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Preface

This work brings together some of the most up to date research in
the application of operations research and mathematical modeling tech-
niques to problems arising in supply chain management and e-Commerce.
While research in the broad area of supply chain management encom-
passes a wide range of topics and methodologies, we believe this book
provides a good snapshot of current quantitative modeling approaches,
issues, and trends within the field. Each chapter is a self-contained
study of a timely and relevant research problem in supply chain manage-
ment. The individual works place a heavy emphasis on the application
of modeling techniques to real world management problems. In many
instances, the actual results from applying these techniques in practice
are highlighted. In addition, each chapter provides important manage-
rial insights that apply to general supply chain management practice.

The book is divided into three parts. The first part contains chap-
ters that address the new and rapidly growing role of the internet and
e-Commerce in supply chain management. Topics include e-Business
applications and potentials; customer service issues in the presence of
multiple sales channels, varying from purely Internet-based to traditional
physical outlets; and risk management issues in e-Business in B2B mar-
kets.

The second part of the book deals with problems of coordinating the
activities of different players within the supply chain. Topics include the
impact and management of uncertainty when selling perishable season-
able products through mechanisms such as: advance booking discounts
in the case of long replenishment lead-times; partial quick response poli-
cies when a second ordering opportunity is available; and a stochastic
programming based decision support system. Other topics included are
the effect of revenue sharing on the purchasing behavior of a vendor;
supply chain contracting and coordination with shelf-space-dependent
demand; a fee-setting model to decide a manufacturer’s compensation
scheme for the services provided by its independent distributors; tacti-
cal distribution planning with resource acquisition and deployment de-

vii
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cisions; and mechanisms for controlling retail store-order variability to
improve supply chain performance.

Finally, the third part focuses on models and applications for supply
chain planning and design. Topics explored include: the design of global
facility networks; a planning model for multiple products manufactured
across multiple manufacturing facilities sharing similar production ca-
pabilities; models for evaluating logistics costs in a global supply chain
in the aviation industry; supply chain models in the forest industry; and
a study on the benefits of information sharing in the supply chain.

This book can serve as a valuable reference for researchers in supply
chain management as well as a reference text book for a graduate level
reading course.

All chapters in this book were thoroughly refereed by two anony-
mous referees. We would like to take this opportunity to thank the
authors of the chapters, the referees, as well as several Ph.D. students
at the Department of Industrial and Systems Engineering at the Uni-
versity of Florida, for their efforts. We would like to give special thanks
to: Zuo-Jun “Max” Shen, Burak Eksioglu, Sandra Duni Eksioglu, Olga
Perdikaki, Kevin Taaffe, M. Bayram Yildirim, and Joongkyu Choi.

JOSEPH GEUNES, PANOS PARDALOS, AND EDWIN ROMEIIN
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Abstract

The Internet has emerged as the most cost effective means of driv-
ing supply chain integration. We define e-Business as the marriage
between the Internet and supply chain integration. We divide vari-
ous forms of e-Business applications into three categories—e-Commerce,
e-Procurement, and e-Collaboration. e-Commerce helps a network of
supply chain partners to identify and respond quickly to changing cus-
tomer demand captured over the Internet. e-Procurement allows com-
panies to use the Internet for procuring direct or indirect materials, as
well as handling value-added services like transportation, warehousing,
customs clearing, payment, quality validation, and documentation. e-
Collaboration facilitates coordination of various decisions and activities
beyond transactions among the supply chain partners over the Internet.
This article studies various e-Business applications and discusses the
potential of e-Business for building intelligence and optimization.

1. Introduction

Supply chain management (SCM) shifts the unit of analysis from a
plant, a warehouse or a company to the entire supply chain. Since a
supply chain typically spans over multiple companies, SCM particularly
highlights the importance of cross-enterprise coordination — in the name
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4 SUPPLY CHAIN MANAGEMENT

of supply chain integration. But supply chain integration requires a cost-
effective information system that links multiple companies. This need
can now be met by the Internet. We term this marriage between supply
chain integration and the Internet as ‘“‘e-Business” Thus, e-Business is
here defined as executing front-end and back-end operations in a sup-
ply chain using the Internet. In a sense, e-Business is on the natural
growth path of enterprise information systems that started with mate-
rial procurement (MRP, material requirements planning), expanding to
manufacturing (MRPII, manufacturing resource planning) and to intra-
enterprise integration (ERP, enterprise resource planning). This article
studies various e-Business applications and discusses the potential of
e-Business for building intelligence and optimization.

2. Cross-docking Information Flows

The Internet is an electronic link that ties different entities. But the
Internet is neither the first nor the only electronic link. For example,
EDI (Electronic Data Interchange) on VAN (Value Added Network) is
another electronic link that preceded the Internet age. But the Internet
has many more advantages—it is based on open standards and grants
universal access to a wide audience (anytime, anyplace, anyone, almost)
at a lower cost. But most of all, the key power of the Internet is a
new system architecture consisting of a hub and spokes. To underscore
this point, consider a hypothetical company called Acme that manufac-
tures a product and sells through a traditional three-tier distribution
channel-resellers, wholesalers and distributors. Consider the informa-
tion flows through the supply chain. A customer places an order with
the reseller, who finds that it does not have enough stock in its own ware-
house. The reseller places an order with its wholesaler. The wholesaler
in turn may order from the distributor, and so forth. This way, order in-
formation flows sequentially through resellers, wholesalers, distributors,
Acme, parts suppliers and logistics providers. At each step data are col-
lected, batched, manipulated and transmitted multiple times, incurring
cost and time delays.

Interestingly enough, this inefficiency in information flows is analo-
gous to that often observed in material flows. In the traditional three-tier
distribution system, finished goods flow from the plant to the manufac-
turer’s warehouse, then to the distributor’s warehouse, the wholesaler’s
warehouse, the retailer’s warehouse, and finally to its stores. In the
process, logistics cost accumulates due to additional handling, multiple
handoffs, document processing, transportation, warehousing, and exces-
sive inventories throughout the supply chain. In the case of the gro-
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cery industry, for example, this inefficiency previously resulted in over
120 days’ supply of inventory and $30 billion of unnecessary cost (Kurt
Salmon Associates Inc (1993)). One logistics solution is ‘cross dock-
ing,” by which products delivered from multiple plants to multiple dis-
tribution centers (DCs), or from multiple DCs to multiple retail stores,
are re-assorted and transported to the destinations without staying at
a warehouse. In a typical cross-docking scenario, a group of inbound
single-SKU (stock keeping unit) trucks arrive from various manufactur-
ers to one side of the cross-dock facility. The content is unloaded onto
the dock, sorted, and redistributed in smaller lots to outbound trucks
waiting on the other side of the dock. When the operation is completed
in a matter of hours, outbound multi-SKU trucks leave for stores. This
way the ‘time’ dimension, along with its associated cost, is taken out of
logistics.

One can extend and apply cross-docking to information flows to derive
the ‘information hub’ where information is instantaneously processed
and forwarded to all partners upon arrival. The information hub (see
Bock (1998) and Lee and Whang (2000)) is a node in the data network
where multiple organizations interact in pursuit of supply chain inte-
gration. It has the capabilities of data storage, information processing,
and push/pull publishing. The overall network forms a hub-and-spoke
system with the participants’ internal information systems (i.e., ERP
or other enterprise systems) being the spokes (see Figure 1.1). The in-
formation hub would be a web site or a central server on the Internet
running an ERP system for the supply chain. Acme, if equipped with its
front-end web interface and back-end supply chain integration operating
through the information hub, represents a model of e-Business.

Continuing with our Acme example, suppose a reseller places a replen-
ishment order to Acme on the web. This order is captured at the hub.
Following certain agreed-upon protocols, this order information is pulled
by, or pushed to, relevant supply chain partners — Acme, suppliers, lo-
gistics service providers, and financial institutions. The difference here
is the real-time parallel processing of information, instead of sequential
processing in the batch mode. Other interactions such as order tracking
and forecast sharing can be accommodated by this architecture. The
hub architecture offers a new paradigm of coordinating the activities of
the supply chain from end customers to different supply chain partners.
It makes the Internet distinct from other electronic links such as EDI
over VAN.
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Figure 1.1. The Information Hub

3. Three Classes of e-Business Applications

For convenience of discussion, we divide e-Business applications to
three classes — e-Commerce, e-Procurement and e-Collaboration. We
first provide a brief description of each class, followed by a full discus-
sion of each.

A. e-Commerce

When a customer places an order on the web, the order triggers a series
of transactions throughout the supply chain. A speedy and accurate
execution of a transaction is perhaps the most fundamental form of in-
teraction among supply chain partners. In addition, a cross-enterprise
system is required to track the status of an order with one call, no matter
which partner is currently holding the order. Lastly, after-sales service
should be also captured as a component of supply chain integration, since
it requires continuing interactions with supply chain partners and end
customers. The information hub can offer a natural platform to capture
the order, coordinate the activities, track the order status and deliver
after-sales service. Besides tracking and executing order flow activities,
the information hub can also offer performance measures linked to the
supply chain, such as lead time, quality and inventory turns. These ap-
plications are called e-Commerce.
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B. e-Procurement

Modern manufacturing requires flexibility due to stiff competition, fast
changing customer preferences, shortening product life cycle and product
variety proliferation. Along with dynamic capacity allocation, efficient
material procurement forms a pillar to support flexible manufacturing.
The ERP system addresses the needs of material planning, but execu-
tion of procurement is outside the scope of a typical ERP system. The
actual procurement process reaches beyond the enterprise level and re-
quires extensive interactions with suppliers. The hub architecture again
offers a favorable setting in which numerous buyers and sellers can find
each other and transact according to some pre-specified protocols (gov-
erned by the marketplace or traders’ internal rules). This we call e-
Procurement.

C. e-Collaboration

Supply chain integration implies more than the traditional arm’s length
relationship based on market transactions among its partners. It often
involves sharing of information and knowledge that used to be thought
as proprietary or even strategic. Examples of the information being
shared are sales data, inventory status, production schedule, promotion
plans, demand forecasts, shipment schedule, and new product introduc-
tion plans. Even further, supply chain partners can make joint decisions
based on combined information and knowledge (Lee (1998)). Without
information sharing or joint decisions, for example, orders to the supplier
tend to have larger variance than sales to the buyer, and the distortion
propagates upstream in an amplified form — the phenomenon called the
“bullwhip effect” (Lee, Padmanabhan and Whang, (1997)). One way
of mitigating the bullwhip effect is for partners to delegate the inven-
tory decision either to the vendor (Vendor Managed Inventory) or to
the buyer (Buyer Managed Inventory). The process of coordinating col-
laboration can be readily facilitated by the Internet, and we call this
application e-collaboration.

These applications provide the base case for e-Business and a new
generation of information systems. A common thread across these di-
verse applications of supply chain integration is that it supports cross-
enterprise coordination in a supply chain, beyond the traditional ERP
system. Depending on who controls the information hub, one can classify
information hubs into three models — ‘e-Market’ serving as a marketplace
for multiple buyers and multiple suppliers; ‘e-Buyer’ controlled by a sin-
gle buyer for multiple suppliers; and ‘e-Supplier’ controlled by a single
supplier for multiple buyers. Alternatively, one can divide information
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hubs into ‘market-centric’ (or many-to-many) and ‘company-centric’ (or
one-to-many), depending on whether they are jointly or individually
owned.

Now we turn to a full discussion of e-Business that supports supply
chain integration over the Internet.

3.1 e-Commerce

Our definition of e-Commerce goes beyond the Business-to-Consumer
(B-to-C) interface to include the backend processing of transactions in
the supply chain as well. Indeed, the Internet provides a natural setting
to link supply chain partners for delivering a product or service in tight
coordination. Examples of e-Commerce include Amazon.com, eToys and
E*trade. The example of Cisco serves as a case in point.

Cisco Connection Online (CCO) is the largest e-Business site in the
world, generating 80% of Cisco’s revenue - over $15 billion in 1999. CCO
is in essence an information hub that links Cisco with its customers.
CCO provides customers with almost everything they need to transact
business with Cisco. Through CCO’s self-service configuration and order
placement system, customers can research pricing, estimate lead times,
configure order status, access invoicing and account receivable informa-
tion, and sign up for service. On the backend side, Cisco streamlined in-
ternal operations of order fulfillment in full integration with its front-end
order capture by extending its communications to roughly 100 contract
manufacturers and suppliers. Once an order is placed through CCO,
the backend operations are coordinated via the second hub SupplyWeb.
More than 65% of the orders are directly delivered to the customers
without Cisco employees ever physically touching them. The Internet-
enabled capabilities have reduced order entry cycle time from 1 week to
less than 3 days and order-acknowledgment cycle-time from 12 hours to
2 hours. In addition, customer self-service enables Cisco’s sales force to
focus more on the relationship aspect, rather than the administrative
aspect, of its customer relationship. Since implementing CCO, Cisco’s
customer retention rate is a record 87% and they have experienced a
52% improvement in customer satisfaction. Cisco’s estimates of annual
savings exceeded $800 million last year.

Another cross-enterprise activity related to e-Commerce is order track-
ing. Supply chain partners report their order status to the database at
the information hub, so that the status is kept current no matter who
is handling it at the moment. Several companies market technologies
(e.g., Savi Technology) or services (e.g., Descartes) to track and trace
orders and resources (like shipping containers) throughout the supply
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chain. Data are entered into the system by scanners using bar-code
or radio-frequency technologies at numerous checkpoints, forwarded to
the hub and made available to authorized users. Many logistics service
providers like Federal Express and UPS also offer order tracking sys-
tems for partners to track and trace orders at all times — be it at a
warehouse, at sea, at customs service, or on a truck to the customer.
Thus, the platform allows supply chain partners to communicate in case
of delays, shrinkage or discrepancies. Another example of an informa-
tion hub for order tracking is BOG Gases, a distributor of industrial
gases (Tedeschi (1998)). The hub is accessible only to select BOG em-
ployees, suppliers and customers. Through the hub, BOC’s customers
place orders to BOG by choosing from an online catalog of gases, and
BOG in turn places orders to its suppliers. As the order progresses,
suppliers and BOG update the order status. The information hub has
cut administrative and inventory costs by avoiding miscommunication,
while delivering enhanced service to customers.

Remote sensing, testing and diagnosis are additional examples of e-
Commerce activity. Software companies like Norton offer a remote main-
tenance service on PC products (e.g., tuneup.com). A subscriber of the
service would allow the service center to remotely collect data on her
computer. The service center (operating as the information hub) will
electronically check her computer for computer viruses and terminate
them if contamination is detected. They may also advise and help the
subscriber to install software upgrades, hardware drivers, and program
add-ons specific to her computer. Cisco represents another example
of utilizing the hub structure for servicing products. According to the
“Autotest” program, Cisco’s suppliers run software routines that per-
form quality tests at their local test cells. The test data are sent over
the Internet to Cisco, so Cisco engineers can remotely monitor and con-
trol test cells. This enables them to resolve problems that the suppliers
themselves cannot diagnose. The standardized test results across the
entire supply base allow Cisco to scale the activity rapidly and obtain
valuable information about their products that might not be available
without such arrangement.

3.2 e-Procurement

e-Procurement is the set of Internet applications by which buyers and
sellers find each other and transact according to some pre-specified pro-
tocols, and involves private or/and public marketplaces. Since a typical
manufacturing company needs to procure thousands of products from
hundreds of suppliers, the Internet can help such a company manage the
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complexity of the procurement process. Numerous companies including
Ariba and CommerceOne offer web-based, enterprise procurement solu-
tions that dynamically link the buyer into real-time trading communities
over the Internet. They also automate the internal procurement process
from requisition to order, as well as the supplier interactions from order
to payment. The solutions enable their client companies to reduce op-
erational costs and increase efficiency by automating the entire indirect
goods and services supply chain.

In the electronics and high tech (EHT) industry, Converge (formerly
known as eHITEX Exchange), e2open and eConnections operate elec-
tronic marketplaces for trading direct parts and components. They oper-
ate as open e-Markets matching buyers and sellers. By contrast, Digital
Market (now part of Agile Software) offers an e-Buyer (named Agile-
Buyer) solution for a large buying organization. The solution includes
sophisticated data storage and manipulation tools to accomplish com-
plex purchasing tasks — such as part list management, quoting, decision-
making, ordering, order change and order confirmation — in hours, in-
stead of days. As the third example, Chemdex (now renamed Ventro)
operates a marketplace for biological and chemical reagents for life sci-
ences research needs. Through the e-Market-type hub, pre-qualified buy-
ers gain access to 80% of the leading life science suppliers, along with
supporting services including a precision search engine, detailed product
information, and online order tracking.

