be

422 Maintenance Theory and Testing

Figure 22.4. Reliability functions at 80 and 90 psi

similar to the Arrhenius model; thus

t = k ec/P

where k and c are constants. By making a
logarithmic transformation, the above expression
can be written as

ln t = ln k + c

P

Using a linear regression model, we obtain
k = 3.319 and c = 811.456. The estimated 50th
percentiles at 80 psi and 90 psi are 84 361 h
and 27 332 h respectively. The corresponding
acceleration factors are 9.32 and 3.02. The failure
rates under normal operating conditions are

ho(t)= γ

AFθs

(
t

AFθs

)γ−1

= hs(t)

A
γ
F

or

h80(t)= 2.65

1.633 82× 1013
t1.65

and

h90(t)= 2.65

8.246 52× 1013
t1.65

The reliability functions are shown in Figure 22.4.
The MTTFs for 80 and 90 psi are calculated as

MTTF80 = θ1/γ �

(
1

γ

)
= (1.633 82× 1013)1/2.65�

(
1+ 1

2.65

)
= 96 853.38× 0.885= 85 715 h

and

MTTF90 = 31 383.829× 0.885= 27 775 h

22.3.4 The Arrhenius Model

Elevated temperature is the most commonly used
environmental stress for accelerated life testing of
microelectronic devices. The effect of temperature
on the device is generally modeled using the
Arrhenius reaction rate equation given by

r = A e−(Ea/kT) (22.14)

where r is the speed of reaction, A is an unknown
non-thermal constant, Ea (eV) is the activation
energy (i.e. energy that a molecule must have
before it can take part in the reaction), k is the
Boltzmann constant (8.623× 10−5 eV K−1), and
T (K) is the temperature.

Activation energyEa is a factor that determines
the slope of the reaction rate curve with tem-
perature, i.e. it describes the acceleration effect
that temperature has on the rate of a reaction
and is expressed in electron volts (eV). For most
applications, Ea is treated as a slope of a curve
rather than a specific energy level. A low value of
Ea indicates a small slope or a reaction that has
a small dependence on temperature. On the other
hand, a large value of Ea indicates a high degree of
temperature dependence [3].

Assuming that device life is proportional to
the inverse reaction rate of the process, then
Equation 22.14 can be rewritten as

L30 = 719 exp
0.42

4.2998× 10−5

×
(

1

30+ 273
− 1

180+ 273

)
= 31.0918× 106

The median lives of the units at normal operating
temperature Lo and accelerated temperature Ls

are related by

Lo

Ls

= A eEa/kTo

A eEa/kTs

or

Lo = Ls exp
Ea

k

(
1

To
− 1

Ts

)
(22.15)

The thermal acceleration factor is

AF = exp
Ea

k

(
1

To
− 1

Ts

)

Accelerated Life Testing 423

Table 22.5. Failure time data (hours) for oxide breakdown

Temperature Temperature
180 ◦C 150 ◦C

112 162
260 188
298 288
327 350
379 392
487 681
593 969
658 1303
701 1527
720 2526
734 3074
736 3652
775 3723
915 3781
974 4182

1123 4450
1157 4831
1227 4907
1293 6321
1335 6368
1472 7489
1529 8312
1545 13 778
2029 14 020
4568 18 640

The calculation of the median life (or percentile
of failed units) is dependent on the failure time
distribution. When the sample size is small it
becomes difficult to obtain accurate results. In this
case, it is advisable to use different percentiles
of failures and obtain a weighted average of the
median lives. One of the drawbacks of this model
is the inability to obtain a reliability function that
relates the failure times under stress conditions to
failure times under normal condition. We can only
obtain a point estimate of life. We now illustrate
the use of the Arrhenius model in predicting
median life under normal operating conditions.

Example 3. The gate oxide in MOS devices is
often a source of device failure, especially for
high-density device arrays that require thin gate
oxides. The reliability of MOS devices on bulk
silicon and the gate oxide integrity of these devices
have been the subject of investigation over the

Figure 22.5. Weibull probability plot indicating appropriate fit of
data

years. A producer of MOS devices conducts an
accelerated test to determine the expected life
at 30 ◦C. Two samples of 25 devices each are
subjected to stress levels of 150 ◦C and 180 ◦C.
The oxide breakdown is determined when the
potential across the oxide reaches a threshold
value. The times of breakdown are recorded in
Table 22.5. The activation energy of the device is
0.42 eV. Obtain the reliability function of these
devices.

Solution. Figure 22.5 shows that it is appropriate
to fit the failure data using Weibull distributions
with shape parameters approximately equal to
unity. This means that they can be represented by
exponential distributions with means of 1037 and
4787 h for the respective temperatures of 180 ◦C
and 150 ◦C respectively. Therefore, we determine
the 50th percentiles for these temperatures using
Equation 22.8 as being 719 and 3318 respectively.

3318= 719 exp
0.42

k

(
1

150+ 273
− 1

180+ 273

)

which results in k = 4.2998× 10−5.

424 Maintenance Theory and Testing

The median life under normal conditions of
30 ◦C is

L30 = 719 exp
0.42

4.2998× 10−5

×
(

1

30+ 273
− 1

180+ 273

)
= 31.0918× 106 h

The mean life is 44.8561× 106 and the reliability
function is

R(t) = e−44.8561×106t

22.3.5 Non-parametric Accelerated
Life Testing Models: Cox’s Model

Non-parametric models relax the assumption of
the failure time distribution, i.e. no predetermined
failure time distribution is required. Cox’s pro-
portional hazards (PH) model [5, 6] is the most
widely used among the non-parametric models.
It has been successfully used in the medical area
for survival analysis. In the past few years Cox’s
model and its extensions have been applied in
the reliability analysis of ALT. Cox made two im-
portant contributions: the first is a model that
is referred to as the PH model; the second is
a new parameter estimation method, which is
later referred to as the maximum partial likeli-
hood.

The PH model is structured based on the
traditional hazard function, λ(t; z), the hazard
function at time t for a vector of covariates
(or stresses) z. It is the product of an unspecified
baseline hazard function λ0(t) and a relative risk
ratio. The baseline hazard function λ0(t) is a
function of time t and independent of z, whereas
the relative risk ratio is a function of z only.
Thus, when a function exp(·) is considered as the
relative risk ratio, its PH model has the following
form:

λ(t; z)= λ0(t) exp(βz)= λ0(t) exp

(p∑
j=1

βjzj

)
(22.16)

where

z= (z1, z2, . . . , zp)
T

a vector of the covariates (or applied
stresses), where “T” indicates transpose. For
ALT it is the column vector of stresses used
in the test and/or their interactions

β = (β1, β2, . . . , βp)
T

a vector of the unknown regression coeffi-
cients

p number of the covariates.

The PH model implies that the ratio of the
hazard rate functions for any two units associated
with different vectors of covariates, z1 and z2, is
constant with respect to time. In other words,
λ(t; z1) is directly proportional to λ(t; z2).

If the baseline hazard function λ0(t) is speci-
fied, then the usual maximum likelihood method
can be used to estimate β. However, for the PH
model, the regression coefficients can be esti-
mated without the need for specifying the form of
λ0(t). Therefore, the partial likelihood method is
used to estimate β.

Suppose that we have a random sample of
n units; let t1 < t2 · · ·< tk represent k (k ≤
n) distinct failure times with corresponding
covariates z1, z2, . . . , zk . If k < n, then the
remaining n− k units are assumed to be censored.
The partial likelihood has the following form:

L(β)=
k∏

i=1

exp(βzi)∑
l∈R(ti)

exp(βzl)
(22.17)

where R(ti), the risk set at ti , denotes the number
of units survived and uncensored just prior to ti .

To accommodate tied survival times, Breslow
[7] modified the above form to

L(β)=
k∏

i=1

{
exp(βSi)

/[∑
l∈R(ti)

exp(βzl)
]di}
(22.18)

where di is the number of failure times equal to ti ,
and Si is the sum of the vectors z for these di units.

Though λ0(t) is not specified in the PH
model, the only unknown parameter in the partial
likelihood function is β. Therefore, the vector β

can be estimated by maximizing the log of partial

Accelerated Life Testing 425

likelihood function using numerical methods,
such as the Newton–Raphson method. The
estimate of β needs to be checked for significance
using analytical or graphical methods. Those
insignificant covariates can be discarded from the
model, and a new estimate of β corresponding to
the remaining covariates needs to be recalculated.

After estimating the unknown parameters
β1, β2, . . . , βp using the maximum partial likeli-
hood method, the remaining unknown in the PH
model is λ0(t). Some authors [8–10] suggest the
use of a piecewise step function estimate where
the function λ0(t) is assumed to be constant be-
tween subdivisions of the time scale. The time
scale can be subdivided at arbitrary convenient
points or at those points where failures occur.
This idea of estimating λ0(t) is a variation of
Kaplan–Meier’s product limit estimate. The only
difference is that, for the PH model, failure data
are collected at different stresses, and they need
to be weighted and transformed by the relative
risk ratio to a comparable scale before using the
Kaplan–Meier method. Another method to esti-
mate λ0(t), proposed by Anderson and Senthilsel-
van [11], describes a piecewise smooth estimate.
They assumed λ0(t) to be a quadratic spline in-
stead of being constant between time intervals.
They also suggest subtracting a roughness penalty
function, K0

∫ [λ′0(t)]2 dt , from the log-likelihood
and then maximizing the penalized log-likelihood
in order to obtain a smooth estimate for λ0(t). To
determine K0, Anderson and Senthilselvan [11]
plotted the estimates for several values of K0 and
chose the value that seemed to “best represent the
data”. K0 may be adjusted if the hazard function is
negative for some t .

After the unknown parameters β1, β2, . . . , βp
and the unknown baseline hazard rate function
λ0(t) in the PH model are estimated, i.e all of the
PH model’s unknowns are estimated, we can use
these estimates in the PH model to estimate the
reliability at any stress level and time.

Example 4. The need for long-term reliability in
electronic systems, which are subject to time-
varying environmental conditions and experience

various operating modes or duty cycles, intro-
duces a complexity in the development of thermal
control strategy. Coupling this with other applied
stresses, such as electric field, results in significant
deterioration of reliability. Therefore, the designer
of a new electronic packaging system wishes to
determine the expected life of the design at design
conditions of 30 ◦C and 26.7 V. The designer con-
ducted an accelerated test at several temperatures
and voltages and recorded the failure times as
shown in Table 22.6. Plot the reliability function
and determine the MTTF under design condi-
tions.

Solution. This ALT has two types of stresses:
temperature and voltage. The sample sizes are
relatively small and it is appropriate to use a non-
parametric method to estimate the reliability and
MTTF. We utilize the PH model and express it
as

λ(t; T , V)= λ0(t) exp

(
β1

T
+ β2V

)
where T (K) is temperature V is voltage. The
parameters β1 and β2 are determined using SAS�
PROC PHREG [12] and their values are −24 538
and 30.332 739 respectively. The unspecified base-
line hazard function can be estimated using any
of the methods described by Kalbfleisch and Pren-
tice [9] and Elsayed [3]. We can estimate the re-
liability of function under design conditions by
using their values with PROC PHREG. The re-
liability values are then plotted and a regres-
sion model is fit accordingly, as shown in Fig-
ure 22.6.

We assume a Weibull baseline hazard function
and fit the reliability values obtained under design
conditions to the Weibull function, which results
in

R(t; 30 ◦C, 26.7)= e−1.550 65×10−8t2

The MTTF is obtained using the mean time to
failure expression of the Weibull models as shown
by Elsayed [3]:

MTTF= θ1/γ �

(
1+ 1

γ

)
= 7166 h

426 Maintenance Theory and Testing

Table 22.6. Failure times (hours) at different temperatures and voltages

Failure time Temperature (◦C) Z1 = [1/(Temperature + 273.16)] Z2 (V)

1 25 0.003 353 9 27
1 25 0.003 353 9 27
1 25 0.003 353 9 27

73 25 0.003 353 9 27
101 25 0.003 353 9 27
103 25 0.003 353 9 27
148 25 0.003 353 9 27
149 25 0.003 353 9 27
153 25 0.003 353 9 27
159 25 0.003 353 9 27
167 25 0.003 353 9 27
182 25 0.003 353 9 27
185 25 0.003 353 9 27
186 25 0.003 353 9 27
214 25 0.003 353 9 27
214 25 0.003 353 9 27
233 25 0.003 353 9 27
252 25 0.003 353 9 27
279 25 0.003 353 9 27
307 25 0.003 353 9 27

1 225 0.002 007 4 26
14 225 0.002 007 4 26
20 225 0.002 007 4 26
26 225 0.002 007 4 26
32 225 0.002 007 4 26
42 225 0.002 007 4 26
42 225 0.002 007 4 26
43 225 0.002 007 4 26
44 225 0.002 007 4 26
45 225 0.002 007 4 26
46 225 0.002 007 4 26
47 225 0.002 007 4 26
53 225 0.002 007 4 26
53 225 0.002 007 4 26
55 225 0.002 007 4 26
56 225 0.002 007 4 26
59 225 0.002 007 4 26
60 225 0.002 007 4 26
60 225 0.002 007 4 26
61 225 0.002 007 4 26

22.4 Extensions of the
Proportional Hazards Model

The PH model implies that the ratio of the
hazard functions for any two units associated
with different vectors of covariates, z1 and
z2, is constant with respect to time. In other

words, λ(t; z1) is directly proportional to λ(t; z2).
This is the so-called PH model’s hazard rate
proportionality assumption. The PH model is
a valid model to analyze ALT data only when
the data satisfy the PH model’s proportional
hazard rate assumption. So, checking the validity
of the PH model and the assumption of the
covariates’ multiplicative effect is critical for

Accelerated Life Testing 427

Table 22.6. Continued.

Failure time Temperature (◦C) Z1 = [1/(Temperature+ 273.16)] Z2 (V)

1365 125 0.002 511 6 25.7
1401 125 0.002 511 6 25.7
1469 125 0.002 511 6 25.7
1776 125 0.002 511 6 25.7
1789 125 0.002 511 6 25.7
1886 125 0.002 511 6 25.7
1930 125 0.002 511 6 25.7
2035 125 0.002 511 6 25.7
2068 125 0.002 511 6 25.7
2190 125 0.002 511 6 25.7
2307 125 0.002 511 6 25.7
2309 125 0.002 511 6 25.7
2334 125 0.002 511 6 25.7
2556 125 0.002 511 6 25.7
2925 125 0.002 511 6 25.7
2997 125 0.002 511 6 25.7
3076 125 0.002 511 6 25.7
3140 125 0.002 511 6 25.7
3148 125 0.002 511 6 25.7
3736 125 0.002 511 6 25.7

Figure 22.6. Reliability function under design conditions

applying the model to the failure data. When
the proportionality assumption is violated, there
are several extensions of the PH model that are
proposed to handle the situation.

If the proportionality assumption is violated
and there are one or more covariates that totally
occur on q levels, a simple extension of the PH
model is stratification [13], as given below:

λj (t; z)= λ0j (t) exp(βz) j = 1, 2, . . . , q

A partial likelihood function can be obtained
for each of the q strata and β is estimated
by maximizing the multiplication of the partial
likelihood of the q strata. The baseline hazard
rate λ0j (t), estimated as before, is completely
unrelated among the strata. This model is most
useful when the covariate is categorical and of no
direct interest.

Another extension of the PH model includes
the use of time-dependent covariates. Kalbfleisch
and Prentice [13] classified the time-dependent
covariates as internal and external. An internal
covariate is the output of a stochastic process
generated by the unit under study; it can be
observed as long as the unit survives and is
uncensored. An external covariate has a fixed
value or is defined in advance for each unit under
study.

Many other extensions exist in the literature
[14]. However, one of the most generalized ex-
tensions is the extended linear hazard regression
model proposed by Elsayed and Wang [15]. Both
accelerated failure time models and PH models
are indeed special cases of the generalized model,

428 Maintenance Theory and Testing

whose hazard function is

λ(t; z)= λ0(t e(β0+β1t)z) e(α0+α1t)z

where λ(t; z) is the hazard rate at time t and stress
vector z, λ0(·) is the baseline hazard function, and
β0, β1, α0, and α1 are constants. This model has
been validated through extensive experimentation
and simulation testing.

References
[1] Nelson WB. Accelerated life testing step-stress models

and data analysis. IEEE Trans Reliab 1980;R-29:103–8.
[2] Meeker WQ, Hahn GJ. How to plan an accelerated life

test-some practical guidelines. In: Statistical techniques,
vol. 10, ASQC basic reference in QC. Milwaukee (WI):
American Society for Quality Control; 1985.

[3] Elsayed EA. Reliability engineering. Massachusetts:
Addison-Wesley; 1996.

[4] Tobias PA, Trindade D. Applied reliability. New York: Van
Nostrand Reinhold; 1986.

[5] Cox DR. Regression models and life tables (with
discussion). J R Stat Soc Ser B 1972;34:187–220.

[6] Cox DR. Partial likelihood. Biometrika 1975;62:267–76.
[7] Breslow NE. Covariance analysis of censored survival

data. Biometrika 1974;66:188–90.
[8] Oakes D. Comment on “Regression models and life tables

(with discussion)” by D. R. Cox. J R Stat Soc Ser B
1972;34:208.

[9] Kalbfleisch JD, Prentice RL. Marginal likelihood based on
Cox’s regression and life model. Biometrika 1973;60:267–
78.

[10] Breslow NE. Comment on “Regression models and life
tables (with discussion)” by D. R. Cox. J R Stat Soc Ser B
1972;34:187–202.

[11] Anderson JA, Senthilselvan A. Smooth estimates for the
hazard function. J R Stat Soc Ser B 1980;42(3):322–7.

[12] Allison PD. Survival analysis using the SAS� system: a
practical guide. Cary (NC): SAS Institute Inc.; 1995.

[13] Kalbfleisch JD, Prentice RL. Statistical analysis of failure
time data. New York: Wiley; 1980.

[14] Wang X. An extended hazard regression model for
accelerated life testing with time varying coefficients.
PhD dissertation, Department of Industrial Engineering,
Rutgers University, New Brunswick, NJ, 2001.

[15] Elsayed EA, Wang X. Confidence limits on reliability
estimates using the extended linear hazards regression
model. In: Ninth Industrial Engineering Research Con-
ference, Cleveland, Ohio, May 21–23, 2000.

Accelerated Test Models with the
Birnbaum–Saunders Distribution

Ch
ap

te
r2

3W. Jason Owen and William J. Padgett

23.1 Introduction
23.1.1 Accelerated Testing
23.1.2 The Birnbaum–Saunders Distribution
23.2 Accelerated Birnbaum–Saunders Models
23.2.1 The Power-law Accelerated Birnbaum–Saunders Model
23.2.2 Cumulative Damage Models
23.2.2.1 Additive Damage Models
23.2.2.2 Multiplicative Damage Models
23.3 Inference Procedures with Accelerated Life Models
23.4 Estimation from Experimental Data
23.4.1 Fatigue Failure Data
23.4.2 Micro-composite Strength Data

23.1 Introduction
When modeling the time to failure T of a device or
component whose lifetime is considered a random
variable, the reliability measure R(t), defined as

R(t)= Pr(T > t)

describes the probability of the component of
failing or exceeding a time t . In basic statistical in-
ference procedures, various statistical cumulative
distribution functions (CDFs), denoted by F(t),
can be used to model a lifetime characteristic
for a device on test. In doing so, the relationship
between the reliability and CDF for T is straight-
forward: R(t)= 1− F(t). Choosing a model for
F is akin to assuming the behavior of observations
of T , and frequent choices for CDFs in reliability
modeling include the Weibull, lognormal, and
gamma distributions. A description of these
models is given by Mann et al. [1] and Meeker and
Escobar [2], for example. This chapter will focus
on the Birnbaum–Saunders distribution (B–S)
and its applications in reliability and life testing,

and this distribution will be described later in
this section. The B–S fatigue life distribution has
applications in the general area of accelerated
life testing, and two approaches given here
yield various three-parameter generalizations or
extensions to the original form of their model.
The first approach uses the (inverse) power law
model to develop an accelerated form of the
distribution using standard methods. The second
approach uses different assumptions of
cumulative damage arguments (with applications
to strengths of complex systems) to yield various
strength distributions that are similar in form.
Estimation and asymptotic theory for the models
are discussed with some applications to various
data sets from engineering laboratories.

The following is a list of notation used
throughout this chapter:

s, sij strength variable, observed strength
t, tij time to failure variable, observed failure

time
F CDF

429

430 Maintenance Theory and Testing

f probability density function (PDF)
E(T) expected value of random variable T
� standard normal (Gaussian) CDF
α, β , δ, γ , η, θ , ρ, ψ

various CDF model parameters
V level of accelerated stress
L, Li system size, for the ith system, i = 1,

. . . , k
L likelihood function
sp distribution p100th percentile.

23.1.1 Accelerated Testing

Many high-performance items made today can
have extremely large reliabilities (and thus tend
not to wear out as easily) when they are operating
as intended. For example, through advances in
engineering science, a measurement such as time
to failure for an electronic device could be
quite large. For these situations, calculating the
reliability is still of interest to the manufacturer
and to the consumer, but a long period of time
may be necessary to obtain sufficient data to
estimate reliability. This is a major issue, since it is
often the case with electronic components that the
length of time required for the test may actually
eclipse the “useful lifetime” of the component.
In addition, performing a test over a long time
period (possibly many years) could be very costly.
One solution to this issue of obtaining meaningful
life test data in a timely fashion is to perform an
accelerated life test (ALT). This procedure involves
observing the performance of the component at
a higher than usual level of operating stress to
obtain failures more quickly. Types of stress or
acceleration variable that have been suggested
in the literature include temperature, voltage,
pressure, and vibration [1, 3].

Obviously, it can be quite a challenge to use the
failure data observed at the conditions of higher
stress to predict the reliability (or even the average
lifetime) under the “normal use” conditions.
To extrapolate from the observed accelerated
stresses to the normal-use stress, an acceleration
model is used to describe the relationship between
the parameters of the reliability model and the

accelerated stresses. This functional relationship
usually involves some unknown parameters that
will need to be estimated in order to draw
inference at the normal-use stress. An expository
discussion of ALTs is given by Padgett [4].

Many different parametric acceleration models
have been derived from the physical behavior of
the material under the elevated stress level. Com-
mon acceleration models include the (inverse)
power law, Arrhenius, and Eyring models [4]. The
power law model has applications in the fatigue
failure of metals, dielectric failure of capacitors
under increased voltage, and the aging of multi-
component systems. This model will be used in
this chapter, and it is given by

h(V)= γV −η (23.1)

where V represents the level of accelerated stress.
Typically, h(V) is substituted for a mean or
scale parameter in a baseline lifetime distribution.
Thus, by performing this substitution, it is
assumed that the increased environmental stress
has the effect of changing the mean or scale of
the lifetime model, but the distribution “family”
remains intact. The parameters γ and η in h(V)

are (usually) unknown and are to be estimated
(along with any other parameters in the baseline
failure model) using life-test data observed at
elevated stress levels V1, V2, . . . , Vk . ALT data
are often represented in the following way:
let tij characterize the observed failure (time)
for an item under an accelerated stress level
Vi , where j = 1, 2, . . . , ni and i = 1, 2, . . . , k.
After parameter estimation using the ALT data,
inferences can be drawn for other stress levels
not observed, such as the “normal use” stress V0.
Padgett et al. [5] provide an example using the
Weibull distribution with the power-law model
(Equation 23.1) substituted for the Weibull scale
parameter; this accelerated model was used for
fitting tensile strength data from an experiment
testing various gage lengths of carbon fibers
and tows (micro-composites). In this application,
“length” is considered an acceleration variable,
since longer specimens of these materials tend
to exhibit lower strengths due to increased

Accelerated Test Models with the Birnbaum–Saunders Distribution 431

occurrences of inherent flaws that ultimately
weaken the material [5].

23.1.2 The Birnbaum–Saunders
Distribution
While considering the physical properties of
fatigue failure for materials subjected to cyclic
stresses and strains, Birnbaum and Saunders [6]
derived a new family of lifetime distributions.
In their derivation, they assume (as is often the
case with metals and concrete structures) that
failure occurs by the progression of a dominant
crack within the material to an eventual “critical
length”, which ultimately results in fatigue failure.
Their derivation resulted in the CDF

FB–S(t; α, β)=�

[
1

α

(√
t

β
−
√
β

t

)]
t > 0; α, β > 0 (23.2)

where �[·] represents the standard normal CDF.
A random variable T following the distribution in
Equation 23.2 will be denoted as T ∼ B–S(α, β).
The parameter α is a shape parameter and β is
a scale parameter; also, β is the median for
the distribution. This CDF has some interesting
qualities, and many are listed by Birnbaum and
Saunders [6, 7]. Of interest for this discussion are
the first and first reciprocal moments

E(T)= β(1+ α2/2) E(T −1)= (1+ α2/2)/β
(23.3)

and the PDF for T given by

F ′B–S(t; α, β)= f (t; α, β)
= 1

2αβ

√
t

β

[
1+

(
t

β

)−1
]

1√
2π

× exp

[
− 1

2α2

(
t

β
− 2+ β

t

)]
t > 0; α, β > 0 (23.4)

Desmond [8] showed that Equation 23.2 also
describes the failure time that is observed
when any amount of accumulating damage
(not unlike crack propagation) exceeds a critical
threshold. This research has been the foundation

of the “cumulative damage” models that will be
illustrated in Section 23.2.2.

Statistical inference for data following Equa-
tion 23.2 has been developed for single samples.
To estimate the parameters in Equation 23.2 for
a data set, the maximum likelihood estimators
(MLEs) of α and β must be found using an
iterative, root-finding technique. The equations
for the MLEs are given in Birnbaum and Saun-
ders [7]. Achcar [9] derived an approximation to
the Fisher information matrix for the Birnbaum–
Saunders distribution by using the Laplace ap-
proximation [10] for complicated integrals, and
used the information matrix to provide some
Bayesian approaches to estimation using Jeffery’s
(non-informative) priors for α and β . The Fisher
information matrix for Equation 23.2 is also use-
ful for other inferences (e.g. confidence intervals)
using the asymptotic normality theory for MLEs
(see Lehman and Casella [11] for a comprehensive
discussion on this topic).

The remainder of this chapter is outlined as
follows. In Section 23.2, the power-law acceler-
ated Birnbaum–Saunders distribution will be pre-
sented, using the methods discussed in this sec-
tion. In addition, a family of cumulative damage
models developed for estimation of the strength
of complex systems will be presented. These mod-
els assume various damage processes for material
failure, and it will be shown that they possess a
generalized Birnbaum–Saunders form—not un-
like the ALT Birnbaum–Saunders form. Estima-
tion techniques and large-sample theory will be
discussed for all of these models in Section 23.3.
Applications of the models will be discussed in
Section 23.4, along with some conclusions.

23.2 Accelerated
Birnbaum–Saunders Models

In this section, various accelerated life models will
be presented that follow a generalized Birnbaum–
Saunders form. The five models that will be

432 Maintenance Theory and Testing

presented are similar in that they represent three-
parameter generalizations of the original two-
parameter form given by Equation 23.2. A more
detailed derivation for each model, along with
other theoretical aspects, can be found in the
accompanying references.

23.2.1 The Power-law Accelerated
Birnbaum–Saunders Model

Owen and Padgett [12] describe an accelerated
life model using the models in Equations 23.1
and 23.2. The power law model (Equation 23.1)
was substituted for the scale parameter β in
Equation 23.2 to yield

G(t; V)= FB–S[t; α, h(V)]

=�

[
1

α

(√
t

γ V −η
−
√
γV−η

t

)]
t > 0; α, γ, η > 0 (23.5)

Note that Equation 23.5 is a distribution with
three parameters; it would represent an overpa-
rameterization of Equation 23.2 unless at least two
distinct levels of V are considered in an experi-
ment (i.e. k ≥ 2). The mean for the distribution
in Equation 23.5 can easily be calculated from the
equation given in Equation 23.3 and by substi-
tuting the power law model Equation 23.1 for β .
Thus, it can be seen that as V (the level of accel-
erated stress) increases, the expected value for T

decreases. Owen and Padgett [12] used the accel-
erated model Equation 23.5 to fit observed cycles-
to-failure data of metal “coupons” (rectangular
strips) that were stressed and strained at three
different levels (see Birnbaum and Saunders [7]).
A discussion of those results will be given in Sec-
tion 23.4.

The ALT model (Equation 23.5) is related to the
investigation by Rieck and Nedelman [13], where a
log–linear form of the Birnbaum–Saunders model
(Equation 23.2) was considered. If T ∼ B–S(α, β),
then the random variable can be expressed as
T = βX, where X ∼ B–S(α, 1) since β is a scale
parameter. Therefore, if β is replaced by the ac-
celeration model exp[a + bV], the random vari-
able has the log–linear form since ln(T)= a +

bV + ln(X), where the error term ln(X) follows
the sinh–normal distribution [13]. Thus, least-
squares estimates (LSEs) of a and b can be found
quite simply using the tij data defined previously,
but the parameter α (confounded in the error
term) can only be estimated using alternative
methods. These are described by Rieck and Nedel-
man [13], along with the properties of the LSEs
of a and b. Their approach and the acceleration
model selected, although functionally related to
Equation 23.1, make the log–linear model attrac-
tive in the general linear model (GLM) framework.
Owen and Padgett [12] use the more common
parameterization (Equation 23.1) of the power-
law model and likelihood-based inference. The
discussion of inference for Equation 23.5 is given
in the next section.

23.2.2 Cumulative Damage Models

Many high-performance materials are actually
complex systems whose strength is a function
of many components. For example, the strength
of a fibrous carbon composite (carbon fibers
embedded in a polymer material) is essentially
determined by the strength of the fibers. When a
composite specimen is placed under tensile stress,
the fibers themselves may break within the
material, which ultimately weakens the material.
Since industrially made carbon fibers are known
to contain random flaws in the form of cracks,
voids, etc., and these flaws tend to weaken the
fibers [14] and ultimately the composite, statistical
distributions have often been proposed to model
composite strength data. It is important to note
that since carbon fibers are often on the order of
8 µm in diameter, it is nearly impossible to predict
when a specimen is approaching failure based on
“observable damage” (like cracks or abrasions, as
is the case with metals or concrete structures).
The models that have been used in the past are
based on studies of “weakest link” [5, 15] or
competing risk models [16]. Recent investigations
on the tensile strengths for fibrous carbon
composite materials [17, 18] have yielded new
distributions that are based on “cumulative
damage” arguments. This method models the

Accelerated Test Models with the Birnbaum–Saunders Distribution 433

(random) damage a material aggregates as stress
is steadily increased; the damage accumulates
to a point until it exceeds the strength of the
material. The models also contain a length or
“size” variable, given by L, which accounts for the
scale of the system, and the derivation for these
models will now be summarized. Four models
using the cumulative damage approach will be
given here, and for simplicity, the CDFs will be
distinguished by Fl(s; L), where s represents the
strength of the specimen and the model type l =
1, 2, 3, 4. The simplicity of this notation will be
evident later.

Suppose that a specimen of length or “size”
L is placed under a tensile load that is steadily
increased until failure. Assume that:

1. conceptually, the load is incremented by
small, discrete amounts until system failure;

2. each increment of stress causes a random
amount of damage D > 0, with D having CDF
FD ;

3. the specimen has a fixed theoretical strength,
denoted by ψ . The initial strength of the
specimen is a random quantity, however, that
represents the reduction of the specimen’s
theoretical strength by an amount of “initial
damage” from the most severe flaw in the
specimen. The random variable W represents
the initial strength of the system.

As the tensile strength is incremented in
this fashion, the cumulative damage after n+ 1
increments of stress is given by [8, 17]

Xn+1 =Xn +Dnh(Xn) (23.6)

where Dn > 0 is the damage incurred at load
increment n+ 1, for n= 0, 1, 2, . . . , and the Dn

values are independent and distributed according
to FD . The function h(u) is called the damage
model function. If h(u)= 1 for all u, the incurred
damage is said to be additive; if h(u)= u for all u,
the incurred damage to the specimen is said to be
multiplicative.

Let N be the number of increments of tensile
stress applied to the system until failure. Then,
N = supn{n :X1 <ψ, . . . , Xn−1 <ψ}, and N =
1 if the set is empty. Let Fn(w)= P(N > n |W =

w). Now, since ψ is only the theoretical strength,
we alternately define N according to W , the initial
strength.

Let X0 denote the “initial damage” due to
flaws or other pre-existing weakening damage.
With additive damage, W = ψ −X0 so that N =
supn{n :X1 −X0 <ψ −X0, . . . , Xn−1 − X0 <

ψ − X0}. With multiplicative damage, W = ψ/X0
with X0 > 1, so that N = supn{n :X1/X0 <

ψ/X0, . . . , Xn−1/X0 <ψ/X0}. Regardless of
how W is defined, the survival probability of
the specimen after n increments of stress is
simply [17]

P(N > n)=
∫ ∞

0
Fn(w) dGW(w) (23.7)

with GW(w) representing the distribution for
initial strength of the specimen. The distribution
function Fn(w) depends on the type of damage
model h(u). In either case, Fn(w) can be
approximated for large n for both additive and
multiplicative damage.

23.2.2.1 Additive Damage Models

For an additive damage model, h(u)= 1 in Equa-
tion 23.6. Since Dn =Xn+1 −Xn, the damage
incurred to the specimen after n increments
of stress is

∑n−1
i=0 Di =∑n−1

i=0 (Xi+1 −Xi)=Xn −
X0. Using the idea that the increments of stress are
small (so that the number of increments will often
be very large), by the central limit theorem, Xn −
X0 has an approximate normal (Gaussian) distri-
bution with mean nµ and variance nσ 2, where µ

and σ 2 are the mean and variance of D. Therefore,
for large n

Fn(w)= P(Xn −X0 ≤ w)

∼=�[(w − nµ)/(n1/2σ)] (23.8)

Substituting Equation 23.8 and supplying an
appropriate distribution for the initial strength in
Equation 23.7 gives an expression for the survival
probability of the specimen after n increments of
stress.

Durham and Padgett [17] proposed two dis-
tributions for GW(w), the initial strength of

434 Maintenance Theory and Testing

the specimen of length L. The first is a three-
parameter Weibull distribution given by

GW(w)= 1− exp{−L[(w −w0)/δ]ρ} (23.9)

Using Equations 23.9 and 23.8 in Equation 23.7
and letting S be the total tensile load after N incre-
ments, the “additive Gauss–Weibull” strength dis-
tribution for the specimen of length L is obtained
and is given by

F1(s; L)=�

[
1

α

(√
s

β
− L−1/ρ

√
s

)]
s > 0

(23.10)
where α and β represent two new parameters
obtained in the derivation of Equation 23.10 and
are actually functions of the parameters δ, ρ, µ,
and σ . See Padgett and coworkers [17, 19] for the
specifics of the derivation.

The second initial strength model assumes a
“flaw process” over the specimen of length L that
accounts for the reduction of theoretical strength
due to the most severe flaw. This process is
described by a standard Brownian motion, which
yields an initial strength distribution found by
integrating the tail areas of a Gaussian PDF. The
PDF for W is given by [17]

G′W(w)= gW (w)

= 2√
2πL

exp

[
− (w−ψ)2

2L

]
0 <w < ψ

(23.11)

Substituting Equations 23.11 and 23.8 in Equa-
tion 23.7 and letting S be the total tensile load after
N increments (again, see Durham and Padgett
[17] for the mathematical details), the “additive
Gauss–Gauss” strength distribution for the spec-
imen of length L is given by

F2(s; L)=�

[
1

α

(√
s

β
− ψ−√2L/π√

s

)]
s > 0

(23.12)

23.2.2.2 Multiplicative Damage Models

For a multiplicative damage model, W = ψ/X0
and h(u)= u in Equation 23.6. Since Dn =

(Xn+1 −Xn)/Xn, the damage incurred to the
specimen after n increments of stress is

n−1∑
i=0

Di =
n−1∑
i=0

(Xi+1 −Xi)/Xi ≈ ln(Xn)− ln(X0)

since n will be large. Thus, for large n, Xn/X0
has an approximate log-normal distribution
(by the central limit theorem) with parameters nµ
and nσ 2. Therefore, under multiplicative damage,
we have

Fn(w)= P(Xn/X0 ≤ w)

∼=�{[ln(w)− nµ]/(n1/2σ)} (23.13)

As with the additive damage case, two models
have been proposed for the distribution of initial
strength [18]. The first is the two-parameter
Weibull distribution (this is Equation 23.9 with
w0 = 0) and the second is the “flaw process”
model given by the PDF (Equation 23.11). Using
each of these with Equation 23.13 in Equation 23.7,
the “multiplicative Gauss–Weibull” model and the
“multiplicative Gauss–Gauss” model [18] are

F3(s; L)=�

[
1

α

(√
s

β
− γ − ln(L)√

s

)]
s > 0; α, β, γ > 0 (23.14)

and

F4(s; L)=�

[
1

α

(√
s

β

− ln(ψ)− (
√

2L/π/ψ) − (L/2ψ2)√
s

)]
s > 0; α, β, ψ > 0 (23.15)

respectively.
The cumulative damage models presented in

this section have been used by Padgett and
coworkers [17–19] to model strength data from
an experiment with 1000-fiber tows (micro-
composite specimens) tested at several gage
lengths. A discussion of these will be given in
Section 23.4. It is important to note that although
the cumulative damage models presented in
this section are not “true” ALT models, insofar
that they were not derived from a baseline

Accelerated Test Models with the Birnbaum–Saunders Distribution 435

model, they do resemble them, since the length
variable L acts as a level of accelerated stress
(equivalent to the V variable from Section 23.1.2).
Obviously, the longer the specimen, the weaker
it becomes due to an increased occurrence of
flaws and defects. Estimation and other inference
procedures for these models are discussed by
Padgett and coworkers [17–19]. These matters will
be summarized in the next section.

23.3 Inference Procedures with
Accelerated Life Models
Parameter estimation based on likelihood meth-
ods has been derived for the models given in
Section 23.2. For the model in Equation 23.5 the
MLEs for α, γ , and η are given by the values that
jointly maximize the likelihood function

L(α, γ, η)=
k∏

i=1

ni∏
j=1

g(tij ; Vi)

where g(t; V) represents the PDF for the dis-
tribution (Equation 23.5) and the significance of
the values i, j , k, ni and tij are defined in Sec-
tion 23.1.1. For simplicity, it is often the case that
the natural logarithm of L is maximized, since
this function is usually more tractable. Owen and
Padgett [12] provide the likelihood equations for
maximization of the likelihood function, along
with other inferences (e.g. approximate variances
of the MLEs), but since the methods are similar
for the cumulative damage models, these will not
be presented here.

Durham and Padgett [17] provide estimation
procedures for the additive damage models (Equa-
tions 23.10 and 23.12). The authors use the fact
that the Birnbaum–Saunders models can be ap-
proximated by the first term of an inverse Gaus-
sian CDF [20, 21]. This type of approximation is
very useful, since the inverse Gaussian distribu-
tion is an exponential form and parameter esti-
mates are (generally) based on simple statistics of
the data. Owen and Padgett [19] observed that the
models in Equations 23.10, 23.12, 23.14, and 23.15
all have a similar structure, and they derived a

generalized three-parameter Birnbaum–Saunders
model of the form

Fl(s; L)=�

[
1

α

(√
s

β
− λl(θ; L)√

s

)]
s > 0; α, β, θ > 0; l = 1, 2, 3, 4 (23.16)

where the “acceleration function” λl(θ; L) cor-
responds to a known function of L, the length
variable, and θ , a model parameter. For example,
for the “additive Gauss–Weibull” model (Equa-
tion 23.10), the acceleration function λ1(θ; L)=
L−1/θ . These functions are different for the four
cumulative damage models, but the overall func-
tional form for F is similar. This fact allows for a
unified theory of inference using Equation 23.16,
which we will now describe [19].

The PDF for Equation 23.16 is

fl(s; L)= s + βλl(θ; L)
2
√

2παβs3/2

× exp

{
−[s − βλl(θ; L)]2

2α2β2s

}
s > 0

(23.17)

Using Equation 23.17 to form the likelihood
function L(α, β, θ) for strength data observed
over the k gage lengths L1, L2, . . . , Lk , the log-
likelihood can be expressed as

�= ln[L(α, β, θ)]
= −m ln(2

√
2π)−m ln(α)−m ln(β)

+
k∑

i=1

ni∑
j=1

ln

sij + βλl(θ; Li)

s
3/2
ij

− 1

2α2β2

k∑
i=1

ni∑
j=1

[sij − βλl(θ; Li)]2
sij

where m=∑k
i=1 ni . The three partial derivatives

of � with respect to each of α, β , and θ are
nonlinear likelihood equations that must be solved
numerically. The equation for α can be solved in
terms of β and θ , but each equation for β and θ

must be solved numerically (i.e. the roots must be
found, given values for the other two parameters),

436 Maintenance Theory and Testing

as follows:

α =
√√√√ 1

mβ2

k∑
i=1

ni∑
j=1

[sij − βλl(θ; Li)]2
sij

(23.18)

0=−m

β
+

k∑
i=1

λl(θ; Li)

ni∑
j=1

[sij+βλl(θ; Li)]−1

+ 1

α2β3

k∑
i=1

ni∑
j=1

[sij − βλl(θ; Li)]2
sij

+ 1

α2β2

k∑
i=1

λl(θ; Li)

ni∑
j=1

[sij−βλl(θ; Li)]
sij

(23.19)

0= β

k∑
i=1

[
∂

∂θ
λl(θ; Li)

] ni∑
j=1

[sij+βλl(θ; Li)]−1

+ 1

2α2β2

k∑
i=1

ni

[
∂

∂θ
λl(θ; Li)

]

− 1

α2

k∑
i=1

λl(θ; Li)

[
∂

∂θ
λl(θ; Li)

] ni∑
j=1

1

sij

(23.20)

Iteration over these three equations with the spe-
cific acceleration function λl(θ; L) can be per-
formed using a nonlinear root-finding technique
until convergence to an approximate solution for
the MLEs α̂, β̂ , and θ̂ . A procedure for obtaining
the starting values for the parameters that are
necessary for initiating the iterative root-finding
procedure is detailed by Owen and Padgett [19].
From Equation 23.20, we see that an additional
prerequisite for the acceleration function λl(θ; L)
in the generalized distribution (Equation 23.17)
is that the λl(θ; L) must be differentiable with
respect to θ for MLEs to exist.

The 100pth percentile for the
generalized Birnbaum–Saunders distribution
(Equation 23.17) for a given value of L and
specified acceleration function λl(θ; L) can be
expressed as [19]

sp(L)= β2

4

[
αzp +

√
(αzp)2 + 4λl(θ; Li)/β

]2

(23.21)

where zp represents the 100pth percentile of the
standard normal distribution. The MLE for sp(L)
can be obtained by substituting the MLEs α̂, β̂,
and θ̂ into Equation 23.21. Estimated values for
the lower percentiles of a strength distribution
are often of interest to engineers for design
issues with composite materials. In addition,
approximate lower confidence bounds on sp(L)

can be calculated using its limiting distribution
via the Cramér delta method, and this method is
outlined by Owen and Padgett [19].

For a large value of m, approximate confi-
dence intervals for the parameters α, β , and
θ can be based on the asymptotic theory for
MLEs (conditions for this are given by Lehmann
and Casella [11]). As m increases without bound
(and ni/m→ pi > 0 for all i = 1, . . . , k), the
standardized distribution of τ̂ = (α̂, β̂, θ̂)′ ap-
proaches that of the trivariate normal distribu-
tion (TVN) with zero mean vector and identity
variance–covariance matrix. Thus, the sampling
distribution of τ̂ can be approximately expressed
as τ̂ ∼̇ TVN(τ , I−1

m (τ)), which is the trivariate
normal distribution with mean vector τ and
variance–covariance matrix I−1

m (τ), the mathe-
matical inverse of the Fisher information ma-
trix for Equation 23.16 based on m indepen-
dent observations. The negative expected val-
ues for the six second partial derivatives for the
log of the likelihood function �= ln L(α, β, θ)
for Equation 23.16 are quite complicated but
can be obtained. The quantities E(−∂2�/∂α2),
E(−∂2�/∂α∂β) and E(−∂2�/∂α∂θ) can be found
explicitly, but the other three terms require
an approximation for the intractable integral.
The method used is explained in detail by Owen
and Padgett [19], but here we simply present the
six entries for Im(τ):

E(−∂2�/∂α2)= 2m/α2 (23.22a)

E(−∂2�/∂α∂β)=m/(αβ) (23.22b)

E(−∂2�/∂α∂θ)=− 1

α

k∑
i=1

ni
(∂/∂θ)λl(θ; Li)

λl(θ; Li)

(23.22c)

Accelerated Test Models with the Birnbaum–Saunders Distribution 437

E(−∂2�/∂β2)∼= 3m/(4β2)

+ 1

α2β3

k∑
i=1

niλl(θ; Li)

(23.22d)

E(−∂2�/∂β∂θ)∼=− 1

4β

k∑
i=1

ni
(∂/∂θ)λl(θ; Li)

λl(θ; Li)

+ 1

α2β2

k∑
i=1

ni
∂

∂θ
λl(θ; Li)

(23.22e)

E(−∂2�/∂θ2)∼= 3

4

k∑
i=1

ni

[
(∂/∂θ)λl(θ; Li)

λl(θLi)

]2

+ 1

α2β

k∑
i=1

ni
[(∂/∂θ)λl(θ; Li)]2

λl(θ; Li)

(23.22f)

Using these expressions, the asymptotic variances
of the three MLEs can be found from the diagonal
elements of I−1

m (τ), and these variances can be
estimated by substitution of the MLEs for the three
unknown parameters involved. The variances
can be used to calculate approximate confidence
intervals for the parameters and lower confidence
bounds (LCBs) for sp(L) from Equation 23.21.

In the next section, the power-law accelerated
Birnbaum–Saunders model (Equation 23.16) and
the cumulative damage models from Section 23.3
will be used to fit accelerated life data taken from
two different industrial experiments for materials
testing. A discussion of the results will follow.

23.4 Estimation from
Experimental Data
Here, we will look at two applications of the
three-parameter accelerated life models from
Section 23.2, using the methods of inference given
in Section 23.3.

23.4.1 Fatigue Failure Data

In the original collection of articles by Birnbaum
and Saunders [6, 7], a data set was published

on the fatigue failure of aluminum coupons
(rectangular strips cut from 6061-T6 aluminum
sheeting). The coupons were subjected to repeated
cycles of alternating stresses and strains, and the
recorded measurement for a specimen on test
was the number of cycles until failure. In the
experiment, three levels of maximum stress for
the periodic loading scheme were investigated
(i.e. k = 3), and these stress levels were V1 =
21 000, V2 = 26 000, and V3 = 31 000 psi with
respective sample sizes n1 = 101, n2 = 102, and
n3 = 101. The data are given by Birnbaum and
Saunders [7], and a scaled version of the data set
is given by Owen and Padgett [12]. This data set
was the motivation for the derivation of Birnbaum
and Saunders’ original model (Equation 23.2),
and they used their distribution to fit each data
set corresponding to one of the three maximum
stress levels to attain three estimated lifetime
distributions. Although the fitted distributions
matched well with the empirical results, no
direct inference could be drawn on how the
level of maximum stress functionally affected
the properties of the distribution. Owen and
Padgett [12] used the power-law accelerated
Birnbaum–Saunders model (Equation 23.16) to
fit across all levels of maximum stress. For the
specifics of the analyses, which include parameter
estimates and approximate confidence intervals,
see Owen and Padgett [12].

23.4.2 Micro-Composite Strength Data

Bader and Priest [22] obtained strength data
(measured in giga-pascals, GPa) for 1000-fiber
impregnated tows (micro-composite specimens)
that were tested for tensile strength. In their ex-
periment, several gage lengths were investigated:
20 mm, 50 mm, 150 mm, and 300 mm with
28, 30, 32, and 29 observed specimens tested at
the respective gage lengths. These data are given
explicitly by Smith [23]. The strength measure-
ments range between 1.889 and 3.080 GPa over
the entire data set, and, in general, it is seen
that the specimens with longer gage lengths tend
to have smaller strength measurements. All of

438 Maintenance Theory and Testing

the cumulative damage models presented in Sec-
tion 23.3 have been used to model these data,
and the details of the procedures are given by
Padgett and coworkers [17–19]. Owen and Pad-
gett [19] compared the fits of the four models by
observing their respective overall mean squared
error (MSE); this is calculated by averaging the
squared distance of the estimated model (us-
ing the MLEs) to the empirical CDF for each of
the gage lengths over all of the m= 119 obser-
vations. A comparison was also made with the
“power-law Weibull model” that was used to fit
these strength data by Padgett et al. [5]. Overall,
the “multiplicative Gauss–Gauss” strength model
(Equation 23.15) had the smallest MSE of 0.004 56,
compared with the other models, and this casts
some degree of doubt on the standard “weakest
link” theory with the Weibull model for these
types of material. From [19], the MLEs of the
parameters in Equation 23.15 were calculated to be
α̂ = 0.144 36, β̂ = 0.832 51, and ψ̂ = 34.254 (re-
call that the parameterψ represented the “theoret-
ical strength” of the system). Using these MLEs in
Equation 23.22a–f, the (approximate) quantities of
the Fisher information matrix for Equation 23.15
can be estimated (for this case, the parameter θ is
given byψ). These estimates of Equations 23.22a–f
are, respectively, 11 421.1037, 990.1978, −10.1562,
32 165.7520, 324.8901, and 3.4532. The diagonal
elements of the inverse of the Fisher information
matrix give the asymptotic variances of the MLEs,
and the asymptotic standard deviations (ASDs) of
the MLEs are estimated to be ÂSD(α̂)= 0.0105,
ÂSD(β̂)= 0.0281 and ÂSD(ψ̂)= 2.7125. Using
the asymptotic normality result stated in the last
Section 23.3, the individual 95% confidence inter-
vals for the three parameters are: (0.1238, 0.1649)
for α, (0.7774, 0.8876) for β , and (28.9377, 39.5703)
for ψ . An estimation of s0.1(L), the 10th percentile
for the strength distribution Equation 23.15 for the
given values of L, and the 90% LCBs on s0.1(L)

are presented by Owen and Padgett [19]. Thus, not
only does the model in Equation 23.15 provide an
excellent fit, it also gives insight into the physical
nature of the failure process due to the scientific
nature of the cumulative damage process at the
microscopic level.

In summary, it is seen that the Birnbaum–
Saunders distribution (Equation 23.2) has great
utility in the general area of accelerated life test-
ing. The power-law accelerated model (Equa-
tion 23.16) was derived using fairly standard
techniques from the ALT literature, and is a
three-parameter generalization of Equation 23.2.
The cumulative damage models from Section 23.2
are also three-parameter generalizations of Equa-
tion 23.2 and are accelerated life models in the
general sense. They are unique, however, since
nowhere in the individual development of the
models was a baseline Birnbaum–Saunders model
assumed. In addition, given that the models were
derived from physical arguments, the parameters
involved have specific meanings and interpreta-
tions in the physical process of material failure.

Acknowledgments

The second author’s work was partially supported
by the National Science Foundation under grant
number DMS-9877107.

References

[1] Mann NR, Schafer RE, Singpurwalla ND. Methods for
statistical analysis of reliability and life data. New York:
John Wiley and Sons; 1974.

[2] Meeker WQ, Escobar LA. Statistical methods for reliabil-
ity data. New York: John Wiley and Sons; 1998.

[3] Nelson W. Accelerated testing: statistical models, test
plans, and data analysis. New York: John Wiley and Sons;
1990.

[4] Padgett WJ. Inference from accelerated life tests. In:
Abdel-Hameed MS, Cinlar E, Quinn J, editors. Reliability
theory and models. New York: Academic Press; 1984.
p.177–98.

[5] Padgett WJ, Durham SD, Mason AM. Weibull analysis
of the strength of carbon fibers using linear and power
law models for the length effect. J Compos Mater
1995;29:1873–84.

[6] Birnbaum ZW, Saunders SC. A new family of life
distributions. J Appl Prob 1969;6:319–27.

[7] Birnbaum ZW, Saunders SC. Estimation for a family of
life distributions with applications to fatigue. J Appl Prob
1969;6:328–47

[8] Desmond AF. Stochastic models of failure in random
environments. Can J Stat 1985;13:171–83.

Accelerated Test Models with the Birnbaum–Saunders Distribution 439

[9] Achcar JA. Inferences for the Birnbaum–Saunders fatigue
life model using Bayesian methods. Comput Stat Data
Anal 1993;15:367–80.

[10] Tierney L, Kass RE, Kadane JB. Fully exponential
Laplace approximations to expectations and variances of
nonpositive functions. J Am Stat Assoc 1989;84:710–6.

[11] Lehmann EL, Casella G. Theory of point estimation. New
York: Springer; 1998.

[12] Owen WJ, Padgett WJ. A Birnbaum–Saunders accelerated
life model. IEEE Trans Reliab 2000;49:224–9.

[13] Rieck JR, Nedelman JR. A log–linear model for
the Birnbaum–Saunders distribution. Technometrics
1991;33:51–60.

[14] Stoner EG, Edie DD, Durham SD. An end-effect model for
the single-filament tensile test. J Mater Sci 1994;29:6561–
74.

[15] Wolstenholme LC. A non-parametric test of the weakest
link property. Technometrics 1995;37:169–75.

[16] Goda K, Fukunaga H. The evaluation of strength
distribution of silicon carbide and alumna fibres by a
multi-modal Weibull distribution. J Mater Sci 1986;21:
4475–80.

[17] Durham SD, Padgett WJ. A cumulative damage model
for system failure with application to carbon fibers and
composites. Technometrics 1997;39:34–44.

[18] Owen WJ, Padgett WJ. Birnbaum–Saunders-type models
for system strength assuming multiplicative damage. In:
Basu AP, Basu SK, Mukhopadhyay S, editors. Frontiers in
reliability. River Edge (NJ): World Scientific; 1998. p.283–
94.

[19] Owen WJ, Padgett WJ. Acceleration models for system
strength based on Birnbaum–Saunders distributions.
Lifetime Data Anal 1999;5:133–47.

[20] Bhattacharyya GK, Fries A. Fatigue failure models—
Birnbaum–Saunders vs. inverse Gaussian. IEEE Trans
Reliab 1982;31:439–41.

[21] Chhikara RS, Folks JL. The inverse Gaussian distribution.
New York: Marcel Dekker; 1989.

[22] Bader S, Priest A. Statistical aspects of fibre and bundle
strength in hybrid composites. In: Hayashi T, Katawa K,
Umekawa S, editors. Progress in Science and Engineering
of Composites, ICCM-IV, Tokyo, 1982; p.1129–36.

[23] Smith RL. Weibull regression models for reliability data.
Reliab Eng Syst Saf 1991;34:55–76.

This page intentionally left blank

Multiple-steps Step-stress
Accelerated Life Test

Ch
ap

te
r2

4Loon-Ching Tang

24.1 Introduction
24.2 Cumulative Exposure Models
24.3 Planning a Step-stress Accelerated Life Test
24.3.1 Planning a Simple Step-stress Accelerated Life Test
24.3.1.1 The Likelihood Function
24.3.1.2 Setting a Target Accelerating Factor
24.3.1.3 Maximum Likelihood Estimator and Asymptotic Variance
24.3.1.4 Nonlinear Programming for Joint Optimality in Hold Time and Low Stress
24.3.2 Multiple-steps Step-stress Accelerated Life Test Plans
24.4 Data Analysis in the Step-stress Accelerated Life Test
24.4.1 Multiply Censored, Continuously Monitored Step-stress Accelerated Life Test
24.4.1.1 Parameter Estimation for Weibull Distribution
24.4.2 Read-out Data
24.5 Implementation in Microsoft ExcelTM

24.6 Conclusion

24.1 Introduction

The step-stress accelerated life test (SSALT) is a
reliability test in which not only products are
tested at higher than usual stress but the stress
applied also changes, usually increases, at some
predetermined time intervals during the course
of the test. The stress levels and the time epochs
at which the stress changes constitute a step-
stress pattern (SSP) that resembles a staircase
with uneven step and length. There are many
advantages for this type of stress loading. Not
only can the test time be reduced by increasing
the stress during the course of a test, but
experimenters need not start with a high stress
that could be too harsh for the product, hence
avoiding excessive extrapolation of test results.
Moreover, only a single piece of test equipment,
e.g. a temperature chamber, is required for each
SSP; and a single SSP is sufficient to validate
the assumed stress–life model (see Section 24.4).

Having said that, the obvious drawback is
that it requires stronger assumptions and more
complex analysis compared with a constant-
stress accelerated life test (ALT). In this chapter,
we look at two related issues for an SSALT,
i.e. how to plan/design a multiple-steps SSALT
and how to analyze data obtained from an
SSALT. To facilitate subsequent presentation and
discussion, we shall adopt the following further
acronyms:

AF acceleration factor
AV asymptotic variance
c.d.f. cumulative distribution function
FFL failure-free life
LCEM linear cumulative exposure model
MLE maximum likelihood estimator
MTTF mean time to failure
N-M Nelson cumulative exposure model
NLP nonlinear programming
p.d.f. probability density function.

441

442 Maintenance Theory and Testing

Figure 24.1. An example of an SSALT stress pattern and a possible
translation of test time to a constant reference stress

The challenge presented in the SSALT can be
illustrated as follows. Consider the situation where
some specimens of a product are tested under an
SSP, as depicted in Figure 24.1. Most specimens
are expected to survive after the low stress
regime, and a significant fraction may survive
after the middle stress. When the test is finally
terminated at high stress, we have failure data
that cannot be described by a single distribution,
as they come from three different stress levels.
In particular, if there is indeed a stress–life model
that adequately relates a percentile of the failure
time to the stress, we would have to translate
the failure times to equivalent failure times at
a reference stress before the model could be
applied. The translation of SSALT failure times
must be done piecewise, as the acceleration
factors are different at different stress levels.
This means that, unlike a constant-stress ALT,
failure data obtained under an SSALT may not be
analyzed independently of the stress–life model
without further assumptions. In particular, for
specimens that fail at high stress, assumptions
on how the “damage” due to exposure to lower
stress levels is accumulated must be made.
We shall defer the discussion on this to the next
section.

The simplest from of SSALT is the partial ALT
considered by Degroot and Goel [1], in which

products are first tested under use condition for
a period of time before the stress is increased
and maintained at a level throughout the test.
This is a special case of a simple SSALT,
where only two stress levels are used. Much
work has been done in this area since that by
Nelson [2]. Literature appearing before 1989 has
been covered by Nelson [3], in which a chapter
has been devoted to step-stress and progressive-
stress ALT assuming exponential failure time.
Here, we give a brief review of the subsequent
work.

We first begin with literature dealing with the
planning problem in an SSALT. The commonly
adopted optimality criterion is to minimize the AV
of the log(MTTF) or some percentile of interest.
Using the estimates for probabilities of failure
at design and high stress levels by the end
of the test as inputs, Bai and coworkers [4, 5]
obtained the optimum plan for simple SSALTs
under type I censoring assuming exponential [4]
and Weibull [5] failure times. Khamis and
Higgins [6] considered a quadratic stress–life
relation and obtained the associated optimum
plan for a three-step SSALT using parameters
of the assumed quadratic function as inputs.
They then proposed a compromised test plan
for a three-step SSALT by combining the results
of the optimum quadratic plan with that of the
optimum simple SSALT obtained by Bai et al. [4].
Assuming complete knowledge of the stress–life
relation with multiple stress variables, Khamis [7]
proposed an optimal plan for a multiple-step
SSALT. Park and Yum [8] developed statistically
optimal modified ALT plans for exponential
lifetimes, taking into consideration the rate of
change in stress, under continuous inspection and
type I censoring, with similar assumptions as in
Bai et al. [4]. The above plans solve for optimal
hold time and assumed that low stress levels
are given. Yeo and Tang [9] presented an NLP
for planning a two-step SSALT, with the target
acceleration factor and the expected proportion
of failure at high stress by the end of the test
as inputs, in which both the low stress levels
and the respective hold times are optimized.
They proposed an algorithm for planning a

Multiple-steps Step-stress Accelerated Life Test 443

Table 24.1. A summary of the characteristics in the literature on optimal design of an SSALT

Reference Problem addressed Input Output Lifetime
distribution

Bai et al. [4] Planning 2-step SSALT pd ,ph Optimal hold time Exponential
Bai and Kim [5] Planning 2-step SSALT pd ,ph , shape parameter Optimal hold time Weibull
Khamis and Higgins [6] Planning 3-step SSALT All parameters of stress–life relation Optimal hold time Exponential

with no censoring
Khamis [7] PlanningM-step SSALT All parameters of stress–life relation Optimal hold time Exponential

with no censoring
Yeo and Tang [9] PlanningM-step SSALT ph and target acceleration factor Optimal hold time Exponential

and lower stress
Park and Yum [8] Planning 2-step SSALT pd ,ph , ramp rate Optimal hold time Exponential

with ramp rate

multiple-step SSALT in which the number of
steps was increased sequentially. Unfortunately,
the algorithm inadvertently omitted a crucial step
that would ensure optimality. A revised algorithm
that addresses this will be presented in a later
section. A summary of the above literature is
presented in Table 24.1.

In the literature on modeling and analysis of an
SSALT beyond Nelson [2], van Dorp et al. [10] de-
veloped a Bayes model and the related inferences
of data from SSALT assuming exponential failure
time. Tang et al. [11] generalized the Nelson cu-
mulative exposure model (N-M), the basic model
for data analysis of an SSALT. They presented an
LCEM, which, unlike N-M, is capable of analyzing
SSALT data with FFL. Their model also overcomes
the mathematical tractability problem for N-M
under a multiple-step SSALT with Weibull failure
time. An attempt to overcome such difficulty is
presented by Khamis and Higgins [12], who pro-
posed a time transformation of the exponential
cumulative exposure (CE) model for analyzing
Weibull data arising from an SSALT. Recently,
Chang et al. [13] used neural networks for mod-
eling and analysis of step-stress data.

Interest in SSALTs appears to be gathering mo-
mentum, as evidenced by the recent literature,
where a variety of other problems and case stud-
ies associated with SSALTs have been reported.
Xiong and Milliken [14] considered an SSALT
with random stress-change times for exponential
data. Tang and Sun [15] addressed ranking and
selection problems under an SSALT. Tseng and

Wen [16] presented degradation analysis under
step stress. McLinn [17] summarized some practi-
cal ground rules for conducting an SSALT. Sun and
Chang [18] presented a reliability evaluation on an
application-specific integrated circuit (ASIC) flash
RAM under an SSALT using a Peck temperature–
RH model and Weibull analysis. Gouno [19] pre-
sented an analysis of an SSALT using exponential
failure time in conjunction with an Arrhenius
model, where the activation energy and failure
rate under operational conditions were estimated
both graphically and using an MLE.

In the following, we first discuss the two
basic cumulative exposure models, i.e. N-M
and LCEM, that are pivotal in the analysis
of SSALT data. This is followed by solving
the optimal design problem of an SSALT with
exponential lifetime. We then derive the likelihood
functions using an LCEM for multiply censored
data under continuous monitoring and read-out
data with censoring. Finally, these methodologies
are implemented on Microsoft ExcelTM with a
numerical example. The notation used in each
section is defined at the beginning of each section.

24.2 Cumulative Exposure
Models
The notation used in this section is as follows:

h total number of stress levels in an SSP
Si stress level i, i = 1, 2, . . . , h

444 Maintenance Theory and Testing

N index for stress level when failure
occurs

ti stress change times, i = 1, 2, . . . ,
h− 1

�ti sojourn time at Si (= ti − ti−1, for
survivors)

R reliability
F, Fi(·) c.d.f., c.d.f. at Si
t (i) lifetime of a sample tested at Si
τe:i equivalent start time of any sample at

Si+1, τe:0 ≡ 0
te(i) equivalent total operating time of a

sample at Si
θi MTTF at stress Si .

As depicted in Figure 24.1, to facilitate the
analysis of an SSALT we need to translate the test
times over different stress levels to a common
reference stress; say, the design stress. In other
words, one needs to relate the life under an SSP
to the life under constant stress. To put this into
statistical perspective, Nelson [2] proposed a CE
model with the assumption that “the remaining
life of specimens depends only on the current
cumulative fraction failed and current stress—
regardless of how the fraction accumulated.
Moreover, if held at the current stress, survivors
will fail according to the c.d.f. for the stress but
starting at the previously accumulated fraction
failed”. By this definition, we have

F(y)=

F1(y) 0≤ y < t1

Fi(τe;i−1 + y − ti−1) ti−1 ≤ y < ti;
1 < i < h

Fh(τe;h−1 + y − th−1) th−1 ≤ y <∞
(24.1)

where the equivalent start time τe:i at Si is the
solution of the following:

Fi+1(τe:i)= Fi(ti − ti−1) for i = 1, . . . , h− 1

This N-M model has been widely accepted and
commonly adopted by many authors [4–9, 14].
The problem, however, is that the model is not
general enough to cater for life distributions
with a location parameter representing FFL.
This is because it is constructed by matching

the probability of failure across various stresses.
For the N-M model, when ti < FFL, F(ti)= 0,
implying that CE is zero. Consequently, no CE
is registered. This does not seem reasonable, as
there should be CE even if the test time is below
FFL. Having an FFL is not uncommon among
engineering products, particularly for products
that fail through degradation and/or wear-out
processes. For example, some semiconductors
may take a few years before failure emerges; other
examples include the life of batteries and the
storage life of printer cartridges, photo-films, etc.

Another drawback of N-M is that it is defined
purely on statistical grounds, and thus it is hard
to give a physical interpretation. Here, we present
an alternative CE model that is based on exposure
times that a sample experienced under a test, call
the LCEM, which has been shown to include N-M
as its special case when failure time follows a
Weibull distribution [11].

Suppose that the lifetime of a product can be
described by a distribution and a sample is ran-
domly selected from its population. The lifetime
of the sample is an unknown constant at a fixed
stress. Let the life of the sample operating at Si be
t (i). The LCEM is defined as follows.

1. For a sample having tested for �ti at Si , its
fractional exposure accumulated at this Si is
�ti/t (i).

2. For a sample test under an SSP, its frac-
tional exposure is linearly accumulated. That
is, if a sample has operated �tk, at Sk , k =
1, 2, . . . , i, its accumulated fractional expo-
sure is

i∑
k=1

�tk/t (k).

3. For a survivor at any stress level, its equivalent
start time at that stress depends only on the
previously accumulated fractional exposure,
regardless of how that exposure is accumu-
lated:

[�ti + τe:i−1]/t (i)= τe:i/t (i + 1)

τe:0 ≡ 0, i = 1, 2, . . . , h− 1

Multiple-steps Step-stress Accelerated Life Test 445

From the definition, it follows that the equivalent
start time is given by:

τe:i = t (i + 1)
i∑

k=1

�tk/t (k) i = 1, 2, . . . , h− 1

(24.2)
Note that, compared with Equation 24.1, the
equivalent time is independent of the distribution
of the failure time. The LCEM allows the trans-
lation of test time to any reference stress quite
effortlessly. From Equation 24.2, the equivalent
test time of the sample at Si after going through
�tk , k = 1, . . . , i, is:

te(i)= τe:i−1 +�ti

= t (i)

i−1∑
k=1

�tk/t (k)+�ti

= t (i)

i∑
k=1

�tk/t (k) (24.3)

From Equation 24.2, Equation 24.3 can be written
in the equivalent test time at any stress, say Sj ,
where �tj = 0:

te(j)= t (j)

i∑
k=1

�tk/t (k)

⇒ te(j)

t (j)
= te(i)

t (i)
=

i∑
k=1

�tk/t (k) (24.4)

Equation 24.4 is true as long as te(j)≤ t (j), be-
cause failure occurs when te(j)= t (j). The inter-
pretation of Equation 24.4 is interesting: the equiv-
alent test time at a stress is directly proportional to
its failure time at the stress and, more importantly,
the total fractional CE is invariant across stress
levels. The failure condition, i.e.

N∑
i=1

�ti/t (i)= 1 (24.5)

is identical to the well-known Miner’s rule. It can
be interpreted that, once we have picked a
sample, regardless of the step-stress spectrum it
undergoes, the cumulative damage that triggers a
failure is a deterministic unknown. Moreover, for

all samples, the exposure is linearly accumulated
until failure. In fact, this seems to be the original
intent of Nelson [2], and it is only natural
that N-M is a special case of LCEM (shown by
Tang et al. [11]).

From Equations 24.2 to 24.4, it is noted that
LCEMs need estimates of t (i), i = 1, 2, . . . , N .
These must be estimated from the empiri-
cal c.d.f./reliability and the assumed stress–life
model. For example, in the case of exponential
failure time, suppose that the lifetime of a sample
corresponds to the (1− R)-quantile. Then

t (i, R)=−θi ln(R)⇒ t̂ (i, R)=−θi ln(R̂)
(24.6)

The MTTF at Si , θi will depend on the stress–life
model. We shall use the LCEM in the following
sections.

24.3 Planning a Step-stress
Accelerated Life Test

The notation adopted in this section is as follows:

S0, Si , Sh stress (design, low, high) levels, i = 1,
2, . . . , h− 1

xi
Si − S0

Sh − S0
: normalized low stress levels,

i = 1, 2, . . . , h− 1
h total number of stress levels
n number of test units
p expected failure proportion when

items are tested only at Sh
pi expected failure proportion at Si
ni number of failed units at Si , i = 1,

2, . . . , h
nc number of censored units at Sh

(at end of test)
yi,j failure time j of test units at Si, i = 1,

2, . . . , h
te(j, i) equivalent failure time for the j th

failure at Si
R(j, i) reliability of the j th failure at Si

446 Maintenance Theory and Testing

θi mean life at stress Si , i = 1, 2, . . . , h
τi hold time at low Si , i = 1, 2, . . . ,

h− 1
T censoring time
V (x, τ) n · AV[log(mean-life estimate)].

Table 24.1 shows a list of the work related to
optimal design of an SSALT. The term “optimal”
usually refers to minimizing the asymptotic
variance of the log(MTTF) or that of a percentile
under use condition.

As we can see from Table 24.1, with the
exception of Bai and Kim [5], all work deals with
exponential failure time. This is due to simplicity,
as well as practicality, for it is hard to know
the shape parameter of a Weibull distribution in
advance.

The typical design problem for a two-step
SSALT is to determine the optimal hold time,
with a given low stress level. This solution is not
satisfactory, because, in practice, the selection of
the low stress is not obvious. Choosing a low
stress close to the design stress might result in too
few failures at low stress for meaningful statistical
inference. Choosing a low stress close to a high
stress could result in too much extrapolation of
the stress–life model. In fact, it is well known that
in the optimal design of a two-stress constant-
stress ALT, both the sample allocation and the low
stress are optimally determined. It is thus not an
unreasonable demand for the same outputs in the
design of an SSALT. This motivated the work of
Yeo and Tang [9], who used p and an AF as inputs
so that both the hold time and low stress can be
optimally determined.

The use of an AF as input is more practical
than using the probability of failure at design
stress, as the latter is typically hard to estimate.
A common interpretation of the AF is that it is the
time compression factor. Given the time constraint
that determines the maximum test duration and
some guess of how much time the test would have
taken if tested under use conditions, the target AF
is simply the ratio of the two. In fact, as we shall
see in Equation 24.9, the target AF can easily be
derived using an LCEM once the test duration is
given.

24.3.1 Planning a Simple Step-stress
Accelerated Life Test

We consider a two-level SSALT in which n

test units are initially placed on S1. The stress
is changed to S2 at τ1 = τ , after which the
test is continued until all units fail or until a
predetermined censoring time T . For each stress
level, the life distribution of the test units is
exponential with mean θi .

24.3.1.1 The Likelihood Function

From Equations 24.3 and 24.6, under exponential
failure time assumption, the equivalent failure
time of the j th failure at high stress is given by:

te(j, h)= θ2 ln[R(j, h)]
×
{

τ

θ1 ln[R(j, h)] +
y2,j − τ

θ2 ln[R(j, h)]
}

As the term ln[R(j, h)] will be canceled by itself,
we shall omit it whenever this happens. The
contribution to the likelihood function for the j th
failure at high stress is

1

θ2
exp

[
− te(j, h)

θ2

]
= 1

θ2
exp

(
−y2,j − τ

θ2
− τ

θ1

)
For the nc survivors, the equivalent test time at
high stress is

te(h)= θ2

(
τ

θ1
+ T − τ

θ2

)
so the contribution to the likelihood function is

exp

(
− te(h)

θ2

)
= exp

(
−T − τ

θ2
− τ

θ1

)
Putting these together, the likelihood function is

L(θ1, θ2)=
n1∏
j=1

[
1

θ1
exp

(
−y1,j

θ1

)]

×
n2∏
j=1

[
1

θ2
exp

(
−y2,j − τ

θ2
− τ

θ1

)]

×
nc∏
j=1

exp

(
− τ

θ1
− T − τ

θ2

)
(24.7)

Multiple-steps Step-stress Accelerated Life Test 447

24.3.1.2 Setting a Target Accelerating
Factor

The definition of an AF can be expressed as

φ = equivalent time to failure at design stress

time to failure under test plan
(24.8)

From Equation 24.3, the equivalent operating time
for the test duration T at the design stress is

te(0)= θ0

(
τ

θ1
+ T − τ

θ2

)
Substituting this into Equation 24.8 with the test
time T as the denominator, the AF is

φ = τ (θ0/θ1)+ (T − τ)(θ0/θ2)

T
(24.9)

Suppose the mean life of a test unit is a log–linear
function of stress:

log(θi)= α + βSi (24.10)

where α and β (β < 0) are unknown parameters.
(This is a common choice for the life–stress
relationship because it includes both the power
law and the Arrhenius relation as special cases.)

Without loss of generality, let S0 = 0, S1 = x,
S2 = 1, T = 1. Then, substituting Equation 24.10
into Equation 24.9 yields

φ = (1− τ) exp(−β)+ τ exp(−βx) (24.11)

24.3.1.3 Maximum Likelihood Estimator
and Asymptotic Variance

The MLE of log θ0 can be obtained by differentiat-
ing the log-likelihood function in Equation 24.7:

log(θ̂0)= log(U1/n1)− x log(U2/n2)

(1− x)

where

U1 =
n1∑
j=1

y1,j + (n− n1)τ

U2 =
n2∑
j=1

(y2,j − τ)+ (n− nc)(T − τ)

From the Fisher information matrix, the AV of
the MLE of the log(mean life) at the design stress
AV[log(θ̂0)] is

V (x, τ)=

(
1

1− x

)2

1− exp

(
− τ

θ1

)

+

(
x

1− x

)2

exp

(
− τ

θ1

) [
1− exp

(
−1− τ

θ2

)]
(24.12)

We need to express Equation 24.12 in terms of x,
τ , p, β . From the log–linear relation of the mean
in Equation 24.10, we have

θ2

θ1
=
(
θ2

θ0

)1−x
= exp[β(1− x)]

And with

p = 1− exp

(
− 1

θ2

)
it follows that V (x, τ) is

V (x, τ)=

(
1

1− x

)2

1− (1− p)ω

+

(
x

1− x

)2

(1− p)ω[1− (1− p)1−τ]
(24.13)

where

ω ≡ τ

(
θ2

θ0

)1−x
= τ {exp[β(1− x)]}

24.3.1.4 Nonlinear Programming for Joint
Optimality in Hold Time and Low Stress

Given the numerical values of p and φ, the optimal
(x, τ) can be obtained by solving the NLP:

min V (x, τ)

subject to (1− τ) exp(−β)+ τ exp(−βx)= φ

(24.14)

448 Maintenance Theory and Testing

102

A
cc

el
er

at
io

n
fa

ct
o

r

8
7
6

5

4

3

2

101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Expected failure proportion

0.660 0.657 0.653 0.649 0.646

0.6640.667

0.678
0.675

0.696

0.689

0.685

0.682

0.711

0.707

0.703

0.700

0.671

Figure24.2. Contours of optimal hold time at low stress for a two-
step SSALT. For a given (p, φ), the optimal hold time can be read
off by interpolation between contours

The results are given graphically in Figures 24.2
and 24.3, with (p, φ) on the x–y axis, for φ

ranging from 10 to 100 and p ranging from
0.1 to 0.9. An upper limit for the range of φ

is selected for; in practice, an AF beyond 100
may be too harsh. The range of p is chosen
based on the consideration that (1− p) gives the
upper bound for the fraction of censored data.
For a well-planned experiment, the degree of
censoring is usually less than 90% (p = 0.1) and
it is not common to have more than 90% failure.
Figure 24.2 shows the contours of the optimal
normalized hold time τ and Figure 24.3 gives the
contours of the optimal normalized low stress x.
Given a pair of (p, φ), the simultaneous optimal
low stress and hold time can be read from the
graphs. An extensive grid search on the [0, 1] ×
[0, 1] solution space of (x, τ) has been conducted
for selected combinations of input parameters
(p, φ), from which the global optimality of the
graphs has been verified.

Both sets of contours for the optimal hold
time and the optimal low stress show an upward
convex trend. The results can be interpreted as
follows. For the same p, in situations where time
constraints call for a higher AF, it is better to
increase the low stress and extend the hold time at
low stress. For a fixed AF, a longer test time (so that

102

A
cc

el
er

at
io

n
fa

ct
o

r

8
7
6

5

4

3

2

101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Expected failure proportion

0.375 0.364 0.354

0.406

0.385

0.426
0.447
0.468
0.489

0.510

0.530

0.551
0.562

0.582

0.416
0.437
0.458
0.478

0.499

0.520

0.395

0.593
0.603

0.541

Figure 24.3. Contours of optimal low stress level for a two-step
SSALT. For a given (p, φ), the optimal low stress can be read off by
interpolation between contours

p increases) will result in a smaller optimal low
stress and a shorter optimal hold time.

24.3.2 Multiple-steps Step-stress
Accelerated Life Test Plans

From Figure 24.2, a higher AF gives higher
optimal τ . This allows for further splitting of
hold time if an intermediate stress is desirable.
The idea is to treat testing at low stress as an
independent test from that at high stress. In doing
so, we need to ensure that, after splitting this low
stress into a two-step SSALT with the optimal hold
time as the censoring time, the AF achieved in
the two-step SSALT is identical to that contributed
by the low stress alone. This is analogous to
dynamic programming, where the stage is the
number of stress steps. At each stage, we solve the
optimal design problem for a two-step SSALT by
maintaining the AF contributed by the low stress
test phase. For a three-step SSALT, this will give
a middle stress that is slightly higher than the
optimal low stress. Use this middle as the high
stress and solve for the optimal hold time and low
stress using Equation 24.14. Next, we also need to
ensure that the solutions are consistent with the
stress–life model in that the coefficients must be
the same as before. For an m-step SSALT, there

Multiple-steps Step-stress Accelerated Life Test 449

are m− 1 cascading stages of SSALT. The resulting
plan is “optimal”, for a given number of steps and
a target AF, whenever a test needs to be terminated
prematurely at lower stress.

To make the idea illustrated above concrete,
consider a three-step SSALT that has two cascad-
ing stages of a simple SSALT. The results of the
stage #1 simple SSALT, which uses the maximum
permissible stress as the high stress level, gives the
optimal low stress level and its hold time. Stage #2
consists of splitting this low stress level into a
simple SSALT that maintains the overall target AF.
Since the AF is additive under an LCEM, the new
target AF for stage #2 is the AF contributed by the
stage #1 low stress.

From Equation 24.9 with T = 1, and since
θ0/θ1 = exp(−βx) from Equation 24.10, it follows
that

AF contributed by low stress= New target AF

= τ exp(−βx)
(24.15)

Note that to meet this target AF, xm should be
higher than the optimal low stress in stage #1.
To solve the stage 2 NLP, however, this target AF
needs to be normalized by the hold time τ , due
to a change to the time scale. The other input
needed is p2, the expected proportion of failure at
xm at τ . Moreover, the solutions of the NLP must
also satisfy the condition that the stress–life model
at both stages #1 and #2 are consistent: having the
same β . The resulting algorithm that iteratively
solves for p2, xm, β , the new optimal low stress,
and the hold time is summarized as follows.

Algorithm 1. This algorithm is for a multiple-step
SSALT. With the values of (τ, x, β) from stage #1,
do the following:

1. Compute the normalized AF φ2 at stage #2
using Equation 24.15:

φ2 = (New Target AF)/τ = exp(−βx)
(24.16)

2. Compute p
(0)
2 the expected failure proportion

at the low stress of stage #1:

p
(0)
2 = 1− exp

(
− τ

θx

)
= 1− exp

{
−τ log

(
1

1− p

)
× exp[β(1− x)]

}
(24.17)

3. Solve the constrained NLP in Equation 24.14
to obtain (τ ∗

(1), x
∗
(1), β

∗
(1)).

4. Compute the new middle stress x(1)m

x(1)m =β∗(1)
{

log

[
log(1/(1−p(0)

2))

τ log(1/(1−p))

]
+β∗(1)

}−1

(24.18)
which is the solution of

p
(0)
2 = 1− exp

{
− τ log

(
1

1− p

)
× exp

[
β∗
(1)

x
(1)
m

(1− x(1)m)

]}
5. Update p2 using x

(1)
m :

p
(1)
2 = 1− exp

{
− τ log

(
1

1− p

)
× exp[β(1− x(1)m)]

}
(24.19)

6. Repeat steps 3 to 5, with (p
(1)
2 , φ2), (p

(2)
2 , φ2),

(p
(3)
2 , φ2), . . . until |β∗(k) − x

(k)
m β|< ε, for

some pre-specified ε > 0.

Let (τ ∗(k), x∗(k), β∗(k)) be the solutions from the
scheme. By combining the stage #1 and #2 results,
the plan for a three-step SSALT (h= 3) is

x1 = x(k)m x∗(k) x2 = x(k)m τ1 = ττ ∗(k) τ2 = τ

(24.20)
Given the above parameters, the asymptotic
variance for log(θ̂0) is given by

nAV[log(θ̂0)]

=
∑3

i=1 Aix
2
i∑

(i,j)={(1,2),(1,3),(2,3)}AiAj (xi − xj)2

450 Maintenance Theory and Testing

where

A1 = 1− exp(−τ1/θ1)

A2 = exp(−τ1/θ1){1− exp[−(τ2 − τ1)/θ2]}
A3 = exp(−τ1/θ1) exp[−(τ2 − τ1)/θ2]

× {1− exp(−(1− τ2)/θ3)}
θi = exp[−β(1− xi)]

− log(1− p)

From the above equations, the sample size can be
determined given a desirable level of precision.

Algorithm 1 aims to adjust xm upwards so as
to maintain the AF computed in Equation 24.6 at
each iteration. In doing so, p2 will also increase.
This adjustment is repeated until β of the stress–
life model is identical to that obtained in stage #1.
Note that the algorithm is a revised version of that
of Yeo and Tang [9], which erroneously omitted
step 1. As a result, the AF attained is lower than the
target AF. The updating of xm in Equation 24.18 is
also different from [9].

For a four-step SSALT, the results from stage #2
are used to solve for stage #3 using the above
algorithm. This updating scheme can be done
recursively, if necessary, to generate the test plan
for a multiple-step SSALT.

24.4 Data Analysis in the
Step-stress Accelerated Life Test

The following notation is used in this section:

ri number of failures at Si
r number of failures at an SSP(=∑i ri

)
Nj the stress level in which sample j

failed or is being censored
Si stress level i, i = 1, 2, . . . , h
ti stress change times, i = 1, 2, . . . ,

h− 1
�ti,j sojourn time of sample j at Si
Rj reliability of sample j
t (i), t (i, Rj) life (of sample j) at Si
te(i), te(i, Rj) equivalent operating time

(of sample j) at Si ; te(0)= 0.

24.4.1 Multiply Censored,
Continuously Monitored Step-stress
Accelerated Life Test

We consider a random sample of size n tested
under an SSALT with an SSP. The test duration
is fixed (time censored) and multiple censoring
is permitted at other stress levels. Suppose that
there are r failures and rc survivors at the end
of the test. All n samples have the same initial
stress and stress increment for one SSP. Their hold
times are the same at the same stress level, except
at the stress level at which they fail or are being
censored. The parameter estimation procedure
using an LCEM is described as follows.

From Equation 24.4, the total test time corre-
sponding to failed sample j at stress level Nj can
be converted to the equivalent test time at SNj as:

te(Nj , Rj)= t (Nj , Rj)

[Nj−1∑
i=1

�ti,j /t (i, Rj)

]
+�tNj ,j j = 1, 2, . . . , r

(24.21)

Similarly, the total test time corresponding to
survivor j at stress level Nj can be converted to
the equivalent test time at SNj as

te(Nj , Rj)= t (Nj , Rj)

Nj∑
i=1

�ti,j /t (i, Rj)

j = r + 1, . . . , n (24.22)

From Equation 24.6, it can be seen that, given
a stress-dependent c.d.f., i.e. F(S, t, θ), t (i, Rj)

in Equations 24.21 and 24.22, can be estimated
from

F(Si, t (i, Rj , θ))= 1− R̂j j = 1, 2, . . . , n
(24.23)

θ is the set of parameters to be estimated.
The empirical c.d.f. can be estimated using

the well-known Kaplan–Meier estimate or the
cumulative hazard estimate for multiply censored
data. For example, by sorting the failure times and
censored times in ascending order, the cumulative

Multiple-steps Step-stress Accelerated Life Test 451

hazard estimate for Rj is

R̂j = exp

[
−

j∑
k=1

(1/mk)

]
(24.24)

where mk is the number of samples remaining on
test at the time before sample k fails.