In yet another example, Instill Corporation, a Silicon Valley startup
company, employs an e-Buyer model for order capture and processing for
the foodservice industry. Its mission is to develop easy-to-use services
that lower costs and provide valuable information for all members of the
foodservice supply chain, helping to achieve the goals of the Efficient
Foodservice Response (EFR) initiative (see CSC, 1997). The company
improves upon the traditional time-consuming, error-prone purchasing
systems, and helps lower costs for the industry’s entire supply chain.
Its secure and user-friendly client program allows retail customers (i.e.,
restaurants and other foodservice operators) to place purchase orders on
the web. The orders are forwarded to distributors and manufacturers,
according to the rules specified by the retailers. Thus, Instill’s server
(called Instill Purchase Web) serves as the information hub that links
buyers and suppliers in the food service market. The web also offers a
purchase tracking service for multi-unit foodservice operators, by allow-
ing operator executives to view up-to-the minute unit purchasing activity
for better control. Instill’s user-friendly format offers standardized re-
ports to verify contract pricing, track rebates, and monitor unit buying
compliance. Further, the manufacturers have access to the aggregate
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demand and tracking data showing how their products move through
each distribution channel — data that were not previously available.

33 e-Collaboration

By e-Collaboration we mean the use of the Internet among business
partners beyond transactions. Unlike e-Commerce or e-Procurement,
whose functions are well defined, e-Collaboration exists in a variety of
functions. Examples are different models of information sharing, collab-
orative decision-making, and product change management.

Information Sharing. An information hub can also serve as an effi-
cient platform to share information among supply chain partners. For
example, Baker Street Technologies, a Toronto-based startup, offers a
web-based platform that provides a real-time link among supply chain
partners. Its information hub technology offers cross-enterprise visibility
of supply chain activities. In one implementation, partners share and
view purchase orders, sales orders, invoices, checks and other business
documents over the Internet. Only the directory and high-level data are
kept at the hub, while detailed information and documents are stored
at the local sites. When there is a legitimate request, the hub offers the
summary or aggregate data. By double-clicking on a data item, one can
drill down to the document level and access the local data. In this way
an integrated view of supply chain status is collected from disparate in-
formation sources and projected on the web site. Similarly, Adaptec, a
fab-less semiconductor company also relies on advanced Internet-based
solutions to exchange information and coordinate their production plans
with their supply chain partners. Using a software called Alliance devel-
oped by Extricity (now part of FreeMarket), the company communicates
in real time with their foundry TSMC (Taiwan Semiconductor Manufac-
turing Company) and their assembly partners Amkor, ASAT and Seiko
with information such as detailed and complex design drawings, proto-
type plans, test results, and production and shipment schedules. This
arrangement greatly facilitates their ability to be aware of demand and
supply levels, and can respond quickly to potential mismatch problems.
It also helps to shorten their new product development times. With the
use of Alliance, Adaptec’s cycle time was cut by more than half.

Collaborative Planning. The Internet provides a system architecture
to implement collaborative decision making in a cost-effective way. Sev-
eral companies (e.g., American Software and Syncra) have developed
an information hub that facilitates knowledge sharing and collabora-
tive decision making in the spirit of CPFR, or Collaborative Planning,
Forecasting and Replenishment (see Syncra (1998)). Supply chain part-
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ners first exchange product forecasts and replenishment plans. Then,
its technology synchronizes and develops new agreed-upon plans that
closely match supply with market demand. As a result, they can jointly
reduce inventory costs and raise customer service levels. Nabisco and
Wegmans had successfully implemented a pilot of CPFR, with very en-
couraging results. The total snack nut category sales went up by 11%
while the corresponding sales at other retailers actually declined by 9% in
the test period. Nabisco’s leading brand Planter’s saw its sales increase
by 40% as a result of better planned promotions and discounting given
to Wegmans stores, which was enabled by the collaborative efforts in re-
plenishment. Finally, Nabisco’s warehouse fill rate increased from 93%
to 97%, while inventory dropped by 18%. Several other pilots are now
under way at Schnuck Markets, Kmart, Circuit City, Procter & Gamble,
Kimberly Clark, Sara Lee, and Wal-Mart. Yet another company applies
a similar idea to resource planning. Extracting data from multiple part-
ners, their system allows comparative cost analysis on the supply chain
level — including tradeoffs between lead time versus fill reliability, and
decreased assets versus increased throughput. It also facilitates demand
and supply analysis, so the original equipment manufacturer can un-
derstand final demand and supply constraints. It additionally analyzes
target inventories and safety capacities to meet customer commitments
and achieve targeted profitability.

New Product Development. The information hub can also be used to
deliver the efficiency and speed demanded in new product development
and product change management. Agile Software (www.agilesoft.com),
for example, facilitates collaborative product development using the In-
ternet. As product life cycles became shorter and shorter, managing
product rollovers is now a routine challenge faced by many high tech
companies. Product rollover, defined as the transition from one version
of a product to its successor, is often a vulnerable time for a company.
One of the major risks in product rollover is the time taken to have
all the new parts ready for the rollover. Engineering changes involved
in rollovers may require both new suppliers, new bills of materials, and
new requirements for existing parts. Agile Software has been able to
help companies like Dell, Lucent Technologies, PairGains, WebTV, and
Flextronics to use its Internet-based software systems so that engineering
changes can be made effortless. Another example of this application is in
a major construction project, where numerous geographically-dispersed
partners — project teams, architect, auditors, accountants, suppliers and
subcontractors — communicate and collaborate. The web site serves as
the information hub (using the solution by Framework Technologies)
for the project, cutting across geographic and organizational boundaries
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of a supply chain. Authorized team members can review, contribute
and comment in real time on project-related documents of various for-
mats like text documents, CAD files, schedules, spreadsheets, photos,
database queries, and other web-enabled applications. The hub main-
tains the revision history of CAD models and other documents. Cisco
also has a similar application. Notifications of changes are automati-
cally sent via e-mail to appropriate team members. Changes in bills of
materials are also broadcast to suppliers via the CCO site. According
to Cisco, this has reduced engineering change order (ECO) cycle time
from 25 days to 10 days within the last 4 years. This improves quality
significantly and reduces inventory write-offs, and ultimately, improving
overall profitability.

4. Implementation Issues

We review several issues related to the implementation of the infor-
mation hub.

As mentioned above, the information hub has three models — e-
Market, e-Buyer and e-Supplier. Prom the economic welfare point of
view, e-Market is likely to yield the maximum efficiency to the commu-
nity of the supply chain. By sharing a single hub, the supply chain will
avoid redundant investment in creating multiple hubs. It also avoids
the complications of the e-Buyer (or e-Supplier) model where suppliers
(or buyers) have to comply with different rules and standards associated
with different hubs. Further, all transacting parties will enjoy the ben-
efits of one-stop shopping. On the other hand, e-Market may be more
difficult to implement. Many parties (often competing parties) may have
difficulties in reaching an agreement to share the same hub. A common
concern is competition among partners over the ownership of customers.
A distributor may justifiably worry about the possibility that the hub
model will link manufacturers directly to end consumers and ultimately
eliminate the role of intermediaries. Even original equipment manufac-
turers (OEMs) may be vulnerable since distributors may offer products
to end consumers in alliance with contract manufacturers, thereby by-
passing OEMs. If this concern prevails, e-Buyer or e-Supplier will be
easier to implement than e-Market.

The information hub and e-Business can be an extension to ERP sys-
tems. Moreover, for a large decentralized company, the information hub
can play a hybrid role of internal and external systems. Consider a
company again called Acme selling electro-mechanical parts. Acme has
a highly decentralized organizational structure — due to its growth by
acquisitions. Acme felt that they could further exploit potential synergy
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in operations. While divisions commonly shared customers and suppli-
ers, their logistics and information systems remained isolated from each
other. Four years ago, one division successfully implemented an ERP
system originally designed only for its product lines. Over time other di-
visions with legacy systems and different ERP systems approached them
to connect to the ERP system for logistics coordination. Now the ERP
system has become a de facto information hub linking multiple inter-
nal divisions and external entities like customers, suppliers and logistics
partners. Currently, the ERP system handles 50% of the transactions of
Acme, but its target is 80% within a year. In this case, the ERP system
has evolved to the information hub without initial planning.

The information hub does not necessarily represent a single physical
entity. Asdistributed object-oriented computingis developed, individual
functional modules may reside at scattered locations and be invoked only
as needs arise. Thus, the information hub could exist only as a logical
entity — physically, it is a collection of nodes in the network.

While we focus our discussion on information flows, the idea can be
extended to include the logistics hub. A logistics hub is a merge-and-
fork point in material flows. A logistics hub subsumes an information
hub, but involves the additional dimension of physical material handling.
Examples include supplier hubs at manufacturing companies and the
integrated logistics hub operated by third party logistics providers.

There are numerous hurdles to information hubs. The first and fore-
most challenge is that of aligning incentives of different partners. It
would be naive to think that supply chain integration will automatically
increase each partner’s profit. In fact, each partner is wary of the pos-
sibility of other partners abusing trust and reaping all or a lion’s share
of the benefits from supply chain integration. Even when each partner
is guaranteed a positive gain in return for participation, partners may
haggle over how to split the gain. This may potentially lead to a failure
to agree — i.e., resulting in prisoner’s dilemma. Thus, trust and cooper-
ation become critical ingredients in a supply chain partnership. On the
other hand, trust needs to be rationalized by a relevant economic return.

As mentioned earlier, supply chain integration involves sharing infor-
mation and knowledge, re-allocation of decision rights, and organiza-
tional linkages. When information is shared among supply chain part-
ners, special attention is needed to ensure that the information be kept
confidential among authorized personnel, and that the information be
used for its original intent only.

Technology is another constraint to the establishment of an informa-
tion hub. Implementation of a cross-enterprise information system is
costly, time-consuming and risky. Partners may not agree on the spec-
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ifications of the technical system, and how to split the cost of investing
in the system.

Finally, companies have to face the challenge of extending or replacing
their legacy systems to fit into the new system. Every organization has
inertia in committing to a major change. This inertia is well justified
in many cases, since the main source of the inertia is the lack of a clear
vision and quantitative analysis to direct and guide their e-Business
strategy.

S. The Future Trend - It’s Intelligence

As various applications of e-Business are implemented, we believe the
next trend of e-Business is intelligence at the supply chain level. The
Internet revolution has made a deluge of data available at managers’ ter-
minals. But it remains a challenge to systematically extract meaningful
information from the data, present it in a user-friendly interface, and op-
timize on actionable parameters. Luckily, various performance metrics
for the supply chain can be obtained easily as a byproduct of the informa-
tion hub model. For example, two startups SeeCommerce and Harmony
Software provide supply chain partners with supply-chain-wide metrics
such as fill-rates, percentage of complete orders, turnaround time, order-
level costing, forecast accuracy, customer support service level, and stock
levels at each site. Data collection spans multiple applications across en-
terprises - by geography, product line, and time. This information can
be used for benchmarking against the best practices and improving the
overall performance of the supply chain. It can also be used as an alert
system, so that anytime some key metrics exceed some pre-specified
thresholds, alerts are sent to the appropriate entities. Another key ben-
efit of supply-chain-level performance measurement lies in the reduction
of printed reports and administrative/distribution costs by making in-
formation accessible to authorized personnel via a web browser.

Optimization as the next step of intelligence is already incorporated
in some software engines by companies like i2 and Manugistics. Freight-
wise is an example in this direction. It operates an open e-market for
transportation services matching buyers and sellers. But Freightwise
provides other value-added services including intelligence. It allows a
shipper to view various options arising from the bids at the exchange
and makes a recommendation regarding which options to take to min-
imize the cost under a set of constraints. Another example is Cisco,
which, as described earlier, has used the Internet effectively as a means
for procurement and sales management. But the company wants to do
more. The newest development at Cisco is the new eHub that contains
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intelligence. The new eHub, to be built by Manugistics, is supposed to
be smart enough to detect problems (such as supply shortage, schedule
gone out of control, and other disruptions in the supply chain), identify
the right parties, and create new plans of actions.

If this trend continues, the decision environment in the manufactur-
ing sector will look more like that in the financial sector. In the past,
manufacturing has operated on monthly or weekly cycles. MRP was run
monthly, and the information feedback (like consumer market trends or
material price movement) came a week or a month later. While several
decisions were made minute by minute on the plant floor, decision mak-
ers were poorly equipped with relevant information. Conditions beyond
the manufacturing floor or the company boundary were taken as a black
box, so in the absence of data, optimization on a global scale was limited
or prohibited. By contrast, a financial trader working in the foreign cur-
rency exchange market, for example, operates on the clockspeed of sec-
onds to exploit fleeting opportunities of arbitrage, armed with real-time
data feeds and dynamic analysis tools. Now that the Internet creates
a new environment for manufacturing with real-time market data and
various operational instruments (like multiple secondary markets, long-
term contracts, forwards and futures), manufacturing will also require
similar information systems to support such dynamic decisions and ac-
tions. It is our belief that the next generation of e-Business products
and services will address these needs.

6. Conclusion

This article has studied various e-Business applications in three classes
(e-Commerce, e-Procurement and e-Collaboration) under the new in-
formation hub architecture, and discussed the potential of e-Business
towards intelligence and optimization.

In retrospect, the first generation of e-Business applications has im-
proved the supply chain efficiency through the ability to access exten-
sive information, automate workflows, open a direct channel, and link
multiple suppliers and customers. Such applications, in the areas of
e-Commerce, e-Procurement and e-Collaboration, have reduced the op-
erating costs, shortened lead-time, improved customer service, and elim-
inate transaction errors in a supply chain. As such, significant values
have been achieved.

On the other hand, e-Business is supposed to realize much greater
benefits and values than what we have seen so far. The early ventures of
e-Business (mostly in the e-Commerce area) have achieved some limited
success, but not up to our original expectation. Pure content access and
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transaction efficiency are not the greatest payoff that could be obtained
with e-Business. Instead, the opportunity should lie in the ability to
optimally synchronize and coordinate the supply chain, to collaborate
among supply chain partners for faster product development and intro-
duction, and to create new services to penetrate new markets.

Despite these disappointments, the next few years will see an explosion
of e-Business applications as visionary companies develop new paradigms
for the future. Such visionary companies as Cisco and numerous star-
tups have already demonstrated ample opportunities in e-Business. It
may be only a matter of time that more companies will soon follow their
lead into the information age.
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1. Introduction

The Internet has sparked substantial growth in consumer-direct de-
livery. While the phenomenal growth of “pure play” Internet retailers
such as Amazon.com certainly strikes fear in the hearts of traditional
Bricks-and-Mortar retailers, these retailers can still offer value to con-
sumers through better service, including instant gratification, easier re-
turns/exchanges and permitting the customer to physically examine the
product. A growing number of established retail companies are choos-
ing to augment their physical presence with an online presence, a “bricks
and clicks” strategy, in an attempt to capture the best of both worlds.
Mall standards such as The Gap and J.C. Penney have had some success
employing such a strategy (see Lee (1999)).

Of critical importance to firms using any or all of these delivery chan-
nels is outstanding customer service. A recent customer service study
from Sybase' asserts that a dissatisfied customer will tell eight to ten
people about his or her experience, it costs six times more to sell to a
new customer than to sell to an existing one, and seventy percent of
complaining customers will do business with the company again if it
quickly takes care of a service failure.

Any inventory model with stochastic demand must capture the pos-
sibility that demand may not be completely satisfied from available in-

lwww.sybase.com
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ventory and that the seller of the good bears some cost of not satisfying
demand. Such models seek to determine appropriate stocking and re-
plenishment behavior, generally trading off expected stockout costs with
expected inventory carrying costs. While throughout this document, we
refer to selected work from the stochastic inventory literature, it is not
our intention to rigorously review this area. Silver et al. (1998) offers
an excellent treatment of basic inventory models.

As the product and service marketing experience becomes more per-
sonalized, better information about individual consumers is available.
Customer information that may be available includes demographic infor-
mation, previous buying behavior as well as the consumer’s hobbies and
interests. Fully incorporating this information may include customizing
product and service offerings.

Our purpose in this paper is not to discuss all the complexities of
individual customization, but rather to examine how the presence of
multiple delivery channels affects both the likelihood and cost of certain
kinds of service failures. In some environments, this will simply affect
the estimation of stockout costs. In others, traditional stochastic inven-
tory models with a single stockout cost will be inadequate. In section 2,
we present a taxonomy of consumer-facing service failures, considering
four kinds of stockouts and four sales channels. We discuss the manner
in which these sixteen ‘“stockout types” vary in both (per unit) cost and
probability of occurrence in section 3. In section 4, we discuss environ-
ments where modeling this level of stockout detail might be useful.

2. Stockout Types

We focus our discussion on single item systems where customer service
is measured by a per unit stockout cost. Many authors have pointed out
that there is an equivalence between stockout costs and a service level
constraint (see McClain et al. (1992) or Nahmias (1989)). It is worth
remembering this fact since many managers seem quite comfortable with
specifying a service level, but not specifying a stockout cost. Since there
is an implied per unit cost associated with afill rate constraint, the issues
raised apply to these constrained models as well. The concepts discussed
also apply to systems where multiple items are considered, such as order
fill rate models (see Song (1998)) and models where the service penalty
cost is incurred per event rather than per unit.

Chen and Zheng (1993) and Cetinkaya and Parlar (1998) examine
models with more general backorder costs (not linear) and extend some
results to quasi-concave holding and backorder costs. Also, there is sig-
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nificant work that addresses a mix of lost sales and backordered demand
(see Moon and Choi (1998))
We consider four kinds of stockouts:

1 Lost Sale (LS) the desired good is not available, and the buyer
leaves the system unsatisfied;

2 Backorder (BO) the desired good is not available, and the buyer
agrees to wait and complete the sale when the good becomes avail-
able;

3 Buyer Substitution (BS) the desired good is not available, and
the buyer selects an alternate product;

4 Seller Substitution (SS) the desired good is not available, and
the seller offers comparable or superior product at the price of the
originally desired good.

Simultaneously, we consider four retail selling channels:

1 Bricks only (BRK) the seller offers the product only in physical
stores;

2 Bricks and clicks, store order (BCS) the seller offers the prod-
uct both in physical stores and online, and the buyer goes to the
store to obtain the product;

3 Bricks and Clicks, online order (BCO) the seller offers the
product both in physical stores and online, and the buyer goes
online to obtain (order) the product;

4 Clicks only (CLK) the seller only offers the product online.

We only consider systems where either buyer substitution or seller
substitution occurs, not both. The justification for this is that if seller
substitution is offered, no buyer substitution will take place since the
seller substitution involves offering a superior product. It is possible
that there are systems where both kinds of substitution are possible.
The simplest such case is where the buyer in a physical store does not
find the desired product on the shelf and selects another product without
speaking with the sales staff (who would have made the buyer a better
offer; see Hsu and Bassok (1999) and Bassok et al. (1999) for discussions
of seller substitution.)

A buyer will choose to go to a store for several possible reasons. At
the store he can physically touch, feel, test and operate the product.
He may enjoy the interaction and sensory experience of the store (some
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people actually enjoy going to the mall!). He may have security concerns
regarding Internet shopping. He may want the product instantly, and
he may favor the post-sale customer service offered by physical stores.
In fact, in a recent study by Jupiter Communications, 37% of consumers
stated that they would be more likely to shop online if returning prod-
uct was easier. Conversely, a shopper will choose an Internet channel
for potentially lower cost, ease of comparison shopping (it is easier to
visit multiple selling locations) and convenience of home delivery. In-
terestingly, a recent empirical study of online buying in the hospitality
industry by Shankar et al. (1999) suggests that while price search time
increases in the online medium, non-price information available via the
Internet actually leads to less price sensitivity. That is, customers may
shop around more, but they tend to be even more brand loyal.

While the seller has control over the inventory stocking decision and
the choice of channels, she has only limited control over the kind of
stockout that will occur. That is, she can offer to make it easy for the
good to be backordered, perhaps offering expedited delivery or another
incentive, or she could offer equivalent or superior substitute products.
Still, it is the buyer that ultimately determines the kind of stockout that
occurs. In the next section, we discuss how the different sales channels
affect both the cost of service failures and the likelihood of certain buyer
actions.

3. Impact of Channels on Stockout Cost and
Likelihood

We use the generic term stockout to represent any unsatisfied demand
at the time the demand occurs. For each stockout, there are costs that
are relatively easy to quantify such as lost marginal profit, cost to ex-
pedite an order or higher cost of a substituted product, as well as costs
that are difficult to quantify that capture the effect of poor service on
the future buying behavior of the dissatisfied customer and the general
reputation of the seller. The latter of these are known as goodwill costs.
The combination of these direct costs and goodwill costs gives a penalty
cost associated with unsatisfied demand.

Many authors have discussed the difficulties in estimating goodwill
costs. Recently, Ishii and Konno (1998) address this problem by de-
veloping a fuzzy newsvendor model, where the stockout cost is a fuzzy
number. Jones (1999) addresses the problem of estimating lost sales
due to balking. That is, if a customer does not see the desired product,
they may leave the system and the seller may not know that a lost sale
occurred.
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While goodwill costs are difficult to estimate, it is important to note
these costs should not necessarily be proportional to the magnitude of
customer dissatisfaction. The goodwill cost is an attempt to quantify
something that, were we omnipotent, could be quantified. The seller
is concerned with losing future sales, both from the dissatisfied buyer
and from people that buyer might tell about his experience. If a seller
has a strong competitive advantage (price, quality, etc.), a buyer can
be very unhappy about the service he receives from that seller, but he
will still return to that seller. In a more competitive environment, a
slightly dissatisfied buyer could switch to another seller forever. It is the
level of dissatisfaction combined with the competitive environment that
affect goodwill costs. Consider the simple example described in Table
2.1 with a single selling channel, perhaps a retail store, and three kinds
of customers, very loyal, somewhat loyal and fickle.

Customer Behavior Cost

Type

Very Loyal Customer will backorder the No lost sales. Just the cost
desired good of recording and satisfying a

backorder

Somewhat Customer will buy else- One lost sale.

Loyal where, but come back in the
future.

Fickle Customer will buy elsewhere Many lost sales; this sale
and not return. and future potential sales

both from this customer and
potentially his friends

Table 2.1, Estimating Stockout Costs for Different Customers

If a retailer can estimate the distribution of customer types, she can
compute an average stockout cost and apply basic stochastic inventory
models to determine appropriate safety stock levels and reordering poli-
cies. If information about each customer is available, the seller might
ration stock or make different substitution offers based on the customer
profile. For example, if stock is expected to be in short supply, the re-
tailer might choose to not satisfy a customer demand if she knows that
customer is very loyal. We address this and other related issues below
in section 4.
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3.1 General Cost Issues

A primary difference between lost sales and other stockout types is
that when sales are lost, the marginal profit is lost. (For the purposes
of our discussion, we assume that the seller is not a new e-tailer, selling
each unit at a loss, trying to make up the difference in volume.) For any
channel, lost sales should always be the most expensive kind of stockout.
If not, whatever kind of stockout was more expensive should never be
performed (the seller should not backlog or substitute). This does not
mean this cannot happen. Recall that when we say stockout cost, we
mean to include both direct and goodwill costs. If the goodwill costs
have been overestimated, a seller will do more to satisfy the buyer than
she should.

Other than those distinctions, it is rarely possible to provide an or-
dering of different types of stockout costs, based on their relative mag-
nitudes. With all else equal, the goodwill cost for buyer substitution is
higher than the goodwill cost for seller substitution since the customer
will appreciate the special attention associated with seller substitution.
Of course, while goodwill cost will be lower with seller substitution than
with buyer substitution, there will be higher product related costs with
seller substitution.

3.2 Lost Sales Across Channels

Lost sales costs for either online channel (BCO or CLK) are quite high.
The Sybase study mentioned previously asserts that the probability of
selling a product to a new customer is 15 percent, whereas the probability
of selling to an existing customer is 50 percent. Lost sales costs for online
orders are high relative to store lost sales costs since the store will have
a location advantage. That is, a customer may be dissatisfied with the
store inventory shortage, but there is a reasonable chance he will return
since there may be limited choice in his geographic area. BCS lost sales
costs are slightly lower than BRK since the bricks and clicks seller offers
greater channel choice to the consumer. The probability of a BRK lost
sale is slightly lower than with BCS since it may be easier for the buyer to
place a backorder. (The retailer may have Internet kiosks in the store.)

The environment is more competitive for online sellers since they have
no location advantage. For both BCO and CLK, the lost sales cost is high
since a dissatisfied customer may never return. Similar to the physical
store situation though, lost sales costs for BCO may be lower than for
CLK since the buyer may have chosen the seller because of the seller’s
physical presence. In this case, the seller is more likely to retain future
business from that customer. Given these observations, we hypothesize
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the following orderings for lost sales cost and probability:

Lost sales cost: CLK > BCO > BRK > BCS (2.1)

Probability of a lost sale: CLK > BCO > BRK > BCS (2.2)

33 Backorders Across Channels

In all cases, the magnitude of backorder costs and the probability
of backorders occurring depend on the duration of the customer wait.
Backorder costs for BRK orders range from moderate to high, depending
on the importance of instant gratification. The probability of a backorder
is probably lowest with this channel since the customers are more likely
to want the product immediately.

For BCS, both the cost and probability of a backorder are lower than
for BRK, since it is easier for the customer to place a backorder (as-
suming the customer can place an online order from the store.) For
both BCO and CLK, the customer was going to wait anyway, so (again
depending on the length of the wait) the customer may not be that dis-
satisfied with a backlog situation for an online order. For this stockout
type, we hypothesize the following cost and probability orderings:

Backorder cost: BRK > BCO > BCS > CLK (2.3)
Probability of a backorder: CLK > BCO > BCS > BRK  (2.4)

34 Buyer Substitution Across Channels

Stockout costs associated with buyer substitution for BRK can go
from almost zero to very high. If the buyer chooses a substitute product,
the marginal profit is probably similar; thus the stockout cost depends
primarily on the goodwill cost. Consider a wine store. A buyer on his
way to a dinner party may enter a wine store with a particular bottle
in mind. If that bottle is not available, many substitutes are available.
The buyer is probably not too unhappy, and he will likely return in the
future. Conversely, a buyer might be unwilling to go to another seller
given his time constraints, but he will be quite dissatisfied and may not
return to that seller, particularly if there is substantial competition. A
gas station that has run out of regular fuel and only has premium is one
example.

For BCS orders, buyer substitution stockout costs are similar to BRK
stockout costs. The primary difference between BRK and BCS is that
buyer substitution is less likely for BCS since it is relatively easy to
backorder the desired item by placing an online order from the store.
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For BCO orders, buyer substitution stockout costs are low compared
to store channels. The reason for this is that the buyer is unlikely to feel
forced into a substitute product he does not want. If no acceptable prod-
uct is available, a lost sale is very likely. This means that while the buyer
substitution stockout cost is low, the probability of such substitution is
also low. Instead, the shortage will frequently result in a backorder or
lost sale. Buyer substitution stockout costs for CLK orders are similar
to those for BCO. Again, we hypothesize cost and probability orderings:

Buyer substitution cost: BRK, BCS > BCO,CLK (2.5)
Probability of buyer substitution: BRK,BCS > BCO,CLK (2.6)

3.5 Seller Substitution Across Channels

In nearly all cases, the customer will be happier with seller substi-
tution than with backordering, implying that the goodwill cost is lower
for seller substitution. However, some product-related cost must be ab-
sorbed by the seller; typically a more expensive product is sold for the
same price. Since goodwill costs will be low in this case, the cost of the
alternate offering will strongly influence the total stockout cost. Seller
substitution is most likely with BRK since the buyer may be seeking
instant gratification. The probability of seller substitution with BCS is
lower since the buyer can easily backorder the good. Since the cost of
seller substitution depends on the alternate offering, we hypothesize a
cost ordering only:

Probability of seller substitution: BR > BCS > BCO,CLK (2.7)

Table 2.2 summarizes our discussion of the differences in both cost and
probability of the different kinds of stockouts.

4. Customer Service Model Implications

4.1 Inventory “Coverage’ for a Bricks and
Clicks retailer

A bricks and clicks retailer would have an existing network of stores
as well as extensive online operations. Given the different activities re-
quired in bricks and clicks, it is not uncommon for the logistics networks
for the two operations to be quite independent. Consider the the case of
BarnesandNoble.com, where the online operation was spun off as a sep-
arate corporation. (It is interesting to note that Barnes and Noble and
bn.com have grown closer since the spin-off, with the physical stores now
accepting returns and exchanges from online purchases.) In fact, there
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is a continuum of bricks and clicks operations. Gateway country retail
outlets are “service centers” where all products are custom-configured
and delivered to the home. The purpose of the retail outlet then is to
provide information, let the potential consumer examine similar prod-
ucts and provide post-sales service. At the other extreme, it is unlikely
that a Wal-Mart shopper facing an out of stock product will backorder
it by placing an online order from the store.

Now, consider a bricks and clicks operation somewhere between these
extremes, such as The Gap. A customer would go to such a clothing
store (rather than buying online) to examine the products, try them
on for fit, see how the color looks, etc. He may also want the product
for immediate use. For a particular style of casual cotton pants (e.g.
flat-front, relaxed fit khakis) there are three product dimensions, waist
size, inseam and color, leading to many different stock keeping units
(SKU). In the absence of online operations, a store manager might simply
forecast demand for each item and trade off holding and stockout costs.
The problem with that approach is that the number of items is quite
large. In fact, to avoid excessive holding costs, Gap stores have a limited
selection, with a wider selection of sizes available online. That is, you
can buy 32", 34",... waist size in the store, but 33" waist size is available
online only.

Clearly there is a demand pooling benefit to selling certain items on-
line only. The risk is that store-going customers wanting in-between sizes
may be dissatisfied. One way to address this problem is to use a con-
cept we term inventory coverage. Recall that the store-going customer
wants three things: to establish fit, see how the color looks on him and
get the pants immediately. As long as the store maintained inventory
in each waist-color combination and in each waist-length combination,
two of the three customer objectives are satisfied. In fact, in the case
of pants, we could relax this slightly. That is, for establishing the color
appearance objective it may be sufficient to be close in size (for example,
correct waist size and within an inch or two of the correct inseam.)

This coverage concept moves the store closer to being a service cen-
ter. Still, the store-going customer typically wants immediate satisfac-
tion, so a retailer using a this size-color coverage concept might want
to estimate two stockout costs, the normal item stockout cost and the
cost of a coverage stockout. A normal stockout would occur when the
customer identifies the desired good, but that good is not available. A
coverage stockout would occur when there is insufficient inventory for
the customer to find the correct fit or examine the full range of colors.
Presumably the cost of a coverage stockout would be greater than the
cost for an item stockout, suggesting a two-tiered service level model.
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Furthermore, while this store experience is going on, there is an inven-
tory stocking decision for the online distribution system that must be
made. If the store commits to supporting such a coverage model, the
supporting online operation should have a very high service level. If a
customer comes to the store expecting to try on clothes and then place
an order online, he will be quite unhappy if he encounters an online
stockout.

4.2 Using Customer Information

The discussion in the previous section about inventory coverage raises
an interesting point regarding customer location. It is conceivable that
an online retailer (CLK or BCO) would have information about the lo-
cation of the online shopper. A bricks and clicks retailer would like to
know if the shopper is close to one of her retail locations, or a competitors
location. The scenario leading to the highest stockout cost is probably
where the shopper is in an area where the seller has no store, but a
competitor does have a store. Any service failure could very likely result
in that shopper defecting to the retailer with a local presence. (In fact,
the author admits to defecting in exactly this manner due to a service
failure.) It might be worthwhile for the retailer to make substitution of-
fers to customers in this situation where she has a location disadvantage,
but make no substitution offer where she is not disadvantaged.

Recently, Cattani and Souza (2000) study a model where an online
retailer reserves stock. It is possible that a retailer could ration stock
in a physical store, although this would certainly be more difficult since
the product is stored where the customer can see the inventory. Clearly,
if a customer is denied inventory they can see, they will not be happy.
Certainly an online seller can mask stock information from customers. In
fact, consider results from the Accenture online holiday shopping study
shown in Table 2.3.

Company Type Year Status Provided In-stock (if status provided)

E-tailer L o o

2000 36% 89%

Catalog merchant %g :?Zj ggzg
Traditional retailer ;g?}g ggzj g?;ﬁ
Tow OB % s

Table 2.3. From the Andersen Consulting/Accenture e-Santa study of 1999 and 2000
Holiday shopping
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The fraction of online vendors posting inventory information came
down substantially from 1999 to 2000. It seems unlikely that the pri-
mary reason for this drop is that retailers are rationing stock based on
customer profiles, however it is an interesting decision as to whether the
retailer should post this information freely or only when the “add to
cart” button is clicked.

5. Remarks and Conclusions

There are many relevant customer service issues we have not addressed
of course. The discussion of multiple channels certainly suggests the pos-
sibility of jointly determining stock levels for retail outlets and fulfillment
centers as well as setting a different price for each channel. It may well
be the case that pricing policies that encourage store-goers to take home
delivery may improve system performance by reducing system inventory
levels. For this to work, savings from this inventory reduction must
offset the higher transportation costs associated with home delivery.