The parameter set θ can be estimated by
maximizing the likelihood function:[r∏
j=1

f (SNj , te(Nj , Rj), θ)

]

×
[n∏
j=r+1

R(SNc , te(Nc, Rj), θ)

]
(24.25)

For multiple SSPs, the parameters can be esti-
mated from the joint likelihood function, which
is simply the product of the likelihood functions
of all patterns with the usual s-independence as-
sumption.

24.4.1.1 Parameter Estimation for Weibull
Distribution

The following additional notation is used:

ηi scale parameter of Weibull distribution at Si
γ shape parameter of Weibull distribution.

For illustration purposes, we use a Weibull
distribution with constant shape parameter
throughout the SSP and stress-dependent ηi as
an example. For an illustration of using three-
parameter Weibull, refer to Tang et al. [11].
This model is widely used for describing failure
data under mechanical stress, particularly for
fatigue failure.

From Equation 24.23, the life corresponding to
sample jand Si , t (i, Rj) is given by:

t (i, Rj)= [−ln(R̂j)]1/γ ηi j = 1, 2, . . . , n

Substituting into Equations 24.21 and 24.22 yields

te(Nj , Rj)= ηNj

(Nj−1∑
i=1

�ti,j /ηi

)
+�tNj ,j

= ηNj

(Nj∑
i=1

�ti,j /ηi

)
j = 1, 2, . . . , n

This is the same expression given by Nelson [3]
using the N-M model. We can convert these test
times into the equivalent test time at the highest
stress so that we can expect the most number of
cancellations of ηi :

te(h, Rj)= ηh

(Nj∑
i=1

�ti,j /ηi

)
j = 1, . . . , n

Now we can analyze these failure/censored times
as if they come from the same Weibull distribution
under the design stress. The resulting likelihood
function is given by

{ r∏
j=1

γ

ηh

(∑Nj

i=1 �ti,j /ηi

)(Nj∑
i=1

�ti,j /ηi

)γ

× exp

[
−
(Nj∑

i=1

�ti,j /ηi

)γ]}

×
{ n∏

j=r+1

exp

[
−
(Nj∑

i=1

�ti,j /ηi

)γ]}

When the number of steps h > 2, but is small
compared with the number of failures, ηi can
be estimated individually so that the stress–life
model can be identified. A set of constraints can
be included to ensure that η̂i > η̂j for Si < Sj .
Alternatively, a stress–life model, say, log(ηi)=
α + βSi , can be used to replace ηi in the above
so that we have a likelihood function in terms of
the unknown parameters α, β , and γ . The MLE
of these parameters can be obtained via the usual
means. This is left as an exercise.

24.4.2 Read-out Data

Suppose that the SSALT at read-out times coin-
cides with the stress change time and there are ri
failures at Si . The equivalent read-out time at the
highest stress, after stress level i, can be expressed
as

te:i (h)= t (h)

[i∑
k=1

�tk/t (k)

]
i = 1, 2, . . . , h

452 Maintenance Theory and Testing

Figure 24.4. A Microsoft ExcelTM template for designing an optimal two-step SSALT. The use of solver allows for optimization of a nonlinear
function with nonlinear constraint

The likelihood function is given by

{ h∏
i=1

[Fh(te:i (h))− Fh(te,i−1(h))]ri
}

× [1− Fh(te:h(h))]n−r

where Fh is the c.d.f. of failure time at the highest
stress.

In the case of Weibull failure time, we have

te:i (h)= ηh

(i∑
k=1

�tk/ηk

)
i = 1, 2, . . . , h

and the likelihood function is given by(h∏
i=1

{
exp

[
−
(i−1∑

k=1

�tk/ηk

)γ]

− exp

[
−
(i∑

k=1

�tk/ηk

)γ]}ri)

×
{

exp

[
−
(h∑

k=1

�tk/ηk

)γ]}n−r
(24.26)

Similarly, one could proceed with the estimation
in the usual way.

In this section, we have confined our analysis
to an SSP. For multiple SSPs, we simply multiply
the marginal likelihood function by assuming

Multiple-steps Step-stress Accelerated Life Test 453

Table 24.2. A numerical illustration of the algorithm for planning a multiple-step SSALT. The equation numbers from which the results are
computed are indicated

Iteration k p2(k − 1) β(k) τ(k) x(k) xm(k) β(k)− βxm(k)
Equations 24.17 Equation 24.14 Equation 24.14 Equation 24.14 Equation 24.18
and 24.19

1 0.141 065 −3.395 32 0.667 67 0.419 06 0.591 777 −0.506 07
2 0.193 937 −3.395 20 0.666 83 0.416 88 0.630 109 −0.318 81
3 0.228 92 −3.393 81 0.665 67 0.415 32 0.652 689 −0.207 18
4 0.251 933 −3.393 95 0.665 38 0.414 35 0.666 837 −0.138 25
5 0.2673 −3.394 05 0.665 17 0.413 66 0.676 017 −0.093 52
...

...
...

...
...

...
...

42 0.300 379 −3.394 19 0.664 67 0.412 08 0.695 201 −2.023 41× 10−8

43 0.300 379 −3.394 19 0.664 67 0.412 08 0.695 201 −1.406 68× 10−8

independence between data obtained under each
SSP.

24.5 Implementation in
Microsoft ExcelTM

The NLP in Equation 24.14 can easily be
implemented using the solver tool in Microsoft
ExcelTM. This is illustrated in Figure 24.4.
For illustration purposes, the inputs are in cells C3
and C4, where p = 0.9 and φ = 50. Equation 24.13
is stored in cell C9. Besides the two inputs, p and
φ some initial guess values for β , x, and τ are
required to compute the AV in Equation 24.13.
The solver will minimize the cell containing the
equation of the AV by changing cells C5–C7, which
contain β , x, and τ . A constraint can be added
to the solver by equating cell C11, which contains
Equation 24.11 to cell C4, which contains the target
AF φ. After running the solver, cells C5–C7 contain
the optimal solutions for β , x, and τ .

Algorithm 1 for solving the design of a
multiple-step SSALT can also be implemented in
Microsoft ExcelTM. With the optimal solutions
from above, Table 24.2 shows the equations used in
generating results for planning a three-step SSALT
and how the numerical results converge at each
iteration. The inputs and results are summarized
in Table 24.3.

Table 24.3. A summary of the inputs and results for the numerical
example

Input p 0.9
φ 50

Final solution β −4.8823
τ2 0.6871
x (from stage #1) 0.5203
τ1 0.4567
x1 0.2865
x2 0.6952

Suppose that the above test plan is for
evaluating the breakdown time of insulating oil.
The high and use stress levels are 50 kV and 20 kV
respectively and the stress is in log(kV). The total
test time is 20 h and recall that p = 0.9 and φ = 50
From Table 24.3, we have

S1 = exp[S0 + x1(Sh − S0)]
= exp{log(20)+ 0.2865× [log(50)−log(20)]}
= 26.0 kV

S2 = exp[S0 + x2(Sh − S0)]
= exp{log(20)+ 0.6952× [log(50)−log(20)]}
= 37.8 kV

t1 = τ1 × 20= 9.134 h= 548.0 min

t2 = τ2 × 20= 13.74 h= 824.5 min

Suppose that 50 samples were tested, resulting
in 2, 10, and 21 failures after t1, t2, and T

respectively. The data are analyzed using the

454 Maintenance Theory and Testing

Figure 24.5. A Microsoft ExcelTM template for the analysis of read-out data from an SSALT. A set of constraints is included to ensure that
η̂i > η̂j forSi < Sj and that all parameters are positive

solver in Microsoft ExcelTM and presented in
Figure 24.5. The equation in cell G7 is the log-
likelihood function derived from Equation 24.26.
One could proceed to fit a stress–life model for ηi .
We shall leave this as an exercise.

24.6 Conclusion

In this chapter, some issues related to modeling,
planning, and analysis of a multiple-step SSALT
are addressed. In particular, a model that is
additive in cumulative fractional exposure is
presented and shown to be useful for solving
optimal design and for data analysis of an SSALT.

A new algorithm is provided for designing a
multiple-step SSALT test plan, assuming that a
target acceleration factor and a predetermined
number of steps are given. Likelihood functions
for two common testing situations under an
SSALT are derived. The methods presented here
are also implemented in Microsoft ExcelTM with
a numerical example.

References

[1] Degroot MH, Goel PK. Bayesian estimation and optimal
designs in partially accelerated life testing. Nav Res Logist
Q 1979;26:223–35.

Multiple-steps Step-stress Accelerated Life Test 455

[2] Nelson W. Accelerated life testing: step-stress models and
data analysis. IEEE Trans Reliab 1980;29:103–8.

[3] Nelson W. Accelerated testing: statistical models, test
plans and data analysis. New York: John Wiley & Sons;
1990.

[4] Bai DS, Kim MS, Lee SH. Optimum simple step-stress
accelerated life tests with censoring. IEEE Trans Reliab
1989;38:528–32.

[5] Bai DS, Kim MS. Optimum simple step-stress accelerated
life test for Weibull distribution and type I censoring. Nav
Res Logist Q 1993;40:193–210.

[6] Khamis IH, Higgins JJ. Optimum 3-step step-stress tests.
IEEE Trans Reliab 1996;45:341–5.

[7] Khamis IH. Optimum M-step, step-stress design
with k stress variables. Commun Stat Comput Sim
1997;26:1301–13.

[8] Park SJ, Yum BJ. Optimal design of accelerated life
tests under modified stress loading methods. J Appl Stat
1998;25:41–62.

[9] Yeo KP, Tang LC. Planning step-stress life-test with a tar-
get acceleration-factor. IEEE Trans Reliab 1999;48:61–7.

[10] VanDorp JR, Mazzuchi TA, Fornell GE, Pollock LR.
A Bayes approach to step-stress accelerated life testing.
IEEE Trans Reliab 1996;45:491–8.

[11] Tang LC, Sun YS, Goh TN, Ong HL. Analysis of step-stress
accelerated-life-test data: a new approach. IEEE Trans
Reliab 1996;45:69–74.

[12] Khamis IH, Higgins JJ. A new model for step-stress
testing. IEEE Trans Reliab 1998;47:131–4.

[13] Chang DS, Chiu CC, Jiang ST. Modeling and reliability
prediction for the step-stress degradation measurements
using neural networks methodology. Int J Reliab Qual Saf
Eng 1999;6:277–88.

[14] Xiong CJ, Milliken GA. Step-stress life-testing with
random stress-change times for exponential data. IEEE
Trans Reliab 1999;48:141–8.

[15] Tang LC, Sun Y. Selecting the most reliable population
under step-stress accelerated life test. Int J Reliab Qual Saf
Eng 1999;4:347–59.

[16] Tseng ST, Wen ZC. Step-stress accelerated degradation
analysis for highly reliable products. J Qual Technol
2000;32:209–16.

[17] McLinn JA. Ways to improve the analysis of multi-level
accelerated life testing. Qual Reliab Eng Int 1998;14:393–
401.

[18] Sun FB, Chang WC. Reliability evaluation of a flash
RAM using step-stress test results. In: Annual Reliability
and Maintainability Symposium Proceedings, 2000;
p.254–9.

[19] Gouno E. An inference method for temperature step-
stress accelerated life testing. Qual Reliab Eng Int
2001;17:11–8.

This page intentionally left blank

Step-stress Accelerated Life Testing

Ch
ap

te
r2

5Chengjie Xiong

25.1 Introduction
25.2 Step-stress Life Testing with Constant Stress-change Times
25.2.1 Cumulative Exposure Model
25.2.2 Estimation with Exponential Data
25.2.3 Estimation with Other Distributions
25.2.4 Optimum Test Plan
25.3 Step-stress Life Testing with Random Stress-change Times
25.3.1 Marginal Distribution of Lifetime
25.3.2 Estimation
25.3.3 Optimum Test Plan
25.4 Bibliographical Notes

25.1 Introduction
Accelerated life testing consists of a variety of test
methods for shortening the life of test items or
hastening the degradation of their performance.
The aim of such testing is to obtain data quickly,
which, when properly modeled and analyzed,
yields the desired information on product life
or performance under normal use conditions.
Accelerated life testing can be carried out using
constant stress, step-stress, or linearly increasing
stress. The step-stress test has been widely used
in electronics applications to reveal failure modes.
The step-stress scheme applies stress to test units
in such a way that the stress setting of test units
is changed at certain specified times. Generally,
a test unit starts at a low stress. If the unit does
not fail at a specified time, stress on it is raised to
a higher level and held a specified time. Stress is
repeatedly increased and held, until the test unit
fails. A simple step-stress accelerated life testing
uses only two stress levels.

In this chapter, we plan to give a summary
of a collection of results by the author, and
some others, dealing with the statistical models
and estimations based on data from a step-stress

accelerated life testing. We consider two cases:
when the stress-change times are either constants
or random variables. More specifically, we use data
from step-stress life testing to estimate unknown
parameters in the stress–response relationship
and the reliability function at the design stress.
We also discuss the optimum test plan associated
with the estimation of the reliability function
under the assumption that the lifetime at a
constant stress is exponential. The step-stress
life testing with constant stress-change times
is considered in Section 25.2. In Section 25.3,
results are given when the stress-change times are
random variables.

25.2 Step-stress Life Testing
with Constant Stress-change
Times

25.2.1 Cumulative Exposure Model

Since a test unit in a step-stress test is exposed to
several different stress levels, its lifetime distribu-
tion combines lifetime distributions from all stress

457

458 Maintenance Theory and Testing

levels used in the test. The cumulative exposure
model of the lifetime in a step-stress life testing
continuously pieces these lifetime distributions in
the order that the stress levels are applied. More
specifically, the step-stress cumulative exposure
model assumes that the remaining lifetime of a test
unit depends on the current cumulative fraction
failed and current stress, regardless of how the
fraction is accumulated. In addition, if held at
the current stress, survivors will fail according
to the cumulative distribution for that stress but
starting at the previously accumulated fraction
failed. Moreover, the cumulative exposure model
assumes that the change in stress has no effect
on life—only the level of stress does. The cumu-
lative exposure model has been used by many
authors to model data from step-stress acceler-
ated life testing [1–5]. Nelson [3], chapter 10,
extensively studied cumulative exposure models
when the stress is changed at prespecified constant
times.

We denote the stress variable by x and assume
that x > 0. In general, variable x represents a
particular scale for the stress derived from the
mechanism of the physics of failure. For example,
x can be the voltage in a study of the voltage
endurance of some transformer oil or the tem-
perature in a study of the life of certain semicon-
ductors. We assume that F is a strictly increasing
and continuously differentiable probability distri-
bution function on (0,∞). We also assume that
the scale family F(t/θ(x)) is the cumulative dis-
tribution function of the lifetime under constant
stress x. Let f (t)= dF(t)/dt for t ≥ 0. Note that,
at a constant stress x, the lifetime depends on the
stress only through parameter θ(x). Since∫ ∞

0
t dF

(
t

θ(x)

)
= θ(x)

∫ ∞
0

y dF(y) (25.1)

θ(x) is a multiple of the mean lifetime under
constant stress x. We call θ(x) the stress–response
relation. Further, we assume that ln θ(x) is linearly
and inversely related to stress x, i.e. ln θ(x)=
α + βx with α > 0 and β < 0. Parameters α and
β are characteristics of the products and test
methods. This simple stress–response relationship
covers some of the most important models in

engineering, such as the power law model, the
Eyring model, and the Arrhenius model (e.g. see
Mann et al. [6]).

We use x0 to denote the design stress that
is the stress level under normal use conditions.
We use x1 < x2 < · · ·< xk to denote the k

stress levels gradually applied in that order in
a step-stress testing. Let ci be the time that
stress is changed from xi to xi+1, 1≤ i ≤ k −
1; c1 < c2 < · · ·< ck−1. Let c0 = 0 and ck =∞.
Let T be the lifetime under the step-stress
testing. Denote θi = θ(xi) and Fi(t)= F(t/θi),
i = 0, 1, 2, . . . , k. According to the cumulative
exposure model, the cumulative distribution
function of T is given by

G(t)=
{
F1(t) for 0≤ t < c1

Fi(t − ci−1 + si−1) for ci−1 ≤ t < ci

i = 2, 3, . . . , k (25.2)

where si−1 is determined by Fi(si−1)= Fi−1
(ci−1 − ci−2 + si−2), i = 2, 3, . . . , k; s0 = 0.
Since Fi(t)= F(t/θi), it follows that si−1/

θi = (ci−1 − ci−2 + si−2)/θi−1, i = 2, 3, . . . , k.
Solving these equations inductively for si gives

si−1 = θi(ci−1 − ci−2 + si−2)

θi−1

= θi

i−1∑
j=1

cj − cj−1

θj

i = 2, 3, . . . , k. Therefore

G(t)=

F

(
t

θ1

)
for 0≤ t < c1

F

(
t − ci−1

θi
+

i−1∑
j=1

cj − cj−1

θj

)
for ci−1 ≤ t < ci

i = 2, 3, . . . , k (25.3)

Step-stress Accelerated Life Testing 459

Thus, the probability density function of T is

g(t)=

1

θ1
f

(
t

θ1

)
for 0≤ t < c1

1

θi
f

(
t − ci−1

θi
+

i−1∑
j=1

cj − cj−1

θj

)
for ci−1 ≤ t < ci

i = 2, 3, . . . , k (25.4)

Notice that, at design stress x0, the reliability
function of the lifetime is

R0(t)= 1− F

(
t

θ(x0)

)
(25.5)

One of the most important goals for carrying out
a step-stress life testing is to obtain a statistical
estimation on the reliability of lifetime under
design stress x0 by analyzing data from the test.
When the functional form of F is given, the
estimation of the reliability function becomes that
of α and β .

25.2.2 Estimation with Exponential
Data

When the lifetime under a constant stress is as-
sumed exponential, i.e. F(t)= 1− exp(−t), some
exact estimations are available. We demonstrate
this by using the simple step-stress testing. Many
of these results can be generalized to general step-
stress testing. Suppose that n test units are ini-
tially placed on low stress level x1 and run until
time c1 when stress is changed to x2 and the
test is continued until the first r(r > 1) lifetimes
are observed. We assume that n1 test units fail
before time c1 and their failure times T1j , j =
1, 2, . . . , n1, are observed under stress x1. n− n1
test units survive time c1 and n2 failure times
T2j , j = 1, 2, . . . , n2, are observed under stress
x2 after time c1 (n2 = r − n1). Let Ti· =∑ni

j=1 Tij
be the total lifetime under xi , i = 1, 2. Let Mt

and mt be the observed maximum and minimum
lifetime respectively. Note that n1 may be zero or r
with positive probabilities.

The assumptions of the cumulative exposure
model and exponentially distributed life at any

constant stress imply that the probability density
function of a test unit under the simple step-stress
test is

g(t)=

1

θ1
exp

(
− t

θ1

)
if 0≤ t < c1

1

θ2
exp

(
− t − c1

θ2
− c1

θ1

)
if c1 ≤ t <∞

(25.6)
The likelihood function from the first r lifetime
observations Tij is then

L(α, β)= n!
(n− r)!�ij g(Tij)[1−G(Mt)]n−r

Letting ∂ log L/∂α = 0 and ∂ log L/∂β = 0 yields
the maximum likelihood estimators for α and β

when r > n1 and n1U2 < n2U1:

α̂ = 1

x2 − x1

(
x1 ln

n2

U2
− x2 ln

n1

U1

)
(25.7)

β̂ = 1

x2 − x1
ln

(
n1U2

n2U1

)
(25.8)

where
U1 = T1· + (n− n1)c1 (25.9)

U2 = T2· − n2c1 + (n− r)(Mt − c1) (25.10)

Parameter β describes the relationship between
the mean of the lifetime of a test unit and the stress
level. One may be interested in testing whether β
equals zero, especially when the stress levels x1
and x2 are close to each other. To test H0 : β =
0 versus H1 : β < 0, we use the likelihood ratio
test. When H0 is true, the maximum likelihood
estimator for α is

ᾱ = ln

(
U1 + U2

r

)
The likelihood ratio is then

= L(ᾱ, 0)

L(α̂, β̂)
=
(

r

U1 + U2

)r(U1

n1

)n1
(
U2

n2

)n2

A size γ (0 < γ < 1) test of H0 rejects H0 if
< c,
where c is a constant such that

P(
 ≤ c |H0)= γ

460 Maintenance Theory and Testing

Since the distribution of
 is difficult to obtain,
computer simulations can be used to approximate
the distribution of
 when H0 is true.

Next, we construct confidence interval esti-
mates to α, β, θ0, and R0(t) at a given time t .
We first observe that, if a random variable T has
probability density function as in Equation 25.6,
then it is easy to verify that the random variable

S =

T

θ1
if 0≤ T < c1

T − c1

θ2
+ c1

θ1
if c1 ≤ T <∞

(25.11)

is exponentially distributed with mean of unity
(see Xiong [7]).

The following lemma is used in the derivation
of confidence intervals for α, β, θ0, and R0(t) at
a given time t (see Lawless [8], theorem 3.5.1,
p. 127).

Lemma 1. Suppose that Si , i = 1, 2, . . . , n are in-
dependent and identically distributed exponential
random variables with mean of unity. Let S(1) ≤
S(2) ≤ · · · ≤ S(r) be the r smallest ordered obser-
vations and S· =∑r

i=1 S(i). Then 2nS(1) has a
χ2 distribution with two degrees of freedom and
2[S· + (n− r)S(r) − nS(1)] has a χ2 distribution
with 2r − 2 degrees of freedom. Further, 2nS(1) and
2[S· + (n− r)S(r) − nS(1)] are independent.

Let 0 < γ < 1. Now we transfer all random
variables Tij into Sij through Equation 25.11.
Denote

ms =min{Sij , i = 1, 2, j = 1, 2, . . . , ni}

=

mt

θ1
if n1 > 0

mt − c1

θ2
+ c1

θ1
if n1 = 0

and

Ms =max{Sij , i = 1, 2, j = 1, 2, . . . , ni}

=

Mt

θ1
if r = n1

Mt − c1

θ2
+ c1

θ1
if r > n1

A direct application of Lemma 1 implies that

2nms ∼ χ2(2)

and
D ∼ χ2(2r − 2)

where

D =

2V0

θ1
if r = n1 > 0

2

(
V1

θ1
+ V2

θ2

)
if r > n1 > 0

2[V2 − n(mt − c1)]
θ2

if n1 = 0

and

V0 = T1· + (n− r)Mt − nmt

V1 = U1 − nmt

V2 = U2

U1 and U2 are given by Equations 25.9 and 25.10
respectively.

For any 0 < γ < 1, let Fγ (2, 2r − 2)
be the upper 100γ% point of the F

distribution with degrees of freedom 2 and
2r − 2. Denote K1 = F1−γ /2(2, 2r − 2) and
K2 = Fγ/2(2, 2r − 2). The independence between
2nms and D implies that

P

[
K1 ≤ 2n(r − 1)ms

D
≤K2

]
= 1− γ

Therefore

P

{
V2 − n(mt − c1)

n(r − 1)c1
K1 − mt − c1

c1

≤ exp[β(x2−x1)] ≤ V2−n(mt−c1)

n(r − 1)c1
K2

− mt − c1

c1
, n1 = 0

}
+ P

{
n(r − 1)mt − V1K2

V2K2

≤ exp[β(x1 − x2)]
≤ n(r − 1)mt − V1K1

V2K1
, r > n1 > 0

}
+ P

{
K1 ≤ n(r − 1)mt

V0
≤K2, r = n1 > 0

}
= 1− γ

Step-stress Accelerated Life Testing 461

Thus, if r > n1 > 0, a 100(1− γ)% confidence
interval for β is [l1, l2] ∩ (−∞, 0) when
[n(r − 1)mt − V1K2]/(V2K2) > 0; and [l1,∞)∩
(−∞, 0) otherwise, where

li = 1

x2 − x1
ln

[
V2Ki

n(r − 1)mt − V1Ki

]
i = 1, 2

If n1 = 0, a 100(1− γ)% confidence
interval for β is [l3, l4] ∩ (−∞, 0) when
[V2 − n(mt − c1)] K1/[n(r − 1)c1] − (mt −
c1)/c1 > 0; and (−∞, l4] ∩(−∞, 0) otherwise,
where

li = 1

x2 − x1
ln

[
V2 − n(mt − c1)

n(r − 1)c1
Ki−2

− mt − c1

c1

]
i = 3, 4

If r = n1 > 0, a 100(1− γ)% confidence interval
for β is (−∞, 0)whenK1 ≤ n(r − 1)mt/V0 ≤K2;
and the empty set otherwise.

For 0 < γ < 1, let χ2
γ (k) be the upper 100γ%

point of the χ2 distribution with degrees of free-
dom k. Let 0 < γ ∗ < 1. Denote B1 = χ2

1−γ /2(2),

B2 = χ2
γ /2(2), B3 = χ2

1−γ ∗/2(2r − 2) and B4 =
χ2
γ ∗/2(2r − 2). From the independence of random

variables 2nms and D, it follows that

(1− γ)(1− γ ∗)
= P(B1 ≤ 2nms ≤ B2, B3 ≤D ≤ B4)

= P

(
B1 ≤ 2nmt

θ1
≤ B2, B3 ≤ 2V0

θ1
≤ B4,

r = n1 > 0

)
+ P

(
2nmt

B2
≤ θ1 ≤ 2nmt

B1
,
B3

2
− V1

θ1

≤ V2

θ2
≤ B4

2
− V1

θ1
, r > n1 > 0

)
+ P

(
B1

2n
− mt − c1

θ2
≤ c1

θ1
≤ B2

2n

− mt − c1

θ2
,
V2 − n(mt − c1)

B4
≤ θ2

2

≤ V2 − n(mt − c1)

B3
, n1 = 0

)

≤ P

(
exp(α) ≥max

(
2nmt

B2
,

2V0

B4

)
,

r = n1 > 0

)
+ P

(
2nmt

B2
≤ θ1 ≤ 2nmt

B1
,
B3

2
− V1B2

2nmt

≤ V2

θ2
≤ B4

2
− V1B1

2nmt

, r > n1 > 0

)
+ P

(
B1

n
− (mt − c1)B4

V2 − n(mt − c1)
≤ 2c1

θ1

≤ B2

n
− (mt − c1)B3

V2 − n(mt − c1)
,

V2 − n(mt−c1)

B4
≤ θ2

2
≤ V2 − n(mt−c1)

B3
,

n1 = 0

)
Thus, if r > n1 > 0, a confidence interval for α of
confidence level at least 100(1− γ)(1− γ ∗)% is
[l5, l6] when B3 − V1B2/(nmt) > 0; and (−∞, l6]
otherwise, where

li = 1

x2 − x1

[
x2 ln

(
2nmt

B7−i

)
− x1 ln

(
2nmtV2

nmtBi−2 − V1B7−i

)]
i = 5, 6

If n1 = 0, a confidence interval for α of confidence
level at least 100(1− γ)(1− γ ∗)% is [l7, l8] when
B1/n− (mt − c1)B4/[V2 − n(mt − c1)]> 0; and
[l7,∞) otherwise, where

li = 1

x2 − x1

(
x2 ln{2nc1[V2 − n(mt − c1)]

× [(V2 − n(mt − c1))B9−i
− n(mt − c1)Bi−4]−1}
− x1 ln

{
2[V2 − n(mt − c1)]

Bi−4

})
i = 7, 8

If r = n1 > 0, a confidence interval for α of
confidence level at least 100(1− γ)(1− γ ∗)% is
[max(ln(2nmt/B2), ln(2V0/B4)),∞).

Note that θi = exp(α + βxi)= exp[(α +
βx0)+ β(xi − x0)], i = 1, 2. Using a very
similar argument to the way that the confidence
interval for α is derived, we can also set

462 Maintenance Theory and Testing

up confidence intervals for the mean of
lifetime θ(x0)= exp(α + βx0) at design stress.
If r > n1 > 0, a confidence interval for θ(x0) of
confidence level at least 100(1− γ)(1− γ ∗)%
is [l9, l10] when B3 − V1B2/(nmt) > 0; and
(−∞, l10] otherwise, where

li = exp

[
x2 − x0

x2 − x1
ln

(
2nmt

B11−i

)
− x1 − x0

x2 − x1
ln

(
2nmtV2

nmtBi−6 − V1B11−i

)]
i = 9, 10

If n1 = 0, a confidence interval for θ(x0) of
confidence level at least 100(1− γ)(1− γ ∗)%
is [l11, l12] when B1/n− (mt − c1)B4/[V2 −
n(mt − c1)]> 0; and [l11,∞) otherwise, where

li = exp

(
x2 − x0

x2 − x1

× ln

{
2nc1[V2 − n(mt − c1)]

[V2−n(mt−c1)]B13−i−n(mt−c1)Bi−8

− x1 − x0

x2 − x1
ln

{
2[V2 − n(mt − c1)]

Bi−8

})
i = 11, 12

If r = n1 > 0, a confidence interval for θ(x0) of
confidence level at least 100(1− γ)(1− γ ∗)% is
[exp(max(ln(2nmt/B2), ln(2V0/B4))),∞).

A confidence interval for the reliability function
R0(t)= exp[−t/θ(x0)] at any given survival time
t can be obtained based on the confidence
interval for θ(x0). More specifically, if [l, l]
is a confidence interval for θ(x0) of confi-
dence level at least 100(1− γ)(1− γ ∗)%, then
[exp(−t/l), exp(−t/l)] is a confidence interval of
R0(t) of the same confidence level.

25.2.3 Estimation with Other
Distributions

For most other life distributions in step-stress
life testing, there are usually no closed form
estimations. Standard asymptotic theory can be
used to set up asymptotic confidence intervals
for model parameters. More specifically, the
likelihood function from the first r observations

of a simple step-stress life testing is

L(α, β)= n!
(n− r)!�ij g(Tij)[1−G(Mt)]n−r

A standard routine, such as the Newton–Raphson
method, can be applied to find the maximum
likelihood estimates for α and β by solving
the estimation equations ∂ log L/∂α = 0 and
∂ log L/∂β = 0. We assume that

lim
n→∞

r

n
> F

(
c1

θ1

)
Under certain regularity conditions on f (t) (see
Halperin [9]), the maximum likelihood estimate
(α̂, β̂)T is asymptotically normally distributed
with mean (α, β)T and covariance matrix � =
(σrs), r, s = 1, 2, where � = I−1, I = (irs), and

i11 =−∂2ln L

∂2α

∣∣∣∣
(α,β)=(α̂,β̂)

i22 =−∂2ln L

∂2β

∣∣∣∣
(α,β)=(α̂,β̂)

i12 = i21 =−∂2ln L

∂α∂β

∣∣∣∣
(α,β)=(α̂,β̂)

Therefore, a 100(1 − γ)% (0 < γ < 1) asymptotic
confidence interval for α is

α̂ ± zγ/2σ11

where zγ/2 is the upper γ /2 point of the standard
normal distribution. A 100(1 − γ)% asymptotic
confidence interval for β is

β̂ ± zγ/2σ22

A 100(1 − γ)% asymptotic confidence interval for
θ0 = θ(x0)= exp(α + βx0) is

θ̂0 ± zγ/2θ̂
2
0 (1, x0)�(1, x0)

T

where θ̂0 = exp(α̂ + β̂x0). A 100(1 − γ)%
asymptotic confidence interval for R0(t)= 1−
F(t/θ(x0)) at time t can be obtained by applying
the transformation R0(t)= 1− F(t/θ(x0)) to the
100(1− γ)% asymptotic confidence interval of
θ(x0)= exp(α + βx0).

Step-stress Accelerated Life Testing 463

25.2.4 Optimum Test Plan

At the design stage of a step-stress life testing,
the choices of stress levels and stress-change times
are very important decisions. The optimum test
plan chooses these parameters by minimizing
the asymptotic variance of the maximum likeli-
hood estimate for ln θ0 = α + βx0. In a simple
step-stress life testing, assuming that the lifetime
under constant stress is exponential, Miller and
Nelson [4] showed that the optimum test plan
chooses x1 as low as possible and x2 as high as
possible as long as these choices do not cause
failure modes different from those at the design
stress. When all units are run to failure, they also
proved that the optimum choice for the stress-
change time is

c1 = θ1 ln

(
2ξ + 1

ξ

)
where ξ = (x1 − x0)/(x2 − x1) is called the
amount of stress extrapolation. When a constant
censoring time c (c > c1) is used in the simple
step-stress life testing, Bai et al. [10] showed that
the optimum stress-change time c1 is the unique
solution to the equation[

F1(c1)

F2(c − c1)(1− F1(c1))

]2

×
{
F2(c− c1)+ θ1

θ2
[1− F2(c − c1)]

}

=
(

1+ ξ

ξ

)2

where Fi(t)= 1− exp(−t/θi), i = 1, 2. Xiong
[11] used a different optimization criterion and
also obtained results for the optimum choice of
stress-change time c1. All these optimum test
plans are called locally optimum by Chernoff [12],
since they depend on unknown parameters α and
β which can only be guessed or estimated from
a pilot study. Bai et al. [10] and Xiong [11] also
discussed the variance increase in the maximum
likelihood estimation of ln θ0 when incorrect α

and β were used.

25.3 Step-stress Life Testing
with Random Stress-change
Times

In this section we consider the situation that the
stress-change times in a step-stress life testing are
random. The random stress-change times happen
frequently in real-life applications. For example, in
a simple step-stress testing, instead of increasing
stress at a prespecified constant time, the stress
can be increased right after a certain number
of test units fail. The stress-change time in this
case is then an order statistic from the lifetime
distribution under the first stress level. In general,
when the stress-change times are random, there
are two sources of variations in the lifetime of a
step-stress testing. One is the variation due to the
different stress levels used in the test; the other
is due to the randomness in the stress-change
times. We study the marginal lifetime distribution
under a step-stress life testing with random stress-
change times in Section 25.3.1. The estimation and
optimum test plan are presented in Sections 25.3.2
and 25.3.3.

25.3.1 Marginal Distribution of
Lifetime

We first consider the case of a simple step-stress
life testing for which the stress-change time is
a random variable. Let us assume that C1 is
the random stress-change time with cumulative
distribution function hC1(c1) and that T is the
lifetime under such a simple step-stress testing.
We also assume that the conditional cumulative
distribution function GT |C1 of T , given the stress-
change time C1 = c1, is given by the classic
cumulative exposure model (Equation 25.2):

GT |C1(t)=
{
F1(t) for 0≤ t < c1

F2(t − c1 + s1) for c1 ≤ t <∞

where s1 = c1θ2/θ1. The conditional probability
density function g(t | c1) of T , given C1 = c1, is

464 Maintenance Theory and Testing

then

g(t | c1)=

1

θ1
f

(
t

θ1

)
for 0≤ t < c1

1

θ2
f

(
t − c1

θ2
+ t

θ1

)
for c1 ≤ t <∞

The joint probability density function d(t, c1) of
T and C1 is now

d(t, c1)= g(t | c1)hC1(c1)

Thus, the marginal probability density function
q(t) of T is

q(t)=
∫ ∞

0
d(t, c1) dc1

= 1

θ2

∫ t

0
f

(
t − c1

θ2
+ t

θ1

)
hC1(c1) dc1

+ 1

θ1
f

(
t

θ1

)
P(C1 > t) (25.12)

The integration is replaced by a sum if the stress-
change time C1 is discrete.

We now assume that n test units are initially
placed on low stress level x1 and run until
r test units fail, 1≤ r < n. The stress is then
changed to x2 and is continued until all units
fail. The stress-change time C1 is the rth order
statistic of a sample of size n from the lifetime
distribution under stress x1. Thus, the probability
density function of C1 (see Lawless [8], p. 518) is

hC1(c1)=
(
n− 1
r − 1

)
n

θ1
f

(
c1

θ1

)
Fr−1

(
c1

θ1

)
× Rn−r

(
c1

θ1

)
where R(t) = 1− F(t), t > 0. The marginal prob-
ability density function of the lifetime under such
a test plan is

q(t)= n

(
n− 1
r − 1

) [
1

θ1θ2

×
∫ t

0
f

(
t − c1

θ2
+ c1

θ1

)
f

(
c1

θ1

)
Fr−1

(
c1

θ1

)

× Rn−r
(
c1

θ1

)
dc1

+ 1

θ2
1

f

(
t

θ1

) ∫ ∞
t

f

(
c1

θ1

)
Fr−1

(
c1

θ1

)
× Rn−r

(
c1

θ1

)
dc1

]
(25.13)

When the lifetime distribution at a constant stress
is assumed exponential, i.e. f (t)= exp(−t) for
t > 0, q(t) can be further simplified as

q(t)= n

(
n− 1
r − 1

) r−1∑
i=0

(−1)i(r−1
i)

(ξ
n,i
r + 2)θ2 − θ1

×
[

exp

(
− t

θ2

)
− exp

(
− t (ξ

n,i
r + 2)

θ1

)]
+ n

(
n− 1
r − 1

) r−1∑
i=0

(−1)i(r−1
i)

θ1(ξ
n,i
r + 1)

× exp

(
− t (ξ

n,i
r + 2)

θ1

)
(25.14)

where ξn,ir = n+ i − r .
The first two moments of T based on the

marginal distribution (Equation 25.14) are

ET= n

(
n− 1
r − 1

) r−1∑
i=0

{
(−1)i(r−1

i)θ2
2

(ξ
n,i
r + 2)θ2 − θ1

− (−1)i(r−1
i)θ2

1

(ξ
n,i
r + 2)2[(ξn,ir + 2)θ2 − θ1]

+ (−1)i(r−1
i)θ1

(ξ
n,i
r + 2)2(ξ

n,i
r + 1)

}
(25.15)

ET2 = 2n

(
n− 1
r − 1

) r−1∑
i=0

{
(−1)i(r−1

i)θ3
2

(ξ
n,i
r + 2)θ2 − θ1

− (−1)i(r−1
i)θ3

1

(ξ
n,i
r + 2)3[(ξn,ir + 2)θ2 − θ1]

+ (−1)i(r−1
i)θ2

1

(ξ
n,i
r + 2)3(ξ

n,i
r + 1)

}
(25.16)

Next we consider the general step-stress
life testing for which k stress levels,
x1 < x2 < · · ·< xk, are used. Test units are
initially placed under stress x1. The stress is

Step-stress Accelerated Life Testing 465

increased gradually from x1 to xk at random times
C1 <C2 < · · ·<Ck−1 (continuous or discrete).
Let C0 = c0 = 0 and Ck = ck =∞. Let T be the
lifetime of a test unit under such a step-stress
life testing plan. We assume that the conditional
cumulative distribution function GT |C1C2···Ck−1(t)

of T , given the stress-change times C1 = c1, C2 =
c2, . . . , Ck−1 = ck−1, follows the cumulative
exposure model (Equation 25.3), i.e.

GT |C1C2···Ck−1(t)

=

F

(
t

θ1

)
for 0≤ t < c1

F

(
t − ci−1

θi
+

i−1∑
j=1

cj − cj−1

θj

)
for ci−1 ≤ t < ci

i = 2, 3, . . . , k

The conditional probability density function g(t |
c1, c2, . . . , ck−1) of T , given the stress-change
times C1 = c1, C2 = c2, . . . , Ck−1 = ck−1, is then

g(t | c1, c2, . . . , ck−1)

=

1

θ1
f

(
t

θ1

)
for 0≤ t < c1

1

θi
f

(
t − ci−1

θi
+

i−1∑
j=1

cj − cj−1

θj

)
for ci−1 ≤ t < ci

i = 2, 3, . . . , k

Let hCi |C1C2···Ci−1(ci) be the conditional
distribution of Ci, given C1, C2, . . . , Ci−1,
for i = 2, 3, . . . , k − 1. Let hC1|C0(c1)= hC1(c1),
the cumulative distribution of C1. The joint prob-
ability density function d(t, c1, c2, . . . , ck−1) of
T and C1, C2, . . . , Ck−1 is now

d(t, c1, c2, . . . , ck−1)

= g(t | c1, c2, . . . , ck−1)

k−1∏
i=1

hCi |C1C2···Ci−1(ci)

=

1

θ1
f

(
t

θ1

) k−1∏
i=1

hCi |C1C2···Ci−1(ci)

for 0≤ t < c1

1

θi
f

(
t − ci−1

θi
+

i−1∑
j=1

cj − cj−1

θj

)
×

k−1∏
i=1

hCi |C1C2···Ci−1(ci)

for ci−1 ≤ t < ci, i = 2, 3, . . . , k

Thus, the marginal probability density function
q(t) of T is

q(t)=
∫ ∞

0

∫ ∞
0

. . .

. . .

∫ ∞
0

d(t, c1, c2, . . . , ck−1) dc1 dc2 . . .

. . . dck−1

=
k−1∑
i=2

∫ t

0
. . .

[∫ t

ci−3

(∫ t

ci−2

{ ∫ ∞
t

. . .

. . .

[∫ ∞
ck−2

1

θi
f

(
t−ci−1

θi
+

i−1∑
j=1

cj−cj−1

θj

)

×
k−1∏
i=1

hCi |C1C2···Ci−1(ci) dck−1

]
. . .

. . . dci

}
dci−1

)
dci−2

]
. . .

. . . dc1 +
∫ ∞
t

{∫ ∞
c1

. . .

[∫ ∞
ck−2

1

θ1
f

(
t

θ1

)

×
k−1∏
i=1

hCi |C1C2···Ci−1(ci) dck−1

]
. . .

. . . dc2

}
dc1 +

∫ t

0

{ ∫ t

c1

. . .

. . .

[∫ t

ck−2

1

θk
f

(
t−ck−1

θk
+

k−1∑
j=1

cj−cj−1

θj

)

×
k−1∏
i=1

hCi |C1C2···Ci−1(ci)dck−1

]
. . . dc2

}
dc1

(25.17)

The integrations need to be replaced by sums if
the stress-change times C1, C2, . . . , Ck−1 are

466 Maintenance Theory and Testing

discrete. Even though the marginal probability
density function q(t) is always theoretically
available, it becomes very complex and
mathematically intractable even with simple
lifetime distributions when k is large. We consider
several particular cases in the following.

We first note that when the stress-change times
are prespecified constants c1 < c2 < · · ·< ck−1,
i.e. P(C1 = c1)= P(C2 = c2)= · · · = P(Ck−1 =
ck−1)= 1, q(t) becomes

q(t)=

1

θ1
f

(
t

θ1

)
for 0≤ t < c1

1

θi
f

(
t − ci−1

θi
+

i−1∑
j=1

cj − cj−1

θj

)
for ci−1 ≤ t < ci

i = 2, 3, . . . , k

which is the original cumulative exposure model
studied by Nelson [1, 2].

Next we study the case k = 3. Two stress-change
times C1 and C2 are used. Assume that n test
units are initially placed on low stress level x1
and run until r1 test units fail. The stress is then
changed to x2 and run until another r2 units fail.
The stress is finally changed to x3 and continued
until all units fail. The stress-change time C1
is the r1th-order statistic of a sample of size n

from the lifetime distribution under stress x1.
The probability density function of C1 is

hC1(c1)=
(
n− 1
r1 − 1

)
n

θ1
f

(
c1

θ1

)
Fr1−1

(
c1

θ1

)
× Rn−r1

(
c1

θ1

)
The stress-change time C2, given C1 = c1, is the
r2th-order statistic of a sample of size n− r1 from
the conditional probability distribution

1

θ2
f

(
t − c1

θ2
+ c1

θ1

)
R−1

(
c1

θ1

)
for t > c1. Thus, the conditional probability
density function of C2, given C1 = c1, is

hC2|C1(c2)=
(n− r1)(

n−r1−1
r2−1)

θ2Rn−r1

(
c1
θ1

) f

(
c2 − c1

θ2
+ c1

θ1

)

×
[
F

(
c2−c1

θ2
+ c1

θ1

)
−F
(
c1

θ1

)]r2−1

× Rn−r1−r2

(
c2 − c1

θ2
+ c1

θ1

)
When the lifetime distribution at a constant stress
is exponential, straightforward integrations yield
the marginal probability density function q(t) of
lifetime T under this step-stress life testing as

q(t)=
∫ ∞

0

∫ ∞
0

g(t | c1, c2)hC2|C1(c2)

× hC1(c1) dc2 dc1

= n(n− r1)

(
n− 1
r1 − 1

) (
n− r1 − 1
r2 − 1

)

×
r1−1∑
i=0

r2−1∑
j=0

(
(−1)i+j (r1−1

i)(
r2−1
j)

(η
n,j
r1,r2 + 1)(ξn,ir1 + 1)θ1

× exp

[
− (ξ

n,i
r1 + 2)t

θ1

]
+ {(−1)i+j (r1−1

i)(
r2−1
j)θ2}{[(ηn,jr1,r2 + 2)θ1

− (ξn,ir1
+ 2)θ2][θ2 − (η

n,j
r1,r2 + 2)θ3]}−1

×
{

exp

[
− (ξ

n,i
r1 + 2)t

θ1

]
− exp

[
− (η

n,j
r1,r2 + 2)t

θ2

]}

− (−1)i+j (r1−1
i)(

r2−1
j)θ3

[θ2 − (η
n,j
r1,r2 + 2)θ3][θ1 − (ξ

n,i
r1 + 2)θ3]

×
{

exp

[
− (ξ

n,i
r1 + 2)t

θ1

]
− exp

[
− t

θ3

]}

+ (−1)i+j (r1−1
i)(

r2−1
j)

[(ηn,jr1,r2+2)θ1− (ξ
n,i
r1 +2)θ2](ηn,jr1,r2 + 1)

×
{

exp

[
− (ξ

n,i
r1 + 2)t

θ1

]
− exp

[
− (η

n,j
r1,r2 + 2)t

θ2

]})
(25.18)

where ηn,jr1,r2 = n+ j − r1 − r2.

Step-stress Accelerated Life Testing 467

25.3.2 Estimation

When the functional form of f (t) is given
and independent failure times, T1, T2, . . . , Tn,
are observed, the maximum likelihood estimates
of α and β can be obtained by maximizing∏n

i=1 q(Ti) over α and β , where q(t) is given
in Equation 25.17. The maximization can be
carried out by using numerical methods such
as the Newton–Raphson method and net search
methods (Bazaraa and Shetty [13], chapter 8).

In the case of a simple step-stress accelerated
life testing where the stress is changed when the
first r lifetimes are observed. The only stress-
change time C1 is the rth-order statistic from a
lifetime sample of size n under stress x1. When the
lifetime at a constant stress is exponential, the
method of moment estimates for α and β can be
found by numerically solving the following system
for α and β :

ET=
∑n

i=1 Ti

n

ET2 =
∑n

i=1 T
2
i

n

where ET and ET2 are given in Equations 25.15
and 25.16 respectively.

If the lifetime distribution at any constant
stress is exponential, all the confidence interval
estimates for α, β , θ0, and R0(t) given in
Section 25.2.2 from a simple step-stress life
testing are now conditional confidence intervals
for the corresponding parameters, given C1 = c1.
However, these conditional confidence intervals
are also unconditional confidence intervals with
the same confidence levels. For example, if
[a1, a2] is a conditional 100(1− γ)% (0 < γ < 1)
confidence interval for β , i.e.

P(a1 ≤ β ≤ a2 | C1)= 1− γ

then

P(a1 ≤ β ≤ a2)= EC1[P(a1 ≤ β ≤ a2 | C1)]
= 1− γ

where EC1 is the expectation taken with respect
to the distribution of C1. Therefore, [a1, a2] is

a 100(1− γ)% unconditional confidence inter-
val for β . A similar argument will prove that if
[a3, a4] is an at least 100(1− γ)(1− γ ∗)% (0 <

γ < 1, 0 < γ ∗ < 1) conditional confidence inter-
val for α, or θ0, or R0(t) at a given t, then
[a3, a4] is also an at least 100(1− γ)(1− γ ∗)%
unconditional confidence interval for the cor-
responding parameters. In the general case of
k > 2, given C1, C2, . . . , Ck−1, conditional con-
fidence intervals for α, β , θ0, and R0(t) can
be constructed by using a similar transforma-
tion as in Equation 25.11 and Lemma 1. Again,
these conditional confidence intervals are also
unconditional for the corresponding parame-
ters.

For most other lifetime distributions in a
step-stress life testing with random stress-
change times, the conditional asymptotic
confidence intervals for α, β , θ0, and R0(t) can
be constructed using the results in Section 25.2.3.
These conditional asymptotic confidence
intervals are also unconditional asymptotic
confidence intervals for the corresponding
parameters.

25.3.3 Optimum Test Plan

We consider a simple step-stress life testing where
the stress is changed when the first r lifetimes are
observed. We assume that the two stress levels are
already chosen and discuss the optimum test plan
for choosing r when all the test units run to failure.
Suppose that n test units are tested under a simple
step-stress life testing which uses only two stress
levels x1 < x2. The only stress-change time C1 is
the rth-order statistic from a lifetime sample of
size n under stress x1. Suppose that the lifetimes
at constant stress x1 and x2 are exponential with
means θ1 and θ2 respectively, where θi = exp(α +
βxi), i = 1, 2.

Conditional on C1 = c1, the maximum like-
lihood estimators α̂ and β̂ are given by Equa-
tions 25.7 and 25.8. The Fisher information
matrix I, conditional on C1 = c1, is (see also

468 Maintenance Theory and Testing

Bai et al. [10])

I= n

(
1

F1(c1)x1 + [1− F1(c1)]x2

F1(c1)x1 + [1− F1(c1)]x2

F1(c1)x
2
1 + [1− F1(c1)]x2

2

)
where

F1(c1)= 1− exp

(
−c1

θ1

)
Since the mean life at design stress x0 is
θ0 = exp(α + βx0), the conditional maximum
likelihood estimator of θ0 is θ̂0 = exp(α̂ + β̂x0).
The conditional asymptotic variance Asvar (ln θ̂0 |
C1) is then given by

n Asvar(ln θ̂0 | C1)= (1+ ξ)2

F1(c1)
+ ξ2

1− F1(c1)

where ξ = (x1 − x0)/(x2 − x1). Thus, the uncon-
ditional asymptotic variance Asvar(ln θ̂0) of ln θ̂0
can be found as

Asvar(ln θ̂0)= EC1[Asvar(ln θ̂0 | C1)]
When the distribution of C1 degenerates at
c1, Asvar(ln θ̂0)=Asvar(ln θ̂0 | C1 = c1). Miller and
Nelson [4] obtained the asymptotic optimum
proportion of test units failed under stress x1 as
(1+ ξ)/(1+ 2ξ) by minimizing the asymptotic
variance Asvar(ln θ̂0 | C1 = c1). We now let C1 be
the rth smallest failure time at stress x1. A simple
integration yields

n Asvar(ln θ̂0)= nEC1[Asvar(ln θ̂0 | C1)]

= n(1+ ξ)2

r − 1
+ nξ2

n− r

Our optimum criterion is to find the optimum
number of test units failed under stress x1 such
that Asvar(ln θ̂0) is minimized. The minimization
of Asvar(ln θ̂0) over r yields

r∗ = n(1 + ξ)+ ξ

1+ 2ξ

Since r must be an integer, the optimum r

should take either �r∗ − 1, or �r∗, or �r∗ +
1, whichever gives the smallest Asvar(ln θ̂0).

(�r∗ is the greatest integer lower bound of r∗.)
The asymptotic optimum proportion of test units
failed under stress x1 is then

lim
n→∞

r∗

n
= 1+ ξ

1+ 2ξ

which is the same as given by Miller and Nelson
[4] when the stress-change time is a prespecified
constant.

As an example, we use the data studied by
Nelson and coworkers [4, 14]. The accelerated
life testing consists of 76 times (in minutes)
to breakdown of an insulating fluid at con-
stant voltage stresses (kilovolts). The two test
stress levels are the log transformed voltages:
x1 = ln(26.0)= 3.2581, x2 = ln(38.00)= 3.6376.
The design stress is x0 = ln(20.00)= 2.9957.
The amount of stress extrapolation is ξ = 0.6914.
Miller and Nelson [4] gave the maximum likeli-
hood estimates of model parameters from those
data: α̂ = 64.912, β̂ =−17.704, θ̂0 ≈ 143 793 min.
Now, a future simple step–step life testing is to
be designed to estimate θ0 using x1, x2, and the
same number of test units used in the past study;
the question is to find the optimum test plan.
Treating the stress-change time as a prespecified
constant, Miller and Nelson [4] found the opti-
mum stress-change time as c1 = 1707 min. Using
the rth smallest lifetime under stress x1 as the
stress-change time, we found that the optimum
number of test units failed under stress x1 is r∗ =
54.

25.4 Bibliographical Notes
The problem of statistical data analysis and
optimum test plan in a step-stress life testing
has been studied by many authors. Yurkowski
et al. [15] gave a survey of the work on
the early statistical methods of step-stress life
testing data. Meeker and Escobar [16] surveyed
more recent work on accelerated life testing.
Nelson [1] first implemented the method of
maximum likelihood to data from a step-stress
testing. Shaked and Singpurwalla [17] proposed
a model based on shock and wear processes

Step-stress Accelerated Life Testing 469

and obtained non-parametric estimators for the
life distribution at the use condition. Barbosa
et al. [18] analyzed exponential data from a
step-stress life testing using the approach of a
generalized linear model. Tyoskin and Krivolapov
[19] presented a non-parametric model for the
analysis of step-stress test data. Schäbe [20] used
an axiomatic approach to construct accelerated
life testing models for non-homogeneous Poisson
processes. DeGroot and Goel [21] and Dorp et al.
[22] developed Bayes models for data from a
step-stress testing and studied their inferences.
Khamis and Higgins [23, 24] obtained results on
optimum test plan for a three-step test and studied
another variation of the cumulative exposure
model. Xiong [11] gave inference results on type-II
censored exponential step-stress data. Xiong and
Milliken [25] investigated the statistical inference
and optimum test plan when the stress-change
times are random in a step-stress testing. Xiong
[26] introduced a threshold parameter into the
cumulative exposure models and studied the
corresponding estimation problem.

References
[1] Nelson WB. Accelerated life testing—step-stress models

and data analysis. IEEE Trans Reliab 1980;R-29:103–8.
[2] Nelson WB. Applied life data analysis. New York: John

Wiley & Sons; 1982.
[3] Nelson WB. Accelerated life testing, statistical models,

test plans, and data analysis. New York: John Wiley &
Sons; 1990.

[4] Miller RW, Nelson WB. Optimum simple step-stress
plans for accelerated life testing. IEEE Trans Reliab 1983;
R-32:59–65.

[5] Yin XK, Sheng BZ. Some aspects of accelerated life testing
by progressive stress. IEEE Trans Reliab 1987;R-36:150–5.

[6] Mann NR, Schafer RE, Singpurwalla ND. Methods for
statistical analysis of reliability and life data. New York:
John Wiley & Sons; 1974.

[7] Xiong C. Optimum design on step-stress life testing. In:
Proceedings of 1998 Kansas State University Conference
on Applied Statistics in Agriculture, 1998; p.214–25.

[8] Lawless JF. Statistical models and methods for lifetime
data. New York: John Wiley & Sons; 1982.

[9] Halperin M. Maximum likelihood estimation in trun-
cated samples. Ann Math Stat 1952;23:226–38.

[10] Bai DS, Kim MS, Lee SH. Optimum simple step-stress
accelerated life tests with censoring. IEEE Trans Reliab
1989;38:528–32.

[11] Xiong C. Inferences on a simple step-stress model with
type II censored exponential data. IEEE Trans Reliab
1998;47:142–6.

[12] Chernoff H. Optimal accelerated life designs for estima-
tion. Technometrics 1962;4:381–408.

[13] Bazaraa MS, Shetty CM. Nonlinear programming: theory
and algorithms. New York: John Wiley & Sons; 1979.

[14] Meeker WQ, Nelson WB. Optimum accelerated life tests
for Weibull and extreme value distributions and censored
data. IEEE Trans Reliab 1975;R-24:321–32.

[15] Yurkowski W, Schafer RE, Finkelstein JM. Accelerated
testing technology. Rome Air Development Center
Technical Report 67-420, Griffiss AFB, New York, 1967.

[16] Meeker WQ, Escobar LA. A review of recent research
and current issues in accelerated testing. Int Stat Rev
1993;61:147–68.

[17] Shaked M, Singpurwalla ND. Inference for step-stress
accelerated life tests. J Stat Plan Infer 1983;7:694–99.

[18] Barbosa EP, Colosimo EA, Louzada-Neto F. Accelerated
life tests analyzed by a piecewise exponential distribution
via generalized linear models. IEEE Trans Reliab
1996;45:619–23.

[19] Tyoskin OI, Krivolapov SY. Nonparametric model for
step-stress accelerated life testing. IEEE Trans Reliab
1996;45:346–350.

[20] Schäbe H. Accelerated life testing models for
nonhomogeneous Poisson processes. Stat Pap 1998;
39:291–312.

[21] DeGroot MH, Goel PK. Bayesian estimation and optimal
designs in partially accelerated life testing. Nav Res
Logist Q 1979;26:223–35.

[22] Dorp JR, Mazzuchi TA, Fornell GE, Pollock LR. A Bayes
approach to step-stress accelerated life testing. IEEE
Trans Reliab 1996;45:491–8.

[23] Khamis IH, Higgins JJ. Optimum 3-step step-stress tests.
IEEE Trans Reliab 1996;45:341–5.

[24] Khamis IH, Higgins JJ. A new model for step-stress
testing. IEEE Trans Reliab 1998;47:131–4.

[25] Xiong C, Milliken GA. Step-stress life-testing with
random stress-change times for exponential data. IEEE
Trans Reliab 1999;48:141–8.

[26] Xiong C. Step-stress model with threshold parameter.
J Stat Comput Simul 1999;63:349–60.

This page intentionally left blank

Practices and Emerging
ApplicationsP

A
R

T
V

26 Statistical Methods for Reliability Data Analysis
26.1 Introduction
26.2 Nature of Reliability Data
26.3 Probability and Random Variables
26.4 Principles of Statistical Methods
26.5 Censored Data
26.6 Weibull Regression Model
26.7 Accelerated Failure-time Model
26.8 Proportional Hazards Model
26.9 Residual Plots for the Proportional Hazards Model
26.10 Non-proportional Hazards Models
26.11 Selecting the Model and Variables
26.12 Discussion

27 The Application of Capture-recapture Methods in
Reliability Studies

27.1 Introduction
27.2 Formulation of the Problem
27.3 A Sequential Procedure
27.4 Real Examples
27.5 Simulation Studies
27.6 Discussions

28 Reliability of Electric Power Systems: An Overview
28.1 Introduction
28.2 System Reliability Pereformance
28.3 System Reliability Prediction
28.4 System Reliability Data

29 Human and Medical Device Reliability
29.1 Introduction
29.2 Human and Medical Device Reliability Terms and Definitions
29.3 Human Stress-Performance Effectiveness, Human Error Types and

Causes of Human Error
29.4 Human Reliability Analysis Methods
29.5 Human Unreliability Data Sources
29.6 Medical Device Reliability Related Facts and Figures
29.7 Medical Device Recalls and Equipment Classificiation
29.8 Human Error in Medical Devices
29.9 Tools for Medical Device Reliability Assurance
29.10 Data Sources for Performing Medical Device Reliability
29.11 Guidelines for Reliability Engineers with Respect to Medical Devices

30 Probabilistic Risk Assessment
30.1 Introduction
30.2 Historical Comments
30.3 PRA Methodology
30.4 Engineering Risk vs Environmental Risk
30.5 Risk Measures and Public Impact
30.6 Transition to Risk-informed Regulation
30.7 Some Successful PRA Applications
30.8 Comments on Uncertainty
30.9 Deterministic, Probabilistic, Prescriptive, Performance-based
30.10 Outlook

31 Total Dependability Management
31.1 Introduction
31.2 Background
31.3 Total Dependability Management
31.4 Management System Components
31.5 Conclusions

32 Total Quality for Software Engineering Management
32.1 Introduction
32.2 The Practice of Software Engineering
32.3 Software Quality Models
32.4 Total Quality Management for Software Engineering
32.5 Conclusions

33 Software Fault Tolerance
33.1 Introduction
33.2 Software Fault-Tolerant Methodologies
33.3 NVP Modeling
33.4 Generalized NHPP Model Formulation
33.5 NHPP Reliability Model for NVP Systems
33.6 NVP-SRG
33.7 Maximum Likelihood Estimation
33.8 Conclusion

34 Dependability/Performability Modeling of Fault-Tolerant Systems
34.1 Introduction
34.2 Measures
34.3 Model Specification
34.4 Model Solution
34.5 The Largeness Problem
34.6 A Case Study
34.7 Conclusions

35 Random-Request Availability
35.1 Introduction
35.2 System Description and Definition
35.3 Mathematical Expression for the Random-Request Availability
35.4 Numerical Examples
35.5 Simulation Results
35.6 Approximation
35.7 Concluding Remarks

This page intentionally left blank

Statistical Methods for Reliability
Data Analysis

Ch
ap

te
r2

6Michael J. Phillips

26.1 Introduction
26.2 Nature of Reliability Data
26.3 Probability and Random Variables
26.4 Principles of Statistical Methods
26.5 Censored Data
26.6 Weibull Regression Model
26.7 Accelerated Failure-time Model
26.8 Proportional Hazards Model
26.9 Residual Plots for the Proportional Hazards Model
26.10 Non-proportional Hazards Models
26.11 Selecting the Model and the Variables
26.12 Discussion

26.1 Introduction

The objective of this chapter is to describe
statistical methods for reliability data analysis,
in a manner which gives the flavor of modern
approaches. The chapter commences with a
description of five examples of different forms
of data encountered in reliability studies. These
examples are from recently published papers in
reliability journals and include right censored
data, accelerated failure data, and data from
repairable systems. However, before commencing
any discussion of statistical methods, a formal
definition of reliability is required. The reliability
of a system (or component) is defined as the
probability that the system operates (performs
a function under stated conditions) for a stated
period of time. Usually the period of time is the
initial interval of length t , which is denoted by
[0, t). In this case the reliability is a function of t ,
so that the reliability function R(t) can be defined

as:

R(t) = P(System operates during [0, t))
where P(A) denotes the probability of an event
A, say. This enables the various features of
continuous distributions, which are used to model
failure times, to be introduced. The relationships
between the reliability function, the probability
density function, and the hazard function are
detailed. Then there is an account of statistical
methods and how they may be used in achieving
the objectives of a reliability study. This covers
the use of parametric, semi-parametric, and non-
parametric models.

26.2 Nature of Reliability Data
To achieve the objectives of a reliability study, it
is necessary to obtain facts from which the other
facts required for the objectives may be inferred.
These facts, or data, obtained for reliability studies

475

476 Practices and Emerging Applications

Table 26.1. Times to failure (in hours) for pressure vessels

274 28.5 1.7 20.8 871 363 1311 1661 236 828
458 290 54.9 175 1787 970 0.75 1278 776 126

may come from testing in factory/laboratory
conditions or from field studies. A number of
examples of different kinds of reliability data
obtained in reliability studies will be given, which
are taken from published papers in the following
well-known reliability journals: IEEE Transactions
in Reliability, Journal of Quality Technology,
Reliability Engineering and Safety Systems, and
Technometrics.

Example 1. (Single sample failure data) The sim-
plest example of failure time data is a single sam-
ple taken from a number of similar copies of a
system. An example of this was given by Keating
et al. [1] for 20 pressure vessels, constructed of
fiber/epoxy composite materials wrapped around
metal liners. The failure times (in hours) are given
in Table 26.1 for 20 similarly constructed vessels
subjected to a certain constant pressure.

This is an example of a complete sample
obtained from a factory/laboratory test which was
carried out on 20 pressure vessels and continued
until failure was observed on all vessels. There is
no special order for the failure times. These data
were used by Keating et al. [1] to show that the
failure distribution could have a decreasing hazard
function and that the average residual life for a
vessel having survived a wear-in period exceeds
the expected life of a new vessel.

Example 2. (Right censored failure data) If one of
the objectives of collecting data is to observe the
time of failure of a system, it may not always be
possible to achieve this due to a limit on the time
or resources spent on the data collection process.
This will result in incomplete data as only partial
information will be collected, which will occur
if a system is observed for a period and then
observation ceases at time C, say. Though the time
of failure T is not observed, it is known that T

must exceed C. This form of incomplete data is
known as right censored data.

An example of this kind of data was given
by Kim and Proschan [2] for telecommunication
systems installed for 125 customers by a telephone
operating company. The failure times (in days)
are given in Table 26.2 for 16 telecommunication
systems installed in 1985 and the censored times
(when the system was withdrawn from service
without experiencing a failure or the closing date
of the observation period) for the remaining
109 systems. The systems could be withdrawn
from service at any time during the observation
period on the customer’s request. As well as
failure to function, an unacceptable level of static,
interference or noise in the transmission of the
telecommunication system was considered as a
system failure.

This situation, where a high proportion of the
observations are censored, is often met in practice.
These data were used by Kim and Proschan [2] to
obtain a smooth non-parametric estimate of the
reliability (survivor) function for the systems.

Example 3. (Right censored failure data with a
covariate) Ansell and Ansell [3] analyzed the data
given in Table 26.3 in a study of the performance
of sodium sulfur batteries. The data consist of
lifetimes (in cycles) of two batches of batteries.
There were 15 batteries in the first batch and four
of the lifetimes are right censored observations.
These are the four largest observations and all
have the same value. There were 20 batteries in
the second batch and only one of the lifetimes is
right censored. It is not the largest observation.
The principal interest in this study is to investigate
any difference in performance between batteries
from the two different batches.

Example 4. (Accelerated failure data with covari-
ates) Elsayed and Chan [4] presented failure
times for time-dependent dielectric breakdown
of metal–oxide–semiconductor integrated circuits
for accelerated failure testing. The objective was

Statistical Methods for Reliability Data Analysis 477

Table 26.2. Times to failure and censored times (in days) for telecommunication systems during five months in 1985

164+ 2 45 147+ 139+ 135+ 3 155+ 150+ 101+
139+ 135+ 164+ 155+ 150+ 146+ 139+ 135+ 164+ 155+
150+ 1 139+ 7 163+ 139+ 149+ 143+ 138+ 134+
163+ 152+ 149+ 143+ 40 13 163+ 152+ 149+ 143+
138+ 134+ 163+ 152+ 149+ 142+ 138+ 134+ 163+ 152+
149+ 10 138+ 134+ 163+ 94 149+ 141+ 138+ 133+
77 151+ 149+ 141+ 138+ 133+ 162+ 151+ 149+ 141+

138+ 133+ 162+ 151+ 149+ 34 138+ 133+ 73+ 151+
115 140+ 138+ 133+ 63 151+ 138+ 140+ 137+ 133+
161+ 151+ 148+ 140+ 137+ 64+ 160+ 151+ 147+ 140+
137+ 133+ 160+ 151+ 147+ 140+ 137+ 133+ 67 90+
147+ 140+ 137+ 133+ 141+ 151+ 147+ 140+ 137+ 133+
156+ 151+ 147+ 54 137+

Note: Figures with+ are right censored observations not failures.

Table 26.3. Lifetimes (in cycles) of sodium sulfur batteries

Batch 1 164 164 218 230 263 467 538 639 669
917 1148 1678+ 1678+ 1678+ 1678+

Batch 2 76 82 210 315 385 412 491 504 522
646+ 678 775 884 1131 1446 1824 1827 2248

2385 3077

Note: Lifetimes with+ are right censored observations not failures.

Table 26.4. Times to failure and censored times (in hours) for three different temperatures (170 ◦C, 200 ◦C, 250 ◦C)
Temperature (170 ◦C)

0.2 5.0 27.0 51.0 103.5 192.0 192.0 429.0 429.0 954.0
2495.0 2495.0 2495.0 2495.0 2495.0 2495.0 2495.0 2495.0 2948.0 2948.0

Temperature (200 ◦C)
0.1 0.2 0.2 2.0 5.0 5.0 25.0 52.5 52.5 52.5

52.5 123.5 123.5 123.5 219.0 219.0 524.0 524.0 1145.0 1145.0

Temperature (250 ◦C)
0.1 0.2 0.2 0.2 0.5 2.0 5.0 5.0 5.0 10.0

10.0 23.0 23.0 23.0 23.0 23.0 50.0 50.0 120.0

Note: Figure with+ is right censored observation not failure.

to estimate the dielectric reliability and hazard
functions at operating conditions from the data
obtained from the tests. Tests were performed to
induce failures at three different elevated temper-
atures, where temperature is used as the stress
variable (or covariate). These data for silicon diox-
ide breakdown can be used to investigate failure

time models which have parameters dependent on
the value of the covariate (temperature), and are
given in Table 26.4. The nominal electric field was
the same for all three temperatures. Elsayed and
Chan [4] used these data to estimate the param-
eters in a semi-parametric proportional hazards
model.

478 Practices and Emerging Applications

Table 26.5. System failure times (in hours)

System A 452 752 967 1256 1432 1999 2383 (3000)
System B 233 302 510 911 1717 2107 (3000)
System C 783 1805 (2000)
System D 782 (2000)
System E (2000)

Note: Figures in parentheses are current cumulative times.

Example 5. (Repairable system failure data) Ex-
amples 1 to 4 are of failure data that are records of
the time to first failure of a system. Some of these
systems, such as the pressure vessels described in
Example 1 and the integrated circuits described in
Example 4, may be irreparably damaged, though
others, such as the telecommunication systems
described in Example 2, will be repaired after
failure and returned to service. This repair is often
achieved by replacing part of the system to pro-
duce a repairable system.

Newton [5] presented failure times for a
repairable system. Five copies of a system were
put into operation at 500-hour intervals. When
failures occurred the component which failed was
instantaneously replaced by a new component.
Failures were logged at cumulative system hours
and are given in Table 26.5. The times of interest
are the times between the times of system failure.

The objective for which Newton [5] used these
data was to consider the question of whether
the failure rate for the systems was increasing or
decreasing with time as the systems were repaired.

26.3 Probability and Random
Variables
Reliability has been defined as a probability, which
is a function of time, used for the analysis of
the problems encountered when studying the
occurrence of events in time. Several aspects of
time may be important: (i) age, (ii) calendar time,
(iii) time since repair. However, for simplicity,
problems are often specified in terms of one
time scale, values of which will be denoted by t .
In order to study the reliability of a component,

define a random variable T denoting the time
of occurrence of an event of interest (failure).
Then the event “system operates during [0, t)”
used in Section 26.1 to define the reliability
function is equivalent to “T ≥ t”. Then the
reliability function of the failure time distribution
can be defined by:

RT (t)= P(T ≥ t)

and is a non-increasing function of t . The relia-
bility of a component cannot improve with time!
The distribution of T can be defined using the
probability density function of the failure time
distribution, and this is defined by:

fT (t)= lim
h→0

P(t ≤ T < t + h)

h
= −dRT (t)

dt

Another function which can be used to de-
fine the distribution of T is the hazard func-
tion (age-specific failure rate or force of mortality)
of time to failure, which is defined by:

λT (t)= lim
h→0

P(t ≤ T < t + h | T ≥ t)

h
= fT (t)

RT (t)

A related function is the cumulative (integrated)
hazard function of the failure time distribution,
which is closely connected with the reliability
function and is defined by:

T (t)=
∫ t

0
λT (u) du=−log(RT (t))

So the reliability function can be obtained from
the cumulative hazard function by:

RT (t)= exp(−
T (t))

These results can be applied to various families
of distributions, such as the exponential, Weibull,

Statistical Methods for Reliability Data Analysis 479

extreme value or lognormal. Details of these
families of distributions can be found in such texts
as Ansell and Phillips [6].

26.4 Principles of Statistical
Methods

Statistical methods are mainly based on using
parametric models, though non-parametric meth-
ods and semi-parametric models are also used.

When considering possible failure-time distri-
butions to model the behavior of observed failure
times, it is not usual to choose a fully specified
function to give the reliability or probability den-
sity function of the distribution, but instead to
use a class or “family” of functions. This family
of functions will be a function of some variables
known as parameters, whose values have to be
specified to “index” the particular function of the
family to be used to define the failure-time dis-
tribution. More than one parameter may be used
and then the r parameters, say, will in general be
denoted by the vector β = (β1, β2, . . . , βr)

T and
the reliability or probability density function of
the parametric distribution for a continuous fail-
ure time will be denoted byRT (t; β) and fT (t; β),
respectively.

One of the objectives of a reliability study
may be to study the behavior of the failure
time distribution of T through the variation of
k other variables represented by the vector z=
(z1, z2, z3, . . . , zk)

T, say. These variables are
usually referred to as covariates. In order to
perform any parametric statistical analysis, it
is necessary to know the joint distribution of
the failure time T and the covariates z whose
probability density function will be denoted by
fT,Z(t, z; β), for parameters β.

Statistical methods based on using parametric
models, with information from a random sample,
are concerned with such questions as:

1. what is the best choice of the values of the
parameters β, or some function of β, on the
basis of the data observed? (estimation);

2. are the data observed consistent with the
parameters β having the value β0, say?
(hypothesis testing).

There have been a variety of ways of answering
the first question over the years, though it is
generally accepted that there are essentially three
main approaches: Classical (due to Neyman and
Pearson), Likelihood (due to Fisher), and Bayesian
(developed by the followers of Bayes).

To achieve the objectives of the reliability study,
it may be decided to use a parametric model
with parameters β, say. This may be to obtain
the reliability of the system or the expected
value of the failure time, and in order to do
this it will be necessary to specify the values
of the parameters of the model. This will be
done by using the “best” value obtained from
the reliability data, which are the observations
collected (in a possibly censored or truncated
form) from a random sample. Estimation is
the process of choosing a function of these
observations (known as a statistic) which will
give a value (or values) close to the “true”
(unknown) value of the parameters β. Such a
statistic, known as an estimator, will be a random
variable denoted by β. A point estimator gives
one value for each of the parameters, whilst
an interval estimator gives intervals for each
of the parameters. For interval estimators a
probability (or confidence level, usually expressed
as a percentage by multiplying the probability
by 100) is specified, which is the probability that
the interval contains the “true” values of the
parameter. One method for obtaining the interval
is to use the standard error of an estimator,
which is the standard deviation of the estimator
with any parameters replaced by their estimates.
Often the estimator can be assumed to have a
normal distribution (at least for a large sample
size, though this depends on the proportion
of censored observations). Then an approximate
95% interval estimator for β using the point
estimator β̂ with a standard error se(β̂) would
be given by the interval (β̂ − 1.96se(β̂), β̂ +
1.96se(β̂)).

480 Practices and Emerging Applications

As an alternative to choosing a parametric
failure-time distribution, it is possible to make
no specification of the reliability or probability
density function of this distribution. This has
advantages and disadvantages. While not being
restricted to use specific statistical methods,
which may not be valid for the model being
considered, the price to be paid for this is
that it may be difficult to make very powerful
inferences from the data. This is because a
non-parametric model can be effectively thought
of as a parametric model with an infinity of
parameters. Hence, with an infinity of parameters
it is not surprising that statistical methods
may be unable to produce powerful results.
However, this approach to models and the
resulting statistical methods which follow from
it are often successful and hence have been very
popular.

As a compromise to choosing a parametric or
a non-parametric failure-time distribution it is
possible to make only a partial specification of the
reliability, probability density, or hazard function
of this distribution. This has the advantage
of introducing parameters which model the
covariates of interest while leaving the often
uninteresting remainder of the model to have a
non-parametric form. Such models are referred
to as semi-parametric models. Probably the most
famous example of a semi-parametric model is the
hazard model introduced by Cox [7], known as
the proportional hazards model. The idea behind
using such a model is to be able to use the standard
powerful approach of parametric methods to
make inferences about the covariate parameters
while taking advantage of the generality of non-
parametric methods to cope with any problems
produced by the remainder of the model.

26.5 Censored Data

It is not always possible to collect data for
lifetime distributions in as complete a form as
required. Example 1 is an example of a complete
sample where a failure time was observed for
every system. This situation is unusual and only

likely to occur in the case of laboratory testing.
Many studies lead to the collection of incomplete
data, which are either censored or truncated. One
of the most frequent ways that this occurs is
because of a limit of time (or resources) for the
study, producing the case of right censored data.
This case will be considered first.

Non-parametric estimation methods have
mainly been developed to deal with the case of
right censored data for lifetime distributions,
as this is the case most widely encountered in
all branches of applied statistics. Consider right
censored failure-time data for n components
(or systems). Such data can be represented
by the pairs, (ti, di) for the ith component,
i = 1, 2, . . . , n. For the most part the case in
which the Ti are independent and identically
distributed is considered, and where it is
necessary to estimate some characterization
of their distribution. Sometimes it is necessary
to refer to the ith-ordered observed event time
(the time of failure or censoring of the ith event)
when the notation t(i) (rather than ti) will be used.
On the other hand, it is sometimes necessary
to refer to the ith observed failure time (rather
than the time of the ith event, which could be
a failure or censoring). Then the notation t[i]
(rather than ti) will be used. Corresponding to
each observed failure time is a risk set: the set
comprising those components which were under
observation at that time, i.e. the set of components
which could have been the observed failure.
The risk set corresponding to t[i] will be denoted
by Ri . The number of components in the risk
set Ri will be denoted by ri . These definitions are
illustrated in Example 8 (Table 26.6).

Non-parametric estimators have been pro-
posed for the reliability (survivor) function and
the cumulative hazard function of the failure-time
distribution. The Kaplan–Meier (KM) estimator
R̂T (t) of the reliability function, RT (t), which
was proposed by Kaplan and Meier [8], is a step
function. In the case of ties of multiplicity mi

at the failure time t[i], the estimator is modified.
If censoring times tie with failure times, censor-
ing is assumed to occur just following the failure.
The KM estimator gives a “point” estimator, or

Statistical Methods for Reliability Data Analysis 481

a single value for the reliability function at any
time t . If it is desired to obtain a measure of the
variation of this estimator over different samples,
then an estimate of the variance of the KM esti-
mator is needed. Greenwood’s formula provides
an estimate of the variance of log(R̂T (t)), denoted
by V̂ar(log(R̂T (t))). Though this gives a measure
of the variation of the log of the KM estimator, it is
possible to use it to estimate the variance of R̂T (t)

by (R̂T (t))
2 V̂ar(log(R̂T (t))).

The Nelson–Altschuler (NA) estimator
T (t)

of the cumulative hazard function,
T (t), which
was proposed by Nelson [9], is also a step function.
Using the basic relation between the reliability
function and the cumulative hazard function
given in Section 26.3, it is possible to use the NA
estimator to estimate the reliability function by:

R̂T (t)= exp(−
̂T (t))

A number of examples are now presented to
illustrate the features of these non-parametric
estimators of the reliability function.

Example 6. An example of a single sample from
a laboratory test of 20 failure times for pressure
vessels was presented in Example 1. In that
example all the observations were distinct failure
times, so that the sample was complete and there

K
ap

la
n

-M
ei

er
es

ti
m

at
e

o
f

re
lia

b
ili

ty

0.0
2000

0.2

0.4

0.6

0.8

1.0

150010005000

Time (hours)

Figure 26.1. Plot of the Kaplan–Meier estimator of the reliability
for the pressure vessels laboratory test data with 95% confidence
limits

K
ap

la
n

–
M

ei
er

es
ti

m
at

e
o

f
re

lia
b

ili
ty

0.80
200

0.85

0.90

0.95

1.00

150100500

Time (days)

Figure 26.2. Plot of the Kaplan–Meier estimator of the reliability
for the telecommunication systems data with 95% confidence
limits

was no truncation or censoring. In this case the
KM estimator is a step function with equal steps
of 0.05 (= 1/20) at the 20 failure times. A plot
of the KM estimator is given in Figure 26.1, with
95 confidence limits obtained using Greenwood’s
formula.

Example 7. An example of a sample with right
censored failure times for 125 telecommunication
systems was presented in Example 2. In that
example the observations consisted of 16 failure
times and 109 right censored observations. In this
case the KM estimator is a step function with equal
steps of 0.008 (= 1/125) for the first 11 failure
times. After that time (63 days) right censored
observations occur and the step size changes until
the largest failure time (139 days) is reached.
After that time the KM estimator remains constant
until the largest censored time (164 days), after
which the estimator is not defined. So in this
example, unlike Example 6, the KM estimator is
never zero. A plot of the KM estimator is given in
Figure 26.2 with 95% confidence limits obtained
using Greenwood’s formula. (The vertical lines on
the plot of the reliability represent the censored
times.)

482 Practices and Emerging Applications

Table 26.6. Ordered event times (in hours)

Event Censor Event Fail Risk R̂(t[i])
number indicator time number Multiplicity set
(i) d(i) t(i) [i] m[i] r[i]
̂(t[i]) NA KM

1 1 69 1 1 21 0.048 0.953 0.952
2 1 176 2 1 20 0.098 0.907 0.905
3 0 196+ – – – – – –
4 1 208 3 1 18 0.153 0.858 0.854
5 1 215 4 1 17 0.212 0.809 0.804
6 1 233 5 1 16 0.274 0.760 0.754
7 1 289 6 1 15 0.341 0.711 0.704
8 1 300 7 1 14 0.413 0.662 0.653
9 1 384 8 1 13 0.490 0.613 0.603

10 1 390 9 1 12 0.573 0.564 0.553
11 0 393+ – – – – – –
12 1 401 10 1 10 0.673 0.510 0.498
13 1 452 11 1 9 0.784 0.457 0.442
14 1 567 12 1 8 0.909 0.403 0.387
15 0 617+ – – – – – –
16 0 718+ – – – – – –
17&18 1 783 13 1 5 0.309 0.270 0.232
19 1 806 14 1 3 0.642 0.194 0.155
20 0 1000+ – – – – – –
21 1 1022 15 1 1 0.642 0.071 0.000

Note: Times with+ are right censored times.

Example 8. This example is adapted from New-
ton [5], from the data which were described in
Example 5. Five copies of a system were put into
operation at 500-hour intervals. (For the purpose
of this example the system will be considered to be
equivalent to a single component, and will be re-
ferred to as a component.) When failures occurred
the component was instantaneously replaced by
a new component. Failures were logged at cumu-
lative system hours and are given in Table 26.5,
except that the failure time of system D has been
changed from 782 to 783, for illustrative purposes,
as this will produce two tied failure times and
a multiplicity of 2. The details of the calculation
of both the KM and NA estimators will now be
illustrated.

For analysis of the distribution of the compo-
nent failure times, the observed lifetimes (times
between failures) are ranked as shown in Ta-
ble 26.6. The events in parentheses in Table 26.6
are times from the last failure of a component to

the current time. Such times are right censorings
(times to non-failure) and are typical of failure
data from field service. As most reliability data
come from such sources, it is important not to just
analyze the failure times and ignore the censoring
times by treating the data as if they came from a
complete sample as in a laboratory test. Ignoring
censorings will result in pessimistic estimates for
reliability. Data are often encountered, as in Exam-
ple 7, where there are as many as four or five times
more censorings than failures. The consequences
of ignoring the censorings would result in wildly
inaccurate conclusions about the lifetime distribu-
tion.

An estimate can be given for the reliability
function at each observed component failure time.
The estimate of the reliability function in the
last column of Table 26.6 is that obtained by
using the KM estimator. Alternatively, the NA
estimator can be used. The estimate of the hazard
function at each failure time is obtained as the
number of failures (the multiplicity m[i]) at each

Statistical Methods for Reliability Data Analysis 483

event time divided by the number of survivors
immediately prior to that time (the number in
the risk set, r[i]) The cumulative sum of these
values is the NA estimate,
̂(t), of the cumulative
hazard function
(t). Then exp(−
̂(t)) provides
an estimate of R(t), the reliability function, and
is given in the penultimate column of Table 26.6.
It can be seen that the NA estimate of the reliability
function is consistently slightly higher than the
KM estimate.

The improbability of tied lifetimes should
lead to consideration of the possibility of the
times not being independent, as would be the
case in, for example, common cause failures.
Both these estimates have been derived assuming
that the lifetimes are independent and identically
distributed (i.i.d.).

26.6 Weibull Regression Model
One of the most popular families of parametric
models is that given by the Weibull distribution.
It is usual for regression models to describe one or
more of the distribution’s parameters in terms of
the covariates z. The relationship is usually linear,
though this is not always the case. The Weibull
distribution has a reliability function which can be
given by:

RT (t)= exp(−λtκ) for t > 0

where λ= 1/θκ and θ is the scale parameter, and
κ is the shape parameter. Each of these parameters
could be described in terms of the covariates z,
though it is more usual to define either the
scale or the shape parameter in terms of z.
For example, if the scale parameter was chosen
then a common model would be to have λ(z; β)=
exp(βTz), where the number of covariates k = r ,
the number of parameters. Then the reliability
function would be:

RT (t | z; β)= exp(−exp(βTz)tκ) for t > 0

The probability density function is given by:

fT (t | z; β)= κ(βTz)tκ−1

× exp(−exp(βTz)tκ) for t > 0

This model is commonly referred to as the Weibull
regression model, but there are alternatives which
have been studied, see Smith [10], where the shape
parameter is dependent also on the covariate.

There are advantages to reparameterizing this
model by taking logs, so that the model takes
the form of Gumbel’s extreme value distribution.
A reason for this is to produce a model more
akin to the normal regression model, but also it
allows a more natural extension of the model and
hence greater flexibility. Define Y = log T so that
the reliability function is given by:

RY (y | z; β)= exp(−exp(κy + βTz))

so that

E(log T)=−γ

κ
− βTz

κ

where γ is Euler’s constant. It is usual to estimate
the parameters by using the maximum likelihood
approach.