The online medium lends itself to promotional marketing, such as
special email offers. Letting the system state play a significant role
in determining the timing and nature of promotions could lead to sig-
nificant operational improvement. As a simple example, consider an
online fulfillment operation. Sending an email blitz to generate a surge
in orders when the facility is working at or near capacity could lead to
customer delays, while special offers during a period of underutilization
might improve profitability. There is a need for models that tie such
email promotions to both inventory availability and system capacity.

Recent discussions with several e-tailers and logistics providers led to
a somewhat startling discovery regarding customer expectations. The
approximate breakdown of choice of shipping options (for moderate value
goods) was 75%, 15%, 10% for ground, two-day and overnight. Many e-
tailers have some form of fulfillment time guarantee, such as “in-stock
items shipped within 24 hours,” however, the focus of the fulfillment
center operations is typically on overall productivity (for example lines
picked/hour). Often, orders are not prioritized by customer type or
shipping mode. That is, when a consumer selects ground shipping, they
indicate that delivery time is not critical. Of course a retailer cannot
make them wait indefinitely, but their order can certainly wait a day.
A consumer choosing one or two-day service has clearly indicated his
time sensitivity. If the above 75%, 15%, 10% estimate is close, no one or
two day order should ever wait more than a day (assuming inventory is
available). Furthermore, there is an opportunity to affect the consumer’s
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choice of shipping mode via price changes or promotions to maximize
revenue while maintaining excellent customer service.

We have suggested a taxonomy of customer-facing stockouts in the
presence of traditional and online delivery channels. The sixteen stock-
out types discussed here differ in both cost to the seller and probability of
occurrence. As more individual customer information becomes available,
more sophisticated models will be needed to help retailers make intelli-
gent stocking and selling decisions. Both practitioners and researchers
should be aware of the implications of these different kinds of stockouts.
Simple order-up-to and reorder point systems may not be adequate to
describe optimal stocking behavior when the role of the store is both a
stocking location and a service/product demonstration center.
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Abstract  This chapter clarifies some of the different types of efficiencies that can
be achieved in B2B electronic commerce. We focus on the risk manage-
ment aspects of these efficiencies, especially those pertaining to supplier
or supply chain management related costs. This novel approach in-
corporates risk management by combining the traditional collaborative
framework (of reservation capacity and associated pricing) with a dy-
namic spot market, both of which are Web-based. By way of contrast,
in prior research and industrial use, these two supply modes of col-
laborative commerce and spot market, have been used separately, in a
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non-integrated way. We develop a framework that draws upon our re-
search, as well as that of others, suitably adapted by us to this context
and interpreted to provide insights into the economics of B2B commerce
against this backdrop. We also point out open questions and identify
new research directions.

Scope and Definition of B2B E-Commerce

For this chapter, we adopt the following definition presented in Durla-
cher (2000) and define business-to-business e-commerce as well as busi-
ness-to-business electronic markets as follows:

Definition 3.1 Business-to-business e-commerce is commerce conducted
between businesses over an intranet, extranet or Internet (i.e., IP net-
works). This trade may be conducted between a business and its supply
chain as well as between a business and other businesses’ customers.

Definition 3.2 Business-to-business markets are platforms on which
B2B e-commerce may be conducted directly between buyer and seller or
through a third party.

We start out this chapter with a brief discussion of several key sources
of efficiency in B2B e-commerce, out of which we will mainly focus on
risk management approaches. We then supply a framework for B2B
e-commerce, and argue that traditional supply chain literature is not
sufficient to provide insights into all aspects of B2B e-commerce. We
continue with a description of the characteristics of Internet-based mar-
ketplaces and present the key results of recent work that fill some of the
gaps between B2B e-commerce and the traditional supply chain research.
We conclude the chapter with a brief summary of the main results, and
sketch on-going research and an outlook on future work.

1. B2B E-Commerce: Sources of Efficiency

It is well known that B2B e-commerce achieves efficiencies through
several of the following key mechanisms, as well as others:

1. Process Efficiencies

The standardization of software and formats for exchanging busi-
ness information creates significant efficiencies, that are exploited in
e-business. These include supplier discovery, i.e., analyzing and nego-
tiating purchases with suppliers, price discovery, as well as automating
labor-intensive procurement and sourcing processes. Moreover, the es-
tablishment of common standards within B2B markets will let companies
juggle their suppliers, depending on available supplies.
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2. Web Efficiencies

The Internet not only offers hardware and communication cost re-
duction but also allows for a broader reach, in comparison with EDI
(Electronic Data Interchange) services, which provide only point-to-
point connections. This is especially important in the supply chain area
of B2B commerce, which is traditionally messy, paperwork-intensive and
prone to miscommunication. Information visibility, including informa-
tion required to mitigate the bullwhip effect (referring to the increasing
variability of orders as we move upstream in the supply chain; see Lee
et al. (1997) for more details), can be maximized through the use of
Internet-based systems while maintaining a tight access control for this
highly sensitive data. The Internet also opens up the possibility for busi-
nesses to sell more of their products across all of the goods lifecycle (raw
material, finished goods, second hand goods, scrap, etc.).

3. Demand/Forward Aggregation

Significant procurement cost reductions also result from volume dis-
counts achieving by pooling demands, through enhanced bargaining
power or concave cost structures. Obviously, forward aggregation yields
similar benefits for groups of suppliers, who cooperate to increase their
negotiating power.

4. Value Added Services

Value added services address issues of what companies should buy,
who they should buy it from, what price they should pay, when they
should buy and where. For instance, trading exchanges are likely to
extend their offerings to include settlement and fulfillment capabili-
ties. More explicitly, pre-qualification of quality of suppliers, logistics
providers, etc. can significantly lower transaction and supply chain costs
and thus create overall efficiencies.

5. Information Aggregation

The Internet is an increasingly global network allowing businesses to
reach customers and suppliers in new areas. The ability to combine
multiple sources at one portal, as well as web-based search capabilities
enable significant reduction in locating suppliers and conducting due
diligence, i.e., verifying price, quality, and service characteristics (page
395 in Chopra and Meindl, 2000).
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6. Information Sharing

Historically, only limited information was shared between companies.
B2B e-commerce technologies, however, allow for real-time communica-
tion and data sharing by integrating ERP (Enterprise Resource Plan-
ning) and other systems with those of an organization’s suppliers and
customers thus eliminating duplication and achieving closer matching
of demand and supply. At the same time, supply contracts embedded
in ERP collaborative commerce software modules increase transparency
between cost and profit centers.

7. Price Discovery Mechanisms

Price discovery mechanisms used in B2B e-commerce such as auctions
and reverse auctions reduce bargaining and coordination costs, which
historically have represented the most significant part of transaction
costs.

8. Risk Management

By using the B2B exchange ability to access multiple types of suppliers
such as long-term capacity suppliers, as well as spot market suppliers
with varying price, quantity, quality, and service characteristics, buyers
can become more flexible and are able to manage their supply according
to actual demand instead of uncertain forecasts. Likewise, suppliers can
now sell to multiple buyers at a given time and have a platform to sell
off any leftover inventory or excess goods. These benefits stem from
enhanced efficiency in capacity management, through effective supply
and demand risk pooling.

In this chapter, we focus on the last four aspects described above,
while putting particular emphasis on the last two, to achieve efficiencies
and enhanced profits. We next describe a B2B e-commerce framework
that helps capture these elements.

2. Framework for B2B E-Commerce

There are many frameworks that have been developed for classifying
B2B e-commerce, to describe the differences in policies and functioning
of the various forms of B2B hubs. The intent of our specific framework is
to include all forms of B2B e-commerce and to indicate the primary types
of markets (e.g. components, capacities), where our risk management
approaches provide significant economic gains, and possible adaptations
to other types of markets. Our approach is a major modification of a
framework recently suggested by Kaplan and Sawhney (2000), where our
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What businesses buy

Operating Inputs  Manufacturing Inputs

How businesses buy »
Spot Sourcing Yield Managers Exchanges
Systematic Sourcing MRO Hubs Catalog Hubs
Y

Figure 3.1. B2B Matrix by Kaplan and Sawhney

framework enables the use of existing risk management models, or the
identification of gaps to develop new models.

The Kaplan-Sawhney model described in Figure 3.1 above, has the
classic 2x?2 matrix, with systematic (collaborative) source vs. spot mar-
ket on one axis, and operating inputs (meaning MRO - maintenance,
repair, and operating - resources across horizontal industries, such as
computers) vs. specific manufacturing inputs on the other. They clas-
sify B2B marketplaces, which they call electronic hubs, or e-hubs, in one
of the four boxes of the 2X2 matrix: spot markets for common oper-
ating resources like labor, advertising, and manufacturing capacity are
called yield managers, whereas on-line exchanges are defined to trade
commodity like production inputs, such as steel and energy. So-called
MRO hubs streamline the sourcing of low-value goods with relatively
high transaction costs and catalog hubs automate the procurement of
non-commodity, industry specific manufacturing inputs.

Observe that they categorize capacity under operating inputs, which is
somewhat awkward. We will soon observe that our proposed framework
is more consistent from a modeling and risk management perspective.

Figure 3.2 describes our framework for B2B e-commerce. Our objec-
tive is to classify the different types of B2B e-commerce interactions and
markets, and to model the economic gains that a combination of markets
can help us achieve, rather than by using one type of market alone.

Observe that while our vertical classifications are the same as in Ka-
plan and Sawhney in terms of spot markets and systematic sourcing to
describe buyer-seller relationships, our horizontal classification is now
based on standardized and customized types of goods or service. The
reason for this is that we are interested in exploring the economic de-
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Type of Good/Service
Standardized Customized
Buyer-Seller Relationship "
Spot Sourcing Spot Markets
Private
Systematic Sourcing Catalog Hubs Marketplaces

Figure 3.2. B2B E-Commerce Framework

sirability (through risk management) of using possibly more than one
market type simultaneously.
We now discuss the specific elements of Figure 3.2.

2.1 Private Marketplaces

These correspond to systematic sourcing, which may be based on long-
term contracts, implemented via the Web (or manually), and represent
customized products. There are several elements of economics that could
potentially preclude web based search and comparisons of customized
products from multiple sources:

»  Shipment cost or difficulty

= Uniquely engineered products with attendant difficulty or costs if
procured from more than one supplier site.

= The award to a supplier of preferred status and long-term rela-
tionship, with attendant responsibilities of design and engineering
work

Under these conditions, when the nature of the good or service in ques-
tion is such that only a one-to-one buyer-seller relationship is possible
or desired, virtual private marketplaces or B2B collaboration networks
preserve pre-negotiated terms and relationships between specific buyers
and suppliers so that their members can interact privately in the kinds
of detailed, higher-value interactions they have always done off-line and
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are now pursuing on the Internet. B2B collaboration networks provide
an integrated software platform that connects companies in specific in-
dustries and mainly facilitate the procurement and sales functions of
the collaborative commerce network. Thus, these private marketplaces
let their members share privileged information within a defined commu-
nity of trusted business partners. They are mostly found in situations
involving mission-critical, high value inputs and components or where
high fixed costs occur.

For these situations, i.e., when only long-term sourcing is available
and when only private marketplaces are used, the rich literature on tra-
ditional supply contracts applies. However, these models on supply con-
tracts provide little insights on how the possible presence of a second
procurement/sales channel of short-term nature affects the situation.
The supply chain contract literature also ignores whether there will be a
co-existence of long-term and short-term contracts or whether only one
of these contract types will prevail. Later in this chapter, we present a
quantitative model that addresses exactly this issue.

Note that it is possible to consider second (spot) sourcing under some
conditions (though our initial description in Figure 3.2 precluded this
possibility), even for nominally customized parts. This is a consequence
of the fact that a customized part, such as a forging, normally considered
unique, could in fact be spot sourced by spot capacity that has been
obtained, and is used either with a spare identical die, or with the original
die, while the original capacity is being used to produce another part

type.
2.2 Catalog Hubs

Catalog hubs create value to all players by automating sourcing and
procurement processes and reducing transaction costs when the details
of the transaction have previously been agreed upon. They are designed
to support systematic purchases when transactions take place with pre-
qualified suppliers using contractually agreed upon business rules, e.g.,
pre-negotiated prices or pricing schedules. Catalog hubs can also aggre-
gate demand or supply in markets with fragmented buyers or sellers and
create value when there are a few large players and many small play-
ers of the same type (buyer or seller). Note that in contrast to Kaplan
and Sawhney (2000) we do not limit catalog hubs to industry specific
manufacturing inputs but rather define them, more generally, for the
systematic sourcing of goods and services, which are traded according
to pre-defined business rules.
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With systematic sourcing, and standardized components, it is possible
to have alternate pricing schemes, when prices of components may not
necessarily be fixed. This corresponds for instance to the situation when
the manufacturer and the supplier share risk and reward with respect to
demand uncertainty that results in unused capacity or unmet demand.
One such scheme is based on linear pricing, where the actual price is low-
est when all the committed capacity is acquired, but increases linearly,
as a smaller fraction of the committed capacity is actually acquired/used
by the manufacturer. We discuss this mode, together with the next one
(spot market), in the bulk of the chapter, as the alternate modes of
most interest to us from an overall economics point of view of the B2B
exchange/marketplace. It is important to recognize again that although
catalog hubs by themselves may have similar characteristics to private
marketplaces, the goods or services traded require a completely different
modelling approach as they are sufficiently standardized, meaning that
spot markets can be established for them, too.

2.3 Spot markets

Close cousins of traditional commodity exchanges, spot markets or
on-line exchanges allow managers to smooth out peaks and lows in de-
mand and supply by rapidly exchanging the good/service needed or pro-
duced. It is important to notice that the type of good/service traded
on exchanges can also include flexible production capacity, labor, trans-
portation, and advertising resources.

The nature of exchanges implies that the pricing structure on these
exchanges is dynamic and that buyers will thus face price uncertainty as
supply and demand may change at any given point in time. This type
of B2B e-commerce adds the most value in situations with a high degree
of price and demand volatility, e.g., in utilities markets, high fixed cost
assets with long acquisition lead-time, such as manufacturing capacity,
or perishable items, such as transportation capacity and food.

While there are several types of market-making models, those most
pertinent to spot markets and the current chapter are the auction model
and the exchange model.

®»  Auction Model

Auction models are most appropriate in industries where one-of-a-
kind, non-standard, or perishable items or services are traded among
businesses that have different perceptions of value for the item. Cap-
ital equipment, used products, and hard-to-find items fit this model.
However, of more direct interest in the context of the current paper
are multi-lot auctions and repeated auctions, which can help generate
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equivalent spot market demand-price curves. The fact that similar (or
same) quantities may have different prices in different auctions results
in demand and random price curves.

» Exchange Model

Exchange models create value by temporal matching of supply and de-
mand using real-time, bid-ask matching processes and market wide price
determination. The exchange model is suited best for near-commodity
items with volatile demand. Similar to the situation in financial mar-
kets, derivatives such as forward contracts and options, can be devised
for exchanges or spot markets, with respect to commodities or flexible
manufacturing capacity. This market type is closest to the theme of the
current paper, which is the direction that electronic markets are moving
in.

3. Characteristics of Markets Participating in
B2B E-Commerce

There are several characteristics of different sources (markets) which
impact supplier (source) risk management when these sources (markets)
are interacting in a B2B exchange, which we will discuss below. In
the later parts of the current chapter, for pedagogical reasons, we only
describe the results corresponding to sources/markets which possess the
least complicated characteristics of those we discuss below, e.g., perfect
quality of supply.

1. Liquidity of Markets

Liquidity has two essential components: participant liquidity and
transaction liquidity. In our context, the latter is of greater importance,
which can be interpreted as transaction volume. A detailed analysis
reveals the fact that almost all of the existing marketplaces are cur-
rently struggling with low transaction volumes. Only exchanges which
are formally associated with large players or led by an industry consor-
tium guaranteeing a minimum transaction volume, have been able to
overcome this problem. Limited liquidity may lead to situations where
demand (temporarily or in general) outstrips supply meaning that the
capacity of the exchange is not sufficient to satisfy all of the demand, an
issue that is incorporated in one of the models we present.

2. Quality of Supply

To ensure a minimum quality of supply and delivery performance,
market-makers are setting up qualification processes for buyers, sellers,
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and the goods that trade hands and monitor their ratings, e.g., Supply-
Works teamed up with Open Ratings to build a supplier-performance
rating system that customers can access using supply chain market-
places and exchanges built on SupplyWorks’ Max e-procurement solu-
tion. Companies make also increasing use of third-party inspectors who
perform physical inspection of goods that trade hands to reduce supply
quality uncertainty. Despite all these measures, sources/markets have
varying degrees of quality, and this characteristic is certainly a key ele-
ment when managing economic risk in drawing upon one or more sources
and meeting demand (sometimes with a minimal quality requirement).
Later in this chapter, again for pedagogical reasons, we focus on perfect
quality sources, and only briefly allude in passing to the implications
of differing levels of quality on the nature of “optimal” polices and the
resulting costs and/or profits.