Standard errors may be obtained by the use
of second derivatives to obtain the observed
information matrix, Io, and this matrix is usually
calculated in the standard statistical software
packages.

Example 9. Ansell and Ansell [3] analyzed the
data given in Table 26.3 in a study of the
performance of sodium sulfur batteries. The data
consist of lifetimes (in cycles) of two batches of
batteries. The covariate vector for the ith battery
is given by zi = (zi1, zi2)

T, where zi1 = 1 and zi2
represents whether the battery comes from batch 1
or batch 2, so that:

zi2 =
{

0 if battery i is from batch 1

1 if battery i is from batch 2

Hence β2 represents the difference in performance
between batteries from batch 2 and batch 1.

Fitting the Weibull regression model results in
β̂2 = 0.0156 and κ̂ = 1.127. Using the observed
information matrix the standard error of β̂2 =
0.386. Hence a 95% confidence interval for β2 is
(−0.740, 0.771).

An obvious test to perform is to see if β2 is
non-zero. If it is non-zero this would imply there is

484 Practices and Emerging Applications

a difference between the two batches of batteries.
The hypotheses are:

H0 : β2 = 0

H1 : β2 �= 0

The log likelihood evaluated under H0 is
−49.7347 and under H1 is −49.7339. Hence the
likelihood ratio test statistic has a value of 0.0016.
Under the null hypothesis the test statistic has
a χ2 distribution with one degree of freedom.
Therefore the hypothesis that β2 is zero, which is
equivalent to no difference between the batches,
is accepted. Using the estimate β̂2 of β2 and its
standard error gives a Wald statistic of 0.0016,
almost the same value as the likelihood ratio test
statistic, and hence leads to the same inference.
Both these inferences are consistent with the
confidence interval, as it includes zero.

Examination of the goodness of fit and
the appropriateness of the assumptions made
in fitting the regression model can be based
on graphical approaches using residuals, see
Smith [10]. The Cox and Snell generalized
residuals, see Cox and Snell [11], are defined as:

ei =−log RT (ti | zi; β̂)
where RT (ti | zi; β̂) is the reliability function
evaluated at ti and zi with estimates β̂.

Obviously one problem that arises is with the
residuals for censored observations and authors
generally, see Lawless [12], suggest using:

ei =−log RT (ti | zi; β̂)+ 1

Cox and Snell residuals should be i.i.d. random
variables with a unit exponential distribution,
i.e. with an expectation of one. Then the
cumulative hazard function is a linear function
with a slope of one. Also the cumulative hazard
function is minus the log of the reliability
function. Hence a plot of minus the log of the
estimated reliability function for the residuals,
−log R̂(ei), against ei should be roughly linear
with a slope of one when the model is adequate.

Example 9. (cont.) Using the data in Example 3
and fitting the Weibull regression model, the

_
lo

g
(R

el
ia

b
ili

ty
o

f
re

si
d

u
al

)

4

4

3

2

1

0
0 1 2 3

Generalized residual

Figure 26.3. Plot of the generalized residuals of the Weibull
regression model for the sodium sulfur battery data

generalized residuals have been calculated and are
presented in Figure 26.3. The plot is of minus the
log of the reliability function of the generalized
residuals against the generalized residuals. Since
some of the points are far from the line with
slope one, it would seem that the current model is
not necessarily appropriate. Further investigation
would be required to clarify if this was due to the
choice of the distribution or the current model.

The approach described above is applicable to
many distributions. A special case of the Weibull
regression model is the exponential regression
model, when the shape parameter is taken to be
1 (κ = 1). This has been studied by Glasser [13],
Cox and Snell [11] and Lawless [12]. Other
lifetime regression models which can be used
include: gamma, log-logistic, and lognormal, see
Lawless [12]. Many of these models are covered
by the general term location-scale models, or
accelerated failure-time models.

Selection of an appropriate distribution model
depends both on the physical context and on
the actual fit achieved. There ought to be good
physical justification for fitting a distribution
using the context under study. Basing the decision
about the distribution purely on fit can be very
misleading, especially if there are a number of

Statistical Methods for Reliability Data Analysis 485

possible covariates to be chosen. It is always
possible by fitting extra variables to achieve a
better fit to a set of data, though such a fit will have
little predictive power.

26.7 Accelerated Failure-time
Model
The Weibull regression model discussed in the
last section can be regarded as an example of
an accelerated failure-time model. Accelerated
failure-time models were originally devised to
relate the performance of components put through
a severe testing regime to a component’s more
usual lifetime. It was assumed that a variable or
factor, such as temperature or number of cycles,
could be used to describe the severity of the
testing regime. This problem has been considered
by a number of authors, see Nelson [14] for a
comprehensive account of this area.

Suppose in a study that the covariate is z, which
can take the values 0 and 1, and that it is assumed
that the hazard functions are:

λ(t | z= 0)= λ0

and
λ(t | z= 1)= φλ0

so that φ is the relative risk for z= 1 versus z = 0.
Then

R(t | z= 1)= R(φt | z = 0)

and, in particular,

E(T | z= 1)= E(T | z= 0)

φ

So the time for components with z= 1 is passing
at a rate φ faster than for the components with
z = 0. Hence the name of the model.

The model can be extended as follows. Suppose
φ is replaced by φ(z) with φ(0)= 1, then

R(t | z)= R(φ(z)t | z= 0)

and hence

λ(t | z)= φ(z)λ(φ(z)t | z= 0)

and

E(T | z)= E(T | z= 0)

φ(z)

In using the model for analysis a parametric
model is specified for φ(z) with β as the
parameter, which will be denoted by φ(z; β).
A typical choice would be

φ(z; β)= exp(βz)

This choice leads to a linear regression model for
log T as exp(βz)T has a distribution which does
not depend on z. Hence log T is given by:

log T = µ0 − βz+ ε

where µ0 is E(log T | z= 0) and ε is a random
variable whose distribution does not depend on
the covariate z.

To estimate β there is the need to specify
the distribution. If the distribution of T is
lognormal then least squares estimation may
be used as µ0 + ε has a normal distribution.
If the distribution of T is Weibull with a shape
parameter κ , then κ(µ0 + ε) has a standard
extreme value distribution. Hence, as was stated
at the beginning of this section, an example of
the accelerated failure-time model is the Weibull
regression model. Other such models have been
widely applied in reliability, see Cox [15], Fiegl and
Zelen [16], Nelson and Hahn [17], Kalbfliesch [18],
Farewell and Prentice [19], and Nelson [14].
Plotting techniques, such as using Cox and Snell
generalized residuals as defined for the Weibull
regression model, may be used for assessing the
appropriateness of the model.

Example 10. Elsayed and Chan [4] presented data
collected from tests for time-dependent dielectric
breakdown of metal–oxide–semiconductor inte-
grated circuits, which was described in Example
4 with the data given in Table 26.4. The data
consist of times to failure (in hours) for three dif-
ferent temperatures (170 ◦C, 200 ◦C and 250 ◦C).
Elsayed and Chan [4] suggest a model where the
covariate of interest is the inverse of the absolute
temperature. So the covariate vector for the ith cir-
cuit is given by zi = (zi1, zi2)

T, where zi1 = 1 and
zi2 represents the inverse absolute temperature at

486 Practices and Emerging Applications
_

lo
g

(R
el

ia
b

ili
ty

o
f

re
si

d
u

al
)

5

4

3

2

1

0
0 1 2 3

Generalized residual
5

4

Figure 26.4. Plot of the generalized residuals of the Weibull
regression model for the semiconductor integrated circuit data

which the test was performed, and takes the three
values 0.001 911, 0.002 113, and 0.002 256. Hence
β2 represents the coefficient of the inverse absolute
temperature covariate.

Fitting the Weibull regression model results in
β̂2 =−7132.4 and κ̂ = 0.551. Using the observed
information matrix the standard error of β̂2 =
1222.0. Hence a 95% confidence interval for β2 is
(−9527.5,−4737.1). This interval indicates that
β2 is non-zero, and this would imply there is a
difference in the performance of the circuits at the
different temperatures. This can be confirmed by
performing a hypothesis test to see if β2 is non-
zero. The hypotheses are:

H0 : β2 = 0

H1 : β2 �= 0

The log likelihood evaluated under H0 is
−148.614 and under H1 is −130.112. Hence
the likelihood ratio test statistic has a value
of 37.00. Under the null hypothesis the test
statistic has a χ2 distribution with one degree
of freedom. Therefore the hypothesis that β2 is
zero is not accepted and this implies there is a
difference between the circuits depending on the
temperatures of the tests. Using the estimate β̂2
of β2 and its standard error gives a Wald statistic
of 34.06, almost the same value as the likelihood

ratio test statistic, and hence leads to the same
inference.

The generalized residuals are presented in
Figure 26.4. The plot is of minus the log of the
reliability function of the generalized residuals
against the generalized residuals. The points lie
closer to a line with slope one than was the case
in Figure 26.3 for Example 9. So the current model
may be appropriate.

26.8 Proportional Hazards
Model

This model has been widely used in reliability
studies by a number of authors: Bendell and
Wightman [20], Ansell and Ansell [3] and
Jardine and Anderson [21]. The model Cox [7]
proposed assumed that the hazard function for a
component could be decomposed into a baseline
hazard function and a function dependent on the
covariates. The hazard function at time t with
covariates z, λ(t | z), would be expressed as:

λ(t | z)= ψ[λ0(t), φ(z; β)]
where ψ would be an arbitrary function,
λ0(t) would be the baseline hazard function,
φ would be another arbitrary function of the
covariates, z, and β the parameters of the
function φ. It was suggested by Cox [7] that ψ

might be a multiplicative function and that φ

should be the exponential with a linear predictor
for the argument. This proportional hazards
model has the advantage of being well defined and
is given by:

λ(t | z)= λ0(t) exp(βTz)

However, this is only one possible selection for
ψ and φ. Using the multiplicative formulation it
is usual to define φ(z; β) so that φ(0, β)= 1, so
that φ(z; β) is the relative risk for a component
with covariate z compared to a component with
covariate z= 0. Thus the reliability function is
given by:

R(t | z)= R(t | z= 0)φ(z,β)

Statistical Methods for Reliability Data Analysis 487

where R(t | z= 0), often denoted simply as R0(t),
is the baseline reliability function. Etezardi-Amoli
and Ciampi [22], amongst others, have considered
an alternative additive model.

Cox [7] considered the case in which the hazard
function is a semi-parametric model; λ0(t) is
modeled non-parametrically (or more accurately
using infinitely many parameters). It is possible
to select a specific parametric form for λ0(t),
which could be a hazard function from one of
a number of families of distributions. In the
case of the semi-parametric model, Cox [23]
introduced the concept of partial likelihood
to tackle the problems of statistical inference.
This has been further supported by the work
of Andersen and Gill [24]. In Cox’s approach
the partial likelihood function is formed by
considering the components at risk at each of the
n0 failure times t[1], t[2], t[3], . . . , t[n0], as defined
in Section 26.5. This produces a function which
does not depend on the underlying distribution
and can therefore be used to obtain estimates
of β. Ties often occur in practice in data, and
adjustment should be made to the estimation
procedure to account for ties, as suggested by
Breslow [25] and Peto [26].

Example 11. Returning to the sodium sulfur
batteries data used in Example 9, put z= z2,
which was defined in Example 9 to indicate
whether the battery comes from batch 1 or
batch 2. (Note: The variable z1 = 1 is not required
as the arbitrary term λ0(t) will contain any
arbitrary constant which was provided in the
Weibull regression model in Example 9 by the
parameter β1.) Then β̂ =−0.0888, dropping the
redundant suffix from β̂ . Using the information
matrix, the standard error of β̂ is 0.4034. Hence
a 95% confidence interval for β is (−0.879,
0.702).

A test can be performed to see if β is non-zero.
If it is non-zero this would imply there is a
difference between the two batches of batteries.
The hypotheses are:

H0 : β = 0

H1 : β �= 0

It is possible to use the partial log likelihood,
which when evaluated under H0 is −81.262 and
under H1 is−81.238. Hence the “likelihood” ratio
test statistic (twice the difference between these
partial log likelihoods) has a value of 0.048. Under
the null hypothesis this test statistic can be shown
to have a χ2 distribution with one degree of free-
dom, in the same way as for likelihood. Therefore
the hypothesis that β is zero is accepted and this
implies there is no difference between the batches.

An alternative non-parametric approach can
be taken in the case when comparing two
distributions to see if they are the same. In the case
of two groups a test of whether β = 0 is equivalent
to testing whether the two reliability functions,
R1(t) for group 1 and R2(t) for group 2, are the
same. The hypotheses are:

H0 : R2(t)= R1(t)

H1 : R2(t)= R1(t)
exp(β) for β not equal to 0

A test statistic was proposed by Mantel [27], which
under the null hypothesis can be shown to have a
χ2 distribution with one degree of freedom.

Example 12. Returning to Example 11, a test of
whether β = 0 is equivalent to testing whether
the reliability functions are the same for both
batches of batteries. The statistic proposed by
Mantel [27] is equal to 0.0485. This statistic,
though not identical, is similar to that obtained
from the likelihood ratio in Example 11, and hence
leads to the same conclusion. Therefore the null
hypothesis that β is zero is accepted.

These examples have used a categorical co-
variate which indicates different groups of ob-
servations. The next example uses a continuous
covariate.

Example 13. Returning to the semiconductor in-
tegrated circuit data used in Example 10, put z=
z2, which was defined in Example 10 as the inverse
of the absolute temperature. Then β̂ =−7315.0.
Using the information matrix, the standard error
of β̂ is 1345.0. Hence a 95% confidence interval for
β is (−9951.2,−4678.8).

488 Practices and Emerging Applications

This interval indicates that β is non-zero, and
this would imply there is a difference in the perfor-
mance of the circuits at the different temperatures.
This can be confirmed by performing a test to see
if β is non-zero. The hypotheses are:

H0 : β = 0

H1 : β �= 0

It is possible to use the partial log likelihood,
which when evaluated under H0 is −190.15 and
under is−173.50. Hence the “likelihood” ratio test
statistic (twice the difference between these partial
log likelihoods) has a value of 33.31. Under the
null hypothesis this test statistic can be shown to
have a χ2 distribution with one degree of freedom,
in the same way as for likelihood. Therefore the
hypothesis that β is zero is not accepted, and
this implies there is a difference between the
circuits depending on the temperatures of the
tests.

Using the estimate β̂ of β and its standard
error gives a Wald statistic of 29.60, almost the
same value as the likelihood ratio test statistic,
and hence leads to the same inference.

The reliability function has to be estimated, and
the usual approach is to first estimate the baseline
reliability function, R0(t).

Example 14. The estimate of the baseline reliabil-
ity function for the data on sodium sulfur batteries
introduced in Example 9 with the estimate β̂ of β
as given in Example 11, is given in Figure 26.5 with
95% confidence limits.

Baseline has been defined as the case with
covariate z= 0. However this is not always a
sensible choice of the covariate. This is illustrated
in the next example.

Example 15. For the semiconductor integrated
circuit data used in Example 10, z= z was
defined as the inverse of the absolute temperature.
This will only be zero if the temperature is
infinitely large. Hence it makes more sense to take

E
st

im
at

e
o
f

b
as

el
in

e
re

lia
b
ili

ty

0.0
3500

0.2

0.4

0.6

0.8

1.0

1500 20005000

Lifetime (cycles)

1000 2500 3000

Figure 26.5. Plot of the baseline reliability function for the
proportional hazards model for the sodium sulfur battery data with
95% confidence limits

the baseline value to be one of the temperatures
used in the tests. The smallest temperature will
be chosen, which corresponds to 0.002 256, the
largest value of the inverse absolute temperature.
Then the estimate of the baseline reliability
function for the data, with the estimate of β as
given in Example 13, is given in Figure 26.6 with
95% confidence limits.

E
st

im
at

e
o
f

b
as

el
in

e
re

lia
b
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

1500 20005000

Time (hours)

1000 2500 3000

Figure 26.6. Plot of the baseline reliability function for the
proportional hazards model for the semiconductor integrated
circuit data with 95% confidence limits

Statistical Methods for Reliability Data Analysis 489

Figure 26.7. Plot of the Schoenfeld residuals for a batch of the
proportional hazards model for the sodium sulfur battery data

26.9 Residual Plots for the
Proportional Hazards Model

Given the estimates of the reliability function
it is then possible to obtain the Cox and
Snell generalized residuals. However, it has been
found that other residuals are more appropriate.
Schoenfeld [28] suggested partial residuals to
examine the proportionality assumption made in
the Cox model. These residuals can then be plotted
against time, and if the proportional hazards
assumption holds then the residuals should be
randomly scattered about zero, with no time
trend.

Example 16. Using the sodium sulfur battery data
from Example 3 and fitting the proportional
hazards model, the Schoenfeld residuals are
calculated and presented in Figure 26.7 as a plot
of the residuals against time. A non-parametric
estimate of the regression line, the “lowess” line,
see Cleveland [29], is included on the plot as well
as the zero residual line. There seems to be no
significant trend. A test for linear trend can be
used. For this test the statistic is 0.0654, which
would be from a χ2 distribution with one degree
of freedom if there was no linear trend. Hence
there is no evidence of a linear trend, and it is

probably safe to accept the proportional hazards
assumption.

Example 17. Using the semiconductor integrated
circuit data from Example 4 and fitting the propor-
tional hazards model, the Schoenfeld residuals are
calculated and presented in Figure 26.8 as a plot
of the residuals against time. A non-parametric
estimate of the regression line, the “lowess” line,
is included on the plot as well as the zero resid-
ual line. For the test for linear trend the statistic
is 1.60, which would be from a χ2 distribution
with one degree of freedom if there was no linear
trend. Hence there is no evidence of a linear trend.
However, it is not clear whether to accept the
proportional hazards assumption.

A number of statistical packages facilitate pro-
portional hazards modeling, including SAS and
S-PLUS. Therneau et al. [30] suggest two al-
ternative residuals, a martingale residual and a
deviance residual. Except in the case of discrete
covariates, these residuals are far from simple
to calculate, however statistical software is avail-
able for their estimation. In the case of discrete
covariates the martingale residuals are a transfor-
mation of the Cox and Snell generalized residuals.
The deviance residuals are a transformation of

Figure 26.8. Plot of the Schoenfeld residuals for the inverse of
absolute temperature of the proportional hazards model for the
semiconductor integrated circuit data

490 Practices and Emerging Applications
M

ar
ti

n
g

al
e

re
si

d
u

al
s

w
it

h
0

it
er

at
io

n
s

_2

0.0023

Inverse absolute temperature

Lowess smooth line

_3

_1

0

1

0.0019 0.0020 0.0021 0.0022

Figure 26.9. Plot of the martingale residuals versus the inverse of
the absolute temperature of the null proportional hazards model
for the semiconductor integrated circuit data

the martingale residuals to correct for skewness.
Therneau et al. [30] suggest that the martingale
residuals are useful in deciding about (a) appro-
priate functional relationships between the covari-
ates and their survival, (b) proportionality of the
hazard functions, and (c) the influence of obser-
vations. They suggest the deviance residuals are
more useful in identifying the observations which
may be outliers.

Example 18. Using the semiconductor integrated
circuit data as in Example 4 and fitting the propor-
tional hazards model, the martingale residuals are
calculated and presented in Figure 26.9 as a plot
of the residuals against the covariate, the inverse
of the absolute temperature. A non-parametric
estimate of the regression line, the “lowess” line, is
included. There is some suggestion that a linear fit
might not be best and a quadratic function might
be an improvement, but this was found not to be
the case.

The deviance residuals are calculated and can
be used with the standardized score residuals to
identify outliers. The plot of these residuals in
Figure 26.10 suggests that there are some outliers
with standardized score residuals which are larger
than 0.3.

Figure 26.10. Plot of the deviance residuals versus the standard-
ized score residuals for the inverse of the absolute temperature of
the proportional hazards model for the semiconductor integrated
circuit data

26.10 Non-proportional
Hazards Models
An assumption of the Cox regression model was
that the hazards are proportional. This can be
interpreted as the distance between the log (−log)
of the reliability functions not varying with time.
Cox [7] suggested a test for this proportionality by
adding an extra covariate of log time to the model
with parameter β2. In the case of two groups with
zi indicating membership of a group (zi = 0 if
the ith individual belongs to group 1, zi = 1 if it
belongs to group 2) with coefficient β1, then the
hazard functions become:

for group 1: λ0(t)

for group 2: λ0(t) exp(β1 + β2 log(t))

= λ0(t)t
β2 exp(β1)

If the coefficient of log time (β2) is differ-
ent from zero, the hazard functions are non-
proportional as their ratio tβ2 exp(β1) varies
with t , otherwise they are proportional as the haz-
ard function for group 2 reduces to λ0(t) exp(β1).
The use of such models with time-dependent
covariates was justified by Andersen and Gill [24].

Statistical Methods for Reliability Data Analysis 491

Example 19. Using the sodium sulfur batter-
ies data in Example 3 and fitting Cox’s non-
proportional hazards model, β2 = 0.0900 with
standard error 0.523. These give a Wald statistic
of 0.0296, which is not significantly different from
zero, for a χ2 distribution with one degree of free-
dom. Hence the null hypothesis of proportionality
of the hazards is accepted, which agrees with the
conclusion made in Example 16, when using the
Schoenfeld residuals.

Many authors have extended this use of time-
dependent variables in studies of lifetimes, for
example Gore et al. [31]. The other obvious
problem is selection of an appropriate model.
A plot of log (−log) of the reliability function
or log hazard plot may reveal some suitable
function, or the nature of the problem may
suggest some particular structure. Alternatively
one might use the smoothed martingale residuals
suggested by Therneau et al. [30], plotted against
the covariate to seek functional form. The danger
is in producing too complex a model which
does not increase insight. When the variables
are quantitative rather than qualitative then the
problem is exacerbated, and greater caution is
necessary.

When predicting future performance there may
be difficulties with time-dependent covariates and
then it may be necessary to resort to simulation.

26.11 Selecting the Model and
the Variables

The number of variables included in an analysis
should be considerably less than the number
of data points. Overfitting the data can be a
major problem. Adding extra variables should
improve the fit of the model to the data. However,
this will not necessarily improve the ability of
the model to predict future observations. Some
authors have suggested that data in regression
analyses should be split into two parts. With the
first half one derives the model and with the
second half judgment about the model should be
made. Often there is too little data to allow such an

approach. In the case of limited data one should be
wary therefore of too good a fit to the data.

Most of the assessment of which variable to fit
will be based on the analysis performed. In normal
regression modeling considerable attention has
been paid to variable selection, though no
generally accepted methodology has been devised
to obtain the best set. Two approaches taken
are forward selection, in which variables are
added to the model, and backward selection,
in which variables are deleted until a “good”
model is fitted. These approaches can be applied
together, allowing for the inclusion and deletion
of variables.

For the models considered in this chapter an
equivalent to the F -value, used for models with
normal errors, would be the change in deviance,
which for the ith variable is

Devi =−2(l(βi = 0)− l(βi �= 0))

where l(βi = 0) is the log likelihood without the
ith variable fitted and l(βi �= 0) is with it fitted.
This statistic is asymptotically distributed as χ2

with one degree of freedom. Hence the addition,
or deletion, of a variable given the current
model can be decided on whether this value is
significantly large or not. Whether the approach
results in the “best” fit is always doubtful, but if
there are a large number of variables it may be
a sensible approach. Again if the above method
is used then the model produced should be
capable of physical explanation within the context.
The model ought to seem plausible to others. If the
model cannot be interpreted then there is a danger
of treating the technique as a black box.

26.12 Discussion
Given the variety of models discussed it may
seem crucial that the appropriate model is
selected. Whilst in some specific cases this may
be the case, generally the desire is to identify
factors or variables which are having an effect
on the component’s or system’s performance.
In such cases most of the models will at
least be able to detect effects of factors which

492 Practices and Emerging Applications

are strongly associated with lifetimes, though
they may overlook those with weak association
provided the proportion of censored observations
is small. Solomon [32] has also supported these
comments when comparing accelerated failure-
time and proportional hazards models. Further
work is necessary in the case of highly censored
data. Hence model selection may not be as crucial
as initially suggested. Obviously if the desire is to
model lifetimes of the component in detail then
more care in choice should be taken.

This chapter has covered the analysis of
lifetimes of components and systems. However,
the data in Example 5 was for a repairable
system. So it would be appropriate to estimate the
rate of occurrence of failures (ROCOF). A non-
parametric approach to this problem is given by
Phillips [33]. This is beyond the scope of this
chapter.

References
[1] Keating JP, Glaser RE, Ketchum NS. Testing hypotheses

about the shape parameter of a gamma distribution.
Technometrics 1990;32:67–82.

[2] Kim JS, Proschan F. Piecewise exponential estimator of
the survivor function. IEEE Trans Reliab 1991;40:134–9.

[3] Ansell RO, Ansell JI. Modelling the reliability of sodium
sulphur cells. Reliab Eng 1987;17:127–37.

[4] Elsayed EA, Chan CK. Estimation of thin-oxide reliability
using proportional hazards models. IEEE Trans Reliab
1990;39:329–35.

[5] Newton DW. Some pitfalls in reliability data analysis.
Reliab Eng 1991;34:7–21.

[6] Ansell JI, Phillips MJ. Practical methods for reliability
data analysis. Oxford: Oxford University Press; 1994.

[7] Cox DR. Regression models and life tables. J R Stat Soc B
1972;34:187–220.

[8] Kaplan EL, Meier P. Non-parametric estimation from
incomplete observations. J Am Stat Assoc 1958;53:457–
81.

[9] Nelson W. Hazard plotting for incomplete failure data. J
Qual Tech 1969;1:27–52.

[10] Smith RL. Weibull regression models for reliability
analysis. Reliab Eng Safety Syst 1991;34:55–77.

[11] Cox DR, Snell EJ. A general definition of residuals (with
discussion). J R Stat Soc B 1968;30:248–75.

[12] Lawless JF. Statistical models and methods for lifetime
data. New York: Wiley; 1982.

[13] Glasser M. Exponential survival with covariance. J Am
Stat Assoc 1967;62:561–8.

[14] Nelson W. Accelerated life testing. New York: Wiley; 1993.
[15] Cox DR. Some applications of exponential ordered

scores. J R Stat Soc B 1964;26:103–10.
[16] Fiegl P, Zelen M. Estimation of exponential survival

probabilities with concomitant information. Biometrics
1965;21:826–38.

[17] Nelson WB, Hahn GJ. Linear estimation of a regression
relationship from censored data. Part 1. Simple methods
and their applications. Technometrics 1972;14:247–76.

[18] Kalbfleisch JD. Some efficiency calculations for survival
distributions. Biometrika 1974;61:31–8.

[19] Farewell VT, Prentice RL. A study of distributional shape
in life testing. Technometrics 1977;19:69–76.

[20] Bendell A, Wightman DM. The practical application of
proportional hazards modelling. Proc 5th Nat Reliab
Conf, Birmingham, 1985.Culcheth: National Centre for
Systems Reliability.

[21] Jardine AKS, Anderson M. Use of concomitant variables
for reliability estimation and setting component replace-
ment polices. Proc 8th Adv Reliab Tech Symp, Bradford,
1984. Culcheth: UKAEA.

[22] Etezardi-Amoli J, Ciampi A. Extended hazard regression
for censored survival data with covariates: a spline ap-
proximation for the baseline hazard function. Biometrics
1987;43:181–92.

[23] Cox DR. Partial likelihood. Biometrika 1975;62:269–76.
[24] Andersen PK, Gill RD. Cox’s regression model for

counting processess: a large sample study. Ann Stat
1982;10:1100–20.

[25] Breslow NE. Covariate analysis of censored survival data.
Biometrics 1974;30:89–99.

[26] Peto R. Contribution to the discussion of regression
models and life tables. J R Stat Soc B 1972;34:205–7.

[27] Mantel N. Evaluation of survival data and two new rank
order statistics arising from its consideration. Cancer
Chemother Rep 1966;50:163–70.

[28] Schoenfeld D. Partial residuals for the proportional
hazards regression model. Biometrika 1982;69:239–41.

[29] Cleveland WS. Robust locally weighted regression and
smoothing scatterplots. J Am Stat Assoc 1979;74:829–36.

[30] Therneau TM, Grambsch PM, Fleming TR. Martin-
gale based residuals for survival models. Biometrika
1990;77:147–60.

[31] Gore SM, Pocock SJ, Kerr GR. Regression models and
non-proportional hazards in the analysis of breast cancer
survival. Appl Stat 1984;33:176–95.

[32] Solomon PJ. Effect of misspecification of regression
models in the analysis of survival data. Biometrika
1984;71:291–8.

[33] Phillips MJ. Bootstrap confidence regions for the
expected ROCOF of a repairable system. IEEE Trans
Reliab 2000;49:204–8.

The Application of
Capture–Recapture Methods in
Reliability Studies

Ch
ap

te
r2

7Paul S. F. Yip, Yan Wang and Anne Chao

27.1 Introduction
27.2 Formulation of the Problem
27.2.1 Homogeneous Model with Recapture
27.2.2 A Seeded Fault Approach Without Recapture
27.2.3 Heterogeneous Model
27.2.3.1 Non-parametric Case: λi(t)= γiαt
27.2.3.2 Parametric Case: λi(t)= γi
27.3 A Sequential Procedure
27.4 Real Examples
27.5 Simulation Studies
27.6 Discussion

27.1 Introduction

Suppose there are an unknown number ν of
faults in a computer program. A fault is some
defect in the code which (under at least one set
of conditions) will produce an incorrect output,
i.e. a failure. The program is executed for a total
time τ under a range of conditions to simulate
the operating environment. Failures occur on
Nτ occasions at times 0 < t1 < t2 < · · ·< tNτ < τ .
The time until the detection of fault i is a positive
random variable with hazard function λi(t) (i =
1, 2, . . . , ν). The first column of Table 27.1 gives
a set of failure data for an information system
(seconds CPU time). The data can be found in
Moek [1]. The main purpose of this study is to
estimate the total number of remaining faults in
the system.

Estimation methods are available based on the
observed number of faults. Information about ν

comes from detecting new faults and the rate
at which faults are being detected. However,

it is shown that a large proportion of faults
must be detected in order for the method to
perform satisfactorily [2]. Alternatively, some
other designs have been suggested to improve the
estimation. For example:

• A recapture approach—the recapture idea
is to assume a fault detected, corrected,
and a counter inserted to record potential
recurrences of the fault. The setting up of
a counter where the fault is found, and the
recording of the number of times the fault
is re-detected, is assumed without causing
system failure [3, 4]. The recapture faults
assume that both the detection times and
the fault type are recorded. Information
about ν comes from (a) detecting new faults
and (b) observing the proportion of revisit
faults from subsequent testing. An estimator
based on the optimal estimating equation
is recommended as suggested by Lloyd
et al. [4]. The estimator generated by the

493

494 Practices and Emerging Applications

Table 27.1. Real and simulated failure times of Moek’s data [1]

Fault # First Subsequent simulated failure times

1 880 64 653 329 685 520 016
2 4310 305 937 428 364 432 134 576 243
3 7170 563 910
4 18 930 186 946 195 476 473 206
5 23 680 259 496 469 180
6 23 920 126 072 252 204 371 939
7 26 220 251 385
8 34 790 353 576
9 39 410 53 878 147 409 515 884

10 40 470 371 824 466 719
11 44 290 83 996 327 296 352 035 395 324 494 037
12 59 090 61 435 222 288 546 577
13 60 860 75 630 576 386
14 85 130
15 89 930 205 224 292 321 294 935 342 811 536 573 553 312
16 90 400 228 283 334 152 360 218 368 811 377 529 547 048
17 90 440 511 836 511 967
18 100 610 367 520 429 213
19 101 730 162 480 534 444
20 102 710 194 399 294 708 295 030 360 344 511 025
21 127 010 555 065
22 128 760
23 133 210 167 108 370 739
24 138 070 307 101 451 668
25 138 710 232 743
26 142 700 215 589
27 169 540 299 094 428 902 520 533
28 171 810 404 887
29 172 010 288 750
30 211 190
31 226 100 378 185 446 070 449 665
32 240 770 266 322 459 440
33 257 080 374 384
34 295 490 364 952
35 296 610
36 327 170 374 032 430 077
37 333 380
38 333 500 480 020
39 353 710
40 380 110 433 074
41 417 910 422 153 479 514 511 308
42 492 130
43 576 570

The Application of Capture–Recapture Methods in Reliability Studies 495

optimal estimating equation can be shown
to be equivalent to the maximum likelihood
estimator.
• A seeded fault approach without recapture—

the seeded fault approach assumes a known
number of faults are deliberately seeded in the
system. Faults are detected and the number of
real and seeded faults recorded. Information
about ν comes from the proportion of real
and seeded faults observed in subsequent
testing. With sufficient seeded faults in
the system, recaptures do not improve the
performance significantly [4]. An estimator
based on optimal estimating equation is also
recommended in the present setting [5]. The
estimator generated by optimal estimating
equation can also be shown to be equivalent
to the maximum likelihood estimator.

The two approaches suggested above make the ho-
mogeneity assumption for the failure intensities,
i.e. λi(t)= αt for all i. For heterogeneous models
we consider the following three situations.

1. Non-parametric case (failure intensity λi(t)=
γiαt) with recapture. The γi values are
individual effects and can be unspecified.

2. Parametric case (failure intensity λi(t)= γi)
without recapture, i.e. the Littlewood model
[6] which also includes the Jelinski–Moranda
model as a special case.

3. Parametric case (failure intensity λi(t)= γi)
with recapture. The γi values are assumed
from a gamma density.

For the homogeneous model we use the
optimal estimating equation which is well estab-
lished to be an alternative and efficient method to
estimate population size [7, 8]. We shall introduce
a sample coverage estimator and a Horvitz–
Thompson type estimator [9] to estimate ν for
heterogeneous models.

In this chapter we also discuss a sequential
procedure to estimate the number of faults in
a system. A procedure of this type is useful in
the preliminary stages of testing. In practice it
is expensive and generally infeasible to detect all
the faults in the system in the initial stages of

software development. The idea of the sequential
procedure proposed here is not to find all the
faults in the system. The goal is to detect designs
of questionable quality earlier in the process by
estimating the number of faults that go undetected
after a design review. This can be valuable for
deciding whether the design is of sufficient quality
for the software to be developed further, as
suggested by Van der Wiel and Votta [10]. In the
early stages, we only need a rough idea how many
faults there are before proceeding further. Usually,
an estimate with some specified minimum level
of accuracy would be sufficient [11]. Here we
consider as accuracy criterion the ratio of the
standard error of the estimate to the population
size estimate, sometimes called the coefficient of
variation.

The purpose of this chapter is to provide
estimating methods to make inference on ν.
This chapter is different from other reviews
on the use of recapture in software reliability
and epidemiology, which for example examine
the case of using a number of inspectors to
estimate the number of faults in a system
or estimate the number of diseased persons
based on a number of lists, respectively [12, 13].
Here, we concentrate on a continuous time
framework. Section 27.2 gives a formulation
of the problem which includes homogeneous
and heterogeneous cases, parametrically and
non-parametrically. A sequential procedure is
suggested in Section 27.3 and a real example is
given in Section 27.4 to illustrate the procedure.
Section 27.5 gives a wide range of simulation
results of the proposed estimators. A discussion
can be found in Section 27.6.

27.2 Formulation of the
Problem

Notation

ν number of faults in a system
Ni(t) counting process of the number of

detections of fault i before time t

496 Practices and Emerging Applications

�dt small time interval increase after
time t

Ft σ -algebra generated by Ni(s),
s ∈ [0, t], i = 1, . . . , ν

λi(t) intensity process for Ni(t)

τ stopping time of the experiment
γi individual effect of fault i in the

heterogeneous model
Mt , M∗

t zero-mean martingale
Mt number of distinct faults detected by

time t
Nt total number of detections by time t
Kt number of re-detections of the

already found faults by time t
Wt , k(t) weight function
W∗t optimal weight function
ν̂W estimate of ν with weight function

W
ŝe(ν̂) estimated standard error of the

estimated ν
D number of seeded faults inserted at

the beginning of the experiment
Ut number of real faults detected in the

system before time t
αt failure intensity of the real faults
βt failure intensity of the seeded faults
θ proportionality between αt and βt
Rt , R∗t zero-mean martingale
Ct proportion of total individual effects

of detected faults
I indicator function
Ai(t) event that the fault i has not been

detected up to t but detected at time
t +�dt

 cumulative hazard function
fi(t) number of individuals detected

exactly i times by time t
R remainder term in the extension of

the expectation of νCt

Yi(t) indicator function of the event
whether fault i is at risk of being
detected

G(φ, β) gamma distribution with shape,
scale parameters φ, β

ε, ω parameters after reparameterizing
φ, β

n number of distinct faults detected
during [0, τ]

δi indicator function denoting at least
one failure caused by fault i occurs
in [0, τ]

pi probability of δi taking value 1
(θ) limiting covariance matrix of

parameter θ = (ε, ω)′
d0 given accuracy level
ave(ν̂) average estimated population size

based on simulation
ave(ŝe(ν̂)) average estimated standard error

based on simulation.

In this chapter we consider various assump-
tions of the intensity process, λi(t).

• Homogeneous model: assume all the faults are
homogeneous with respect to failure intensity,
i.e. λi(t)= αt , t ≥ 0, for i = 1, 2, . . . , ν.
• Heterogeneous model: consider λi(t)= γiαt

(where αt are specified).

The individual effects {γ1, γ2, . . . , γν} can be
modeled in the following two ways.

1. Fixed-effect model: {γ1, γ2, . . . , γν} are re-
garded as fixed parameters.

2. Frailty model: {γ1, γ2, . . . , γν} are a random
sample assumed from a gamma distribution
whose parameters are unknown.

The optimal estimating function methods pro-
posed here are based on results for continuous
martingales and follow from the work of Aalen
[14, 15]. For our purpose a zero-mean martingale
(ZMM) is a stochastic process {Mt ≥ 0} such that
E(M0)= 0 and for all t ≥ 0 we have E|Mt |<∞
as well as E(Mt+h|Ft)=Mt for every h > 0.

27.2.1 Homogeneous Model with
Recapture

For a homogeneous model with intensity λi(t)=
αt , t ≥ 0, for i = 1, 2, . . . , ν, we make use of the
estimating function to make inference about ν.
The important feature is to identify an estimating
function which involves the parameter ν. Let Mt

denote the number of faults that are detected by

The Application of Capture–Recapture Methods in Reliability Studies 497

time t and Nt =∑ν
i=1 Ni(t) the total number of

detections by time t . Then Kt =Nt −Mt denotes
the number of re-detections of the already found
faults by time t . Define

dMu =Mu dMu − (ν −Mu) dKu

then dMu is a martingale difference with respect
to Fu, where Fu is the history generated by
{N1(s), N2(s), . . . , Nν(s); 0≤ s ≤ u}. Since we
have

dMu | Fu = Bin(ν −Mu, αu)

and
dKu | Fu = Bin(Mu, αu)

where Bin denotes “Binomially Distributed”, and

E(dMu | Fu)= (ν −Mu)αu

and
E(dKu | Fu)=Muαu

then E(dMu | Fu)= 0. Integrating dMu from 0
to t , it follows that Mt is a ZMM [8]. For any
predictable process Wu, we obtain the following
ZMM:

M∗
t =

∫ t

0
Wu dMu

=
∫ t

0
Wu{Mu dMu − (ν −Mu) dKu} (27.1)

A class of estimators of ν, evaluated at time τ , can
be obtained by solving M∗

τ = 0, i.e.

ν̂W (τ)=
∫ τ

0 WuMu dNu∫ τ
0 Wu dKu

The variance of M∗
τ is given by

Var(M∗
τ)

= E

(∫ τ

0
W 2

u {M2
u dMu + (ν −Mu)

2 dKu}
)

The term for variance follows from the standard
results given by, for example, Andersen and Gill
[16] or Yip [5]. The covariance is zero by virtue of
the orthogonality of the result of the martingale,
since dMu and dKu cannot jump simultaneously.

Using the result

M∗
τ /
√

Var(M∗
τ)−→N(0, 1)

so that M∗
τ = (ν̂W (τ)− ν)

∫ τ
0 Wu dKu, a variance

for the standard error of ν̂W (τ) is given by

ŝe(ν̂W (τ))

=
[∫ τ

0 W 2
u {M2

u dMu + (ν̂W (τ)−Mu)
2 dKu}

]1/2∫ τ
0 Wu dKu

Here we consider two types of weight functions:
Wu = 1 and the optimal weight suggested by
Godambe [17], i.e.

W∗u =
E
[
∂dMu

∂ν

∣∣∣ Fu

]
E[dM2

u | Fu] (27.2)

The optimal property is in terms of giving the
tightest asymptotic confidence intervals for the
estimate. Note that ν is an integer value, so instead
of taking the derivative w.r.t. ν, we compute the
first difference of dMt .

If Wu = 1 we have

ν̂1 =
∫ τ

0 Mu dNu

Kτ

which is the Schnabel estimator [8, 18]. In the
event thatKτ = 0, we define ν̂(τ)=∞, ŝe(ν̂(τ))=
∞, and ŝe(ν̂(τ))/ν̂(τ)=∞. The optimal weight
suggested in Equation 27.2 can readily be shown
to be

W∗u =
1

(ν −Mu)

Hence, the optimal estimator ν̂∗ is the solution of
the following equation:∫ τ

0

1

ν −Mu

[Mu dMu − (ν −Mu) dKu] = 0

(27.3)
which is equivalent to the MLE [8,19]. An estimate
of the standard error of the estimator ν̂∗ is given
by

ŝe(ν̂∗)=
(
ν̂∗
/∫ τ

0

Mu dMu

(ν̂∗ −Mu)2

)1/2

The assumption of homogeneous intensity is not
used in deriving the estimator from the martingale

498 Practices and Emerging Applications

given in Equation 27.1. The intensity function may
depend on time, t . It follows that the estimator is
robust to time heterogeneity. For details, see Yip
et al. [8].

27.2.2 A Seeded Fault Approach
Without Recapture

A known number of faults D are seeded in the
system at the beginning of the testing process
[5]. The failure intensities of the seeded and
real faults are allowed to be time dependent.
The failure intensity of the seeded faults is
assumed to differ from that of the real faults by
a constant proportion, θ , assumed known. The
same failure intensity is assumed to be applied
to each type of fault in the system. Let Ut and
Mt denote the number of real and seeded faults
detected in the system in [0, t], assuming once
a fault is detected it is immediately removed
from the system. No recapture information is
available from detected faults (seeded or real). In
the presence of the unknown parameter αt , an
identifiability problem occurs when we want to
estimate ν by observing the failure times only, the
information of ν and αt is confounded. The extra
effort of inserting a known number D of faults
into the system at the beginning of the testing
provides an extra equation to estimate ν. However,
an identifiability problem can still occur with the
extra unknown parameter βt , which is the failure
intensity of the seeded faults at time t . Here we
assume a constant proportionality between the
two intensities αt and βt , i.e. αt = θβt for all t and
θ assumed known. Yip et al. [20] have examined
the sensitivity of a misspecification of θ and the
estimation performance with an unknown θ . If θ
is unknown, similar estimating functions can be
obtained for making inference on θ and ν.

Here, we define a “martingale difference” with
the intent to estimate ν:

dRu = (D −Mu) dUu − θ(ν − Uu) dMu.

Note that E[dRu | Fu] = 0. Let Wu be a measur-
able function w.r.t. Fu. It follows that the process

R∗ = {R∗t ; t ≥ 0},

R∗t =
∫ t

0
Wu{(D −Mu) dUu − θ(ν − Uu) dMu}

(27.4)
is a ZMM. By equating Equation 27.4 to zero and
evaluating at time τ , a class of estimators for ν is
obtained, i.e.

ν̂w =
[∫ τ

0
Wu{(D −Mu) dUu + θUu dMu}

]
×
[
θ

∫ τ

0
Wu dMu

]−1

(27.5)

which depends on the choice of Wu. The
conditional variance of R∗τ in Equation 27.4 is
given by

Var(R∗τ)= E

[∫ τ

0
W 2

u {(D −Mu)
2 dUu

+ θ2(ν − Uu)
2 dMu}

]
Hence we can deduce a standard error of ν̂w for
the seeded faults approach, given by{[∫ τ

0
W 2

u {(D −Mu)
2 dUu

+ θ2(ν̂w − Uu)
2 dMu}

]1/2}
×
{
θ

∫ τ

0
Wu dMu

}−1

(27.6)

For the choice Wu = 1, we have explicit expres-
sions for the estimate ν̃ and its standard error, i.e.

ν̃ =
∫ τ

0 {(D −Mu) dUu + θUu dMu}
θMτ

(27.7)

and

ŝe(ν̃)=
{[∫ τ

0
{(D −Mu)

2 dUu

+ θ2(ν̂1 − Uu)
2 dMu}

]1/2}
× {θMτ }−1 (27.8)

Also, the optimal weight corresponding to Equa-
tion 27.4 is

W∗u =
1

(ν − Uu)[(D −Mu)+ (ν − Uu)θ]

The Application of Capture–Recapture Methods in Reliability Studies 499

Accordingly an optimal estimating equation in
the sense of giving the tightest confidence for the
estimator of ν is given by

R∗t =
∫ t

0

1

(ν − Uu)[(D −Mu)+ (ν − Uu)θ]
× {(D −Mu) dUu − θ(ν − Uu) dMu}

(27.9)

The optimal estimate ν̃∗ is the solution of
Equation 27.9. An explicit expression is not
available and an iterative procedure is required.
From Equation 27.6 we have an estimate of the
standard error of ν̃∗:

ŝe(ν̃∗)

=
{ ∫ τ

0

{(D−Mu)
2 dUu+θ2(ν̃∗−Uu)

2 dMu}
{(ν̃∗−Uu)[(D−Mu)+(ν̃∗−Uu)θ]}2

}
×
{
θ

∫ τ

0

dMu

(ν̃∗−Uu)[(D−Mu)+(ν̃∗−Uu)θ]
}−1

27.2.3 Heterogeneous Model

Here we introduce a sample coverage estimator
and a two-step procedure to estimate ν for
a heterogeneous model. The sample coverage
method was initiated by Chao and Lee [21] and
the two-step procedure was suggested by Huggins
[22, 23] and Yip et al. [24]. The individual effects
can be assumed to be specified or unspecified
(parametrically or non-parametrically).

27.2.3.1 Non-parametric Case:
λi(t)= γiαt

The individual effects {γ1, γ2, . . . , γν} can be
modeled as either a fixed effect or a random effect.
For a fixed-effect model, {γ1, γ2, . . . , γν} are
regarded as fixed (nuisance) parameters. Instead
of trying to estimate each of the failure intensities,
the important parameters are the mean, γ̄ =∑ν

i=1 γi/ν and coefficient of variation (CV), γ =[∑
(γi − γ̄)2/ν

]1/2
/γ̄ in the sample coverage

approach. The value of CV is a measure of the
heterogeneity of the individual effects. CV= 0 is
equivalent to all the γi values being equal. A larger

CV implies the population is more heterogeneous
in individual effects. For a random-effects model
we assume {γ1, γ2, . . . , γν} are a random sample
from an unspecified and unknown distribution
F with mean γ̄ = ∫ u dF(u) and CV γ = ∫ (u−
γ̄)2 dF(u)/γ̄ 2. Both models lead to exactly the
same estimator of population size using the
sample coverage idea [25, 26]. The derivation
procedure for the random-effects model is nearly
parallel to that for the fixed-effects model. Thus
in the following we only illustrate the approach by
using the fixed-effects model.

Let us define the sample coverage, Ct , as the
proportion of total individual fault effects of
detected faults, given by

Ct =
[ν∑

i=1

γiI (the ith fault is detected at

least once up to t)

][ν∑
i=1

γi

]−1

where I is an indicator function. Let Mt and Kt

be the numbers of marked faults in the system and
the number of re-detections of those faults at time
t , respectively, and let Ai(t) be the event that the
ith fault has not been detected up to t but detected
at time t +�dt . We have

E[dMt | Ft] = E

[ν∑
i=1

I {Ai(t)} | Ft

]

=
ν∑

i=1

γiαt dtI (ith fault is not

detected up to t)

It follows from the definition of Ct that

E[dMt | Ft] = (1− Ct)

(ν∑
i=1

γi

)
αt dt

and

E[dKt | Ft] = (Ct)

(ν∑
i=1

γi

)
αt dt

for t > 0.

500 Practices and Emerging Applications

Consider the following ZMMs:

Mt =
∫ t

0

{
(νCu)

[
dMu − (1− Cu)

×
(ν∑

i=1

γi

)
αu du

]
− ν(1− Cu)

[
dKu − (Cu)

×
(ν∑

i=1

γi

)
αu du

]}
=
∫ t

0
{(νCu) dMu − (ν − νCu) dKu}

whereE[Mt] = 0 ∀t . By eliminating the unknown
parameters

∑ν
i=1 γi and αu in Mt we can

make inference about ν in the presence of the
nuisance parameter νCu which can be estimated
accordingly. By integrating a predictable function
Wu w.r.t. M= {Mt ; t ≥ 0} we have another
martingale, i.e.

M∗
t =

∫ t

0
Wu{(νCu) dMu − (ν − νCu) dKu}

(27.10)
where M∗

t involves the parameters ν and νCu.
Similarly, we consider two types of weight func-
tions: Wu = 1 and the optimal weight suggested in
Equation 27.2.

Suppose all the γi values are the same so
we have νCu =Mu and (ν − νCu)= ν −Mu for
the homogeneous case as in Section 27.2.1; the
estimating function Equation 27.10 reduces to

M∗
t =

∫ t

0
Wu[Mu dMu − (ν −Mu) dKu]

(27.11)
which is equivalent to Equation 27.1. If we can find
a “predictor” ν̂Cu for νCu, we have the following
estimator for ν:

ν̂h =
∫ t

0 Wu(ν̂Cu) dNu∫ t
0 Wu dKu

(27.12)

The optimal weight can be shown to be

W∗u =
1

1− Cu

Also, this weight reduces to the optimal weight
used in the homogeneous case where all the γ

values are the same. Here we suggest a procedure
to find an estimator for E[νCu] and subsequently
use it to replace νCu in the estimating function.
Note that

E[νCu] = 1

γ̄

ν∑
i=1

γiE[the ith fault is detected

at least once up to u]

= 1

γ̄

ν∑
i=1

γi[1− e−γi
]

where
= ∫ u0 αs ds and we also have

E[Mu] =
ν∑

i=1

[1− e−γi
]

It then follows that

E[νCu] = E(Mu)+G(γ1, . . . , γν)

where

G(γ1, . . . , γν)=
ν∑

i=1

(1− γi/γ̄) exp(−γi
).

Define γ ∗i = γ̄ + θ(γi − γ̄), for some 0 < θ < 1.
Expanding G(γ1, . . . , γν) at (γ̄ , . . . , γ̄) we have

E[νCu] = E[Mu] + γ 2ν
γ̄ e−
γ̄

− 1

2

ν∑
i=1

2 e−γ ∗i
 (γi − γ̄)3

γ̄

= E[Mu] + γ 2
ν∑

i=1

(
γi) e−
γi

+ γ 2

ν∑
i=1

(γ̄ e−
γ̄ − γi e−
γi)

− 1

2

ν∑
i=1

2 e−γ ∗i
 (γi − γ̄)3

γ̄

= E[Mu] + γ 2E[f1(u)] + R

where fi(u) is the number of individuals that
have been caught exactly i times in the sample by

The Application of Capture–Recapture Methods in Reliability Studies 501

time u, and

R = γ 2u

ν∑
i=1

(γ̄ e−
γ̄ − γi e−
γi)

− 1

2

ν∑
i=1

2 e−γ ∗i
 (γi − γ̄)3

γ̄

The remainder term, R, is usually negligible, as
shown by Chao and Lee [25] when the variation
of the γi values is not relatively large, say, γ < 1.
One theoretical justification for the approximation
is that when γ1, γ2, . . . , γν are a random sample
from a gamma distribution, the remainder term R

satisfiesR/ν→ 0 as ν→∞. Further justifications
can be found in Lin et al. [27]. The estimation
of νCu will then be based on the approximation
ignoring R in Chao and Lee [21]. Thus we have the
following estimator for νCu:

ν̂Cu =Mu + γ̂ 2f1(u)

where γ̂ 2 is an estimator of CV given by Chao and
Lee [25]:

γ̂ 2 =max

{
Mt

Ĉt

∑
i(i − 1)fi(t)

[∑ ifi(t)]2 − 1, 0

}
(27.13)

where

Ĉt = 1− f1(t)∑
i ifi(t)

An estimator of ν based on the sample coverage
estimate in Chao and Lee [25] is

ν̂2 = Mt

Ĉt

+ f1(t)

Ĉt

γ̂ 2 (27.14)

Substituting ν̂Cu into Equation 27.12, we obtain
the following two new estimators:

ν̂3 =
∫ t

0 {Mu + γ̂ 2f1(u)} dNu

Kt

for Wu = 1

ν̂4 =
[∫ t

0

1

(1− Ĉu)
{Mu + γ̂ 2f1(u)} dNu

]

×
[∫ t

0

1

(1− Ĉu)
dKu

]−1

for Wu = 1

1− Ĉu

The estimation of γ 2 is based on all data at the end
of the experiment. However, we need to estimate
Cu and νCu sequentially for 0 < u ≤ τ . It is clear
that the CV value plays an important role in the
estimation procedure.

An estimate of the standard error for ν̂3 and ν̂4
is given by:

ŝe(ν̂h)=
√

V̂ar(M∗
t)∫ t

0 Wu dKu

(27.15)

where V̂ar(M∗
t)=

∫ t
0 (Wu)

2{(ν̂Cu)
2

dMu + (ν̂h −
ν̂Cu)

2 dKu}. Simulation results show that ŝe(ν̂3)

and ŝe(ν̂4) severely underestimate the variability
of ν̂3 and ν̂4. The expression in Equation 27.15
has not taken into account the additional variation
introduced by substituting the estimates for the
parameters such as νCu and ν in the estimating
function. The resulting expression for the estimate
of ŝe(ν̂h) would be complicated if the variability
of these estimates were taken into account. An
alternative procedure by bootstrap is used to
assess the variability instead [26].

27.2.3.2 Parametric Case: λi(t)= γi

Let Ni(t) be the counting process for fault i and
γi be its occurrence rate as a stochastic variable,
i.e. the intensity process for the counting process
depends on an unobservable random variable. Let
Yi(t) indicate, by the value of 1 or 0, whether fault
i has not been removed before t , thus Yi(t) is an
observable non-negative predictable process. Let
τ be the duration of the study and Ft denote the
history generated by {Ni(s), Yi(s), 0≤ s ≤ t}.

Suppose that γi has a gamma distribution with
parameters φ and β , denoted by G(φ, β) with
density function

f (γi | φ, β)= e−βγi γ φ−1
i βφ

�(φ)
(γi > 0)

Using the innovation theorem [15], the compen-
sator of the counting process Ni(t) is given by

λi(t)= Yi(t)

{
φ +Ni(t)

β + t

}
(27.16)

502 Practices and Emerging Applications

The intensity function λi(t) depends on time
and the number of times the ith individual
fault has been detected. The formulation in
Equation 27.16 includes both the removal and
recapture sampling methods. For the case of
removal, in which Ni(t) equals zero since the
ith fault is removed from the system after being
detected, the model becomes the Littlewood model
[2, 6]. In addition, Equation 27.16 also includes
the recapture experiment in which a counter is
inserted at the location after the fault is detected
and the counter registers the number of re-
detections of a particular fault without causing the
system failure [3]. The re-detection information
has been shown to be important in determining
the performance when estimating the number of
faults in a system [4]. If we reparameterize the
intensity in Equation 27.16 by letting

ε = 1

φ
, ω = β

φ

then we have

λi(t)= Yi(t)

{
1+ εNi(t−)

ω + εt

}
(27.17)

This extension allows the case of ε ≤ 0 to have
a meaningful interpretation [28]. Note that when
ε = 0 (i.e. φ =∞) for a removal experiment, the
model reduces to the Jelinski–Moranda model in
software reliability studies [29].

The full likelihood function is given by

L(θ)= ν!
(ν − n)!

∏
0≤t≤τ

[ν∏
i=1

λi(t)
dNi(t)

× {1− λi(t) dt}1−dNi(t)

]
(27.18)

see Andersen et al. [2], p.402, which reduces to

L(θ)= ν!
(ν − n)!

ν∏
i=1

[{ ∏
0≤t≤τ

λi(t)
dNi(t)

}
× exp

{
−
∫ τ

0
λi(t) dt

}]
(27.19)

where n denotes the number of distinct faults
detected in the experiment.

For the removal experiment, Littlewood [6]
suggested using the maximum likelihood (ML) to
estimate the parameters ω, ε (or φ, β) and ν.
However, due to the complexity of the three highly
nonlinear likelihood equations, it is difficult if not
impossible to determine consistent estimates out
of the possible multiple solutions of the likelihood
equations. A similar problem exists for alternative
estimation methods such as the M-estimator. An
estimating function is used to estimate φ, β and ν

which can be found by solving the equation

ν∑
i=1

∫ τ

0
kj (t)

[
dNi(t)− Yi(t)

{
φ +Ni(t)

β + t

}
dt

]
(27.20)

for j = 1, 2, 3 with weight functions kj (t)=
(β + t)tj−1 , see Andersen et al. [2]. Accordingly,
we obtained the linear system of equations for
determining φ̂, β̂ and ν̂. For the special case
Ni(t)= 0 for all t , Andersen et al. [2] provided
an estimate for φ, β and ν for the data in
Table 27.1. However, the ad hoc approach does not
provide stable estimates in the simulation. Also,
for the recapture case, the parameter ν cannot be
separated from the estimating Equation 27.20, and
so we are unable to solve for ν̂. Furthermore, the
optimal weights involve the unknown parameters
in a nonlinear form, which makes Equation 27.20
intractable.

Here an alternative two-step estimation proce-
dure is suggested. Firstly, with the specified form
of intensity in Equation 27.16 or 27.17, we are
able to compute the conditional likelihood of ω

and ε (or φ and β) using the observed failure
information. The likelihood equation in the first
stage reduces to a lower dimension, so that it is
easier to obtain the unique consistent solutions.
The second stage employs a Horvitz–Thompson
[9] type estimator which is the minimum vari-
ance unbiased estimator if the failure intensity is
known. For the removal experiment, the condi-
tional MLE are asymptotically equivalent to the
unconditional MLE suggested by Littlewood [6].

Let pi = Pr(δi = 1) denote the probability of
the ith fault being detected during the course of
the experiment. These probabilities are the same
for all faults under the model assumption, and

The Application of Capture–Recapture Methods in Reliability Studies 503

with the application of the Laplace transform it
can be shown that

pi = p(ω, ε)= 1−
(

ω

ω + ετ

)1/ε

The likelihood function for the given data can be
rewritten as:

L(θ)= L1 × L2

where

L1=
ν∏

i=1

{∏
0≤t≤τλi(t)dNi(t) exp(− ∫ τ0 λi(t) dt)

pi

}δi

(27.21)

L2= ν!
(ν − n)!

ν∏
i=1

{
exp

[
−
∫ τ

0
λi(t) dt

]1−δi
p
δi
i

}
(27.22)

where δi indicates, by the value of 1 versus 0,
whether or not the ith fault has ever been detected
during the experiment. Since the marginal likeli-
hood L2 depends on the unknown parameter ν,
we propose to make inference about θ = (ω, ε)′
based on the conditional likelihood L1 which does
not depend on ν. The corresponding score func-
tion of the conditional likelihood L1 is given by

U(θ)= ∂ log(L1)/∂θ

=
ν∑

i=1

δi

{ ∫ τ

0

∂ log λi(t)

∂θ
dNi(t)

−
∫ τ

0
Yi(t)

∂λi(t)

∂θ
dt − ∂ log(pi)

∂θ

}
where

λi(t)= Yi(t)

{
1+ εNi(t−)

ω + εt

}
Let θ̂ = (ω̂, ε̂)′ be the solution to U(θ)= 0.

The usual arguments ensure the consistency and
ν1/2(θ̂ − θ) converges to N(0, −1(θ)), where
(θ)= limν→∞ ν−1I (θ), I (θ)=−∂U(θ)/∂θ ′.
The variance of the estimator θ̂ can thus be
estimated by the negative of the first derivative of
the score function, I (θ̂).

Since the probability of being detected is p(θ),
it is natural to estimate the population size ν by the

Horvitz–Thompson estimator [9], i.e.

ν̂ =
ν∑

i=1

δi

p(θ̂)
= n

p(θ̂)
(27.23)

where n denotes the number of distinct faults
detected. To compute the variance of ν̂, we have

ν̂(θ)− ν =
ν∑

i=1

[
δi

p
− 1

]
By a Taylor series expansion and some simple
probabilistic arguments:

ν−1/2{ν̂(θ̂)− ν} = ν−1/2
ν∑

i=1

[
δi

p
− 1

]
+H ′(θ)ν1/2(θ̂ − θ)+ op(1)

(27.24)

where

H(θ)= E{Ĥ (θ)}
Ĥ (θ)= ν−1 ∂ν̂(θ)

∂θ
= ν−1

{
n
∂p/∂θ

p2

}
It follows from the multivariate central limit

theorem and the Cramér–Wold device that
ν−1/2{ν̂(θ̂)− ν} converges in distribution to a
zero-mean normal random variable. The variance
for the first term on the right-hand side of
Equation 27.24 is:

ν−1
ν∑

i=1

Var(δi)

p2 = ν−1
ν∑

i=1

p(1− p)

p2

which can be consistently estimated by

ν−1
ν∑

i=1

δi(1− p)

p2 = ν−1 n(1− p)

p2

The variance for the second term is
H ′(θ)−1(θ)H(θ). The covariance between
the two terms is zero. A consistent variance
estimator for ν−1/2{ν̂(θ̂)− ν} is then given by:

ŝ2 = ν̂−1 n(1− p̂)

p̂2 + Ĥ ′(θ̂)ν̂I−1(θ̂)Ĥ (θ̂)

(27.25)
where

Ĥ (θ)= ν−1 ∂ν̂

∂θ
and p̂ =

(
1− ω̂

ω̂ + ε̂τ

)1/ε̂

504 Practices and Emerging Applications
S

ca
le

d
T

T
T 0.8

1

1

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8

i n/

Figure 27.1. Scaled TTT plot of the failure data set from [1]

27.3 A Sequential Procedure

Here a sequential procedure is suggested to
estimate the number of faults in a system and
to examine the efficiency of such a procedure.
A procedure of this type is useful in the
preliminary stages of testing. The testing time
needs to be long enough to allow sufficient
information to be gathered to obtain an accurate
estimate, but at the same time we do not want
to waste testing effort as testing can be quite
expensive.

In practice it is expensive and generally
infeasible to detect all the faults in the system
in the initial stages of software development.
The idea of the sequential procedure proposed
here is not to find all the faults in the system.
The goal is to detect designs of questionable
quality earlier in the process by estimating the
number of faults that go undetected after a design
review. Here we consider as accuracy criterion
the ratio of the standard error of the estimate to
the population size estimate, sometimes called the
coefficient of variation. For a given accuracy level,
d0, the testing experiment stops at time τ0 when
the accuracy condition is met. Thus

τ0 = inf

[
t : ŝe{ν̂(t)}

ν̂(t)
< d0

]
(27.26)

The criterion is applicable to any other estimators,
so long as we can compute the ratio ŝe{ν̂(t)}/ν̂(t)
at any time t ∈ (0, τ).

27.4 Real Examples
The proposed methods are applied to the aircraft
movements data from Moek [1], as given in Ta-
ble 27.1. The data comprises 43 occurrence times
(in seconds CPU time) of first failures caused by
43 distinct faults of an information system for
registering aircraft movements. Data are shown in
the second column of Table 27.1. Figure 27.1 gives
the total time on test (TTT) plot, which suggests
that the failure times are identically exponentially
distributed. The maximum likelihood estimate
for the failure intensity λ̂ is estimated to be
5.4× 10−6. Using the M-estimates suggested by
Andersen et al. [2], we obtain ω̂ = 0.196(0.007),
ε̂ = 0.089(0.102), and ν̂ = 46.4(10.14) based on
the 43 failures reported. Here we illustrate how the
recapture improves the estimation. For a recapture
experiment, each fault is detected, corrected, and
a counter inserted to record the number of re-
detections of a particular fault. In order to use the
data set for a recapture experiment, we generated
interfailure times for each of the detected faults
based on the maximum likelihood estimate of
the failure intensity γ̂ = 5.4× 106 [2] from an
exponential distribution. The third column of
Table 27.1 contains the simulated failure times
after the first detection time. The time for the
end of the experiment is 576 570 seconds in CPU
time. The estimated number of total faults in
the system using Equation 27.3 based on the
recapture data is ν̂ = 47.4(2.5). The two-step
procedure in Section 27.2.3.2 gives the estimate
ν̂ = 45.2(1.6). Chao’s coverage estimate in
Equation 27.14 gives ν̂ = 45.9(2.4). The numbers
inside the brackets represent standard errors. The
recapture information improves the estimation.
The two-step procedure and the sample coverage
are almost the same.

Table 27.2 shows the results of applying the
proposed sequential procedure in Section 27.3
when estimating ν for the data in Table 27.1.
As τ increases the standard error of the
estimate decreases with some fluctuation.
The improvement of d0 from 0.33 to 0.32 requires
doubling the testing time. The distinct number
of faults detected increased from 13 to 26. Also,

The Application of Capture–Recapture Methods in Reliability Studies 505

Table 27.2. Results of applying the sequential procedure for the
Moek’s data in Table 27.1

d0 τ0 Nτ0 Mτ0 ν̂ ŝe(ν̂)

0.05 576 570 126 43 47.40 2.54
0.06 520 016 114 42 47.56 2.82
0.07 459 440 101 41 48.05 3.33
0.08 428 902 93 41 49.13 3.91
0.09 374 032 83 39 48.95 4.38
0.10 368 811 79 39 49.95 4.89
0.11 353 576 73 38 50.40 5.48
0.12 329 685 67 36 49.58 5.80
0.13 295 030 59 33 48.27 6.21
0.14 294 708 57 33 49.54 6.85
0.15 288 750 55 33 51.05 7.62
0.16 266 322 54 33 51.90 8.07
0.17 252 204 51 32 52.16 8.68
0.18 232 743 48 31 52.65 9.45
0.19 228 283 47 31 54.00 10.21
0.20 222 288 45 30 53.47 10.47
0.21 215 589 44 30 55.14 11.44
0.22 205 224 42 29 54.77 11.87
0.23 205 224 42 29 54.77 11.87
0.24 195 476 41 29 56.92 13.16
0.25 194 399 40 29 59.45 14.74
0.26 194 399 40 29 59.45 14.74
0.27 186 946 39 29 62.50 16.71
0.28 167 108 35 26 56.89 15.81
0.29 167 108 35 26 56.89 15.81
0.30 167 108 35 26 56.89 15.81
0.31 162 480 34 26 60.75 18.49
0.32 162 480 34 26 60.75 18.49
0.33 83 996 18 13 30.80 9.96
0.34 83 996 18 13 30.80 9.96
0.35 83 996 18 13 30.80 9.96
0.36 83 996 18 13 30.80 9.96
0.37 83 996 18 13 30.80 9.96
0.38 83 996 18 13 30.80 9.96
0.39 75 630 17 13 35.25 13.44
0.40 75 630 17 13 35.25 13.44

Notes:Nτ0 = total number of detections by time τ0.
Mτ0 = distinct number of faults detected by time τ0.

the estimates during the period [83 996, 162 480]
produce a larger estimate for ν with a larger
standard error as well, and the ratio d0 remains
rather stable for the period. The improvement
in standard error of the estimate is from 4.89 to
2.54 for the time 368 811 and 576 570, respectively.
Also, the d0 achieved at the end of the experiment
is 0.054. If the desired accuracy level is 0.1, the

testing experiment could stop at 368 811 with the
estimate 49.9 and an estimated standard error 4.9.
The information at that time is not much different
from the estimate obtained at 576 570. We could
save nearly one third of the testing time.

27.5 Simulation Studies
A number of Monte Carlo simulations were per-
formed to evaluate the performance of the pro-
posed estimators. Table 27.3 gives the simulation
results for the seeded faults approach using the
optimal estimator ν̃∗ from Equation 27.9. Differ-
ent values of the proportionality constant have
been used. The capture proportions are assumed
to be 0.5 and 0.9 respectively. Here we assume
that the stopping time is determined by the re-
moved proportion of the seeded faults. It is of
interest to investigate the effects of θ , the stop-
ping time, and the proportion of seeded faults
placed in the system on the performance of the
estimators. Table 27.3 lists all the different sets
of parameter values used in the simulation study.
One thousand repetitions were completed for each
trial. The statistics computed were: average pop-
ulation size, ave(ν̂); standard deviation of the
1000 observations, sd(ν̂); average standard error,
ave(ŝe(ν̂)); and the coverage (cov), the proportion
of the estimate falling between the 95% confidence
intervals.

As the removed proportion of seeded faults
increased, the standard error of the estimates
reduced. The coverage is satisfactory. Also, a
higher proportion of the seeded faults in the
system also improves the estimation performance.
As the value of θ increases from 0.5 to 1.5, the
estimation performance also improves, since more
data on real faults would be available for θ greater
than 1.

Table 27.4 gives simulation results for ν̂(t)

using different stopping times and other related
quantities for the case αt = 1 for the sequential
procedure suggested in Section 27.3. The number
of simulations used was 500 and the number
of faults in the system was 400. The stopping
time τ0 increased from 0.64 for d0 = 0.1 to 4.49
for d0 = 0.01. Meanwhile, the average number

506 Practices and Emerging Applications

Table 27.3. Simulation results of the seeded faults approach using
p = 0.5 and 0.9 and ν = 400

D θ ave(ν̂) sd(ν̂) ave{ŝe(ν̂)} cov

p = 0.5
100 0.5 402.2 56.9 58.0 0.95
100 1.0 401.9 44.2 45.4 0.95
100 1.5 401.4 35.7 36.4 0.94

400 0.5 398.4 39.0 39.2 0.95
400 1.0 398.6 28.0 28.2 0.95
400 1.5 398.9 22.4 22.0 0.94

800 0.5 400.1 34.8 35.5 0.95
800 1.0 399.9 23.6 24.5 0.95
800 1.5 399.5 17.9 18.7 0.96

p = 0.9
100 0.5 399.7 29.6 30.0 0.94
100 1.0 400.2 14.4 15.0 0.94
100 1.5 400.0 6.9 6.8 0.90

200 0.5 398.9 19.0 19.1 0.95
200 1.0 399.5 9.2 9.4 0.94
200 1.5 399.4 4.5 4.5 0.93

400 0.5 399.5 16.0 16.6 0.95
400 1.0 399.5 8.0 8.1 0.95
400 1.5 399.4 4.0 4.0 0.93

Notes: θ = αu/βu where αu andβu are the failure intensities of the
real and seeded faults respectively.

p = capture proportion for seeded faults.

of fault detections increased from 1022 to 1795
when d0 decreased from 0.02 to 0.01. Also, the
proportion of faults detected was 47% for d0 =
0.1, whereas 70% were detected when using d0 =
0.05. Figure 27.2 gives a plot for the stopping time
versus the desired accuracy level d0. The mean,
Eτ , increased rapidly when d0 decreased below
0.1.

Table 27.5 gives the simulation results for
Chao’s coverage estimator in Equation 27.14
and the two-step procedure proposed in Sec-
tion 27.2.3.2. The failure intensities are generated
from gamma distributions with different coverage
values. The population size is 500 and the over-
all capture proportion is about 84%. It is shown
from Table 27.5 that the sample coverage estimator
underestimates the population size with a larger

relative mean square error, while the two-step pro-
cedure performs satisfactorily with virtually no
bias for ν̂ and ŝe(ν̂). It should be noted here that

A
cc

u
ra

cy
le

ve
l 0.4

0.5

0.3

0.2

0.1

0
0 1 2 3 4

Stopping time

Figure 27.2. Average stopping time with different accuracy level
d0

The Application of Capture–Recapture Methods in Reliability Studies 507

Table 27.4. Simulation results for the sequential procedure withαt = 1 and ν = 400

d0 ave(τ0) Pτ0 ave(Nτ0) ave(ν̂) sd(ν̂) ave{se(ν̂)/ν̂} rel.MSE

0.01 4.49 0.99 1795.76 400.29 4.06 0.01 0.01
0.02 2.57 0.92 1022.99 400.88 8.23 0.02 0.02
0.03 1.84 0.84 733.15 401.08 11.90 0.03 0.03
0.04 1.44 0.76 575.99 401.39 15.77 0.04 0.04
0.05 1.19 0.70 475.26 401.16 20.01 0.05 0.05
0.06 1.01 0.64 404.58 400.61 24.33 0.06 0.06
0.07 0.89 0.59 352.91 400.64 27.87 0.07 0.07
0.08 0.79 0.54 313.21 400.71 32.15 0.08 0.08
0.09 0.71 0.51 281.32 400.38 35.62 0.09 0.09
0.10 0.64 0.47 255.72 400.75 40.14 0.10 0.10
0.15 0.44 0.36 176.26 401.98 61.35 0.15 0.15
0.20 0.33 0.28 133.93 399.97 81.03 0.20 0.20
0.25 0.27 0.24 108.36 399.65 99.52 0.24 0.25
0.30 0.23 0.20 90.34 394.00 116.27 0.29 0.29
0.35 0.19 0.18 77.67 390.47 132.18 0.34 0.33
0.40 0.17 0.16 68.47 393.15 152.93 0.38 0.38
0.45 0.15 0.14 61.84 393.91 174.55 0.42 0.44
0.50 0.14 0.13 54.98 394.65 192.51 0.47 0.48
0.60 0.12 0.11 46.82 395.62 223.85 0.54 0.56
0.70 0.09 0.09 37.53 400.17 278.94 0.67 0.70
0.80 0.09 0.09 36.96 395.08 283.20 0.67 0.71
0.90 0.09 0.08 34.94 376.65 293.51 0.69 0.74
1.00 0.06 0.06 25.52 422.32 411.85 0.94 1.03

Notes: ave(ν̂)=∑ ν̂i /R; ave(τ)=∑ τi/R; ave(Nτ)=∑Nτi /R;

ŝd(ν̂)2 =∑{ν̂i − ave(ν̂)}2/(R − 1); ave{ŝe(ν̂)/ν̂} = {∑ ŝe(ν̂i)/ν̂i
}
/R;

Pτ = 1− exp{ave(−τ0)}; rel.MSE2 =∑{(ν̂i − ν)/ν}2/R.
R = 500 is the number of simulations.

Table 27.5. Simulation results of the sample coverage estimator and the
two-step procedure for heterogeneous models with gamma intensity for
ν = 500

CV Estimator ave(ν̂) sd(ν̂) ave(ŝe(ν̂)) RMSE

0.58 Two-step 500.3 18.6 17.9 17.8
Chao & Lee 486.6 13.9 13.8 19.2

0.71 Two-step 500.3 18.8 18.6 18.6
Chao & Lee 483.8 13.5 13.7 21.2

1.00 Two-step 500.9 21.5 20.8 20.9
Chao & Lee 477.7 14.0 14.5 26.6

1.12 Two-step 500.5 22.9 23.6 23.6
Chao & Lee 474.7 14.3 15.0 29.4

Note: Two-step = conditional likelihood with Horvitz–Thompson estimator.
Chao & Lee = sample coverage estimator.

508 Practices and Emerging Applications

the capture probability is fairly high in this simula-
tion. Additional simulation results not shown here
revealed that larger population sizes are required
for the proposed procedure to perform well if the
capture probabilities are low.

27.6 Discussion

Estimators based on the optimal estimating
equation are recommended for the homogeneous
models with or without recapture. The estimator is
equivalent to the usual unconditional MLE derived
by Becker and Heyde [19]. For the seeded fault
model without recapture it can also be shown
that the estimator using an optimal weight is
identical to the unconditional MLE [30]. For the
non-parametric case with γi values not specified,
it seems that the coverage estimators of Chao
and Lee [25] and Yip and Chao [26] are the
best choices. However, for the parametric case
the γi values depend on specified distributions
and the two-step procedure should be highly
reliable provided that the model holds. Also, the
recommended Horvitz–Thompson estimator is
equivalent to the conditional MLE suggested by
Sanathanan [31, 32] in the case of a homogeneous
failure intensity.

Our approach adopted in this chapter is
different from other recent reviews by Chao
et al. [13] and Briand and Freimut [12], who
examined the problem from a rather different
perspective. They examined the problem when
estimating the size of a target population based
on several incomplete lists of individuals. Here,
it is assumed we only have one tester equivalent,
the data are the failure times of the faults (either
seeded or re-detections). It has been shown that
the recapture and seeded approach can provide
substantial information for ν. Heterogeneity can
be a cause for concern. However, it is interesting
to note that most of the failure data set can
be modeled by the Jelinski–Moranda model
rather than the Littlewood model. Nevertheless,
ignoring heterogeneity has been shown to provide
estimates which are biased downward [20]. The
present formulation allows removals during the

testing process, and the other existing methods
cannot handle that.

Sequential procedures are obtained for estimat-
ing the number of faults in a testing experiment
using a fixed accuracy criterion. With a greater
failure intensity and a greater number of faults
in the system, a shorter testing time is needed
to achieve the desired accuracy level for the es-
timates. The accuracy is specified by d0, which
prescribes an upper limit on the coefficient of vari-
ation of the estimator. Requiring greater accuracy
results in an experiment of longer duration. Thus,
a small value of d0 results in a larger mean testing
time, τ . Some accuracy levels may be unattainable.
The mean testing time τ is found to increase expo-
nentially when d0 is smaller than 0.1. The value of
d0 = 0.1 (i.e. coefficient of variation 10%) seems
to be an optimal choice in terms of accuracy and
the cost of the experiment. The given results are
consistent with the findings of Lloyd et al. [4] that
when the proportion of faults found reaches a level
of 70% of the total number of faults in the system,
further testing adds little value to the experiment
in terms of reducing the standard error of the
estimate. Sequential estimation is an important
tool in testing experiments. This chapter provides
a practical way to use sequential estimation, which
can be applied to other sampling designs and
estimators.

Another potential application of the suggested
procedure is in ecology [33]. In capture–recapture
experiments in ecological studies, individuals
are caught, marked, and released back into
the population and subject to recapture again.
The capture–recapture process is conducted for
a period of time τ . Capturing all animals
to determine the abundance is infeasible. The
detection of total number of individuals is unwise,
costly and expensive. The important issue here
is not the estimator, but the use of the accuracy
criterion to determine the stopping time. It is not
our intention in this chapter to compare different
estimators. Some comparison of estimators can be
found in Yip et al. [34, 35].

The conditional likelihood with a Horvitz–
Thompson estimator in Section 27.2.3.2 can pro-
vide stable estimates. The proposed formulation

The Application of Capture–Recapture Methods in Reliability Studies 509

includes both removal and recapture models. It
also allows random removals during the recaptur-
ing process. The resulting conditional likelihood
estimators have the consistency and asymptotic
normality properties, which have also been con-
firmed by further simulation studies [36]. How-
ever, the asymptotic normality for the proposed
frailty model requires a comparably large ν. For
small values of ν and low capture probability, the
distributions of ν̂ are skew. A similar situation
occurred in removal studies with the use of aux-
iliary variables [37, 38] or in coverage estimators
[30]. Ignoring frailty or heterogeneity in the pop-
ulation would seriously underestimate the popu-
lation size, giving a misleading smaller standard
error [35]. The likelihood or estimating function
approach to estimate the unknown population size
with heterogeneity has been shown to be unsatis-
factory [39,40]. The proposed two-step estimating
procedure is a promising alternative.

Acknowledgment

This work is supported by the Research Grant
Council of Hong Kong (HKU 7267/2000M).

References
[1] Moek G. Comparison of software reliability models

for simulated and real failure data. Int J Model Simul
1984;4:29–41.

[2] Andersen PK, Borgan Ø, Gill RD, Keiding N. Statistical
models based on counting processes. New York: Springer-
Verlag; 1993.

[3] Nayak TK. Estimating population sizes by recapture
sampling. Biometrika 1988;75:113–20.

[4] Lloyd C, Yip PSF, Chan KS. A comparison of recapturing,
removal and resighting design for population size
estimation. J Stat Inf Plan 1998;71:363–73.

[5] Yip PSF. Estimating the number of errors in a sys-
tem using a martingale approach. IEEE Trans Reliab
1995;44:322–6.

[6] Littlewood B. Theories of software reliability: how good
are they and how can they be improved? IEEE Trans
Software Eng 1980;6:489–500.

[7] Lloyd C, Yip PSF. A unification of inference from capture–
recapture studies through martingale estimating func-
tions. In: Godambe VP, editor. Estimating functions. Ox-
ford: Oxford University Press; 1991. p.65–88.

[8] Yip PSF, Fong YT, Wilson K. Estimating population size
by recapture via estimating function. Commun Stat–
Stochast Models 1993;9:179–93.

[9] Horvitz DG, Thompson DJ. A generalization of sampling
without replacement from a finite universe. J Am Stat
Assoc 1952;47:663–85.

[10] Van der Wiel SA, Votta LG. Assessing software designs
using capture–recapture methods. IEEE Trans Software
Eng 1993;SE-19(11):1045–54.

[11] Huggins RM. Fixed accuracy estimation for chain
binomial models. Stochast Proc Appl 1992;41:273–80.

[12] Briand LC, Freimut BG. A comprehensive evaluation
of capture–recapture models for estimating software
defect content. IEEE Trans Software Eng 2000;26:
518–38.

[13] Chao A, Tsay PK, Lin SH, Shau WY, Chao DY. The ap-
plication of capture–recapture models to epidemiological
data. Stat Med 2001;20:3123–57.

[14] Aalen OO. Statistical inference for a family of counting
processes. Ph.D. thesis, University of California, Berkeley,
1975.

[15] Aalen OO. Non-parametric inference for a family of
counting processes. Ann Stat 1978;6:701–26.

[16] Andersen PK, Gill RD. Cox’s regression model for
counting processes: a large sample study. Ann Stat
1982;10:1100–20.

[17] Godambe VP. The foundations of finite sample
estimation in stochastic processes. Biometrika 1985;72:
419–28.

[18] Schnabel ZE. The estimation of the total fish population
of a lake. Am Math Monthly 1938;39:348–52.

[19] Becker NG, Heyde CC. Estimating population size from
multiple recapture experiments. Stochast Proc Appl
1990;36:77–83.

[20] Yip PSF, Xi L, Fong DYT, Hayakawa Y. Sensitivity analysis
and estimating number of faults in removal debugging.
IEEE Trans Reliab 1999;48:300–5.

[21] Chao A, Lee SM. Estimating the number of classes via
sample coverage. J Am Stat Assoc 1992;87:210–7.

[22] Huggins RM. On the statistical analysis of capture
experiments. Biometrika 1989;76:133–40.

[23] Huggins RM. Some practical aspects of a conditional
likelihood approach to capture–recapture models. Bio-
metrics 1991;47:725–32.

[24] Yip PSF, Wan E, Chan KS. A unified of capture–recapture
methods in discrete time. J Agric, Biol Environ Stat
2001;6:183–94.

[25] Chao A, Lee SM. Estimating population size for
continuous time capture–recapture models via sample
coverage. Biometric J 1993;35:29–45.

[26] Yip PSF, Chao A. Estimating population size from
capture–recapture studies via sample coverage and
estimating functions. Commun Stat–Stochast Models
1996;12(1):17–36.

[27] Lin HS, Chao A, Lee SM. Consistency of an estimator of
the number of species. J Chin Stat Assoc 1993;31:253–70.

[28] Nielsen GG, Gill RD, Andersen PK, Sørensen TIA.
A counting process approach to maximum likelihood
estimation in frailty models. Scand J Stat 1992;19:25–43.

510 Practices and Emerging Applications

[29] Jelinski Z, Moranda P. Software reliability research. Stat
Comp Perform Eval 1972;465–84.

[30] Chao A, Yip PSF, Lee SM, Chu W. Population size
estimation based on estimating functions for closed
capture–recapture models. J Stat Plan Inf 2001;92:213–32.

[31] Sanathanan L. Estimating the size of a multinomial
population. Ann Math Stat 1972;43:142–52.

[32] Sanathanan L. Estimating the size of a truncated sample.
J Am Stat Assoc 1977;72:669–72.

[33] Pollock KH. Modeling capture, recapture and removal
statistics for estimation of demographic parameters for
fish and wildlife populations: past, present and future.
J Am Stat Assoc 1991;86:225–38.

[34] Yip PSF, Huggins RM, Lin DY. Inference for capture–
recapture experiments in continuous time with variable
capture rates. Biometrika 1996;83:477–83.

[35] Yip PSF, Zhou Y, Lin DY, Fang XZ. Estimation of
population size based on additive hazards models

for continuous time recapture experiment. Biometrics
1999;55:904–8.

[36] Wang Y, Yip PSF, Hayakawa Y. A frailty model for
detecting number of faults in a system. Department of
Statistics and Actuarial Science Research Report 287, The
University of Hong Kong,; 2001. p.1–15.

[37] Huggins R, Yip P. Statisitcal analysis of removal
experiments with the use of auxillary variables. Stat Sin
1997;7:705–12.

[38] Lin DY, Yip PSF. Parametric regression models for
continuous time recapture and removal studies. J R Stat
Soc Ser B 1999;61:401–13.

[39] Burnham KP, Overton WS. Estimation of the size of a
closed population when capture probabilities vary among
animals. Biometrika 1978;65:625–33.

[40] Becker NG. Estimating population size from capture–
recapture experiments in continuous time. Austr J Stat
1984;26:1–7.

Reliability of Electric Power
Systems: An Overview

Ch
ap

te
r2

8Roy Billinton and Ronald N. Allan

28.1 Introduction
28.2 System Reliability Performance
28.3 System Reliability Prediction
28.3.1 System Analysis
28.3.2 Predictive Assessment at HLI
28.3.3 Predictive Assessment at HLII
28.3.4 Distribution System Reliability Assessment
28.3.5 Predictive Assessment at HLIII
28.4 System Reliability Data
28.4.1 Canadian Electricity Association Database
28.4.2 Canadian Electricity Association Equipment Reliability Information

System Database for HLI Evaluation
28.4.3 Canadian Electricity Association Equipment Reliability Information

System Database for HLII Evaluation
28.4.4 Canadian Electricity Association Equipment Reliability Information

System Database for HLIII Evaluation
28.5 System Reliability Worth
28.6 Guide to Further Study

28.1 Introduction

The primary function of a modern electric power
system is to supply its customers with electrical
energy as economically as possible and with an
acceptable degree of reliability. Modern society,
because of its pattern of social and working
habits, has come to expect the supply to be
continuously available on demand. This degree
of expectation requires electric power utilities
to provide an uninterrupted power supply to
their customers. It is not possible to design a
power system with 100% reliability. Power system
managers and engineers therefore strive to obtain
the highest possible system reliability within their
socio-economic constraints. Consideration of the
two important aspects of continuity and quality
of supply, together with other important elements
in the planning, design, control, operation and

maintenance of an electric power system network,
is usually designated as reliability assessment.
In the power system context, reliability can
therefore be defined as concern regarding the
system’s ability to provide an adequate supply
of electrical energy. Many utilities quantitatively
assess the past performance of their systems and
utilize the resultant indices in a wide range of
managerial activities and decisions. All utilities
attempt to recognize reliability implications in
system planning, design and operation through a
wide range of techniques [1–12].

Reliability evaluation methods can generally be
classified into two categories: deterministic and
probabilistic. Deterministic techniques are slowly
being replaced by probabilistic methods [1–12].
System reliability can be divided into the two
distinct categories of system security and system
adequacy. The concept of security is associated

511

512 Practices and Emerging Applications

Generation
facilities

Transmission
facilities

Distribution
facilities

HL III

HL II

HL I

Figure 28.1. Hierarchical levels in an electric power system

with the dynamic response of the system to the
perturbations to which it is subjected. Adequacy is
related to static system conditions and the
existence of sufficient facilities within the system
to meet the system load demand. Overall adequacy
evaluation of an electric power system involves
a comprehensive analysis of its three principal
functional zones of generation, transmission and
distribution. The basic techniques for adequacy
assessment are generally categorized in terms of
their application to each of these zones.

The functional zones can be combined as
shown in Figure 28.1 to obtain three distinct
hierarchical levels (HL) and adequacy assessment
can be conducted at each of these hierarchical
levels [2]. At HLI, the adequacy of the generating
system to meet the load requirements is examined.
Both generation and the associated transmission
facilities are considered in HLII adequacy
assessment. This activity is sometimes referred to
as composite or bulk system adequacy evaluation.
HLIII adequacy assessment involves the
consideration of all these functional zones in order
to evaluate customer load point indices. HLIII
studies are not normally conducted in a practical
system because of the enormity of the problem.

Electric power utilities are experiencing con-
siderable change with regard to their structure,
operation and regulation. This is particularly true
in those countries with highly developed systems.
The traditional vertically integrated utility struc-
ture consisting of generation, transmission and
distribution functional zones, as shown in Fig-
ure 28.1, has in many cases been decomposed
into separate and distinct utilities in which each
perform a single function in the overall electrical
energy delivery system. Deregulation and compet-
itive pricing will also make it possible for elec-
tricity consumers to select their supplier based on
cost effectiveness. Requests for use of the trans-
mission network by third parties are extending the
traditional analysis of transmission capability far
beyond institutional boundaries. There is also a
growing utilization of local generation embedded
in the distribution functional zone. The individ-
ual unit capacities may be quite small, but the
combined total could represent a significant com-
ponent of the total required generation capacity.
Electric power system structures have changed
considerably over the last decade and are still
changing. The basic principles and concepts of re-
liability evaluation developed over many decades
remain equally valid in the new operating environ-
ment. The objectives of reliability evaluation may,
however, have to be reformulated and restructured
to meet the new paradigms.

28.2 System Reliability
Performance

Any attempt to perform quantitative reliability
evaluation invariably leads to an examination of
data availability and the data requirements to
support such studies. Valid and useful data are
expensive to collect, but it should be recognized
that in the long run it would be more expensive not
to collect them. It is sometimes argued as to which
comes first: reliability data or reliability method-
ology. In reality, the data collection and reliability
evaluation must evolve together and therefore the

Reliability of Electric Power Systems: An Overview 513

process is iterative. The principles of data collec-
tion are described in [13, 14] and various schemes
have been implemented worldwide, for instance,
by the Canadian Electricity Association (CEA) in
Canada [15,16], North American Electric Reliabil-
ity Council (NERC) in the USA, and others which
are well-established but less well-documented or
less available publicly, e.g. the UK fault-reporting
scheme (NAFIRS) [17] operated nationally and
those of various individual North American Relia-
bility Councils.

In conceptual terms [13, 14], data can be col-
lected for one or both of two reasons: assess-
ment of past performance and/or prediction of
future system performance. The past performance
assessment looks back at the past behavior of
the system, whereas predictive assessment fore-
casts how the system is going to behave in the
future. In order to perform predictive studies,
however, it is essential to transform past experi-
ence into required future prediction. Consistent
collection of data is therefore essential as it forms
the input to relevant reliability models, techniques
and equations. There are many reasons for col-
lecting system and equipment performance data.
Some of the more popular applications are as
follows.

1. To furnish management with performance
data regarding the quality of customer service
on the electrical system as a whole and for
each voltage level and operating area.

2. To provide data for an engineering compari-
son of electrical system performance among
consenting companies.

3. To provide a basis for individual companies
to establish service continuity criteria. Such
criteria can be used to monitor system
performance and to evaluate general policies,
practices, standards and design.

4. To provide data for analysis to determine reli-
ability of service in a given area (geographical,
political, operating, etc.) to determine how
factors such as design differences, environ-
ment or maintenance methods, and operating
practices affect performance.

5. To provide reliability history of individual
circuits for discussion with customers or
prospective customers.

6. To identify substations and circuits with
substandard performance and to ascertain the
causes.

7. To obtain the optimum improvement in re-
liability per dollar expended for purchase,
maintenance and operation of specific equip-
ment/plant.

8. To provide equipment performance data nec-
essary for a probabilistic approach to reliabil-
ity studies. The purpose is to determine the
design, operating and maintenance practices
that provide optimum reliability per dollar ex-
pended and, in addition, to use this informa-
tion to predict the performance of future gen-
eration, transmission and distribution system
arrangements.

9. To provide performance data to regulatory
bodies so that comparative performance
records can be established between regulated
monopolies and between planned and actual
achievements within a regulated monopoly.

There are a wide range of data gathering sys-
tems in existence throughout the world. These sys-
tems vary from being very simple to exceedingly
complex. However, for the purposes of identifying
basic concepts, the protocols established by the
CEA are used in this chapter to illustrate a possible
framework and the data that can be determined. In
the CEA system, component reliability data is col-
lected under the Equipment Reliability Informa-
tion System (ERIS). These protocols are structured
using the functional zones of generation, trans-
mission and distribution shown in Figure 28.1.
The ERIS is described in more detail in a later
section.

In addition to ERIS, the CEA has also created
the Electric Power System Reliability Assessment
(EPSRA) procedure, which is designed to provide
data on past performance of the system. This pro-
cedure is in the process of evolution and at the
present time contains systems for compiling infor-
mation on bulk system disturbances, bulk system
delivery point performance, and customer service

514 Practices and Emerging Applications

continuity statistics. Customer satisfaction is a
very important consideration for Canadian elec-
tric power utilities. The measured performance
at HLIII and the ability to predict future per-
formance are important factors in providing ac-
ceptable customer service and therefore customer
satisfaction. The HLIII performance indices have
been collected for many years by a number of
Canadian utilities. The following text defines the
basic customer performance indices and presents
for illustration purposes some Canadian and UK
indices for 1999.

Service performance indices can be calculated
for the entire system, a specific region or voltage
level, designated feeders or groups of customers.
The most common indices [3] are as follows.

a. System Average Interruption Frequency Index
(SAIFI)
This index is the average number of interrup-
tions per customer served per year. It is deter-
mined by dividing the accumulated number of
customer interruptions in a year by the num-
ber of customers served. A customer interrup-
tion is considered to be one interruption to
one customer:

SAIFI= total number of customer interruptions

total number of customers

In the UK, this index is defined as security-
supply interruptions per 100 connected cus-
tomers [19].

b. Customer Average Interruption Frequency
Index (CAIFI)
This index is the average number of inter-
ruptions per customer interrupted per year.
It is determined by dividing the number of
customer interruptions observed in a year by
the number of customers affected. The cus-
tomers affected should be counted only once
regardless of the number of interruptions that
they may have experienced during the year:

CAIFI= total number of customer interruptions

total number of customers affected

c. System Average Interruption Duration Index
(SAIDI)

This index is the average interruption dura-
tion for customers served during a year. It is
determined by dividing the sum of all cus-
tomer interruption durations during a year by
the number of customers served during the
year:

SAIDI= sum of customer interruption durations
total number of customers

In the UK, this index is defined as availability-
minutes lost per connected customer [19].

d. Customer Average Interruption Duration In-
dex (CAIDI)
This index is the average interruption dura-
tion for customers interrupted during a year.
It is determined by dividing the sum of all
customer-sustained interruption durations by
the number of sustained customer interrup-
tions over a one-year period:

CAIDI= sum of customer interruption durations
total number of customer interruptions

= SAIDI

SAIFI

This index is not explicitly published in
the UK but can easily be calculated as
availability/security.

e. Average Service Availability Index (ASAI)
This is the ratio of the total number of
customer hours that service was available
during a year to the total customer hours
demanded. Customer hours demanded are
determined as the 12-month average number
of customers served times 8760 hours. This is
sometimes known as the “Index of Reliability”
(IOR):

ASAI= customer hours of available service
customer hours demanded

The complementary value to this index,
i.e. the Average Service Unavailability Index
(ASUI), may also be used. This is the ratio
of the total number of customer hours that
service was unavailable during a year to the
total customer hours demanded.

Tables 28.1a and 28.1b show the overall
Canadian [18] and UK [19] system performance

Reliability of Electric Power Systems: An Overview 515

Table 28.1a. Overall Canadian service continuity statistics for
1999

SAIFI 2.59 int/y
SAIDI 4.31 hr/y
CAIDI 1.67 hr/int
IOR 0.999 508

Table 28.1b. Overall UK service continuity statistics for 1998/99

Security (SAIFI) 0.78 int/yr
Availability (SAIDI) 81 min/yr
Calculated CAIDI 104 min/int
Calculated ASAI/IOR 0.999 846

Table 28.2a. Differentiated Canadian service continuity statistics
for 1999

Urban
utilities

Urban/rural
utilities

Overall

SAIFI 2.28 2.88 2.59
SAIDI 2.68 5.06 4.31
CAIDI 1.17 1.76 1.67
IOR 0.999 694 0.999 422 0.999 508

indices for the 1999 period. The ASAI is known
as the IOR in the EPSRA protocol. Very few
utilities can provide the CAIFI parameter and
therefore this is not part of EPSRA. This parameter
is also not published in the UK performance
statistics [19].

Tables 28.1a and 28.1b show the aggregate
indices for the participating utilities. There are
considerable differences between the system
performance indices for urban utilities and those
containing a significant rural component; this
being true not only for Canada, but also the UK
and elsewhere. This is shown in Table 28.2a for
Canada [18] and Table 28.2b for the UK [19].

The indices shown in Tables 28.2a and 28.2b
are overall aggregate values. Individual customer
values will obviously vary quite widely depending
on the individual utility, the system topology and
the company operating philosophy. The indices
shown in Tables 28.2a and 28.2b, however, do
present a clear picture of the general level

Table 28.2b. Typical UK service continuity statistics for 1998/99

Typical Typical
urban urban/
utility rural utility

Security (SAIFI) 0.4 1.2
(int/yr)
Availability
(SAIDI)

50 100

(min/yr)
Calculated CAIDI 125 83.3
(min/int)
Calculated
ASAI/IOR

0.999 905 0.999 810

of customer reliability. Similar statistics can
be obtained at the bulk system delivery level,
i.e. HLII. These indices [20, 21] are expressed as
global values or in terms of delivery points rather
than customers, as in the case of HLIII indices.

28.3 System Reliability
Prediction

28.3.1 System Analysis

There are a wide range of techniques available and
in use to assess the reliability of the functional
zones and hierarchical levels shown in Figure 28.1.
References [1–12] clearly illustrate the literature
available on this subject. The following sections
provide further discussion on the available tech-
niques. The basic concepts associated with electric
power system reliability evaluation are illustrated
using a small hypothetical test system known as
the RBTS [22–24]. This application illustrates the
utilization of data such as that contained in the
CEA-ERIS database to assess the adequacy of the
system at all three hierarchical levels. The basic
system data necessary for adequacy evaluation at
HLI and HLII are provided in [22]. The capabil-
ities of the RBTS have been extended to include
failure data pertaining to station configurations
in [25] and distribution networks that contain the
main elements found in practical systems [24].
The RBTS is sufficiently small to permit a large
number of reliability studies to be conducted with

516 Practices and Emerging Applications

a reasonable solution time, yet sufficiently detailed
to reflect the actual complexities involved in a
practical reliability analysis. The RBTS described
in [22] has two generation buses, five load buses
(one of which is also a generation bus), nine
transmission lines and 11 generating units. An
additional line (Line 10) is connected between
the 138-kV substations of Buses 2 and 4. A sin-
gle line diagram of the RBTS at HLII is shown
in Figure 28.2. A more complete diagram which
shows the generation, transmission, station and
distribution facilities is given in Figure 28.3. In
order to reduce the complexity of the overall sys-
tem, distribution networks are shown at Buses 2,
4 and 6. Bulk loads are used at Buses 3 and 5. The
total installed capacity of the system is 240 MW
with a system peak load of 185 MW. The trans-
mission voltage level is 230 kV and the voltage
limits are 1.05 and 0.97 pu. The studies reported
in this chapter assume that there are no lines on
a common right of way and/or a common tower.
In order to obtain annual indices for the RBTS at
HLII and HLIII, the load data described in [22]
were arranged in descending order and divided
into seven steps in increments of 10% of peak load
as given in Table 28.3.

28.3.2 Predictive Assessment at HLI

The basic reliability indices [3] used to assess
the adequacy of generating systems are the loss
of load expectation (LOLE) and the loss of
energy expectation (LOEE). The main concern
in an HLI study is to estimate the generating
capacity required to satisfy the perceived system
demand and to have sufficient capacity to perform
corrective and preventive maintenance on the
generation facilities. The generation and load
models are convolved as shown in Figure 28.4 to
create risk indices.

One possible casualty in the new deregulated
environment is that of overall generation plan-
ning. There appears, however, to be a growing
realization, particularly in view of the difficulties
in California, that adequate generating capacity
is an integral requirement in acceptable effective
power supply.

2 40 MW
1 20 MW
1 10 MW

�
�
�

1 40 MW
4 20 MW
2 5 MW

�
�
�

BUS 2

BUS 1

G

BUS 3 BUS 4

L3 (20.0 MW)

(40.0 MW)(85.0 MW)

BUS 5

(20.0 MW)

BUS 6

(20.0 MW)

L2 L7

L1 L6 L4

L5 L8

L9

Figure 28.2. Single line diagram of the RBTS at HLII

The capacity model can take several forms and
in analytical methods it is usually represented by
a capacity outage probability table [3]. The LOLE
is the most widely used probabilistic index at the
present time. It gives the expected number of days
(or hours) in a period during which the load will
exceed the available generating capacity. It does
not, however, indicate the severity of the shortage.
The LOEE, also referred to as the expected
energy not supplied (EENS), is the expected
unsupplied energy due to conditions resulting
in the load demand exceeding the available
generating capacity. Normalized values of LOEE
in the form of system-minutes (SM) or units per
million (UPM) are used by some power utilities.

The basic adequacy indices of the RBTS
resulting from an HLI study are given below:

LOLE= 1.09161 hr/yr

LOEE= 9.83 MWh/yr

SM= 3.188

UPM= 9.9

Reliability of Electric Power Systems: An Overview 517

Figure 28.3. Single line diagram of the RBTS at HLIII

518 Practices and Emerging Applications

Table 28.3. Seven-step load data for the RBTS

Load (MW) Probability Duration (hr)

185.0 0.013 163 92 115.0
166.5 0.111 034 78 970.0
148.0 0.165 407 52 1445.0
129.5 0.232 028 37 2027.0
111.0 0.226 304 89 1883.0
92.5 0.226 304 89 1997.0
74.0 0.036 515 59 319.0

Generation
model

Load
model

Risk
model

Figure 28.4. Conceptual model for HLI evaluation

The SM and UPM indices are obtained by dividing
the LOEE by the system peak and the annual
energy requirement respectively. Both indices are
normalized LOEE indices and can be used to
compare systems of different sizes or to use in a
single system over time as the load changes. Both
indices are in actual utility use.

A per-unitized value of LOLE gives LOLP,
i.e. the probability of loss of load. This is the
originally defined term which was soon converted
into LOLE because of the latter’s more physical
interpretation. However, LOLP has been used in
the UK [26] since privatization to determine the
trading price of electricity, known as pool input
price (PIP) and given by:

PIP = SMP + (VOLL − SMP)LOLP

where SMP = system marginal price and VOLL =
value of lost load (set at £2.389/kWh for 1994/95).
The pool has now been replaced by bilateral
trading and a balancing market known as NETA
(the New Energy Trading Arrangement) in March

2001, when the use of LOLP in energy pricing
ceased.

28.3.3 Predictive Assessment at HLII

HLII adequacy evaluation techniques are con-
cerned with the composite problem of assessing
the generation and transmission facilities in re-
gard to their ability to supply adequate, depend-
able and suitable electric energy at the bulk load
points [2–6]. A basic objective of HLII adequacy
assessment is to provide quantitative input to
the economic development of the generation and
transmission facilities required to satisfy the cus-
tomer load demands at acceptable levels of quality
and availability. A number of digital computer
programs have been developed to perform this
type of analysis [6–12]. Extensive development
work in the area of HLII adequacy assessment has
been performed at the University of Saskatchewan
and at UMIST. This has resulted in the devel-
opment of several computer programs, including
COMREL (analytical) and MECORE (simulation)
at the University of Saskatchewan [27, 28] and
RELACS (analytical) and COMPASS (sequential
simulation) at UMIST [28, 29]. The analytical pro-
grams are based on contingency enumeration al-
gorithms and the simulation programs on Monte
Carlo approaches. All include selection of distur-
bances, classification of these into specified failure
events, and calculation of load point and system
reliability indices. A range of other computer pro-
grams have been published [28], some of which
are in-house assessment tools and others more
widely available. These include MEXICO (EdF),
SICRIT and SICIDR (ENEL), CREAM and TRELLS
(EPRI, USA), ESCORT (NGC, UK), ZANZIBAR
(EdP), TPLan (PTI), CONFTRA (Brazil), amongst
others. These programs are not all equivalent;
the modeling procedure, solution methods and
calculated results vary quite considerably. Reli-
ability evaluation of a bulk power system nor-
mally includes the independent outages of gener-
ating units, transformers and transmission lines.
A major simplification that is normally used in
HLII studies is that terminal stations are modeled
as single busbars. This representation does not

Reliability of Electric Power Systems: An Overview 519

Table 28.4. Annual HLII load point adequacy indices for the RBTS
including station effects

Bus a b c d e

2 0.000 292 0.1457 0.314 4.528 2.55
3 0.001 737 0.4179 12.823 683.34 15.17
4 0.000 323 0.1738 0.746 10.611 2.82
5 0.001 387 0.2530 2.762 115.26 12.12
6 0.001 817 1.6518 22.017 327.23 24.613

consider the actual station configurations as an
integral part of the analysis. The HLII system used
in this analysis is shown in Figure 28.2. Station-
originated outages can have a significant impact
on HLII indices. This chapter considers, in addi-
tion to independent overlapping outages of gener-
ators and lines, the effects on the reliability indices
of station-originated outages. The HLIII system
used in this analysis is shown in Figure 28.3.

HLII adequacy indices are usually expressed
and calculated on an annual basis, but they can
be determined for any period such as a season,
a month, and/or a particular operating condition.
The indices can also be calculated for a particular
load level and expressed on an annual basis.
Such indices are designated as annualized values.
The calculated adequacy indices for HLII can be
obtained for each load point or for the entire
system. Both sets of indices are necessary to obtain
a complete picture of HLII adequacy, i.e. these
indices complement rather than substitute for
each other. Individual load point indices can be
used to identify weak points in the system, while
overall indices provide an appreciation of global
HLII adequacy and can be used by planners
and managers to compare the relative adequacies
of different systems. The load point indices
assist in quantifying the benefits associated with
individual reinforcement investments. The annual
load point and system indices for the RBTS were
calculated using COMREL and are presented in
this section. The load point indices designated a,
b, c, d and e in Table 28.4 are defined below:

a = Probability of failure

b = Frequency of failure(f/yr)

c = Total load shed (MW)

d = Total energy curtailed (MWh)

e = Total duration (hr)

It is also possible to produce overall system
indices by aggregating the individual bus ade-
quacy values. The system indices do not replace
the bus values but complement them to provide
a complete assessment at HLII and to provide a
global picture of the overall system behavior. The
system indices of the RBTS are as follows:

Bulk Power Supply Disturbances

= 2.642(occ/yr)

Bulk Power Interruption Index

= 0.209(MW/MWyr)

Bulk Power Energy Curtailment Index

= 6.1674(MWh/MWyr)

Bulk Power Supply Average MW Curtailment

= 14.633(MW/disturbance)

Modified Bulk Power Energy Curtailment Index

= 0.000 71

SM = 370.04(system-minutes)

The Modified Bulk Power Energy Curtailment
Index of 0.000 71 can be multiplied by 106 to give
71 UPM. The SM and UPM indices at HLII are
extensions of those obtained at HLI and illustrate
the bulk system inadequacy.

28.3.4 Distribution System Reliability
Assessment

The bulk of the outages seen by an individual
customer occur in the distribution network and
therefore practical evaluation techniques [3] have

520 Practices and Emerging Applications

Table 28.5. System indices for the distribution systems in the RBTS
Buses 2, 4 and 6

Bus SAIFI SAIDI CAIDI ASAI

2 0.304 21 3.670 65 12.066 07 0.999 581
4 0.377 31 3.545 50 9.396 70 0.999 595
6 1.061 90 3.724 34 3.507 25 0.999 575

been developed for this functional zone. The basic
load point indices at a customer load point
are λ, r and U , which indicate the failure rate
(frequency), average outage time and average
annual outage time respectively. The individual
load point indices can be combined with the
number of customers at each load point to
produce feeder, or area SAIFI, SAIDI, CAIDI
and ASAI predictions. The distribution functional
zones shown in Figure 28.3 have been analyzed
and the results are shown in Table 28.5. Additional
indices [3] can also be calculated.

28.3.5 Predictive Assessment at HLIII

HLIII adequacy evaluation includes all three seg-
ments of an electric power system in an overall
assessment of actual consumer load point ade-
quacy. The primary adequacy indices at HLIII are
the expected failure rate, λ, the average duration
of failure and the annual unavailability, U , of the
customer load points [3]. The individual customer
indices can then be aggregated with the average
connected load of the customer and the number
of customers at each load point to obtain the
HLIII system adequacy indices. These indices are
the SAIFI, the SAIDI, the CAIDI and the ASAI.
Analysis of actual customer failure statistics indi-
cates that the distribution functional zone makes
the greatest individual contribution to the overall
customer supply unavailability. Statistics collected
by most, if not all, utilities indicate that, in gen-
eral, the bulk power system contributes only a
relatively small component to the overall HLIII
customer indices. The conventional customer load
point indices are performance parameters ob-
tained from historical event reporting. The fol-
lowing illustrates how similar indices have been

predicted. The HLIII adequacy assessment pre-
sented includes the independent outages of gen-
erating units, transmission lines, outages due to
station-originated failures, sub-transmission ele-
ment failures and distribution element failures.
The method used is summarized in the three steps
given below.

1. The COMREL computer program was used
to obtain the probability, expected frequency
and duration of each contingency at HLII
that leads to load curtailment for each
system bus. The contingencies considered
include outages up to: four generation units,
three transmission lines, two lines with one
generator, and two generators with one line.
All outages due to station-related failures and
the isolation of load buses due to station
failures are also considered. If the contingency
results in load curtailment, a basic question is
then how would the electric utility distribute
this interrupted load among its customers?
It is obvious that different power utilities
will take different actions based on their
experience, judgment and other criteria.
The method used in this chapter assumes that
load is curtailed proportionately across all the
customers. For each contingency j that leads
to load curtailment of Lkj at Bus k, the ratio
of Lkj to bus peak load is determined. The
failure probability and frequency due to an
isolation case are not modified as the isolation
affects all the customers.

2. At the sub-transmission system level, the
impact of all outages is obtained in terms of
average failure rate and average annual outage
time at each distribution system supply point.

Reliability of Electric Power Systems: An Overview 521

Table 28.6. Modified annual bus adequacy indices for the RBTS
using Step 1

Bus Failure Failure Total
probability frequency duration

(f/yr) (hr)

2 0.000 026 0.016 50 0.227
3 0.001 254 0.200 26 10.985
4 0.000 030 0.019 85 0.269
5 0.001 330 0.204 20 11.650
6 0.002 509 1.441 02 21.981

3. At the radial distribution level, the effects due
to outages of system components such as pri-
mary main/laterals/low-voltage transformers,
etc, are considered.

The modified annual indices of the RBTS were
obtained using the load model given in Table 28.3
and the results are presented in Table 28.6.
The indices in Table 28.6 are smaller than those
shown in Table 28.4 as a significant number of
the outage events included in Table 28.4 do not
affect all the customers at a load point. The index
modification approach described in Step 1 above
was used to allocate these event contributions.

Table 28.7 presents a sample of the HLIII
indices at Buses 2, 4 and 6. It can be seen from
this table that the contribution of the distribution
system to the HLIII indices is significant for
Buses 2 and 4. Table 28.7 also shows that, for Bus 6,
the contribution from HLII to the HLIII indices
is very significant. The obvious reason is that
customers at Bus 6 are supplied through a single
circuit transmission line and through a single
230/33-kV transformer. Reinforcing the supply to
Bus 6 would therefore obviously be an important
consideration. Table 28.8 presents HLIII system
indices at Buses 2, 4 and 6. The percentage contri-
butions from the distribution functional zones to
the total HLIII indices are given in Table 28.9.

The contribution of the distribution system to
the HLIII indices is significant for Buses 2 and 4,
while for Bus 6 the contribution from HLII to
the HLIII indices is considerably larger. Table 28.8
shows the annual customer indices at the buses.
These values can be aggregated to provide overall
system indices, assuming that the customers at

load points 2, 4 and 6 constitute all the system
customers:

SAIFI= 1.226(failures/system customer)

SAIDI= 12.588(hours/system customer)

CAIDI= 10.296(hours/customer interrupted)

ASAI= 0.998 563

It can be seen from the above that the overall
system indices, while important, mask the actual
indices at any particular load bus. Reliability eval-
uation at each hierarchical level provides valuable
input to the decision-making process associated
with system planning, design, operation and man-
agement. Both past and predictive assessment are
required to obtain a complete picture of system
reliability.

28.4 System Reliability Data
It should be recognized that the data requirements
of predictive methodologies should reflect the
needs of these methods. This means that the data
must be sufficiently comprehensive to ensure that
the methods can be applied but restrictive enough
to ensure that unnecessary data is not collected
and irrelevant statistics are not evaluated. The data
should therefore reflect and respond to the factors
that affect the system reliability and enable it to be
modeled and analyzed. This means that the data
should relate to the two main processes involved
in component behavior, namely the failure and
restoration processes. It cannot be stressed too
strongly that, in deciding which data is to be
collected, a utility must make decisions on the
basis of factors that have impact on its own
planning and design considerations.

The quality of the data and the resulting indices
depend on two important factors: confidence and
relevance. The quality of the data and thus the
confidence that can be placed in it is clearly
dependent upon the accuracy and completeness
of the information compiled by operating and
maintenance personnel. It is therefore essential
that they are made fully aware of the future use
of the data and the importance it will play in later

522 Practices and Emerging Applications

Table 28.7. HLIII load point reliability indices for the RBTS Buses 2, 4 and 6

Load point Failure Outage Annual Contribution
rate time unavailability of distribution
(f/yr) (hr) (hr/yr) (%)

Bus 2
1 0.3118 12.3832 3.8605 94.11
9 0.2123 3.7173 0.7890 71.20

11 0.3248 12.0867 3.9255 94.21
15 0.3150 12.2657 3.8638 94.12
20 0.3280 11.9778 3.9288 94.22

Bus 4
1 0.3708 10.1410 3.7605 92.91

10 0.2713 2.6832 0.7280 63.39
19 0.4157 9.1589 3.8076 93.00
28 0.2935 2.3938 0.7025 61.75

Bus 6
1 1.8248 12.5237 22.8530 3.81

16 1.7350 13.2443 22.9792 4.34
31 4.0580 7.8714 31.9422 31.18
40 3.9930 8.6799 34.6592 36.58

Table 28.8. HLIII system indices at Buses 2, 4 and 6 of the RBTS

Bus SAIFI SAIDI CAIDI ASAI

2 0.320 72 3.897 86 12.153 60 0.999 555
4 0.397 14 3.812 02 9.598 72 0.999 565
6 2.502 92 25.705 58 10.270 24 0.997 066

Table 28.9. Percentage contribution to HLIII inadequacy of the RBTS
from the distribution system

Bus SAIFI Distribution SAIDI Distribution
(%) (%)

2 0.320 72 94.85 3.897 86 94.17
4 0.397 14 95.01 3.812 02 93.01
6 2.502 92 92.43 25.7055 14.49

developments of the system. The quality of the
statistical indices is also dependent upon how the
data is processed, how much pooling is done, and
the age of the data currently stored.

Many utilities throughout the world have es-
tablished comprehensive procedures for assessing
the performance of their systems. In Canada these
procedures have been formulated and data is col-
lected through the CEA. As this system is very

much in the public domain, it is useful to use it
as a means of illustrating general principles.

28.4.1 Canadian Electricity Association
Database

All the major electric power utilities in Canada
participate in a single data collection and analysis

Reliability of Electric Power Systems: An Overview 523

system of the CEA called ERIS. The CEA started
collecting data on generation outages in 1977
and on transmission outages in 1978, and since
then has published a number of reports in both
areas [14–16, 18, 20]. The third stage, dealing with
distribution equipment, is being implemented.
This procedure is illustrated in Figure 28.5.

28.4.2 Canadian Electricity Association
Equipment Reliability Information
System Database for HLI Evaluation

The simplest representation of a generating unit
is the two-state model shown in Figure 28.6,
where λ and µ are the unit failure and repair
rates respectively. Additional derated states can
be added to the model to provide more accurate
representation. This is shown in Figure 28.7 where
a, b, c, d , e and f are the various state transition
rates. The transition rates for these models can
be calculated from the generation equipment
status data collected by utilities. These data are
available in CEA-ERIS, which provides a detailed
reporting procedure for collecting generating unit
operating and outage data. This database contains
information regarding the various states in which
a generating unit can reside and outage codes to
explain why a unit is in a particular outage or
derated state. The data provided by CEA-ERIS are
quite adequate to perform reliability analysis at
HLI. The basic parameters required in performing
adequacy analysis are presented in Table 28.10
for typical generating unit classes using data for
1994/98 [15].

28.4.3 Canadian Electricity Association
Equipment Reliability Information
System Database for HLII Evaluation

Reliability evaluation at HLII requires outage
statistics pertaining to both generation and trans-
mission equipment. The generation outage statis-
tics are available from [15] as discussed earlier.
The basic equipment outage statistics required are
failure rates and repair times of transmission lines

Generation equipment
Status reporting

system

Distribution equipment
Outage reporting

system

Transmission equipment
Outage reporting

system

ERIS

Figure 28.5. Basic components of ERIS

Up Down

�

�

Figure 28.6. Basic two-state unit model

Down Derated
e f

Upb c

a d

Figure 28.7. Basic three-state unit model

and associated equipment such as circuit break-
ers and transformers. The transmission stage of
CEA-ERIS was implemented in 1978 when Cana-
dian utilities began supplying data on transmis-
sion equipment. The thirteenth CEA report on the
performance of transmission equipment is based
on data for the period from January 1, 1994 to
December 31, 1998 [16]. This report covers trans-
mission equipment in Canada with an operating

524 Practices and Emerging Applications

Table 28.10. Outage data for different generating unit types
based on 1994/98 data

Unit type FOR Failure rate
(%) (f/yr)

CTU 9.02∗ 8.72
Fossil 7.02 11.04
Hydraulic 2.00 2.81
Nuclear 11.46 3.33

CTU = combustion turbine unit.∗ Indicates utilization forced outage probability (UFOP) used rather
than forced outage rate. The UFOP of a generating unit is defined as the
probability that the unit will not be available when required. The CEA-
ERIS database contains unavailability data on units of different sizes
and of different ages in addition to failure and repair rate information
for frequency and duration reliability evaluation.

voltage of 110 kV and above. The transmission
line performance statistics are given on a per-100-
km-yr basis for line-related outages, and a sum-
mary of these statistics is provided in Table 28.11.
The report also provides performance statistics of
transformers and circuit breakers.

Tables 28.12 and 28.13 provide summaries
of transformer and circuit breaker statistics by
voltage classification for forced outages involving
integral subcomponents and terminal equipment.
The data presented in all three tables can be used
to calculate HLII adequacy indices. However, it
should be noted that, in order to include the effect
of station-originated outages, additional data in
the form of active failure rates, maintenance rates
and switching times are required. Some of these
parameters can also be obtained from the CEA
database.

The reports produced by CEA on forced
outage performance of transmission equipment
[16] also provide summaries on a number of other
statistics, including the following:

1. transmission line statistics for line-related
transient forced outages;

2. cable statistics for cable-related and terminal-
related forced outages;

3. synchronous compensator statistics;
4. static compensator statistics by voltage classi-

fication;

5. shunt reactor statistics by voltage classifica-
tion;

6. shunt capacitator statistics by voltage classifi-
cation;

7. series capacitor bank statistics by voltage
classification.

28.4.4 Canadian Electricity Association
Equipment Reliability Information
System Database for HLIII Evaluation

HLIII adequacy assessment requires outage statis-
tics of equipment in all parts of the system, i.e.
generation, transmission and distribution. The
outage statistics for the generation and trans-
mission equipment are available in [15, 16] as
discussed earlier. The distribution reliability data
system recently commissioned by CEA completes
the basic equipment reliability information sys-
tem, containing generic performance and relia-
bility information on all three major constituent
areas of generation, transmission and distribu-
tion equipment. The required distribution compo-
nent failure statistics are presently being collected.
These data can be used for quantitative assessment
of power system reliability and to assist in the
planning, design, operation and maintenance of
distribution systems. They will also support the
quantitative appraisal of alternatives and the op-
timization of cost/reliability worth.

In the reporting system adopted for CEA-ERIS,
distribution equipment has been divided into a
number of major components and therefore the
system can be referred to as component-oriented.
Every event involves one major component (unless
it is a common-mode failure) and the outage
of a major component due to that of another
component is not recorded. In this way it is
possible to reconstruct the outage performance
of any given configuration from the record of the
various components.

The following devices have been selected as
major components:

1. distribution line;
2. distribution cable;
3. distribution transformer;

Reliability of Electric Power Systems: An Overview 525

Table 28.11. Summary of transmission line statistics

Voltage Line-related sustained outages Terminal-related sustained outages
(kV) Frequency Mean duration Unavailability Frequency Mean duration Unavailability

(per yr) (hr) (%) (per yr) (hr) (%)

110–149 2.4373 13.4 0.373 0.1074 5.8 0.007
150–199 0.8007 0.3 0.054 0.0263 21.8 0.007
200–299 1.0510 8.9 0.107 0.1572 9.7 0.017
300–399 0.2363 49.7 0.134 0.0593 15.8 0.011
500–599 1.7224 3.1 0.061 0.2032 16.0 0.037
600–799 0.2808 119.2 0.382 0.0143 13.9 0.023

Table 28.12. Summary of transformer bank statistics by voltage classification for forced
outages

Voltage Involving integral subcomponents Involving terminal equipment
(kV) Frequency Mean duration Frequency Mean duration

(per yr) (hr) (per yr) (hr)

110–149 0.0504 163.8 0.0914 63.7
150–199 0.1673 113.9 0.0662 420.3
200–299 0.0433 169.4 0.0706 52.2
300–399 0.0505 119.4 0.0385 58.0
500–599 0.0389 277.3 0.0429 34.6
600–799 0.0320 176.9 0.0233 354.5

Table 28.13. Summary of circuit breaker statistics by voltage classification for forced outages

Voltage Involving integral subcomponents Involving terminal equipment
(kV) Frequency Mean duration Frequency Mean duration

(per yr) (hr) (per yr) (hr)

110–149 0.0373 136.4 0.0468 55.4
150–199 0.0313 74.9 0.0251 145.5
200–299 0.0476 164.2 0.0766 37.7
300–399 0.0651 134.6 0.0322 59.5
500–599 0.0795 125.1 0.0948 37.7
600–799 0.1036 198.8 0.0566 118.1

4. power transformer;
5. regulator;
6. capacitor.

There are other distribution equipment com-
ponents which could also have been selected, but
it was decided that they were either too diffi-
cult to define or that the added complexity was
not justified. It was therefore decided to use a

limited number of clearly defined major compo-
nents.

28.5 System Reliability Worth
Adequacy studies of a system are only part of
a required overall assessment. The economics
of alternative facilities play a major role in the
decision-making process. The simplest approach

526 Practices and Emerging Applications

which can be used to relate economics with
reliability is to consider the investment cost
only. In this approach, the increase in reliability
due to the various alternative reinforcement or
expansion schemes is evaluated, together with
the investment cost associated with each scheme.
Dividing this cost by the increase in reliability
gives the incremental cost of reliability, i.e. how
much it will cost for a per unit increase in
reliability. This approach is useful for comparing
alternatives when it is known for certain that the
reliability of a section of the power system must be
increased, the lowest incremental cost of reliability
being the most cost effective. This is a significant
step forward compared with assessing alternatives
and making major capital investment decisions
using deterministic techniques.

The weakness of the approach is that it is not
related to either the likely return on investment
or the real benefit accruing to the consumer,
utility and society. In order to make a consistent
appraisal of economics and reliability, albeit only
the adequacy, it is necessary to compare the
adequacy cost (the investment cost needed to
achieve a certain level of adequacy) with the
adequacy worth (the benefit derived by the utility,
consumer and society). A step in this direction
is achieved by setting a level of incremental cost
which is believed to be acceptable to consumers.
Schemes costing less than this level would be
considered viable, but schemes costing greater
than this level would be rejected. A complete
solution however requires a detailed knowledge of
adequacy worth.

This type of economic appraisal is a fundamen-
tal and important area of engineering application,
and it is possible to perform this kind of evaluation
at the three hierarchical levels discussed. A goal
for the future should be to extend this adequacy
comparison within the same hierarchical struc-
ture to include security and therefore to arrive at
reliability–cost and reliability–worth evaluation.
The basic concept is relatively simple and can
be illustrated using the cost/reliability curves of
Figure 28.8.

The curves in Figure 28.8 show that the
utility cost will generally increase as consumers

A
n

n
u

al
co

st

Utility

System reliability

Total

Customer

Figure 28.8. Consumer, utility and total cost as a function of
system reliability

are provided with higher reliability. On the
other hand, the consumer costs associated with
supply interruptions will decrease as the reliability
increases. The total costs to society will therefore
be the sum of these two individual costs. This total
cost exhibits a minimum and so an “optimum”
or target level of reliability is achieved. In this
approach, the reliability level is not a fixed
value and results from the cost minimization
process.

This concept is quite valid. Two difficulties
arise in its assessment. First the calculated indices
are assessments at the various hierarchical levels.
Second, there are great problems in assessing
consumer perceptions of outage costs.

There have been many studies concerning in-
terruption and outage costs [7–12]. These studies
show that, although trends are similar in virtually
all cases, the costs vary over a wide range and
depend on the country of origin and the type of
consumer. It is apparent therefore that there is still
considerable research needed on the subject of the
cost of an interruption. This research should con-
sider the direct and indirect costs associated with
the loss of supply, both on a local and widespread
basis. A recent CIGRE report [30] provides a wide
range of international data on interruption costs

Reliability of Electric Power Systems: An Overview 527

and their utilization, together with a comprehen-
sive bibliography of relevant material.

28.6 Guide to Further Study

As previously noted, there are a large number
of excellent publications [7–12] on the subject of
power system reliability evaluation. Reference [5]
is a compendium of important publications
selected from [7–11] and includes some seminal
references. The basic techniques required in HLI,
HLII and distribution system adequacy evaluation
are described in detail in [3]. This reference
contains many numerical examples and is used
as a basic textbook on power system reliability
evaluation. Reference [3] illustrates HLI adequacy
evaluation in terms of the basic probability
methods which provide LOLE and LOEE indices
and in terms of frequency (F) duration (D)
indices. The F&D approach provides additional
information which can prove useful in capacity
planning and evaluation. The recursive algorithms
required when developing these indices for
practical systems are illustrated by application
to numerical examples. The text then extends
the single system analysis by application to
interconnected power systems.

Reliability evaluation at HLI includes recog-
nition of operating or spinning reserve require-
ments. Reference [3] provides a chapter on this
subject which includes both operating and re-
sponse risk evaluation. The subject of HLII evalu-
ation using contingency enumeration is presented
by application to selected system configurations.
The required calculations are shown in detail.
Reference [3] also presents detailed examples of
distribution system reliability evaluation in both
radial and meshed networks. These applications
include many practical system effects such as lat-
eral distributor protection, disconnects and load
transfer capability in radial networks. The meshed
analysis includes the recognition of permanent
and transient outages, maintenance considera-
tions, adverse weather and common-mode out-
ages. The meshed network analysis is also ex-
tended to include partial in addition to total loss

of continuity. The concepts utilized in transmis-
sion and distribution system evaluation are then
extended and applied to substation and switching
stations. Reference [3] concludes by illustrating
how basic reliability techniques can be used to
assess general plants and equipment configura-
tions. Reference [3] was extended in the second
edition to include chapters dealing with relia-
bility evaluation of power systems using Monte
Carlo simulation and incorporating outage costs
and reliability worth assessment. Reference [6]
is focused entirely on the utilization of Monte
Carlo simulation in power system reliability as-
sessment. These two texts jointly provide the basic
understanding required to read and appreciate the
wide range of techniques described in [7–12]. The
concepts associated with the inclusion of embed-
ded generation in distribution system reliability
evaluation are described in [31] and an extended
review of the application of reliability concepts in
the new competitive environment is detailed in
[32]. A careful examination of [3] will provide the
basic understanding required to read many of the
papers detailed in References [7–12].

References
[1] Billinton R, Allan RN. Reliability evaluation of engineer-

ing systems, 2nd ed. New York: Plenum Press; 1992.

[2] Billinton R, Allan RN. Power system reliability in
perspective. IEE Electron Power 1984;30(3):231–6.

[3] Billinton R, Allan RN. Reliability evaluation of power
systems, 2nd ed. New York: Plenum Press; 1996.

[4] Billinton R, Allan RN. Reliability assessment of large
electric power systems. Boston: Kluwer Academic; 1988.

[5] Billinton R, Allan RN, Salvaderi L. Applied reliability
assessment in electric power systems. New York: IEEE
Press; 1991.

[6] Billinton R, Li W. Reliability assessment of electric power
systems using Monte Carlo methods. New York: Plenum
Press; 1994.

[7] Billinton R. Bibliography on the application of probability
methods in power system reliability evaluation. IEEE
Trans Power App Syst 1972;PAS-91(2):649–60.

[8] IEEE Sub-Committee on Application of Probability
Methods. Bibliography on the application of probability
methods in power system reliability evaluation 1971–
1977. IEEE Trans Power App Syst 1978;PAS-97(6):2235–
42.

528 Practices and Emerging Applications

[9] Allan RM, Billinton R, Lee SH. Bibliography on the
application of probability methods in power system
reliability evaluation 1977–1982. IEEE Trans Power App
Syst 1984;PAS-103(2):275–82.

[10] Allan RN, Billinton R, Shahidehpour SM, Singh C.
Bibliography on the application of probability methods
in power system reliability evaluation 1982–1987. IEEE
Trans Power Syst 1988;3(4):1555–64.

[11] Allan RN, Billinton R, Breipohl AM, Grigg C. Bib-
liography on the application of probability methods
in power system reliability evaluation 1987–1991. IEEE
Trans Power Syst 1994;9(1):41–9.

[12] Allan RN, Billinton R, Breipohl AM, Grigg C. Bib-
liography on the application of probability methods
in power system reliability evaluation 1992–1996. IEEE
Trans Power Syst 1999;PWRS-14:51–7.

[13] CIGRE WG 38.03. Power system reliability analysis,
vol. 1. Application guide. Paris: CIGRE Publication; 1987.
Ch. 4, 5.

[14] Allan RN, Billinton R. Concepts of data for assessing the
reliability of transmission and distribution equipment.
2nd IEE Conf on Reliability of Transmission and
Distribution Equipment. Conference Publication 406;
March 1995. p. 1–6.

[15] Canadian Electrical Association Equipment Reliability
Information System Report. 1998 Annual Report—
Generation equipment status. Montreal: CEA; September
1999.

[16] Canadian Electrical Association Equipment Reliability
Information System Report. Forced outage performance
of transmission equipment for the period January 1994 to
December 1998. Montreal: CEA; February 2000.

[17] The Electricity Association: National Fault and Interrup-
tion Reporting Scheme (NAFIRS). London: Electricity
Association.

[18] Canadian Electrical Association Equipment Reliability
Information System Report. 1999 Annual Service Con-
tinuity Report on distribution system performance in
Canadian Electrical Utilities. May 2000.

[19] Office of Gas and Electricity Markets (OFGEM). Report
on distribution and transmission system performance
1998/99. London: OFGEM.

[20] Canadian Electrical Association Equipment Reliability
Information System Report. Bulk electricity system
delivery point interruptions 1998–1990 Report. October
1992.

[21] National Grid Company (UK). Performance of the
Transmission System. Annual Reports to the Director
General of Electricity Supply, OFFER.

[22] Billinton R, Kumar S, Chowdhury N, Chu K, Debnath K,
Goel L, et al. A reliability test system for educational
purposes—basic data. IEEE Trans PWRS 1989;4(3):1238–
44.

[23] Billinton R, Kumar S, Chowdhury N, Chu K, Goel L,
Khan E, et al. A reliability test system for edu-
cational purposes—basic results. IEEE Trans PWRS
1990;5(1):319–25.

[24] Allan RN, Billinton R, Sjarief I, Goel L. A reliability
test system for educational purposes—basic distribution
system data and results. IEEE Trans PWRS 1991;6(2):813–
20.

[25] Billinton R, Vohra PK, Kumar S. Effect of station orig-
inated outages in composite system adequacy evalua-
tion of the IEEE reliability test system. IEEE Trans PAS
1985;104:2649–56.

[26] NGC Settlements. An introduction to the initial pool
rules. Nottingham; 1991.

[27] Medicherla TKP, Billinton R. Overall approach to
the reliability evaluation of composite generation and
transmission systems. IEE Proc C 1980;127(2):72–81.

[28] CIGRE WG 38.03. Power system reliability analysis, vol. 2.
Composite power system reliability evaluation. Paris:
CIGRE Publication; 1992.

[29] Roman Ubeda J, Allan RN. Sequential simulation applied
to composite system reliability evaluation. Proc IEE C
1992;139:81–6.

[30] CIGRE TF 38.06.01. Methods to consider customer
interruption costs in power system analysis. CIGRE;
2001.

[31] Jenkins N, Allan RN, Crossley P, Kirschen DS,
Strbac G. Embedded generation. Stevenage: IEE
Publishing; 2000.

[32] Allan RN, Billinton R. Probabilistic assessment of power
systems. Proc IEEE 2000;88(2):140–62.

Human and Medical Device
Reliability

Ch
ap

te
r2

9B. S. Dhillon

29.1 Introduction
29.2 Human and Medical Device Reliability Terms and Definitions
29.3 Human Stress—Performance Effectiveness, Human Error Types,

and Causes of Human Error
29.4 Human Reliability Analysis Methods
29.4.1 Probability Tree Method
29.4.2 Fault Tree Method
29.4.3 Markov Method
29.5 Human Unreliability Data Sources
29.6 Medical Device Reliability Related Facts and Figures
29.7 Medical Device Recalls and Equipment Classification
29.8 Human Error in Medical Devices
29.9 Tools for Medical Device Reliability Assurance
29.9.1 General Method
29.9.2 Failure Modes and Effect Analysis
29.9.3 Fault Tree Method
29.9.4 Markov Method
29.10 Data Sources for Performing Medical Device Reliability Studies
29.11 Guidelines for Reliability Engineers with Respect to Medical Devices

29.1 Introduction

The beginning of the human reliability field may
be taken as the middle of the 1950s when the prob-
lem of human factors was seriously considered
and the first human-engineering standards for the
US Air Force were developed [1, 2]. In 1958, the
need for human reliability was clearly identified
[3] and some findings relating to human reliabil-
ity were documented in two Convair-Astronautics
reports [4, 5].

In 1962, a database (i.e. Data Store) containing
time and human performance reliability estimates
for human-engineering design features was es-
tablished [6]. In 1986, the first book on human
reliability was published [7]. All in all, over the
years many other people have contributed to the
field of human reliability and a comprehensive list
of publications on the subject is given in [8].

The latter part of the 1960s may be regarded
as the beginning of the medical device reliability
field. During this period many publications on
the subject appeared [9–13]. In 1980, an article
listed most of the publications on the subject and
in 1983, a book on reliability devoted an entire
chapter to medical device/equipment reliability
[14, 15]. A comprehensive list of publications on
medical device reliability is given in [16].

This chapter presents various aspects of human
and medical device reliability.

29.2 Human and Medical
Device Reliability Terms and
Definitions
Some of the common terms and definitions
concerning human and medical device reliability
are as follows [7, 15, 17–23].

529

530 Practices and Emerging Applications

Figure 29.1. A hypothetical curve showing the human perfor-
mance effectiveness versus stress relationship

• Human reliability. This is the probability
of performing a given task successfully by
the human at any required stage in system
operations within a specified minimum time
(if such time requirement is stated).
• Human error. This is the failure to perform

a task (or the performance of a forbidden
action) that could lead to the disruption of
scheduled operations or damage to property
and equipment.
• Human factors. This is the body of scien-

tific facts concerning the characteristics of
humans.
• Human performance. This is a measure of

human functions and actions subject to
specified conditions.
• Medical device. This is any machine, appara-

tus, instrument, implant in vitro reagent, im-
plement contrivance, or other related or simi-
lar article, including any component, part, or
accessory, that is intended for application in
diagnosing diseases or other conditions or in
the cure, treatment, mitigation, or prevention
of disease or intended to affect the structure of
any function of the body.
• Reliability. This is the probability that an

item will perform its specified function
satisfactorily for the stated time period when
used according to the designed conditions.

• Failure. This is the inability of an
item/equipment to function within the
specified guidelines.
• Safety. This is conservation of human life

and its effectiveness, and the prevention
of damage to item/equipment according to
operational requirements.
• Quality. There are many definitions used

in defining quality and one of these is
conformance to requirements.
• Mean time to failure. This is the sum of

operating time of given items over the total
number of failures (i.e. when times to failure
are exponentially distributed).

29.3 Human
Stress—Performance
Effectiveness, Human Error Types,
and Causes of Human Error

Human performance varies under different con-
ditions and some of the factors that affect a per-
son’s performance are time at work, reaction to
stress, social interaction, fatigue, social pressure,
morale, supervisor’s expectations, idle time, repet-
itive work, and group interaction and identifica-
tion [24].

Stress is probably the most important factor
that affects human performance, and in the past
many researchers have studied the relationship
between human performance effectiveness and
stress. Figure 29.1 shows the resulting conclusion
of their efforts [18,25]. This figure basically shows
that the human performance for a specific task
follows a curvilinear relation to the imposed
stress. At a very low stress level, the task is dull and
unchallenging, thus most humans’ performance
will not be at the optimal level. However, at a
moderate stress level, the humans usually perform
their task at optimal level. As the stress bypasses
its moderate level, the human performance begins
to decline and Figure 29.1 shows that in the highest
stress region, human reliability is at its lowest.

Human and Medical Device Reliability 531

Figure 29.2. Types of human error

A human error may be categorized into many
different classifications, as shown in Figure 29.2.
These are design error, operator error, mainte-
nance error, fabrication error, inspection error,
handling error, and miscellaneous error [7, 26].
Although all these categories or types are self-
explanatory, the miscellaneous error represents
the situation where it is difficult to differentiate
between human failure and equipment failure.
Sometimes, the miscellaneous error is also re-
ferred to as the contributory error.

Human errors occur due to various reasons.
Some of the important causes for the occurrence
of human error are task complexity, poor equip-
ment design, improper work tools, poorly writ-
ten maintenance and operating procedures, inad-
equate training or skill, inadequate lighting in the
work area, high noise level, crowded work space,
high temperature in the work area, inadequate
work layout, poor motivation, poor verbal com-
munication, and inadequate handling of equip-
ment [7, 26].

29.4 Human Reliability Analysis
Methods

There are many methods used in performing
human reliability analysis [27]. These include
the probability tree method, fault tree method,
Markov method, throughput ratio method, block

diagram method, personnel reliability index, tech-
nique for human error rate prediction (THERP),
and Pontecorvo’s method of predicting human
reliability [7, 27]. The first three methods are de-
scribed below.

29.4.1 Probability Tree Method

This approach is concerned with performing
task analysis diagrammatically. More specifically,
diagrammatic task analysis is represented by
the branches of the probability tree. The tree
branching limbs denote outcomes (i.e. success or
failure) of each event, and in turn the occurrence
probability is assigned to each branch of the tree.

There are many advantages of the probabil-
ity tree method, including a visibility tool, lower
probability of error due to computation because
of computational simplification, the prediction of
quantitative effects of errors, and the incorpora-
tion, with some modifications, of factors such as
interaction stress, emotional stress, and interac-
tion effects. The following example demonstrates
this method.

Example 1. Assume that the task of an operator is
composed of two subtasks, y and z. Each of these
subtasks can either be performed successfully
or unsuccessfully, and subtask y is accomplished
before subtask z. The performance of subtasks
unsuccessfully is the only error that can occur,

532 Practices and Emerging Applications

y z (Task failure)

y z (Task failure)

y z (Task failure)

y z (Task success)

y

z

z

z

z

y

Figure 29.3. Probability tree diagram for Example 1

and the performance of both the subtasks is
independent of each other.

Develop a probability tree and obtain an
expression for the probability of performing the
overall task incorrectly.

A probability tree for Example 1 is shown in
Figure 29.3. The meanings of the symbols used in
Figure 29.3 are defined below:

y= the subtask y is performed correctly

ȳ= the subtask y is performed incorrectly

z= the subtask z is performed correctly

z̄= the subtask z is performed incorrectly

Using Figure 29.3, the probability of per-
forming the overall task incorrectly is:

Ft in = PyPz̄ + PȳPz + PȳPz̄ (29.1)

where

Ft in is the probability of performing the
overall task incorrectly

Py is the probability of performing subtask y
correctly

Pz is the probability of performing subtask z
correctly

Pȳ is the probability of performing subtask y
incorrectly

Pz̄ is the probability of performing subtask z
incorrectly.

29.4.2 Fault Tree Method

This is a widely used method in reliability analysis
of engineering systems and it can also be used
in performing human reliability analysis. This
method is described in detail in [24]. Nonetheless,
this approach makes use of the following symbols
in developing a basic fault tree:

• Rectangle. This is used to denote a fault
event that results from the combination of
failure events through the input of a logic gate,
e.g. AND or OR gate.
• AND gate. This gate denotes that an output

fault event occurs if all the input fault events
occur. Figure 29.4 shows a symbol for an AND
gate.
• OR gate. This gate denotes that an output fault

event occurs if any one or more of the input
fault events occur. Figure 29.4 shows a symbol
for an OR gate.
• Circle. This is used to denote basic fault

events; more specifically, those events that
need not be developed any further.

The following example demonstrates this
method:

Example 2. A person is required to perform a
job Z composed of four distinct and independent
tasks A, B, C, and D. All of these tasks must be
carried out correctly for the accomplishment of
the job successfully. Tasks A and B are composed
of two and three independent steps, respectively.
More specifically, for the successful performance

Figure 29.4. Symbols for basic logic gates: (a) OR gate; (b) AND
gate

Human and Medical Device Reliability 533

The person will not accomplish
job Z successfully

Task B will not be
performed correctly

Task A will not be
performed correctly

Task C
will not be
performed
correctly

Task D
will not be
performed
correctly

Failure to
perform
step

correctly
x

Failure to
perform
step

correctly
w

Failure to
perform
step

correctly
y

Failure to
perform
step 1

correctly

Failure to
perform
step 2

correctly

T

I1E6 I2 E7

E1 E2 E3

E4 E5

Figure 29.5. A fault tree for Example 2

of task A all the steps must be performed correctly,
whereas for task B at least one of the steps must be
accomplished correctly.

Develop a fault tree for this example by using
the defined symbols above. Assume that the top
fault event is “The person will not accomplish
job Z successfully”. Calculate the probability of
occurrence of the top event, if the probabilities
of failure to perform tasks C, D, and the steps
involved in tasks A and B are 0.04, 0.05, and 0.1,
respectively.

A fault tree for Example 2 is shown in
Figure 29.5. The basic fault events are denoted
by Ei , for i = 1, 2, 3, 4, 5, 6 and the intermediate
fault events by Ii , for i = 1, 2. The letter T denotes
the top fault event.

The probability of occurrence of intermediate
event I1 is given by [24]:

P(I1)= P(E1)P (E2)P (E3)

= (0.1)(0.1)(0.1)

= 0.001

534 Practices and Emerging Applications

Similarly, the probability of occurrence of inter-
mediate event I2 is given by [24]:

P(I2)= P(E4)+ P(E5)− P(E4)P (E5)

= 0.1+ 0.1− (0.1)(0.1)

= 0.19

The probability of occurrence of the top fault event
T is expressed by [24]:

P(T)= 1− [1− P(E6)][1− P(E7)]
× [1− P(I1)][1− P(I2)]
= 1− [1− 0.04][1− 0.05]
× [1− 0.001][1− 0.19]
= 0.2620

It means the probability of occurrence of the top
event T (i.e. the person will not accomplish job Z
successfully) is 0.2620.

29.4.3 Markov Method

This is a powerful tool that can also be used
in performing various types of human reliability
analysis [24]. The following example demonstrates
the application of this method in human reliability
analysis [28].

Example 3. Assume that an operator is perform-
ing his/her tasks in fluctuating environments:
normal, abnormal. Although human error can
occur under both environments, it is assumed
that the human error rate under the abnormal
environment is greater than under the normal
environment because of increased stress. The sys-
tem state space diagram is shown in Figure 29.6.
The numerals in the boxes denote system state.
Obtain an expression for mean time to human
error (MTTHE).

The following symbols were used to develop
equations for the diagram in Figure 29.6:
Pi(t) is the probability of the human being in

state i at time t ; for i = 0 (means
human performing task correctly under
normal environment), i = 2 (means
human committed error in normal
environment), i = 1 (means human

performing task correctly in abnormal
environment), i = 3 (means human
committed error in abnormal
environment)

λh is the constant human error rate from
state 0

λah is the constant human error rate from
state 1

αn is the constant transition rate from
normal to abnormal environment

αa is the constant transition rate from
abnormal to normal environment.

By applying the Markov method, we obtain the
following system of differential equations for
Figure 29.6:

dP0(t)

dt
+ (λh + αn)P0(t)= P1(t)αa (29.2)

dP1(t)

dt
+ (λah + αa)P1(t)= P0(t)αn (29.3)

dP2(t)

dt
− P0(t)λh = 0 (29.4)

dP3(t)

dt
− P1(t)λah = 0 (29.5)

At time t = 0, P0(0)= 1 and P1(0)= P2(0)=
P3(0)= 0. Solving Equations 29.2–29.5, we get:

P0(t)= (s2 − s1)
−1[(s2 + λah + αn) es2t

− (s1 + λah + αn) es1t] (29.6)

where

s1 = [−a1 + (a2
1 − 4a2)

1/2]/2

s2 = [−a1 − (a2
1 − 4a2)

1/2]/2

a1 = λh + λah + αn + αa

a2 = λh(λah + αa)+ λahαn

P2(t)= a4 + a5 es2t − a6 es1t (29.7)

where

a3 = 1/(s2 − s1)

a4 = λh(λah + αn)/s1s2

a5 = a3(λh + a4s1)

a6 = a3(λh + a4s2)

P1(t)= a3αn(es2t − es1t) (29.8)

P3(t)= a7[(1+ a3)(s1 es2t − s2 es1t) (29.9)

Human and Medical Device Reliability 535

Abnormal environment states

Normal environment states

Human performing task
correctly

Human committed
error

Human
performing

task
correctly

Human
committed

error

�a �n

�h

�ah

0 2

1 3

Figure 29.6. System state space diagram

where
a7 = λahαn/s1s2

The reliability of the human is given by:

Rh(t)= P0(t)+ P1(t) (29.10)

Mean time to human error is given by:

MTTHE=
∫ ∞

0
Rh(t) dt

= (λah + αn + αa)/a2 (29.11)

29.5 Human Unreliability Data
Sources
The United States Department of Defense and
Atomic Energy Commission (AEC) were probably
the first to provide an impetus to develop
formal data collection and analysis methods for
quantifying human performance reliability [29].
In 1962, the American Institute for Research (AIR)
was probably the first organization to establish
a human unreliability data bank called Data
Store [6].

Over the years many other data banks have
been established [7, 29]. Needless to say, today

there are many sources for obtaining human error-
related data and Table 29.1 presents some of these
sources. References [7, 29] list many more such
sources.

29.6 Medical Device Reliability
Related Facts and Figures

Some of the facts and failures directly or indirectly
related to medical device reliability are as follows.

• In 1983, the United States medical device
industry employed around 200 000 persons
and at least 3000 companies were involved
with medical devices [38].
• In 1997, a total of 10 420 registered manu-

facturers were involved in the manufacture
of medical devices in the United States alone
[39].
• In 1969, 10 000 medical device-related injuries

resulting in 731 deaths over a 10-year pe-
riod were reported by the US Department of
Health, Education, and Welfare special com-
mittee [40].

536 Practices and Emerging Applications

Table 29.1. Sources for obtaining human unreliability data

No. Source

1 Data Store [6]
2 Book: Human reliability with human factors [7]
3 Book: Human reliability and safety analysis data handbook [30]
4 Operational Performance Recording and Evaluation Data System (OPREDS) [31]
5 Bunker–Ramo tables [32]
6 Aviation Safety Reporting System [33]
7 Technique for Establishing Personnel Performance Standards (TEPPS) [34]
8 Aerojet General Method [35]
9 Book: Mechanical reliability: theory, models, and applications [36]

10 Air Force Inspection and Safety Center Life Sciences Accident and Incident Reporting System [37]

• In 1997, the world market for medical devices
was estimated to be around $120 billion [41].
• A study reported that more than 50% of all

technical medical equipment problems were
due to operator errors [42].
• In 1990, a study conducted by the Food

and Drug Administration (FDA) over a
period from October 1983 to September
1989 reported that approximately 44% of the
quality-related problems led to the voluntary
recall of medical devices [43]. The study also
stated that effective design controls could have
prevented such problems.
• In 1990, the Safe Medical Device Act (SMDA)

was passed by the US Congress and in turn,
it strengthened the FDA to implement the
Preparation Quality Assurance Program [16].
• In 1969, a study reported that faulty instru-

mentation accounts for 1200 deaths per year
in the United States [44, 45].

29.7 Medical Device Recalls and
Equipment Classification

Defective medical devices are subject to recalls
and repairs in the United States. The passage
of the Medical Device Amendments of 1976
has helped to increase the public’s awareness
of these activities and their number. The FDA
Enforcement Report publishes data on medical
device recalls [46]. For example, this report for
the period of 1980–1982 announced 230 medical

device-related recalls and the following categories
of problem areas:

• faulty product design;
• contamination;
• mislabeling;
• defects in material selection and manufactur-

ing;
• defective components;
• no premarket approval and failure to comply

with good manufacturing practices (GMPs);
• radiation (X-ray) violations;
• misassembly of parts;
• electrical problems.

The number of recalls associated with each of
the above nine categories of problem areas were
40, 40, 27, 54, 13, 4, 25, 10, and 17, respectively.
It is important to note that around 70% of the
medical device recalls were due to faulty design,
product contamination, mislabeling, and defects
in material selection and manufacturing.

Six components of the faulty design were pre-
mature failure, potential for malfunction, electri-
cal interference, alarm defects, potential for leak-
age of fields into electrical components, and failure
to perform as required. There were four subcate-
gories of product contamination: defective pack-
age seals, non-sterility, other package defects, and
other faults. The mislabeling category included
components such as incomplete labeling, mislead-
ing or incorrect labeling, disparity between label
and product, and inadequate labeling. Five com-
ponents of defects in material selection and man-
ufacturing were manufacturing defects, material

Human and Medical Device Reliability 537

deterioration, inappropriate materials, separation
of bounded components, and actual or potential
breakage/cracking.

After the passage of the Medical Device
Amendments of 1976, the FDA categorized med-
ical devices prior to 1976 into three classifications
[40].

• Category I. This included devices in which
general controls such as GMPs were con-
sidered adequate in relation to efficacy and
safety.
• Category II. This included devices in which

general controls were deemed inadequate in
relation to efficacy and safety but in which
performance standards could be established.
• Category III. This included devices in which

the manufacturer must submit evidence of
efficacy and safety through well-designed
studies.

Nonetheless, the health care system uses a large
variety of electronic equipment and it can be
classified into three groups [47].

• Group X. This contains equipment/devices
that are considered responsible for the pa-
tient’s life or may become so during emer-
gency. More specifically, when such items fail,
there is seldom sufficient time for repair, thus
these items must have high reliability. Some
examples of the equipment/devices belonging
to this group are respirators, cardiac defib-
rillators, electro-cardiographic monitors, and
cardiac pacemakers.
• Group Y. This includes the vast majority of

equipment used for purposes such as rou-
tine or semi-emergency diagnostic or thera-
peutic. More specifically, the failure of equip-
ment belonging to this group does not lead to
the same emergency as in the case of group
X equipment. Some examples of group Y
equipment are gas analyzers, spectropho-
tometers, ultrasound equipment, diathermy
equipment, electro-cardiograph and electro-
encephalograph recorders and monitors, and
colorimeters.
• Group Z. This includes equipment not critical

to a patient’s life or welfare. Wheelchairs

and bedside television sets are two typical
examples of group Z equipment.

29.8 Human Error in Medical
Devices

Past experience indicates that a large percentage
of medical device-related problems are due to
human error. For example, 60% of deaths or
serious injuries associated with medical devices
reported through the FDA Center for Devices and
Radiological Health (CDRH) were due to user
error [48]. Nonetheless, various studies conducted
over the years have identified the most error-prone
medical devices [49]. Some of these devices (in
order of most error-prone to least error-prone) are
as follows [49]:

• glucose meter;
• balloon catheter;
• orthodontic bracket aligner;
• administration kit for peritoneal dialysis;
• permanent pacemaker electrode;
• implantable spinal cord simulator;
• intra-vascular catheter;
• infusion pump;
• urological catheter;
• electrosurgical cutting and coagulation de-

vice;
• non-powered suction apparatus;
• mechanical/hydraulic impotence device;
• implantable pacemaker;
• peritoneal dialysate delivery system;
• catheter introducer;
• catheter guidewire.

29.9 Tools for Medical Device
Reliability Assurance

There are many methods and techniques that
can be used to improve the reliability of medical
devices [16, 24]. Some of the commonly used ones
are described below.

538 Practices and Emerging Applications

29.9.1 General Method

This method is composed of a number of steps
that can be used to improve medical equipment
reliability. These steps are as follows [42]:

• specify required reliability parameters and
their values in design specifications;
• allocate specified reliability parameter values;
• evaluate medical equipment reliability and

compare the specified and theoretical values;
• modify design if necessary;
• collect field failure data and perform neces-

sary analysis;
• make recommendations if necessary to im-

prove weak areas of the medical equipment.

29.9.2 Failure Modes and Effect
Analysis

The history of failure modes and effect analysis
(FMEA) goes back to the early 1950s when
the technique was used in the design and
development of flight control systems. Since then
the method has received widespread acceptance
in the industry. FMEA is a tool to evaluate design
at the initial stage from the reliability aspects.
This criterion helps to identify the need for
and the effects of design change. Furthermore,
the procedures demand listing the potential
failure modes of each and every component on
paper and their effects on the listed subsystems.
There are seven main steps involved in performing
failure modes and effect analysis: (i) establishing
system definition; (ii) establishing ground rules;
(iii) describing system hardware; (iv) describing
functional blocks; (v) identifying failure modes
and their effects; (vi) compiling critical items;
(vii) documenting.

This method is described in detail in [24]
and a comprehensive list of publications on the
technique is given in [50].

29.9.3 Fault Tree Method

As in the case of human reliability analysis, the
fault tree method can also be used in medical

X-ray
machine

failed

1

X-ray machine
working normally

0

�

�

Figure 29.7. X-ray machine transition diagram

device reliability analysis. This method was
developed in the early 1960s at Bell Laboratories
to perform analysis of the Minuteman Launch
Control System. Fault tree analysis starts by
identifying an undesirable event, called the top
event, associated with a system. Events which
could cause the top event are generated and
connected by logic operators such as AND or OR.
The fault tree construction proceeds by generation
of events in a successive manner until the events
(basic fault events) need not be developed further.
The fault tree itself is the logic structure relating
the top event to the basic events.

This method is described in detail in [16, 24].

29.9.4 Markov Method

This is a very general approach and it can also be
used in performing reliability analysis of medical
devices. The method is quite appealing when
the system failure and repair rates are constant.
However, a problem may arise when solving a set
of linear algebraic equations for systems with a
large number of states. This method is described
in detail in [24].

The application of the Markov method in relia-
bility analysis of medical devices is demonstrated
through the following example [16].

Example 4. An X-ray machine was observed for a
long period and it was concluded that its failure
and repair rates are constant. The state space
diagram of the machine is given in Figure 29.7.
The numerals in the boxes denote the X-ray
machine states. Develop an expression for the
X-ray machine unavailability by using the Markov
method.

Human and Medical Device Reliability 539

Table 29.2. Sources for obtaining data to conduct medical device reliability studies

No. Source

1 MIL-HDBK-217: Reliability prediction of electronic equipment [51]
2 Medical Device Reporting System (MDRS) [52]
3 Universal Medical Device Registration and Regulatory Management System (UMDRMS) [53]
4 Hospital Equipment Control System (HECSTM) [53]
5 Health Devices Alerts (HDA) [53]
6 Problem Reporting Program (PRP) [53]
7 Medical Device Manufacturers Database (MDMD) [53]
8 User Experience Network (UEN) [53]

The following symbols were used to develop
equations for the state space diagram in Fig-
ure 29.7:
Pi(t) is the probability that the X-ray machine is

in state i at time t ; for i = 0 (means the
X-ray machine is operating normally),
i = 1 (means the X-ray machine has
failed)

λ is the X-ray machine constant failure
rate

µ is the X-ray machine constant repair
rate.

With the aid of the Markov method, we write the
following equations:

dP0(t)

dt
+ λP0(t)= µP1(t) (29.12)

dP1(t)

dt
+ λP1(t)= µP0(t) (29.13)

At time t = 0, P0(0)= 1 and P1(0)= 0.
Solving Equations 29.12 and 29.13, we obtain:

P0(t)= µ

λ+ µ
+ λ

λ+ µ
e−(λ+µ)t (29.14)

P1(t)= λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t (29.15)

The X-ray machine unavailability is given by:

UAx(t)= P1(t)= λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t

(29.16)
where
UAx(t) is the X-ray machine unavailability at

time t .

29.10 Data Sources for
Performing Medical Device
Reliability Studies

As in the case of any other engineering product,
the failure data are very important in medical
device reliability studies. There are many data
sources that can be quite useful in performing
various types of reliability studies. Some of these
sources are listed in Table 29.2.

29.11 Guidelines for Reliability
Engineers with Respect to
Medical Devices

Some of the guidelines for reliability engineers
working in the area of medical devices are as
follows [54].

• Remember that during the design, develop-
ment, and manufacturing phases of a medical
device, the responsibility for reliability rests
with the manufacturer, but in the field with the
user.
• Remember that not all device failures are

equal in importance, thus direct your atten-
tion to critical failures for maximum returns.
• Avoid using sophisticated methods and tech-

niques developed to improve aerospace sys-
tems reliability. For the time being, consider

540 Practices and Emerging Applications

yourself an expert on failure correction, sim-
ple fault tree analysis, failure mode and effects
analysis, and so forth.
• Aim to become an effective cost-conscious

reliability engineer, thus perform cost versus
reliability trade-off analyses. Past experience
indicates that some reliability improvement
decisions require very little or no additional
expenditure.
• Remember that even a simple failure report-

ing system in a health care organization will
be more beneficial in terms of improving
medical device reliability than having a large
inventory of spares or standbys.
• Use design review, failure mode and effect

analysis, qualitative fault tree analysis, and
parts review for immediate results.

References
[1] Meister D. Human reliability. In: Muckler FA, editor.

Human factors review. Santa Monica, CA: Human Factors
Society; 1984. p.13–53.

[2] Swain AD. Overview and status of human factors
reliability analysis. Proc 8th Annual Reliability and
Maintainability Conf; 1969. p.251–4.

[3] Williams HL. Reliability evaluation of the human
component in man–machine systems. Electr Manuf 1958;
April: 78–82.

[4] Hettinger CW. Analysis of equipment failures caused
by human errors. Report No. REL-R-005. Los Angles:
Convair-Astronautics; April 15, 1958.

[5] Meister D. Human engineering survey of difficulties
in reporting failure and consumption data. Report No.
ZX-7-O35. Los Angles: Convair-Astronautics; September
1958.

[6] Munger SJ, Smith RW, Payne D. An index of electronic
equipment operability: data store. Report No. AIR-
C43-1/62 RP(29.1). Pittsburgh: American Institute for
Research; 1962.

[7] Dhillon BS. Human reliability with human factors. New
York: Pergamon Press; 1986.

[8] Dhillon BS. Reliability and quality control: bibliography
on general and specialized areas. Gloucester, Canada:
Beta Publishers; 1992.

[9] Johnson JP. Reliability of ECG instrumentation in a
hospital. Proc Ann Symp Reliability; 1967. p.314–8.

[10] Crump JF. Safety and reliability in medical electronics.
Proc Ann Symp Reliability; 1969. p.320–2.

[11] Taylor EF. The effect of medical test instrument reliability
on patient risks. Proc Ann Symp Reliability; 1969. p.328–
30.

[12] Meyer JL. Some instrument induced errors in the
electrocardiogram. J Am Med Assoc 1967;201:351–8.

[13] Grechman R. Tiny flaws in medical design can kill. Hosp
Top 1968;46:23–4.

[14] Dhillon BS. Bibliography of literature on medical equip-
ment reliability. Microelectron. Reliab. 1980;20;737–42.

[15] Dhillon BS. Reliability engineering in systems design and
operation. New York: Van Nostrand-Reinhold Company;
1983.

[16] Dhillon BS. Medical device reliability and associated
areas. Boca Raton, FL: CRC Press; 2000.

[17] MIL-STD-721B. Definitions of effectiveness terms for
reliability, maintainability, human factors and safety.
Washington, DC: Department of Defense; 1966.

[18] Hagen EW. Human reliability analysis. Nucl Safety
1976;17:315–26.

[19] Meister D. Human factors in reliability. In: Ireson WG,
editor. Reliability handbook. New York: McGraw-Hill;
1966. p.12.2–37.

[20] Federal Food, Drug, and Cosmetic Act (as Amended,
Sec. 201 (h)). Washington, DC: US Government Printing
Office; 1993.

[21] Naresky JJ. Reliability definitions. IEEE Trans Reliab
1970;19:198–200.

[22] Omdahl TP. Reliability, availability and maintainability
(RAM) dictionary. Milwaukee, WI: ASQC Quality Press;
1988.

[23] McKenna T, Oliverson R. Glossary of reliability and
maintenance terms. Houston, TX: Gulf Publishing
Company; 1997.

[24] Dhillon BS. Design reliability: fundamentals and applica-
tions. Boca Raton, FL: CRC Press; 1999.

[25] Beech HR, Burns LE, Sheffield BF. A behavioural
approach to the management of stress. New York: John
Wiley and Sons; 1982.

[26] Meister D. The problem of human-initiated failures. Proc
8th Nat Symp Reliability and Quality Control; 1962,
p.234–9.

[27] Meister D. Comparative analysis of human reliability
models. Report No. AD 734-432; 1971. Available from the
National Technical Information Service, Springfield, VA
22151.

[28] Dhillon BS. Stochastic models for predicting human
reliability. Microelectron Reliab 1982;21:491–6.

[29] Dhillon BS. Human error data banks. Microelectron
Reliab 1990;30:963–71.

[30] Gertman DI, Blackman HS, Human reliability and safety
analysis data handbook. New York: John Wiley and Sons;
1994.

[31] Urmston R. Operational performance recording and
evaluation data system (OPREDS). Descriptive Brochure,
Code 3400. San Diego, CA: Navy Electronics Laboratory
Center; November 1971.

[32] Hornyak SJ. Effectiveness of display subsystems mea-
surement prediction technique. Report No. TR-67-292;
September 1967. Available from the Rome Air Develop-
ment Center (RADC), Griffis Air Force Base, Rome, NY.

Human and Medical Device Reliability 541

[33] Aviation Safety Reporting Program. FAA Advisory
Circular No. 00-4613; June 1, 1979. Washington, DC:
Federal Aviation Administration (FAA).

[34] Topmiller DA, Eckel JS, Kozinsky EJ. Human
reliability data bank for nuclear power plant operations:
a review of existing human reliability data banks.
Report No. NUREG/CR 2744/1; 1982. Available from
the US Nuclear Regulatory Commission, Washington,
DC.

[35] Irwin IA, Levitz JJ, Freed AM. Human reliability in
the performance of maintenance. Report No. LRP
317/TDR-63-218; 1964. Available from the Aerojet-
General Corporation, Sacramento, CA.

[36] Dhillon BS. Mechanical reliability: theory, models, and
applications. Washington, DC: American Institute of
Aeronatics and Astronautics; 1988.

[37] Life Sciences Accident and Incident Classification El-
ements and Factors. AFISC Operating Instruction
No. AMISCM-127-6; December 1971. Available from the
Department of Air Force, Washington, DC.

[38] Federal Policies and the Medical Devices Industry.
Office of Technology Assessment. Washington, DC: US
Government Printing Office; 1984.

[39] Allen D. California home to almost one-fifth of US
medical device industry. Med Dev Diag Ind Mag
1997;19:64–7.

[40] Banta HD. The regulation of medical devices. Prevent
Med 1990;19:693–9.

[41] Murray K. Canada’s medical device industry faces cost
pressures, regulatory reform. Med Dev Diag Ind Mag
1997;19:30–9.

[42] Dhillon BS. Reliability technology in health care systems.
Proc IASTED Int Symp Computers and Advanced
Technology in Medicine Health Care Bioengineering;
1990. p.84–7.

[43] Schwartz AP. A call for real added value. Med Ind Exec
1994;February/March:5–9.

[44] Walter CW. Instrumentation failure fatalities. Electron
News, January 27, 1969.

[45] Micco LA. Motivation for the biomedical instrument
manufacturer. Proc Ann Reliability and Maintainability
Symp; 1972. p.242–4.

[46] Hyman WA. An evaluation of recent medical device
recalls Med Dev Diag Ind Mag 1982;4:53–5.

[47] Crump JF. Safety and reliability in medical electronics.
Proc Ann Symp Reliability; 1969. p.320–2.

[48] Bogner MS. Medical devices: a new frontier for human
factors. CSERIAC Gateway 1993;IV:12–4.

[49] Wiklund ME. Medical device and equipment design.
Buffalo Grove, IL: Interpharm Press Inc.; 1995.

[50] Dhillon BS. Failure mode and effects analysis: bibliogra-
phy. Microelectron Reliab 1992;32:719–31.

[51] MIL-HDBK-217. Reliability prediction of electronic
equipment. Washington, DC: Department of Defense.

[52] Medical Device Reporting System (MDRS). Center
for Devices and Radiological Health, Food and Drug
Administration (FDA), Rockville, MD.

[53] Emergency Care Research Institute (ECRI). 5200 Butler
Parkway, Plymouth Meeting, PA.

[54] Taylor EF. The reliability engineer in the health care
system. Proc Ann Reliability and Maintainability Symp;
1972. p.245–8.

This page intentionally left blank

Probabilistic Risk Assessment

Ch
ap

te
r3

0Robert A. Bari

30.1 Introduction
30.2 Historical Comments
30.3 Probabilistic Risk Assessment Methodology
30.4 Engineering Risk Versus Environmental Risk
30.5 Risk Measures and Public Impact
30.6 Transition to Risk-informed Regulation
30.7 Some Successful Probabilistic Risk Assessment Applications
30.8 Comments on Uncertainty
30.9 Deterministic, Probabilistic, Prescriptive, Performance-based
30.10 Outlook

30.1 Introduction

Probabilistic risk assessment (PRA) is an analyt-
ical methodology for computing the likelihood
of health, environmental, and economic conse-
quences of complex technologies caused by equip-
ment failure or operator error. It can also be used
to compute the risks resulting from normal, in-
tended operation of these technologies. PRAs are
performed for various end uses. These include:
understanding the safety characteristics of a par-
ticular engineering design, developing emergency
plans for potential accidents, improving the reg-
ulatory process, and communicating the risks to
interested parties. These are a few broadly stated
examples of applications of the methodology.

The requirements of the end uses should de-
termine the scope and depth of the particular as-
sessment. A PRA often requires the collaboration
of experts from several disciplines. For example,
it could require the designers and operators of a
facility to provide a characterization of the normal
and potential off-normal modes of behavior of
the facility; it could require analysts who develop
and codify scenarios for the off-normal events;
it could require statisticians to gather data and
develop databases related to the likelihood of the
occurrence of events; it could require physical

scientists to compute the physical consequences
of off-normal events; it could require experts in
the transport of effluents from the facility to
the environment; it could require experts in the
understanding of health, environmental, or eco-
nomic impacts of effluents. Experts in all phases
of human behavior related to the normal and off-
normal behavior of a facility and its environment
could be required.

PRA is a methodology that developed and ma-
tured within the commercial nuclear power reac-
tor industry. Therefore the main emphasis and ex-
amples in this chapter will be from that industry.
Other industries also use disciplined methodolo-
gies to understand and manage the safe opera-
tion of their facilities and activities. The chemical
process, aviation, space, railway, health, environ-
mental, and financial industries have developed
methodologies in parallel with the nuclear indus-
try. Over the past decade there has been much
activity aimed at understanding the commonali-
ties, strengths, and weaknesses of methodological
approaches across industries. Examples of these
efforts are contained in the proceedings [1] of a
series of conferences sponsored by the Interna-
tional Association for Probabilistic Safety Assess-
ment and Management. In a series of six confer-
ences from 1991 to 2002, risk assessment experts

543

544 Practices and Emerging Applications

from over 30 countries have gathered to exchange
information on accomplishments and challenges
from within their respective fields and to forge
new collaborations with practitioners across dis-
ciplines. Another useful reference in this regard
is the proceedings [2] of a workshop by the Eu-
ropean Commission on the identification of the
need for further standardization and development
of a top-level risk assessment standard across dif-
ferent technologies. This workshop included ex-
perts from the chemical process, nuclear power,
civil structures, transport, food, and health care
industries.

Even within the nuclear power industry there
have been various approaches and refinements to
the methodologies. One characteristic (but mostly
symbolic) sign of the disparity in this community
is the term PRA itself. Some practitioners prefer
and use the term “PSA”, which stands for proba-
bilistic safety assessment. The methodologies are
identical. Perhaps the emphasis on safety rather
than risk reflects an interest in end use and com-
munication. A closely associated nomenclature
distinction exists for the field of risk assessment
for high-level radioactive waste repositories. Here
PRA is called “PA”, which stands for performance
assessment. Reference [3] provides a good discus-
sion of the evolution of this terminology distinc-
tion and of how PRA is practiced in the areas of
high-level radioactive waste, low-level radioactive
waste, and decommissioning of nuclear facilities.