3. Channel Conflicts

Although existing intermediaries and new B2B exchanges can act as
complements and are not necessarily substitutes, it is still unclear how
spot markets affect existing buyer-supplier relationships. For instance,
for electronic parts distribution, Avnet and Arrow Electronics, two dom-
inant incumbents, joined forces with ChipCenter and QuestLink to form
eChips in order to compete with the newly created marketplaces E2open
(a consortium of IBM, Hitachi, Nortel Networks, Toshiba, Lucent, and
Solectron) and eHitex (created among others by Compaq, HP, and Gate-
way). Thus, as an alternative to the collaborative framework used in this
chapter, where we consider a cooperative approach to use a long-term
(reservation capacity based) supplier and a spot market, there could
be a multiple channel environment, where the channels are in conflict.
Dynamic game models can be used to model these environments.

4. Pricing Dynamics

While fixed prices are well suited for small-ticket items with small
transaction volume or catalog models with pre-qualified suppliers and
predefined business rules, price mechanisms in exchanges, in particular
in spot markets, using real-time, bid-ask matching processes will result
in highly dynamic prices. Not surprisingly, most procurement managers
do not know how to deal with the new volatile price environment and
are thus reluctant to fully use B2B exchanges.

Moreover, as the implicit value of any supply contract is driven by
the underlying demand distribution for the item in question, the per-
ceived value of a contract differs from company to company as it is
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driven by (among other factors) the distribution of a company’s end de-
mand. Hence the question arises on what a fair and efficient price, e.g.,
for perishable capacity, should be. Similar to approaches for financial
exchanges, one could argue that there should exist a price equilibrium
between long-term and short-term contracts. However, the argument
becomes much more involved as the value of a contract is potentially
different for each of the players. Furthermore, from a supplier’s point
of view, dynamic pricing bears the risk of alienating big, strategic cus-
tomers who insist on lower prices than their competitors or other cus-
tomers of the supplier and who may find out that a component is sold
at a lower price via a B2B exchange.

Later in this chapter, we use a simple affine pricing schedule for the
reservation capacity cost as a function of the quantity actually bought
in relation to the quantity reserved initially. Consequently, this pricing
schedule captures the risk sharing agreement between a manufacturer
and his long-term supplier for the supplier’s underutilized capacity re-
sulting from the mismatch between the reserved and used capacity. The
spot market is assumed to possess a fairly general random price that may
depend on the amount the manufacturer purchases on the spot market.

5. Fairness

One of the most commonly cited challenges for B2B e-commerce is
the question of fairness in B2B exchanges. As stated above, the implicit
value of any supply contract depends on the underlying demand distri-
bution, and consequently a contract may have very different values to
different companies. Hence it is unclear what a fair price for the item
traded should be (in particular, perishable items or goods with high
holding and storage costs will cause difficulties). Similarly, some ben-
efits due to exchanges are only the result of the interaction of several
players, e.g., it is widely accepted that demand aggregation reduces pur-
chasing costs through quantity discounts. Although it seems intuitive
that the savings due to demand aggregation are passed on such that
bigger buyers obtain a higher share of the total savings, it is not clear
how this issue is going to be resolved. That is, there are no models that
are widely used in practice to compute optimal solutions, despite the
fact that the problem is a long standing one that is well known in the
economics literature.

6. Incentives

A recent report by AMR Research (2000) states that suppliers balk
at using Web exchanges, especially since they pay the fees charged when



44 SUPPLY CHAIN MANAGEMENT

doing business on-line. Meanwhile, suppliers must still manage their own
inventory, logistics, and customer service. Overall, most experts agree
that there must be value-added propositions for both buyers and suppli-
ers to induce membership in any specific exchange. “If these exchanges
are to succeed, there has to be a superior value opportunity for all sides,
and if not, then no side will participate,” says Chuck Donchess, execu-
tive vice president and chief strategy officer for Commerce One. Conse-
quently, some modifications may be required in the future, in adapting
the results in this chapter, so that the supplier’s economic perspective
is captured in implementing risk management from a manufacturer’s
perspective.

7. Spot market with Lead-time and Derivative Prices

A spot market can have either zero or finite lag (lead) time. Similarly,
the demand-price curve can have a fixed price, random price, or the
price can be a derivative such as a forward price, real option, etc. In
this chapter, we consider spot market prices as fixed or random, assume
zero lead times, and defer a discussion of the other variants to another

paper.
8. Multiple Parameter Trade-offs and Risk-preference Structures

Having access to more alternatives increases the complexity of decision-
making to both vendors and customers. Both will have to trade-off
multiple criteria, such as price, quality of supply, or lead-time. For in-
stance, some spot markets may offer the same item at a lower price,
but also with a lower quality of supply than others at the same point in
time. Furthermore, although firms should be risk-neutral with respect
to small investment and procurement decisions, many managers would
like to account for their aversion against the risk associated with ex-
changes. Both the multi-parameter trade-offs and risk preferences are
not explicitly considered in this chapter, for ease of exposition.

The extensive list of issues with regard to B2B e-commerce implies
that the associated decision-making becomes very complex and that
there is an urgent need for decision support tools accounting for un-
certainties and risks associated with B2B e-commerce. To this end, in
this chapter, we will describe recent novel research which provides an-
swers to some of the procurement issues discussed above. We begin our
presentation with a short review of traditional supply contract literature
which applies to private marketplaces. We then continue with more re-
cent research that mainly focuses on exchanges, and more specifically,
on risk management through the interaction of (spot market) exchanges
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and traditional supply contracts. This work is of great significance in
helping manufacturers manage their economic risk in choosing between
different types of suppliers such as:

- a possibly lower priced long-term (reservation) capacity, with a risk
of having to pay for unused capacity if demand is low (that can be shared
with the supplier), versus

- a (potentially) more expensive spot source, which ensures excess
demand is met in the instance that demand is significantly higher than
anticipated and provided for with the long-term supplier alone.

In the next section, we begin with an overview of some recent re-
search which addresses the quantitative risk management issues we have
repeatedly alluded to above and then describe the results in some detail,
and conclude with future directions.

4. Quantitative Models for B2B E-Commerce

We now describe the concrete results available to address the issue of
economic risk management in supplier management in a B2B exchange,
including our most recent research (Araman et al. (2000a), Araman et
al. (2000b)), to which we will refer. Each of these sections concerns
research that develops solutions for each of the markets in the boxes of
Figure 3.2. We move from results concerning private markets, to those
concerning spot markets, which are of particular interest to us.

4.1 Traditional Supply Contract Literature
(Focus: Private Marketplaces)

The literature on production-inventory systems, and particularly, sup-
ply chain contracts, both game and non-game based models, has ex-
ploded over the past few years. The results are very pertinent to risk
management in private markets and provide useful insights for one-to-
one type supplier-customer relationships or other forms of long-term in-
teractions. Two recent review papers (and Bassok and Anupindi (1997b),
as well as Tsay et al. (1998)) summarize many of the results. The re-
search on supply contracts can be fundamentally separated into sup-
ply contracts with no commitments and supply contracts with commit-
ments (regarding order quantity or delivery performance). Bassok and
Anupindi (1997a) analyze a single product contract where the supplier
offers discounts for a total minimum quantity commitment to a buyer
facing stochastic demands. Anupindi and Akella (1993) consider an-
other form of commitment, in restricting the periodic order quantity of
the buyer. They study a class of contracts that require the buyer to
commit, at the beginning of the planning horizon, to purchase a certain
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minimum quantity in every period. Orders can be adjusted upwards for
payment of a price premium. Furthermore, the contract reflects the de-
livery responsiveness of the supplier to the order quantity adjustments.
Observe that these papers address the issue of trading off upside and/or
downside risk through operational policies, but do not directly incorpo-
rate reservation capacity related pricing.

Similarly, a number of recent papers study the effect of dual sourcing
on a production system. Although dual sourcing can be interpreted as
an alternative framework to the one presented in this chapter, it does
not fully capture the effect of capacity reservation and the respective
literature focuses more on inventory related issues. For instance, Fong,
Gempesaw, and Ord (2000) as well as Rudi (1999) analyze the effect
of dual sourcing on the optimal inventory. Fong et al. study an inven-
tory system with a choice between two supply options having different
lead-times. They allow for normally distributed demand and Erlang dis-
tributed supplier lead-times. In contrast to Fong et al., Rudi does not
assume that orders for both supply options are placed concurrently and
considers sequential decision-making. He uses a two-stage stochastic lin-
ear programming formulation to analyze the split between make-to-stock
and assemble-to-order. Both papers assume that all cost parameters are
deterministic.

4.2 Simulation based Supply Contracts, Applied
to a Private Market, and a Spot Market

As described above, the traditional supply chain literature does not
account for the recent development in B2B e-commerce, especially with
regard to Internet-based exchanges. Thus, there is an urgent need for
new models that address B2B exchanges and their impact on current
procurement practices. One can argue that the complexity of the prob-
lems, the number of parameters involved and their characteristics make
simulation techniques a useful approach for such problems.

The recent paper by Cohen and Agrawal (1999) solves a stochas-
tic dynamic programming formulation using simulation to analyze the
trade-off between long- and short-term contracts. Their model, however,
only allows for the usage of either contract at a time, i.e., a mixed strat-
egy is not considered. The model proposed in this paper can be used for
the comparison of long-term contracts and a spot market since a spot
market can be approximated by a short-term contract with a very short
duration. We discuss this in more detail below. The elements that dom-
inate are the uncertain prices of the spot market versus fixed investment
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costs and learning cost reductions by the long-term supplier, along with
the usual inventory and backlog costs.

As mentioned above, the paper by Cohen et al. proposes a simulation-
based model comparing short and long-term contracts. They consider a
planning horizon of several years divided into 1y; review periods. Each
review period is, in general, of one year in length or divided into 77
tactical review periods (a tactical review period is 1 week long and T°r
is thus equal to 52). If the long-term contract is selected at any point
during the horizon, it lasts for the remainder of the horizon. The short
term contract however lasts, if selected, for the duration of a review
period. During each review period the system evolves according to the
selected contract. We define y; as a 0-1 decision variable (0 for short
term and 1 for long-term).

The model and the results are valid for a shorter review period, with
Tpr smaller than 52. The only assumption needed is that the system
reaches stationarity during one review period. Hence by shrinking the
length of the short term contract as defined in Cohen et al. the short
term contract could be replaced by a spot market as we defined it earlier
in this work, both having almost the same characteristics as far as the
model is concerned. Thus, we are interpreting the conclusions of the
paper in our framework, so that the results and insights can be used
in a B2B exchange framework. The supply managers will still face the
same dilemma of choosing between either a short term or a long-term
contract. The first option has the advantage of offering the flexibility to
switch to different suppliers and is based on a speculative (or random,
in the sense of not known a priori) market price, whereas the long-term
relationship requires a fixed initial investment and is based on a price
written into the contract. In addition, learning effects due to the long-
term relationship are described by an annual percentage reduction, d, of
the total cost incurred.

This paper considers a risk averse supplier whose problem is to select
the optimal contract for each strategic period by minimizing the total
disutility of costs over the entire horizon. To account for the buyer’s risk
aversion, the authors suggest that the buyer follows a “mean-variance”
type of function to evaluate the total cost C, incurred in one review
period:

U(C) = E[C] + AVar(C)
where A (A > 0) reflects the risk aversion of the buyer. (The more
risk averse the buyer, the larger the value of A.) Hence, the problem
is formulated as a stochastic dynamic program, where at each review

period the manager chooses one of the two types of contracts for that
period, based mainly on the previous price of the spot market. He will
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then need to decide on the tactical inventory policies. That is, he has to
account for the cost of goods (F,, total purchase price paid during period
n), the fixed investment when the long-term contract is selected, K, as
well as the inventory and shortage costs. The optimization is performed
over the entire horizon. Although the main focus of the paper is on the
non-stationary, finite horizon setting, a first intuitive result shows that
under the stationary, infinite horizon assumption (i.e., the spot market
price is time stationary) a “now or never’ kind of policy is adopted;
that is, the long-term contract is selected either at the very beginning
or never. The reason is that the formulation of the problem is the same
every period and is independent of the other periods. As a consequence
of the non-stationarity, the formulation of the problem becomes similar
to that of American call options for which the solution can only be
determined numerically.

In what follows we will briefly describe the different parameters that
are included in the model, present a summary of the results, and con-
clude with some managerial insights. For a more detailed description of
the model the reader is referred to Cohen and Agrawal (1999).

As we stated earlier, the spot price plays a major role in this model,
and its non-stationarity is crucial. The distribution of the spot market
price is assumed to follow a multiplicative Binomial process, and to only
depend on the realization of the previous period. We let p, denote the
random market price and p, the realization of the price at time n. Then

~ | Py =A% P,  with probability 7* = 0.5
Pril = p,, =A?.5,  with probability ¢ = 0.5

where A% and A? are two constants that determine the upward and
downward trend of the price. 7% and 7¢ are usually assumed to equal
0.5. This results clearly in a non-stationary environment where the
prices in successive periods are correlated. On the other hand, the price
specified by the long-term contract at a given point in time is locked
in for the remainder of the horizon, and is assumed to equal the spot
market average price during this period. We note that the selection of
the contract occurs before the spot price is revealed in this particular
period. The total expected purchase cost during one review period is

Pu{yn) = uTrpy (yn)

where pis the average demand and

}ﬁ'n lf Un = 0
Yn) = .
Pn(yn) { TP + mapl if yn =
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In addition, the supply manager will also decide on an order (up to)
policy, by trading off holding and penalty costs. This results in a quasi
news-vendor model that incorporates the different lead times based on
the contract’s type and the length of the horizon. Let C,(y,) be the
aggregate inventory and shortage costs. The dynamic programming for-
mulation is then given by

U(V(yn—l:ﬁﬂ—l) =
Igin {K(yn — yn—l) + Pn(?}n) + Cn(yn) + CU(V(yn: Tj‘n))}

where( is the discount factor. The simulation-based conclusions are very
insightful and interesting. As stated above, the long-term contracts are
characterized by the rate of cost improvement, d, and the first conclusion
is that long-term contracts are worth considering if § is higher than a
threshold value so as to compensate for the high initial investment, K,
incurred. This partially explains why managers are reluctant to establish
a long-term relation with a supplier. A “wait and see” policy is usually
adopted in a non-stationary environment where usage of the short term
contract (or use of the spot market in our case) is more suitable at the
beginning; then, based on the dynamics of the spot price, as described
by the drift and volatility of the price process, the decision is made to
either wait longer or to lock in the price in a long-term contract. This
strategy clearly depends on the initial price distribution known to the
managers, as well as their risk aversion. If the probability that the price
will go up is high and the decision-maker is highly risk averse, a long-
term contract is selected in some cases from the very beginning, even
with high initial fixed investment, K. The main contribution of this work
is to identify, in fairly general settings, the factors that contribute to a
contract selection. These factors are the fixed investments, the length
of the planning horizon, the improvement rate for long-term contracts,
the risk aversion of the decision maker and finally the price uncertainty
of the spot markets.

4.3 Supplier Procurement Risk Management

The previous approach, although very comprehensive and broad, did
not allow for a simultaneous use of both modes of supply: the long-term
contract and the spot market. Introducing this option into the model is
not just a means to complete the previous results but a way to study how
the presence of the spot market affect the traditional supply channels,
i.e., long-term contracts, whether one dominates the other, or whether
they could possibly coexist together. As we stressed earlier, introducing
the various characteristics of those contracts makes the problem ana-
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lytically intractable. For instance, a major difficulty introduced in the
Cohen and Agrawal model was the non-stationarity of the spot mar-
ket price. Although this factor could be of primary concern, relaxing
it should enable us to get the right insights concerning how the two
methods of procurement evolve together. Once we make the stationar-
ity assumption, which corresponds to an equilibrium stage, the setting
is equivalent to a one-period problem, as shown above, because the state
space is then independent of time. What is optimal in a particular period
will remain optimal in a subsequent period, i.e., a myopic policy is opti-
mal. In the following paragraph, we describe two models addressing the
question of whether a spot market and long-term contracts will coexist
or not, with many similarities but several significantly complementary
features. The first one considers a general setting with non-linear pricing
for both a long-term supply mode and a spot market while still allowing
us to draw analytical conclusions on the optimal procurement strategy.
The second model assumes specific distributions of the spot price and
the demand, but it identifies in some cases closed form solutions of the
optimal procurement strategy, and studies the sensitivity of the model,
in general, to the different factors involved, including the risk preference
of the decision maker. In any case, both models show the optimality of
a mixed strategy in such an environment, i.e., both modes of supply will
coexist.