30.2 Historical Comments

The defining study for PRA is the Reactor Safety
Study [4], which was performed by the Atomic
Energy Commission (under the direction of
Norman Rasmussen of the Massachusetts Institute
of Technology) to provide a risk perspective to
gauge insurance and liability costs for nuclear
power plants. The US Congress was developing
legislation, known as the Price–Anderson Act,
which would specify the liabilities of owners
and operators of nuclear facilities. Prior to the
Reactor Safety Study, during the period 1957 to
1972, reactor safety and licensing was developed

according to a deterministic approach. This
approach is contained in the current version of the
Federal Code of Regulations, Title 10.

Reactors were designed according to conserva-
tive engineering principles, with a strong contain-
ment around the plants, and built-in engineered
safety features. Deterministic analyses were per-
formed by calculating the temperatures and pres-
sures in a reactor or in a containment building, or
the forces on pipes that would result as a conse-
quence of credible bounding accidents. This ap-
proach became the framework for licensing in the
United States, and it is basically built into the regu-
lations for nuclear power plant operation. During
the same time period, there was informal usage
of probabilistic ideas. In addressing events and
how to deal with their consequences, one looked
at events that were very likely to occur, events that
might occur once a month, once a year, or once
during the plant’s lifetime. Systems were put into
place to accommodate events on such a qualitative
scale. Also, probabilistic ideas were introduced in
an informal way to look at such questions as the
probability of the reactor vessel rupturing. How-
ever, the studies were not yet integrated analyses of
these probabilistic notions. The essential idea was
to provide protection against the potential damage
(or melting) of the reactor core and against the
release of fission products to the environment.

On the consequence side, a study was made
called WASH 740 [5], which was an analysis of
a severe accident (which would melt the reactor
core and lead to the release of fission products to
the environment) that was postulated to occur at
a nuclear power plant. It was performed to gauge
insurance and liability costs for nuclear power
plants, and to evaluate how law protects the public.
The postulate was that a very large amount of
radioactivity was released from the building, and
the consequences were calculated on that basis.
The results showed very large numbers of deaths
and health effects from latent cancers. That study
lacked a probabilistic perspective. It gave only
the consequence side, not the probabilistic side.
But by 1972, and probably before that, people
were thinking about how to blend the probabilistic
notions into a more formal and systematic

Probabilistic Risk Assessment 545

approach. This culminated in the Reactor Safety
Study [4], mentioned above.

In this study the Atomic Energy Commission
tried to portray the risks from nuclear power plant
operation. It was a landmark study in probabilistic
risk assessment. To draw an analogy with the field
of physics, this time period for probabilistic risk
assessment is roughly analogous to the years 1925
to 1928 for the atomic theory. In a short period
of time it laid the foundation for what we call the
PRA technology, and the systematic integration
of probabilistic and consequential ideas. It also
shed light on where the significant safety issues
were in nuclear power plants. For example, the
conventional licensing approach advocated the
deterministic analysis of a guillotine pipe rupture
in the plant, where one of the large pipes feeding
water to the vessel is severed, as if with a hatchet,
and then the consequences are calculated in a
deterministic way. Using probabilistic assessment
instead, the Reactor Safety Study showed that
small pipe breaks are the dominant ones in the risk
profile.

Transient events, such as loss of power to part
of the plant, were found to be important. The
Reactor Safety Study challenged a notion that one
always looks only at single failures in the licensing
approach. There is a dictum that one looks at
the response of the plant to a transient event in
the presence of a single failure. Thus, the failure
of an active component is postulated and it is
demonstrated that the plant can safely withstand
such an event. The Reactor Safety Study showed
that is not the limiting (or bounding) case from
the perspective of risk; multiple failures can occur,
and, indeed, these have been studied since. The
analysis also highlighted the role of the operator
of the plant. In looking at failure rates in the plant,
it was not the hardware failures for many systems
that gave the lead terms in the failure rates, it
was such terms as the incorrect performance of
a maintenance act, or a failure on the part of an
operator to turn a valve to the correct position.
Another important piece of work in the Reactor
Safety Study was the physical analysis of the core-
melt sequence, coupling it with an evaluation of
the response of the containment. Before that time,

analysts, designers, and regulators did not seem
to recognize the close coupling between how the
core melts in the vessel and the responses of
the containment. The Reactor Safety Study was
the first publication to integrate these factors. Its
overall message was that the risk was low for
nuclear power plant operation.

The Reactor Safety Study was criticized, exten-
sively analyzed, and reviewed. Congress commis-
sioned a report now called the Lewis Report [6]
(after Harold Lewis, University of California, Santa
Barbara, who chaired the committee). This report
made certain conclusions about how the Executive
Summary of the Reactor Safety Study presented
the data, how the uncertainties in the study were
not stated correctly or, as they put it, were “un-
derstated”. They commented on the scrutability of
the report but, overall, they endorsed the method-
ology used in the study and advocated its further
usage in the licensing, regulatory, and safety areas.
Shortly after the Lewis Report, the accident at
Three Mile Island occurred, that led some people
to ask, Where have we gone wrong? An event
occurred which was beyond what was expected to
occur in the commercial reactor industry. The reg-
ulators reacted to Three Mile Island by imposing
many new requirements on nuclear power plants.

A curious thing happened. The people in the
probabilistic risk community went back, looked
at the Reactor Safety Study, and asked, Where
did we go wrong in our analysis? A major study
of risk had been performed and it seemed to
have missed Three Mile Island. But, upon closer
inspection, it was, in principle, in the study. The
Reactor Safety Study was done for two specific
plants. One was a Westinghouse plant, the Surry
Plant, and the other was Peach Bottom, a General
Electric Plant. It was thought at the time that
two power plants, one a boiling water reactor
and one a pressurized water reactor, were fairly
representative of the hundred or more nuclear
plants that would be in place during the last
part of the 20th century. However, each plant
is unique. The risk must be assessed for each
individual power plant, delineating the dominant
contributors to risk at each plant. The Three
Mile Island plant had certain design features and

546 Practices and Emerging Applications

operational procedures for which the particular
data and quantification in the Reactor Safety Study
was not representative. Qualitatively however, the
event, and many other sequences, were delineated
in the study and by using failure data and plant
modeling appropriate to TMI, the event could
be explained within the framework of the study.
This provided an impetus for further analysis in
the area of probabilistic risk assessment by the
regulators and also by the nuclear industry.

Industry itself took the big initiative in
probabilistic risk assessment. They performed full
plant-specific, probabilistic risk assessments. One
of the first studies was made for the Big Rock
Point Plant, located out in the Midwest. This small
plant was at that time rather old, producing about
67 MW of electricity. It is now permanently shut
down. Many requirements were put on it since
the Three Mile Island accident, and, looked at
from the risk perspective, it did not make sense
to do the types of things that the regulators were
promoting on a deterministic basis. Following that
study, full-scale studies were done for three other
plants, which had the special consideration that
they were in areas of high population density:
Indian Point, for example, is about 36 miles from
New York City, Zion is near Chicago, and Limerick
is close to Philadelphia. The basic conclusions,
based on plant-specific features, were that the
risks were low. Some features of each plant were
identified as the risk outliers, and they were
correctable. For example, one plant was found
to be vulnerable to a potential seismic event, in
which two buildings would move and damage each
other. This was very simple to fix: a bumper was
placed between the two buildings. The control
room ceiling of another plant was predicted to
be vulnerable to collapse, and it was reinforced
appropriately.

30.3 Probabilistic Risk
Assessment Methodology

The PRA methodology has several aspects. One is
the logic model, which identifies events that lead

to failures of subsystems and systems. There are
two types of logic trees that are in widespread
use. One is the event tree approach, which is
inductive. It moves forward in time to delineate
events through two-level logic-type trees; yes/no,
fail/success. The other is a fault-tree approach,
where one starts with a top event, which is the
undesired event, and goes backward in time to
find out what has led to this event. Current PRA
combines both approaches, to go simultaneously
backward and forward in time. The principal
advantage is that it reduces the combination of
events that would be present if one or the other
type of approach were used alone.

Another very important feature of probabilistic
risk assessment concerns the source of the data
used to quantify risk assessments. The data is
obtained in part from the nuclear power plant
experience itself, and partly from other industries.
For example, one could look at valve failures in
fossil fuel plants and ask how the database from
another part of the sample space applies to the
events that we want to quantify. Another part of
the database is judgment. Sometimes events are of
very low probability or of very high uncertainty,
so that judgment is used to supplement data.
There is nothing wrong with this; in fact,
the Bayesian approach in probabilistic theory
easily accommodates judgment. The physical
models describe how the core melts down,
how the containment behaves, and how off-
site consequences progress. Health effects and
economic losses are then assessed on the basis of
this information.

PRAs are sometimes categorized in terms of the
end products or results that are reported in the
evaluation. A Level 1 PRA determines the accident
initiators and failure sequences that can lead to
core damage. The Level 1 PRA reports risk results
typically in terms of the (annualized) probabilities
of accident sequences and the overall probability
of core damage. Usually the uncertainty in the
core damage probability is given as well as the
sensitivity of this prediction to major assumptions
of the analysis.

When the PRA analysis also includes an
assessment of the physical processes in the

Probabilistic Risk Assessment 547

reactor vessel, the containment structure, and in
associated buildings at the plant, the study is
referred to as a Level 2 PRA. Typical products of
this analysis are the probability of release (both
airborne and to liquid pathways) of radionuclides
from the plant to the environment. The analysis
includes the mode of failure of the reactor vessel,
the resulting temperature and pressure loads to
the containment boundaries, the timing of these
loads, the quantity and character of radionuclides
released to the containment and subsequently to
the atmosphere, and the timing of the vessel
failure relative to the containment failure. Again,
uncertainty analyses are typically performed as
well as sensitivity analyses related to major
assumptions.

A Level 3 PRA extends the results of a Level 2
analysis to health effects and economic impacts
outside the facility. Effects of weather, population
conditions, evacuation options, terrain, and build-
ings are also considered. The results are reported
in terms of probabilities of fatalities (acute and
latent cancers), property damage, and land con-
tamination.

Overall descriptions of the methodologies and
tools for performing PRAs are given in procedures
guides [7, 8] for this purpose. There are also
several textbooks on this subject as well. A recent
example is [9], which contains ample references
to the specialized subtopics of PRA and to much
of the recent literature. There are several technical
reports that the reader might want to consult on
special topics. Some of these are noted in [7–9],
but are given here for convenience.

For data analysis, in particular for failure rates
for many components and systems, of nuclear
power plant risk studies that were performed
during the 1980s and 1990s, the reader should
see [10, 11]. These were a key data source for the
NUREG-1150 risk study [12], which updated the
early WASH-1400 study [4]. This data was also
used in the Individual Plant Examination studies
that were performed by the US nuclear industry
over the last decade.

The use of logic models to delineate and
describe accident sequences is given in [7, 8] and
good examples of the implementation of these

tools are given in [4, 12]. The reader should
consult the Fault Tree Handbook [13] for an
excellent discussion of how this methodology
is used to decompose a system failure into
its contributory elements. The SETS computer
model [14] is an example of how large fault
trees can be handled and how some dependent
failures can be analyzed. Reference [9] provides a
useful survey of the various tools that have been
developed in this area. Event trees are typically
used to delineate an accident sequence by moving
forward in time and indicating, through binary
branching, the success or failure of a specified
system or action to mitigate the accident outcome.
These are described and illustrated in [7, 8].
Reference [9] provides summary information on
commercially available integrated computer code
packages for accident sequence analysis, along
with the particular features of the various tools.

The understanding and modeling of human
behavior related to accident evolution has received
much attention in the PRA area. One of the key
insights from [4], which has been substantiated
in many subsequent studies, is that the human is
an important element of the overall risk profile of
a nuclear power plant. Actions (or inactions) by
the operations and maintenance crews, training
programs, attitudes and cultures of management
can all play a role in the aggravation or mitigation
of an accident. Research continues to be done
on various aspects of the role of the human in
safe operation of power plants. An introduction
to some of this work can be found in [15, 16].
More recent state-of-the-art developments and
applications are contained in [1].

In order to obtain a complete as possible
portrayal of the risks of a complex technological
system, both the failures that are “internal” to
the system and the failures that are “external”
events to the system must be identified, and
their likelihoods must be quantified. Examples of
internal initiating events are stochastic failures of
mechanical or electrical components that assure
the safe operation of the facility. Examples of
external initiating events are earthquakes, fires,
floods, and hurricanes. In order to model an
external event in a PRA, its likelihood and severity

548 Practices and Emerging Applications

must be calculated, its impact on the plant systems
must be described, and its consequences must
be evaluated. This includes an assessment of
the impact of the external event on emergency
planning in the vicinity of the facility. There is
much literature on the wide-ranging subject of
risks due to external events. Some of the more
recent work can be found in [1, 17].

The procedures described above are the es-
sential elements of a Level 1 PRA for nuclear
power reactors. They are sufficient to compute the
frequency of core damage as well as less severe
events, such as the unavailability of individual sys-
tems within the facility. This information is useful
to a plant operator or owner because it provides a
measure of overall facility performance and an in-
dication of the degree of safety that is attained. The
operator can also use this prediction of the core
damage frequency to understand which systems,
components, structures, and operational activities
are important contributors to the core damage
frequency. This will aid the operator in priori-
tizing resources for test, maintenance, upgrades,
and other activities related to the safe operation
of the facility. For the regulator, the computed
core damage frequency provides a metric for the
facility, which can be compared to a safety goal.
This prediction of risk, especially if it is accom-
panied by uncertainty ranges for the calculated
parameters, can be helpful ancillary information
to the regulations when new decisions need to be
made with regard to a safety issue.

There is additional information that can be de-
rived from a PRA, which requires the calculation
of the physical damage that would result from
the predicted failures. This additional informa-
tion would, in turn, be the input to the analysis
of the health, environmental, and economic con-
sequences of the predicted events. The physical
damage assessment is usually referred to as the
Level 2 part of the PRA, and the consequence
assessment is termed the Level 3 part of the PRA.
These elements of the PRA are discussed below.

The typical results of the Level 2 portion of
the PRA may include: (1) the extent of damage
to the reactor core, (2) the failure mode of the
reactor vessel, (3) the disposition of fuel debris

in the containment building, (4) the temperature
and pressure histories of loads on the containment
due to gas generation associated with the accident,
(5) the containment failure mode and its timing
relative to previous events during the accident,
(6) the magnitude and timing of the release of
fission products from the containment, (7) the
radionuclide composition of the fission product
“source term”. This information is very useful
to the operator and regulator in several ways.
It provides the necessary characteristics of the
accident progression that would be needed to
formulate an accident management strategy [18]
for the facility. The information derived from the
Level 2 PRA could be useful to a regulator in the
assessment of the containment performance, of a
particular plant, in response to a severe accident.

The melt progression of core damage acci-
dents is typically analyzed with complex computer
codes. These, in turn, have been developed with
the aid of experimental information from accident
simulations with surrogate and/or prototypic ma-
terials and from the (thankfully) limited actual
data in this area. There has been much interna-
tional cooperation in this area, and the programs
have been sponsored by both government and
private funds. In the USA, the principal melt pro-
gression computer codes are MELCOR [19] and
MAAP [20]. MELCOR was developed under the
sponsorship of the USNRC and the current version
of the code requires plant design and operational
information and an initiating accident event. It
then computes the accident progression and yields
the time histories of key accident events, as indi-
cated above. MAAP was developed under industry
sponsorship and serves as an alternate choice of
melt progression description. As with any com-
puter codes, it is important for the user to under-
stand the underlying assumptions of the code and
to make sure that the application is commensurate
with the physical situation that is being modeled.
Specific accident sequences and containment fail-
ure modes have been given special attention in
this regard. Two difficult areas and how they were
analyzed are discussed in detail in [21, 22].

The third major element of the integrated
PRA is the consequence analysis or the Level 3

Probabilistic Risk Assessment 549

portion of the assessment. The radiological source
term from the damaged plant is the essential
input to this analysis. The key factors are: the
radionuclide composition and chemical forms
of each radionuclide, the energy with which
they are expelled from the containment building,
alternative pathways for source term release (e.g.
downward penetration through the basemat or
through various compartments or pipes), and
time of release (especially relative to initial
awareness of the accident).

Weather conditions can play a crucial role in
determining the disposition of airborne releases.
Offsite population distributions and the effective-
ness of emergency response (e.g. evacuation, shel-
tering) are factored into the consequence analy-
sis. Large radiological dose exposures can lead to
health effects in a very short term. Lower doses
may lead to cancers after a period of many years.
The accident consequence code that has been in
widespread international use is the MACCS code
[23]. This code has been the subject of many
peer reviews, standard problem exercises, and cur-
rently receives the attention of an international
users group.

Risk assessment tools can vary, depending
upon the end user and styles and interests within
a particular group. Assumptions can easily be
built into models and codes and the user must
be aware of this for a specific application. Many
engineered systems can be analyzed on the basis
of the general construct outlined above. There is a
class of hazards that do not arise from a sudden
or catastrophic failure of an engineered system.
Rather, these hazards are continuously present in
our environment and pose a risk in their own
right. These risks are discussed below.

30.4 Engineering Risk Versus
Environmental Risk

In order to bring risk insights to a particular
assessment or decision, a method is needed to
calculate the risk of the condition or activity in
question. There are a wide range of activities

and conditions for which risk tools have been
used to calculate risk. The scope, depth of
analysis, end products, and mode of inquiry are
essential aspects of a risk assessment that define
the particular methodology. For example, in the
area of health science (or environmental) risk
assessment, the top level approach is to address:

• hazard identification;
• dose response assessment;
• exposure assessment;
• risk characterization.

These four activities are well suited to a
situation in which a hazard is continuously present
(this could be regarded as a “chronic” risk) and
the risk needs to be evaluated. For engineered
systems, the favored top-level approach to risk
assessment addresses the so-called risk triplet:

• What can go wrong?
• How likely is it?
• What are the consequences?

This approach is naturally suited to “episodic”
risks, where something fails or breaks, a wrong
action is taken, or a random act of nature
(such as a tornado or a seismic event) occurs.
This is the approach that has been taken, with
much success, in probabilistic risk assessments of
nuclear power reactors. A White Paper on Risk-
Informed and Performance-Based Regulation [24]
that was developed by the US Nuclear Regulatory
Commission (NRC) has an evident orientation
toward reactor risks that are episodic in origin.

The environmental risk assessment methodol-
ogy and the engineered system methodology do
have elements in common, particularly in the dose
and exposure areas. Further, in the development
of physical and biomedical models in the environ-
mental area, uncertainties in the parameters of the
models and the models themselves are expressed
probabilistically. This is also sometimes the case in
the engineered system area. Is it more appropriate
to use an environmental risk approach or an en-
gineered system risk approach for the risk assess-
ments that are associated with waste management
conditions? Is the distinction worth making?

550 Practices and Emerging Applications

To understand these questions a bit more, it is
instructive to introduce some related concepts. In
the waste and materials areas, the USNRC notes
[25] that there are methodologies (not quite prob-
abilistic risk assessments) that have been useful.
Notably, PA is the method of choice for evaluation
of the risk posed by a high-level waste repository.
The USNRC paper defines PA to be a type of sys-
tematic safety assessment that characterizes the
magnitude and likelihood of health, safety, and
environmental effects of creating and using a nu-
clear waste facility. A review of some applications
of PA indicates that PRA and PA appear to be very
similar methodologies. In a recent paper, Eisen-
berg et al. [3] state the connection very succinctly
and directly: “performance assessment is a prob-
abilistic risk assessment method applied to waste
management”. Further, in a paper on this subject,
Garrick in [2], notes that: “(PRA) is identified
with the risk assessment of nuclear power plants,
probabilistic performance assessment (PPA), or
just PA, is its counterpart in the radioactive waste
field”. He adds that in the mid-1990s the USNRC
began to equate PRA with PA.

30.5 Risk Measures and Public
Impact

One benefit of performing a PRA is to have
measures to compare with a risk standard or
goal. This, of course, is not the only value of
PRA. It can be especially beneficial in measuring
changes in risk related to modifications in design
or operational activities. Risk measures can be
used as an aid to performing risk management
and for structuring risk management programs
that address unlikely, extreme consequence events
and also less extreme, more likely events. In
order to implement an effective risk management
program, an appropriate set of risk measures (or
indices) must be defined.

One approach to establishing risk criteria is
to define and characterize a set of extreme
consequence conditions (e.g. a large, uncontrolled
release of a hazardous material). In this approach,

if the operation is managed to prevent, control, or
mitigate the extreme conditions, then less extreme
conditions and events ought to be managed
through this process as well. There are at least
two potential flaws in this approach. One is that
less extreme conditions or events may not be
captured easily or at all by the approach. This is
sometimes referred to as the “completeness” issue.
Another problem is that failures and consequences
that are necessary but not sufficient conditions
for the extreme event could occur individually or
in combination with other less extreme events.
In both situations the less extreme events that
might occur could have significant public impact
or reaction in their own right.

An example of the first problem is the tritium
leakage into the groundwater at Brookhaven Na-
tional Laboratory from its High Flux Beam Re-
actor that was reported in 1997. Risks from the
operation of this reactor were managed through
several mechanisms: procedures, guidelines, or-
ders, and oversight by the US Department of En-
ergy, the Laboratory’s own environment, safety
and health program, and requirements and agree-
ments with other federal (US Environmental Pro-
tection Agency), state (New York Department of
Environmental Conservation), and local (Suffolk
County Department of Health) organizations.

As part of the Laboratory’s program, a PRA
was performed approximately 10 years ago. The
study focussed on events that could damage
the reactor core and potentially lead to onsite
and offsite radiological doses arising from the
release of fission products from the damaged fuel.
The hypothetical airborne doses were extremely
low both onsite and offsite. Nevertheless, the
risk assessment was used by the Laboratory to
aid in decision-making regarding operation and
potential safety upgrades.

The PRA did not focus on potential ground-
water contamination because the downward pen-
etration of damaged fuel was assessed to be very
unlikely for the scenarios considered. The study,
however, also did not address the routine contam-
ination of the water in the spent fuel pool due
to tritium (a byproduct of normal reactor oper-
ation). Nor did it address the potential leakage

Probabilistic Risk Assessment 551

of water from the spent fuel pool. The leakage
of tritiated water from the spent fuel pool re-
sulted in the detection of concentrations of tri-
tium in the groundwater, which exceeded the safe
drinking water standard determined by the US
EPA.

The contamination of the groundwater, in this
case a sole source aquifer, led to a large public
impact, which included the firing of the contractor
for the Laboratory and to sustained public concern
and scrutiny of the Laboratory. In principle, the
probabilistic risk assessment performed 10 years
ago could have identified this failure scenario if it:
(1) included the EPA safe drinking water standard
for tritium in its set of risk criteria, (2) identified
the spent fuel pool as a source of contamination,
(3) recognized the potential for leakage, and
(4) identified the tritium source term in the pool
water. However, the criteria and assessment tools
were not focussed in this area and thus were not
used to manage this risk and prevent the ensuing
scenario.

Events occur that are not catastrophic but
nevertheless capture the public attention. This
can be due to the lack of public awareness of
the significance (or insignificance) of the event.
It could also be due to the perception that a
less significant event undermines confidence in a
technology and thereby portends a more severe,
dreaded event. In either case, the occurrence of
a less significant event undermines the case for
the manager of the risks of the given technology.
Thus the risk manager is faced with the task of
managing both the risk of the less likely, higher
consequence accidents and the risk of the more
likely, lower consequence accidents.

One option would be to set stringent criteria
for failure of systems, structures, components, and
operations that define the performance and safety
envelope for the technology in question. This
would minimize the likelihood of the occurrence
of small accidents (say below once in the lifetime
of the facilities operation, or more stringently,
once in the lifetime of the technology’s operation).
This option may be effective in eliminating
the small accident, but it may be prohibitively
costly.

Another option would be to develop a pub-
lic education program that would sufficiently de-
scribe the technology and its potential off-normal
behavior so that the small accidents would not
result in a large public impact. Instilling a sense
of trust in the public for the management of a
complex technology would be key to assuring
that reactions to off-normal events would not be
disproportionate to their severity. The communi-
cation of risks is a challenging process and the
acceptance of a small or insignificant risk by the
public is difficult, especially when the benefits of a
technology are not easily perceived.

These extreme options address the overall issue
from either the cause (small accident) or the
effect (large public impact). Let us further explore
the issue from the perspective of the cause, i.e.
consideration of risk measures that would aid in
the management of the risks.

As the example from Brookhaven National
Laboratory illustrates, it is important, when
building models of the risk of a facility, to
assure that they are able to address the relevant
compliance criteria. This is an example in which
the risk models must be as complete as practical
to capture the risk envelope.

The case in which a subsystem failure leads
to a small accident can perhaps be managed
through an approach based on allocation of
reliabilities. Systems, components, structures, and
operational activities typically have a finite failure
probability (or conversely, a finite reliability). A
decision-theoretic approach to the allocation of
reliability and risk was developed by Brookhaven
National Laboratory [26, 27]. This was done in
the context of the formulation of safety goals
for nuclear power plants. In this approach the
authors [26, 27] started with top-level safety goals
for core damage and health risk and derived a
subordinate set of goals for systems, components,
structures, and operation. The methodology was
based on optimization of costs (as a discriminator
of options) for the allocation of subordinate
goals that are consistent with the top-level goals.
The method required that a probabilistic risk
assessment model be available for the plant and
that the costs of improving (or decreasing) the

552 Practices and Emerging Applications

reliability of systems, components, structures, and
operations can be specified. Because there are
usually far more of these lower-tier elements
than there are top-level goals, there will be a
multiplicity of ways to be consistent with the top-
level goals. The methodology searches for and
finds those solutions that are non-inferior in the
top-level goals. Thus, it will yield those sets of
subordinate goals that are consistent with the
top-level goals that do not yield less desirable
results across the entire set of top-level goals.
The decision-maker must perform a preference
assessment among the non-inferior solutions.

Once these solutions are obtained, it is then
possible to manage the lower-tier risks and
hopefully minimize the likelihood of a “smaller”
accident occurring. The methodology presents an
interesting possibility for events that would have
a large public impact. In addition to recognizing
the need to minimize the economic penalties of
changes in reliability of subtier elements, it may
be possible to account for the psychological value
of subtier element failures. In principle, one would
give weightings to those failures that result in
different public impact. The resulting solutions
will still be consistent with the top-level goals of
protecting public physical health.

An area in which risk-informed criteria setting
is currently being considered [25] for less severe
events is the regulation of nuclear materials uses
and disposal. In this area, the risks to workers
can be greater than the risk to the public,
particularly for the use of nuclear byproduct
materials [28]. Nevertheless, events that have
occurred while causing no health impact to the
public have raised concern. For example, in [28],
the authors’ objective was to consider both actual
risks and risks perceived by the general public.
The byproduct material systems considered in
[28] included medical therapy systems, well
logging, radiography, and waste disposal. The
results of this study suggest that, because of the
high variability between radiological doses for the
highest-dose and lowest-dose systems analyzed,
the approaches to management and regulation
of these systems should be qualitatively different.
The authors observed that risk for these systems

was defined in terms of details of design, source
strength, type of source, radiotoxicity, chemical
form, and where and how the system is used. This,
in turn, makes it difficult to characterize the risk
of the system, to pose criteria based on this risk,
and then to manage the risk.

Another area that has received attention re-
cently is electrical energy system reliability. This
was underscored during the summer of 1999 when
power outages disrupted the lives of millions of
people and thousands of businesses in regions
of the USA. In response to public concerns, the
US Department of Energy commissioned a study
of these events. This is detailed in a report [29]
that was authored by various experts on energy
transmission and delivery systems. This report
makes recommendations that are very relevant
to the subject of this chapter. In particular, the
authors recommend that there be mandatory stan-
dards for electric power systems. They note that
our interconnected electric power system is being
transformed from one that was designed to serve
customers of full-service utilities (each integrated
over generation, transmission, and distribution
functions) to one that will support a competitive
market. Because of this change, they observe that
the current voluntary compliance with reliability
standards is inadequate for ensuring reliability,
and recommend mandatory standards for bulk-
power systems to manage the emerging restruc-
tured electric power industry. The study also rec-
ommends that the US government consider the
creation of a self-regulated reliability organization
with federal oversight to develop and enforce re-
liability standards for bulk-power systems as part
of a comprehensive plan for restructuring the elec-
tric industry.

Adverse public impact is always an undesirable
outcome of a technological enterprise. This will
be the case if there is a direct physical effect
on the public or if there is only the perception
of risk. In order to use risk management
tools effectively to minimize adverse impact,
it is important to understand the range of
undesirable outcomes and then set criteria (or
adopt them) against which performance can
be measured. Clearly, resources would have to

Probabilistic Risk Assessment 553

be allocated to a risk management program
that accounts for a broad range of risks, from
the high-consequence/low-likelihood to the low-
consequence/high-likelihood end of the spectrum.
Both pose risks to the successful operation of
a facility or operation, and the prudent risk
manager will assure adequate protection across
the entire range.

30.6 Transition to
Risk-informed Regulation

PRAs have been performed for many nuclear
power plants. Individual Plant Examinations [30]
were performed by the plant owners beginning
in the late 1980s and continued through much of
the 1990s. These studies were specifically scoped
PRAs [31] designed to provide an increased
understanding of the safety margins contained
within the individual plants. These studies led
to the identification of specific vulnerabilities
at some of the plants and to greater insight,
by the owners, to improved operation of their
facilities. Over the same time frame, studies were
undertaken of the risk posed by power reactors
while in shutdown or low power conditions
[32]. These studies resulted in and enhanced
understanding of the overall risk envelope for
reactor operation and led to improvements in
activities associated with these other modes of
operation.

More recently, the NRC has been sponsoring
research on the development of approaches to
risk-informing 10 CFR 50. This includes a frame-
work document [33] and specific applications of
an approach to risk informing 10 CFR 50.44 and
10 CFR 50.46. The former refers to combustible
gas control in containment and the latter refers to
the requirements on the emergency core cooling
function. Progress on these activities will be re-
ported in a future publication by the NRC and its
contractors.

There has also been work performed recently
[34] in the development of standards for the
performance of probabilistic risk assessments.

The need for standards has long been recognized.
A fundamental dilemma has been how to develop
a standard in an area that is still emerging and
for which improved methods may yet be in the
offing. Early attempts at standardization can be
found in NUREG-2300 and NUREG/CR-2815. The
advantage of a standard to the industry is that
if they submit a request for a regulatory review
to the NRC that is based on PRA methods, and
if it is done within an accepted standard, then
the review would not be encumbered by a case-
specific review of the methodology itself.

30.7 Some Successful
Probabilistic Risk Assessment
Applications

There have been many accomplishments, which
have in turn had lasting impact on improved
safety. For example, the focus on the impact of
human performance on nuclear power plant risk
has been underscored in many PRAs. These have
led the way to the formulation and execution
of research programs by NRC, the industry,
and by organizations in many countries on
human performance. This has led to valuable
insights that have affected emergency plans,
accident management programs, and the day-to-
day efficient operation of each unit.

The “Level 2” portion of the PRAs has
been invaluable in providing great insight into
the performance of containment under severe
accident loads. This includes the timing of
pressure and temperature loads as well as the
behavior of combustible gases and core debris
within containment. The relative benefits of each
containment type are now far better understood
because the phenomenology was evaluated and
prioritized within the context of a Level 2 PRA.

Risk perspectives from performing PRAs for
various modes of power operation were also of
great benefit to the regulator and to the industry.
These studies led to utilities having enhanced
flexibility in managing outages and in extending
allowed outage times. Further, the studies led to

554 Practices and Emerging Applications

better decision-making by the NRC staff and to
more effective incorporation of risk information
in that process [35].

The Individual Plant Examination Program
[30], which was essentially a PRA enterprise, led
to many improvements, directly by the owners
in the procedures and operations of their plants.
The program also led to improvements in systems,
structures, and components and to insights for
improved decision-making by the regulator and
the industry.

30.8 Comments on Uncertainty

Much has been said and written over the past
two decades on the topic of uncertainty. Hopefully
we are coming to closure on new insights on
this subject. It has been a strength of PRA
that it lends itself well to the expression of
uncertainties. After all, uncertainty is at the very
heart of risk. On the other hand, the elucidation
of uncertainties by PRA has been taken by some
to be a limitation of the PRA methodology (i.e.
it deals in vagaries and cannot be trusted). It
is also unfortunate that PRA practitioners and
advocates have so often felt the need to dwell
on the limitations of PRA. However, it should be
recognized that deterministic methodologies are
also fraught with uncertainties, but they are not
as explicitly expressed as they are by the PRA
methodologists. PRA allows decision-makers to
be informed about what they know about what
they do not know. And this is valuable information
to have.

A good state-of-the-art presentation of papers
on the subject of uncertainty in risk analysis can
be found in a special issue of the journal Reliability
Engineering and Systems Safety [36]. Among the
14 papers in this special volume are discussions
of aleatory and epistemic uncertainties and
applications to reactor technology and to waste
management. In a recent paper, Chun et al.
[37] consider various measures of uncertainty
importance and given examples of their use to
particular problems.

30.9 Deterministic,
Probabilistic, Prescriptive,
Performance-based

Four concepts that are central to the use of PRA
in regulation are: deterministic, probabilistic, pre-
scriptive, and performance-based. These concepts
are sometimes used conjunctively, and some-
times interchanged. Figure 30.1 provides a two-
dimensional view of how they should be correctly
related. Prescriptive and deterministic are some-
times confused and used interchangeably. They
tend to be within the comfort zone of some par-
ticipants in regulatory matters, and perhaps that is
the source of the interchangeability. Deterministic
is really an approach to analysis and its opposite
is probabilistic. Prescriptive is an approach to
decision-making and its opposite is performance-
based. Most analyses are not purely probabilis-
tic or deterministic but an admixture of the two
extremes. A classic “Chapter 15” safety analysis
(required by the NRC for nuclear power plant ap-
plications) really starts by determining, however
informally, what is likely and unlikely. Similarly, a
probabilistic analysis as embodied in a PRA usu-
ally has some form of deterministic analysis, e.g.
a heat transfer calculation. The important point is
that this is a two-dimensional space with various
regulatory activities falling in different parts of
the plane. For example, if one were interested
in compliance with a numerical safety criterion

Figure 30.1. Two dimensional view of risk-related concepts

Probabilistic Risk Assessment 555

related to the likelihood of an event, it would fall
in the lower right quadrant.

30.10 Outlook

In the early days of PRA, both regulators and
the industry for the most part were not very
comfortable with PRA and the use of risk
management concepts to guide decisions with
regard to the safe operation of plants. This has
changed, in an evolutionary way, over the past
quarter century. Now it is quite the custom to see,
hear, and read of exchanges between the industry
and the NRC (and among the organizations
themselves) in which concepts like risk assessment
and risk management form the currency for
their exchange of “safety thought”. There has
been an ever-increasing attempt by the NRC and
the industry to bring other stakeholders (states,
public interest groups, and concerned citizens)
into the communication loop on safety matters.
However, the process, while moving forward,
involves the exchange of different currency with
regard to safety. This can be termed risk
perception or more broadly, risk communication
(see Figure 30.2). These are very important aspects
of the safety enterprise and require much attention
and development. It should be noted that the
simple figure does not capture the fact that the
indicated modes of currency are not exclusive
to any of the interchanges. Each interchange is
really an admixture of the two indicated types. The
figure just indicates the predominant exchange
mode.

Safety research, being an inductive discipline,
will always have its frontiers. The following are
three areas that might benefit from the now vast
repertoire of knowledge and methodology that is
contained in the PRA field.

Much of the work in PRA has focussed on the
severe accident. This type of accident (core melt,
large radiological release to the environment)
tends to be unacceptable to all parties concerned.
Fortunately, they are also very unlikely events—
not expected to occur in the lifetime of a
facility. There are events, however, that are much

Figure 30.2. Interactions among participants in the risk-related
enterprise

more likely, that do occur and, fortunately, have
little or no health or environmental impact.
Yet they do attract public attention and require
much attention by all parties involved. A recent
example of such an event is the steam generator
tube rupture at a particular plant. The offsite
radiological release was insignificant but the event
drew much attention from the press and the
political representatives (and therefore the NRC
and the industry). From the PRA perspective,
this was a very low risk event. While the PRA
methodology can easily express the risk of such
a small consequence event, can it be used to flag
such events? Can these risks be managed? How
should they be managed and by whom?

A related topic is risk perception. It is well
known that an analytical quantification of health
and environmental risks, an objective expression
of reality, does not necessarily represent the risk
that an individual or a group perceives. Further,
it is sometimes said that perception is reality. The
question is: can psychosocial measures of risk be
defined and calculated in a way that is comparable
to physical risks? If so, can risk management
programs be developed that recognize these
measures?

Finally, it should be recognized that the NRC
and the civilian nuclear power industry have been
at the vanguard of PRA methods development and
applications. This has, no doubt, contributed to
the safety and reliability of this technology. Other

556 Practices and Emerging Applications

organizations and industries would benefit from
the advances made in the uses of PRA and there
should be a wider scale adoption (and adaptation)
of these methods and applications.

Acknowledgment

I am pleased to thank J. Lehner for a review of
this manuscript and for helpful comments and
suggestions.

References
[1] See the website for this organization for information on

past conference proceedings: www.iapsam.org
[2] Kirchsteiger C, Cojazzi G, editors. Proceedings of the

Workshop on the Promotion of Technical Harmonization
on Risk-Based Decision-Making. Organized by the
European Commission, Stresa, Italy; May 22–24, 2000.

[3] Eisenberg NA, Lee MP, McCartin J, McConnell KI, Thag-
gard M, Campbell AC. Development of a performance
assessment capability in waste management programs of
the USNRC. Risk Anal 1999;19:847–75.

[4] WASH-1400, Reactor Safety Study: An assessment of
accident risks in commercial nuclear power plants.
US Nuclear Regulatory Commission. NUREG-75/014;
October 1975.

[5] Theoretical possibilities and consequences of major
nuclear accidents at large nuclear plants. US Atomic
Energy Commission. WASH-740; March 1957.

[6] Lewis HW, Budnitz RJ, Kouts HJC, Loewenstein WB,
Rowe WD, von Hippel F, et al. Risk assessment review
group report to the US Nuclear Regulatory Commission.
NUREG/CR-0400; September 1978.

[7] PRA Procedures Guide: A guide to the performance of
probabilistic risk assessments for nuclear power plants.
US Nuclear Regulatory Commission. NUREG/CR-2300;
January 1983.

[8] Bari RA, Papazoglou IA, Buslik AJ, Hall RE, Ilberg D,
Samanta PK. Probabilistic safety analysis procedures
guide. US Nuclear Regulatory Commission. NUREG/CR-
2815; January 1984.

[9] Fullwood RR. Probabilistic safety assessment in chemical
and nuclear industries. Boston: Butterworth-Heinemann;
2000.

[10] Drouin MT, Harper FT, Camp AL. Analysis of core
damage frequency from internal events: methodological
guides. US Nuclear Regulatory Commission. NUREG/CR-
4550, vol. 1; September 1987.

[11] Wheeler TA, et al. Analysis of core damage frequency
from internal events: expert judgement elicitation.
US Nuclear Regulatory Commission. NUREG/CR-4550,
vol. 2; 1989.

[12] Reactor risk reference document. US Nuclear Regulatory
Commission. NUREG-1150; February 1987.

[13] Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault tree
handbook.US Nuclear Regulatory Commission. NUREG-
0492; January 1981.

[14] Worrell WB. SETS reference manual. Electric Power
Research Institute. NP-4213; 1985.

[15] Swain AD, Gutmann HE. Handbook of human reliability
analysis with emphasis on nuclear power plant applica-
tions. US Nuclear Regulatory Commission. NUREG/CR-
1278; August 1983.

[16] Hannaman GW, Spurgin AJ. Systematic human action
reliability procedure (SHARP). Electric Power Research
Institute. NP-3583; June 1984.

[17] Bohn MP, Lambright JA. Recommended procedures
for simplified external event risk analyses. US Nuclear
Regulatory Commission. NUREG/CR-4840; February
1988.

[18] Bari RA, Pratt WT, Lehner J, Leonard M, DiSalvo R,
Sheron B. Accident management for severe accidents.
Proc Int ANS/ENS Conf on Thermal Reactor Safety.
Avignon, France; October 1988. pp.269–76.

[19] MELCOR 1.8.5. Available by request from the US Nuclear
Regulatory Commission at
www.nrc.gov/RES/MELCOR/obtain.html

[20] Henry RE, et al. MAAP4—Modular accident analysis
program for LWR power plant. Computer code manual 1-
4. Electric Power Research Institute; May 1994.

[21] Theophanous TG, et al. The probability of Mark I
containment failure by melt-attack of the liner. US
Nuclear Regulatory Commission. NUREG/CR-6025;
1993.

[22] Pilch MM, et al. US Nuclear Regulatory Commission.
NUREG/CR-6075; 1994.

[23] Chanin D, Young ML. Code manual for MACCS2. US
Nuclear Regulatory Commission. NUREG/CR-6613; May
1998.

[24] Risk-informed and performance-based regulation. US
Nuclear Regulatory Commission.
www.nrc.gov/NRC/COMMISSION/POLICY/
whiteppr.html

[25] Framework for risk-informed regulation in the Office
of Nuclear Material Safety and Safeguards. US Nuclear
Regulatory Commission. SECY-99-100; March 31,1999.

[26] Papazoglou IA, Cho NZ, Bari RA. Reliability and risk
allocation in nuclear power plants: a decision-theoretic
approach. Nucl Technol 1986;74:272–86.

[27] Cho NZ, Papazoglou IA, Bari RA. Multiobjective
programming approach to reliability allocation in
nuclear power plants. Nucl Sci Eng 1986;95:165–87.

[28] Schmidt ER et al. Risk analysis and evaluation of regu-
latory options for nuclear byproduct material systems.
US Nuclear Regulatory Commission. NUREG/CR-6642;
February 2000.

[29] Report of the US Department of Energy’s Power Outage
Study Team. Findings and recommendations to enhance
reliability from the summer of 1999. US Department of
Energy; March 2000.
www.policy.energy.gov/electricity/postfinal.pdf

[30] Individual Plant Examinations Program. Perspectives
on reactor safety and plant performance. US Nuclear
Regulatory Commission. NUREG-1560; December 1997.

Probabilistic Risk Assessment 557

[31] Individual Plant Examination of severe accident vulnera-
bilities. 10 CFR 50.54(f). US Nuclear Regulatory Commis-
sion. Generic Letter GL-88-20; November 23, 1988.

[32] Perspectives report on low power and shutdown risk.
PDF attachment to proposed staff plan for low power and
shutdown risk analysis research to support risk-informed
regulatory decision-making. US Nuclear Regulatory
Commission. SECY 00-0007; January 12, 2000.
http://www.nrc.gov/NRC/COMMISSION/SECYS/
2000-0007scy.html

[33] Framework for risk-informed regulations. US Nuclear
Regulatory Commission. Draft for Public Comment, Rev.
1.0; February 10, 2000.
http://nrc-part50.sandia.gov/Document/
framework_(4_21_2000).pdf

[34] Standard for probabilistic risk assessment for nuclear
power plant applications. Rev. 12 of Proposed American
National Standard. American Society of Mechanical
Engineers; May 30, 2000.

[35] An approach for using probabilistic risk assessment
in risk-informed decisions on plant-specific changes to
the licensing basis. US Nuclear Regulatory Commission.
Regulatory Guide 1.174; July 1998.

[36] Reliab Eng Syst Safety 1996;54:91–262.
[37] Chun M-H, Han S-J, Tak N-I. An uncertainty importance

measure using a distance metric for the change in a
cumulative distribution function. Reliab Eng Syst Safety
2000;70;313–21.

This page intentionally left blank

Total Dependability Management

Ch
ap

te
r3

1Per Anders Akersten and Bengt Klefsjö

31.1 Introduction
31.2 Background
31.3 Total Dependability Management
31.4 Management System Components
31.5 Conclusions

31.1 Introduction

Different methodologies and tools are available
for the management and analysis of system
dependability and safety. In the different phases of
a system’s lifecycle, some of these methodologies
and tools are appropriate, and some are not.
The choice is often made by the dependability
or safety professional, according to personal
experience and knowledge. However, this choice
should be influenced by some management
philosophy, based on a number of core values.
In the literature, core values are sometimes
referred to as principles, dimensions, elements, or
cornerstones.

The core values constitute a basis for the culture
of the organization. They have a great influence on
the choice of strategies for accomplishing different
kinds of goals, e.g. regarding dependability,
safety, and other aspects of customer satisfaction.
The strategies will in turn include the use of
appropriate methodologies and tools.

In this chapter, a number of core values are
discussed and their influence on the choice of
methodologies and tools briefly analyzed. The aim
is to present one approach to the application of a
holistic view to the choice of methodologies and
tools in dependability and safety management.
Moreover, the aim is to give a conceptual base

for the choice of appropriate methodologies and
tools. The approach described is very general.
The sets of core values, methodologies, and tools
presented are by no means complete. They should
be regarded as examples only.

The main objective is to make clear the
usefulness of clearly expressed core values in
the choice and design of strategies for the
management of dependability and safety in all
phases of a system’s lifecycle. It is important that
an implementation of a dependability and safety
management system will focus on the totality. Just
picking up a few methodologies or tools will not
be sufficient.

A comparison is made to the structure
of the IEC Dependability Standards, consisting
of “Standards on Dependability Management”,
“Application Guides”, and “Tools”. However, the
concept of “Tools”, used in the IEC Dependability
Standards structure, is wider than the concept of
“Tool” used in this chapter.

31.2 Background

Dependability management has been an impor-
tant issue for many years. Many articles and
books, both in the academic and popular press,
have been written on the subject of dependability;

559

560 Practices and Emerging Applications

Figure 31.1. The core values which are the basis for the Malcolm Baldrige National Quality Award, the European Quality Award, and the
Swedish Quality Award (SQA, established in 1992 by the Swedish Institute for Quality and at that time strongly based on the Malcolm
Baldrige Award). The values are taken from the versions of 2002.

not very many, however, on dependability man-
agement. A number of authors have addressed the
subject of safety management. Still this number
is small, compared to the number of articles and
books on total quality management (TQM).

Interesting parallels can be drawn. Both de-
pendability management and TQM are often iden-
tified as necessary to reach competitiveness, and
there are also examples of companies that have
failed in their implementation of dependability
management or TQM. However, the concept of
TQM is more generally known and it has been dis-
cussed on very many levels, sometimes clarifying
the concept, sometimes not.

Still there exist different opinions about TQM.
There are many vague descriptions and few defi-
nitions of what TQM really is. Regarding depend-
ability management, it has not been described in
too many different ways. According to the au-
thors’ view, the most comprehensive description
is a result of work performed by the International
Electrotechnical Commission (IEC) within their
Technical Committee 56 “Dependability”. See e.g.
the IEC Standards [1–3]. (Note: These standards
are currently under revision.)

Here we will discuss some of the problems
with dependability management and describe
and discuss our own view of dependability
management as a management system consisting
of values, methodologies, and tools.

31.3 Total Dependability
Management

The concept of TQM is generally understood,
and often also described, as some form of
“management philosophy” based on a number
of core values, such as customer focus, fact-
based decisions, process orientation, everybody’s
commitment, fast response, result orientation,
and learning from others; see Figure 31.1.
What here are called core values are also
in the literature named principles, dimensions,
elements, or cornerstones. We prefer the term core
value since it is a way to emphasize that these
statements should work together to constitute
the culture of the organization, and that they
accordingly are basic concepts.

Total Dependability Management 561

Figure 31.2. A dependability management system seen as a continuously evolving management system consisting of core values,
methodologies, and tools. It is important to note that the methodologies and tools in the figure are just examples and not a complete
list. In the same way the values may also vary a little between different organizations and over time.

A literature study [4] shows that a number
of core values seem to be common in most de-
scriptions of TQM, namely: “focus on customers”,
“management commitment”, “everybody’s com-
mitment”, “focus on processes”, “continuous im-
provements”, and “fact-based decisions” [5]. Fur-
ther literature studies and informal contacts with
a number of Swedish companies indicate that the
same core values are common also in the context
of dependability management.

31.4 Management System
Components
Dependability management contains much more
than core values. Like TQM it is a management
system in the sense of Deming, i.e. as “a network of
interdependent components that work together to
try to accomplish the aim of the system” [6], p.50.

A very important component is constituted by
the core values. These core values are the basis
for the culture of the organization and also the
basis for the goals set by the organization. Another
component is a set of methodologies, i.e. ways
to work within the organization to reach the
goals. A methodology consists of a number of
activities performed in a certain order. Sometimes
it is appropriate to describe a methodology as
a process. A third component is a set of tools,
i.e. rather concrete and well-defined tools, which
sometimes have a statistical basis, to support
decision-making or facilitate analysis of data.
These three components are interdependent and
support each other, see Figure 31.2.

We believe that it is important to classify dif-
ferent terms related to dependability management
according to any of the three components. For
instance, FMECA (Failure Mode, Effects, and Crit-
icality Analysis [7]) has often been considered

562 Practices and Emerging Applications

Figure 31.3. The potential for mutual support between core values and methodologies. It must be emphasized that the lists of core values
and methodologies are by no means complete, and the strengths of relations are based on the authors’ present judgments. The table here
is just an illustration of the idea.

as a tool. One reason for this is the very strong
connection to the tabular FMECA sheet. Another
example is QFD (Quality Function Deployment
[8]), which often has been looked upon as a tool,
mainly due to the confusion between QFD and
the Quality House. However, QFD is “a system
for translating consumer requirements into appro-
priate company requirements at each stage from
research and product development to engineering
and manufacturing to marketing/sales and dis-
tribution” [9], and is therefore, in our opinion,
a methodology. The Quality House, on the other
hand, is a tool to be used within that methodology.
Another example is risk analysis [10], a method-
ology consisting of a number of steps, involving

the use of different tools, e.g. hazard identification.
By consistently using a terminology based on core
values, methodologies, and tools, the “concepts”
used within dependability will be clarified.

This management system is continuously
evolving. Over time, some core values might
change, and in particular the interpretation
of some of them might be developed. New
methodologies will also appear or be transferred
from other management theories. New tools will
be developed or taken from other disciplines.

One of the things that is important to notice
is that the management system really should be
looked upon as a system. It is often the case that
a certain core value is necessary for the successful

Total Dependability Management 563

Figure 31.4. Scheme for the choice and implementation of various tools. It must be emphasized that the lists of methodologies and tools
are by no means complete, and the usefulness of tools is based on the authors’ present judgments. The table here is just an illustration of
the idea.

564 Practices and Emerging Applications

implementation of a chosen methodology. At the
same time, the systematic use of a methodology
gives more or less support for the acceptance and
establishing of different core values. For example,
the core value of “everybody’s commitment”
cannot be implemented without the appropriate
use of suitable methodologies. There is a potential
for implementation of this core value, e.g.
in the methodologies of FMECA, Reliability
Centered Maintenance (RCM [11]) and Loss
Control Management (LCM [12]). However, the
methodologies chosen will not work efficiently
without the skillful use of specific tools. As
another example we can mention the value of
“focus on customers”. Here QFD is one useful
methodology and the Quality House is then one
useful tool for a systematic transformation. The
potential for the support to core values of different
methodologies is illustrated in Figure 31.3. In this
figure we indicate a weak or strong relationship.
Usually we can identify a mutual support in
the sense that a certain core value is necessary
for the successful implementation of a chosen
technique. At the same time, the systematic use
of the technique gives strong support for the
acceptance and establishing of the core value.

There are several benefits with this system
view of dependability management. One is that
it emphasizes the role of top management.
However, it is not obvious that the core
value of top management commitment is
automatically supported by the formal use of
a single methodology. The way you perform work
within this methodology is decisive. As a parallel,
there is evidence that many of the organizations
that have failed with TQM have not had sufficient
top management commitment [13–15].

An important consequence of the use of a
dependability management system, as described
above, is that it focuses on the totality. Hopefully
it will reduce the risk that an organization
picks up just a few parts of the system. We have
experienced companies failing to implement
dependability work due to the use of only small
parts of the system. They pick up one or a few
tools or methodologies and believe that these will
solve their problems. Illustrations of this are the

non-systematic use of FMECA sheets and reliabil-
ity prediction handbooks some decades ago.

We have to start with the core values and
ask: Which core values should characterize our
organization? When that is decided we have to
identify methodologies that are suitable for our
organization to use and which support our values.
Finally, from that decision the suitable tools have
to be identified and used in an efficient way to
support the methodologies. Figure 31.4 gives an
example of a scheme, useful for the choice and
systematic implementation of appropriate tools. It
is, of course, important to note that a particular
methodology can support different core values
and the same tool can be useful within many
methodologies. If we can use such methodologies
and tools we support several values, which of
course is of benefit to the culture.

The idea of using this type of system approach
is not quite new. A related approach is described
in [16], giving a TQM definition based on a
management system perspective.

31.5 Conclusions
The authors strongly believe that the system
view of dependability management will facilitate
organizations to work with dependability matters,
since things are “put together to create a whole”.
Total dependability management builds upon the
availability and use of all three management
system components: a set of supporting core
values, an appropriate methodology, and the
skillful use of contextually adapted tools.

References
[1] IEC Standard 60300-1. Dependability management.

Part 1. Dependability programme management. Geneva:
International Electrotechnical Commission; 1993.

[2] IEC Standard 60300-2. Dependability management.
Part 2. Dependability programme elements. Geneva:
International Electrotechnical Commission; 1995.

[3] IEC Standard 60300-3-1. Dependability management.
Part 3. Application guide. Section 1. Analysis techniques
for dependability: guide on methodology. Geneva:
International Electrotechnical Commission; 1991.

[4] Hellsten U. The Springboard—a TQM-based tool for
self-assessment. Licentiate Thesis 1997: No. 42. Division
of Quality Technology & Statistics, Luleå University of
Technology; 1997.

Total Dependability Management 565

[5] Bergman B, Klefsjö B. Quality from customer needs to
customer satisfaction. London: McGraw-Hill and Lund,
Studentlitteratur; 1994.

[6] Deming WE. The new economics for industry, govern-
ment, education; 2nd Edition. Massachusetts Institute of
Technology, Center for Advanced Studies; 1994.

[7] Stamatis DH. Failure mode and effects analysis. FMEA
from theory to execution. Milwaukee: ASQ Press; 1995.

[8] Akao Y. Quality Function Deployment. Integrating
customer requirements into product design. Cambridge:
Productivity Press; 1990.

[9] Slabey WR. In: The Second Symposium on Quality Func-
tion Deployment/QPC, Automotive Division—ASQC and
the American Supplier Institute, Novi, MI; 1990: 21–86.

[10] IEC Standard 60300-3-9. Dependability management.
Part 3. Application guide. Section 9. Risk analysis of tech-
nological systems. Geneva: International Electrotechnical
Commission; 1995.

[11] Anderson RT, Neri L. Reliability-centered maintenance.
Management and engineering methods. London: Elsevier
Applied Science; 1990.

[12] Bird FE, Germain GL. Practical loss control leadership;
Revised Edition. Loganville: Det Norske Veritas (USA);
1996.

[13] Dahlgaard JJ, Kristensen K, Kanji GK. The quality
journey: a journey without an end. Abingdon: Carfax
Publishing Company; 1994.

[14] Oakland JS. Total quality management. The route to im-
proving performance; 2nd Edition. Oxford: Butterworth-
Heinemann; 1993.

[15] Tenner AR, DeToro IJ. Total Quality Management:
three steps to continuous improvement. Reading, MA:
Addison-Wesley; 1992.

[16] Hellsten U, Klefsjö B. TQM as a management system con-
sisting of values, techniques and tools. TQM Magazine,
2000:12, 238–44.

This page intentionally left blank

Total Quality for Software
Engineering Management

Ch
ap

te
r3

2G. Albeanu and Fl. Popentiu Vladicescu

32.1 Introduction
32.1.1 The Meaning of Software Quality
32.1.2 Approaches in Software Quality Assurance
32.2 The Practice of Software Engineering
32.2.1 Software Lifecycle
32.2.2 Software Development Process
32.2.3 Software Measurements
32.3 Software Quality Models
32.3.1 Measuring Aspects of Quality
32.3.2 Software Reliability Engineering
32.3.3 Effort and Cost Models
32.4 Total Quality Management for Software Engineering
32.4.1 Deming’s Theory
32.4.2 Continuous Improvement
32.5 Conclusions

32.1 Introduction

32.1.1 The Meaning of Software
Quality

Defining quality, in general, is a difficult task.
Different people and organizations define quality
in a number of different ways. Most people
associate quality with a product or service in
order to satisfy the customer’s requirements.
According to Uselac [1], “Quality is not only
products and services but also includes processes,
environment, and people”. Also, Deming [2], in
his famous work says “that quality has many
different criteria and that these criteria change
continually”. This is the main reason “to measure
consumer preferences and to remeasure them
frequently”, as Goetsch and Davis [3] observe.
Finally, they conclude: “Quality is a dynamic
state associated with products, services, people,

processes and environments that meets or exceeds
expectations”.

What about software? Software is the com-
ponent that allows a computer or digital device
to perform specific operations and process data.
Mainly, software consists of computer programs.
However, databases, files, and operating proce-
dures are closely related to software. Any user
deals with two categories of software: the operat-
ing system controlling the basic operations of the
digital system and the application software con-
trolling the data processing for specific computer
applications like computer-aided drafting, design-
ing and manufacturing, text processing, and so on.

Like any other product, quality software is
that which does what the customer expects it
to do. The purpose for which a software system
is intended is described in a document usually
known as the user requirements specification.
User requirements fall into two categories [4]:

567

568 Practices and Emerging Applications

1. capabilities needed by users to achieve an
objective or to solve a problem;

2. constraints on how the objective is to be
achieved or the problem solved.

Capability requirements describe functions
and operations needed by customers. These
include at least performance and accuracy
attributes. Constraint requirements place
restrictions on how software can be built and
operated, and quality attributes of reliability,
availability, portability, and security. All these
user requirements are translated into software
requirements. In order to build a high-quality
software product, these requirements should be
rigorously described. The software requirements
can be classified into the following categories:
functional, performance, interface, operational,
resource, portability, security, documentation,
verification and acceptance testing, quality,
reliability, safety, and maintainability.

Functional requirements specify the purpose
of the software and may include performance at-
tributes. Performance requirements specify nu-
merical values for measurable variables (in gen-
eral as a range of values).

A user may specify interface requirements for
hardware, software, and communications. Soft-
ware interfaces consist of operating systems and
software environments, database management
systems and file formats. Hardware configuration
is determined by the hardware interface require-
ments. The usage of some special network proto-
cols and other constraints of the communication
interface is registered as communication interface
requirements.

Some users specify how the system will run and
how it will communicate with human operators.
Such a user interface, man–machine or human–
computer interaction requirements (the help
system, screen layout, content of error messages,
etc.) are operational requirements.

As an end user, the specification of the upper
limits on physical resources (processing power,
internal memory, disk space, etc.) is necessary,
especially when future extensions are very expen-
sive. These constraints are classified as resource

requirements. The degree to which computing
resources are used by the software explains an
important quality factor: the efficiency.

Following Ince [5], another quality factor is
portability. “This is the effort required to transfer
a system from one hardware platform to another”.
Possible computers and operating systems, other
than those of the target platform, should be clearly
outlined as portability requirements.

Confidentiality, integrity, and availability are
fundamental security requirements. According to
Ince, “Integrity is used to describe the extent to
which the system and its data are immune to
access by unauthorized users”. Mathematically,
integrity is the probability that a system operates
without security penetration for a specified time
when a rate of arrival of threats and a threat
profile are specified. However, such a quality
factor cannot be precisely measured. To increase
the security, interlocking operator commands,
inhibiting of commands, read-only access, a
password system, and computer virus protection
are important techniques. As Musa stated [6],
the software availability is “the expected fraction
of operating time during which a software
component or system is functioning acceptably”.

In order to have reliable software, the con-
straints on how the software is to be verified have
to be stated as verification requirements. Simula-
tion, emulation, tests with simulated inputs, tests
with real inputs, and interfacing with the real en-
vironment are common verification requirements.
It is also necessary to include the acceptance tests
for software validation. However, the testability is
very rarely specified by the customer.

Reliability requirements may have to be de-
rived from the user’s availability requirements.
It is important to mention that reliability is
user-oriented. For Ince, software reliability “de-
scribes the ability of a software system to carry
on executing with little interruption to its func-
tioning”. Musa [6] says that “Software reliabil-
ity is the most important aspect of quality to
the user because it quantifies how well the soft-
ware product will function with respect to his
or her needs”. We mention here that although
hardware and software reliability have the same

Total Quality for Software Engineering Management 569

definition: probability of failure-free operation
for a specified interval of time, there are dif-
ferences between them (a failure being any be-
havior in operation that will cause user dissat-
isfaction). The main difference is that software
reliability is changing with time, when faults are
removed during reliability growth test or when
new code (possibly containing additional faults) is
added.

Safety requirements may identify critical func-
tions in order to reduce the possibility of damage
that can follow from software failure. As Musa
[6] mentioned, software safety can be defined as
“freedom from mishaps, where a mishap is an
event that causes loss of human life, injury, or
property damage”.

The maintainability or modifiability “describes
the ease with which a software system can be
changed” according to Ince. He outlines three
categories of modifications: corrective changes
(due to error fixing), adaptive changes (due to
the response to changes in requirements), and
perfective changes (which improve a system). The
ease of performing such tasks is quantified by
the mean time to repair a fault. Maintainability
requirements are derived from a user’s availability
and adaptability requirements.

An important quality factor is correctness—the
software system has to conform to requirement
specifications. Usability, as another quality factor,
is “the effort required to learn, operate and
interrupt a functioning system” as Ince says,
because a system that satisfies all the functions
in its requirement specification but has a poor
interface is highly unusable.

For any software project a correct and clear
documentation called the “software user manual”
has to be provided. Two styles of user documen-
tation are useful: the tutorial and the reference
manual. The tutorial style is adequate for new
users and the reference style is better for more
experienced users searching for specific informa-
tion.

There are some important reasons for estab-
lishing a software quality program. According to
Breisford [7], these include: reduction of the risk
of producing a low quality product, reduction of

the cost of software development, increased cus-
tomer satisfaction and limiting company respon-
sibility. For some industrial software the emphasis
is on reliability and lifecycle costs, while for others
the safety is more important. An effective quality
program is necessary when the customer requires
it, like defense industry operations, space and
nuclear industries. As mentioned in [8], “Safety
management forms an integral part of project risk
management and should be given equal consid-
eration alongside Quality and Reliability manage-
ment”. This remark is also valid for computer
software. It is enough to mention the report [9]
on the Ariane 5 rocket failure in 1996, where the
problems were caused by a few lines of Ada code
containing three unprotected variables. According
to Ince [5], a quality system “contains procedures,
standards and guidelines”. A procedure is “a set
of instructions which describe how a particular
software task should be carried out”, and a stan-
dard is a set of compulsory tasks or items to be
considered when implementing a procedure or
a package of procedures. Guidelines only advise
taking into consideration some procedures. The
literature on quality uses the term standard with
a modified meaning, but in the same manner.

32.1.2 Approaches in Software Quality
Assurance

The IEEE defines software quality assurance as
a “planned and systematic pattern of all actions
necessary to provide adequate confidence that
the item or product conforms to established
technical requirements” [10]. A relevant standard
family for the software industry is ISO 9000
developed by the International Organization for
Standardization. More precisely, ISO 9001 [11]
“Quality Systems—Model for Quality Assurance
in Design, Development, Production, Installation
and Servicing” describes the quality system used
to support the development of a product which
involves design; ISO 9003 [12] “Guidelines for
the Application of ISO 9001 to the Development,
Supply and Maintenance of Software” interprets
ISO 9001 for the software developer; ISO 9004-2
[13] “Quality Management and Quality System

570 Practices and Emerging Applications

Elements—Part 2” provides guidelines for the
servicing of software.

There are 20 items to describe the
requirements: management responsibility; quality
system; contract review; design control; document
and data control; purchasing; purchaser supplied
product; product identification and traceability;
process control; inspection and testing; control
of inspection, measuring, and test equipment;
inspection and test status; control of non-
conforming product; corrective and preventive
action; handling, storage, packaging, preserva-
tion, and delivery; quality records; internal quality
audits; training; servicing; statistical techniques.

Another approach is the “Capability Maturity
Model for Software” (CMM) [14], developed by
the Software Engineering Institute (SEI). The
SEI has suggested that there are five levels of
process maturity, ranging from initial stage (the
least predictable and controllable) to repeatable,
defined, managed, and optimizing (the most
predictable and controllable).

The fundamental concepts underlying process
maturity applied for software organization are: the
software process; the capability; the performance;
and the maturity. The software process is a “set
of activities, methods, practices and transforma-
tions” used by people to develop and maintain
the software and associated products (user man-
uals, architectural document, detailed design doc-
ument, code and test plans). The capability of the
software process run by an organization provides
a basis to predict the expected results that can be
achieved by following the software process. While
the software process capability focusses on the re-
sults expected, the software process performance
represents the actual results achieved. Maturity is
a concept which implies the ability for growth in
capability and gives the degree of maturation in
defining, managing, measuring, controlling, and
running. As a corollary, a software organization
gains in software process maturity by running
its software process via policies, standards, and
organizational structures. A brief description of
the CMM follows.

Except for Level 1, each of the four capability
levels has a set of key process areas that an

organization should focus on to improve its
software process. The first level describes a
software development process that is chaotic, an
ad hoc approach based on individual efforts (a
genius who has a bright idea), not on team
accomplishments. The capability maturity model
emphasizes quantitative control of the process,
and the higher levels direct an organization to use
measurement and quantitative analysis.

Each key process area comprises a set of key
practices that show the degree (effective, repeat-
able, lasting) of the implementation and institu-
tionalization of that area. The key process area of
the second level contains the following key prac-
tices: requirements management; software project
planning, software project tracking and oversight;
software subcontract management; software qual-
ity assurance and software configuration man-
agement. At this level “basic project-management
processes are established to track cost, schedule,
and functionality”. There is a discipline among
team members, so that the team can repeat earlier
successes on projects with similar applications. At
the defined level (Level 3), “the software process
for both management and engineering activities
is documented, standardized, and integrated into
a standard software process for the organization”.
Since some projects differ from others, the stan-
dard process, under management approvement,
is tailored to the special needs. The key process,
at this maturity level, is oriented to organiza-
tional aspects: organization process focus; orga-
nization process definition; training program; in-
tegrated software management; software product
engineering; intergroup coordination and peer re-
views. A managed process (Level 4) adds man-
agement oversight to a defined process: “detailed
measures of the software process and product
quality are collected”. There is quantitative infor-
mation about both the software process and prod-
ucts to understand and control them. Key process
areas focus on quantitative process management
and software quality management. An optimiz-
ing process is the ultimate level of process matu-
rity, where quantitative feedback is incorporated
into the process to produce continuous process
improvements. Key process areas include: defect

Total Quality for Software Engineering Management 571

prevention; technology change management; and
process change management.

Finally, the following items resume the CMM
structure:

1. the maturity levels indicate the process
capability and contain key process areas;

2. the key process areas achieve goals and are
organized by common features;

3. the common features address implementation
and institutionalization and contain key prac-
tices describing infrastructure or activities.

The CMM was the starting point in produc-
ing new process assessment methods. We note
only the bootstrap approach [15] (an extension
of the CMM developed by a European Commu-
nity ESPRIT project) and the new standard called
SPICE [16] (for Software Process Improvement
and Capability dEtermination). Similar to CMM,
SPICE can be used both for process improvement
and capability determination. The SPICE model
considers five activities: customer-supplied, engi-
neering, project, support, and organization, while
the generic practices, applicable to all processes,
are arranged in six levels of capability: 0—
“not performed”, 1—“performed informally”, 2—
“planned and tracked”, 3—“well-defined”, 4—
“quantitatively controlled”, 5—“continuously im-
proving”. An assessment report, a profile, for each
process area describes the capability level.

Ending this section, the reader has to observe
that the CMM tends to address the requirement of
continuous process improvement more explicitly
than ISO 9001, and that CMM addresses software
organizations while SPICE addresses processes.
However, no matter which model is used, the
assessment must be administered so as to
minimize the subjectivity in the ratings.

32.2 The Practice of Software
Engineering

32.2.1 Software Lifecycle
The increasing software complexity and the cost
and time constraints against software reliability

maximization for most software projects have
made mandatory the usage of a standardized
approach in producing such items.

The collection of techniques that apply an en-
gineering approach to the construction and sup-
port of software is known as “software engineer-
ing”. The theoretical foundations for designing
and developing software are provided by com-
puter science. However, software engineering pro-
vides the mechanism to implement the software
in a controlled and scientific way. According to
[17], software engineering is “the application of
a systematic, disciplined, quantifiable approach to
the development, operations, and maintenance of
software, that is, the application of engineering to
software”. It is possible to say, as in [18, 19] that
“Software engineering is evolving from an art to a
practical engineering discipline”.

This approach was also adopted by ESA [4],
which establishes and maintains software engi-
neering standards for the procurement, develop-
ment, and maintenance of software. The ESA stan-
dard PSS-05-0 describes the processes involved in
the complete lifecycle of the software. Organized
in two parts, the standard defines a set of practices
for making software products. Such practices can
also be used to implement the requirements of ISO
9001. The ESA’s Board for Software Standardiza-
tion and Control says that [20]:

1. the ESA Software Engineering Standards are
an excellent basis for a software quality
management system;

2. the ESA standards cover virtually all the
requirements for software developments—
two thirds of the requirements in ISO 9001
are covered by ESA Software Engineering
Standards, and the uncovered requirements
are not related to software development;

3. the ESA standards do not contradict those of
ISO 9001.

According to [4], a software lifecycle consists
of the following six successive phases: (1) def-
inition of the user requirements; (2) definition
of the software requirements; (3) definition of
the architectural design; (4) detailed design and
production of code; (5) transfer of the software

572 Practices and Emerging Applications

to operations; (6) operations and maintenance.
These phases are mandatory whatever the size, ap-
plication type, hardware configuration, operating
system, or programming language used for cod-
ing. The software lifecycle begins with the delivery
of the “user requirements document” to the devel-
oper for review. When this document is approved,
three important phases have to be traversed before
the software is transferred to users for operation.
In order to start a new phase, the results of the
previous phase are reviewed and approved. The
software lifecycle ends after a period of operation,
when the software is retired.

Pham [19], considering the software reliability
realm, identifies five successive phases for the soft-
ware lifecycle: analysis (requirements and func-
tional specifications), design, coding, testing, and
operating. From the reliability point of view, “a
well-developed specification can reduce the inci-
dence of faults in the software and minimize re-
work”. It is well known (see [19]) that a well-done
analysis will “generate significant rewards in terms
of dependability, maintainability, productivity,
and general software quality”. The design phase
consists of two stages of design: system architec-
ture design and detailed design”. The principal ac-
tivities in the system architecture design stage are:
(1) construction of the physical model; (2) spec-
ifying the architectural design; (3) selecting the
programming language (or software development
environments); and (4) reviewing the design.

Using implementation terminology, the devel-
oper will derive a physical model starting from
the logical model developed in the analysis phase
(software requirements stage). To build a physi-
cal model some activities are important: the de-
composition of the software into components (a
top-down approach, but care for the bottom-
level components); the implementation of non-
functional requirements; the design of quality
criteria; and special attention paid to alternative
designs. The last activity is needed because, in
general, there is no unique design for a software
system. The design has to be easy to modify and
maintain, only make a minimal use of available
resources, and must be understandable in order
to be effectively built, operated and maintained.

Other quality criteria related to design are: sim-
plicity in form and function, and modularity.

The architectural design document contains
diagrams showing the data flow and the control
flow between components. For each component
there are specified: data input, functions to be
performed (derived from a software requirements
document), and data output. Data input, data
output, and temporary memory cells are clearly
defined as data structures (with name, type,
dimension, relationships between the elements,
range of possible values of each element, and
initial values of each element). The definition
of the control flow between components
describes sequential and parallel operations,
including also synchronous and asynchronous
behavior. About this phase, Pham says that “the
system architecture document describes system
components, subsystems and interfaces”.

The selected data structures and algorithms,
in the detailed design phase, will be imple-
mented in a particular programming language on
a particular platform (hardware and software sys-
tem). The selected programming languages must
support top-down decomposition, object-oriented
programming, and concurrent production of the
software. Also, the choice of a programming lan-
guage depends on the non-functional require-
ments. Finally, the architectural design and the
programming language should be compatible.

Detailed design is about designing the project
and the algorithmic details. Lower-level compo-
nents of the architectural design are decomposed
until they can be presented as modules or func-
tions in the selected programming language. For
many recent projects, an object-oriented (OO)
analysis and design approach has been consid-
ered. The goals of the OO analysis are to iden-
tify all major objects in the problem domain, in-
cluding all data and major operations mandatory
for establishing the software functions, and to
produce a class diagram containing all the soft-
ware project semantics in a set of concise but
detailed definitions. A class specification and a
data dictionary are also delivered. The OO design
maps the analysis product development during the
analysis phase to a structure that will allow the

Total Quality for Software Engineering Management 573

coding and execution. Various methodologies call
this approach OOA/OOD because in a practical
analysis/design activity, it is almost impossible to
find the boundaries between OOA and OOD.

Producing software, after the detailed design
phase, starts with coding. The code should be
consistent (to reduce complexity) and structured
(to reduce errors and enhance maintainability).
From the structured programming point of view,
each module has a single entry and an exit
point, and the control flow proceeds from the
beginning to the end. According to [4], “as the
coding of a module proceeds, documentation
of the design assumptions, function, structure,
interface, internal data and resource utilisation
should proceed concurrently”. As Pham says, the
coding process consists of the following activities:
the identification of the “reusable modules”, the
code editing, the code “inspection”, and the
“final test planning”. Existing modules of other
systems or projects which are similar to the
current system can be reused with modifications.
This is an effective way to save time and
effort. “Code inspection includes code reviews,
quality, and maintainability”. The aim of the code
review process is to check module (software)
logic and readability. “Quality verification ensures
that all the modules perform the functionality
as described in detailed design. Quality check
focuses on reliability, performance, and security”.
Maintainability is checked to ensure the software
project is easy to maintain. The final test plan
provides the input to the testing phase: what
needs to be tested, testing strategies and methods,
testing schedules, etc.

Also, an important step in the production
phase, even before testing, is integration. As ESA
[4] mentions, “integration is the process of build-
ing a software system by combining components
into a working entity” and shall proceed in an
orderly function-by-function sequence.

Testing consists of the verification and valida-
tion of the software product. The goals for these
activities are related to the software quality. The
most important goal is to affirm the quality by
detecting and removing faults in the software

project. Next, all the software specified function-
alities shall be present in the product. Finally,
but as a considerable goal, is the estimation of
the operational reliability of the software prod-
uct.

The process of testing an integrated software
system is called “system testing”. Previous pro-
cesses related to the testing phase are: unit testing
and integration testing. Unit tests check the de-
sign and implementation of all components, “from
the lowest level defined in the detailed design
phase up to the lowest defined in the architectural
design” according to ESA standards. Integration
testing is directed at the interfacing part: to verify
that major components interface correctly (both
as data structures and control flow levels). The
testing team shall include a large set of activities,
like: end-to-end system tests (the input–execute–
output pipe works properly); verification that user
requirements will be entirely covered (acceptance
tests); measurements of performance limits (stress
tests); preliminary estimation of reliability and
maintainability; and the verification of the “soft-
ware user manual”. According to Pham [19], the
acceptance test consists of an internal test and
a field test. “The internal test includes capability
test and guest test, both performed in-house. The
capability test tests the system in an environment
configured similar to the customer environment.
The guest test is conducted by the users in their
software organization sites”. The field test, also
called the “beta test”, allows the user to test the
installed software, defining and developing the test
cases. “Testing by an independent group provides
assurance that the system satisfies the intent of the
original requirements”.

Considering the transfer phase, the developer
will “install the software in the operational
environment and demonstrate to the initiator and
users that the software has all the capabilities”
formulated in the user requirements phase.
Acceptance tests will demonstrate the capabilities
of the software in its operational environment and
these are necessary for provisional acceptance.
The final acceptance decision is made by the
customer.

574 Practices and Emerging Applications

The final phase in the software lifecycle is
operation, consisting of the following activities:
training, support, and maintenance. Following
Pham [19], maintenance is defined as “any change
made to the software, either to correct a deficiency
in performance, to compensate for environmental
changes, or to enhance its operation”. After a
warranty period, the maintenance of the software
is transferred from the developer to a dedicated
maintenance organization.

32.2.2 Software Development Process

A software process model is different from
a software methodology. The process model
determines the tasks or phases involved in product
development and all criteria for moving from one
task to the next one. The software methodology
defines the outputs of each task and describes how
they should be achieved. The ESA approach, Part I,
describes a software process model and for each
phase describes the inputs, outputs, and activities.
The second part of the ESA standard describes
the procedures used to manage a software project.
These aspects will be covered in Section 32.4.

It is difficult to clearly define which methods
should be used to complete a phase of the prod-
uct development and production. As Cederling
remarks [21], “hardly any method is suitable to
use in development of all kinds of applications
and there are only a few methods that pretend to
cover the whole life-cycle of the software”. From
a software quality point of view, the steps could
be organized into three elements: software quality
management, software quality engineering, and
software quality control. Such aspects will be dis-
cussed in Section 32.3.

There are three favored software development
processes: the waterfall model, the spiral model,
and the generic integrated software development
environment. ESA [20] also suggests three lifecycle
models called: waterfall, incremental, and evolu-
tionary. The waterfall model is the most used; it
is a sequential approach and the implementation
steps are the activities in the sequence in which
they appear. This is the main reason that devel-
opment schedules can readily be based on it. In

the spiral model, each cycle involves a progression
through the same series of steps, which are applied
to everything from overall concept to detailed
coding of software. Such an approach applies to
development and maintenance. According to [20],
the incremental model “splits the detailed design
phase into manageable chunks”. The generic in-
tegrated environment is used when an overall in-
tegration of the project’s residual tools is neces-
sary. The impact of object-oriented methods on
software quality is quite important. Capper et al.
[22], show how and when to use object orientation
to improve software quality by taking advantage
of reuse and code modularity. ESA [20] explains
the advantages of an object-oriented approach:
“the analysis more closely corresponds to the ap-
plication domain”, “the design (physical model)
is an elaboration of the requirements analysis
model (the logical model)”, and “object-oriented
methods use the concept of inheritance which, if
properly used, permits the building of reusable
software”. Such object-oriented methods which
recommend feedback loops between analysis, de-
sign and implementation phases when included
in a software engineering standard require special
treatment in order to maintain the PSS-05-0 con-
cept of well-defined development phases.

Software development with prototypes is a new
approach. As mentioned in [5], “prototyping is the
process of developing a working model of a system
early on in a project”. The working model is shown
to the customer, who suggest improvements. The
improvements incorporation gives rise to an
upgraded prototype which is shown again to
the customer, and the process can continue.
Producing a prototype is based on the following
techniques: the relaxation of the quality assurance
standards of the project; partial implementation;
the table-driven processor approach; the usage of
an application-oriented programming language,
etc. Object-oriented programming languages
are also an excellent medium for prototyping
(see [23]). There are three popular prototyping
models: throw-away prototyping, evolutionary
prototyping, and incremental prototyping. By
throw-away prototyping, effective for short
projects, the developer builds a prototype and

Total Quality for Software Engineering Management 575

then starts the iterative process of showing–
modifying already described. When the “game”
is finished, the prototype is archived and
conventional software development is started,
based on a requirement specification written
by examining the detailed functionality of the
prototype. Evolutionary prototyping permits the
developer “to keep the prototype alive” as Ince
says. After the customer has decided that all
requirements are included, the developer bases
the remainder of the work on the prototype
already generated. The incremental prototyping is
effective for projects where the requirements can
be partitioned into functionally separate areas, the
system being developed as a series of small parts,
each of them implementing a subset of functions.

A theory-based, team-oriented engineering
process for developing high-quality software is
the cleanroom approach. According to [24], the
cleanroom process “combines formal methods of
object-based box structure specification and de-
sign, function-theoretical correctness verification,
and statistical usage testing for reliability cer-
tification to produce software approaching zero
defects”. The cleanroom software development
method has three main attributes [25]: a set of at-
titudes; a series of carefully prescribed processes;
and a rigorous mathematical basis. “Cleanroom
processes are quite specific and lend themselves
to process control and statistical measures”. As
Ince mentioned, “a formal method of software
developments makes use of mathematics for spec-
ification and design of a system, together with
mathematical proof as a validation method”. For-
mal methods require the same conventional de-
velopment models, unlike prototyping and object-
oriented technology. A new useful mathematical
framework important for software developers is
the generalized analytic hierarchy process [26],
which provides qualitative and quantitative infor-
mation for resource allocation.

The late 1980s brought new graphically based
software tools for requirements specification and
design, called computer-aided software engineer-
ing (CASE) tools, with the following abilities:
(1) creation of the diagrams describing the func-
tions of the software system; (2) creation of the

diagrams describing the system design of both the
processes and the data in the system; (3) process-
ing the graphical requirements specification and
simulating its actions like a rudimentary proto-
type; (4) the identification of errors in the flow of
data; (5) the generation of code from the design;
and (6) the storage and manipulation of infor-
mation related to the project management. These
tools improve the quality management system
of software development companies by enforcing
their own requirements specification and system
design standards, and doing a lot of bureaucratic
checking activities.

32.2.3 Software Measurements

As Fenton and Pfleeger mention [27], we can
neither predict nor control what we cannot mea-
sure. Measurement “helps us to understand what
is happening during development and mainte-
nance”, “allows us to control”, and “encourages
us to improve our processes and products”. Mea-
surement is the first step towards software quality
improvement. Due to the variety and complexity
of software products, processes, and operating
conditions, no single metric system can be iden-
tified as a measure of the software quality. Several
attributes have to be measured, related to:

• the product itself: size, complexity, modular-
ity, reuse, control flow, data flow, etc.;
• the development process: cost and effort

estimation, productivity, schedule, etc.;
• quality and reliability: failures, corrections,

times to failures, fault density, etc.;
• maintenance and upgrading: documentation,

etc.

The quality of any measurement program is
dependent on careful data collection. For instance,
in order to perform reliability analysis, the fol-
lowing types of data should be collected: internal
attributes (size, language, functions, verification
and validation methods and tools, etc.) and exter-
nal attributes (time of failure occurrence, nature
of the failures, consequence, the current version of
the software environment in which the fault has
been activated, conditions under which the fault

576 Practices and Emerging Applications

has been activated, type of faults, fault location,
etc.). According to [27], “an internal attribute can
be measured by examining the product, process
or resource on its own, separate from its behav-
ior”, while external attributes are related to the
behavior of the process, product, or resource and
“can be measured only with respect to how the
product, process or resource relates to its environ-
ment”. Considering the process of constructing
specification, internal attributes are: time, effort,
number of requirements changes, etc. and quality,
cost, stability are some external attributes. Any
artefacts, deliverables, or documents that result
from a process activity are identified as prod-
ucts: the specifications, designs, code, prototypes,
documents, etc. For example, if we are interested
in measuring the code of one software product,
the internal attributes cover: size, reuse, modu-
larity, functionality, coupling, algorithmic com-
plexity, control-flow structures, hierarchical class
structures (the number of classes, functions, and
class interactions), etc. Some popular software-
process metrics are: number of “problems” found
by developer, number of “problems” found during
beta testing, number of “problems” fixed that were
found by developer in prior release, number of
“problems” fixed that were found by beta testing
in the prior release, number of “problems” fixed
that were found by customer in the prior release,
number of changes to the code due to new re-
quirements, total number of changes to the code
for any reason, number of distinct requirements
that caused changes to the module, net increase in
lines of code, number of team members making
changes, number of updates to a module, etc.

Measuring the size of the software products
is consistent with measurement theory principles
[27]. The software size can be described with
three attributes: length (the physical size of the
product), functionality (the functions supplied
by the product to the user), and complexity of
the problem, algorithms, software structure, and
cognitive effort.

The most used measure of source code
program length is the LOC (number of lines
of code), sometimes interpreted as NCLOC
(only non-commented lines) or ELOC (effective

lines of code). However, the dependence of the
programming language and the impact of the
visual programming windowing environments are
important factors which have a great influence
on the code. The length is also a measure for
specifications and design, which consists of both
text (the text length) and diagrams (the diagram
length). Other statement metrics are: number
of distinct included files, number of control
statements, number of declarative statements,
number of executable statements, number of
global variables used, etc.

The functionality captures “the amount of
function contained in a delivered product or in a
description of how the product is supposed to be”
[27]. There are three commonly used approaches:
the Albrecht’s effort estimation method (based on
function points), COCOMO 2.0 (based on object
points), and the DeMarco’s specification weight.

Complexity is difficult to measure. The com-
plexity of an approach is given in terms of the
resources needed to implement such an approach
(the computer running time or the computer
memory used for processing). As mentioned by
Pham [19], “Halstead’s theory of software metric
is probably the best-known technique to measure
the complexity in a software program and amount
of difficulty involved in testing and debugging
the software”. However, the focus of Halstead’s
measurements is the source code for an imperative
language. Such an approach to software based
on declarative programming is not suitable. The
following metrics, used by Halstead, give rise to
empirical models: the number of distinct oper-
ators and the number of distinct operands in a
program to develop expressions for the overall
program length, the volume and the number of
remaining defects in a program. Another com-
plexity metric measure of software is the cy-
clomatic number, proposed by McCabe (see [19,
27] and references cited therein), that provides
a quantitative measure of the logical complexity
of a program by counting the decision points.
The above remark also applies for visual software
environments, especially for object-oriented pro-
gramming, which needs special complexity mea-
sures.