4.3.1 A General Approach for a Risk-Neutral Decision-
Maker. The main objective of this model by Araman et al. (2000b)
is to determine the optimal strategy that the buyer should adopt (in the
following we will interchangeably use buyer and manufacturer) when two
main modes of supply are available: a procurement channel through the
spot market and a long-term channel defined by a reservation capacity
level. In line with the widely known fact that corporations should be risk-
neutral for decisions involving small investments relative to their overall
wealth (which is true for most procurement decisions), we model the
manufacturer as a risk-neutral decision-maker. Furthermore, to reflect
the recent trend towards customized products and just-in-time manu-
facturing, as manifested in the automotive industry, we model the man-
ufacturer’s production environment as make-to-order (MTO), which has
the additional benefit of making our model easier to follow. The man-
ufacturer has to satisfy an aggregated (end-market) demand, d,,, via
the two procurement channels. The long-term contract, on one hand,
specifies a unit price schedule and a capacity level that is reserved for
the manufacturer. The spot market, on the other hand, is character-
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Figure 8.8. Manufacturer (a) and Channel Profit (b) - Case 1

ized by a price-quantity curve 7(d). Figure 3.3 describes the conceptual
framework, detailed in the next four subsections.

In order for the manufacturer to achieve her serviceability objective
and hedge against the variability of demand and supply (which may also
be impacted by the supplier’s capacity limitations), the manufacturer
offers her supplier a long-term contract defined as follows: In period 1
the manufacturer will determine a capacity reservation level K, based
on a pricing scheme Pk (d). Subsequently, in period 2, the manufacturer
has to meet a random demand d,,. When the demand is lower than K,
(dm < K), she will order dp, from the supplier and pay a unit price of
Pk (dy,). Similarly when the demand is higher than K, (d,, > K), the
manufacturer will order the maximum reserved capacity, i.e., K units,
from the supplier at a unit price of Px(K). In this case, however, in
order for the manufacturer to meet her total demand, she will need to
procure the remaining units from the spot market. We assume that the
total demand d,,, has a continuous density function fg,, and admits finite
first and second moments.

The Supplier Pricing Scheme. To allow for risk-sharing between
the long-term supplier and the manufacturer, the long-term supplier
will charge a unit price Pg(d) for an order of d units. Clearly, this price
depends on the capacity that the manufacturer reserved in the original
contract, K, and on her actual order, d. If the reserved capacity is fully
used, the supplier will charge a unit price of Pg(K). If only an amount
d with d < K is used, he will charge Px(d) > Px(K) to account for
any losses due to the under-usage of reserved capacity. Hence éx(d) =
Py (d) — Pg(K) is the capacity reservation penalty. The assumptions on
the pricing scheme are the following:
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s For all K the penalty £ is linear in d. This is similar to the ap-
proaches by Li and Kouvelis (1999) as well as by Barnes-Schuster
et al. (1998).

s The cost of goods Pk (d)-d is always increasing with d, i.e., if costs
more to buy more. As demand is random, the manufacturer and
supplier commit to a risk-sharing agreement in the following sense:
the penalty in total supply cost for “under-ordering” with respect
to K becomes smaller as the order quantity approaches K.

» Pr(K) = pis independent of K. This assumption is for pedagogic
reasons only. However, it can be interpreted as the result of the
negotiation between manufacturer and supplier. The first wants to
have Pk (K') non-increasing in K, whereas the latter prefers to see
Pk (K) being non-decreasing in K, which may lead to Pk (K) = p,
independent of K. (See Araman et al. (2000b) for a more detailed
justification and a model without this assumption).

Based on the previous assumptions, a linear function that fulfills
all of these conditions has to be of the form:

Px(d) = p+€x(d) = 2p — %d, foralld < K (3.1)
Po(d) =0

Thus the penalty £k is givenby: £g(d) = p(1— %) See Figure 3.4
below for an illustration of the long-term pricing schedule Pg(d).

Remark 3.3 We should note that we could relax the last assumption
related to Px(K) from being constant (of value p) to just being non-
increasing with K. That is, the results to follow in this section will re-
main valid for any pricing scheme that fulfills the first two assumptions
above (i.e., regarding the linearity of the unit cost and the increasing
property of the total cost). The choice of (3.1) is only for clarity of
exposition.

The Spot Market. Companies expect overhead to decline and
prices for materials and components to drop dramatically in the short
term as suppliers are forced to compete head-to-head on-line. However,
we believe that once equilibrium is re-established, prices for long-term
contracts will tend to be lower than spot market prices as the additional
flexibility on the spot market will be rewarded with a price premium,
at least in expectation. Furthermore, as the spot market for most in-
dustries is still maturing and there is little data or analysis available
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that describes the behavior of these markets precisely and since indus-
try experts predict that different market mechanisms will co-exist on
each exchange, we have exercised great caution in making assumptions
about the spot market and define it as a random price-quantity func-
tion. Thus the unit price w(d) is a random variable that depends on the
number of units d ordered, such that for afixed d, 7 is defined by its
density function f; 4 (.). 7 is in addition dependent on and most likely
positively correlated with the total demand d., received by the buyer.
Since we consider the optimal mix with respect to the expected value of
the procurement costs, it is sufficient to consider that the spot market
price is given by 7(d,d,,) = E[n(d}|d,] where for every order d and
a total end market demand d,,, #(d,d,,) is the expected value of the
price. In addition, as we did for the long-term supply pricing scheme,
we assume that the function II(d) = #(d,d,) - d is increasing in d, i.e.,
the total cost of goods increases with the quantity of goods bought from
the spot market. We let II(0) = 0. On the other hand, as we stressed in
the first sections of this chapter, one of the main issues related to spot
markets is their liquidity, as manifested by the current low transaction
volume of most spot markets. That means that companies may not be
able to fill all of their demands using only the spot market. We therefore
consider in the general case a spot market with a capacity constraint,
i.e., C is the maximum amount available at the time when the buyer
places her order. We assume that C is random, possibly dependent on
the total demand d,,, and bounded by a constant value Co.

For clarity of exposition we make the assumption that 7 is indepen-
dent of d,;, and that C is constant (possibly infinite). Again the main
results hold true in the general case (see Araman et al. (2000a), and
Araman et al. (2000b) for details). Therefore, unless stated otherwise,
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we consider 7(d) = 7#(d) = E[n(d)]. We finally assume that:

c
= / () fg,, (w)du < 0o

J—o0

C
= / () fa,, (u)du < oo

—0D0

Problem Formulation. Our first approach is to consider a risk-
neutral buyer interested in minimizing her expected total procurement
cost G(K). As we will see below, the model is defined such that higher
moments of the demand distribution will come into play. Thus, despite
the assumption that the decision-maker is risk-neutral, which makes the
problem tractable, the model still captures the volatilities of both the
demand and the spot market. If we denote W(K), the total random cost
associated with a reserved capacity level K, the optimization problem
of the manufacturer can be written as follows: (We will use the follow-
ing notation: E[X;A] that should be read E[X . I(A)], where I is the
indicator function. It means the expected value of the random variable
X, under the event A, which is not to be confused with a conditional
expectation.)

II}}IIG(K) = II}%IIE[‘D([{)} = 11}311 {E[V;dm < K]+ E[V;dy, > K]}
(3.2)
When the demand of the manufacturer is less than K, she will only use
the long-term contract, and therefore:

K
E|\V;d, < K] = ] uPx (1) fam (u)du (3.3)

—00o

However when the demand is higher than K, exactly K units will be
supplied by the long-term contract and an additional d,,, — K units will
have to be purchased on the spot market. Again, since most spot markets
are currently struggling with low transaction volumes, the manufacturer
may not be able to purchase as many units on the spot market as needed
and the amount available to the manufacturer is given by max(C,d—K),
where C is the spot market capacity. We assume that the manufacturer
incurs a fixed penalty cost per unit, b, on those units that she could not
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buy on the spot market.

+00

C+K
EWidn > K| = [ Kpfam(u)du+ /K (u = K)m( — K) fam (1) du

K
+ bE[dy — (K + O)]*
C+K

= Kp(1= Fan(K) + | " D= ) fam (1)

+ bE[d, — (K + C)]*

We will divide the total expected cost into two parts, slightly differently
than just computed. The first term, Hy7 represents the expected cost
that is spent via the long-term contract, whereas the second, Hgpy, is
the expected cost of purchases on the spot market, including the penalty
cost for a possible undersupply. We rearrange the terms of the previous
equations to obtain:

K
Hur(K) = / wPie () f4, (w)du + Kp(1 — Fy, (K))

-0

i u
— [ p(2 ~ ?)dem(u)d’ii‘l"KP(l = de(K))

C+K
Hem(K) = /} (= K) fan(u)du+ BBl — (K + O

and the total expected cost is again the sum of the two terms:
G(K) = Hpr(K) + Hsm(K)

Proposition 3.4 H;p(K) is a positive, increasing, and concave func-
tion of K such that Hpp(0) = 0 and H converges asymptotically to a
finite constant Hyr(co) as K — co.

Proposition 3.5 Hgp(K)is a positive decreasing function of K such
that Hgp(0) > 0 and Hgpy converges asymptotically to 0 as K — oo.

These two last propositions are very intuitive. As K increases the
(expected) amount paid to the long-term supplier increases and, simul-
taneously, the amount spent on the spot market decreases in expectation.
See Figure 3.5 for an illustration of Hyr and Hgps. Notice that in the
graph below, Hgpr(0) is greater than Hyp(oc) or in other words, it is
more expensive in expectation to only purchase on the spot market than
to go exclusively with the long-term supplier.
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Main Result. We now describe a set of results that indicate that
the spot market is valuable under fairly general conditions, and also
characterize the values of the (optimal) contracted capacity K.

Theorem 3.6 Let K* be the optimal value of K that minimizes (3.2)
and let ¢(u) = In(fy, (u)).

m  [f the following assumptions hold:
3 ug,Vu > up and Vi, ¢(t +u) < @(t) + ¢d(u) (3.4)
T>porll> 2pE[dm) (3.5)

then the cost function G admits a minimum at K* such that 0 <
K* < 0.

n [f the total demand d, has finite support [a,b] with() < a < b < o0

and

w(u) > p for all u € [a, b] (3.6)
then the cost function G admits a minimum at K* such that a <
K* <b.

It is important to recognize again that K* = b (b = oo in the first case
and bfinite in the second) corresponds to the case when the manufacturer
uses exclusively the long-term supplier and that K* = 0 is equivalent
to the manufacturer only purchasing from the spot market. A value of
K* equal to an interior point of the support of d,, means that a mixed
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strategy is optimal. Before giving an intuitive interpretation of the pre-
vious main result, we will note two things. First many density functions
have the characteristics given by (3.4) such as an exponential distribu-
tion or a normal distribution; more generally, any random variable with
an exponential tail distribution would work. Secondly, (3.5) is basically
saying that the spot market is somehow more expensive than the long-
term contract. One of these two conditions is enough for the result to
hold. The first one is equivalent to saying that the expected marginal
cost of procurement from the spot market, ﬁf, is greater than the mini-
mum long-term procurement cost, p. The second condition means that
it is cheaper for one to select the long-term contract as the only means
of supply than using the spot market exclusively. In the context of this
paper this seems a very reasonable assumption: the exchanges, as we
noted earlier, create value to the buyers (e.g., the flexibility of switching
to other suppliers or offering great quantity flexibility) and that comes
at a certain cost.

Remark 3.7 By concluding that K* never takes on one of the extreme
points of the domain, Theorem 3.6 demonstrates that for a wide range of
demand distributions a mixed strategy is always optimal, i.e., the buyer
will always choose to meet part of her demand with a long-term supplier
(or a catalog hub as defined earlier in the B2B E-commerce framework)
and the remaining from spot markets.

Remark 3.8 The intuition behind the result of Theorem 3.6 (as illus-
trated in Figure 3.6) is that the realizations of the higher demand values
occur only with a small probability, and thus the manufacturer is better
off paying a high price on the spot market for these “rare” (“low proba-
bility”) events than to almost always pay a penalty for under-using the
supplier’s capacity. Nevertheless, it is surprising that a mixed strategy is
optimal almost independently of the spot market price (e.g., even for a
very high one in comparison to the long-term contract pricing schedule)
and of the spot market capacity constraint.

Approximating Bounds and Numerical Solutions. Figure
3.7 illustrates that the optimal mix between long term contract and
spot market can lead to a significant reduction in procurement costs in
comparison to an exclusive sourcing from the long term supplier (as is
the current practice in many industries). In this example, we modeled
demand, dp, as a normal variable and the spot price as 7(u — K) =
75_—}{4—% Other functional forms of 7 (v — K') are conceivable, but yield

mostly similar results. Notice also that the optimal value of capacity
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reservation with the long-term supplier, K%, is less than the mean value
of demand (K* = 9 vs. ug = 10). In general, however, we noticed that
K* is close to the mean value of demand, although most often greater
than pg, depending on the relative prices of long term contract and spot
market.

The general setting we adopted makes it almost impossible, except
numerically, to obtain the optimal capacity reservation level, K*. How-
ever, it is important at this stage to get a better feeling of the range
of values where K* could lie. For instance, let us assume that K*, even
though finite, is taking on a high value, far from the mean of the de-
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mand. Hence, only a very small portion of each manufacturer’s demand
will be purchased via the spot market. Therefore, under such a scenario,
it is legitimate to wonder if it is really worthwhile establishing these spot
markets. Fortunately, by solving the problem numerically, we can see
that for reasonable spot market prices, K* takes on values close to the
mean and, in some cases, when the spot market is not too expensive,
even smaller than the mean of the demand. In addition, although we
were not able to get a closed form solution, we are able to compute,
in some fairly general settings, upper and lower bounds for K* that
help determine numerically an approximation of the optimal reserved
capacity.

For the remainder of this paragraph we follow the derivation of the
bounds for K* in Araman et al. (2000b) and assume that the density
function of the demand is unimodal with m denoting the (unique) mode,
ie.,.Yu > 0: fygm (m) > fam (u). We consider the spot price to be random
and dependent on the total demand d,, received by the manufacturer.
Furthermore, we assume that a single spot market unit price applies,
regardless of the number of units ordered. This is a reasonable assump-
tion for many commodity-like items with small economies of scale effects.
Hence, m(d) should read E[m|d]. Let mp = ming>om(d). As we said ear-
lier, the spot market price is assumed to be higher than the minimum
price p offered by the supplier, and thus my > p. We define,

—1,p
K=F,;,(—) (3.7)
o
Theorem 3.9 Let K be given by (3.7) and K the biggest solution of the
following equation:
— o = ] 7 - m
firn(E) [{37(K) — 2} K + 2pm®| = 2pm® fum(5)
Then under the conditions of Theorem 3.6 and if the density function of
the demand is unimodal:

K<K'<K

Remark 3.10 The main benefit of Theorem 3.9 is to reduce the compu-
tational complexity necessary to determine the optimal level of capacity
reservation, K*. In addition, as illustrated in Figure 3.8, the expected
cost associated with both K and K, G (K) and G (K), respectively, are
close to the optimal value, G (K*) for small values of standard deviation
in demand, o4. For larger values of o4, G (?) can be a good approxi-
mation of G(K*), with, in this case, associated error of less than 10%.
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Figure 8.8. Illustration of G (K*), G K , and G (K) as a Function of a4 for d, ~
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4.3.2 Assessment of the Spot Market Advantages for a Risk
Averse Buyer. The second model, which focuses on the coexis-
tence of both modes of supply, is due to Seifert et al. (2000). The
authors define a one-period problem, where supplies can be procured
either through a forward contract or via a spot market. As opposed to
the earlier model, the authors in this paper consider constant unit prices
(similar to some extent to a newsvendor model) and assume the random
variables to be normally distributed. Moreover, they introduce a factor
to account for any potential risk aversion of the decision-maker in a sim-
ilar manner to Cohen et al. (1999) and present a complete sensitivity
analysis of the ordering strategy with respect to the different factors in-
volved. Furthermore, they propose that the procurement costs for both
the long-term contract and the spot market are linearly increasing in the
quantities purchased and they also study different modes of the system
where the spot market is used by the manufacturer for buying and sell-
ing (BS model) as opposed to buying (BO model) or selling (SO model)
only or not using it at all (from the buyers perspective). The buyer in
this context is interested in maximizing the profit II. The long-term
contract (defined here as a forward contract) is based on a fixed unit
price ¢ and a reservation quantity g with g being the decision variable.
As the random demand £ is received, the buyer will try to meet £ by
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using first the ¢ units available from the long-term supply and if more
units are needed purchasing them from the spot market at a random
price s. On average the spot market is considered more expensive than
the forward option, with, however, a negligible lead-time compared to
the long-term contract. When the demand £ is less than g then the
differenceq — £ is salvaged at a unit value ». A fixed unit revenue 7 is
generated from each unit of satisfied demand. When the spot market is
used for buying and selling then v = s, otherwise, the salvage unit value,
v, is taken to be constant, non-random, and smaller than the long-term
unit price, ¢. The analysis is performed assuming positive correlation
between the demand and the spot market price, s, and more specifically
(€, s) is considered as a bivariate normal distribution with correlation
p>0:(&s)~ BN(,{Ld,p:s,Oﬁ,JE, p). In the BS case, which reflects the
fact that the traditional roles of buyers and sellers become unclear in a
spot market, the authors obtain a closed form solution for the optimal
contract quantity:
—c o
Ghs = pa+ P;;;T = pot(r = )
when solving
max Ellgs(q) — kVarllgs(q)
q=0

When studying the sensitivity of these results, the authors find out that
as the buyer in the BS model is more risk averse (k positive and in-
creasing) the optimal amount gpg, defined in the contract and available
to the buyer at the price ¢, will decrease. This behavior is due to the
fact that the spot market is used to salvage the units in excess. Hence,
decreasing ¢ will decrease the amount that will be sold at the speculative
price s. We note that as k — o0, g gets closer to the mean demand
and the profit approaches (7 —¢)uq, which is the amount that is achieved
without the presence of a spot market. Another important factor is the
volatility o4 of the spot market. Increases in oy have a similar impact
on the ordering quantity to an increase in k. When the volatility of the
spot market is small, the spot price approaches its mean, jts, which is
higher than ¢, the unit cost. The decision maker will tend to order a
higher value ¢gggs. On the other hand, as os becomes higher, the risk
averse buyer would want to use as little as possible the spot market. We
could study similarly a Buy Only model (BO), that is characterized by
a constant salvage value as opposed to Selling only (SO) where the spec-
ulative part of the market enters into account in the salvage value. By
comparing all of these models we observe that the buying models (BS
and BO) will generate the highest profit in expected value by taking
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advantage of the volatility of the market, and thus the profits will also
have the highest variances.

On the other hand, these two models will clearly increase the fill rate of
the buyer, and the existence of the spot markets will create a new source
of supply that will help the buyer to better meet the demand. All of these
points stress the value that is created by introducing spot markets. The
co-existence of the spot market with the traditional forward contracts
is another conclusion that was implicit throughout this analysis. This
becomes even clearer when studying the numerical examples that show
that the ordering quantities via the forward contract are in most cases
smaller than or close to the mean demand.

The Supplier’s Point of View. The various models described
above consider mainly the advantages of spot markets to the buyers. As
important as is this perspective, it is also crucial to take the suppliers’
point of view and study how these markets could affect their profitability.
A first analysis would suggest that the supplier will have access to more
customers on the spot markets and therefore one would expect a better
management of their capacity due to the diversification of the demand.
However, the creation of spot markets, will lead to a highly competitive
environment possibly resulting in lower unit prices. Therefore the final
outcome is not evident. A preliminary study based on a simpler version
of the model of Araman et al. (2000b) shows the existence of a Nash
equilibrium between a supplier and a buyer. While the buyer chooses
the optimal procurement mix between the spot market and a long-term
contract, the supplier has the option of entering a long-term contract
with a buyer and/or selling the remaining of her capacity on a spot
market. However, more results in this promising direction are needed
before we are able to conclude positively on the general economics and
value of B2B exchange markets, and spot markets in particular.

5. Outlook and Conclusions

This paper presents a survey of the literature pertaining to analytic
approaches for B2B e-commerce. The literature is quite recent, and
we note that the research has not yet evolved in a coherent manner
nor can it provide answers to all of the issues involved with B2B e-
commerce. However, as buyers and suppliers engage in Internet-based
marketplaces across industries, the ability to assess the implications of
such spot markets and to understand the risks as well as the benefits
associated with them becomes crucial. The contribution of this chapter
lies in taking an idealistic view of such spot markets, where we show that
both spot markets and long-term contracts coexist under fairly general
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conditions. Knowing that such spot markets can significantly reduce
supplier costs, even if the unit price on the spot market is much higher
than via the long-term contract, procurement managers should increase
their companies’ efforts towards Internet-based procurement and prepare
its supply chain for such a change. Capitalizing on the various models
described above, these managers can effectively manage the risk of such
a move and determine the optimal procurement channel mix.

It is important to recognize that the models described here focused
primarily on standardized goods and services. However, if customized
products are to be exchanged, which are specifically made and designed
for one customer, the spot market could be designed to trade production
capacity instead of finished components, as long as the same machines
can produce several customized products for potentially different com-
panies (possibly requiring a set-up time). The semiconductor industry
represents an example where it is common practice to negotiate supplier
contracts based on wafer starts per week, i.e., in production capacity.
Quality and delivery performance become more important in such a set-
ting, since the manufacturer is highly dependent on the supplier’s ability
to deliver high quality products on time. However, as more and more
Internet-based marketplaces offer quality verification on both the po-
tential buyers and sellers, the main decision-making criteria will be the
price of the good offered.

We conclude this chapter by noting a number of specific areas for fu-
ture research, some of which we already mentioned in our list of B2B
market characteristics. Although we made simplifying assumptions for
the sake of exposition in this chapter, the papers by Araman et al.
(2000a) and Aramant et al. (2000b) address some of the issues listed in
the section above, e.g., quality of supply. Furthermore, a forthcoming
paper by Kleinknecht et al. (2001) considers portfolios of supply con-
tracts and shows that a manufacturer prefers to access multiple long
term suppliers (supply contracts) in addition to the spot market under
very realistic conditions. However, despite these recent efforts, the fol-
lowing topics in the discussion of B2B e-commerce have not been (fully)
captured by the research literature, and we believe these are very signif-
icant research areas in the near future.

s Inventory Levels

Although it is widely expected that B2B e-commerce technologies, and
spot markets in particular, will lead to a better utilization of inventories,
a model quantifying the extent of improvements is still missing. Existing
papers on the benefits of information sharing and the bullwhip effect will
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have to be re-defined to account for the additional procurement and sales
channel through internet-based spot markets.

»  Options and Futures

Similar to financial markets or to exchanges in the utility industry,
derivatives for the procurement of components and services would be
a valuable tool to hedge against uncertainty for both buyer and seller.
One of the key differences with respect to financial instruments is that
the (perceived) value of contracts and B2B spot markets depends on
the demand distribution of the buyer, as well as how mission-critical the
component is to the buyer - information which may only be known by the
buyer himself (if at all). This raises the issue of what the correct/fair
price for a component or unit of production capacity should be and
makes the use of the traditional replication argument in the pricing of
options and futures questionable.

= Incentive Issues

Although we were able to obtain some preliminary results regarding
the existence of a Nash equilibrium between buyers and sellers under
the co-existence of spot markets and long-term contracts, the overall
economics of B2B exchanges, including the role of suppliers, is still un-
clear. Also, at a more operational level, the creation of spot markets
raises the issue of how existing (distribution) channels will react to this
new channel. Dynamic game models can be used to model these envi-
ronments.

m Collaborative Games

In principle, the aggregation of demand or supply can lead to signif-
icant benefits for the parties involved. Academic models could study
the underlying dynamics and quantify the economics for the individual
players.

w  Fairness Issue

As stated above, the question of fairness in B2B exchanges represents
a major challenge for B2B e-commerce. By the same token, it is not
clear how the benefits due to exchanges, which are only the result of the
interaction of several players, should be shared.

»  Multi-criteria Decision Making

It is apparent that the corporate decision-makers are reluctant to em-
brace Internet-based marketplaces even if they offer lower procurement
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prices than established channels. Therefore, analytical models trading
off several factors such as lead-time performance, quality of supply, and
unit price, will be of great value to practitioners and will be part of our
future work.
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Abstract  Consider a retailer that sells perishable seasonal products with uncertain
demand. Due to the short sales season and long replenishment lead
times associated with such products, the retailer is unable to update
demand forecasts by using actual sales data generated from the early
part of the season and to respond by replenishing stocks during the
season. To overcome this limitation, we examine the case in which
the retailer develops a new program called ‘Advance Booking Discount’
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(ABD) program that entices customers to pre-commit their orders at
a discount price prior to the selling season. However, such orders are
filled during the selling season. The time between the placement and the
fulfillment of these pre-committed orders provides an opportunity for the
retailer to update demand forecasts by utilizing information generated
from the pre-committed orders and to respond by placing a cost effective
order at the beginning of the selling season. In this chapter, we evaluate
the benefits of the ABD program and characterize the optimal discount
price that maximizes the retailer’s expected profit.

1. Introduction

To compete in global markets, many companies continue to launch
new products and phase out old products rapidly.! As product life cy-
cles shorten, the fundamental issues in managing interacting areas such
as pricing, forecasting and inventory control mimic those of fashion prod-
ucts. For instance, if a company over forecasts and orders more than
the actual demand, then it has to reduce prices so as to sell the leftover
inventory at the end of the selling season’. Responding accurately to
changing demand patterns by forecasting and translating forecasts into
an efficient supply plan are key ingredients for success, especially for
products with short life cycles and high demand uncertainty.

Fisher and Raman (1996) discuss the strategy of ‘accurate response’
in which manufacturers first utilize early season sales data to update
demand forecasts, and then respond to updated demand forecasts by
producing and delivering products within the sales season. This strat-
egy has helped Sport Obermeyer to make significant improvements in
terms of inventory reduction, customer service and net profit. However,
accurate response has two crucial requirements. First, the sales season
has to be sufficiently long and fairly representative in the beginning of
the season (so that one can update the demand forecast by using the
sales data during the early part of the selling season). Second, the re-
plenishment lead time has to be shorter than the selling season (so that
one can respond to the updated demand forecast by replenishing stocks
within the selling season). These requirements may not be met in var-
ious situations. For example, consider the sales of pumpkin pies at a
supermarket during Thanksgiving. The selling season is very short (ap-
proximately 3 days), which makes it difficult to capture the sales data

'Billington, Lee and Tang (1998) report a list of challenging problems associated with rapid
product replacements, which includes accurate demand forecasting and inventory manage-

ment.
“Pashigan (1988) reports that average mark down for fashion merchandise in the apparel
industry is around 16%.
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during the early part of the selling season. Since the replenishment lead
times are usually long (approximately 5 to 7 days), it is difficult for
the bakery to respond to an updated demand forecast. Consequently,
to make supply meet demand under these circumstances, one needs to
consider other strategies.

In this chapter, we consider an alternative strategy under which the re-
tailer develops an ‘Advance Booking Discount’ (ABD) program that en-
tices customers to pre-commit their orders at a discount price prior to the
selling season. However, these pre-committed orders are non-cancelable
and are filled during the selling season. While the origin of the ABD
program is unknown, we have observed its practice at Maxim’s bakery in
Hong Kong. Maxim’s bakery, the largest bakery in Hong Kong, owns all
of the cakes hops located at all subway stations in Hong Kong. Maxim’s
dominates sales in the baked goods market in Hong Kong largely due to
its reputation for quality and convenience. Around 6 years ago, Maxim’s
launched the ABD program for the sales of moon cakes—a traditional
Chinese cake composed of a stuffing made from lotus seed paste and
egg yolk. The moon cake is a perishable seasonal food consumed by
the Chinese when celebrating the mid-Autumn festival. Maxim’s ABD
program operates in the following manner: During the month prior to
the mid-Autumn festival, customers can place their orders at any of the
Maxim’s cake shops at 25% off the regular price. Customers pay the
discounted price when placing their orders in advance and receive re-
demption coupons for pick up during the week prior to the mid-Autumn
festival. No order cancellation or refund is permitted. Maxim’s guar-
antees the availability of the moon cakes only to those customers who
participate in the ABD program. If customers do not participate in the
ABD program, they can always try to buy the cake during the week
prior to the mid-Autumn festival at the regular price.

There are three important benefits associated with the ABD program
that will enhance the supply chain performance of the retailer. First,
the ABD program extends the selling season without the need for imme-
diate delivery. This enables the retailer to entice more customers to buy
the product over a longer period of time without being constrained by
production capacity. Second, under the ABD program, the placement of
the pre-committed orders takes place prior to the season while the fulfill-
ment of these pre-committed orders occurs during the season. Therefore,
the time window between these two events provides an opportunity for
the retailer to utilize advance booking data to generate a better demand
forecast prior to the start of the selling season. Such improved forecasts
offer an opportunity to the retailer for placing a more accurate order at
the start of the season, while in turn reducing overstock and under-stock
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costs and improving customer service levels. Finally, the ABD program
allows the retailer to improve cash flows because the payment from those
advance bookings is received prior to the selling season.

In this chapter, we model the decisions under the ABD program,
which involve how much to discount, how to use the pre-committed
orders to update forecasts, and how much to order at the beginning of
the season. In addition, our model allows us to explicitly quantify the
first two benefits of the ABD program. We compare the profit associated
with this program to that of the traditional sales (no early promotion)
program. We also characterize the conditions under which the ABD
program is beneficial to the retailer.

This chapter is organized as follows. Section 2 provides a brief review
of marketing and operations management literature that deals with pro-
motional discount. In section 3, we first present the base model (for
the case with no discount promotion) and then we present the ABD
model. We also compare the profit associated with the base case to that
of the ABD model and characterize the conditions under which the ABD
program is beneficial. Section 4 analyzes the properties of the optimal
discount price and provides numerical examples to illustrate our basic
results. We present two extensions in section 5, and end with concluding
remarks in section 6.

2. Literature Review

Most of the research on quantity discounts can be classified into two
streams. The first stream focuses on the analysis of the optimal ordering
policy for a buyer when the demand is constant and the supplier offers
a specific discount policy. The second stream examines how a supplier
can use a discount policy as a control mechanism to induce a buyer to
coordinate the channels of distribution. Weng (1995) presents a model
that integrates these two streams of work. The reader is referred to
Weng (1995) and the comprehensive references therein.

To our knowledge, Weng and Parlar (1999) is the first chapter that
presents a model in which the retailer offers a price discount to induce
customers to commit their purchases prior to the beginning of the selling
season. They determine the optimal order quantity for the retailer and
characterize the optimal discount rate. While our chapter addresses a
similar problem, our model differs from their model in several aspects.
First, their model deals with the case in which the customers belong to
a single market segment while our model deals with two segments. We
believe that the two-segment model allows us to capture heterogeneous
consumer preferences. Second, they assume that the pre-committed or-
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ders, generated by the program, are deterministic while the remaining
demand occurred during the season is stochastic. In our model, we con-
sider a more realistic case in which both the pre-committed orders and
the demand occurring during the selling season are stochastic. Third, we
consider the case in which the retailer would utilize the pre-committed
orders to update the probability distribution of the remaining demand
during the season, while Weng and Parlar do not model the issue of
forecast updating. We think demand forecast updating is of critical im-
portance because updated demand forecasts allow the retailer to place
a more accurate order at the beginning of the season. Finally, while
Weng and Parlar focus on determining the optimal order quantity and
discount rate, our emphasis is on examining the benefits of the ABD
program. Specifically, we are interested in analyzing general conditions
under which the ABD program is beneficial, and examining the impact
of demand uncertainty and market share on the optimal discount fac-
tor. Our goal is to develop managerial insights for when such programs
should be instituted.

3. The Analysis Framework

Consider a retailer that sells a seasonal product that belongs to Brand
A. The unit cost, selling price and salvage value of Brand A are ¢, p, and
s, respectively. There are two customer segments: one buys Brand A and
the other buys Brand B.> The demand generated by the segment who
buys Brand A, denoted by D)4, is assumed to be normally distributed
with mean 4 and standard deviation o4. Let @ be the coefficient of vari-
ation, where § = E:’-:. Similarly, the demand generated by the segment
who buys Brand B, denoted by Dpg, is normally distributed with mean
pp and standard deviation op. To simplify the exposition, we assume

that Dg has the same coefficient of variation so thatf = iﬁ; however,
D, and Dp are correlated with correlationcoefficient Corr(D 4, Dp).
Let u be the expected total market demand, where u = pa + pp. Sup-
pose we set ug = ap and pup = (1—a)y; then a can be interpreted as the
market share of Brand A. By definition, ¢4 = 0 and o = (1 - &) p.

3.1 The Base model

Consider the (base) case in which the retailer does not offer the ABD
program. Thus, the retailer charges p for each unit during the season and
charges s for each unit after the season. The retailer needs to determine

*Without loss of generality, Brand B is the aggregation of all other brands that compete with
Brand A, and the retailer does not carry Brand B.
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the optimal order quantity Q* that maximizes the total expected profit.
Let 7 be the optimal expected profit, where:

T =Maxg Ep,{pmin{Q,Da}+s(Q — Da)* - cQ}.