Total Quality for Software Engineering Management 577

The software structure has at least three parts:
control-flow structure (addressing the sequence in
which instructions are executed), data-flow struc-
ture (showing the behavior of the data as it inter-
acts with the software), and data structure (includ-
ing data arrangements and algorithms for creat-
ing, modifying, or deleting them). The complexity
of the control-flow structures is obtained using
hierarchical measures, every computer program
being built up in a unique way from the so-called
prime structures according to the structured pro-
gramming principles. Some popular control-flow
graph metrics (for flowcharts) are: number of arcs
that are not conditional arcs, number of non-loop
conditional arcs (if–then constructs), number of
loop constructs, number of internal nodes, num-
ber of entry nodes, number of exit nodes, etc.

External software product attributes will be
considered in the next section. Without presenting
equations, the above descriptive approach shows
what the developers, the software managers have
to measure in order to understand, control, and
evaluate. Special attention will be given to data
collection not only for different internal measure-
ments, but for the investigation of relationships
and future trends.

32.3 Software Quality Models

32.3.1 Measuring Aspects of Quality

In the first section we pointed out that qual-
ity is a composite of many characteristics. Early
models of Boehm et al. [28] and McCall et al.
[29] described quality by decomposition. Both
models identify key attributes of quality from
the customer’s perspective, called quality factors,
which are decomposed into lower-level attributes,
called quality criteria and directly measurable.
For example, McCall’s model considers the follow-
ing quality factors: usability, integrity, efficiency,
correctness, reliability, maintainability, testability,
flexibility, reusability, portability, and interoper-
ability. We observe that most of these factors also
describe the software requirements which were
outlined in the first section.

A derivation of McCall’s model, called “Soft-
ware Product Evaluation: Quality Characteristics
and Guidelines for their Use”, is known as the
ISO 9126 standard quality model, decomposing
the quality only into six quality factors: functional-
ity, reliability, efficiency, usability, maintainability,
and portability [30]. Unfortunately, the definitions
of these attributes differ from one standard to
another.

Another approach extends Gilb’s ideas [31]
and provides an automated way to use them: the
COQUAMO model of Kitchenham and Walker
[32]. Other approaches view software quality as
an equation based on defect-based measures, us-
ability measures, and maintainability measures.
Some popular measures are: the defect density
(given as the division of the number of known
defects by the product size), the system spoilage
(the division of the time to fix post-release de-
fects by the total system development time), the
user performance measures defined by the MUSiC
project [33], the total effort expended on main-
tenance [34], Gunning’s readability measure [35]
(for written documentation), etc. Other measures
will appear in the next sections. Recently, so-
phisticated software tools to support software de-
velopers, with software-quality models, appeared.
For example, [36] describes the decision support
tool EMERALD (Enhanced Measurement for Early
Risk Assessment of Latent Defects system). As
[37] remarks, such tools “are the key to improve
software-quality” and can “predict which modules
are likely to be fault-prone” using the database of
available measurements.

32.3.2 Software Reliability
Engineering

Improving the reliability of a software product can
be obtained by measuring different attributes dur-
ing the software development phase. Measurement
uses the outputs of a data collection process. Two
types of data are related to software reliability:
time-domain data and interval-domain data. The
time-domain data approach requires that indi-
vidual times at which failure occurred should be

578 Practices and Emerging Applications

recorded. For the interval-domain approach it is
necessary to count the number of failures occur-
ring during a fixed period. From an accuracy point
of view in the reliability estimation process, the
time-domain approach is adequate but more data
collection efforts are necessary. In the following,
the reliability will be presented as an engineering
concept, improving the framework of the total
quality for software engineering management.

According to Musa [6], “engineering software
reliability means developing a product in such a
way that the product reaches the market at the
right time, at an acceptable cost, and with sat-
isfactory reliability”. The reliability incorporates
all those properties of the software that can be
associated with the software running (correctness,
safety, usability, and user friendliness). There are
two approaches to measure the software reliabil-
ity: a developer-oriented approach which counts
the faults or defects found in a software product,
and a user-oriented approach taking into account
the frequency with which problems occur.

A basic approach of the software reliability
engineering (SRE) process, according to [6],
requires the following activities.

1. Identify the modules that should have a
separate test.

2. Define the failure with severity classes (a
failure severity class is a set of failures that
have the same per-failure impact on users,
based on a quality attribute).

3. Choose the natural or time unit (a natural unit
is the one related to the output of a software-
based product).

4. Set the system failure intensity objective for
each module to be tested (failures per natural
unit).

5. Determine the developed software failure
intensity objective.

6. Apply, in an engineering manner, the relia-
bility strategies in order to meet the failure
intensity objective.

7. Determine the operational modes of each
module to be tested.

8. For each module to be tested, develop
the module and the operational profile (by

identifying the operation initiators, creating
the operations list, determining occurrence
rates and occurrence probabilities).

9. Prepare test cases (involving the following
steps: estimation of the number of new
test cases needed for the current release,
allocation of the test cases among the modules
to be tested, for each module allocate new test
cases among its new operations, specify the
new test cases, and add these new test cases
to those from previous releases).

10. Prepare test procedures (one test procedure
for each operational mode).

11. Execute the test by allocation of the test time,
test the systems (acquired components, prod-
uct and variations, and supersystems), and
carefully identify the failures (by analyzing the
test output for deviations, determining which
deviations are failures, establishing when the
failures occurred and assigning failure sever-
ity classes).

12. Apply failure data to guide decisions.

Introduction of SRE into an organization it is a
strong function of the software process maturity
of that organization. The necessary period for
introduction can range from six months to several
years. An incremental approach is recommended.
The process has to start with activities needed
for establishing a baseline and learning about the
product and about customer expectations.

An important set of SRE activities are con-
cerned with measurement and prediction of soft-
ware reliability and availability. This includes
modeling of software failure behavior and mod-
eling of the process that develops and removes
faults. According to [6, 21, 38–40] and references
cited therein, a large set of metrics and models are
available for such a purpose.

There are many types of software reliability
models. Some well-known models are: Halstead’s
software metric and McCabe’s cyclomatic com-
plexity metric (both deterministic models). Hal-
stead’s metric can be used to estimate the number
of errors in the program, while McCabe’s cyclo-
matic complexity metric can be used to deter-
mine an upper bound on the number of tests

Total Quality for Software Engineering Management 579

in a program. Models included in the second
group, called “error seeding models”, estimate
the number of errors in a program by using a
multistage sampling technique, when the errors
are divided into indigenous errors and induced
errors (seeded errors). Examples of such models
are [19]: Mills’ error seeding model, the hyper-
geometric distribution model, and Cai’s model.
Another group of models is used to study the
software failure rate per fault at the failure inter-
vals. Models included in this group are: Jelinski
and Moranda (J-M), negative-binomial Poisson,
Goel–Okumoto imperfect debugging, and a large
number of variations of the J-M model. Other
models, namely curve fitting models, use statis-
tical regression analysis to study the relationship
between software complexity and the number of
faults in a program, the number of changes, or
failure rate. When assuming that the future of the
process is statistically independent of the past,
NHPP (non-homogeneous Poisson process) mod-
els are proposed (see [19, ch.4]): Duane, Musa ex-
ponential, Goel–Okumoto, S-shaped growth mod-
els, hyperexponential growth models, generalized
NHPP, etc. The last group, in Pham’s classification,
includes Markov models [19]. Unfortunately, be-
cause reliability is defined in terms of failures, it is
impossible to measure before development is com-
plete. Even carefully collecting data on interfailure
times and using software reliability growth mod-
els, it is difficult to produce accurate predictions
on all data sets in all environments; that means the
above-mentioned techniques work effectively only
if the software’s future operational environment
is similar to that in which the failure data was
collected. The advice of Fenton and Pfleeger [27] is
full of importance: “If we must predict reliability
for a system that has not been released to a user,
then we must simulate the target operational envi-
ronment in our testing”.

From an SRE point of view, it is essential
that a person selecting models and making
reliability predictions be appropriately trained
in both software (reliability) engineering and
statistics (see the cleanroom approach [25]).
Data filtering and outliers identification are
fundamental steps for data validation. Data

partitioning is also important. Applying reliability
growth models to the most severe failures allows,
for example, evaluation of the software failure rate
corresponding to the most critical behavior. Such
a rate is more significant than the overall software
failure rate which incorporates failures that do not
have a major impact on system behavior.

Reliability improvement programs will help
the companies to ameliorate the maturity of
their software production, adopting the CMM
approach, ESA standard, or other standards
specially developed for producing safety-critical
applications.

32.3.3 Effort and Cost Models

One of the major objections to applying programs
for developing under reliability requirements is
the total effort, which has been considered for a
long time as increasing with the level required.
This is why the effort estimation is crucial for
the software development organization. Overesti-
mated effort may convince general management
to disapprove proposed systems that might signifi-
cantly contribute to the quality of the development
process. Underestimated effort may convince gen-
eral management to approve, but the exceeding of
their budgets and the final failing is the common
way. A model which considers the testing cost,
cost of removing errors detected during testing
phase, cost of removing errors detected during
the warranty period, and risk cost due to software
failure is proposed by Pham and Zhang [41]. As
the authors mention: “this model can be used
to estimate realistic total software cost” for some
software products, and “to determine the optimal
testing release policies of the software system”.
Other software cost models based on the NHPP
software reliability functions can be found in [19].

There are many proposed solutions, but, in
general, it is very restrictive to apply them
across a large set of software projects. Applying
data analysis to empirical data indicates that
effort trends depend on certain measurable
parameters. There are two classes of models for
the effort estimation: cost models and constraint
models. COCOMO is an empirical cost model

580 Practices and Emerging Applications

(a composite one) which provides direct estimates
of effort or duration. Often, the cost models
have one primary input parameter and a number
of cost drivers (characteristics of the project,
process, product, or resources having a significant
influence on effort or duration). Constraint
models describe a relationship over time between
two or more parameters of effort, duration,
or staffing level. Because these mathematical
models are defined in terms of an algorithm,
they are termed algorithmic models. Boehm [42]
classifies algorithmic models used for software
cost estimation as follows:

1. linear models that try and fit a simple line to
the observed data;

2. multiplicative models that describe effort as a
product of constants with various cost drivers
as their exponents;

3. analytic models that usually describe effort
as a function that is neither linear nor
multiplicative;

4. tabular models that represent the relationship
between cost drivers and development effort
in a matrix form;

5. composite models using a combination of all
or some of the above-mentioned approaches,
which are generic enough to represent a large
class of situations.

Composite models are mostly used in practice.
Another composite model, widely used in indus-
try, is Putnam’s SLIM (software lifecycle man-
agement) model. Both the COCOMO and Put-
nam models use the Rayleigh distribution as an
approximation to the smoothed labor distribu-
tion curve. SLIM uses separate Rayleigh curves
for design and code, test and validation, main-
tenance, management. Boehm and his colleagues
[43] have defined an updated COCOMO, use-
ful for a wider collection of software develop-
ment techniques and technologies, including re-
engineering, applications generators, and object-
oriented approaches.

However, practitioners also use informal con-
siderations: an expert’s subjective opinion, avail-
ability of resources, analogy, etc. To succeed, they
use more than one technique simultaneously. For

quality improving reasons, it is useful to assign
the responsibilities of the cost estimation to a
specific group of people [44]. According to [27],
“the group members are familiar with the esti-
mation and calibration techniques”, “their esti-
mating experience gives them a better sense of
when a project is deviating from the average or
standard one”, “by monitoring the database, the
group can identify trends and perform analyses
that are impossible for single projects”, and with
the advantage of being separated from the project
staff they can re-estimate periodically different
external attributes.

32.4 Total Quality Management
for Software Engineering

32.4.1 Deming’s Theory

The US Department of Defense defines the total-
quality approach (also called total quality man-
agement, or TQM) as follows (from ref. 11, ch.1,
cited in [3]): “TQM consists of continuous im-
provement activities involving everyone in the
organization—managers and workers—in a to-
tally integrated effort toward improving perfor-
mance at every level”. A definition of TQM has
two components: “the what and the how of to-
tal quality”. The how component has 10 critical
elements: customer focus, obsession with qual-
ity, scientific approach, long-term commitment,
teamwork, continual improvement of systems, ed-
ucation and training, freedom throughout con-
trol, unity of purpose, and employee involvement
and empowerment. Many people and organiza-
tions contribute to develop various concepts, col-
lectively known as TQM. The best known quality
pioneer is Dr W. Edwards Deming [2]. Deming’s
“fourteen points” philosophy is also applicable
to software quality. According to Goetsch and
Davis [3] and Zultner [45], following the plan–
do–check–act–analyze Deming cycle, the 14 rules
are (the numbers represent neither an order of
progression nor relative priorities).

Total Quality for Software Engineering Management 581

1. Create constancy of purpose for the improve-
ment of development with the aim of be-
coming excellent (optimizing level in SEI ap-
proach).

2. Adopt a new philosophy: software projects fail
because of a lack of management and control.
Software engineering management must learn
out of experience that quality is vital for
survival.

3. Achieving quality has to be independent of
inspection process. Develop for quality.

4. Stop awarding contracts based on the price tag
alone.

5. Improve constantly and forever the system
development process to improve quality and
productivity, creating increasing value with
lower cost.

6. Institute training on the job. Training is the
best way to improve people on a continual
basis.

7. Institute leadership (to help people and
technology to work better).

8. Drive out fear so that everyone may work
effectively.

9. Break down barriers between departments.
Teamwork, especially for the front end of the
project, improves the final product quality.

10. Eliminate slogans and targets that ask for new
levels of productivity or competitive degrees.
They create adversarial relationships.

11. Eliminate quotas.
12. Remove barriers that rob employees of their

pride of workmanship.
13. Institute a vigorous program of

education/training and self-improvement.
14. Put everyone to work to accomplish the

transformation.

The above rules summarize Deming’s views on
what the software organization must do to effect
a positive transition from “business-as-usual to
world-class quality”. To build quality software,
the software house must take substantial changes
in the way systems are developed and managed
(see Zultner [45]). The factors that may inhibit
such a transformation are termed “Deming’s seven
deadly diseases”.

By adapting them to software quality, the
following list is obtained.

1. Lack of constancy of purpose to plan software
products that satisfy the user requirements
and keep the company in business. Excessive
maintenance costs.

2. Emphasis on short-term schedule.
3. Reviewing systems and managing by objec-

tives without providing methods or resources
to accomplish objectives.

4. Mobility of systems professionals and man-
agement.

5. Managing by “visible figures” alone with little
consideration, or no consideration given to
the figures that are unknown or cannot be
known.

6. Excessive personnel cost.
7. Excessive costs of legal liabilities.

TQM can eliminate or reduce the impact of
a lack of constancy, the reviewing system, the
mobility and usage of visible figures. However,
total quality will not free the organization from
excessive personal costs or legal liabilities from
pressure to produce short-term profits, these
being “the diseases of the nation’s financial, health
care, and legal systems”, as mentioned by Goetsch
and Davis [3].

32.4.2 Continuous Improvement

Continuous improvement is the most fundamental
element of TQM. It applies not only to products
but also to processes and the people who operate
them. The process under improvement has to be
defined (all the activities to be performed are
clearly described). Also, the process has to be used
(applied) over many projects to create experience.
To decide on process behavior, data and metrics
have to be collected and analyzed. The above
section on measurement and the cited literature
explain the important role of measurement for
TQM. Other models and references can be found
in Popentiu and Burschy [46].

Process improvement can be addressed at
an organizational level, at a project level, and
at an individual level. Both CMM and ISO 9001

582 Practices and Emerging Applications

identify processes at organizational level. The
CMM identifies key process areas mandatory for
achieving a certain level of maturity. According
to Paulk [14], in the CMM, process improvement
is implied in the concept of maturity itself, being
more specifically addressed in the key process
areas of Level 5, while ISO 9001 just states the
minimum criteria to achieve the ISO certification.
At a project level, the SPICE model deals with
process improvement, while the personal software
process model, developed by Humphrey [47], ad-
dresses the process improvement at an individual
level. In Humphrey’s model, each individual goes
through a series of four levels, in which new steps
are added that make a more mature process. Let
us observe that even though some quality models
incorporate the concept of software improvement,
they do not explain how it should be obtained.
The ESA standard, and its updates to the new
technologies, is more specific. It provides an
algorithm both from a software engineering and
a management point of view. A collaborative
ESPRIT project involving nine European centers
of excellence, called “ami” [48], is an adaptation of
the goal–question–metric (GQM) method devised
by Basili [49]. The “ami” approach had the support
of the ESA. Another system engineering process
which transforms the desires of the customer/user
into the language required, at all project levels, is
the quality function deployment (QFD). QFD, ac-
cording to Goetsch and Davis [3], brings a number
of benefits to organizations trying to enhance their
competitiveness by continually improving quality
and productivity. The process has the benefits
of being: customer-focused, time-efficient,
teamwork-oriented, and documentation-oriented.

The goal of the management activities is to
build the software product within the budget, ac-
cording to schedule, and with the required qual-
ity. To achieve this, according to ESA [4], an
organization must establish plans for: software
project management, software configuration man-
agement, software verification and validation, and
software quality assurance.

The software project management plan (SPMP)
contains “the technical and managerial project
functions, activities and tasks necessary to satisfy

the requirements of a software project”. Following
the continuous improvement paradigm, the SPMP
has to be updated and refined, throughout the
lifecycle, “as more accurate estimates of the effort
involved become possible”, and whenever changes
of some attributes or goals occur.

Software configuration management, essential
for proper software quality control, is both a
managerial and a technical activity. Ince [5]
identifies the following activities which make
up the process of configuration management:
configuration items identification, configuration
control, status accounting, and configuration
auditing.

All software verification and validation activ-
ities shall be documented in the corresponding
plan. According to ESA [4], the verification activi-
ties include: reviewing, inspecting, testing, formal
checking, and auditing. By validation, the orga-
nization will determine whether the final product
meets the user requirements.

The software quality assurance plan defines
how the standards adopted for project develop-
ment will be monitored. Such a plan is a checklist
for activities that have to be carried out to ensure
the quality of the product. For each document, the
ESA approach provides a clear layout, with strict
format and content. Other software management
practices exist, and Kenet and Baker [50] give a
pragmatic view of the subject.

32.5 Conclusions

Strategies to obtain software quality are exam-
ined. The basic approaches in software quality
assurance are covered; ISO 9000 and CMM stan-
dards being considered. The practice of software
engineering is illustrated by ESA standards and
modern software development techniques. Other
methodologies are: software reliability engineer-
ing, software engineering economics, and soft-
ware management. Putting them together, and
using the adapted Deming’s philosophy, the soft-
ware organization will implement the total quality
management paradigm.

Total Quality for Software Engineering Management 583

References

[1] Uselac S. Zen leadership: the human side of total
quality team management. Londonville, OH: Mohican
Publishing Company; 1993.

[2] Deming WE. Out of the crisis. Cambridge, MA: Mas-
sachusetts Institute of Technology Center for Advanced
Engineering Study; 1986.

[3] Goetsch DL, Davis S. Introduction to total quality.
quality, productivity, competitiveness: Englewood Cliffs,
NJ: Prentice Hall; 1994.

[4] ESA PSS-05-0: ESA Software Engineering Standards,
Issue 2; February 1991.

[5] Ince D. An introduction to quality assurance and its
implementation. London: McGraw-Hill; 1994.

[6] Musa JD. Software reliability engineering. New York:
McGraw-Hill; 1999.

[7] Breisford JJ. Establishing a software quality program.
Quality Progress, November 1988.

[8] CODERM: “Is it Safe?” The Newsletter 1998/99;15,(2):6–7.

[9] Lions JL. Ariane 5 Flight 501 Failure: Report of the Inquire
Board. Paris; July 19, 1996.

[10] IEEE Standard for Software Quality Assurance Plans:
IEEE Std. 730.1-1989.

[11] International Standards Organization. ISO 9001: Quality
systems—model for quality assurance in design, devel-
opment, production, installation and servicing. Interna-
tional Standards Organization; 1987.

[12] International Standards Organization. Quality manage-
ment and quality assurance standards—Part 3. Guide-
lines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software. ISO/IS 9000-
3. Geneva; 1990.

[13] International Standards Organization. Quality manage-
ment and quality system elements guidelines—Part 2.
ISO 9004-2. Geneva; 1991.

[14] Paulk MC. How ISO 9001 compares with the CMM. IEEE
Software 1995;12(1):74–83.

[15] Kuvaja P, Bicego A. Bootstrap: a European assessment
methodology. Software Qual J 1994;3(3):117–28.

[16] International Standards Organization. SPICE Baseline
Practice Guide, Product Description, Issue 0.03 (Draft);
1993.

[17] IEEE. Glossary of software engineering terminology.
IEEE Std. 610.12-1990.

[18] Lyu MR. Handbook of software reliability engineering.
New York: McGraw Hill; 1996.

[19] Pham H. Software reliability. Singapore: Springer; 2000.

[20] Jones M, Mazza C, Mortensen UK, Scheffer A. 1977–1997:
Twenty years of software engineering standardisation in
ESA. ESA Bull 1997; 90.

[21] Cederling U. Industrial software development—a case
study. In: Sommerville I, Paul M, editors. Software
engineering—ESEC’93. Berlin: Springer-Verlag; 1993.
p.226–37.

[22] Capper NP, Colgate RJ, Hunter JC, James. The impact
of object-oriented technology on software quality: three
case histories. Software Qual 1994;33(1):131–58.

[23] Blaschek G. Object-oriented programming with proto-
types. Berlin: Springer-Verlag; 1994.

[24] Hausler PA. Linger RC, Trammell CJ. Adopting cleanroom
software engineering with a phased approach. Software
Qual 1994;33(1):89–110.

[25] Mills HD, Poore JH. Bringing software under statistical
quality control. Qual Prog 1988; Nov.

[26] Lee M, Pham H, Zhang X. A methodology for priority
setting with application to software development process.
Eur J Operat Res 1999;118(2):375–89.

[27] Fenton NE, Pfleeger SL. Software metrics: a rigorous
& practical approach, 2nd ed. International Thomson
Computer Press; 1996.

[28] Boehm BW, Brown JR, Kaspar H, Lipow M, Macleod G,
Merrit M. Characteristics of software quality. TRW series
of software technology. Amsterdam: North Holland;
1978.

[29] McCall JA, Richards PK, Walters GF. Factors in software
quality. RADC TR-77-369; 1977.

[30] International Standards Organization. Information
technology—software product evaluation—quality
characteristics and guide lines for their use. ISO/IEC IS
9126. Geneva; 1991.

[31] Gilb T. Software metrics. Cambridge, MA: Chartwell-
Bratt; 1976.

[32] Kitchenham BA, Walker JG. A quantitative approach
to monitoring software development. Software Eng J
1989;4(1):2–13.

[33] Bevan N. Measuring usability as quality of use. Software
Qual J 1995,4(2):115–30.

[34] Belady LA, Lehman MM. A model of large program
development. IBM Syst J 1976;15(3):225–52.

[35] Gunning R. The technique of clear writing. New York:
McGraw-Hill; 1968.

[36] Hudepohl JP, Aud SJ, Khoshoftaar TM, et al. EMERALD:
software metrics and models on the desktop. IEEE
Software 1996;13(Sept):56–60.

[37] Khoshgoftaar TM, Allen EB, Jones WD, et al.
Classification-tree models of software-quality over
multiple releases. IEEE Trans Reliab 2000;49(1):4–11.

[38] Musa JD, Iannino A, Okumoto K. Software reliability:
measurement, prediction, application. New York: Mc-
Graw Hill; 1987.

[39] Xie M. Software reliability modelling. Singapore: World
Scientific; 1991.

[40] Burtschy B, Albeanu G, Boros DN, Popentiu FL, Nicola V.
Improving software reliability forecasting. Microelectron
Reliab 1997;37(6):901–7.

[41] Pham H, Zhang X. A software cost model with warranty
and risk costs. IEEE Trans Comput 1999;48(1):71–5.

[42] Boehm BW. Software engineering economics. Englewood
Cliffs, NJ: Prentice Hall; 1981.

[43] Boehm BW, Clark B, Horowitz E, Westland JC, Madachy
RJ, Selby RW. Cost models for future life cycle processes:
COCOMO 2.0. Ann Software Eng 1995;1(1):1–24.

584 Practices and Emerging Applications

[44] DeMarco T. Controlling software projects. New York:
Yourdon Press; 1982.

[45] Zultner R. The Deming approach to software quality
engineering. Qual Progr 1988; Nov.

[46] Popentiu Fl, Burschy B. Total quality for software
engineering management. Final report for NATO—
HTECH.LG 941434; September 1997.

[47] Humphrey WS. A discipline for software engineering.
Reading, MA: Addison Wesley; 1995.

[48] Kuntzmann-Combelles A. Quantitative approach to soft-
ware management: the “ami” method. In: Sommerville I,
Paul M, editors. Software engineering—ESEC’93. Berlin:
Springer-Verlag; 1993. p.238–50.

[49] Basili VR, Rombach D. The TAME project: towards
improvement oriented software environments. IEEE
Trans Software Eng 1988;14(6):758–73.

[50] Kenet RS, Baker ER. Software process quality: manage-
ment and control. New York: Marcel Dekker; 1999.

Software Fault Tolerance

Ch
ap

te
r3

3Xiaolin Teng and Hoang Pham

33.1 Introduction
33.2 Software Fault-tolerant Methodologies
33.2.1 N -version Programming
33.2.2 Recovery Block
33.2.3 Other Fault-tolerance Techniques
33.3 N -version Programming Modeling
33.3.1 Basic Analysis
33.3.1.1 Data-domain Modeling
33.3.1.2 Time-domain Modeling
33.3.2 Reliability in the Presence of Failure Correlation
33.3.3 Reliability Analysis and Modeling
33.4 Generalized Non-homogeneous Poisson Process Model Formulation
33.5 Non-homogeneousPoisson Process Reliability Model forN -version

Programming Systems
33.5.1 Model Assumptions
33.5.2 Model Formulations
33.5.2.1 Mean Value Functions
33.5.2.2 Common Failures
33.5.2.3 Concurrent Independent Failures
33.5.3 N -version Programming System Reliability
33.5.4 Parameter Estimation
33.6 N -version Programming–Software Reliability Growth
33.6.1 Applications ofN -version Programming–Software Reliability Growth Models
33.6.1.1 Testing Data
33.7 Conclusion

33.1 Introduction

Software fault tolerance is achieved through
special programming techniques that enable the
software to detect and recover from failures.
This requires redundant software elements that
provide alternative means of fulfilling the same
specifications. The different versions must be
developed independently such that they do not
have common faults, if any, to avoid simultaneous
failures in response to the same inputs.

The difference between software fault tolerance
and hardware fault tolerance is that software faults
are usually design faults, and hardware faults are

usually physical faults. Hardware physical faults
can be tolerated in redundant (spare) copies of
a component that are identical to the original,
since it is commonly assumed that hardware
components fail independently. However, software
design faults cannot generally be tolerated in this
way because the error is likely to recur on the spare
component if it is identical to the original [1].

Two of the best known fault-tolerant software
schemes are N-version programming (NVP) and
recovery block (RB). Both schemes are based
on software component redundancy and the
assumption that coincident failures of components
are rare.

585

586 Practices and Emerging Applications

Input

Version N

Voter
Correct
output

Version 2

Version 1

System failure

Figure 33.1. N -version programming scheme

33.2 Software Fault-tolerant
Methodologies

33.2.1 N -version Programming

NVP was proposed by Chen and Avizienis.
In this scheme, there are N ≥ 2 functionally
equivalent programs, called versions, which are
developed independently from the same initial
specification. An independent development means
that each version will be developed by different
groups of people. Those individuals and groups
do not communicate with each other during
the software development. Whenever possible,
different algorithms, techniques, programming
languages and tools are used in each version.
NVP is actually a software generalization of
the N-modular redundancy (NMR) approach
used in hardware fault tolerance. All these N

versions are usually executed simultaneously
(i.e. in parallel), and send their outputs to a voter,
which determines the “correct” or best output if
one exists, by a voting mechanism, as shown in
Figure 33.1.

Assume all N versions are statistically indepen-
dent of each other and have the same reliability r ,
and if majority voting is used, then the reliability
of the NVP scheme (RNVP) can be expressed as:

RNVP =
N∑

i=�N/2

(
N

i

)
ri(1− r)N−i (33.1)

Several different voting techniques have been
proposed. The simplest one is majority voting,

which has been investigated by a number of
researchers [3–6]. In majority voting, usually
N is odd, and the voter needs at least �N/2
software versions to produce the same output to
determine a “correct” result. Consensus voting
is designed for multiversion software with small
output space, in which case software versions
can give identical but incorrect outputs [7].
The voter will select the output that the most
software versions give. For example, suppose
there are six software versions and three possible
outputs. If three versions give output A, two
versions give output B, and one version gives
output C, then the voter will consider the
correct result as output A. Leung [8] proposes
a maximum likelihood voting method, which
applies a maximum likelihood function to decide
the most likely correct result. Just like consensus
voting, this maximum likelihood voting method
also needs small output space.

33.2.2 Recovery Block

The RB scheme was proposed by Randell [9].
This scheme consists of three elements: primary
module, acceptance tests (AT), and alternate
modules for a given task. The simplest scheme of
the recovery block is as shown in Figure 33.2.

The process begins when the output of
the primary module is tested for acceptability.
If the acceptance test determines that the output
of the primary module is not acceptable, it
restores, recovers, or “rolls back” the state of the

Software Fault Tolerance 587

“Correct”
outputATModule N

Y

N
System
failure

N

“Correct”
outputATModule 3

Y

“Correct”
outputATModule 2

Y

N

“Correct”
outputATModule 1

Y

N

Figure 33.2. Recovery blocks scheme

system before the primary module was executed.
It then allows the second module to execute, and
evaluates its output, and if the output is not
acceptable, it then starts the third module, and
evaluates its output, and so on. If all modules
execute and none gives the acceptable results, then
the system fails.

One problem with this scheme is how to
find a simple and highly reliable AT, because
the AT is quite dependent on the application.
There may also be a different acceptance test for
each module. In some cases, the AT will be very
simple. An interesting example is given in Fairley
[10]. An implicit specification of the square root
function SQRT can serve as an AT:

(ABS((SQRT(x)∗SQRT(x))− x) < Error)

for 0≤ x ≤ y

where x and y are real numbers. Error is the
permissible error range.

In this case, it is much easier to do AT than
SQRT itself, then we can easily set up a reliable
AT for SQRT. Unfortunately, sometimes it is not
easy to develop a reliable and simple AT, and an AT
can be complex and as costly as the full problem
solution. In some applications, it is enough for
the AT to check only the output of the software,

but in some other applications, this may not be
sufficient. The software internal states also need
to be checked to detect a failure. Compared with
the voter in an NVP scheme, the AT is much more
difficult to build.

One of the differences between RB and NVP
is that the modules are executed sequentially in
RB, and simultaneously in NVP. Also the AT in RB
can determine whether a version gives the correct
result, but no such kind of mechanism is built in
NVP. NVP can only rely on the voter to decide the
best output. Also, since the RB needs to switch
to the backup modules when a primary software
module fails, it takes much longer computation
times to finish the computation in RB than in
NVP if many modules fail in a task. Therefore,
the recovery block generally is not applicable to
critical systems where real-time response is of
great concern.

33.2.3 Other Fault-tolerance
Techniques

There are some studies that combine RB and NVP
to create new hybrid techniques, such as consensus
recovery block [5], and acceptance voting [11].

588 Practices and Emerging Applications

“Correct” output
Success

NVP

Input

System failure

“Correct” outputRB

Failure

Figure 33.3. Consensus recovery block

Consensus recovery block is a hybrid system
that combines NVP and RB in that order
(Figure 33.3). If NVP fails, the system reverts to RB
using the same modules (the same module results
can be used). Only when both NVP and RB fail
does the system fail.

Acceptance voting is also an NVP scheme,
but it adds an AT to each version (Figure 33.4).
The output of each version is first sent to the AT,
if the AT accepts the output, then the output will
be passed to the voter. The voter sees only those
outputs that have been passed by the acceptance

System failureVoter

Success

“Correct” output

M1

Input

�������

�������

M2 M3 MN

A1 A2 A3 AN

Figure 33.4. Acceptance voting

test. This implies that the voter may not process
the same number of outputs at each invocation,
and hence the voting algorithm must be dynamic.
The system fails if no outputs are submitted to the
voter. If only one output is submitted, the voter
must assume it to be correct, then pass it to the
next stage.

33.3 N -version Programming
Modeling

A number of systematic experimental studies of
fault-tolerant software issues have been conducted
over the last 20 years by both academia and indus-
try [6, 12, 13]. Modeling of an NVP scheme gives
insight into its behavior and allows quantification
of its merit. Some research has been conducted
in the reliability modeling of fault-tolerant soft-
ware systems. The reliability modeling for fault-
tolerant software systems falls into two categories:
data-domain modeling and time-domain model-
ing. Both analyses use the assumption that the
failure events are independent between or among
different versions.

33.3.1 Basic Analysis

33.3.1.1 Data-domain Modeling

Data-domain modeling uses the assumption that
failure events among different software versions
are independent of each other. This abstraction
simplifies the modeling and provides insight into
the behavior of NVP schemes.

If ri represents the reliability of the ith software
version, and RV represents the reliability of
the voter, which is also assumed independent
of software version failures, then the system
reliability of a three-version NVP fault-tolerant
system is:

RNVP3(r1,r2,r3, RV)

= RV(r1r2 + r1r3 + r2r3 − 2r1r2r3) (33.2)

If all versions have the same reliability r , then
the probability that an NVP system will operate

Software Fault Tolerance 589

S
ys

te
m

re
lia

b
ili

ty

0.8

0

1

0.6

0.4

0.2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Version reliability

2 out of 3 3 out of 5 4 out of 7

Figure 33.5. Comparison of system reliability and version reliability

successfully under majority voting strategy is
given by the following expression:

RNVP(r, RV)= RV

N∑
i=m

(
N

i

)
ri (1− r)N−i

(33.3)
where m (m≤N) is the lower bound on the
required space number of versions that have the
same output. Figure 33.5 shows various system
reliability functions versus version reliability for
RV = 1.

To achieve higher reliability, the reliability of a
single version must be greater than 0.5, then the
system reliability will increase with the number
of versions involved. If the output space has
cardinality ρ, then NVP will result in a system that
is more reliable than a single component only if
r > 1/ρ [7].

33.3.1.2 Time-domain Modeling

Time-domain modeling is concerned with the be-
havior of system reliability over time. The sim-
plest time-dependent failure model assumes that
failures arrive randomly with interarrival times
exponentially distributed with constant rate λ. The
reliability of a single software version will be:

r(t)= e−λt (33.4)

If we assume that all versions have the same
reliability level, then the system reliability of NVP
is given by:

RNVP(r(t), RV)

= RV

N∑
i=m

(
N

i

)
ri(t)(1 − r(t))N−i (33.5)

If N = 3, then

RNVP3(t)= 3 e−2λt − 2 e−3λt (33.6)

Given λ= 0.05 per hour, then we can plot r(t)

and RNVP3(t) function curves, and compare the
reliability improvement (Figure 33.6). It is easy
to see that when t ≤ t∗ = 14≈ 0.7/λ, the system
is more reliable than a single version, but when
t > t∗, the system is less reliable than a single
version.

The above analysis is very simple, and the
actual problem is far more complex. It has been
shown that independently developed versions
may not fail independently due to the failure
correlations between software versions [12, 14].
The next section discusses several existing models
that consider the failure correlation between
software versions.

590 Practices and Emerging Applications

R
el

ia
b

ili
ty

0.8

1

0.6

0.4

0.2

0

Time (hours)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t*

r t()

R tNVP3()

Figure 33.6. Single version reliability versus three-version system reliability

33.3.2 Reliability in the Presence of
Failure Correlation
Experiments show that incidence of correlated
failures of NVP system components may not be
negligible in the context of current software de-
velopment and testing techniques [5, 15, 16]. Al-
though software versions are developed indepen-
dently, many researchers have revealed that those
independently developed software versions do not
necessarily fail independently [12, 17]. According
to Knight and Leveson [14], experiments have
shown that the use of different languages and de-
signs philosophy has little effect on the reliability
in NVP because developers tend to make similar
logical mistakes in a difficult-to-program part of
the software.

In NVP systems, a coincident failure occurs
when a related fault between versions is activated
by some input or two unrelated faults in different
versions are activated at the same input.

Laprie et al. [18] classify the software faults
according to their independence into either
related or independent. Related faults manifest
themselves as similar errors and lead to common-
mode failures, whereas independent faults usually
cause distinct errors and separate failures.

Due to the difficulty of distinguishing the
related faults from the independent faults, in this
chapter we simplify this fault classification as

follows. If two or more versions give identical but
all wrong results, then the failures are caused by
the related faults between versions; if two or more
versions give dissimilar but wrong results, then
the faults are caused by unrelated or independent
software faults.

For the rest of the chapter, we refer to related
faults as common faults for simplicity. Figure 33.7
illustrates the common faults and the independent
faults in NVP systems.

Common faults are those which are located
in the functionally equivalent modules among
two or more software versions because their
programmers are prone to making the same
or similar mistakes, although they develop the
versions independently. These faults will be
activated by the same inputs to cause those
versions to fail simultaneously, and these failures
by common faults are called common failures.
Independent faults are usually located in different
or functionally unequivalent modules between or
among different software versions. Since they are
independent of each other and their resulting
failures are typically distinguishable from the
decision mechanism, they are often considered
harmless to the fault-tolerant systems. However,
there is still a probability, though very small
compared with that of common failures (CF), that
an unforeseeable input activates two independent
faults in different software versions that will lead

Software Fault Tolerance 591

Common faults

Module 1

Module 2

Module k

Version 1

Module 1

Module 2

Module k

Version 2

Input

Functionally equivalent module

Functionally equivalent module

Functionally equivalent module

Independent

Figure 33.7. Common faults and independent faults

Table 33.1. Common failures and concurrent independent failures

Common failures Concurrent independent failures

Fault type Common faults Independent faults
Output Usually the same Usually different
Fault location (logically) Same Different
Voting result Choose wrong solution Unable to choose correct solution
(majority voting)

these two versions to fail at the same time.
These failures by independent faults are called
concurrent independent failures (CIF). Table 33.1
shows the differences between the common
failures and the concurrent independent failures.

33.3.3 Reliability Analysis and
Modeling

The reliability model of NVP systems should
consider not only the common failures, but
also the concurrent independent failures among
or between software versions. Some reliability
models have been proposed to incorporate the
interversion failure dependency.

Eckhardt and Lee [4] developed a theoretical
model that provides a probabilistic framework
for empirically evaluating the effectiveness of a
general multiversion strategy when component
versions are subject to coincident errors by
assuming the statistical distributions of input
choice and program choice. Their work is among
the first that showed independently developed
program versions to fail dependently.

Littlewood and Miller [6] further showed that
there is a precise duality between input choice and
program choice, and considered a generalization
in which different versions may be developed
using diverse methodologies. The use of diverse
methodologies is shown to decrease the probabil-
ity of simultaneous failure of several versions.

592 Practices and Emerging Applications

Nicola and Goyal [12] proposed to use a beta-
binomial distribution to model correlated failures
in multi-version software systems, and presented
a combinatorial model to predict the reliability of
a multi-version software configuration.

The above models focus on software diversity
modeling, and are based on the detailed analysis
of the dependencies in diversified software. Other
researchers focus on modeling fault-tolerant
software system behavior.

Dugan and Lyu [19] presented a quantitative
reliability analysis for an N-version programming
application. The software systems of this applica-
tion were developed and programmed by 15 teams
at the University of Iowa and the Rockwell/Collins
Avionics Divisions. The overall model is a Markov
reward model in which the states of the Markov
chain represent the long-term evolution of the
structure of the system.

Figure 33.8 illustrates the Markov model in
Dugan and Lyu [19]. In the initial state, three in-
dependently developed software versions are run-
ning on three active processors. The processors
have the same failure rate λ. After the first hard-
ware fails, the TMR-system is reconfigured to a
simplex system successfully with probability c. So
the transition rate to the reconfiguration state is
3λc and the transition rate to the failure state
caused by an uncovered failure is 3λ(1− c). The
system fails when the single remaining processor
fails, thus the transition rate from the reconfigura-
tion state to the failure state is λ.

Their model considers independent software
faults, related software faults, transient hardware
faults, permanent hardware faults, and imperfect
coverage. The experimental results from this
application were used to estimate the probabilities
associated with the activation of software faults.
The overall NVP reliability is obtained by
combining the hardware reliability and 3VP
software reliability.

Tai et al. [20] proposed a performance and
dependability model to assess and improve the
effectiveness of NVP systems. In their research, the
performance model of NVP is a renewal process,
and the dependability is a fault-manifestation
model. They propose a scheme to enhance the

Failure stateVi

H

V1

H

V2

H

V3

H

�

3 (1 _)� c3�c

Figure 33.8. Markov model of system structure in Dugan and
Lyu [19]

performance and dependability of NVP systems.
This scheme is a 3VP scheme, in which the
slowest version is utilized as a tie-breaker (TB)
when the first two versions “tie” by disagreeing.
An acceptance test (AT) is added in the NVP-AT
scheme, where AT will be used to decide whether
the result is correct after the decision function
reaches a consensus decision. In this research, the
failures by related faults and unrelated faults were
well modeled, and their effects on the effectiveness
of these NVP schemes are well evaluated.

While the modeling methods of Eckhardt
and Lee [4], Littlewood and Miller [6], and
Nicola and Goyal [12] are quite different from
all other modeling methods [19, 20], Goseva-
Popstojanova and Grnarov [21] incorporate their
methodologies into a Markovian performance
model and present a unified approach aimed at
modeling the joint behavior of the N-version
system and its operational environment. This new
approach provides some insight into how the
reliability is affected by version characteristics and
the operational environment.

Lin and Chen [22] proposed two software-
debugging models with linear dependence, which

Software Fault Tolerance 593

appears to be the first effort to apply a non-
homogeneous Poisson process (NHPP) to an NVP
system. These two models define a correlating
parameter αi for the failure intensity of software
version i, and the mean value function of version
i is a logarithmic Poisson execution-time:

mi(θi, λi, t)= (1/θi) log(λiθi t + 1) (33.7)

In model I, the effect of s-dependency among
software versions is modeled by increasing the
initial failure intensity of each version:

λ′i = α1λ1 + · · · + αi−1λi−1 + λi + αi+1λi+1

+ · · · + αNλN (33.8)

In model II, the effect of s-dependency among
software versions is modeled by increasing the
nominal mean-value function of each version, to:

m′i (θ, λ, t)= α1m1(θ1, λ1, t)+ · · ·
· · · + αi−1mi−1(θi−1, λi−1, t)

+mi(θi, λi , t)

+ αi+1mi+1(θi+1, λi+1, t)+ · · ·
· · · + αNmN(θN, λN, t) (33.9)

Although these two models use the non-
homogeneous Poisson process method, they
are not software reliability growth models
(SRGMs). This chapter does not consider the
software reliability growth due to continuous
removal of faults from the components of the NVP
systems. The modifications due to the progressive
removal of residual design faults from software
versions cause their reliability to grow, which in
turn causes the reliability of NVP software systems
to grow. Then the reliability of NVP systems can
grow as a result of continuous removal of faults in
the software versions. Kanoun et al. [23] proposed
a reliability growth model for NVP systems by
using the hyperexponential model. The failure
intensity function is given by:

h(t)= ωξsup exp(−ξsupt)+ ω̄ξinf exp(−ξinft)

ω exp(−ξsupt)+ ω̄ exp(−ξinft)
(33.10)

where 0≤ ω ≤ 1, ω̄ = 1− ω, and ξsup and ξinf
are, respectively, the hyperexponential model

parameters characterizing reliability growth due
to the removal of the faults. It should be noted
that the function h(t) in Equation 33.10 is non-
increasing with time t for 0≤ ω ≤ 1, from h(0)=
ωξsup + ω̄ξinf to h(∞)= ξinf.

This model is the first that considers the impact
of reliability growth as a result of progressive
removal of faults from each software version on
software reliability. By interpreting the hyper-
exponential model as a Markov model that can
handle reliability growth, this model allows the
reliability growth of an NVP system to be modeled
from the reliability growth of its components.

Sha [24] investigated the relationship between
complexity, reliability, and development resources
within an N-version programming system, and
presented an approach to building a system that
can manage upgrades and repair itself when com-
plex software components fail. His result counters
the belief that diversity results in improved reli-
ability under the limited development resources:
the reliability of single-version programming with
undivided effort is superior to three-version pro-
gramming over a wide range of development ef-
fort. He also pointed out that single-version pro-
gramming might not always be superior to its
N-version counterpart, because some additional
versions can be obtained inexpensively.

Little research has been performed in reliability
modeling of NVP systems. Most of the NVP system
research either focuses on modeling software
diversity [4, 6, 12], or aims primarily to evaluate
some dependability measures for specific types of
software systems [13, 19]. Most of these proposed
models assume stable reliability, i.e. they do
not consider reliability growth due to corrective
maintenance, thus they may not be applicable to
the developing and testing phases in the software
lifecycle, where the reliability of NVP systems
grows as a result of progressive removal of residual
faults from the software components.

During the developing and testing phases,
some important questions are:

• How reliable is the software?
• How many remaining faults are in the

software?

594 Practices and Emerging Applications

• How much testing does it still need to attain
the required reliability level (i.e. when to stop
testing)?

For traditional single-version software, the
SRGM can be used to provide answers to these
questions. Kanoun et al. [23] developed the
first SRGM for NVP systems, which does not
consider the impact of imperfect debugging on
both independent failures and common failures.
The role of faults in NVP systems may change
due to the imperfect debugging, some (potential)
common faults may reduce to low-level common
faults or even to independent faults. Because
Kanoun’s model is not based on the characteristics
of the software and the testing/debugging process,
users cannot obtain much information about the
NVP system and its components, such as the initial
number of independent and common faults. Fi-
nally, this model is extremely complicated, which
prevents it from being successfully applied to large
N (N > 3) versions of programming applications.

Thus, there is a great need to develop a new
reliability model for NVP systems that provides
insight into the development process of NVP
systems and is able to answer the above questions.
In other words, the motive of this research is to
develop an SRGM for NVP systems. Different from
the research of Kanoun et al. [23], this model will
be the first attempt to establish a software relia-
bility model for NVP systems with considerations
of error removal efficiency and error introduction
rate during testing and debugging. In this chapter,
we present a generalized NHPP model for a single
software program, then apply this generalized
NHPP model to NVP systems to develop an NVP
software reliability growth model.

33.4 Generalized
Non-homogeneous Poisson
Process Model Formulation

As a general class of well-developed stochastic
process models in reliability engineering, NHPP
models have been successfully applied to software

reliability modeling. NHPP models are especially
useful to describe failure processes that possess
certain trends such as reliability growth or deteri-
oration. Zhang et al. [25] proposed a generalized
NHPP model with the following assumptions.

1. A software program can fail during execution.
2. The occurrence of software failures follows

NHPP with mean value function m(t).
3. The software failure detection rate at any

time is proportional to the number of faults
remaining in the software at that time.

4. When a software failure occurs, a debugging
effort occurs immediately. This effort removes
the faults immediately with probability p,
where p� 1− p. This debugging is s-
independent at each location of the software
failures.

5. For each debugging effort, whether the fault is
successfully removed or not, some new faults
may be introduced into the software system
with probability β(t), β(t)� p.

From the above assumptions, we can formulate
the following equations

m′(t)= b(t)(a(t)− pm(t))

a′(t)= β(t)m′(t) (33.11)

where

m(t)= expected number of software failures by
time t , m(t)= E[N(t)]

a(t) = expected number of initial software
errors plus introduced errors by time t

b(t) = failure detection rate per fault at time t
p = probability that a fault will be

successfully removed from the software
β(t) = fault introduction rate at time t .

If the marginal conditions are given as m(0)= 0,
a(0)= a, the solutions to Equation 33.11 are
shown as follows:

m(t)= a

∫ t

0
b(u) e−

∫ u
0 (p−β(τ))b(τ) dτdu (33.12)

a(t)= a

(
1+
∫ t

0
β(u)b(u) e−

∫ u
0 (p−β(τ))b(τ) dτ du

)
(33.13)

Software Fault Tolerance 595

This model can be used to derive most of
the known NHPP models. If we change the
assumptions on b(t), β(t), and p, we can obtain
all those known NHPP models. Table 33.2, for
example, shows some well-known NHPP software
reliability growth models can be derived from this
generalized software reliability model [26].

33.5 Non-homogeneous
Poisson Process Reliability Model
for N -version Programming
Systems
NVP is designed to attain high system reliability
by tolerating software faults. In this section we
only present the modeling of NVP where N = 3,
based on the results of Teng and Pham [30], but
the methodology can be directly applied to the
modeling of NVP where N > 3.

Let us assume that we have three independently
developed software versions 1, 2, and 3, and use
majority voting, and the reliability of the voter is 1.
The following notation is used:

CF common failure
CIF concurrent independent

failure
A independent faults in

version 1
B independent faults in

version 2
C independent faults in

version 3
AB common faults between

version 1 and version 2
AC common faults between

version 1 and version 3
BC common faults between

version 2 and version 3
ABC common faults among

version 1, version 2, and
version 3

Nx(t) counting process which
counts the number of type x

faults discovered up to
time t , x = A, B, C, AB,
AC, BC, ABC

Nd(t) Nd(t)=NAB(t)+NAC(t)+
NBC(t)+NABC(t); counting
process which counts
common faults discovered in
the NVP system up to time t

mx(t) mean value function of
counting process Nx(t),
mx(t)= E[Nx(t)],
x = A, B, C, AB, AC, BC,
ABC, d

ax(t) total number of type x faults
in the system plus those type
x faults already removed
from the system at time t .
ax(t) is a non-decreasing
function, and ax(0) denotes
the initial number of type x
faults in the system,
x = A, B, C, AB, AC, BC,
ABC

b(t) failure detection rate per
fault at time t

β1, β2,
and β3

probability that a new fault is
introduced into version 1, 2,
and 3 during the debugging,
respectively

p1, p2,
and p3

probability that a new fault is
successfully removed from
version 1, 2, and 3 during the
debugging, respectively

XA(t), XB(t),
and XC(t)

number of type A, B, and C

faults at time t remaining in
the system respectively, i.e.
XA(t)= aA(t)− p1mA(t)

XB(t)= aB(t)− p2mB(t)

XC(t)= aC(t)− p3mC(t)

R(x | t) software reliability function
for given mission time x and
time to stop testing t ;
R(x | t)= Pr{no failure
during mission x

| stop testing at t}
KAB , KAC , and
KBC

failure intensity per pair of
faults for CIFs between
version 1 and 2, between 1
and 3, and between 2 and 3
respectively

596 Practices and Emerging Applications

Table 33.2. Some well-known NHPP software reliability models

Model name Model type Mean value functionm(t) Comments

Goel–Okumoto (G-O) [27] Concave m(t)= a(1− e−bt) Also called exponential model
a(t)= a

b(t)= b

Delayed S-shaped S-shaped m(t)= a(1− (1+ bt) e−bt) Modification of G-O model to make it
S-shaped

Inflection S-shaped SRGM S-shaped m(t)= a(1− e−bt)
1+ β e−bt Solves a technical condition with the

a(t)= a G-O model. Becomes the same as G-O if

b(t)= b

1+ β e−bt β = 0

Y exponential S-shaped m(t)= a
(
1− e−rα(1−e(−βt))) Attempt to account for testing effort

a(t)= a

b(t)= rαβ e−βt

Y Rayleigh S-shaped m(t)= a
(
1− e−rα(1−e(−βt2/2))

)
Attempt to account for testing effort

a(t)= a

b(t)= rαβt e−βt2/2

Y imperfect debugging Concave m(t)= ab

α + b
(eαt − e−bt) Assume exponential fault content

model 1 a(t)= a eαt function and constant fault detection
b(t)= b rate

Y imperfect debugging Concave m(t)= a[1− e−bt]
[
1− α

b

]
+ αat Assume constant introduction rate α

model 1 a(t)= a(1+ αt) and fault detection rate
b(t)= b

P-N-Z model [28] S-shaped m(t)=
a[1− e−bt]

[
1− α

b

]
+ αat

1+ β e−bt Assume introduction rate is a linear

and concave a(t)= a(1+ αt) function of testing time, and the fault

b(t)= b

1+ β e−bt detection rate function is non-decreasing

with an inflexion S-shaped model

P-Z model [29] S-shaped m(t)= 1

(1+ β e−bt) [(c+ a)(1− e−bt)] Assume introduction rate is exponential

and concave − a

b − α
(e−αt − e−bt) function of the testing time, and the fault

a(t)= c + a(1− e−αt) detection rate is non-decreasing with an

b(t)= b

1+ β e−bt inflexion S-shaped model

Z-T-P model [25] S-shaped m(t)= a

p − β

[
1−

(
(1+ α) e−bt
1+ α e−bt

)c/b(p−β)]
Assume constant fault introduction rate,

a′(t)= β(t)m′(t) and the fault detection rate function is

b(t)= c

1+ α e−bt non-decreasing with an inflexion

β(t)= β S-shaped model

Software Fault Tolerance 597

NAB(t), NAC(t),
and NBC(t)

counting processes that
count the number of CIFs
involving version 1 and 2,
version 1 and 3, and
version 2 and 3 up to time t
respectively

NI (t) counting process that counts
the total number of CIFs up
to time t ; NI (t)=
NAB(t)+ NAC(t)+ NBC(t)

mAB(t), mAC(t),
mBC(t), and
mI (t)

mean value functions of the
corresponding counting
processes m(t)= E[N(t)].
E.g., mAB(t)= E[NAB(t)]

hAB(t), hAC(t),
and hBC(t)

failure intensity functions of
CIFs involving version 1 and
2, between 1 and 3, and
between 2 and 3;
hAB(t)= d

dt mAB(t)

MLE maximum likelihood
estimation

NVP-SRGM software reliability growth
model for NVP systems

RNVP-SRGM(x | t) NVP system reliability
function for given mission
time x and time to stop
testing t with consideration
of common failures in the
NVP system

RInd(x | t) NVP system reliability
function for given mission
time x and time to stop
testing t , assuming no CF in
the NVP system, i.e. both
versions fail independently

Different types of faults and their relations
are shown in Figure 33.9. Generally, this notation
scheme uses numbers to refer to software versions,
and letters to refer to software fault types. For
example, process N1(t) counts the number of fail-
ures in software version 1 up to time t , therefore:

N1(t)= NA(t)+NAB(t)+NAC(t)+NABC(t)

Similarly:

N2(t)=NB(t)+NAB(t)+NBC(t)+ NABC(t)

N3(t)=NC(t)+NAC(t)+NBC(t)+ NABC(t)

Version 1 Version 2

Version 3

A AB B

ABC

AC BC

C

Figure 33.9. Different software faults in the three-version
software system

There are two kinds of coincident failures
in NVP systems: common failures (CFs) and
concurrent independent failures (CIFs). CFs are
caused by the common faults between or among
versions, and CIFs are caused by the independent
(unrelated) faults between versions. A CIF occurs
when two or more versions fail at the same input
on independent faults, i.e. on A, B, or C, not on
AB, AC, etc.

NAB(t) and NAB(t) both count the number
of coincident failures between version 1 and
version 2. The difference between them is that
NAB(t) counts the number of CFs in version 1 and
version 2, and NAB(t) counts the number of CIFs
in version 1 and version 2. Table 33.3 illustrates the
different failure types between or among different
software versions.

To establish the reliability growth model for an
NVP fault-tolerant software system, we need to
analyze the reliability of components as well as the
correlation among software versions.

33.5.1 Model Assumptions

To develop an NHPP model for NVP systems, we
make the following assumptions.

1. N = 3.
2. Voter is assumed perfect all the time, i.e.

Rvoter = 1.
3. Faster versions will have to wait for the slowest

versions to finish (prior to voting).

598 Practices and Emerging Applications

Table 33.3. Failure types in the three-version programming software
system

Failure time Version 1 Version 2 Version 3 Failure type

t1 � A
t2 � C
t3 � A

t4 � � BC orBC
t5 � B
t6 � A
t7 � C

t8 � � AC orAC
t9 � B

t10 � � AB orAB
.
ti � � � ABC
.

Note: 3VP system fails when more than two versions fail at the same time.

4. Each software version can fail during execu-
tion, caused by the faults in the software.

5. Two or more software versions may fail on
the same input, which can be caused by either
the common faults, or the independent faults
between or among different versions.

6. The occurrence of software failures (by in-
dependent faults, two-version common faults
or three-version common faults) follows an
NHPP.

7. The software failure detection rate at any time
is proportional to the number of remaining
faults in the software at that time.

8. The unit error detection rates for all kinds
of faults A, B, C, AB, AC, BC, and ABC are
the same and constant, i.e. b(t)= b.

9. When a software failure occurs in any of the
three versions, a debugging effort is executed
immediately. That effort removes the corre-
sponding fault(s) immediately with probabil-
ity pi , pi � 1− pi (i is the version number 1,
2, or 3).

10. For each debugging effort, whether the
fault(s) are successfully removed or not, some
new independent faults may be introduced
into that version with probability βi , βi � pi

(i is the version number 1, 2, or 3), but no new
common fault will be introduced into the NVP
system.

11. Some common faults may reduce to some low-
level common faults or independent faults due
to unsuccessful removal efforts.

12. The CIFs are caused by the activation of
independent faults between different versions,
and the probability that a CIF involves three
versions is zero. Those failures only involve
two versions.

13. Any pair of remaining independent faults
between versions has the same probability to
be activated.

14. The intensity for CIFs involving any two
versions is proportional to the remaining
pairs of independent faults in those two
versions.

Following are some further explanations for
assumptions 8–11,

All versions accept the same inputs and run
simultaneously, the fastest version has to wait
for the slowest version to finish. Therefore, the
unit error detection rate, b, can be the same
for all kinds of faults (assumption 8). N groups
are assigned to perform testing and debugging
on N versions independently, then the error
removal efficiency p and the error introduction
rate β are different for different software versions
(assumption 9). When two groups are trying
to remove an AB fault from version 1 and

Software Fault Tolerance 599

Figure 33.10. Independent fault pairs between version 1 and 2

version 2, each may introduce a new fault
into its own version. But the probability that
these two groups make the same mistake to
introduce a new AB fault into both versions
is zero (assumption 10), this means that only
independent faults can be introduced into the
system. Because an AB fault may be removed
successfully from version 1, but not removed from
version 2, then the previously common fault (AB)
is no longer common to version 1 and version 2, it
reduces to a B fault, which only exists in version 2
(assumption 11).

Figure 33.10 shows the pairs of independent
faults between software version 1 and version 2.
There are three independent faults (type A) in
version 1, and there are two independent faults
(type B) in version 2. Then there are 3× 2= 6
pairs of independent faults between version 1 and
version 2. It is assumed that each of these six pairs
has the same probability to be activated.

In this study, the voter is not expected to decide
whether or not a software version fails during
testing, but we assume that people have advanced
methods or tools to determine exactly whether
and when a software version fails or succeeds.
Those methods or tools to detect a software
failure are quite application-dependent, and they
are either too awkward or too impractical to be
built into an NVP system. Therefore, after the
NVP software system is released, we do not have
those tools to decide whether a version of the NVP
system fails, we can only rely on the voter to decide
the best or the correct output.

33.5.2 Model Formulations

Based on the assumptions given in the last section,
we can establish the following NHPP equations for
different types of software faults and failures.

33.5.2.1 Mean Value Functions

1. Type ABC

m′ABC(t)= b(aABC − p1p2p3mABC(t))

(33.14)
with marginal conditions mABC(0)= 0 and
aABC(0)= aABC where aABC is the initial
number of type ABC faults in the 3VP
software system. Equation 33.14 can be solved
directly as:

mABC(t)= aABC

p1p2p3
(1− e−bp1p2p3t) (33.15)

2. Type AB

m′AB(t)= b(aAB − p1p2mAB(t))

a′AB(t)= (1− p1)(1− p2)p3m
′
AB(t)

(33.16)

Type AC

m′AC(t)= b(aAC(t)− p1p3mAC(t))

a′AC(t)= (1−p1)(1−p3)p2m
′
ABC(t)

(33.17)

Type BC

m′BC(t)= b(aBC(t)− p2p3mBC(t))

a′BC(t)= (1− p2)(1− p3)p1m
′
ABC(t)

(33.18)

with marginal conditions

mAB(0)= 0, aAB(0)= aAB

mAC(0)= 0, aAC(0)= aAC

mBC(0)= 0, aBC(0)= aBC

By applying Equation 33.15 to
Equations 33.16–33.18, we can obtain the
mean value functions for failure type AB,

600 Practices and Emerging Applications

AC, and BC respectively:

mAB(t)= CAB1 − CAB2 e−bp1p2t

+ CAB3 e−bp1p2p3t (33.19)

mAC(t)= CAC1 − CAC2 e−bp1p3t

+ CAC3 e−bp1p2p3t (33.20)

mBC(t)= CBC1 − CBC2 e−bp2p3t

+ CBC3 e−bp1p2p3t (33.21)

where

CAB1 = aAB

p1p2
+ aABC(1− p1)(1− p2)

p2
1p

2
2

CAB2 = aAB

p1p2
+ aABC(1− p1)(1− p2)

p2
1p

2
2

− aABC(1− p1)(1− p2)

p2
1p

2
2(1− p3)

CAB3 =−aABC(1− p1)(1− p2)

p2
1p

2
2(1− p3)

(33.22)

CAC1 = aAC

p1p3
+ aABC(1− p1)(1− p3)

p2
1p

2
3

CAC2 = aAC

p1p3
+ aABC(1− p1)(1− p3)

p2
1p

2
3

− aABC(1− p1)(1− p3)

p2
1p

2
3(1− p2)

CAC3 =−aABC(1− p1)(1− p3)

p2
1p

2
3(1− p3)

(33.23)

CBC1 = aBC

p2p3
+ aABC(1− p2)(1− p3)

p2
2p

2
3

CBC2 = aBC

p2p3
+ aABC(1− p2)(1− p3)

p2
2p

2
3

− aABC(1− p2)(1− p3)

p2
2p

2
3(1− p1)

CBC3 =−aABC(1− p2)(1− p3)

p2
2p

2
3(1− p1)

(33.24)

3. Type A

m′A(t)= b(aA(t)− p1mA(t))

a′A(t)= β1(m
′
A(t)+m′AB(t)+m′AC(t)

+m′ABC(t))+ (1− p1)p2m
′
AB(t)

+ (1− p1)p3m
′
AC(t)

+ (1− p1)p2p3m
′
ABC(t) (33.25)

Type B

m′B(t)= b(aB(t)− p2mB(t))

a′B(t)= β2(m
′
B(t)+m′AB(t)+m′BC(t)

+m′ABC(t))+ (1− p2)p1m
′
AB(t)

+ (1− p2)p3m
′
BC(t)

+ (1− p2)p1p3m
′
ABC(t) (33.26)

Type C

m′C(t)= b(aC(t)− p3mC(t))

a′C(t)= β3(m
′
C(t)+m′AC(t)+m′BC(t)

+m′ABC(t))+ (1− p3)p1m
′
AC(t)

+ (1− p3)p2m
′
BC(t)

+ (1− p3)p1p2m
′
ABC(t) (33.27)

with marginal conditions

mA(0)=mB(0)=mC(0)= 0

aA(0)= aA, aB(0)= aB, aC(0)= aC

The solutions to these equations are very
complicated and can be obtained from Teng and
Pham [30].

33.5.2.2 Common Failures

After we obtain the common failure counting
processes NAB(t), NAC(t), NBC(t), and NABC(t),
we can define a new counting process Nd(t):

Nd(t)=NAB(t)+NAC(t)+NBC(t)

+NABC(t)

In a 3VP system that uses a majority voting
mechanism, common failures in two or three
versions lead to the system failures. Therefore,
Nd(t) counts the number of NVP software system
failures due to the CFs among software versions.

Similarly, we have the mean value function as
follows:

md(t)=mAB(t)+mAC(t)+mBC(t)

+mABC(t) (33.28)

Software Fault Tolerance 601

Given the release time t and mission time x,
the probability that an NVP software system will
survive the mission without a CF is:

Pr{no CF during x | T } = e−(md(t+x)−md(t))

(33.29)
The above equation is not the final system
reliability function, since we need to consider the
probability that the system fails at independent
faults in the software system.

33.5.2.3 Concurrent Independent Failures

Usually the NVP software system fails by CFs
involving multi-versions. However, there is still a
small probability that two software versions fail
on the same input because of independent faults.
This kind of failure is concurrent independent
failure.

From assumptions 12, 13, and 14, the failure
intensity hAB(t) for the CIFs between version 1
and version 2 is given by:

hAB(t)=KABXA(t)XB(t) (33.30)

where XA(t) and XB(t) denote the number of
remaining independent faults in version 1 and
version 2 respectively, and KAB is the failure
intensity per pair of faults for CIFs between
version 1 and version 2. Then we have another
non-homogeneous Poisson process for CIFs,
NAB(t), with mean value function:

mAB(t)=
∫ t

0
hAB(τ) dτ (33.31)

Given the release time t and mission time x, we
can obtain the probability that there is no type AB
CIF during (t , t + x)

Pr{no type AB failure during x}
= e−(mAB(t+x)−mAB(t)) (33.32)

Similarly, we have another two NHPPs for CIFs
between version 1 and version 3 and between
version 2 and version 3, with mean value
functions:

mAC(t)=
∫ t

0
hAC(τ) dτ (33.33)

mBC(t)=
∫ t

0
hBC(τ) dτ (33.34)

where

hAC(t)=KACXA(t)XC(t) (33.35)

hBC(t)=KBCXB(t)XC(t) (33.36)

Also the conditional probabilities are

Pr{no type AC failure during x}
= e−(mAC(t+x)−mAC(t))

Pr{no type BC failure during x}
= e−(mBC(t+x)−mBC(t))

If we define a new counting process

Ni(t)= NAB(t)+ NAC(t)+ NBC(t) (33.37)

with mean value function

mi(t)=mAB(t)+mAC(t)+mBC(t) (33.38)

then the probability that there is no CIF for an
NVP system during the interval (t , t + x) is:

Pr{no CIF during x} = e−(m1(t+x)−m1(t)) (33.39)

33.5.3 N -version Programming
System Reliability

After we obtain the probability of common failures
and concurrent independent failures, we can
determine the reliability of an NVP (N = 3) fault-
tolerant software system:

RNVP-SRGM(x | t)
= Pr{no CF & no CIF during x | t}

Because the CFs and CIFs are independent of each
other, then:

RNVP-SRGM(x | t)= Pr{no CF during x | t}
× Pr{no CIF during x | t}

From Equations 33.29 and 33.39, the reliability of
an NVP system can be determined by:

RNVP-SRGM(x | t)
= e−(md(t+x)+mi(t+x)−md(t)−mi(t)) (33.40)

602 Practices and Emerging Applications

Table 33.4. Available information and unknown parameters to be estimated

Available information Parameters to be estimated

Failure type Failure time No. of cumulative failures Unknown parameters in the mean value function

A ti, i = 1, 2, . . . mA(ti) aABC, aAB, aAC, aA, b, β1

B ti, i = 1, 2, . . . mB(ti) aABC, aAB, aBC, aB, b, β2
C ti, i = 1, 2, . . . mC(ti) aABC, aAC, aBC, aC, b, β3
AB ti, i = 1, 2, . . . mAB(ti) aABC, aAB, b
AC ti, i = 1, 2, . . . mAC(ti) aABC, aAC, b
BC ti, i = 1, 2, . . . mBC(ti) aBC, aABC, b
ABC ti, i = 1, 2, . . . mABC(ti) aABC, b

AB t∗
i
, i = 1, 2, . . . m

AB
(ti) aABC, aAB, aAC, aBC, aA, aB, b, β1, β2, KAB

AC t∗
i
, i = 1, 2, . . . m

AC
(ti) aABC, aAB, aAC, aBC, aA, aC, b, β1, β3, KAC

BC t∗i , i = 1, 2, . . . m
BC

(ti) aABC, aAB, aAC, aBC, aB, aC, b, β2, β3, KBC

∗ The failure time and the number of cumulative typeAB ,AC , andBC failures are also included in those of typeA,B , andC failures.

Generally, common failures are the leading failures
within NVP systems, and the testing groups
should pay much more attention to common
failures. After we obtain a final system reliability
model for the NVP systems, we need to estimate
the values of all unknown parameters. Parameter
estimation for this NVP-SRGM will be discussed
next.

33.5.4 Parameter Estimation

This software reliability growth model for NVP
systems consists of many parameters. In this chap-
ter, we use the maximum likelihood estimation
(MLE) method to estimate all unknown param-
eters. To simplify the problem, we assume that
the error removal efficiencies p1, p2, and p3 are
known. In fact, they can be obtained from several
empirical testing data. Therefore, we need to esti-
mate the following parameters: b, aABC , aAB , aAC ,
aBC , aA, aB , aC , β1, β2, β3, KAB , KAC , and KBC .

The unknown parameters in the NHPP relia-
bility model can be estimated by using an MLE
method based on either one of the following given
data sets:

1. the cumulative number of type ABC, AB,
AC, BC, A, B, and C failures up to a given
time or the actual time that each failure
occurs;

2. the cumulative number of concurrent inde-
pendent failures up to a given time or the
actual time that each failure occurs.

Table 33.4 shows all available information and
those parameters to be estimated.

One can easily use the MLE method to obtain
the estimates of all parameters in the model [30].

33.6 N -version Programming–
Software Reliability Growth

33.6.1 Applications ofN -version
Programming–Software Reliability
Growth Models

33.6.1.1 Testing Data

In this section, we illustrate the model results by
analyzing a fault-tolerant software application of
the water reservoir control system [31].

Consider a simplified software control logic for
a water reservoir control (WRC) system. Water is
supplied via a source pipe controlled by a source
valve and removed via a drain pipe controlled
by a drain valve. There are two level sensors,
positioned at the high and low limits; the high
sensor outputs above if the level is above it and

Software Fault Tolerance 603

Table 33.5. Normalized failure data of WRC 2VT system

Fault no. Failure time Fault no. Failure time

Version 1 Version 2 Version 1 Version 2

1 1.2 3.6 14 39.2 34.8
2 2.8 8.4 15 40 36.4
3 8.4 12.8 16 44 36.8
4 10 14.4 17 44.8 38
5 16.4 17.2 18 54 39.2
6 20 18 19 56 41.6
7 24.4 20 20 62.4 42
8 28 23.2 21 80 46.4
9 29.2 25.2 22 92 59.6

10 31.2 28 23 99.6 62.4
11 34 28.4 24 98.8
12 36 30.8 25 99.6
13 36.8 31.2 26 100

the low sensor outputs below if the level is below
it. The control system should maintain the water
level between these two limits, allowing for rainfall
into and seepage from the reservoir. If, however,
the water rises above the high level, an alarm
should sound. The WRC system achieves fault
tolerance and high reliability through the use of
NVP software control logic with N = 2. The WRC
NVP software system with N = 2 normalized test
data is listed in Table 33.5.

Generally speaking, an NVP system consists of
N software versions, where N should be greater
than or equal to 3 so that a voting mechanism can
be applied to choose a correct output. For this 2VP
system application, we assume that the reliability
of the voter is equal to 1, and the 2VP system
fails only when both its components (software
versions) fail at the same input data.

We will apply this set of data in two cases.
One is that two software versions are assumed to
fail s-independently, another is that both versions
are not assumed to fail s-independently, and the
proposed NVP–SRGM will be applied.

Case 1: Independent NVP–SRGM Assume that
those two software versions are s-independent
of each other, we can apply the generalized
software reliability model in Section 33.4 to each
version separately, and estimate the reliability of

each version R1(x | t) and R2(x | t), and further
obtain the reliability for the entire system by
simply using the parallel system reliability model:

RInd(x | t)= 1− (1− R1(x | t))(1 − R2(x | t))
(33.41)

where x is the mission time, and

R1(x | t)= e−(m1(t+x)−m1(t))

R2(x | t)= e−(m2(t+x)−m2(t))

Figures 33.11 and 33.12 show the software failure
fitting curve of mean value function m1(t) (for
version 1) and m2(t) for (version 2) respectively.
Figures 33.13 and 33.14 show the independent
reliability function curve of the 2VP system and
the reliability function curve of each version at x
= 50 and x = 10 respectively when two software
versions fail independently.

The actual meaning of the system reliability
RInd(t) is the probability that at least one
version does not fail during the mission time x

given t (time to stop testing). If each version can
fail at most once during the mission time x, then
RInd(t) is the 2VP system reliability while no
common failures occur between versions.

Case 2: Dependent NVP SRGM Failure Types.
From Table 33.5, we can observe that two versions
fail simultaneously at some time, for example,

604 Practices and Emerging Applications
#

o
f

fa
ilu

re
s

0 250

Time (hours)

50
0

20

25

15

10

5

100 150 200

m t1()

Real data

Figure 33.11. Mean value function m1(t) fitting curve for
version 1

#
o

f
fa

ilu
re

s

0 250

Time (hours)

50
0

20

25

15

10

5

100 150 200

30

Figure 33.12. Mean value function m2(t) fitting curve for
version 2

R
el

ia
b

ili
ty

0 250

Testing time (with mission = 50)x

50
0

100 150 200

0.2

0.4

0.6

0.8

1

R ind()t

R t1()

R t2()

Figure 33.13. Independent system reliability with mission time
x = 50

R
el

ia
b

ili
ty

0 250

Testing time (with mission = 10)x

50
0

100 150 200

0.2

0.4

0.6

0.8

1

R ind()t R t1()

R t2()

Figure 33.14. Independent system reliability curves with mission
time x = 10

at t = 8.4, 20, 28, . . . , 99.6. These failures are
considered as coincident failures that are caused
either by the common faults, or unrelated faults
between two versions. Therefore, the assumption
of independence is not valid for this testing data
set.

In this example, we assume that all coincident
failures are common failures. Then we can classify
the software faults in this 2VP system according
to the notation in Section 33.5. Table 33.6 is
generated directly from Table 33.5 but it shows the
different fault types in this 2VP system.

Reliability Modifications for NVP (N = 2)
Systems. Since the system we presented in
Section 33.5 is a 3VP system, and the system
here is an NVP (N = 2) system, the reliability
model can easily be modified. If we keep the same
assumptions as those for NVP (N = 3) systems
in Section 33.5, then we can obtain equations as
follows:

1. Error type AB

m′AB(t)= b(aAB − p1p2mAB(t)) (33.42)

with marginal conditions mAB(0)= 0 and
aAB(0)= aAB . The solution to Equation 33.42 is:

mAB(t)= aAB

p1p2
(1− e−bp1p2t) (33.43)

2. Fault type A

m′A(t)= b(aA(t)− p1mA(t))

a′A(t)= (1− p1)p2m
′
AB(t)

+ β1(m
′
A(t)+m′AB(t)) (33.44)

Software Fault Tolerance 605

Table 33.6. Fault type table for 2VP system

Fault no. Failure time (hr)

FaultA FaultB FaultAB

1 1.2 3.6 8.4
2 2.8 12.8 20
3 10 14.4 28
4 16.4 17.2 31.2
5 24.4 18 36.8
6 29.2 23.2 39.2
7 34 25.2 62.4
8 36 28.4 99.6
9 40 30.8

10 44 34.8
11 44.8 36.4
12 54 38
13 56 41.6
14 80 42
15 92 46.4
16 59.6
17 98.8
18 100

with marginal conditions mA(0)= 0 and aA(0)=
aA, where aA is the initial number of fault type A

in the two-version programming software system.
Substitute Equation 33.43 into Equation 33.44

and solve, we then obtain the mean value function
as:

mA(t)= CA1 + CA2 e−bp1p2t + CA3 e−b(p1−β1)t

(33.45)
where

CA1 = aA

p1 − β1
+ ((1− p1)p2 + β1)aAB

p1p2(p1 − β1)

CA2 =− ((1− p1)p2 + β1)aAB

p1p2(p1(1− p2)− β1)

CA3 = ((1− p1)p2 + β1)aAB

(p1 − β1)(p1(1− p2)− β1)
− aA

p1 − β1

3. Fault type B

m′B(t)= b(aB(t)− p2mB(t))

a′B(t)= (1− p2)p1m
′
AB(t)

+ β2(m
′
B(t)+m′AB(t)) (33.46)

with marginal conditions mB(0)= 0 and aB(0)=
aB , where aB is the initial number of fault type B

in the two-version programming software system.

Substitute Equation 33.43 into Equation 33.46
and solve, we then obtain the mean value function
as:

mB(t)= CB1 + CB2 e−bp1p2t + CB3 e−b(p2−β2)t

(33.47)
where

CB1 = aB

p2 − β2
+ aAB((1− p2)p1 + β2)

p1p2(p2 − β2)

CB2 =− ((1− p2)p1 + β2)aAB

p1p2(p2(1− p1)− β2)

CB3 = ((1− p2)p1 + β2)aAB

(p2 − β2)(p2(1− p1)− β2)
− aB

p2 − β2

The likelihood functions are:

LA =
nA∏
i=1

{ [mA(ti)−mA(ti−1)]yAi−yA(i−1)

(yAi − yA(i−1))!

× e−[mA(ti)−mA(ti−1)]
}

(33.48)

LB =
nB∏
i=1

{ [mB(ti)−mB(ti−1)]yBi−yB(i−1)

(yBi − yB(i−1))!

× e−[mB(ti)−mB(ti−1)]
}

(33.49)

LAB =
nAB∏
i=1

{ [mAB(ti)−mAB(ti−1)]yABi−yAB(i−1)

(yABi − yAB(i−1))!

× e−[mAB(ti)−mAB(ti−1)]
}

(33.50)

The united likelihood function is:

L= LALBLAB (33.51)

and the log of the unified likelihood function is:

ln(L)= ln(LA)+ ln(LB)+ ln(LAB) (33.52)

606 Practices and Emerging Applications

Table 33.7. Different MLEs with respect to differentp values

p1 p2 b β1 β2 aA aB aAB MLES

0.8 0.8 0.01154 0.09191 0.00697 10.9847 15.0367 6.26062 −55.4742
0.8 0.85 0.0108 0.05699 0.0175 11.916 16.1536 6.43105 −55.4736
0.8 0.9 0.00979 0.0074 0.01101 13.2279 17.7376 7.00032 −55.4822
0.8 0.95 0.01151 0.0824 0.17392 10.9706 14.2399 6.86717 −55.4422
0.85 0.8 0.01317 0.1892 0.09393 9.5187 12.3296 6.10969 −55.4370
0.85 0.85 0.01043 0.09122 0.0069 12.2912 16.3465 7.01585 −55.4645
0.85 0.9 0.00965 0.05227 0.00823 13.2884 17.7446 7.40755 −55.4674
0.85 0.95 0.00901 0.01475 0.00893 14.3285 19.1661 7.7771 −55.4709
0.9 0.8 0.01105 0.15425 0.00372 11.6603 14.8114 7.10012 −55.4644
0.9 0.85 0.0114 0.18026 0.07047 11.0824 14.3879 6.91714 −55.4428
0.9 0.9 0.00956 0.0983 0.00513 13.465 17.7861 7.77652 −55.4583
0.9 0.95 0.00997 0.1196 0.09461 12.7394 16.5588 7.77522 −55.4468
0.95 0.8 0.01126 0.2196 0.01224 11.2847 14.5756 6.94388 −55.4478
0.95 0.85 0.01069 0.20046 0.0329 11.8325 15.4577 7.3401 −55.4449
0.95 0.9 0.00963 0.1448 0.02206 13.3545 17.2171 7.9219 −55.4485
0.95 0.95 0.00936 0.1384 0.05541 13.6155 17.7036 8.22915 −55.4484

or, equivalently,

ln L=
nA∑
i=1

{(yAi − yA(i−1)) ln(mA(ti)−mA(ti−1))

− (mA(ti)−mA(ti−1))

− ln((yAi − yA(i−1))!)}

+
nB∑
i=1

{(yBi − yB(i−1))

× ln(mB(ti)−mB(ti−1))

− (mB(ti)−mB(ti−1))

− ln((yBi − yB(i−1))!)}

+
nAB∑
i=1

{(yABi − yAB(i−1))

× ln(mAB(ti)−mAB(ti−1))

− (mAB(ti)−mAB(ti−1))

− ln((yABi − yAB(i−1))!)} (33.53)

Take derivatives on Equation 33.53 with respect to
each unknown parameters and set them to be 0,
then we get a set of equations. By solving those
equations simultaneously, we can finally obtain
the model parameters.

Maximum Likelihood Estimation. The data set
in Table 33.5 does not provide sufficient infor-
mation about what category (common failures
or concurrent independent failures) those failures
belong to. Since the common failures are domi-
nant failures, then we just assume that all coinci-
dent failures are common failures to simplify this
problem.

The error removal efficiency, p, is usually
considered as a known parameter, mostly 0.8≤
p ≤ 0.95. It can be determined from empirical
data. In this study, we first choose the value of p
arbitrarily, then compute the MLEs for all other
unknown parameters.

Table 33.7 shows the computation results for
MLEs with respect to various p1 and p2 values.
Here we choose p1 = p2 = 0.9, so the MLEs for all
parameters are:

âA = 15.47 âB = 18.15 âAB = 7.8

β̂1 = 0 β̂2 = 0.002324 b̂ = 0.009

Then we can obtain the software reliability of this
NVP (N = 2) system as:

RNVP-SRGM(t)= R(x | t)= e−(mAB(t+x)−mAB(t))

(33.54)
Table 33.8 shows the computation results for mean
value functions. Figures 33.15–33.17 show the

Software Fault Tolerance 607

Table 33.8. Mean value functions versus failure data

Time Cumulative number of failures Mean value functions

FaultA FaultB FaultAB mA(t) mB(t) mAB(t)

0 0 0 0 0.00 0.00 0.00
10 2 1 0 1.24 1.62 0.71
20 2 1 0 2.39 3.12 1.37
30 3 1 1 3.48 4.50 1.98
40 3 3 1 4.49 5.77 2.55
50 4 5 2 5.44 6.94 3.07
60 4 6 2 6.32 8.02 3.56
70 5 7 3 7.15 9.02 4.01
80 6 9 4 7.92 9.94 4.42
90 8 10 4 8.65 10.79 4.81

100 9 12 6 9.32 11.57 5.17
110 10 14 6 9.96 12.29 5.50
120 11 15 6 10.55 12.96 5.80
130 11 15 6 11.10 13.57 6.08
140 13 15 6 11.62 14.14 6.35
150 13 16 6 12.10 14.66 6.59
160 13 16 7 12.55 15.14 6.81
170 13 16 7 12.97 15.59 7.02
180 13 16 7 13.37 15.99 7.22
190 13 16 7 13.74 16.37 7.39
200 14 16 7 14.08 16.72 7.56
210 14 16 7 14.40 17.04 7.71
220 14 16 7 14.70 17.34 7.85
230 15 16 7 14.98 17.61 7.99
240 15 16 7 15.24 17.87 8.11
250 15 18 8 15.49 18.10 8.22

C
u

m
u

la
ti

ve
n

u
m

b
er

o
f

fa
ilu

re
s

0 100

Normalized time

20
0

20

15

10

5

40 60 80

Figure 33.15. Mean value functionmA(t) fitting curve

comparisons between the real failure data and the
mean value functions.

C
u

m
u

la
ti

ve
n

u
m

b
er

o
f

fa
ilu

re
s

0 100

Normalized time

20
0

20

15

10

5

40 60 80

Figure 33.16. Mean value functionmB(t) fitting curve

Confidence Intervals. The confidence interval
for all parameter estimates can also be obtained.

608 Practices and Emerging Applications
C

u
m

u
la

ti
ve

n
u

m
b

er
o

f
fa

ilu
re

s

0 100

Normalized time

20
0

10

2

40 60 80

4

6

8

Figure 33.17. Mean value functionmAB(t) fitting curve

Given the log likelihood function

L= ln(LA)+ ln(LB)+ ln(LAB)

If we use xi , i = 1, 2, . . . , 6, to denote all parame-
ters in the model to simplify the expression:

x1→ aA
x2→ aB
x3→ aAB
x4→ β1
x5→ β2
x6→ b

The actual numerical result for the Fisher
information matrix is:

H =

0.0763 0 0.0042
0 −0.051 0.0037
0.0042 0.0037 0.132
1.028 0 0.0825
0 1.043 0.133

39.48 36.55 40.11

1.028 0 39.48
0 1.043 36.55
0.0825 0.133 40.11

31.68 0 −37.38
0 33.26 −68.38

−37.38 −68.38 179746.12

(33.55)

and the variance matrix is:

V =H−1 =

41.473 40.4 5.625
40.4 143.61 13.28
5.625 13.28 9.511
−1.384 −1.397 −0.215
−1.33 −4.645 −0.467
−0.0194 −0.0431 −0.0063

−1.384 −1.33 −0.0194
−1.397 −4.645 −0.0431
−0.215 −0.467 −0.0063

0.0778 0.046 0.00067
0.046 0.181 0.00142
0.00067 0.00142 2.067× 10−5

Then the variances of estimations are:

Var(âA)= 41.473 Var(âB)= 143.61

Var(âAB)= 9.511

Var(β̂1)= 0.0778 Var(β̂2)= 0.181

Var(b̂)= 2.067× 10−5

Figures 33.18–33.20 show the mean value func-
tions and their 95% confidence intervals as well as
the number of cumulative failures.

Figure 33.21 shows the NVP system reliability
and its 95% confidence interval given the fixed
mission time x = 10 hours assuming the reliability
estimation follows a normal distribution. One can
see that the reliability confidence interval shrinks
when people spend more time removing the faults
from the NVP system. This means that after people

Figure 33.18. Confidence interval for mean value function
mA(t)

Software Fault Tolerance 609
#

o
f

cu
m

u
la

ti
ve

fa
ilu

re
s

0 250

Time (hours)

50
0

25

5

100 150 200

10

15

20 Upper bound

Lower bound

Failures

30

m tB()

Figure 33.19. Confidence interval for mean value function
mB(t)

#
o

f
cu

m
u

la
ti

ve
fa

ilu
re

s

0 250

Time (hours)

50
0

12

2

100 150 200

6

8

10
Upper bound

Lower bound

Failures

14

m tA ()B

16

4

Figure 33.20. Confidence interval for mean value function
mAB(t)

R
el

ia
b

ili
ty

0

Test time (hours) (mission time = 10)x

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

50 100 150 200 250 300

Upper bound

Lower bound

R x tNVP–SRGM(/)

Figure 33.21. NVP system reliability and its 95% confidence
interval

R
el

ia
b

ili
ty

0 250

Test time (mission = 50)x

50
0

0.8

0.6

0.4

0.2

100 150 200

R tNVP–SRGM() R t1()

R t2()

Figure 33.22. NVP system and single-version reliability curves
with mission time x = 50

R
el

ia
b

ili
ty

0 250

Test time (mission = 10)x

50
0

0.8

0.6

0.4

0.2

100 150 200

R tNVP–SRGM() R t1()

R t2()

1

Figure 33.23. NVP system and single-version reliability curves
with mission time x = 10

gain more knowledge about the NVP system, more
accurate estimations can be made to assess the
NVP system reliability.

The NVP system reliability function
RNVP-SRGM(x | t) and single-version software
reliability R1(x | t) and R2(x | t) are shown in
Figures 33.22 and 33.23 with mission time x = 50
and x = 10, respectively.

From Figures 33.22 and 33.23, we can see
that the 2VP scheme has higher reliability than
any single component. This means that the N-
version programming scheme is able to provide
higher system reliability.

If we compare Figure 33.23 with Figure 33.14,
then we can see clearly that although software
versions are developed independently, common
failures cannot be ignored in this NVP system.

610 Practices and Emerging Applications

When the component reliability is high, the inde-
pendent assumption will lead to the overestima-
tion of system reliability.

In this example, we assume that all concurrent
failures are common failures. If the concurrent
failure types are different, the reliability function
will be a little different—the independent failures
will be incorporated into the reliability function,
though usually the common failures dominate the
concurrent failures among versions.

As the first model of its kind in the area of NVP
reliability modeling, the proposed NVP software
reliability growth model can be used to overcome
the shortcomings of the independent reliability
model. It predicts the system reliability more
accurately than the independent model and can be
used to help determine when to stop testing, which
will be one of the key questions in the testing and
debugging phase of the NVP system lifecycle.

33.7 Conclusion

This chapter presents a non-homogeneous Pois-
son progress reliability model for N-version pro-
gramming systems. We separate all faults within
NVP systems into independent faults and common
faults, and model each type of failure as NHPP.
We further develop a reliability model for com-
mon failures in NVP systems and also present a
model for concurrent independent failures in NVP
systems. By combining the CF model and the CIF
model together, we establish an NHPP reliability
model for NVP systems. We also give an example
to illustrate how to estimate all unknown parame-
ters by using the maximum likelihood estimation
method, and how to compute the variances for
all parameter estimates in order to obtain the
confidence intervals of NVP system reliability pre-
diction.

References
[1] Voas J, Dugan JB, Hatton L, Kanoun K, Laprie J-C,

Vouk MA. Fault tolerance roundtable. IEEE Software
2001;Jul/Aug:54–7.

[2] Chen L, Avizienis A. N -version programming: a fault
tolerance approach to the reliable software. Proc 8th Int
Symp Fault-Tolerant Computing, Toulouse, France; 1978.
p.3–9.

[3] Avizienis A, Chen L. On the implementation of N -
version programming for software fault-tolerance during
program execution. Proc COMPASAC 77; 1977. p.149–55.

[4] Eckhardt D, Lee L. A theoretical basis for the analysis of
multiversion software subject to coincident errors. IEEE
Trans Software Eng 1985;SE-11(12):1511–7.

[5] Scott RK, Gault JW, McAllister DF. Fault-tolerant
reliability modeling. IEEE Trans Software Eng 1987;SE-
13(5):582–92.

[6] Littlewood B, Miller DR. Conceptual modeling of
coincident failures in multiversion software. IEEE Trans
Software Eng 1989;15(12):1596–614.

[7] McAllister DF, Sun CE, Vouk MA. Reliability of voting in
fault-tolerant software systems for small output spaces.
IEEE Trans Reliab 1990;39(5):524–34.

[8] Leung Y-W. Maximum likelihood voting for fault-tolerant
software with finite output-space. IEEE Trans Reliab
1995;44(3):419–26.

[9] Randell B. System structure for software fault tolerance.
IEEE Trans Software Eng 1975;SE-1(2):220–32.

[10] Fairley R. Software engineering concepts. McGraw-Hill:
New York; 1985.

[11] Belli F, Jedrzejowicz P. Fault-tolerant programs and their
reliability. IEEE Trans Reliab 1990;29(2):184–92.

[12] Nicola VF, Goyal A. Modeling of correlated failures and
community error recovery in multiversion software. IEEE
Trans Software Eng 1990;16(3):350–9.

[13] Lyu MR. Improving the N -version programming process
through the evolution of a design paradigm. IEEE Trans
Reliab 1993;42(2):179–89.

[14] Knight JC, Leveson NG. An experimental evaluation of
the assumption of independence in multiversion pro-
gramming. IEEE Trans Software Eng 1986;SE-12.

[15] Scott RK, Gault JW, McAllister DF, Wiggs J. Experimental
validation of six fault tolerant software reliability models.
Dig papers FTCS-14: 14th Ann Symp Fault-Tolerant
Computing, Kissemmee, NY; 1984. p.102–7.

[16] Eckhardt DE, Caglayan AK, Knight JC, Lee LD, McAllister
DF, Vouk MA, Kelly JPJ. An experimental evaluation
of software redundancy as a strategy for improving
reliability. IEEE Trans Software Eng 1991;17(7):692–702.

[17] Voas J, Ghosh A, Charron F, Kassab L. Reducing
uncertainty about common-mode failures. In: Proc Int
Symp on Software Reliability Engineering, ISSRE; 1997.
p.308–19.

[18] Laprie J-C, Arlat J, Beounes C, Kanoun K. Definition
and analysis of hardware and software fault-tolerant
architectures. IEEE Comput 1990;23(7):39–51.

[19] Dugan JB, Lyu MR. System reliability analysis of an
N -version programming application. IEEE Trans Reliab
1994;43(4):513–9.

[20] Tai AT, Meyer JF, Aviziems A. Performability enhance-
ment of fault-tolerant software. IEEE Trans Reliab
1993;42(2):227–37.

Software Fault Tolerance 611

[21] Goseva-Popstojanova K, Grnarov A. Performability
modeling of N -version programming technique. In: Proc
6th IEEE Int Symp on Software Reliability Engineering
(ISSRE’95), Toulouse, France.

[22] Lin H-H, Chen K-H. Nonhomogeneous Poisson process
software-debugging models with linear dependence.
IEEE Trans Reliab 1993;42(4):613–7.

[23] Kanoun K, Kaaniche M, Beounes C, Laprie J-C, Arlat J.
Reliability growth of fault-tolerant software. IEEE Trans
Reliab 1993;42(2):205–18.

[24] Sha L. Using simplicity to control complexity. IEEE
Software 2001;Jul/Aug:20–8.

[25] Zhang X, Teng X, Pham H. A generalized software
reliability model with error removal efficiency. IEEE
Trans Syst, Man Cybernet 2002:submitted.

[26] Pham H. Software reliability. Springer-Verlag; 2000.
[27] Goel AL, Okumoto K. Time-dependent error-detection

rate model for software and other performance measures.
IEEE Trans Reliab1979;28:206–11.

[28] Pham H, Nordmann L, Zhang X. A general imperfect-
software-debugging model with s-shaped fault-detection
rate. IEEE Trans Reliab 1999;48(2):168–75.

[29] Pham H, Zhang X. An NHPP software reliability model
and its comparison. Int J Reliab, Qual Safety Eng
1997;4(3):269–82.

[30] Teng X, Pham H. A software reliability growth model
for N -version programming. IEEE Trans Reliab
2002;51(3):in press.

[31] Pham H, Pham M. Software reliability models for critical
applications. INEL, EG&G-2663; 1991.

This page intentionally left blank

Markovian
Dependability/Performability
Modeling of Fault-tolerant Systems

Ch
ap

te
r3

4Juan A. Carrasco

34.1 Introduction
34.2 Measures
34.2.1 Expected Steady-state Reward Rate
34.2.2 Expected Cumulative Reward Till Exit of a Subset of States
34.2.3 Expected Cumulative Reward During Stay in a Subset of States
34.2.4 Expected Transient Reward Rate
34.2.5 Expected Averaged Reward Rate
34.2.6 Cumulative Reward Distribution Till Exit of a Subset of States
34.2.7 Cumulative Reward Distribution During Stay in a Subset of States
34.2.8 Cumulative Reward Distribution
34.2.9 Extended Reward Structures
34.3 Model Specification
34.4 Model Solution
34.5 The Largeness Problem
34.6 A Case Study
34.7 Conclusions

34.1 Introduction

Increasing demand for system reliability
(understood in its broad sense, i.e. as the
capability of the system to perform properly) has
motivated an increased interest in fault-tolerant
systems. A fault-tolerant system is one that
can continue correct operation with or without
degraded performance in the presence of faults,
i.e. physical defects, imperfections, external
disturbances, or design flaws in hardware or
software components. Fault tolerance can be
achieved by fault masking, i.e. by preventing faults
from producing errors without eliminating the
faulty components from the operational system
configuration, or by reconfiguration, i.e. by elim-
inating faulty components from the operational

system configuration. The latter is, generally,
more complex to implement and requires fault
detection (recognizing that a fault has occurred),
fault location (identifying the faulty component),
fault containment (isolating the faulty component
so that it does not produce errors which propagate
throughout the system), and fault recovery
(restoring the system to a correct state from which
to continue operation if an incorrect state has been
reached). All these fault-tolerance techniques re-
quire the addition of hardware redundancy (extra
hardware components), information redundancy
(redundant information), time redundancy (extra
computations), or software redundancy (extra
software components). Replication of hardware
components is an example of hardware
redundancy; error detecting and error correcting

613

614 Practices and Emerging Applications

codes are examples of information redundancy;
repeated computation and checkpointing are
examples of time redundancy; consistency
checks, N-version programming, and recovery
blocks are examples of software redundancy.
The addition of redundancy affects negatively
some characteristics of the system such as
cost, performance, size, weight, and power
consumption, and, during the design of a fault-
tolerant system, those impacts have to be balanced
against the achieved increase in system reliability.

Fault tolerance is an attractive approach to
design systems which, without fault tolerance,
would have an unacceptable reliability level.
This includes systems for critical-computation
applications such as aircraft flight control and
control of dangerous chemical processes, unre-
pairable systems with long mission times such as
long-life spacecraft unmanned systems, systems
requiring high availability of computational
resources, data, or both such as call switching
systems and airline reservation systems, and
systems with large amounts of hardware/software
such as large multiprocessors. Nanometric
systems on chip is an area in which fault
tolerance may become more and more attractive.
This is because, as feature sizes scale down,
nanoelectronic structures get more and more
susceptible to manufacturing faults, degradation
processes, and external perturbations, and it
may happen in the near future that acceptable
levels of yield/operational reliability for complex
nanometric systems on chip can only be achieved
through the use of fault tolerance.

Modeling plays an important role in the de-
sign and analysis of fault-tolerant systems. This is
clearly true in the early design stages and when it
has to be certified that an existing system achieves
a very high reliability level. Modeling also allows
us to study how changes in the design and op-
eration of an existing system may affect its re-
liability without actually modifying the system.
Component failures, fault recovery mechanisms,
maintenance activities, and, often, performance-
related activities have a stochastic behavior, and,
thus, stochastic models have to be used. Typical
parameters of those models are component failure

rates, coverage probabilities (i.e. the probabilities
that faults of certain classes are successfully re-
covered), characteristics of component repair time
distributions, and characteristics of performance-
related activities. Estimation of those parameters
is the first step to construct a model. Such esti-
mates can be obtained from system specifications,
data collected from similar systems that are under
operation, data provided by component manu-
facturers/developers (for instance, mean time to
failures of hardware/software components), avail-
able standardized models (for instance, the MIL-
HDBK-217E model for estimation of failure rates
of hardware components), or experimentation on
the real system, a prototype, or a more or less de-
tailed simulation model of the system (fault injec-
tion experiments to estimate coverage parameters
are an example; see Iyer and Tang [1] for a survey
of those techniques).

The reliability of a fault-tolerant system can
be quantified by several measures summarizing
the behavior of the system as perceived by its
users. Many systems can be regarded as either
performing correctly (up) or performing incor-
rectly or not performing at all (down). For those
systems, simple dependability measures such as
the mean time to failure, the reliability measure
(probability that the system has been continu-
ously up), and the availability (probability that
the system is up at a given time) are appropriate.
Many other systems, however, are degradable, in
the sense that their performance may degrade as
components fail. Simple dependability measures
can be generalized to evaluate the reliability of
those systems by associating performance levels
with system states and including in the up subset
the states in which the system has a performance
above or equal to each of those levels [2]. A more
general approach is the performability concept in-
troduced by Meyer [3]. In that approach, the user-
perceived behavior of the system is quantified by a
discrete or continuous set of accomplishment lev-
els and the performability is defined as the prob-
ability of a measurable subset of accomplishment
levels. An example of the performability concept
would be the distribution of the accumulated
performance (for instance, number of processed

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 615

transactions in a transaction-oriented system) of
a system over a time interval. Another example [4]
would be the distribution of the fraction of time
during a time interval in which a communication
channel fails to provide a given quality of service
to the admitted traffic sources.

Once a model and a measure have been
selected, the model has to be specified and
solved. The difficulty in solving the model
depends on both the model characteristics and
the measure. Combinatorial solution methods
allow an efficient analysis of very complex
systems, but have restricted scope of application.
In combinatorial methods (see Abraham [5] and
Aggarwal et al. [6]) the fault-tolerant system
is conceptualized as made up of components
which can be unfailed/failed and the system is
up/down as determined from the unfailed/failed
state of the components by a structure function,
usually represented by a fault tree. Combinatorial
methods compute the probability that the system
is up/down from the probabilities that the
components are unfailed/failed, assuming that
component states are independent. This allows
the computation of the availability of systems
having components with independent behavior
and the reliability of non-repairable systems with
coherent structure functions and components
with independent behavior, since for those
systems the reliability at time t is equal to the
availability at time t . Combinatorial methods
allowing imperfect coverage have been developed
recently [7–9]. When the fault-tolerant system can
be decomposed into subsystems with independent
behavior, some measures can be computed
hierarchically. The SHARPE tool has been
designed to accommodate such techniques, and
the examples presented by Sahner and Trivedi [10]
illustrate them very well. However, computation of
more complex measures or computation of simple
measures when the components in the system have
interactions require direct analysis of a stochastic
process representing the behavior of the whole
system. In that context, homogeneous continuous-
time Markov chains (CTMCs) are commonly used.
CTMCs arise naturally when the activities modify-
ing the state of the system (failure processes, repair

processes, and performance-related activities)
have durations with exponential distributions.
Phase-type distributions [11], particularly acyclic
phase-type distributions, for which efficient fitting
algorithms exist [12], can be used to accommodate
(approximately) non-exponential distributions in
the CTMC framework, at the price of a, usually,
significant increase in the size of the CTMC.

In this chapter we make a, necessarily
incomplete, review of techniques for Markovian
dependability/performability modeling of fault-
tolerant systems. In the review, we will often
make reference to the METFAC-2.1 tool, currently
under development. The rest of the chapter is
organized as follows. Section 34.2 defines and, in
some cases, formalizes the computation of a set of
generic measures defined over rewarded CTMCs
encompassing many dependability measures,
as well as particular instances of the general
performability measure. Section 34.3 reviews
model specification methodologies. Section 34.4
reviews numerical techniques for model solution.
Section 34.5 reviews available techniques to
deal with the largeness problem with emphasis
on bounding methods. Section 34.6 illustrates
some of the techniques reviewed in the previous
sections with a case study. Finally, Section 34.7
presents some conclusions.

34.2 Measures

Rewarded CTMC models have emerged in the
last years as a powerful modeling formalism.
A rewarded CTMC is a CTMC with a reward
structure imposed over it. The reward structure
may include reward rates associated with states
and impulse rewards associated with transitions.
Reward rates specify the rate at which reward
is earned while the CTMC is in particular
states; impulse rewards are rewards earned each
time a transition of the CTMC is followed.
An appropriate reward structure may be used
to quantify many aspects of system behavior:
reliability, performance, cost of operation, energy
consumption, etc. The probabilistic behavior
of the resulting reward can be summarized

616 Practices and Emerging Applications

using different reward measures. Many traditional
dependability measures are obtained as particular
instances of those generic measures by using
particular reward structures. In this section, we
will define and, in some cases, formalize the
computation of eight reward measures. All those
measures will be supported by the METFAC-2.1
tool and assume a reward structure including only
reward rates.

To formalize the computation of some of those
measures, it is necessary to use some basic
concepts on CTMCs. The terminology on CTMCs
is not well established and we will use our own.
Also, we will use without either reference or proof
both well-known results and results which can be
obtained with some effort. Let X = {X(t); t ≥ 0}
be a CTMC with finite state space and initial
probability distribution row vector α = (αi)i∈,
where αi = P [X(0)= i]. Let λi,j , i, j ∈, i �= j

denote the transition rate of X from state i to
state j , let λi,B =∑j∈B λi,j , i ∈, B ⊂− {i},
let λi =∑j∈−{i} λi,j , i ∈ denote the output
rate of X from state i, and let A= (ai,j)i,j∈,
ai,i =−λi , ai,j = λi,j , i �= j denote the transition
rate matrix (also called infinitesimal generator)
of X. The state transition diagram of X is a
labeled digraph with set of nodes and an arc
labeled with λi,j from each state i to each state j

with λi,j > 0. The analysis of the state transition
diagram together with the initial probability
distribution row vector α provides insight into the
qualitative behavior of the transient probabilities
pi(t)= P [X(t) = i], i ∈ of the states of X.

Two states i, j ∈ are said to be strongly
connected if and only if there are paths in the state
transition diagram both from i to j and from j to
i. A state is strongly connected with itself. Strong
state connectivity is an equivalence relation.
The corresponding equivalence classes are called
the components of the CTMC. A component is,
then, a maximal subset of strongly connected
states. A state i is said to be unreachable if pi(t)=
0 for all t and reachable otherwise. It is easy
to prove that either all states of a component
are reachable or all states of a component
are unreachable. Then, we can properly talk
about reachable and unreachable components.

To determine which components of a CTMC are
unreachable, it is useful to define the components
digraph of a CTMC. The components digraph of
a CTMC is the acyclic digraph having a node
for each component of the CTMC and an arc
from component C to component C′ if and only
if the state transition diagram of the CTMC has
an arc from some state in C to some state
in C′. To illustrate the concepts defined so far,
Figure 34.1 gives the state transition diagram of a
small CTMC and the corresponding components
digraph. Let αB =∑i∈B αi , B ⊂. Then, a
component C is unreachable if and only if αC = 0
and there is no path in the components digraph
from a component C′ with αC ′ > 0 to C. States in
unreachable components can be discarded when
analyzing a CTMC and, in the following, we will
assume that they have been discarded and that all
states of the CTMC are reachable.

A (reachable) state i is said to be transient if,
starting at i, there is a non-null probability that X
will leave i and never return to it. For a transient
state i, limt→∞ pi(t)= 0. For a (reachable) non-
transient state i, limt→∞ pi(t) > 0. A state i is said
to be absorbing if and only if λi = 0. It can be
proved that all states of a component are either
transient or non-transient. Then, we can properly
talk about transient components. A component
which is not transient is said to be trapping.
Classification of the (reachable) components of a
CTMC into transient and trapping can be done
easily by examining the components digraph.
A component is trapping if and only if the
component has no outgoing arc in the components
digraph. For the example given in Figure 34.1,
assuming that all components are reachable,
components C1, C2, and C3 would be transient
and components C4 and C5 would be trapping.
Trapping components are so called because, once
X enters a trapping component, it never leaves
it. It should be clear that an absorbing state
constitutes itself a trapping component. A CTMC
having a single (trapping) component is said to be
irreducible.

We define in Sections 34.2.1–34.2.8 and, in
some cases, formalize the computation of eight
reward measures defined over rewarded CTMCsX

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 617

C4

7

8

� �

C1

1

2

� �

C3

5

6

� �

C2

3

4

� �

9

C5

�

�

�

�
�

C5C4

C2C1

C3

Figure 34.1. State transition diagram of a small CTMC (left) and the corresponding components digraph (right)

with finite state space. The reward rate structure
includes reward rates ri ≥ 0, with i ∈ (measures
ESSRR, ETRR(t), EARR(t), and CRD(t, s)) or i ∈
B, B being a subset of (measures ECRTE,
ECRDS, CRDTE(s), and CRDDS(s)). To be well
defined some measures require X to have special
properties. Later, in Section 34.2.9, we will show
how more general reward structures can be
accommodated for some measures.

34.2.1 Expected Steady-state
Reward Rate

The measure is defined as ESSRR=
limt→∞ E[rX(t)] and can be computed as:

ESSRR=
∑
i∈

ripi

where pi = limt→∞ pi(t) is the steady-state prob-
ability of state i. Transient states have null steady-
state probabilities. Non-transient states have
steady-state probabilities > 0. Those probabilities
can be computed as follows. Let S be the subset
of transient states of X and let C1, C2, . . . , Cm be
the trapping components of X. Let pk = (pk

i)i∈Ck

be the row vector having as components the con-
ditional steady-state probabilities of the states in
Ck (i.e. pk

i is the steady-state probability that X

is in state i conditioned to X being in Ck); for-
mally, pk

i = limt→∞ P [X(t)= i |X(t) ∈ Ck]. Let
0 and 1 be row vectors of appropriate dimensions
with all elements equal to, respectively, 0 and 1;
let ACk,Ck be the restriction of A to the states
in Ck (ACk,Ck = (ai,j)i,j∈Ck); and let xT denote
the transpose of a vector x. Then, pk is the nor-
malized solution (pk1T = 1) of the linear system
pkACk,Ck = 0. Let pCk = limt→∞ P [X(t) ∈ Ck] =∑

i∈Ck
pi . We have pi = pCkp

k
i , i ∈ Ck . That result

allows us to compute pi , i ∈ Ck , 1≤ k ≤m and,
thus, ESSRR from the vectors pk and pCk , 1≤
k ≤m. We discuss next the computation of pCk ,
1≤ k ≤m.

If X has a single trapping component C1,
then X will be in C1 with probability 1 for
t→∞ and pC1 = 1. If X has several trapping
components and X does not have transient states,
then pCk = αCk . If X has transient states and more
than one trapping component, pCk = αCk + βk ,
where βk is the probability that X will leave S

through Ck . The quantities βk, 1≤ k ≤m, can

618 Practices and Emerging Applications

be computed as follows. Let τi , i ∈ S denote the
expected value of the time spent by X in state i

(τi =
∫∞

0 pi(t) dt , <∞ since i is transient). Then,
the row vector τ S = (τi)i∈S is the solution of the
linear system τ SAS,S =−αS , where AS,S and αS

are the restrictions of, respectively, A and α to S.
Let the row vector �k = (λi,Ck)i∈S , then βk can be
obtained from τ S as βk = τ S�kT.

As an example of the ESSRR measure, assume
that X models a fault-tolerant system which can
be either up or down. Then, if a reward rate 1 is
assigned to the states in which the system is up and
a reward rate 0 is assigned to the states in which
the system is down, the ESSRR measure would
be the steady-state availability of the fault-tolerant
system.

34.2.2 Expected Cumulative Reward
Till Exit of a Subset of States

In that measure, it is assumed that = B ∪ {a},
where all states in B are transient and a is an
absorbing state. The measure is defined as:

ECRTE= E

[∫ T

0
rX(t) dt

]
where T =min{t : X(t)= a}. In words,∫ T

0 rX(t) dt is the random variable “reward
earned by X until the time it leaves subset B”
and ECRTE is its expectation. From a modeling
point of view, the rewarded CTMC X can be seen
as a CTMC keeping track of the behavior till exit
from B of a larger rewarded CTMC Y actually
modeling the system under study. Formally, X

can be defined from Y as:

X(t)=
{
Y (t) if Y (τ) ∈ B, 0≤ τ ≤ t

a otherwise

The state transition diagram of X can be
obtained from the state transition diagram of
Y by eliminating the states not in B, adding
the absorbing state a, and directing to a the
transition rates from states in B to states outside
B. The initial probability distribution of X is
related to the initial probability distribution of Y

by αi = P [Y (0)= i], i ∈ B, αa = P [Y (0) /∈ B] and
X has associated with the states i ∈ B the same
reward rates as Y . Then, ECRTE is the expected
value of the reward accumulated by Y till exit
from B.

The ECRTE measure can be computed using
ECRTE=∑i∈B riτi , where τi is the expected
value of the time spent byX in i. Let the row vector
τB = (τi)i∈B . Then, τB is the solution of the linear
system τBAB,B =−αB , where AB,B and αB are
the restrictions of, respectively, A and α to B.
The condition that all states in B are transient is
required for ECRTE <∞.

As an example of the ECRTE measure, assume
that a CTMC Y models a fault-tolerant system
which can be either up or down and that B is the
subset of states of Y in which the system is up.
Then, assigning a reward rate 1 to all states in B

of the CTMC X keeping track of the behavior of Y
until exit from B, ECRTE would be the mean time
to failure (MTTF) of the system.

34.2.3 Expected Cumulative Reward
During Stay in a Subset of States

Let B be a proper subset of and assume that
each trapping component of X has at least one
state in B and one state outside B. Under those
circumstances, X will switch indefinitely between
the subsets B and − B. Let tn be the time at
which X makes its nth entry in B (by convention,
if X(0) ∈ B, t1 = 0) and let Tn be the time at which
X makes its nth exit from B. The measure is
defined as:

ECRDS= lim
n→∞ E

[∫ Tn

tn

rX(t) dt

]
In words, ECRDS is the expected value of the
reward accumulated byX during its nth stay in the
subset B as n→∞.

We discuss next how the ECRDS measure can
be computed. Let En be the random variable
“state through which X makes its nth entry in
B” and let qi = limn→∞ P [En = i], i ∈ B. Let
C1, C2, . . . , Cm be the trapping components of
X and let Bk = B ∩ Ck , 1≤ k ≤m. Let pCk =

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 619

limt→∞ P [X(t) ∈ Ck], 1≤ k ≤m. Let qki , i ∈ Bk ,
1≤ k ≤m be the limit for n→∞ of the
probability that En = i conditioned to En ∈
Bk ; formally, qki = limn→∞ P [En = i | En ∈ Bk].
Let pk

i = limt→∞ P [X(t)= i | X(t) ∈ Ck], i ∈ Ck ,
1≤ k ≤m. The probabilities pk

i , i ∈ Ck , 1≤ k ≤m

can be computed as described when dealing with
the ESSRR measure. The probabilities qki , i ∈ Bk ,
1≤ k ≤m can be computed from pk

i , i ∈ Ck , 1≤
k ≤m using:

qki =
∑

j∈Ck
pk
j λj,i∑

l∈Bk

∑
j∈Ck

pk
jλj,l

Consider the rewarded CTMCs Xk , 1≤ k ≤m

keeping track of the behavior of X in Bk

from entry in Bk with entry-state probability
distribution qki , i ∈ Bk . The rewarded CTMC Xk

has state space Bk ∪ {a}, the same transition rates
among states in Bk as X, transition rates from
i ∈ Bk to a, λki,a = λi,Ck−Bk , the same reward rates
in Bk as X, and initial probability distribution
P [Xk(0)= i] = qki , i ∈ Bk , P [Xk(0)= a] = 0. Let
τ ki be the expected value of the time spent by
Xk in i ∈ Bk . Note that all states in Bk of Xk are
transient. Then, ECRDS can be computed from
pCk , 1≤ k ≤m, and τ ki , i ∈ Bk , 1≤ k ≤m, using:

ECRDS=
m∑

k=1

pCk

∑
i∈Bk

riτ
k
i

The row vectors τ k = (τ ki)i∈Bk are the solutions of
the linear systems τ kABk,Bk =−qk, where ABk,Bk

is the restriction of the transition rate matrix
of Xk to Bk and qk is the row vector (qki)i∈Bk .
The probabilities pCk and pk

i , i ∈ Ck can be
computed as described when dealing with the
ESSRR measure.

As an example of the ECRDS measure, assume
that X models a repairable fault-tolerant system
which can be either up or down, that B is the
subset of up states, and that a reward rate 1 is
assigned to the states in B. Then, the ECRDS
measure would be the limiting expected duration
of an up interval of the fault-tolerant system, i.e.
the limit for n→∞ of the expected duration of
the nth up interval.

34.2.4 Expected Transient
Reward Rate

The measure is defined as:

ETRR(t)= E[rX(t)]
and can be computed in terms of the transient
regime of X as:

ETRR(t)=
∑
i∈

ripi(t)

As an example of the ETRR(t) measure, assume
that X models a fault-tolerant system which can
be either up or down, and that a reward rate 1 is
assigned to the up states and a reward rate 0 is
assigned to the down states. Then, ETRR(t) would
be the availability of the system at time t .

34.2.5 Expected Averaged Reward
Rate

The measure is defined as:

EARR(t)= E

[∫ t
0 rX(τ) dτ

t

]
and can be computed in terms of the transient
regime of X as:

EARR(t)=
∑

i∈ ri
∫ t

0 pi(τ) dτ

t

As an example of the EARR(t) measure, assume
that X models a fault-tolerant system which can
be either up or down, and that a reward rate 1
is assigned to the up states and a reward rate 0
is assigned to the down states. Then, EARR(t)
would be the expected interval availability, i.e. the
expected value of the fraction of time that the
system is up in the time interval [0, t].

34.2.6 Cumulative Reward
Distribution Till Exit of a Subset of States

In that measure, it is assumed that = B ∪ {a},
where a is an absorbing state and that each
trapping component of X different from {a} has

620 Practices and Emerging Applications

some state i with ri > 0. The measure is defined
as:

CRDTE(s)= P

[∫ T

0
rX(t) dt ≤ s

]

where T =min{t : X(t)= a} or T =∞ if X(t) ∈
B for t ∈ [0,∞) and s ≥ 0. From a modeling point
of view, the rewarded CTMC X can be seen as a
CTMC keeping track of the behavior till exit from
B of a larger rewarded CTMC Y actually modeling
the system under study. The relationships between
X and Y are those discussed when dealing with the
ECRTE measure.

Computation of the CRDTE(s) measure can be
reduced to the transient analysis of a modified
CTMC X∗ [13]. The state transition diagram and
initial probability distribution of the CTMC X∗
are obtained from those of X by replacing the
states i ∈ B with ri = 0 by instantaneous switches
with jump probabilities to states j , γi,j = λi,j /λi ,
and by dividing the transition rates λi,j from
states i with ri > 0 by ri . The process of replacing
states with null reward rate by instantaneous
switches is analogous to eliminating vanishing
markings in generalized stochastic Petri nets and
several algorithms can be used [14]. Once X∗ has
been obtained, CRDTE(s) can be computed using
CRDTE(s)= P [X∗(s)= a].

Let B∗ ∪ {a} be the state space of X∗ and
assume B∗ �= ∅. When not all the states in B∗
are transient, CRDTE(s) can be computed by
performing the transient analysis of a CTMC X∗′
of size smaller than X∗. The CTMC X∗′ can
be constructed from X∗. Let C1, C2, . . . , Cm be
the components of X∗ different from {a} not
having a path in the components digraph of X∗ to
{a}. Let C =⋃m

k=1 Ck . Once X∗ enters C, it will
remain there forever and will never enter state a.
Then, the CTMC X∗′ with state transition diagram
and initial probability distribution obtained from
those of X∗ by deleting the states in C, adding an
absorbing state b with initial probability equal to
P [X∗(0) ∈ C], and adding transition rates from
states i ∈ B∗′ = B∗ − C to b with rates λ∗′i,b = λ∗i,C ,
where λ∗i,C is the sum of the transition rates from i

to the states in C in X∗, satisfies P [X∗′(s)= a] =

P [X∗(s)= a], and we can compute CRDTE(s) as
P [X∗′(s)= a].

As an example of the CRDTE(s) measure,
assume that a CTMC Y models a fault-tolerant
system which can be either up or down, and that
B is the subset of states of Y in which the system is
up. Then, assigning to the states inB ofX a reward
rate 1, CRDTE(t)would be the unreliability at time
t (probability that the system has been failed in
some time τ ∈ [0, t]).

34.2.7 Cumulative Reward
Distribution During Stay in a Subset
of States

Let B be a proper subset of and assume that
each trapping component of X has at least one
state in B and one state outside B. Under those
circumstances, X will switch indefinitely between
the subsets B and − B. Let tn be the time at
which X makes its nth entry in B (by convention,
t1 = 0 if X(0) ∈ B) and let Tn be the time at which
X makes its nth exit from B. The measure is
defined as:

CRDDS(s)= lim
n→∞ P

[∫ Tn

tn

rX(t) dt ≤ s

]
with s ≥ 0. In words, CRDDS(s) is the distribution
of the reward accumulated byX during its nth stay
in the subset B as n→∞.

We discuss next how CRDDS(s) can be
computed. Let C1, C2, . . . , Cm be the trapping
components of X and let Bk = B ∩ Ck , 1≤ k ≤
m. Let pCk , 1≤ k ≤m and qki , i ∈ Bk , 1≤ k ≤m

be defined as in the discussion of the ECRDS
measure. Those quantities can be computed
as described when dealing with the ECRDS
measure. Consider the rewarded CTMCs Xk ,
1≤ k ≤m, keeping track of the behavior of
X in Bk from entry in Bk with entry-state
probability distribution qki , i ∈ Bk . The rewarded
CTMC Xk has state space Bk ∪ {a}, the same
transition rates among states in Bk as X,
transition rates from states i ∈ Bk to a, λki,a =
λi,Ck−Bk , the same reward rates in Bk as X, and
initial probability distribution P [Xk(0)= i] = qki ,

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 621

i ∈ Bk , P [Xk(0)= a] = 0. Let CRDTEk(s) be the
cumulative reward distribution of Xk till exit
of Bk . Then, we have:

CRDDS(s)=
m∑

k=1

pCkCRDTEk(s)

where CRDTEk(s) can be computed as described
when dealing with the measure CRDTE(s), noting
that, Ck being a trapping component of X and
Bk a proper subset of Ck , all states of Bk will be
transient in Xk .

34.2.8 Cumulative Reward
Distribution

The measure is defined as:

CRD(t, s)= P

[∫ t

0
rX(τ) dτ ≤ s

]
In words, CRD(t, s) is the probability that the
reward earned by X up to time t is ≤ s.
The measure can be seen as a particular instance
of the generic performability measure where ri
has the meaning of “rate at which performance
is accumulated”, each possible value for the
accumulated performance in the interval [0, t]
is an accomplishment level, and the measurable
subset includes all accomplishment levels≤ s.

The interval availability distribution
IAVD(t, p), defined as the probability that
the interval availability (i.e. the fraction of time
that the system is up in the interval [0, t]) is
≤ p can be seen as a particular instance of
the CRD(t, s) measure when a reward rate 1 is
assigned to the up states and a reward rate 0 is
assigned to the down states. With that reward rate
structure, CRD(t, s) is the probability that the up
time during the interval [0, t] is ≤ s and, then,
IAVD(t, p)= CRD(t, pt).

34.2.9 Extended Reward Structures

With both reward rates ri ≥ 0 and impulse rewards
ri,j ≥ 0 associated with transitions i→ j , the
expected value of the reward accumulated during
the time interval [t, t +�t], assuming X(t)= i,

is ri�t +∑j∈−{i} ri,j λi,j�t +O(�t2). This is
because, assuming X(t)= i, the probability that
X will remain in i during the whole interval is
1−O(�t), the probability that X will make a
transition from i to j in the interval is λi,j�t +
O(�t2), and the probability that X will make
more than one transition in the interval isO(�t2).
This allows the computation of extended versions,
including impulse rewards, of the measures
ESSRR, ECRTE, ECRDS, ETRR(t), and EARR(t)
as those measures with reward rates r ′i = ri +∑

j∈−{i} ri,j λi,j . The extended measures would
be formally defined as:

ESSRR
= lim

t→∞ lim
�t→0

E[reward accumulated in [t, t +�t]]
�t

ECRTE= E[reward accumulated in [0, T]]
ECRDS

= lim
n→∞ E[reward accumulated in (tn, Tn]]

ETRR(t)
= lim

�t→0

E[reward accumulated in [t, t +�t]]
�t

EARR(t)= E

[
reward accumulated in [0, t]

t

]
where T , tn, and Tn are defined as for the non-
extended measures.

We have assumed ri ≥ 0, i ∈ or i ∈ B, since
this ensures the numerical stability of many
solution methods. That restriction can, however,
be circumvented for all eight reward measures
defined in Sections 34.2.1–34.2.8 excepted the
CRDTE(s) and CRDDS(s) measures by shifting, in
case some ri , i ∈ or i ∈ B is < 0, all reward rates
by a positive amount d so that the new reward
rates r ′i = ri + d be ≥ 0 for all i ∈ and i ∈ B.
The measures of the original rewarded CTMC are
related to the measures of the rewarded CTMC
with shifted reward rates, denoted by “ ′ ”, by

ESSRR= ESSRR′ − d,

ECRTE= ECTRE′ − d ECTTE,

ECRDS= ECDRS′ − d ECTDS,

622 Practices and Emerging Applications

ETRR(t)= ETRR′(t)− d,

EARR(t)= EARR′(t)− d,

CRD(t, s)= CRD′(t, s + dt),

where ECTTE is the ECRTE measure with reward
rates r ′′i = 1, i ∈ B and ECTDS is the ECRDS
measure with reward rates r ′′i = 1, i ∈ B.

34.3 Model Specification

Direct specification of even medium-size CTMCs
is both cumbersome and error-prone. To over-
come that problem, most tools support more con-
cise higher-level specifications from which CTMCs
can be automatically derived. Some tools like
SAVE [15] offer a modeling language specifi-
cally tailored to describe fault-tolerant systems.
This provides maximum user-friendliness and
makes explicit high-level knowledge about the
model which can be exploited during model solu-
tion, but inevitably introduces restrictions making
it difficult or even impossible to accommodate
models other than those anticipated by the design-
ers of the language. Formalisms from which ar-
bitrary CTMCs can be derived include stochastic
Petri nets, stochastic activity networks, stochas-
tic process algebras, and production rule-based
specifications. DSPNexpress [16], GreatSPN [17],
SPNP [18], SURF-2 [19], and TimeNET [20] are
examples of tools in which model specification is
done using stochastic Petri nets. UltraSAN [21]
supports model specification through stochastic
activity networks. The PEPA Workbench [22] and
TIPPtool [23] use stochastic process algebras as
model specification formalism. METFAC-2.1 and
TANGRAM [24] offer production rule-based mod-
eling languages. The basic model specification for-
malism is, in some cases, too simple to accommo-
date easily complex model features and, for the
sake of user-friendliness, some tools allow exten-
sions such as enabling functions in generalized
stochastic Petri nets. Another important feature
which most tools incorporate is parametric model
specification. Parameters may affect the “struc-
ture” of the state transition diagram, the values of

the transition rates, the initial probability distri-
bution, and the reward structure of the CTMC, and
often allow a compact specification of models for a
more or less wide “class” of fault-tolerant systems.

To illustrate model specification techniques, we
will review the production rule-based modeling
language which will be offered by METFAC-2.1
using a parametric model of a Level 5 RAID sub-
system. The subsystem includes eight disks, two
redundant disk controllers, and two redundant
power supplies. The information stored in the
disks is organized into groups of eight blocks,
of which seven blocks contain data bits and one
block contains parity bits. Each block of a group
is stored in a different disk. Since parity blocks
are accessed more often than data blocks, parity
blocks are distributed evenly among the disks to
achieve load balancing and maximum efficiency
for the RAID subsystem. The use of parity blocks
allows the system to continue operation without
loss of data in the event of a disk failure. The failure
of a second disk would take the system down and
would involve loss of data. After a failed disk is
repaired with the subsystem up, a reconstruction
process generates the blocks which have to be
stored in the repaired disk to have consistent
block groups. Failure of a disk different from the
disk under reconstruction takes the subsystem
down. Disks fail with rate λD when the RAID has
no disk under reconstruction and with rate λDR
when the RAID has a disk under reconstruction.
Since the load of the disks is higher when the
RAID has a disk under reconstruction, one should
expect λDR > λD. Controllers fail with rate λC2
when both controllers are unfailed and with
rate λC1 when only one controller is unfailed.
Typically, the access requests would be distributed
between the controllers when both are unfailed,
implying that they would have a lower activity
than a single unfailed controller and, then, one
should expect λC1 > λC2. The power supplies
work in cold standby redundancy, with the cold
spare having null failure rate. The active power
supply fails with rate λP. Controller and power
supply failures are covered with probabilities CC
and CP, respectively. An uncovered controller or
power supply failure takes the subsystem down.

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 623

The reconstruction process is assumed to have a
duration with an exponential distribution with
parameter µDR. Components do not fail when the
subsystem is down. When the subsystem is up,
failed components are repaired by an unlimited
number of repairmen with rate µU. A down
system is brought to a fully operational state
with no component failed and no disk under
reconstruction with rate µD.

In METFAC-2.1, a model specification is given
in a file called name.spec, where name is a string
identifying the model. That model specification
may invoke external model-specific C functions.
In addition, other C functions with predefined
names and prototypes may have to be provided
to specify characteristics of the measure to be
computed (the B subset in the ECRTE, ECRDS,
CRDTE(s), and CRDDS(s) measures), or other
uses (for instance, to check assertions on the state
descriptions of the generated states, or to provide
information required by some model solution
methods). All these functions have to be included
in an optional name.c file. Figure 34.2 shows the
contents of a model specification file from which
a rewarded CTMC appropriate to evaluate the
steady-state unavailability of the RAID subsystem
previously described using the generic measure
ESSRR can be generated. The contents of that
file have to follow a language with C-like syntax.
The language is case-sensitive and, as in C,
comments are enclosed by /* and */. The model
specification starts with an optional declaration of
the parameters of the model. Model parameters
can be of two types: double and int. In the
example, all parameters have type double.
The next syntactic construction is a mandatory
declaration of the state variables of the model.
All state variables have type int. The set of
state variables have to provide together a detailed
enough description of the state of the model
to allow an unambiguous specification of the
initial probability distribution, transition rates,
and reward rates of the CTMC. Five state variables
have been used in the example. The state variable
DF takes the value yes (implicitly defined as 1)
when the RAID subsystem is up and one disk
is failed and the value no (implicitly defined

as 0) otherwise. The other state variables, DR,
CF, PF, and DOWN, identify states in which,
respectively, the subsystem is up and one disk is
under reconstruction, the subsystem is up and one
controller is failed, the subsystem is up and one
power supply is failed, and the subsystem is down.

The use of external C functions enhances the
flexibility of the modeling language. Those func-
tions may be of type double or int, may only
include double or int parameters, and have to
be declared by an optional external construct
which follows the declaration of the state vari-
ables of the model. The example uses a double
function rew_essrr() with an int parameter
which is called to compute the reward rates to be
associated with the states of the CTMC.

The core of the model specification is
a set of production rules that follow the
declarative section and starts with the keyword
production_rules. Those production rules
determine how the state of the CTMC may change
and with which rates. There are two types of
production rules: simple and with responses. A
simple production rule describes a simple action
which may change the state of the CTMC and
includes an optional condition, the keyword
action, an optional name, a rate specification,
and a state change description. The condition
determines whether the action is active or not
in a particular state (the action is active if the
condition evaluates to a value different from 0 and
is inactive otherwise). If the action description
does not include any condition, the action is active
in any state. For instance, the action described by
the first production rule of the example models the
failure of one disk when no disk is either failed or
under reconstruction. That action is active when
all DOWN, DF, and DR have value 0 (no), has name
DFAIL_NFDR, occurs with rate 8λD, and leads to
a state which differs from the current one only in
that the state variable DF has value 1 (yes). Pro-
duction rules with responses describe actions with
responses and include an optional action condi-
tion, the keyword action, an optional action
name, a rate specification, and a set of responses,
each with an optional response condition,
the keyword response, an optional name,

624 Practices and Emerging Applications

Figure 34.2. Model specification appropriate for the computation of the steady-state unavailability of the RAID subsystem using the ESSRR
measure

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 625

an optional probability specification, and a state
change description. Each response describes a way
in which the state may change. Assuming that both
the action and the response are active, such state
change occurs at a rate given by the product of
the action rate and the response probability (with
a default value 1 if the response does not include
a probability specification). The fifth production
rule of the example illustrates the syntax of a
production rule with responses. It models the
failure of a controller when no controller is failed.
That action is active only when the subsystem
is up and no controller is failed and occurs at
rate 2λC2. With probability CC, the failure of the
controller is covered. This is modeled by the first
response. With probability 1− CC, the failure of
the controller is not covered and takes the system
down. This is modeled by the second response.

After the production rules, the model speci-
fication includes a start_state construct to
define a “start” state. The CTMC is generated
by applying all production rules to the “start”
state and all generated states. The model specifi-
cation ends with a reward_rate construct to
specify the reward rate structure and an optional
initial_probability construct to specify
the initial probability distribution of the CTMC.
The expressions given in those constructs are eval-
uated to obtain the reward rates and initial prob-
abilities associated with the states of the CTMC.
If the initial_probability construct is ab-
sent, a default initial probability distribution with
probability 1 for the “start” state and probability
0 for the remaining states is used. In the exam-
ple, the reward rate associated with a state is the
value returned by the call rew_essrr(DOWN),
which is 1.0 for the states with state variable DOWN
equal to 1 (yes) and 0.0 for the states with state
variable DOWN equal to 0 (no). This makes the
generic measure ESSRR equal to the steady-state
unavailability of the RAID subsystem. The speci-
fication of the model does not include any ini-
tial_probability construct and the default
initial probability distribution is assigned to the
CTMC. This is appropriate since the generated
CTMC is irreducible, the ESSRR measure does not
depend on the initial probability distribution of

Table 34.1. Descriptions of the states of the CTMC obtained from
the model specification of Figure 34.2

State DF DR CF PF DOWN

FOP no no no no no
C no no yes no no
D yes no no no no
P no no no yes no
R no yes no no no
CD yes no yes no no
CP no no yes yes no
CR no yes yes no no
DP yes no no yes no
PR no yes no yes no
CDP yes no yes yes no
CPR no yes yes yes no
DOWN no no no no yes

the CTMC, and any initial probability distribution
is good enough.

Table 34.1 describes the states of the CTMC
generated from the model specification of the
RAID subsystem. Figure 34.3 gives the state
transition diagram of the generated CTMC.

In METFAC-2.1, model specifications have to
be “built” before CTMCs can be generated and
solved. Building a model specification involves,
first, preprocessing the model specification file to
obtain a model-specific C source file and, after
that, compiling that C source file and, if present,
the file name.c, and linking the obtained object
files with model-independent object files to ob-
tain a model-specific executable file name.exe.
All these steps are performed automatically by in-
voking an appropriate command. The CTMCs are
generated and solved by running the executable
name.exe. This approach makes model genera-
tion extremely efficient (for instance, the aggre-
gated CTMC for the computation of the steady-
state unavailability of the system with eight RAID
subsystems described in Section 34.6, which has
125 970 states and 2 670 564 transitions was gener-
ated in a 167-MHz, 128-MB UltraSPARC1 worksta-
tion in 69 seconds).

34.4 Model Solution

Section 34.2 has reduced the computation of all
measures defined there but the measure CRD(t, s)

626 Practices and Emerging Applications

FOPDOWN

CPR

DOWN

CDP

PR

CR

CP

CDP

DOWN

CPR

DP

CD

7 + 2 (1 _) +� � �DR C2 C PC

PR

DOWN

CPR

DP

R

P

DP

DOWN

2�C2 CC
CDP

PR

D

7 + + (1 _)� � �DR C1 P PC

CR

DOWN

CPR

�DR
CD

R

�DR
C

CP

� �C1 P+
DOWN

8�D
CDP

P

�U
C

CD

7 + + (1 _)� � �D C1 P PC
DOWN

CDP

CR

D

7 + 2 (1 _) + (1 _)� � �DR C2 C P PC C

R

DOWN

PR

CR

D

FOP

P

DOWN

DP

CP

FOP

D

�C1 P(1 _)C+ �P

DOWN

DP

CD

R

C

7 + 2 (1 _) + (1 _)� � �D C2 C P PC C

DOWN

CP

CD

�U
FOP

FOP

2 (1 _) + (1 _)� �C2 C P PC C
DOWN

�P PC
P

8�D
D

2�C2 CC
C

�U

�U

�P PC

�U

�U

7 + 2 (1 _) +� � �D C2 C PC

�DR

�DR

�U

2�C2 CC

�U

�U

�U

7 + +� � �D C1 P

�U

�U

�DR

�DR

7 + +� � �DR C1 P

�D

8�D

�P PC

�U

2�C2 CC

�P PC

�U

2�C2 CC

8�D

2 (1 _) +� �C2 C PC

�DR

�DR

2�C2 CC

�P PC

�U

�U

�P PC

Figure 34.3. State transition diagram of the CTMC obtained from the model specification of Figure 34.2

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 627

to the solution of the following three numerical
problems: (1) computation of the normalized
solution (p1T = 1) of the linear system

pAC,C = 0 (34.1)

where AC,C is the restriction of the transition rate
matrix of a CTMC to a trapping component C,
p is a row vector and 0 and 1 are row vectors
with all components equal to, respectively, 0 and 1;
(2) computation of the solution of the linear
system

τAS,S =−α (34.2)

where AS,S is the restriction of the transition rate
matrix of a CTMC to a subset of transient states
S, τ is a row vector and α is a row vector with
components αi ≥ 0, i ∈ S; and (3) computation
of the transient probabilities pi(t)= P [X(t)=
i], or their integrals, of a CTMC X. In this
section we start by discussing available numerical
methods to solve these problems. We will start
by considering the first two numerical problems,
then discuss available numerical methods to solve
the third problem, and, finally, review briefly
numerical methods to compute the CRD(t, s)

measure, which are much more expensive.
The matrix AS,S can be reducible. This occurs

when the CTMC XS having state transition
diagram equal to the state transition diagram
of the underlying CTMC restricted to S has
several components. Let C1, C2, . . . , Cm be those
components, and let Ak,l , 1≤ k, l ≤m be the
block of AS,S = (ai,j)i,j∈S including the elements
ai,j , i ∈ Ck , j ∈ Cl . A topological sorting of the
components in the components digraph of XS

puts AS,S in upper block triangular form:

AS,S =

A1,1 A1,2 A1,3 · · · A1,m

0 A2,2 A2,3 · · · A2,m
0 0 A3,3 · · · A3,m
...

...
...

. . .
...

0 0 0 · · · Am,m

where the components have been renamed so
that the topological sorting of the components
is C1, C2, . . . , Cm. That upper block triangular
form can be used to reduce the solution of the

linear system (34.2) to the solution of similar
linear systems with irreducible matrices Ak,k ,
1≤ k ≤m. Calling τk and αk the restrictions of the
vectors τ and α to the subset of states Ck , we have:

τ1A1,1 =−α1

τ2A2,2 =−α2 − τ1A1,2

τ3A3,3 =−α3 − τ1A1,3 − τ2A2,3

...

τmAm,m =−αm − τ1A1,m − τ2A2,m

− τ3A3,m − · · · − τm−1Am−1,m

This reduction is beneficial from a computational
point of view and should be done whenever
possible. Thus, in the following, we will assume
AS,S irreducible.

The linear systems 34.1 and 34.2 can be solved
by either direct, e.g. Gaussian elimination, or
iterative methods. Non-sparse implementations of
direct methods are expensive when the matrix is
large, since they require O(n3) time and O(n2)

memory, n being the dimension of the matrix.
Sparse implementations of direct methods can
be significantly less costly, but are complex and
very often result in excessive fill-in. In that
case, available memory may rapidly be exhausted.
Iterative methods, on the other hand, can be
implemented without modifying the matrix and
have minimum memory requirements, allowing
the analysis of CTMCs with very large state
spaces. For that reason, iterative methods have
been traditionally preferred to direct methods.
However, non-convergence or poor convergence
rate are potential problems of iterative methods.
Stewart [25] is an excellent recent source for
both direct and iterative methods applied to the
solution of CTMCs.

In order to avoid divisions, which tend to be
expensive, it is convenient to transform the linear
systems 34.1 and 34.2 into:

PC,Cx= 0T (34.3)

PS,Sy=−αT (34.4)

where x and y are column vectors,
PC,C = AC,C Tdiag(AC,C)−1, and PS,S =

628 Practices and Emerging Applications

AS,S Tdiag(AS,S)−1, BT denoting the transpose of
matrix B and diag(B) denoting the matrix with
diagonal elements equal to the diagonal elements
of B and null off-diagonal elements, and apply
the numerical methods to those linear systems.
The normalized solution of System 34.1 can be
obtained from a non-null solution of System 34.3
using:

pT = diag(AC,C)−1x/‖diag(AC,C)−1x‖1
The solution of System 34.2 can be obtained from
the solution of System 34.4 using:

τT = diag(AS,S)−1y

Basic iterative methods include Jacobi, Gauss–
Seidel, and successive overrelaxation (SOR).
To describe those methods, consider a linear
system Bz= b, where z and b are column vectors.
Let B be partitioned as D− L− U, where D is
diagonal, L is strictly lower triangular, and U is
strictly upper triangular. Basic iterative methods
can be described as:

z(k+1) =Hz(k) +M−1b

where the iterates z(k) should converge to the
solution of the linear system. The Jacobi method
is defined by H= D−1(L+ U) and M= D.
The Gauss–Seidel method is defined by H=
(D− L)−1U and M= D− L. The SOR method
is defined by H= (D− ωL)−1[(1− ω)D+ ωU]
and M= D/ω − L, where ω is the relaxation
parameter. Note that for ω = 1, SOR reduces to
Gauss–Seidel. The following results [25–29] are
known about the convergence of these methods
when applied to the linear systems 34.3 and 34.4.

1. For the linear system 34.3: (a) Gauss–Seidel
converges if AC,C has a non-null subdiagonal
element in all rows except the first one, and
(b) SOR can only converge for 0 < ω < 2 and
converges for 0 < ω < 1.

2. For the linear system 34.4: (a) Jacobi and
Gauss–Seidel converge, (b) Gauss–Seidel con-
verges asymptotically faster than Jacobi,
(c) SOR can only converge for 0 < ω < 2 and
converges for 0 < ω ≤ 1, and (d) for 0 < ω ≤ 1
SOR cannot converge asymptotically faster as
ω decreases.

The condition which guarantees the convergence
of Gauss–Seidel for the linear system 34.3 can
easily be achieved by sorting the states in C

as visited by a breadth-first traversal, following
incoming arcs, of the restriction of the state
transition diagram of the underlying CTMC to C,
starting at any state. Usually, Gauss–Seidel will
converge faster than Jacobi for the linear system
34.3. Also, SOR with a suitable selection of the
value of the relaxation parameter can converge
significantly faster than Gauss–Seidel. Except for
matrices having special structures, there exists
no theory supporting an optimal selection of
ω. According to the available results, the search
for the optimum ω has to be restricted to the
interval (0, 2) for the linear system 34.3 and to
the interval [1, 2) for the linear system 34.4. An
apparently efficient and robust optimized SOR
method is described by Suñé et al. [28]. That
reference also compares the performance of basic
iterative methods, some block iterative methods,
and a projection method. Basic iterative methods
may exhibit an extremely poor convergence rate
for the linear system 34.4 for failure/repair CTMC
models. However, an acceleration technique which
works very well for those models has recently been
developed [30].

Computation of the transient probabilities of a
CTMC can be done by using either ODE (ordinary
differential equation) solvers or randomization
(also called uniformization). Good reviews of
those methods with new results can be found in
Malhotra et al. [31], Malhotra [32], and Reibman
and Trivedi [33]. Letting the row vector p(t)=
(pi(t))i∈, p(t) satisfies the ordinary differential
equation:

dp
dt
= p(t)A

where A is the transition rate matrix of the
CTMC. This allows the use of ODE solvers to
compute the transient probabilities pi(t), i ∈.
The performance of ODE solvers is, however,
severely affected by the stiffness of the model.
A practical measure of stiffness is maxi∈ λit [33].
Standard (non-stiff) ODE solvers require a very
large number of steps when the model is stiff
(has a large maxi∈ λit value). Stiff ODE solvers

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 629

perform much better in those cases. Each step
of a stiff ODE solver requires the solution of
linear systems with matrices having the same non-
null pattern as A. Typically, those linear systems
are solved using an iterative method, e.g. Gauss–
Seidel. For large maxi∈ λi t , the resulting number
of matrix–vector multiplications is typically of the
order of several thousands, and even stiff ODE
solvers are expensive for large, stiff CTMCs.

The randomization method is attractive be-
cause it is numerically stable and the computation
error is well-controlled and can be specified in
advance. The randomization method is based on
the following result [34, theorem 4.19]. Consider
any
≥maxi∈ λi and define the randomized ho-
mogeneous discrete time Markov chain (DTMC)
X̂ = {X̂k; k = 0, 1, 2, . . . } with the same state
space and initial probability distribution as X

and transition probabilities P [X̂k+1 = j | X̂k =
i] = Pi,j = λi,j /
, i �= j , P [X̂k+1 = i | X̂k = i] =
Pi,i = 1− λi/
. Let Q= {Q(t); t ≥ 0} be a Pois-
son process with arrival rate
 independent of X̂.
Then, X = {X(t); t ≥ 0} is probabilistically iden-
tical to {X̂Q(t); t ≥ 0}. We call this the “random-
ization result”. The performance of the random-
ization method degrades as
 increases and, for
this reason,
 is usually taken equal to maxi∈ λi .
Let q(k)= (P [X̂k = i])i∈ be the probability row
vector of X̂ at step k. Then, using the randomiza-
tion result, conditioning on the number of Poisson
arrivals by time t , Q(t), and using P [Q(t) = k] =
e−
t (
t)k/k!, we can express p(t) as:

p(t)=
∞∑
k=0

q(k) e−
t (
t)k

k! (34.5)

The row vectors q(k) can be obtained using:

q(k + 1)= q(k)P

where P= (Pi,j)i,j∈ is the transition probability
matrix of X̂. In a practical implementation of the
randomization method, an approximated value
for p(t) can be obtained by truncating the infinite
series of Equation 34.5:

pa(t)=
N∑
k=0

q(k) e−
t (
t)k

k!

The truncation point N can be chosen using
a suitable error criterion, e.g. imposing
‖p(t)T − pa(t)T‖1 ≤ ε, where ε is a small
enough quantity. Since ‖p(t)T − pa(t)T‖1 ≤∑∞

k=N+1 e−
t(
t)k/k!, N can be chosen as:

N =min

{
m≥ 0 :

∞∑
k=m+1

e−
t (
t)k

k! ≤ ε

}
Stable and efficient computation of the Pois-
son probabilities e−
t (
t)k/k! avoiding over-
flows and intermediate underflows is a deli-
cate issue, and several alternatives have been
proposed [35–38]. For large
t , i.e. for stiff
CTMCs, the required truncation point N is ≈

t and, then, the randomization method will
be expensive if the model is large. Although we
have reviewed the randomization method for the
computation of p(t), the method can easily be
adapted to compute with well-controlled error the
ETRR(t) and EARR(t) measures (see, for instance,
Carrasco [39]).

Several variants of the (standard) random-
ization method have been proposed to improve
its efficiency. Miller [40] has used selective
randomization to solve reliability models with de-
tailed representation of error handling activities.
The idea behind selective randomization [41] is to
randomize the model only in a subset of the state
space. Reibman and Trivedi [33] have proposed
an approach based on the multistep concept. The
idea is to compute PM explicitly, where M is the
length of the multistep, and use the recurrence
q(k +M)= q(k)PM to advance X̂ faster for
steps which have negligible contributions to the
transient solution of X. Since, for large
t , the
number of q(k)s with significant contributions is
of the order of

√

t , the multistep concept allows

a significant reduction in the required number
of vector–matrix multiplications. However, when
computing PM , significant fill-in can occur if
P is sparse. Adaptive uniformization [42] is a
recent method in which the randomization rate
is adapted depending on the states in which
the randomized DTMC can be at a given step.
Numerical experiments have shown that adaptive
uniformization can be faster than standard

630 Practices and Emerging Applications

randomization for short to medium mission
times. In addition, it can be used to solve models
with infinite state spaces and not uniformly
bounded output rates. Recently, the combination
of adaptive and standard uniformization has
been proposed to obtain a method which is
faster for most models [38]. Another proposal to
speed up the randomization method is steady-
state detection [31]. Recently, a method based
on steady-state detection which gives error
bounds has been developed [43]. Steady-state
detection is useful for models which reach their
steady state before the largest time at which
the measure has to be computed. Regenerative
randomization [39, 44] is another randomization-
like method recently proposed. The method
requires the selection of a “regenerative” state and
covers rewarded CTMC models with state space
= S ∪ {f1, f2, . . . , fA}, |S| ≥ 2, A≥ 0, where
fi are absorbing states and either all states in S are
transient or S has a single trapping component
and the chosen regenerative state belongs to
that component, having an initial probability
distribution with P [X(0) ∈ S]> 0, and such that
all states are readable. The regenerative state has
to belong to S. A variant of that method, called
bounding regenerative randomization [45], allows
the computation of bounds for reliability-like
measures. For a class of models, including typical
failure/repair models, a natural selection for the
regenerative state exists and, with that selection,
the bounding regenerative randomization method
is fast and seems to obtain tight bounds.

Available numerical methods [46–54] for the
computation of the CRD(t, s) measure are ex-
pensive and, when the model is stiff, their ap-
plicability is limited to CTMCs of small size.
Most of those methods [46, 48, 50, 51, 53, 54] are
based on the randomization result. Some of them
[50, 51, 54] allow both reward rates and impulse
rewards. The methods described in Nabli and
Sericola [48] and Qureshi and Sanders [51] have
been proved to be numerically stable. As dis-
cussed in Section 34.2, the interval availability
distribution IAVD(t, p) measure can be seen as
a particular case of the CRD(t, s) measure and
special numerical methods have been developed

to compute it [55–58]. Many of those methods
are based on the randomization result and are
particularizations of methods for the computation
of CRD(t, s).

34.5 The Largeness Problem

The modeling of fault-tolerant systems of even
moderate complexity typically requires large
CTMCs. Furthermore, the size of the CTMC tends
to grow fast with the complexity of the system.
That phenomenon is known as the largeness or
state space explosion problem. Approaches to
deal with the largeness problem include state
aggregation, bounding methods, and “on-the-fly”
solution techniques. In state aggregation, symme-
tries of the system are exploited to generate CTMC
models of reduced size from a suitable model
specification formalism making explicit those
symmetries (see, for instance, Chiola et al. [59]
and Sanders and Meyer [60]). Bounding methods
compute bounds for the measure of interest using
detailed knowledge of the CTMC model in a
subset of states. For the bounds to be tight the
subset should include the “more likely” states of
the model. On-the-fly solution techniques (see
Deavours and Sanders [61] and references cited
therein) reduce memory requirements by avoiding
the storage of the transition rate matrix of the
CTMC. All three approaches can be combined. In
the following, we will review bounding methods.
X will denote the “exact” CTMC.

The measures ETRR(t), EARR(t), and
CRD(t, s) are easy to bound. Let G be a proper
subset of the state space of the rewarded CTMC
X. Let Xlb be the rewarded CTMC with state
transition diagram obtained from that of X by
deleting the states in −G, adding an absorbing
state a and directing to a the transition rates of
X from states i ∈G to −G; having an initial
probability distribution in G equal to that of X

and an initial probability in a equal to P [X(0) ∈
−G]; and having a reward rate structure with
the same reward rates as X for the states in G and
a reward rate rlb ≤mini∈ ri for state a. LetXub be
the rewarded CTMC differing fromXlb only in that

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 631

a reward rate rub ≥maxi∈ ri is assigned to the
absorbing state a. Then, the ETRR(t) and EARR(t)
measures for Xlb lower bound the corresponding
measures for X and the ETRR(t) and EARR(t)
measures for Xub upper bound the corresponding
measures for X. Also, the CRD(t, s) measure
for Xub lower bounds the CRD(t, s) measure
for X, and the CRD(t, s) measure for Xlb upper
bounds the CRD(t, s) measure for X.

Bounding the CRDTE(s) measure is slightly
more complex. Let G be a proper subset of B (X
has state space B ∪ {a}, where a is an absorbing
state). Let Xlb be the CTMC with state transition
diagram obtained from that of X by deleting the
states in B −G, adding an absorbing state b and
directing to b the transition rates of X from states
i ∈G to B −G; having an initial probability
distribution in G ∪ {a} identical to that of X and
an initial probability in b equal to P [X(0) ∈ B −
G]; and having a reward rate structure over G ∪
{b} with the same reward rates as X for the states
in G and any reward rate > 0 for state b. Then, the
CRDTE(s) measure for Xlb with subset “B” equal
to G ∪ {b} lower bounds the CRDTE(s) measure
for X. Let Xub be the CTMC with state transition
diagram obtained from that of X by deleting the
states in B −G and directing the transition rates
from states i ∈G to a; having an initial probability
distribution in G identical to that of X and an
initial probability in a equal to P [X(0) ∈ (B −
G) ∪ {a}]; and having a reward rate structure over
G with the same reward rates as X. Then, the
CRDTE(s) measure for Xub with subset “B” equal
to G upper bounds the CRDTE(s) measure for X.

Bounding methods for the ESSRR measure
are more sophisticated and have been developed
recently [62–68]. We will review the method with
state duplication described by Muntz et al. [66],
with generalizations which use results obtained
by Carrasco [62] and Mahévas and Rubino [65].
The method can be easily implemented using a
general-purpose Markovian modeling tool such as
METFAC-2.1. The method assumes X irreducible
and requires to find a partition

⋃M
k=0 Ck of with

the following properties:

P1. |C0| = 1.

P2. For each i ∈ Ck , 1≤ k ≤M , there exists a path
within Ck going from i to the “left” (subset⋃k−1

l=0 Cl).

The method obtains the bounds using detailed
knowledge of X in a subset G=⋃K

k=0 Ck , K <

M of , and computes the bounds using two
CTMCs Xlb, Xub having the same state transition
diagram and differing only in their reward rate
structure. The state transition diagram of those
CTMCs includes “bounding” transition rates f+k,l ,
1≤ k <M , 1≤ l ≤M − k and g−k , 1≤ k ≤M .
The transition rate f+k,l has to upper bound
maxi∈Ck λi,Ck+l . If all states i ∈ Ck have a non-
null transition rate to the left λ

i,
⋃k−1

l=0 Cl
, then any

lower bound > 0 for mini∈Ck λi,
⋃k−1

l=0 Cl
can be

taken as g−k . Otherwise, it can be taken as g−k any
lower bound> 0 for mini∈Ck qi/hi , where qi is the
probability that, starting at state i, X will exit Ck

through the left, and hi is the mean holding time
of X in Ck , assuming entry in Ck through state
i. Obtaining such a lower bound may be difficult,
but it is theoretically possible because of property
P2 of the partition. The CTMCs Xlb and Xub have
state space G ∪ {c1, c2, . . . , cM}, transition rates
between states in G as X, transition rates from
states i ∈G to states ck equal to λi,Ck , transition
rate from each state ck to each state cl with l > k

equal to f+k,l−k , a transition rate from each state

ck , k > 2 to ck−1 equal to g−k , and a transition rate
from c1 to o, o being the state in C0, equal to g−1 .
Figure 34.4 illustrates the state transition diagram
of Xlb and Xub. The states in G of CTMCs Xlb and
Xub have associated with them the same reward
rates as X; the states ck have associated with them
a reward rate equal to rlb, where rlb ≤mini∈ ri ,
in Xlb, and a reward rate equal to rub, where rub ≥
maxi∈ ri , in Xub. Then, the ESSRR measure for
Xlb and Xub lower and upper bounds, respectively,
the ESSRR measure for X. A situation in which
the bounding method can be efficient, i.e. can give
tight bounds with moderate values of K , is when
transitions to the right (i.e. from states i ∈ Ck , 0≤
k <M , to

⋃M
l=k+1 Cl) are “slow” (have small rates)

and increase the index k moderately, and there
exists a “fast” path (made up of “fast” transitions)

632 Practices and Emerging Applications

cM _ 1 cMc3c2c1

o

G

���
f +

_ 1,1M
f +

2,1f +
1,1

f +
1,2

g
_

2 g
_

3 g
_

M
g

_

1

Figure 34.4. State transition diagram of the CTMCs bounding the ESSRR measure

within Ck to the left from any state i ∈ Ck , 1≤ k ≤
M , which should allow the derivation of transition
rates g−k significantly larger than the transition
rates f+k,l , as it is desirable. This is typically the
case for failure/repair models when Ck includes
the states with exactly k failed components, since,
for these models, failure rates are typically much
smaller than repair rates.

Bounds for the ECRTE measure can be
obtained using the previously described bounding
method for the ESSRR measure. First, note
that ECRTE= αSECRTE′, where ECRTE′ is the
expected cumulative reward till exit of the subset
B of the rewarded CTMC X′ differing from X

only in that its initial probability distribution
restricted to B has been scaled so that the
initial probabilities of the states in B add up
to 1, i.e. P [X′(0)= i] = αi/αS = γi , i ∈ B, and
the initial probability of the absorbing state a

is 0. Let X′′ be the irreducible rewarded CTMC
whose state transition diagram is obtained from
that of X′ by adding a transition rate from state
a to each state i ∈ B with value γi
, where

is sufficiently large, for instance
=maxi∈B λi ,
and has a reward rate structure with the same
reward rates as X for the states in B and a reward
rate 0 for state a. Let ECTTE′ be the expected
cumulative time till exit of B of X′, let ESSRR′′ be
the expected steady-state reward rate of X′′, and
let p′′B be the steady-state probability of B in X′′.
Using regenerative process theory [69], taking as
regeneration points the times at which X′′ enters

a, we have:

ESSRR′′ = ECRTE′

ECTTE′ + 1/

p′′B =
ECTTE′

ECTTE′ + 1/

from which we can obtain:

ECRTE′ = ESSRR′′

(1− p′′B)

Then, we can use the previously described
bounding method for the ESSRR measure to
obtain lower ([ESSRR′′]lb, [p′′B]lb) and upper
([ESSRR′′]ub, [p′′B]ub) bounds for ESSRR′′ and
p′′B , and, from them, obtain the following bounds
for the ECRTE measure:

[ECRTE]lb = αS
[ESSRR′′]lb

(1− [p′′B]lb)

[ECRTE]ub = αS
[ESSRR′′]ub

(1− [p′′B]ub)

34.6 A Case Study
This section illustrates some of the techniques
reviewed in the previous sections with a case
study. The case study involves the computation
of the steady-state unavailability and the unrelia-
bility of a fault-tolerant storage system made up
of N RAID subsystems such as those described

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 633

in Section 34.3. From a reliability point of view,
the system is a series configuration of the RAID
subsystems, i.e. the system is up if and only if
every RAID subsystem is up. Failed components
of up RAID subsystems are repaired by an unlim-
ited number of repairmen with rate µU. However,
a single repairman is available to bring at rate
µD down RAID subsystems to a fully operational
state. In case several RAID subsystems are down,
the RAID subsystem which is brought up is se-
lected at random among them by the repairman.

We will deal first with the computation
of the steady-state unavailability. The model
specification given in Section 34.3 can be trivially
extended to the system under study by using
an independent set of state variables to describe
the state of each RAID subsystem. This has,
however, two main drawbacks. The first one is
that each value of N requires a different model
specification. The second one is that the resulting
CTMC would have 13N states, a number which
grows very fast with N and makes impossible the
analysis of systems with even moderate values of
N . The first problem can be solved and the second
alleviated, by exploiting the fact that all RAID
subsystems have exactly the same behavior and
using a model specification yielding an aggregated
CTMC with fewer states. Such an aggregated
CTMC can be obtained by using state variables
NFOP, NC, ND, NP, NR, NCD, NCP, NCR, NDP,
NPR, NCDP, NCPR, and NDOWN, keeping track of
the number of RAID subsystems in each of the
states listed in Table 34.1. The production rules of
such a model specification can easily be obtained
from the state transition diagram of Figure 34.3,
as illustrated in Figure 34.5, which gives the
production rules corresponding to the transitions
from the state FOP of the state transition diagram
of Figure 34.3. The production rule corresponding
to the transition from state DOWN to state FOP
would have a rate µD, due to the fact that there is a
single repairman to bring down RAID subsystems
to the fully operational state. By defining N as
model parameter and defining as start state the
state in which NFOP has value N and all other
state variables have value 0, a model specification
independent of N can be obtained. Table 34.2

Table 34.2. Size of the aggregated CTMC models for the
computation of the steady-state unavailability of the storage
system as a function ofN

N States Transitions

1 13 53
2 91 689
3 455 4823
4 1820 24 115
5 6188 96 460
6 18 564 327 964
7 50 388 983 892
8 125 970 2 670 564

gives the size of the aggregated CTMCs obtained
from such a model specification. The size of
those CTMCs is substantially smaller than the
size of the non-aggregated CTMCs (for instance,
for N = 8, the non-aggregated CTMC would have
8.157× 108 states while the aggregated CTMC has
125 970 states), but still grows fast with N , making
impossible the analysis of systems with large
values of N due to excessive storage requirements
(the storage requirement for N = 8 was 91 MB).

Bounding methods can be used to reduce fur-
ther the storage requirements and allow the analy-
sis of systems with larger values of N . Given the
structure of the aggregated CTMC, it is possible
to find a partition

⋃M
k=0 Ck with the properties

required by the bounding method for the ESSRR
measure described in Section 34.5, and for which
the bounding method can be efficient. Let NC(s),
ND(s), NP(s), NR(s), and NDOWN(s) be, respec-
tively, the number of up RAID subsystems with
one failed controller in state s, the number of up
RAID subsystems with one failed disk in state
s, the number of up RAID subsystems with one
failed power supply in state s, the number of up
RAID subsystems with one disk under reconstruc-
tion in state s, and the number of down RAID sub-
systems in state s. Let N(s) =NC(s)+ND(s)+
NP(s)+NR(s)+NDOWN(s). Then, an appropri-
ate partition is Ck = {s :N(s)= k}. With this par-
tition, C0 only includes the state in which all
RAID subsystems are in their fully operational
state, and, assuming failure rates much smaller
than µDR, µU, and µD, transitions to the right

634 Practices and Emerging Applications

Figure 34.5. Some production rules of a model specification from which the aggregated CTMC models for the computation of the steady-
state unavailability of the storage system can be obtained

are slow and increase the k index moderately, and
there exists a fast path within Ck to the left from
any state s ∈ Ck , k > 0. To check that, Table 34.3
classifies the different types of events of the model
into “slow” and “fast”, depending on the values
of the transition rates associated with them, and
lists the values by which the event types may
modify N(s) (for each event type, the table gives
the possible values for �N(s, s′)=N(s′)−N(s),
where s and s′ are states such that the event type
causes a transition from s to s′). The possible
values for �N(s, s′) are obtained by analyzing
how the event type may modify NC(s), ND(s),
NP(s), NR(s), and NDOWN(s), taking into account
that an up RAID subsystem cannot have both one
disk failed and one disk under reconstruction.
Thus, for instance, event type 2 will decrement
ND(s) by 1, will increment NDOWN(s) by 1, and
may decrement NC(s) and NP(s) by 1, since the
subsystem including the failed disk could have
had one controller and one power supply failed.
From that table, it is clear that: (1) transitions to
the right are slow and increase the k index by 1,
(2) each state s ∈ Ck , k > 0 with NC(s)+NP(s)+
NR(s)+NDOWN(s) > 0 has a fast transition to the
left due to the end of a disk reconstruction in
an up subsystem, the repair of a controller in an
up subsystem, the repair of a power supply in
an up subsystem, or a global repair of a down
RAID subsystem, and (3) each state s ∈ Ck , k >
0 with NC(s)+NP(s)+NR(s)+NDOWN(s)= 0,
which implies ND(s) > 0, has a fast transition to
a state s′ ∈ Ck with NC(s

′)+ NP(s
′)+NR(s

′)+

NDOWN(s
′) > 0 (because NR(s

′)= 1) due to a disk
repair in an up subsystem, implying with (2) the
existence of a fast path within Ck to the left from
any state s ∈ Ck , k > 0.

The maximum value of N(s) is M = 3N .
Transitions to the right (see Table 34.3) may only
be due to disk failures in up subsystems with
no disk either failed or under reconstruction,
controller failures in up subsystems with no
controller failed, and power supply failures in up
subsystems with no power supply failed, and go
from a subset Ck to a subset Ck+1. Then, as
bounding transition rates to the right we can take:

f+k,1 =N(8λD + 2λC2 + λP)= f

f+k,l = 0 l �= 1

Obtaining appropriate transition rates g−k
(i.e. significantly larger than f) is more dif-
ficult because some states in the subsets Ck ,
1≤ k ≤ 3N do not have a fast transition to the
left. Let C0

k = {s : N(s)= k ∧ NC(s)+NP(s)+
NR(s)+ NDOWN(s)= 0}. Then, the states in C0

k

do not have a fast transition to the left. States
s ∈ C1

k = Ck − C0
k , k > 0 have NC(s)+NP(s)+

NR(s)+ NDOWN(s) > 0 and, therefore, have a fast
transition to the left.

For N < k ≤ 3N , s ∈ Ck , ND(s)≤ N implies
NC(s)+ NP(s)+NR(s)+ NDOWN(s) > 0 and
C0
k = ∅. Then, for N < k ≤ 3N , all states in Ck

have a fast transition to the left and we can take a
lower bound > 0 for the transition rate to the left
from any state s ∈ Ck as g−k . Since states s with

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 635

Table 34.3. Event types and properties in the CTMC model for the computation of the steady-state
unavailability of the storage system

Event type Description Slow/fast �N(s, s′)

1 Disk failure in up subsystem with no disk slow 1
either failed or under reconstruction

2 Disk failure in up subsystem with slow −2,−1, 0
one disk failed

3 Failure of a disk which is not under reconstruction slow −2,−1, 0
in up subsystem with one disk under reconstruction

4 Failure of the disk under reconstruction in up slow 0
subsystem with one disk under reconstruction

5 Covered controller failure in up subsystem slow 1
with no controller failed

6 Uncovered controller failure in up subsystem slow −1, 0, 1
with no controller failed

7 Controller failure in up subsystem with slow −2,−1, 0
one controller failed

8 Covered power supply failure in up subsystem slow 1
with no power supply failed

9 Uncovered power supply failure in up subsystem slow −1, 0, 1
with no power supply failed

10 Power supply failure in up subsystem slow −2,−1, 0
with one power supply failed

11 Disk repair in up subsystem fast 0
12 End of disk reconstruction in up subsystem fast −1
13 Controller repair in up subsystem fast −1
14 Power supply repair in up subsystem fast −1
15 Global repair of down subsystem fast −1

NC(s) > 0 have a transition rate to the left ≥µU
(because in those states at least one controller of
an up subsystem is being repaired), states s with
NP(s) > 0 have a transition rate to the left ≥µU
(because in those states at least one power supply
of an up subsystem is being repaired), states s

with NR(s) > 0 have a transition rate to the left
≥µDR (because in those states at least one disk
of an up subsystem is under reconstruction), and
states s with NDOWN(s) > 0 have a transition rate
to the left ≥ µD (because in those states a down
RAID subsystem is being brought up), we can take
g−k =min{µDR, µU, µD} = g1.

For 1≤ k ≤N , C0
k �= ∅ (C0

k includes just the
state in which there are k up RAID subsystems
with only one disk failed and the remaining N − k

RAID subsystems are in their fully operational
state), and not all states in Ck have a fast transition

to the left. However, the existence of a fast path
within Ck to the left allows us to obtain a “large”
lower bound >0 for mins∈Ck qs/hs , where qs is
the probability that, starting at s, X will exit Ck

through the left, and hs is the mean holding time
of X in Ck , assuming entry in Ck through s, and
that lower bound can be used as g−k . To derive that
lower bound we will use the following two results,
which can easily be proved.

Lemma 1. Let Z be a transient CTMC with
state space B ∪ {aL, aR}, where aL and aR are
absorbing states and all states in B are transient,
andP [Z(0) ∈ B] = 1. Let PL = limt→∞ P [Z(t)=
aL] and PR = limt→∞ P [Z(t) = aR] (PL and PR
are, respectively, the probabilities that Z will be
absorbed in aL and aR). Denote by gi the transition
rate from i ∈ B to aL and denote by fi the

636 Practices and Emerging Applications

transition rate from i ∈ B to aR. Assume gi > 0,
i ∈ B, let g− ≤mini∈B gi , g− > 0, and let f+ ≥
maxi∈B fi . Then, PL ≥ g−/(g− + f+).

Lemma 2. Let Z be a transient CTMC with state
space B ∪ {a}, where a is an absorbing state and
all states in B are transient, and P [Z(0) ∈ B] = 1.
Let gi , i ∈ B denote the transition rate from i to
a, assume gi > 0, i ∈ B, and let g− ≤mini∈B gi ,
g− > 0. Let h=∑i∈B

∫∞
0 P [Z(t)= i] dt be the

mean time to absorption of Z. Then, h≤ 1/g−.

Let s ∈ C0
k , 1≤ k ≤N . As noted before, s is the

state in which there are k up RAID subsystems
with only one disk failed and the remaining N − k

RAID subsystems are in their fully operational
state. Let us call that state sk . The repair of a disk
in sk will lead to a state s′ with N(s′)= N(sk)

(see Table 34.3) and NR(s
′) > 0 and, then, s′ ∈ C1

k .
This implies that sk has a transition rate ≥ kµU
to C1

k . In addition, the transition rate from sk to
the right is ≤f . Let q0

sk
be the probability that,

starting at sk , X will exit C0
k through C1

k , and let
h0
sk

be the mean holding time of X in sk . Then,
using Lemmas 1 and 2 we have:

q0
sk
≥ kµU

kµU + f
1≤ k ≤N (34.6)

h0
sk
≤ 1

kµU
1≤ k ≤N (34.7)

Let now s ∈ C1
k , 1≤ k ≤N . Such a state has a

transition rate to the left ≥g1 and a transition rate
to the right ≤f . Furthermore, s has a transition
rate ≤NλDR to C0

k . This can be proved by noting
that the only event types which may lead from s

to a state s′ ∈ Ck are the event types 2, 3, 4, 6, 7, 9,
10, and 11 listed in Table 34.3. Event types 2, 3, 6,
7, 9, and 10 lead to states s′ with NDOWN(s

′) > 0,
which cannot belong to C0

k . Event type 11 leads
to a state s′ with NR(s

′) > 0, which cannot belong
to C0

k . Then, the only event type which may lead
to a state s′ ∈ C0

k is event type 4 and the rate
of that event type is upper bounded by NλDR.
Figure 34.6 clarifies the situation. Then, denoting
by q1

s the probability that, starting at s, X will exit
C1
k through the left, and by h1

s the mean holding
time of X in C1

k , starting at s, it follows from

Lemmas 1 and 2 that:

q1
s ≥

g1

g1 + f +NλDR
s ∈ C1

k , 1≤ k ≤N

(34.8)

h1
s ≤

1

g1
s ∈ C1

k , 1≤ k ≤ N (34.9)

Consider now the state sk . It is clear (see
Figure 34.6) that qsk is lower bounded by
q0
sk

mins ′∈C1
k
q1
s ′ . Then, using Relations 34.6 and

34.8 we have:

qsk ≥
(

kµU

kµU + f

)(
g1

g1 + f +NλDR

)
1≤ k ≤N

Also, taking into account that 1− q1
s , s ∈ C1

k , 1≤
k ≤ N , upper bounds the probability that, starting
at s, X will exit C1

k through C0
k , hsk is upper

bounded (see Figure 34.6) by:

h0
sk
+ max

s ′∈C1
k

h1
s ′ + max

s ′∈C1
k

(1− q1
s ′)
[
h0
sk
+ max

s ′∈C1
k

h1
s ′

+ max
s ′∈C1

k

(1− q1
s ′)
[
h0
sk
+ max

s ′∈C1
k

h1
s ′

+ max
s ′∈C1

k

(1− q1
s ′)[· · ·]

]]
and using Relations 34.7 and 34.9 and 1− q1

s ≤
(f +NλDR)/(g1 + f +NλDR), s ∈ C1

k , 1≤ k ≤
n, which follows from Relation 34.8, we have:

hsk ≤
1

kµU
+ 1

g1
+
(

f +NλDR

g1 + f +NλDR

)
×
[

1

kµU
+ 1

g1
+
(

f +NλDR

g1 + f +NλDR

)
[· · ·]

]
=
(

1

kµU
+ 1

g1

) ∞∑
n=0

(
f +NλDR

g1 + f +NλDR

)n
=
(

1

kµU
+ 1

g1

)(
1

1− f+NλDR
g1+f+NλDR

)

=
(

1

kµU
+ 1

g1

)(
g1 + f +NλDR

g1

)
=
(
kµU + g1

kµUg1

)
×
(
g1 + f +NλDR

g1

)
1≤ k ≤N

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 637

which gives:

qsk

hsk
≥
(

kµU

kµU + f

)(
g1

g1 + f +NλDR

)2

×
(

kµUg1

kµU + g1

)
1≤ k ≤N (34.10)

Let s ∈ C1
k , 1≤ k ≤N . It is clear that qs is lower

bounded by q1
s and, then, using Relation 34.8:

qs ≥ g1

g1 + f +NλDR
s ∈ C1

k , 1≤ k ≤N

(34.11)
On the other hand, 1− q1

s upper bounds the
probability that, starting at s, X will exit C1

k

through C0
k , and, then, we have (see Figure 34.6):

hs ≤ h1
s + (1− q1

s)
[
h0
sk
+ max

s ′∈C1
k

h1
s ′ + max

s ′∈C1
k

(1− q1
s ′)

×
[
h0
sk
+ max

s ′∈C1
k

h1
s ′ + max

s ′∈C1
k

(1− q1
s ′)[· · ·]

]]
s ∈ C1

k , 1≤ k ≤N

and, using Relations 34.7, 34.9 and

1− q1
s ≤

(
f +NλDR

g1 + f +NλDR

)
s ∈ C1

k , 1≤ k ≤N

we get:

hs ≤ 1

g1
+
(

f +NλDR

g1 + f + NλDR

)[
1

kµU
+ 1

g1

+
(

f +NλDR

g1 + f +NλDR

)
[· · ·]

]
= 1

g1
+
(

1

kµU
+ 1

g1

)
×
∞∑
n=1

(
f +NλDR

g1 + f + NλDR

)n

= 1

g1
+
(

1

kµU
+ 1

g1

)(f+NλDR
g1+f+NλDR

1− f+NλDR
g1+f+NλDR

)

= 1

g1
+
(

1

kµU
+ 1

g1

)(
f +NλDR

g1

)
= 1

g1

[
1+ (kµU + g1)(f +NλDR)

kµUg1

]
s ∈ C1

k , 1≤ k ≤N (34.12)

Combining Relations 34.11 and 34.12:

min
s∈C1

k

qs

hs
≥

g1
g1+f+NλDR

1
g1

[
1+ (kµU+g1)(f+NλDR)

kµUg1

]
=
[

kµUg1

kµUg1 + (kµU + g1)(f +NλDR)

]
×
(

g1

g1 + f + NλDR

)
g1 1≤ k ≤N

(34.13)

Finally, combining Relations 34.10 and 34.13 we
obtain, for 1≤ k ≤N :

min
s∈Ck

qs

hs

=min

{
qsk

hsk
, min

s∈C1
k

qs

hs

}

≥min

{(
kµU

kµU + f

)(
g1

g1 + f +NλDR

)2

×
(

kµUg1

kµU + g1

)
,[
kµUg1

kµUg1 + (kµU + g1)(f +NλDR)

]
×
(

g1

g1 + f +NλDR

)
g1

}
=
(

g1

g1 + f +NλDR

)
min

{(
kµU

kµU + f

)
×
(

g1

g1 + f +NλDR

)(
kµUg1

kµU + g1

)
,[

kµUg1

kµUg1 + (kµU + g1)(f +NλDR)

]
g1

}
= g2(k)

and, for 1≤ k ≤N , we can take g−k = g2(k).
It is possible to modify the model specification

of the aggregated model to obtain a model
specification implementing the bounding method
with an int parameter specifying the value of
the K parameter of the bounding method and
another int parameter UB such that, when the
UB parameter has the value yes, a reward rate
1 is assigned to the states of the bounding part
(states c1, c2, . . . , cM) and the generic ESSRR

638 Practices and Emerging Applications

���
C 0

k

C 1
k

sk
Ck _ 1 Ck + 1

���
� �k U�g1

�f

�f� �N DR

Figure 34.6. Known results about the transition rates from states inCk , 1≤ k ≤N

Table 34.4. Bounds for the steady-state unavailability obtained
using the bounding aggregated models forN = 8

K Lower bound Upper bound

1 5.270 7062 × 10−5 1.208 9440 × 10−4

2 5.341 5080 × 10−5 5.352 3252 × 10−5

3 5.341 6410 × 10−5 5.341 6506 × 10−5

4 5.341 6411 × 10−5 5.341 6411 × 10−5

5 5.341 6411 × 10−5 5.341 6411 × 10−5

measure becomes an upper bound for the steady-
state unavailability, and, when that parameter has
the value no, a reward rate 0 is assigned to
the states of the bounding part and the generic
ESSRR measure becomes a lower bound for the
steady-state unavailability. A moderate value of
K is enough to obtain very tight bounds. This is
illustrated in Table 34.4, which gives the bounds
obtained with increasing values of K for N = 8,
λD = 2× 10−6 h−1, λDR = 3× 10−6 h−1, λC2 =
5× 10−6 h−1, λC1 = 8× 10−6 h−1, λP = 6×
10−6 h−1, CC = 0.99, CP = 0.995, µDR = 0.4 h−1,
µU = 0.125 h−1, and µD = 0.02 h−1. Those values
of failure rates, coverages, disk reconstruction
rate, and repair rates will be used thereafter
unless stated otherwise. Table 34.5 gives the size
of the aggregated bounding models for K = 4 as
a function of the number of RAID subsystems N .
The bounding aggregated models are very small
and their size grows very smoothly with N .

The bounding aggregated models allow the
analysis of systems with very large N . Figure 34.7

Table 34.5. Size of the bounding aggregated models for the
computation of the steady-state unavailability for K = 4 as a
function ofN

N States Transitions

1 13 53
2 84 575
3 197 1593
4 270 2158
5 273 2165
≥6 258+ 3N 2135 + 6N

shows the influence of the number of RAID
subsystems N and the coverage to controller
failures CC on the steady-state unavailability.
All results were obtained using K = 4, which
yielded very tight bounds in all cases. As N

increases, the steady-state unavailability increases.
This is to be expected, since with more RAID
subsystems the probability that any of them
is down is larger. Improving the coverage to
controller failures beyond the baseline value CC =
0.99 has a significant impact on the steady-state
unavailability only till CC reaches a value ≈0.999.
Beyond that point, the steady-state unavailability
is little affected.

The unreliability of a RAID subsystem can be
computed as the generic measure CRDTE(s) by
modifying the model specification yielding the
CTMC used for the computation of the steady-
state unavailability of the RAID subsystem so
that the state DOWN is absorbing and a reward
rate 1 is assigned to the up states. That model
specification can be trivially extended to generate

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 639

0.0001

0.01

0.001

10
_5

10
_6

10
_5 0.0001 0.001

1 _
CC

N
N
N

= 1
= 2
= 5

N
N
N

= 10
= 20
= 50

Figure 34.7. Influence of N and CC on the steady-state
unavailability of the storage system

a CTMC from which the unreliability of a storage
system with N RAID subsystems can be computed
by using an independent set of state variables
DF, DR, CF, and PF for each RAID subsystem
and a state variable DOWN to represent that the
system has failed. The number of states of the
resulting CTMC would be 12N + 1, which is
unmanageable for large N . In addition, the model
specification would be different for each value
of N . A model specification independent of N

yielding aggregated CTMCs of much smaller size
can be developed using state variables counting
the number of RAID subsystems in each of the up
states listed in Table 34.1 and a state variable DOWN
representing that the system has failed. Table 34.6
gives the size of the resulting aggregated CTMC
as a function of N . Although smaller than the
aggregated CTMCs which allow the computation
of the steady-state unavailability of the storage
system, the aggregated CTMCs are still too large
to allow the analysis of systems with large N .

The bounding method for the measure
CRDTE(s) described in Section 34.5 can be used
to allow the analysis of systems with large N .
To obtain tight bounds, G has to include the
“more likely” up states. Given the structure of
the aggregated CTMC, a reasonable selection is
to include in G all states s in which the system
is up and NC(s)+ND(s)+NP(s)+NR(s)≤K .

Table 34.6. Size of the aggregated CTMC models for the
computation of the unreliability of the storage system

N States Transitions

1 13 52
2 79 558
3 365 3484
4 1366 15 925
5 4369 58 968
6 12 377 187 096
7 31 825 526 864
8 75 583 1 384 542

Table 34.7. Bounds for the one-year unreliability obtained using
the bounding aggregated models forN = 8

K Lower bound Upper bound

1 9.290 5804 × 10−3 1.423 4973 × 10−2

2 9.314 6951 × 10−3 9.319 9494 × 10−3

3 9.314 7213 × 10−3 9.314 7248 × 10−3

4 9.314 7213 × 10−3 9.314 7213 × 10−3

5 9.314 7213 × 10−3 9.314 7213 × 10−3

Table 34.8. Size of the bounding aggregated models for the
computation of the unreliability of the storage system for K = 4
as a function ofN

N Lower bounding model Upper bounding model

States Transitions States Transitions

1 13 52 13 52
2 67 444 66 421
3 137 1004 136 931
≥4 172 1234 171 1126

It is possible to modify the model specification
of the aggregated unreliability model to obtain a
model specification implementing the bounding
method with an int model parameter specifying
the value of K and another int parameter UB
such that, when that parameter has the value
yes, the upper bounding model is generated
and, when that parameter has the value no, the
lower bounding model is generated. As for the
steady-state unavailability, a moderate value of
K is enough to obtain very tight bounds for the

640 Practices and Emerging Applications

0.01

0.01

0.1

0.001

0.0001
10

_5 0.0001 0.001
1 _

CC

C
C
C
C

P

P

P

P

= 0.99999
= 0.9999
= 0.999
= 0.99

Figure 34.8. Influence ofCC andCP on the one-year unreliabil-
ity of a storage system withN = 10

unreliability. This is illustrated in Table 34.7,
which gives the bounds obtained for the one-year
unreliability, assuming that initially all RAID
subsystems are in their fully operational state,
for increasing values of K and N = 8. Table 34.8
gives the sizes of the lower and upper bounding
aggregated CTMC models for K = 4 and several
values of N . Both models are very small for any N .

As an illustration of the use of the bounding ag-
gregated unreliability models, Figure 34.8 analyzes
the impact of the coverages CC and CP on the one-
year unreliability of a storage system with N = 10,
assuming that initially all RAID subsystems are in
their fully operational state. All results were ob-
tained using K = 4, which gave very tight bounds
in all cases.

34.7 Conclusions

Rewarded CTMC models are a flexible
modeling formalism to evaluate dependabil-
ity/performability measures for fault-tolerant
systems. However, efficient use of that formalism
requires the availability of powerful model
specification and model solution methodologies.
Although considerable advances have been
performed in both directions, much work remains
to be done. This is because increasing complexity

of fault-tolerant systems results in larger and
larger CTMC models, which are both difficult
to specify and expensive to solve. The latter
is particularly true for measures requiring the
computation of transient probabilities and, even
more, for measures with complex probabilistic
structure such as the CRD(t, s) measure. More
efficient numerical methods for the computation
of those measures should be developed. Currently
available approaches to deal with the largeness
problem make feasible the numerical analysis of
models of quite complex systems, as the case study
has illustrated, but further work is required. Also,
development of efficient methods for particular,
but important model classes and measures,
e.g. Suñé and Carrasco [70], should continue.
Combinatorial methods should also be extended
to deal efficiently with wider classes of models
and measures.

References
[1] Iyer RK, Tang D. Experimental analysis of computer

system dependability. In: Pradhan DK, editor. Fault-
tolerant computer system design. Englewood Cliffs, NJ:
Prentice-Hall; 1995. p.282–392.

[2] Laprie JC, Costes A. Dependability: a unifying concept
for reliable computing. Proc 12th IEEE Int Symp on Fault-
Tolerant Computing (FTCS-12); 1982. p.18–21.

[3] Meyer JF. On evaluating the performability of degrad-
able computing systems. IEEE Trans Comput 1980;C-
29(8):720–31.

[4] Meyer JF. Performability of an algorithm for connection
admission control. IEEE Trans Comput 2001;50(7):724–
33.

[5] Abraham JA. An improved algorithm for network
reliability. IEEE Trans Reliab 1979;R-28:58–61.

[6] Aggarwal KB, Misra KB, Gupta JS. A fast algorithm for
reliability evaluation. IEEE Trans Reliab 1975;R-24:83–5.

[7] Amari SV, Dugan JB, Misra RB. A separable method for
incorporating imperfect fault-coverage into combinato-
rial models. IEEE Trans Reliab 1999;48(3):267–74.

[8] Doyle SA, Dugan JB, Patterson-Hine FA. A combinatorial
approach to modeling imperfect coverage. IEEE Trans
Reliab 1995;44(1):87–94.

[9] Dugan JB. Fault trees and imperfect coverage. IEEE Trans
Reliab 1989;38(2):177–85.

[10] Sahner RA, Trivedi KS. Reliability modeling using
SHARPE. IEEE Trans Reliab 1987;R-36(2):186–93.

[11] Neuts MF. Matrix-geometric solutions in stochastic
models. An algorithmic approach. Dover Publications
Inc; 1994.

Markovian Dependability/Performability Modeling of Fault-tolerant Systems 641

[12] Bobbio A, Telek M. A benchmark for PH estimation al-
gorithms: results for acyclic-PH. Commun Stat-Stochast
Models 1994;10(3):661–77.

[13] Beaudry MD. Performance-related reliability measures
for computing systems. IEEE Trans Comput 1978;C-
27(6):540–7.

[14] Blakemore A. The cost of eliminating vanishing markings
from generalized stochastic Petri nets. Proc 3rd IEEE
Int Workshop on Petri Nets and Performance Models
(PNPM89); 1989. p.85–92.

[15] Goyal A, Carter WC, de Souza e Silva E, Lavenberg SS. The
system availability estimator. Proc 16th IEEE Int Symp on
Fault-Tolerant Computing (FTCS-16); 1986. p.84–9.

[16] Lindemann C. DSPNexpress: a software package for the
efficient solution of deterministic and stochastic Petri
nets. Perform Eval 1995;22(1):3–21.

[17] Chiola G, Franceschinis G, Gaeta R, Ribaudo M. GreatSPN
1.7: graphical editor and analyzer for timed and
stochastic Petri nets. Perform Eval 1995;24(1/2):47–68.

[18] Ciardo G, Muppala J, Trivedi K. SPNP: stochastic Petri net
package. Proc 3rd IEEE Int Workshop on Petri Nets and
Performance Models (PNPM89); 1989. p.142–51.

[19] Béounes C, Aguéra M, Arlat J, Bachmann S, Bour-
deau C, Doucet J-E, Kanoun K, Laprie JC, Metze S, Mor-
eira de Souza J, Powel D, Spiesser P. SURF-2: a program
for dependability evaluation of complex hardware and
software systems. Proc 23rd IEEE Int Symp on Fault-
Tolerant Computing (FTCS-23); 1993. p.142–50.

[20] German R, Kelling C, Zimmerman A, Hommel G.
TimeNET: a toolkit for evaluating non-Markovian
stochastic Petri nets. Perform Eval 1995;24(1/2):69–87.

[21] Sanders WH, Obal II WD, Qureshi MA, Widjanarko FK.
The UltraSAN modeling environment. Perform Eval
1995;24(1/2):89–115.

[22] Gilmore S, Hillston J. The PEPA Workbench: a tool to sup-
port a process algebra-based approach to performance
modelling. Proc 7th Int Conf on Modelling Techniques
and Tools for computer performance evaluation; 1994.
Lecture Notes in Computer Science 794. Berlin: Springer-
Verlag. p.353–68.

[23] Hermanns H, Herzog U, Klehmet U, Mertsiotakis V,
Siegle M. Compositional performance modelling with the
TIPtool. Perform Eval 2000;39(1–4):5–35.

[24] Berson S, de Souza e Silva E, Muntz RR. A methodology
for the specification and generation of Markov models.
In: Stewart WJ, editor. Numerical solution of Markov
chains. New York: Marcel Dekker; 1991. p.11–36.

[25] Stewart WJ. Introduction to the numerical solution of
Markov chains. Princeton, NJ: Princeton University Press;
1994.

[26] Barker GP, Plemmons RJ. Convergent iterations for
computing stationary distributions of Markov chains.
SIAM J Alg Discr Meth 1986;7(3):390–8.

[27] Berman A, Plemmons RJ. Nonnegative matrices in the
mathematical sciences. SIAM; 1994.

[28] Suñé V, Domingo JL, Carrasco JA. Numerical iterative
methods for Markovian dependability and performabil-
ity models: new results and a comparison. Perform Eval
2000;39(1–4):99–125.

[29] Young DM. Iterative solution of large linear systems.
New York: Academic Press; 1971.

[30] Heidelberger P, Muppala JK, Trivedi KS. Accelerating
mean time to failure computations. Perform Eval
1996;27/28:627–45.

[31] Malhotra M, Muppala JK, Trivedi KS. Stiffness-tolerant
methods for transient analysis of stiff Markov chains.
Microelectron Reliab 1994;34(11):1825–41.

[32] Malhotra M. A computationally efficient technique for
transient analysis of repairable Markovian systems.
Perform Eval 1995;24(1/2):311–31.

[33] Reibman A, Trivedi KS. Numerical transient analysis of
Markov models. Comput Operat Res 1988;15(1):19–36.

[34] Kijima M. Markov processes for stochastic modeling.
London: Chapman and Hall; 1997.

[35] Bowerman PN, Nolty RG, Schener EM. Calculation of
the Poisson cumulative distribution function. IEEE Trans
Reliab 1990;39(2):158–61.

[36] Fox BL, Glynn PW. Computing Poisson probabilities.
Commun ACM 1988;31(4):440–5.

[37] Knüsel L. Computation of the chi-square and Poisson
distribution. SIAM J Sci Stat Comput 1986;7(3):1022–36.

[38] van Moorsel AP, Sanders WH. Transient solution of
Markov models by combining adaptive & standard
uniformization. IEEE Trans Reliab 1997;46(3):430–40.

[39] Carrasco JA. Computation of bounds for transient mea-
sures of large rewarded Markov models using regen-
erative randomization. Technical report DMSD_99_4.
Universitat Politècnica de Catalunya; 1999. Available at
ftp://ftp-eel.upc.es/techreports. To appear in Comput
Operat Res.

[40] Miller DR. Reliability calculation using randomization
for Markovian fault-tolerant computing systems. Proc
13th IEEE Int Symp on Fault-Tolerant Computing (FTCS-
13); 1983. p.284–9.

[41] Melamed B, Yadin M. Randomization procedures in
the computation of cumulative-time distributions over
discrete state Markov processes. Operat Res 1984;32(4):
926–44.

[42] van Moorsel APA, Sanders WH. Adaptive uniformization.
Commun Stat-Stochast Models 1994;10(3):619–48.

[43] Sericola B. Availability analysis of repairable computer
systems and stationarity detection. IEEE Trans Comput
1999;48(11):1166–72.

[44] Carrasco JA. Transient analysis of large Markov mod-
els with absorbing states using regenerative ran-
domization. Technical report DMSD_99_2. Universitat
Politècnica de Catalunya; 1999. Available at ftp://ftp-
eel.upc.es/techreports

[45] Carrasco JA. Computationally efficient and numerically
stable bounds for repairable fault-tolerant systems. IEEE
Trans Comput 2002;51(3):254–68.

[46] Donatiello L, Grassi V. On evaluating the cumulative
performance distribution of fault-tolerant computer
systems. IEEE Trans Comput 1991;40(11):1301–7.

[47] Islam SMR, Ammar HH. Performability of the hypercube.
IEEE Trans Reliab 1989;38(5):518–26.

[48] Nabli H, Sericola B. Performability analysis: a new
algorithm. IEEE Trans Comput 1996;45(4):491–4.

642 Practices and Emerging Applications

[49] Pattipati KR, Li Y, Blom HAP. A unified framework for
the performability evaluation of fault-tolerant computer
systems. IEEE Trans Comput 1993;42(3):312–26.

[50] Qureshi MA, Sanders WH. Reward model solution
methods with impulse and rate rewards: an algorithm
and numerical results. Perform Eval 1994;20:413–36.

[51] Qureshi MA, Sanders WH. A new methodology for
calculating distributions of reward accumulated during a
finite interval. Proc 26th IEEE Int Symp on Fault-Tolerant
Computing; 1996. p.116–25.

[52] Smith RM, Trivedi KS, Ramesh AV. Performability
analysis: measures, an algorithm, and a case study. IEEE
Trans Comput 1988;37(4):406–17.

[53] de Souza e Silva E, Gail HR. Calculating availability and
performability measures of repairable computer systems
using randomization. J ACM 1989;36(1):171–93.

[54] de Souza e Silva E, Gail HR. An algorithm to
calculate transient distributions of cumulative rate and
impulse based reward. Commun Stat-Stochast Models
1998;14(3):509–36.

[55] Goyal A, Tantawi AN. A measure of guaranteed
availability and its numerical evaluation. IEEE Trans
Comput 1988;37(1):25–32.

[56] Rubino G, Sericola B. Interval availability distribution
computation. Proc 23rd IEEE Int Symp on Fault-Tolerant
Computing (FTCS-23); 1993. p.48–55.

[57] Rubino G, Sericola B. Interval availability analysis
using denumerable Markov processes: application to
multiprocessor subject to breakdowns and repair. IEEE
Trans Comput 1995;44(2):286–91.

[58] de Souza e Silva E, Gail HR. Calculating cumulative
operational time distributions of repairable computer
systems. IEEE Trans Comput 1986;C-35(4):322–32.

[59] Chiola G, Dutheillet C, Franceschinis G, Haddad S.
Stochastic well-formed colored nets and symmetric

modeling applications. IEEE Trans Comput 1993;42(11):
1343–60.

[60] Sanders WH, Meyer JF. Reduced base model construction
methods for stochastic activity networks. IEEE J Select
Areas Commun 1991;9(1):25–36.

[61] Deavours DD, Sanders WH. “On-the-fly” solution tech-
niques for stochastic Petri nets and extensions. IEEE
Trans Software Eng 1998;24(10):889–902.

[62] Carrasco JA. Bounding steady-state availability models
with group repair and phase type repair distributions.
Perform Eval 1999;35(3/4):193–214.

[63] Lui JCS, Muntz R. Evaluating bounds on steady-state
availability of repairable systems from Markov models.
In: Stewart WJ, editor. Numerical solution of Markov
chains. New York: Marcel Dekker; 1991. p.435–53.

[64] Lui JCS, Muntz RR. Computing bounds on steady state
availability of repairable computer systems. J ACM
1994;41(4):676–707.

[65] Mahévas S, Rubino G. Bound computation of depend-
ability and performance measures. IEEE Trans Comput
2001;50(5):399–413.

[66] Muntz RR, de Souza e Silva E, Goyal A. Bounding
availability of repairable computer systems. IEEE Trans
Comput 1989;38(12):1714–23.

[67] Semal P. Refinable bounds for large Markov chains. IEEE
Trans Comput 1995;44(10):1216–22.

[68] de Souza e Silva E, Ochoa PM. State space exploration in
Markov models. Perform Eval Rev 1992;20(1):152–66.

[69] Ross SM. Stochastic processes. New York: John Wiley &
Sons; 1983.

[70] Suñé V, Carrasco JA. A failure-distance based method
to bound the reliability of non-repairable fault-tolerant
systems without the knowledge of minimal cuts. IEEE
Trans Reliab 2001;50(1):60–74.

Random-request Availability

Ch
ap

te
r3

5Kang W. Lee

35.1 Introduction
35.2 System Description and Definition
35.3 Mathematical Expression for the Random-request Availability
35.3.1 Notation
35.3.2 Mathematical Assumptions
35.3.3 Mathematical Expressions
35.4 Numerical Examples
35.5 Simulation Results
35.6 Approximation
35.7 Concluding Remarks

35.1 Introduction

When allowing repair of a failed system, it is
not meaningful to speak of the system reliability.
The difficulty lies in the fact that system reliability
does not allow consideration of system repairs.
Consequently, since it should be to our advantage
to repair failed systems as rapidly as possible,
especially if their operation is critical to some
desired objective, we need some additional
measure of system performance that considers the
effects of repair. For such a measure, “availability”
has been proposed as a fundamental quantity
of interest. It is a more appropriate measure
than reliability for measuring the effectiveness of
maintained systems because it includes reliability
as well as maintainability. Lie et al. [1] surveyed
and systematically classified the literature relevant
to availability.

Three different widely used availability mea-
sures are: point availability, interval availability,
and steady-state availability. Their definitions can
be seen in various literature [2–4]. Those measures
well represent a fraction of time that a system
is in an operational state. In addition to these
traditional availabilities, there are several other
kinds of availabilities such as:

• mission availability, work mission availability,
and joint availability [5];
• computation availability [6];
• equivalent availability [7].

These special measures have been proposed
to suitably represent availabilities for specific
application systems.

Another special availability measure, called
random-request availability, has been proposed by
Lee [8]. A repairable system is considered, which
requires the performance of several tasks arriving
randomly during the fixed mission duration.
Examples include:

• a fault-tolerance mechanism which is required
to handle errors resulting from transient er-
rors (called single-event upsets) and perma-
nent failures of system components;
• an information-measuring system which op-

erates continuously and delivers information
on user demand only at some random mo-
ments of time.

The stochastic model has already been developed
[8], providing closed-form mathematical expres-
sions for random-request availability. Since the
joint availability gives the probability only at two
distinctive times, the proposed measure of Lee

643

644 Practices and Emerging Applications

can be considered as a useful extension of the
joint availability. It is also general in the sense
that the conventional interval availability can be
represented as a special case.

The important characteristic of random-
request availability is to introduce random task
arrival into the availability measure. The task
arrival rate might be constant, or a time-
dependent function. Consider a packet switch
network system, which has periods of operation
and repair that form an alternating process.
The arrival rate of incoming packets might not be
constant. During the busy hour, the system can
have an increased packet arrival rate. The random-
request availability must have different values
according to the average task arrival rate and
arrival rate patterns. Therefore, the effect of
“task arrival” element on the random-request
availability value needs to be investigated. Due to
the computational complexity, a simulation
method using ARENA simulation language is
used to get a solution. The simple approximation
method based on interval availability is suggested.
Its accuracy turns out to vary depending on
the operational requirements of the system, the
average task arrival rate, and the average number
of on–off cycles during the mission time.

In Section 35.2, the three system elements
for the stochastic model are described, and
the random-request availability is defined. Sec-
tions 35.3 and 35.4 present mathematical expres-
sions for random-request availability and numer-
ical examples, respectively. In Section 35.5, sev-
eral properties of random-request availability are
derived from the simulation results. Section 35.6
presents the simple approximation method and
discusses its accuracy. Section 35.7 contains con-
cluding remarks.

35.2 System Description and
Definition
The stochastic model of Lee [8] is interesting and
potentially important because it provides closed-
form mathematical expressions for random-
request availability into which multiple system

factors can be incorporated. The three elements of
the system around which this model is developed
are as follows.

1. Random Task Arrivals. A system is presented
with a stream of tasks which arrive according
to some random process. Examples include an
air traffic control system which has to deal with
arriving aircraft and a tank system which is
confronted with an enemy which must be engaged
in battle. Since the rate at which tasks arrive and
the arrival rate pattern affect the overall system
effectiveness, the task arrival process is included
as one element of the model.

2. System State. At each task arrival time, the
system can be in one of two states—on or off.
If the system is on, it is operating; else the system is
down (under repair). The system is in service for
a random time Ton, until it fails. When it fails, it
is then off for a random time Toff. It repeats the
cycle of being on for a random time and being
off for another random time. Successive times in
the on state and in the off state are statistically
independent.

3. Operational Requirements of the System.
For mission success, it might not be necessary to
complete all the tasks arriving randomly during
the mission time, i.e. completion of parts of
the arriving tasks might lead to mission success.
For the operational requirements of the system,
three systems are introduced: (a) perfect system,
(b) r(k)-out-of-k system, and (c) scoring system.

The random-request availability is defined for
each of the following three systems.

a. The Perfect System. The system needs to
be in the on state at every task arrival time.
The random-request availability is defined as the
probability that the system is on at every task
arrival time.

b. The r(k)-out-of-k System. The system needs
to be in the on state at the times of at least some
task arrivals. The minimum number, denoted by
r(k), depends on the number of task arrivals, k.
The random-request availability is defined as the
probability that the system is on at the times of at
least “r(k) out of k” task arrivals.

c. The Scoring System. If the system is in the on
state at j (j ≤ k) out of k task arrival times, a score

Random-request Availability 645

Sj,k is given to denote the probability of successful
completion of the mission. The random-request
availability is defined as the sum of the products
from the probability of the system being on
at j out of k task arrival times and the score
Sj,k .

The scoring system includes the perfect and the
r(k)-out-of-k systems as special cases. The perfect
system is the case of Sj,k = 1 for j = k and
0 otherwise. For the r(k)-out-of-k system we
can set Sj,k = 1 for j ≥ r(k) and 0 otherwise.
The conventional interval availability measure is
a special case of the scoring system, where Sj,k =
j/k.

35.3 Mathematical Expression
for the Random-request
Availability

35.3.1 Notation

A(T) random-request availability for mission
of length T

A(t1, t2, . . . , tk)

random-request availability, given task
arrival times t1, t2, . . . , tk

M average number of on–off cycles during
the mission time, M = T/(1/α + 1/β)

M(T) mean value function of a
non-homogeneous Poisson process

m(t) task arrival rate at time t ,
m(t)= dM(t)/dt

N(T) number of tasks arriving during time T

r(k) minimum number of tasks which must
be in the on state, given k task arrivals

T mission duration time, a constant
Z(t) indicator variable for the system state at

time t , 0: off state, 1: on state
α rate parameter of the exponential

distribution describing the on state of
the system

β rate parameter of the exponential
distribution describing the off state of
the system.

35.3.2 Mathematical Assumptions

1. Task arrival is a non-homogeneous Poisson
process with mean value function M(t).

2. The random variable representing the system
state (on or off) follows a time homogeneous
Markov process. The sojourn time in each
state is negatively exponentially distributed.

3. The mission time is of fixed duration (T).
4. A mission is defined to occur only when there

are task arrivals.

35.3.3 Mathematical Expressions

The expression for random-request availability is
given by Lee [8] as:

A(T)=
{ ∞∑

k=1

[∫ ∫
· · ·
∫

(0≤t1<t2<···<tk≤T)
A(t1, t2, . . . , tk)

×
k∏

i=1

m(ti) dt1 dt2 · · · dtk
]

exp[−M(T)]
}

× {1− exp[−M(T)]}−1 (35.1)

where A(t1, t2, . . . , tk) can be expressed as
follows:

A(t1, t2, . . . , tk)

=

Pr{z(t1)= 1, z(t2)= 1, . . . , z(tk)= 1},
for the perfect system∑

(
∑k

l=1 il≥r(k),il=0 or 1)

Pr{z(t1)= i1,

z(t2)= i2, . . . , z(tk)= ik},
for the r(k)-out-of-k system

k∑
j=0

Sj,k

[∑
(
∑k

l=1 il=j)
Pr{z(t1)= i1,

z(t2)= i2, . . . , z(tk)= ik}
]
,

for the scoring system
(35.2)

Using the Markov and time-homogeneous prop-
erties, Pr{z(t1)= i1, z(t2)= i2, . . . , z(tk)= ik},
il = 0 or 1, l = 1, 2, . . . , k can easily be derived.

646 Practices and Emerging Applications

Table 35.1. Mathematical expressions forA(t1, t2)

System A(t1, t2) Mathematical expression

Perfect Pr{z(t1)= 1, z(t2)= 1}
(

β

α + β
+ α

α + β
exp[−(α + β)(t1)]

)
×
(

β

α + β
+ α

α + β
exp[−(α + β)(t2 − t1)]

)
r(k)-out-of-k Pr{z(t1)= 1, z(t2)= 1}

+ Pr{z(t1)= 1, z(t2)= 0}
+ Pr{z(t1)= 0, z(t2)= 1}

(
β

α + β
+ α

α + β
exp[−(α + β)(t1)]

)
×
(

β

α + β
+ α

α + β
exp[−(α + β)(t2 − t1)]

)
+
(

β

α + β
+ α

α + β
exp[−(α + β)(t1)]

)
×
(

α

α + β
− α

α + β
exp[−(α + β)(t2 − t1)]

)
+
(

α

α + β
− α

α + β
exp[−(α + β)(t1)]

)
×
(

β

α + β
− β

α + β
exp[−(α + β)(t2 − t1)]

)
Scoring 1

2 [Pr{z(t1)= 1, z(t2)= 0}
+ Pr{z(t1)= 0, z(t2)= 1}]
+ Pr{z(t1)= 1, z(t2)= 1}

1

2

[(
β

α + β
+ α

α + β
exp[−(α + β)(t1)]

)
×
(

α

α + β
− α

α + β
exp[−(α + β)(t2 − t1)]

)
+
(

α

α + β
− α

α + β
exp[−(α + β)(t1)]

)
×
(

β

α + β
− β

α + β
exp[−(α + β)(t2 − t1)]

)]
+
(

β

α + β
+ α

α + β
exp[−(α + β)(t1)]

)
×
(

β

α + β
+ α

α + β
exp[−(α + β)(t2 − t1)]

)

Table 35.2. System parameters

• Task arrival (three types, see Figure 35.1) m1(t)= 0.016t
m2(t)= 0.08
m3(t)= 0.16− 0.016t

• System state α = 1
β = 5

• Operational requirements of the system r(k)=
{
[k/2], k even
[k/2] + 1, k odd

Sj,k = j/k

•Mission duration time T = 10

Random-request Availability 647

For instance, given k = 2, r(2)= 1 and Sj,2 = j/2,
A(t1, t2) can be expressed as shown in Table 35.1.

35.4 Numerical Examples
Assume the system parameters are given as in
Table 35.2.

Two examples are given. First one assumes the
system is in the on state at time 0. In the second
example, the system state is assumed to be in the
off state at time 0. Tables 35.3 and 35.4 summarize
the results. All the integrations are done using
“Mathematica” software.

35.5 Simulation Results
In this section, we want to show some properties
of the random-request availability. The important
characteristic of the random-request availability
is that the random task arrival is included
in the model as one of the system elements.
Therefore, the effect of the “task arrival” element
on the random-request availability needs to be
investigated. If the mean number of task arrivals
is large, the computational complexity is high.
Even if the mission has an average of two task
arrivals under the Poisson arrival assumption, the
seventh order of multiple integral is required to
get a solution with error bound less than 10−2.
Therefore, a simulation method using ARENA
simulation language is used to get a solution.
The simulation results for the first example of
Section 35.4 are compared with the analytical

A
rr

iv
al

ra
te 0.16

Time10

0.08 m t2()

m t3()

m t1()

Figure 35.1. Task arrival rate

ones in Table 35.5. The simulation results are the
average of 107 runs after some warm-up periods.
We can see that the differences between two results
are less than 10−3.

Varying the average task arrivals rate (1, 5, and
10), type of task arrival rate (constant, increasing,
and decreasing), and the length of mean sojourn
times in the on and off states ([0.1, 0.02], [1, 0.2],
and [50/6, 10/6]), the random-request availability
is obtained for each of the following three systems:
perfect, r(k)-out-of-k, and scoring. Other system
parameters are the same as those of Table 35.2.
Table 35.6 summarizes the results, which show the
following facts.

1. It can be seen that the random-request
availability has different values depending on the
average task arrival rate. We can also see that the
effect of task arrival rate is different according
to the operational requirements of the system.
For the perfect system, a higher average task
arrival rate gives a lower value of availability, and
vice versa. As the average arrival rate increases,
the values for the r(k)-out-of-k and the scoring
systems can be increasing, decreasing, or even
constant depending on the respective r(k) value
and score Sj,k for a given k.

2. The random-request availability has different
values according to the task arrival rate patterns,
even if missions have the same average task ar-
rivals during the mission time. For the system be-
ing on at time 0, m3(t) andm1(t) provide the high-
est and lowest random-request availabilities, re-
spectively. If the system is off at time 0, m1(t) pro-
duces a higher random-request availability value
than m2(t) and m3(t). These properties come di-
rectly from the facts that m3(t) gives a higher task
arrival rate at the beginning part of the mission
than at the latter part and m1(t) gives a higher
task arrival rate at the latter part of the mission.

3. The above property 2 can be seen more
clearly when the average number of on–off cycles
(M) during the mission time has a small value,
relative long sojourn times in the on and/or off
states compared to the mission time. That is,
for systems having small M the random-request
availabilities have significantly different values
according to the task arrival rate patterns, even

648 Practices and Emerging Applications

Table 35.3. Example 1: results

System Task arrival rate

m1(t)= 0.016t m2(t)= 0.08 m3(t)= 0.16− 0.016t

Perfect 0.776 0.779 0.782
r(k)-out-of-k 0.876 0.879 0.880
Scoring 0.833 0.836 0.838

Table 35.4. Example 2: results

System Task arrival rate

m1(t)= 0.016t m2(t)= 0.08 m3(t)= 0.16− 0.016t

Perfect 0.775 0.758 0.742
r(k)-out-of-k 0.875 0.865 0.857
Scoring 0.833 0.819 0.806

Table 35.5. Comparison of the simulation and the analytical results

System Task arrival rate

m1(t)= 0.016t m2(t)= 0.08 m3(t)= 0.16 − 0.016t

Analytic Simulation Analytic Simulation Analytic Simulation

Perfect 0.776 0.777 0.779 0.779 0.782 0.782
r(k)-out-of-k 0.876 0.876 0.879 0.879 0.880 0.880
Scoring 0.833 0.833 0.836 0.837 0.838 0.838

though there are the same average number of task
arrivals during the mission time. All the while, the
random-request availabilities for systems having
large M have almost the same values irrespective
of the arrival rate patterns if missions have the
same average task arrivals during the mission
time.

4. The simulation results show that the random-
request availability has the lowest value under
the perfect system and the highest value under
the r(k)-out-of-k systems. From Table 35.6, we
can also see that the effect of arrival rate pattern
on the random-request availability value is more
significant in the perfect system than in the r(k)-
out-of-k and scoring systems.

5. As mentioned before, the random-request
availability of the scoring system with Sj,k =
j/k is just a conventional interval availability.
For example, in Table 35.6, the random-request
availabilities of the scoring system with α =
6/50 and β = 6/10 are 0.841, 0.857, and 0.874,

respectively according to the task arrival rate
patterns, m1(t), m2(t), and m3(t). These values are
just conventional interval availabilities, which can
be calculated as:∫ 10

0
Pr[z(t)= 1] m(t)

M(T)
dt

=

1

10

∫ 10

0

(
5

6
+ 1

6
exp

(
−36

50
t

))
dt

= 0.841, for m(t)=m1(t)

1

50

∫ 10

0

(
5

6
+ 1

6
exp

(
−36

50
t

))
t dt

= 0.857, for m(t)=m2(t)

1

50

∫ 10

0

(
5

6
+ 1

6
exp

(
−36

50
t

))
×(10− t) dt

= 0.874, for m(t)=m3(t)

Random-request Availability 649

Table 35.6. Simulation results for the random-request availability

Average task arrival rate = 1

m1(t)= 0.02t m2(t)= 0.1 m3(t)= 0.2− 0.02t

*
α = 10 Perfect 0.758 0.759 0.758
β = 50 r(k)-out-of-k 0.887 0.887 0.887
(M = 83.33) Scoring 0.834 0.834 0.834

*
α = 1 Perfect 0.761 0.764 0.770
β = 5 r(k)-out-of-k 0.833 0.886 0.889
(M = 8.33) Scoring 0.833 0.836 0.840

*
α = 6/50 Perfect 0.792 0.808 0.831
β = 6/10 r(k)-out-of-k 0.873 0.891 0.903
(M = 1) Scoring 0.841 0.857 0.874

**
α = 6/50 Perfect 0.739 0.632 0.546
β = 6/10 r(k)-out-of-k 0.840 0.772 0.692
(M = 1) Scoring 0.799 0.716 0.634

Average task arrival rate = 5

m1(t)= 0.1t m2(t)= 0.5 m3(t)= 1− 0.1t

*
α = 10 Perfect 0.434 0.436 0.435
β = 50 r(k)-out-of-k 0.967 0.968 0.968
(M = 83.33) Scoring 0.833 0.834 0.834

*
α = 1 Perfect 0.463 0.467 0.474
β = 5 r(k)-out-of-k 0.958 0.961 0.961
(M = 8.33) Scoring 0.834 0.836 0.839

*
α = 6/50 Perfect 0.619 0.623 0.671
β = 6/10 r(k)-out-of-k 0.904 0.929 0.936
(M = 1) Scoring 0.841 0.857 0.874

**
α = 6/50 Perfect 0.529 0.353 0.27
β = 6/10 r(k)-out-of-k 0.529 0.822 0.723
(M = 1) Scoring 0.800 0.718 0.633

∗The system is on at time 0. **The system is off at time 0.

650 Practices and Emerging Applications

Table 35.6. Continued.

Average task arrival rate = 10

m1(t)= 0.2t m2(t)= 1 m3(t)= 2− 0.2t

*
α = 10 Perfect 0.195 0.195 0.196
β = 50 r(k)-out-of-k 0.991 0.992 0.992
(M = 83.33) Scoring 0.833 0.833 0.834

*
α = 1 Perfect 0.245 0.247 0.255
β = 5 r(k)-out-of-k 0.982 0.984 0.984
(M = 8.33) Scoring 0.834 0.836 0.839

*
α = 6/50 Perfect 0.512 0.537 0.564
β = 6/10 r(k)-out-of-k 0.910 0.938 0.943
(M = 1) Scoring 0.841 0.857 0.874

**
α = 6/50 Perfect 0.394 0.198 0.138
β = 6/10 r(k)-out-of-k 0.884 0.837 0.741
(M = 1) Scoring 0.800 0.717 0.633

∗The system is on at time 0. **The system is off at time 0.

Table 35.7. Comparison of the approximation and the simulation results

System Task arrival rate∗ Mean sojourn times in the on and off states

α = 10, β = 50 α = 1, β = 5 α = 6/50, β = 6/10
(M = 83.33) (M = 8.33) (M = 1)

Approx. Simulation Approx. Simulation Approx. Simulation

Perfect m2(t)= 0.1 (1) 0.758 0.759 0.761 0.764 0.788 0.808
m2(t)= 0.5 (5) 0.431 0.436 0.437 0.461 0.484 0.623
m2(t)= 1 (10) 0.189 0.195 0.194 0.237 0.238 0.507

r(k)-out-of-k m1(t)= 0.02t (1) 0.887 0.887 0.887 0.884 0.892 0.873
m1(t)= 0.1t (5) 0.969 0.967 0.969 0.958 0.971 0.904
m1(t)= 0.2t (10) 0.993 0.992 0.993 0.982 0.994 0.910

Scoring m3(t)= 0.2− 0.02t (1) 0.802 0.802 0.807 0.810 0.847 0.855
(Sj,k = (j/k)2) m3(t)= 1− 0.1t (5) 0.731 0.732 0.738 0.743 0.791 0.814

m3(t)= 2− 0.2t (10) 0.711 0.712 0.719 0.724 0.775 0.802

∗The number in parenthesis denotes the average.

Random-request Availability 651

Table 35.8. Maximum average task arrivals satisfying the accuracy requirement

System Mean sojourn times in the on and off states Maximum average task arrivals
satisfying the accuracy requirement
(|simulation result− approximation
result| ≤ 10−2)

Perfect α = 10, β = 50 (M = 83.33) ∞
α = 1, β = 5 (M = 8.33) 2
α = 6/50, β = 6/10 (M = 1) 0.5

r(k)-out-of-k α = 10, β = 50 (M = 83.33) ∞
α = 1, β = 5 (M = 8.33) 10
α = 6/50, β = 6/10 (M = 1) 1

Scoring (Sj,k = (j/k)2) α = 10, β = 50 (M = 83.33) ∞
α = 1, β = 5 (M = 8.33) ∞
α = 6/50, β = 6/10 (M = 1) 2

From Table 35.6, we can see that these values vary
depending on the task arrival rate pattern, but not
the average task arrival rate.

35.6 Approximation
It seems to be difficult to get robust approximation
methods. Even if Finkelstein provided a heuristic
approximation formula [9], it is good only for the
perfect system. And its accuracy is guaranteed
only within a limited range of system parameters.
One simple intuitive method is to use the conven-
tional interval availability. Taking the task arrival
rate into consideration, it can be expressed as:

A(T)=
∫ T

0
Pr[z(t)= 1] m(t)

M(T)
dt (35.3)

The approximate values for the perfect,
r(k)-out-of-k, and scoring systems can be
respectively expressed as follows:

Ãp(T)=
∑∞

k=1{A(T)}k Pr[N(T)= k]
1− Pr[N(T)= 0] (35.4)

Ãr(T)=
(∞∑

k=1

{ k∑
j=r(k)

(
k

j

)
{A(T)}j

× {1− A(T)}k−j
}

Pr[N(T)= k]
)

× (1− Pr[N(T)= 0])−1 (35.5)

Ãs(T)=
(∞∑

k=1

{ k∑
j=0

(
k

j

)
{A(T)}j {1−A(T)}k−j

× Sj, k

}
Pr[N(T)= k]

)
× (1− Pr[N(T)= 0])−1 (35.6)

Using Equations 35.4–35.6, the approximation
values for random-request availabilities are ob-
tained under various system parameter values.
The approximate results are compared with the
simulation ones in Table 35.7. Unless specified
otherwise, the system parameters are the same as
those of Table 35.2.

For the perfect system the approximation
inaccuracy grows quickly as M becomes small and
the task arrival rate increases. The approximation
results for the r(k)-out-of-k and the scoring
systems are more accurate than those for the
perfect system. They show better accuracy for
larger M and lower task arrival rate. Given the
value of M , we try to find the maximum
average number of task arrivals which satisfies
the accuracy requirement, |simulation result−
approximation result| ≤ 10−2. Table 35.8 shows
the results. The task arrival rates for all the systems
are assumed to be a decreasing function. For
example, the task arrival rate rate corresponding
to average one task arrival is m3(t)= 0.2− 0.02t .

652 Practices and Emerging Applications

From Table 35.8, we can see that the r(k)-
out-of-k and the scoring systems can satisfy
the approximation accuracy requirement at a
higher average task arrival rate than the perfect
system.

For the r(k)-out-of-k and the scoring systems,
the approximation accuracy also depends on the
respective r(k) value and score Sj,k for a given
k. We can see low accuracy in the perfect sys-
tem, which is the most strict case of the r(k)-
out-of-k system (r(k)= k for all k) or the scor-
ing system (Sj,k = 1 for j = k, and 0 otherwise).
Therefore, the more strict the operational require-
ment, the lower the approximation accuracy for
the r(k)-out-of-k and the scoring system, and
vice versa.

35.7 Concluding Remarks
For the system required to perform randomly ar-
riving tasks during a fixed mission duration, an
availability measure called random-request avail-
ability has been proposed. The stochastic model
provides closed-form mathematical expressions,
which incorporate three basic elements: the ran-
dom task arrivals, the system state, and the opera-
tional requirements of the system.

The characteristic of the random-request avail-
ability is that the random task arrival is included
as one of the system elements. Using a simulation
method, the effect of the “task arrival” element on
the random-request availability has been investi-
gated.

If the mean number of task arrivals grows,
the computational complexity for deriving the
random-request availability becomes extremely
high. A simple approximation method based on
the conventional interval availability is suggested.
Its accuracy varies according to the operational
requirements of the system, the average task
arrival rate, and the average number of on–off
cycles (M) during the mission time.

Acknowledgment

This work was supported by the research fund of
Seoul National University of Technology.

References
[1] Lie CH, Hwang CL, Tillman FA. Availability of maintained

system: a state-of-the- art survey. AIIE Trans 1977;3:247–
59.

[2] Lewis EE. Introduction to reliability engineering. New
York: John Wiley & Sons; 1987.

[3] Kapur KC, Lamberson LR. Reliability in engineering
design. New York: John Wiley & Sons; 1987.

[4] Rau JG. Optimization and probability in systems engineer-
ing. Amsterdam: Van Nostrand Reinhold; 1970.

[5] Birolini A. Quality and reliability of technical systems.
Berlin: Springer; 1988.

[6] Reibman AL. Modeling the effect of reliability on
performance. IEEE Trans Reliab 1990;3:314–20.

[7] Lazaroiu DF, Staicut E. Congestion–reliability–availability
relationship in packet-switching computer networks. IEEE
Trans Reliab 1983;4:354–7.

[8] Lee KW. Stochastic models for random-request availabil-
ity. IEEE Trans Reliab 2000;1:80–4.

[9] Finkelstein MS. Multiple availability on stochastic
demand. IEEE Trans Reliab 1999;1:19–24.

Index

A
a priori knowledge 225
accelerated failure-time model 485–6
accelerated life test (ALT) 415–28, 457

design of plans 416–17
overview 415–16, 430–1
planning a simple step-stress 446–8
step-stress planning 445–50
stress loadings 416
types of stress 416–17

accelerated life test (ALT) models 417–25, 429–39
Birnbaum–Saunders form 431–5
inference procedures 435–7
non-parametric 424–5

accelerating factor (AF), setting a target 447
acceleration function 436
acceptance voting 588
activation energy 422
additive damage models 433–4
additive Gauss–Weibull model 435
additive Gauss–Weibull strength distribution 434
age-dependent repair mode 338
age replacement models 354–6
age replacement policy 368–70
aggregated CTMC 639–40
aging

classes of 171
concepts of 165
crash/hang failure 247
notions of 167, 181

Ahmad test 193–5
Akaike information criterion (AIC) 282
algorithms 57, 572
Ali–Mikhail–Haq family 150
American Institute for Research (AIR) 535
AND gate 532
application-oriented programming language 574
architectural design document 572
Arrhenius model 422–4
asymptotic analysis 41
asymptotic average availability 406, 408
asymptotic standard deviations (ASDs) 438
Atomic Energy Commission (AEC) 535, 544–5
availability measures 643
Average Service Availability Index (ASAI) 514, 520
Average Service Unavailability Index (ASUI) 514
average software availability 238–40

B
background history 216
bathtub failure rates 169–70
bathtub-type intensity 327–8
Baum–Welch re-estimation formulas 272
Baum–Welch re-estimation method 271, 282
Bayes’ formula 278
Bayesian estimate of expected number of failures 343
Bayesian estimate of model parameters 342
Bayesian procedure 225
b-fold-window system 52
Big Rock Point plant 546
binary k-out-of-n models 4
binary reliability theory 3–4
binary system 3
binomial models 226
Birnbaum importance 44–5
Birnbaum–Saunders distribution 431, 436
bivariate aging, tests of 177
bivariate distribution of Block and of Basu 149–50
bivariate exponential distribution 148

of Sarmanov 150
bivariate normal distribution, density function 150
bivariate Pareto distribution 148–9
bivariate positive dependence stronger than positive quadrant

dependent condition 152–3
bivariate reliability classes 173
black-box modeling

current issues 225–32
imperfect debugging 225–6

black-box software reliability models 215–22
block replacement 370–1
block replacement models 350–4
bounded intensity processes (BIP) 326–7
branch-and-bound method 96–8, 111
Brookhaven National Laboratory 550, 551
Brown–Proschan imperfect repair model 399–400
Bulk Power Energy Curtailment Index 519
Bulk Power Interruption Index 519
Bulk Power Supply Average MW Curtailment 519
Bulk Power Supply Disturbances 519

C
calibration 223–5
call graph 222

653

654 Index

Canadian Electricity Association (CEA) 513
database 522–3
equipment reliability information system database 523–5

Canadian service continuity statistics 515
Capability Maturity Model for Software (CMM) 570
capability requirements 568
capture–recapture methods 493–510

ecological studies 508
examples 504–5
formulation of the problem 495–503

capture–recapture models 215, 232
censored data 480–3
Center for Devices and Radiological Health (CDRH) 537
Chang–Rao estimator 188–9
change-point models 157–63

assumptions 158–9
specific types 159–60

change-point problem 157
circuit breaker statistics 525
circular weighted-consecutive-k-out-of-n system 47–8
cleanroom approach 575
closed-mode failure 19, 80–2
cluster system

examples 255–7
prediction-based rejuvenation 256

COCOMO 576, 579–80
coherent system 3, 230
combinatorial reliability optimization 91–114

continuous relaxation approaches 93–4
heuristic approaches 93
multiple-choice constraints 107–13
non-series structure 102–7
optimal solution approaches 93
series structures 95–102

combinatorial solution methods 615
combined model, minimal repairs 359–61
common failures (CF) 590–1, 600–1
common faults 590–1
COMPASS 518
complete intensity function (CIF) 319–21, 331–5, 337, 339,

341–3
complex maintenance policy 335–43
complex multi-state system using composition operators,

u-function of 67–8
component importance 43–7
component replacement problem 43–7
components digraph 616, 617
composition operators 67–8
computation performance model 241–2
computation software availability 241
computer-aided software engineering (CASE) 575
COMREL 518–20
concatenated failure rate function 216
conditional expectation 136
conditional likelihood 503, 508
conditional likelihood estimators 509
confidence intervals 224, 437, 460–2, 607–10
consecutive-k:G systems 38
consecutive-k-out-of-n:F system 37

variations and generalizations 38
consecutive-k-out-of-n system 53, 54
consecutive-k systems 37–59

basic assumptions 38
consecutively connected systems 57
consensus recovery block 588
constant repair impact 339
continuous improvement in total quality management

(TQM) 581–2
continuous models 343, 344–5
continuous relaxation approaches 94
continuous state space model for large-scale software 274–80
continuous state system reliability models 8
continuous-time Markov chain see CTMC
continuous-time model 357–8
corrective maintenance 305, 309–10, 397, 398

and warranty 311–12
corrective repairs, interspersed with preventive maintenance

without restrictive assumptions 342–3
correctness 569
cost analysis, warranty 308–9
cost modeling 295–300
cost optimization 21–2
count-conditional intensity 218
counting process 215

dynamic approach 231
stochastic intensity 228

counting statistics, self-exciting point process 218
covariates 228, 231
Cox’s model 424–5
Cramér delta method 436
CTMC 247, 615

irreducible 616
largeness problem 630–2
model solution 625–30
model specification 622–5
production rules 634
rewarded 615–19, 640
state transition diagram 248, 626, 632
terminology 616

cumulative damage models 432–5, 438
cumulative damage shock model 403
cumulative demand curve parameters 78, 87
cumulative demand curves 70
cumulative distribution functions (CDFs) 429, 431, 438
cumulative exposure models 443–5, 457–9, 463
cumulative hazard function 481
cumulative reward distribution (CRD) 621–2, 630–1
cumulative reward distribution during stay (CRDDS) 620–1
cumulative reward distribution till exit (CRDTE) 619–20
Customer Average Interruption Duration Index

(CAIDI) 514, 520
Customer Average Interruption Frequency Index

(CAIFI) 514, 515

D
data-domain modeling 588–9
data structures 572
data testing 602–10
death process model 266–71
decreasing failure rate (DFR) 147, 169
decreasing failure rate average (DFRA) distribution 182

Index 655

decreasing initially, then increasing mean residual life
(DIMRL) 171

decreasing mean residual life (DMRL) distribution 182
dependability management see total dependability

management (TDM)
dependability measures 614
dependability metrics 229
dependence, concept of 141–2
dependence model 57
deterministic concept 554
deterministic techniques 511
deviance residuals 490
difference differential equations 253–4
discrete models 8, 343, 345–6
discrete replacement models 374–5
discrete-time Markov chain (DTMC) 629

with three states 252
discrete-time model 358–9
dominance-sequence-based dynamic programming

algorithm 105
dominant system 13

with binary image 15
doubly stochastic Poisson process (DSPP) 217, 222
dual relationship between k-out-of-n G and F systems 7–8
Durling–Pareto distribution 148–50
dynamic approach of counting processes 231
dynamic models 205–7, 215

general class 205–6
dynamic programming 98
dynamic programming algorithm 100, 105

E
Ebrahimi–Habibullah test 192
ecology 508
Electric Power System Reliability Assessment (EPSRA) 513,

515
electric power systems 511–28

consumer, utility and total cost as function of system
reliability 526

data collection 513
distribution system reliability assessment 519–20
functional zones 512
guide to further study 527
hierarchical levels 512
system analysis 515–16
system reliability data 521–5
system reliability performance 512–15
system reliability prediction 515–21
system reliability worth 525–7

electrical stresses 416–17
electronic equipment, classification 537
ELOC (effective lines of code) 576
engineering risk 549–50
environmental factors 227–8, 289–93

parameters estimation 292
environmental risk 549–50
environmental stresses 417
equipment reliability 320
Equipment Reliability Information System (ERIS) 513, 523,

524

error seeding models 579
ESA 571, 573, 574, 582
ESPRIT project 571, 582
estimated cumulative fault-detection time 275
estimated mean number of consumed test cases 270
estimated time to exhaustion 258
estimation method of unknown parameters 268–9, 272–3,

277–9
European Quality Award 560
expected average reward rate (EARR) 619, 630–1
expected cumulative reward during stay (ECRDS) 618–19,

621
expected cumulative reward till exit (ECRTE) 618, 621, 632
expected energy not supplied (EENS) 516
expected steady-state reward rate (ESSRR) 617–18, 621, 624,

625, 632
expected transient reward rate (ETRR) 619, 621, 630–1
exponential distribution 166
exponential model 419–20
exponentiation formula 214
extended consecutive-k-out-of-n:F network 55
extended reward structures 621–2

F
f -flow-reliability 56
f -within-consecutive-k-out-of-n system 49–51
failure modes 77–83

weighted systems 34–5
failure modes and effect analysis (FMEA) 538
failure processes 222
failure rate 172, 401–2

modeling 117–39
failure/restoration characteristics 237
failure times 215, 494
Farlie–Gumbel–Morgenstern (FGM) bivariate

distribution 148
Farlie–Gumbel–Morgenstern (FGM) copolas 151–2
fatigue failure 431, 437
fault density, observed and predicted 204
fault detection 493
fault discovery phase constant 203
fault intensity function 291
fault intensity rate function 291
fault masking 613
fault-tolerant systems 32–4

modeling 614
reliability 614

fault tolerance 585–611, 613, 614, 643
hybrid techniques 587–8
methodologies 586–8

fault tree, symbols 532–4
Fault Tree Handbook 547
fault tree method 532–4, 538
Fibonacci numbers 45
file table size 258
Fisher formation matrix 447
flow transmission system 81

cumulative performance distribution 82, 83
solutions obtained for 82

flushing operating system kernel tables 246

656 Index

FMECA 561, 562, 564
Food and Drug Administration (FDA) 536, 537
FORTRAN 293, 324
forward waiting time 320
free replacement warranty (FRW) 307, 311
frequentist procedures 223–5
function of demand, MSS 71
functional requirements 568

G
gamma distribution 174
garbage collection 246
Gauss–Seidel method 628
general structure 92
general system optimization 106–7
generalized multi-state k-out-of-n systems, equivalence and

duality in 15–17
generalized multi-state k-out-of-n:G systems

model 11
properties of 13–15

generalized non-homogeneous Poisson process model 289
generalized renewal process 219
generalized risk cost models 295–6
genetic algorithms (GAs) 62, 73–5
geometric mean estimator 188–9
Glivenko–Cantelli lemma 250
goal-question-metric (GQM) method 582
goodness-of-fit test 282
graph model 57
Gumbel’s bivariate exponential distribution 153

H
hard failures 247
hardware reboot 246
hardware redundancy 613
hardware software co-design system model 242–3
hazard function 353, 428
hazard rate 214, 226, 237, 240
heterogeneous model 507

non-parametric case 499–501
parametric case 501–3

heuristic algorithm 94, 100
heuristic solution approach 99–102
hidden-Markov modeling 271–2
High Flux Beam Reactor 550
Hoeffding’s U-static theory 192
Hollander–Park–Proschan test (HPP) 190–2, 223
homogeneous model with recapture 496–8
homogeneous Poisson process (HPP) 217, 323
Horvitz–Thompson estimator 503, 508
human-engineering standards 529
human error 530–1

types 531
human reliability 529–41

analysis methods 531–5
human stress–performance effectiveness 530–1
human unreliability data sources 535, 536

I
imperfect debugging 225–6
imperfect debugging model, state transition diagram 271
imperfect debugging probability 271–4

numerical illustration 273-4
imperfect maintenance 318, 398

future research 411–12
models 405–8
results 404–11
treatment methods 399–404

imperfect preventive maintenance 340-2, 381–4
with probability 383

imperfect repair 330–5, 398
interspersed with perfect preventive maintenance 339–40

importance measures, multi-state systems 68–72
improvement factor 401
improvement parameter 331
increasing failure rate average (IFRA) distribution 182
increasing failure rates (IFR) 147, 166, 169, 249, 410
increasing then decreasing mean residual life (IDMRL) 170
independent and identically distributed (i.i.d.) lifetimes 483
independent fault pairs 599
Index of Reliability (IOR) 514
Individual Plant Examination Program 554
inequality without aging assumption 147
information-measuring system 643
information redundancy 613, 614
inhomogeneous gamma processes 331–3
innovation theorem 501
inspection models 361–3
inspection policies 367, 385–90

standard inspection 386–7
storage system 388–90
with preventive maintenance 387–8

instantaneous rate of occurrence of failures (ROCOF) 319,
343

instantaneous software availability 238–40
integer programming approach 94
intensity function 267, 269, 324, 345, 502
interface requirements 568
interfailure time 215
International Association for Probabilistic Safety Assessment

and Management 543
International Electrotechnical Commission (IEC) 560

dependability standards 559
interrelationships, summary of 145
interval availability 643
interval estimation 224
interval reliability 379–80
invariant consecutive systems 41
invariant consecutive-2 systems 41–2
invariant consecutive-k systems 42–3
invariant consecutive-k G system 43
ISO 9000 569
ISO 9001 569, 571, 581–2
ISO 9003 569
ISO 9004-2 569
isolated windows 52

Index 657

J
JAVA 282–3
Jelinski–Moranda de-eutrophication model 219

application 161–2
with a change point 159–60

K
k-out-of-n systems 27–32

optimal imperfect maintenance 409–11
k-out-of-n:F systems 6–8
k-out-of-n:G systems 5–8
k-window 48
Kaplan–Meier estimator (KME) 195, 425, 450, 480–2
Kibble’s bivariate gamma 150
Kolmogorov–Smirnov test 261
Kolmogrov distance 162

L
LA test 328
Laplace transform 503
Lawless–Thiagarajah models 333–4
LCEM 450–1

definition 444
least squares method 224
Lewis Report 545
life distribution classes

characterized by mean residual lifetime (MRL) 170–1
preservation properties of 185

life distribution model 57
life distributions 166, 181–2

applications 172–3
partial ordering of 171–3

likelihood functions 160, 161, 218, 224, 268, 278, 446, 452,
459, 502, 503

likelihood ratio 459
limit on individual and total cost (LITC) policy 312
limit on individual cost (LIC) policy 311–12
limit on total cost (LTC) policy 311
linear component replacement algorithm 46
linear consecutive-2 network system 53–4
linear consecutive-k network system 54–7
linear failure rate distribution 174, 191
linear weighted-consecutive-k-out-of-n system 47
linearly connected systems 6
Littlewood model 502

with one change point 160
load-haul-dump LHD17 machine 327
LOC (number of lines of code) 576
log-likelihood 435
log-likelihood function 160, 161, 224, 278, 292, 447, 608
log-likelihood ratio statistics 338
log–linear intensity 333
log–linear process (LLP) 325–6, 345
log–linear–Weibull renewal (LLWR) 333–4
log-prequential likelihood ratio 162
LOLP 518
long-run expected maintenance cost per unit time 405–8

Loss Control Management (LCM) 564
loss function 225
loss of energy expectation (LOEE) 516, 518, 527
loss of load expectation (LOLE) 516, 518, 527
lower confidence bounds (LCBs) 437

M
MAAP 548
McCall’s model 577
MACCS code 549
main producing subsystem (MPS) 83, 85–7
maintainability 569
maintenance

and optimum policy 367–95
and warranty 305–16

future research 314–15
literature review 310
overview 309–10

maintenance cost rate 405
maintenance factor 238
maintenance models 317–48
maintenance scheduling problem 401
Makeham distribution 174, 191
Malcolm Baldrige National Quality Award 560
marginal distribution of lifetime 463–6
Markov chain 6, 40–1, 49, 50, 54, 55
Markov chain imbeddable systems 6
Markov method 534–5, 538–9
Markov model 222, 592
Markov modulated Poisson process (MMPP) 222, 228

stochastic intensity 223
Markov regenerative process (MRGP) 252
Markov regenerative stochastic Petri net model 247
Mars Climate Orbiter 201
martingale residuals 490
maximal proximity of expected system performance 80
maximal system availability 80
maximization of system effectiveness 92
maximizing profit 26–7
maximum likelihood estimation (MLE) 160–1, 224, 225,

230–1, 269, 278, 292, 330, 332, 334–6, 340–2, 346, 431,
435–8, 447, 451, 502, 508, 602, 606–7

maximum stress 437
mean number of remaining software faults/testing cases 268
mean residual lifetime (MRL), life classes characterized

by 170–1
mean squared error (MSE) 438
mean time between failure (MTBF), cumulative and

instantaneous 279–80
mean time between software failures (MTBSF) 235
mean time to failure (MTTF) 214, 218–19, 421, 425, 442, 446,

614, 618
mean time to human error (MTTHE) 534–5
mean value function (MVF) 290, 599–600, 604, 605, 607, 608
mechanical reliability 317–48
mechanical stresses 416
Medical Device Amendments (1976) 536, 537
medical device categories IIII 537
medical device recalls and equipment classification 536–7

658 Index

medical device reliability 529–41
assurance tools 537–9
data sources 539
guidelines for engineers 539–40
related facts and figures 535–6

medical equipment reliability, general method 538
MELCOR 548
METFAC-2.1 615, 616, 622, 623
metrics with regard to first failure 214–15
micro-composite strength data 437–8
Microsoft Excel 453–4
MIL-HDBK-217E 614
MIL-STD 721B 398
minimal cut set 4, 5–6
minimal cut vector 4
minimal maintenance 318, 398
minimal path set 4, 5–6
minimal path vector 4
minimal repair 321–30, 398

combined model 359–61
interspersed with imperfect preventive maintenance 340
interspersed with perfect preventive maintenance 338–9
without preventive maintenance 336–8

minimal state automaton 51
minimization of system cost 29–32, 92
mixed series parallel system optimization 102–6
mixture failure rate, asymptotically tending to zero 134
mixture failure rate modeling

additive model 133
definitions and conditional characteristics 132–3
examples 135–6
inverse problem 136–8
multiplicative model 133–5

mixtures of decreasing failure rate (DFR) 132
model selection 491
modifiability 569
Modified Bulk Power Energy Curtailment Index 519
modified circular component replacement algorithm 47
modified preventive maintenance policy 384–5
modified two-parameter log-likelihood 335
modulated gamma process 332
modulated PLP (MPLP) 332–3
module, concept of 222
monotonic trend with operating time 323–7
Monte Carlo Markov chain (MCMC) methods 225
Monte Carlo simulation 62, 505, 527
Moran–Downton bivariate exponential distribution 149
multi-dimensional problems 111–13
multi-fare models 57
multi-state coherent system 13, 14
multi-state k-out-of-n systems 3–17
multi-state k-out-of-n:F system 15
multi-state reliability theory, relevant concepts 8–10
multi-state system (MSS)

capacity-based 76, 80
definition 62
function of demand 71
importance of sensitivity analysis 68–72
OPD 65, 67
optimization, miscellaneous problems 87–9
reliability analysis and optimization 61–90
reliability indices 63, 68

reliability indices evaluation base on universal generating
function (UGF) 64–7

reliability measures 63–4
sensitivity indices 70, 71
structure optimization problems 72–89
system performance measures 69
with fixed resource requirements and unreliable sources,

structure optimization 83
with two failure modes, structure optimization 77–83

multiple availability
accuracy of fast repair approximation 126–7
not more than N non-serviced demands 129–30
ordinary multiple availability 125–6
statement of problem 124–5
time redundancy 130–1
two non-serviced demands row 127–9

multiple-choice constraints 107–13
multiple failure modes 19–36
multiple (p, q) rule 404
multiple-steps step-stress accelerated life test 441–55
multiplicative damage models 434–5
multiply censored, continuously monitored step-stress

accelerated life test 450–1
multivariate imperfect repair concept 403–4
Musa–Okumoto model 221

N
N -modular redundancy (NMR) 32
N -version programming (NVP) 585, 586

failure correlation 590–1
modeling 588–94
NHPP model 595–602

assumptions 597–9
parameter estimation 602
reliability analysis and modeling 591–4
reliability modifications for 604–6
software reliability growth 602–10

model applications 602–10
system reliability 601–2

NAFIRS 513
NBU-t0 alternatives

tests using complete data 189–90
tests using incomplete data 195–6

NBU-t0 boundary members 182–4
NBU-t0 life distribution 181–97

characterization of 182–6
estimation 186–9
preservation properties under reliability operations 184–6
tests for 189–96

NCLOC (only non-commented lines) 576
nearly optimal inspection policy

by Kaio and Osaki (K&O policy) 362
by Munford and Shahani (M&S policy) 363
by Nakagawa and Yasui (N&Y policy) 363

negative aging 165
negative quadrant dependence 153
Nelson–Alschuler (NA) estimator 481
network systems 53–7
neural networks (NNs) 229
new better than used (NBU) 181

Index 659

new better than used in expectation (NBUE) 181
new better then worse than used in expectation

(NBWUE) 171
New Energy Trading Arrangement (NETA) 518
new worse then better than used in expectation

(NWBUE) 171
Newton–Raphson algorithm 338
Newton–Raphson method 425
NHCTMC, state transition diagram 253
NHPP 336, 337, 338, 340
NHPP model 297

N -version programming (NVP), assumptions 597–9
s-shaped curve 226

NHPP model formulations 599–601
NHPP models 219, 224, 274, 289

evaluation 293–4
NHPP (non-homogeneous Poisson process) 579
NHPP software reliability models 596
non-homogeneous Poisson process model 220–1
non-homogeneous Poisson process (NHPP) 218, 324, 325,

327, 329, 331, 593
incorporating covariate information 329

non-homogeneous Poisson process (NHPP) models
formulation 594–5
N -version programming (NVP) 595–602

non-parametric estimators, examples 481–3
non-parametric models 417, 480
non-proportional hazards models 490–1
non-series cost minimization problem (NCP) 93
non-series system reliability maximization problem

(NRP) 92–3
North American Electric Reliability Council (NERC) 513
NQD 147
Nuclear Regulatory Commission (NRC) 549, 555
NUREG-1150 547
NUREG-2300 553
NUREG/CR-2815 553
NVP SRGM

dependent 603–10
independent 603

NWU-t0
boundary members 182–4
life distribution, preservation properties under reliability

operations 184–6

O
object-oriented design, software reliability management

tool 281–2
object-oriented programming languages 574
ODE 628–9
one-dimensional problems 108–11
OOA/OOD 573
open-mode failure 19–21, 80, 81, 83
operational requirements 644
opposite states 7
optimal component replacement 45–7
optimal hold time at low stress 448
optimal imperfect maintenance

k-out-of-n systems 409–11
models 397–414

optimal low 448
optimal software rejuvenation schedule 250, 251
optimal solution approaches 95
optimization problem 24–5
optimization technique 73–5
optimum test plan 463, 467–8
OR gate 532
ordering models 356–61
output performance distribution (OPD) 65, 67, 85–7

P
parallel redundancy 146
parallel–series system 22–5
parallel-stage reduction 103
parallel system 21–2

positive dependence 146–7
parallel units 92
parameters of elements available 81
parametric models 417
parametric statistics-based models 418–19
partial Birnbaum importance 45
partial enumeration method 95–6
partial ordering of life distributions 171–3
path vector 4
PDF 431, 434
perfect maintenance 318, 320–1, 398
perfect preventive maintenance 338–40
perfect repair 398

without preventive maintenance 336–8
perfect system 644

approximation formula 651
performance-based concept 554
performance degradation 247
periodic replacement 371–3
phase-based model, Gaffney and Davis 203
physics–experimental-based models 417
physics–statistics-based models 417
PIM method 292
Pitman asymptotic relative efficiencies of Tk 192–3
point availability 643
point estimate 224
point process 215

see also self-exciting point process (SEPP)
Poisson model 205
Poisson process 321
pool input price (PIP) 518
population 267
portability 568
positive aging 165
positive dependence 142–5

basic conditions 143
orderings 153–4
parallel system 146–7
related issues 152–3
relative stringency of basic conditions 143–4

positive quadrant dependence (PQD) 145–7
applications 146
bivariate distributions 146–52

with more complicated structures 149
with simple structures 148–9

660 Index

positive quadrant dependence (PQD)–cont.
bivariate uniform distributions 150–2
definition 145
in expectation (PQDE) 144

positively biased estimator 188
positively correlated distributions 145
posterior distribution 225
posterior expected loss 225
power-law accelerated Birnbaum–Saunders model 432
power-law process (PLP) 324–5, 333, 337, 344–5
power-law–Weibull renewal (PL–WR) 333–4
predictive development life cycle model, Dalal and Ho 203–5
prescriptive concept 554
preservation properties of life distribution classes 185
preventive maintenance 310, 342–3, 397, 398

and warranty 312–13
preventive maintenance models 349–66
preventive maintenance policies 367, 378–85

interval reliability 379–80
one-unit system 378–80
two-unit system 380–1

Price–Anderson Act 544
pro rata warranties (PRWs) 307, 311, 312, 313
probabilistic concept 554
probabilistic methods 511
probabilistic performance assessment (PPA) 550
probabilistic risk assessment (PRA) 543–57

applications 553–4
historical comments 544
Level 1 546–8
Level 2 547, 548, 553
Level 3 547–9
methodology 546–9
outlook 555
overview 543–4
public impact 550–3
risk measures 550–3

probability density function 459
probability tree method 531
probability variables 478–9
process table size 258
profit maximization problem 23–4
proportional age reduction (PAR) models 330–1, 334, 335,

339
proportional hazards model (PHM) 228, 289, 424, 480, 486–8

extensions 426–8
residual plots 489–90

proportional intensity model (PIM) 291, 330
proportional intensity Poisson process 329
proportional intensity variation model 334
prototyping 574

Q
quality assurance 582
Quality Function Deployment (QFD) 562, 564, 582
Quality House 562, 564
quality measuring aspects 577
quasi-Bayes method 344
quasi-renewal process 404–8

R
RAID 622–5, 632–5, 638
random field environments 296–300
random-request availability 643–52

approximation 650–2
definition 644–5
mathematical assumptions 645
mathematical expression 645–7
simulation results 647–51
system description 644–5
system parameters 647

random task arrivals 644
random variables 144–5, 224, 237, 478–9
rate of occurrence of failures (ROCOF) 215, 319, 343, 492
ratio of hazard 171
RBTS 515–16

load point adequacy indices 519
load point reliability indices 522
modified annual bus adequacy indices 521
seven-step load data 518
single line diagram 516, 517
system indices for distribution systems 520

Reactor Safety Study 544, 545
real memory free 258
real-time control system

application 289
data 286

real-time monitor system, application 292–3
recapture approach see capture–recapture methods
recovery block (RB) 585–7
recursive algorithms 6
recursive equation approach 39–40
reduced age maintenance 383–4
reduction method 404
reduction-order graph 104
redundancy model 57
redundancy optimization 34
redundant units 92
regression coefficients 228
reinitializing internal data structures 246
RELACS 518
relative aging 172
relevancy condition 4
reliability, computation of 39–41
Reliability Centred Maintenance (RCM) 564
reliability classes, definitions 167–9
reliability data 475–8
reliability data analysis 475–92
reliability evaluation 33–4
reliability functions 228, 422, 424, 427, 481, 483, 488
reliability growth 343–6
reliability growth models

assumptions 206
caution in using 207
for testing and operational use 205–7
when to stop testing 208–9
with covariates 207–8

reliability improvement programs 579
reliability measure 429, 614
reliability requirements 568
removal studies 509
Reneau–Semaniego estimator 186–8

Index 661

renewal density 405
renewal function 405, 406
renewal process 320
renewal reward theory 407
repair action 309–10
repair specific impact 339
replacement policies 367–95
replacements with discounting 373–4
resource-generating subsystems (RGSs) 83, 85, 97
resource leaking 245
restoration rate 237
rewarded CTMC 615–19, 640
RGS-MPS system 84
right corner set increasing (RCSI) 145
risk analysis 562
Risk-Informed and Performance-Based Regulation 549, 553
risk perception 555
risk-related enterprise 555
r(k)-out-of-k system 644, 651

approximation 652
robust locally weighted regression 258

S
Safe Medical Device Act (SMDA) 536
safety management 559, 560
safety requirements 569
safety research 555
sample coverage estimator 506, 507
SAS PROC PHREG 425
SAVE 622
Schoenfeld residuals 489
scoring systems 644–5, 651

approximation 652
seasonal Kendall test 358
security requirements 568
seeded fault approach 495, 506

without recapture 498–9
self-exciting point process (SEPP) 214, 216–19

0-memory 218–19
1-memory 219, 221
2-memory 221
counting statistics 218

self-purging redundancy 32
semi-Markov reward model 260, 261
semi-Markov reward processes 247
semi-parametric models 480
sensitivity analysis, multi-state systems 68–72
sensitivity indices, MSS 70, 71
sequential procedure 495, 504, 507, 508
series–parallel MSS 70, 76
series–parallel switching system structure 79
series–parallel system 25–7, 92

with capacity-based performance measure, structure
optimization of 75–7

series structures, combinatorial reliability
optimization 95–102

series system 20–1, 92
cost minimization problem (SCP) 93
reliability maximization problem (SRP) 92

service contracts 313–14

SHARPE 261, 615
shock model replacement policy 376–7
short-mode failure 19, 20
simple multi-state k-out-of-n:G model 10
simulation studies 505–8
Slepian inequality 150
slope estimates 26
smoothing 258
SNMP-based distributed resource monitoring tool 257, 260
soft failures 247
software aging 245
software availability measures, assumptions 236–9
software availability modeling

two types of failure 239–40
two types of restoration 240

software availability theory 235–44
Software Capability Maturity Model (CMM) 202, 581–2
software configuration management 582
software debugging models 592–3
software debugging speed, nonlinear characteristics 277
software development lifecycle 297
software development process 574–5
software engineering management 567–84

effort and cost models 579–80
software engineering practice 571–7
software failure 201f
software failure, two types 239–40
software failure rate per fault 579
software fault tolerance see fault tolerance
software gain model 298
software lifecycle 288, 571–4

phases 288
software lifecycle management (SLIM) model 580
software measurements 575–7
software metrics 227
Software Product Evaluation: Quality Characteristics and

Guidelines for their Use 577
software project management plan (SPMP) 582
software quality 567–9
software quality assurance 569–71
software quality models 577–80
software quality program 569
software redundancy 613
software rejuvenation 245–63

assumptions 248
continuous time Markov chain model 246
fine-grained model 247
interval 248
measurement-based estimation 257–62
modeling, telecommunication billing applications 247–51
modeling-based estimation 246–57
time and workload-based estimation 258, 260–2
transaction-based software system 251–4
use of term 246

software reliability 572
assessment measures 279–80
definition 202
early prediction 226–7

software reliability engineering (SRE) 285–302, 577–9
basic approach 578
introduction into an organization 578
model selection 579

662 Index

software reliability engineering (SRE)–cont.
overview 213
research activities 285

software reliability growth 271–2
N -version programming (NVP) 602–10

software reliability growth models (SRGMs) 235, 237, 593
software reliability management 265–84
software reliability management tool 280–3

definition of specification requirements 280–1
object-oriented design 281–2
structure 281

software reliability models/modeling 201–11, 213–34, 288–9,
578–9

challenges 209–10
classification 219–22

software safety, definition 243
software structure 577
software testing management tool 282–3
software testing-progress evaluation 269–70

numerical illustrations 270
sojourn time distribution 261, 271–2
solution space reduction 112
specific parts exclusion (SPE) policy 311
SPICE 571
S-PLP 327–8
standard errors 483
standby redundancy 32
standby units 92
state distribution 9
state occupancy probabilities 237
state space 239–41, 243
state space diagram 535
state transition diagram 237–8, 240, 253, 617

CTMC 248, 626, 632
imperfect debugging model 271
NHCTMC 253
software availability modeling 238

with computation performance 242
with two types of failure 239
with two types of restoration 241

static models 203–5, 215
statistical data analysis 468
statistical methods, principles 479–80
statistics-based models 417, 418
steady-state availability 643
steady-state system availability 252
step-intensity models 343
step-stress accelerated life test (SSALT) 441, 457–69

analysis 444
data analysis 450–3
four-step 450
literature dealing with planning problem 442
m-step 448–9
multiple-step 443, 449, 450, 453
optimal design 443, 446
read-out data 451–3
simplest form 442
stress pattern 442
three-step 442, 448, 449
two-step 442, 446, 448, 452

step-stress life testing
with constant stress-change 457–63

with random stress-change times 463–8
step-stress pattern (SSP) 441
stepwise iteration 101–2, 107
stochastic aging 165–80

tests of 173–7
stochastic dependence 141–56

concepts of 142
stochastic intensity 216, 217, 223

counting process 228
stochastic modeling 92

basic concepts 214–15
stochastic point processes 318–20
stochastic reward net (SRN) model 255
stopping time versus desired accuracy level 506
storage system, inspection policies 388–90
stress loadings 416–17
structure functions 3, 14, 230
sum-of-disjoint product (SDP) method 5
supergrid transmission failure data 328–9
survival in the plane

failure rate process 121–2
fixed obstacles 119–21
moving obstacles 122–4
one-dimensional case 118–19

Swedish Quality Award 560
SYS1 data set 161
System Average Interruption Duration Index (SAIDI) 514,

520
System Average Interruption Frequency Index (SAIFI) 514,

520
system elements, parameters of 70
system marginal price (SMP) 518
system-minutes (SM) 516, 519
system optimization 1–118
system reliability 1–118

N -version programming (NVP) 601–2
versus version reliability 589

system state 644
system testing 573
systems with two failure modes (STFMs) 77–83

T
task arrival rate 647
telecommunication billing applications, software rejuvenation

modeling 247–51
temperature stresses 425
10 CFR 50.44 553
10 CFR 50.46 553
10 CFR 50 553
test-analyze-and-fix (TAAF) programs 343–5
thermal acceleration factor 422
Three Mile Island accident 545–6
tie-breaker (TB) 592
time-dependent function 227
time domain approach 286
time domain modeling 589
time redundancy 130–1, 613
time to failure 430
total dependability management (TDM) 559–65

background 559–60

Index 663

choice and implementation of tools 563
components 561–4
core values, methodologies, and tools 561
potential for mutual support between core values and

methodologies 562
total dependability management (TQM), concept of 560–1
total quality management (TQM)

continuous improvement in 581–2
Deming’s theory 580–1

transaction-based software system, software rejuvenation
scheme 251–4

transformer bank statistics 525
transient events 545
transient failures 245–6
transition probability 237
transition probability density function 276
transition probability distribution function 276–7
transition rates 638
transmission line statistics 525
trapping 616, 617, 618, 627
triple-modular redundancy (TMR) 32
tritium leakage 550
trivariate normal distribution (TVN) 436
two-dimensional system 57
two-step procedure 506, 507
two-within-consecutive-k-out-of-n system 51–2
type I design error 27
type I failure 336
type II failure 336

U
u-function 65–8, 80
u-transform technique 76
UK service continuity statistics 515
uncertainty 554
United States Department of Defense 535
units per million (UPM) 516, 519
univariate aging, tests on 175–7
univariate reliability classes, basic concepts 167–9
universal generating function (UGF) 62, 72

multi-state system (MSS) reliability indices evaluation
based on 64–7

UNIX operating system 246, 257–8
unknown parameters, estimation method of 268–9, 272–3,

277–9
used swap space 258

V
validation 575, 582
value of lost load (VOLL) 518

variables selection 491
variance matrix 608
Vaurio test 328
verification 582
version reliability versus system reliability 589
virtual age method 402
voltage stresses 425

W
warranty

and corrective maintenance 311–12
and maintenance 305–16

future research 314–15
and preventive maintenance 312–13
cost analysis 308–9
extended 307, 313–14
issues dealt with 308
literature review 309
policies 306–8
product categories 306
role and concept 306
servicing 309
used products 308

warranty servicing costs 305
WASH 544
WASH-1400 study 547
Weibull change-point model 160
Weibull distribution 174, 423

parameter estimation 451
Weibull model 420–2
Weibull probability plot 423
Weibull regression model 483, 484–6
weighted-consecutive-k-out-of-n system 47–8
weighted systems with three failure modes 34–5
white-box approach 214
white-box modeling 222–3, 229–30
window systems 48–53
Wong–Zakai transformation 276
worse repair or maintenance 318, 330–5, 398
worst repair or maintenance 398

X
X-ray machine transition diagram 538

Z
Z test 328