The above problem is the newsvendor problem with normally distributed
demand. It is well known that the optimal order quantity Q* = pa+koa
and the optimal expected profit 7 is given as:

m=(p-cJpa—(p—s)d(k)oa=aulp—c) - (p—s)o(k)0], (4.1)

where k£ = ®~!(E=F), and ®(.) and ¢(.) are the distribution and the
density functions of the standard normal distribution, respectively.

3.2 The Advance Booking Discount Model

Notice from (4.1) that the term (p—s)d(k)oa = [(p—c)+(c—s)]p(k)o 4
corresponds to the sum of the expected overstock and understock costs
associated with the optimal order quantity Q* Thus, one can reduce
the impact of these costs by reducing the demand variance ai. We now
discuss how the ABD program can enable a retailer to achieve variance
reduction. Under this program, the retailer offers a discount price xp
per unit of Brand A (i.e., the discount factor is equal to z) prior to
the beginning of the season, where 0 < z < 1. If customers accept
this offer, then they place an order by pre-paying xp per unit prior to
the beginning of the season and pick up this order during the season. If
customers decline this offer, they can always purchase the product during
the season by paying regular price p per unit; however, the availability
of the product will not be guaranteed.

The ABD program affects the two segments of customers as follows.
First, among those customers who plan to buy Brand A during the
selling season (i.e., Dj4), f(z)D4 will commit their orders at a lower
price zp prior to the selling season and (1 — f(z))D 4 will purchase the
product at regular price p during the selling season.* Second, for those
customers who plan to buy Brand B during the selling season (i.e., Dp),
g(z)Dpg will switch from buying Brand B to Brand A at a lower price
xp prior to the selling season and the remaining (1 — g(z))Dp will buy
Brand B during the selling season as planned.” We assume that the

41t is conceivable that the consumption may increase as a result of price discount. However,
since the product is perishable and since the customers can pick up the product only during
the selling season, the customers may not be able to consume more during the selling season
as a result of the ABD program. Thus, it seems reasonable to assume that the consumption
remains the same.

>Since this segment plans to buy Brand B during the selling season, they would not buy
Brand A during the selling season at the regular price p. However, some of them may switch
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functions f(z) and g(z) are bounded between 0 and 1 and decreasing in
z, so that more customers will buy Brand A prior to the selling season
as x decreases.

Let D;(z) be the pre-committed orders occurred prior to the season
and let Dy(x) be the demand that occurs during the season, where:

Di(z) = [f(z)Da+g(z)Dg,
Dy(z) = (1-f(z))Da.

Notice that Di(z) + Da(xz) = Da + g(z)Dp > Dy, because the ABD
program generates additional demand for Brand A due to customers
who switch from buying Brand B at its regular price to Brand A at the
discount price zp.

Suppose that the joint distribution of Dy(z) and Ds(z) is a bivariate
normal distribution with means g, and pug, standard deviations s; and
s2, and correlationcoefficient p, where

mo = f(w)uA +9(z)pp = f(z)op + g(z)(1 — a)u, (4.2)
pe = (1-f(z))pa= (1 - f(@)ap, (4.3)
s = [f(e) 0‘2#292 +¢*(z)(1 - @)’u?6?

+2f(z)g(x)e(l — a)p262Corr(Da, Dp))'/?,  (4.4)
s2 = (1= f(z))aus, (4.5)

cov((D1(z), Da(x))
ODI(I}JDQ(E)
f(u"?) g(z)rCorr(D4, D)

V() z)r2 + 2f(z)g(z)rCorr(Da, Dg)

(4.6)

where 1 = l—ag Then it is well known (Bickel and Doksum (1977)) that
the distribution of Dy(z) given Dj(z)(i.e., (Da(z){D1(z) = dy)) is also

to buy Brand A prior to the selling season because of the discount price associated with the
ABDprogram.
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normally distributed with mean ' and standard deviation ¢’, where®:

!

W w2 + p(dy — pa)sa/s1, (4.7)
o' = s3\/1—p?

= \/ 9%(z)r2(1 — [Corr(D4, Dp))?)
f2(z) + ¢*(z)r? + 2f (x)g(z)rCorr(Da, Dp)

(1= f(z))apo. (4.8)

We offer two observations. First, notice from (4.8) that ¢’ < s3. Thus,
the ABD program will reduce the variance of the demand that occurs
during the selling season. Second, it can be shown from (4.8 ) that (¢/)?is
concave in Corr(D 4, Dg) and that (0’)? is decreasing in Corr(D4, Dp)
for Corr(D 4, Dpg) > 0. Thus, positively correlated demands further re-
duce demand variance (¢’)? due to the additional information associated
with pre-committed orders generated from those customers switching
from Brand B to Brand A. These two observations illustrate the basic
mechanism by which the ABD program enables the retailer to increase
sales, obtain an improved forecast, and place a more accurate order so
as to achieve higher expected profits.

In the remainder of this section, we shall evaluate the optimal ex-
pected profits associated with the ABD program. To obtain tractable
analytical results, we shall consider the case in which the correlation
coefficientbetween D4 and Dp is equal to 0; (i.e., Corr(D4, Dg) = 0).
However, the same analysis can be extended numerically to include the
case for which Corr(Da, Dg) # 0.

When Corr(Dy, Dg) = 0, it is easy to check from (4.4), (4.6) and
(4.8) that s1, p and o’ can be expressed as follows:

x

s = VE@aR0 + @)1 — o) (4.9)
_ f(z)

o 72(z) + g% (z)r? (4.10)

B = \/}-E'(_%%f%%;%m(l - f(z))apud. (4.11)

SThe bivariate normal distribution allows us to obtain simple expressions for p’ and ¢’
and to simplify our analysis. To elaborate, if one uses the conjugate prior distributions to
determine the posterior distribution of the updated demand, then the mean and the standard
deviation of the posterior distribution is quite complex and would complicate the analysis
significantly. Also, for the case when the retailer offers no discount; i.e., when = = 1, we have
f(z) = g(z) =0, and (D, (=), D2(=)) has a degenerate bivariate normal distribution that has
p = 0. In such case, we have p' = us and o' = s2.
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3.2.1 No Demand Forecast Updating. Consider the case
when the retailer offers the ABD program with the discount factor z.
To isolate the benefits of variance reduction and improved forecast due
to updating in the ABD program, we first assume that the retailer is
unable to utilize the pre-committed orders Dj(x) to update the distri-
bution of Dy(z).” This scenario is plausible when the retailer lacks the
infrastructure to capture or analyze sales data.

Since the order is placed at the start of selling season, the retailer
can order the exact amount to fulfill the pre-committed orders Dj(z)
observed prior to the selling season. Hence, the profit generated from
those pre-committed orders will equal (zp — ¢)Dy(z). Although the
retailer does not use D;(z) to update the distribution of Do(z), Da(x)
is still normally distributed with mean us and standard deviation s
given by (4.3) and (4.5), respectively. In this case, the retailer orders
an additional quantity @ so as to cover the demand during the selling
season. Thus, the profit generated from the demand Dj(x) is equal to
{pmin{@Q’, Da(x)} + s(Q' — Da(x))" — ¢Q'}}. The total expected profit
associated with the ABD program without demand forecast updating,
denoted by #(z), can be expressed as follows:®

#(x) = Ep,(o){(zp — ¢) Dy (z)
+ Maxg Ep, () {pmin{Q’, Da()} + s(Q" — Da(z))* — cQ'}} .
By using the standard newsvendor result, the expected profit #(x) can
be expressed as:
#(@) = (zp—)(f(z)a+g(@)(1 - a)u+ (p—c)(1 - f(z))an
~ (p~ $)$(k)(1 — f(z))aps. (4.12)
We now compare the expected profit #(z) for any discount factor x
given in (4.12) with the optimal profit = associated with the base case
given in (4.1). When z =1, f(1) = g(1) =0, and #(1) = . Thus, the

optimal expected profit Max,¢[g,1) #(x) must be at least equal to 7. In
this case, we have proved the following Lemma:

Lemma 4.1 Mag,¢(oy) 7(z) > 7.

The above lemma implies that the ABD program, even without updated
demand forecasts, can increase the retailer’s expected profit due to two

"We shall consider the case in which the retailer would utilize the early sales information to
update the demand forecast in section 3.2.2

Without loss of generality, we omit the fixed promotion cost associated with the ABD
program. Clearly, when the promotion cost is prevalent, the decision maker can always check
to see if the expected benefit of the ABD program outweighs this promotion cost.
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reasons. First, this program generates additional demand because it
offers an economic incentive for customers to switch from Brand B to
Brand A by paying a reduced price p. Second, this program reduces
the demand uncertainty because a portion of the demand has been made
certain (i.e., the pre-committed orders) prior to the sales season.

3.2.2 Demand Forecast Updating. Consider the case in
which the retailer offers the ABD program and utilizes the pre-committed
orders Dy(z)to update the distribution of Dy(z). In this case, the profit
generated from those pre-committed orders equals to (zp — ¢)D;(z).
Since the updated distribution of Da(z) is Do(z){D;(z), the retailer
would order additional quantity Q' so as to cover the demand during
the season.” Thus, the profit generated during the season is equal to
{pmin{Q’, Da(z)} + s(Q" — Dz(z))™ — c¢Q'}}. The optimal total ex-
pected profit associated with the ABD program with demand forecast
updating, denoted by (z), can be expressed as:

#(z) = Ep,){(zp - c)Di(z) + Maxq Ep,(z) D, (z) {p min{Q', D2(z)}
+5(Q = Da(2))* — cQ'}}-

Since Da(z}|D)(x) is normally distributed with mean g’ and standard
deviation ¢/, we can utilize (4.7), (4.11), and the newsvendor result to
express 7(z) as:

#(z) = (zp—c)(f(z)a+g(z)(1 —a)p+(p—)(1 - f(z))op
_ g*(z)r?
(0 - 5)9(k) \/ e @, (413)
We now compare the expected profit #(x) given in (4.13) with the
expected profit #(x) given in (4.12). For any given discount factor z, it
can be shown that 7(z) = #(z) + (p — s)¢(k)(1 — T’{%;%’)(l -

f(z))aud > #(x). Therefore, we have proved the following Lemma:

Lemma 4.2 ﬂf&zzre{{),l] ??F(..L) Z ﬂ{alxti(]‘[! ﬁ(J‘_) 2 .

The above lemma implies that, when implementing the ABD program,
the retailer can realize higher expected profits if the retailer utilizes the
pre-committed orders Di(z) to update the demand distribution Dy(z).
This is because the variance of the demand D5 (z) will be further reduced
due to updating. Overall, by increasing sales and reducing demand
variance, the ABD program enables the retailer to increase the expected
profit.

*The total order quantity is now equal to D; (z) + Q.
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4. The Optimal Discount Factor

Lemmas 4.1 and 4.2 imply that the ABD program can increase ex-
pected profits. We now characterize the optimal discount factors & and
7 that maximize the profit functions 7#(z) and #(x), respectively. To
obtain some structural results, let f(z) = g(z) for 0 < z < 1. This
corresponds to the case in which both segments have identical response
to the discount price. When f(z) # g(z), we conduct our analysis nu-
merically in section 5.

We restrict our attention to cases for which f(z) belongs to a class of
functions that satisfies the following properties: f(z) is bounded between
0 and 1 and f(z) is decreasing in z. In particular, we set f(z) = 1— =2/,
where f > 0. The choice of this general form of f(z)is useful in capturing
various types of market responses to the ABD program. For instance,
when f > 1, f(z)is decreasing and concave in z and is bounded between
0 and 1. Here, customers are eager to accept the ABD offer by pre-
committing their orders prior to the season as a small discount induces
a large fraction of customers to switch over. On the other hand, when
0 < f <1, f(x) is decreasing and convex in z and is bounded between
0 and 1. In this case, customers are more reluctant to accept the ABD
offer since only a large discount causes a large fraction of customers to
switch over.

4.1 No Demand Forecast Updating

We now analyze the difference in profits between the base case given in
(4.1) and the case of no demand forecast updating given in (4.12). This
difference is defined by A(z) = #(z) — #. Since the profit associated
with the base case 7 is independent of z, finding & that maximizes the

profit 7(z)is equivalent to finding#that maximizes the function A(z).
Thus, it suffices to focus on A(z).

Prior to presenting the properties of &, we define a term £ and a

function A(z)that are useful in simplifying the exposition. Let:

2 C+(p_c)ap_(p_3)¢'a0’ (414)
hz) = (zp—c)—(p—c)a+ (p—s)pad. (4.15)

For convenience, ¢(k) is abbreviated by ¢ for the remainder of this chap-
ter.

Lemma 4.3 £° and fl(l‘) have the following properties:

1z¢< ],
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2 h(z) <0 Ya<z® h(z) =0 when z =3¢ and h(z) >0 Vz €
(#,1].

Proof: All proofs are given in the Appendix.
When f(z) = g(z), (4.1), (4.12), and (4.15) imply that:

A(@) = #(z) -7 = pf(z)h(z). (4.16)
When f(z) = 1 — zf, the first derivative of A(z) can be expressed as:
A) = —pfef h(z)+ pp(l —27). (4.17)
Define
- ¢+ (p—ca
g = —— 4.18
(p — s)¢a (4.18)

The following Propositions describe the properties of the optimal dis-
count factor 4 that maximizes A(z) when f(z) =1 — /.

Proposition 4.4 & has the following properties:
1 If0 <0, theni® >0, & € (2¢, 1], and & satisfies the first order
condition A'(#) = 0.

20F60 >4, then £¢ < 0, & € (0,1] and & satisfies the first order
condition A'(&) = 0.

Proposition 4.5 & has the following additional properties:

11If 0 < 0,then Zis decreasing in 6; Zis increasing in a when

0 € [0, (2551, and decreasing in a when 6 € (=53, g].

2 If0 >0, then & has the following properties:

(a) If f =1, then & is decreasing in 8 and «.

(b) If 1 > f > 0, then a threshold 8% exists such that & is de-
creasing in @ when 8 < 8% (and increasing in 8, otherwise).
In addition, a threshold 8° exists such that % is decreasing in
a when 8 < 6° (and increasing in «, otherwise).

3 If f=1, then & can be expressed as follows:

(p—c)(l—a)+ (p—s)pab

C
s (4.19)

g = 1-
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Propositions 4.4 and 4.5 lend themselves to the following interpreta-
tions. When the underlying demand is stable (i.e., when § < 6), the
optimal discount factor satisfies the first order condition (i.e., by setting
(4.17) to zero). In addition, the first statement of Proposition 4.5 im-
plies that: (a) It is optimal to offer a lower discount price as the demand
becomes more unstable; (i.e., £ is decreasing in #). This is because lower-
ing the discount price will make a larger portion of the demand (i.e., the
pre-committed orders) certain and reduce the variance of the demand
occurred during the season; and (b) When 6 is less than £=, it is
optimal to offer a higher discounted price when the brand market share
a is high. This is because when o is high, there is only a small gain in
additional demand, which does not justify lowering the discount price.
Conversely, consider the case when § is greater than p__s‘"‘ 3 In order to
dampen demand variance, it is optimal to offer a lower discounted price
even if o is high. We can interpret these results in a similar manner for
the case when the underlying demand is unstable (i.e., when € > ).

In summary, the effectiveness of the ABD program and the optimal
discount factor depend on the demand stability, #, and the brand mar-
ket share, «. Thus, knowledge about the demand characteristics (repre-
sented by the coefficient of variation #), consumer behavior (represented
by the parameter f), and market conditions (represented by «) are all
key aspects for determining the viability of the ABD program.

4.1.1 Illustrative Example. To better illustrate Propositions
4.4 and 4.5, we construct a numerical example for which the relevant data
parameters are summarized in Table 4.1. Substituting these parameters
into (4.14) and (4.18), we get ¢ = 0.71 and § = 5.5. In our example,
we have 0 = 0.3 < 5.5 = 0.

Since 6 < @, the first statement in Proposition 4.4 implies that & €
(2¢,1] = (0.71,1]. By using (4.16), we can compute A(z) for the cases
f = 0.5,1,2 by varying x from O to 1. In addition, we can compute
the optimal discount factor & by setting the right hand size of (4.17) to
zero. The first statement of Proposition 4.4 (i.e., & € (2%, 1] = (0.71,1])
is illustrated by Figure 4.1, where the optimal discount factor & equals
0.96, 0.85,0.87 for the cases when f = 0.5, 1, 2, respectively.

To examine the impact of § on &, we vary ¢ from 0.1 to 5 so that
6 < 6. Thus, the first statement in Proposition 4.5 implies that & is
decreasing in §. This result is illustrated in Figure 4.2.

Next, we examine the impact of coon £. By using the parameters
given in Table 4.1, it is easy to show that p_—: 3 = 1.83. We consider

two cases in which § = 0.3 and 6 = 2 so that § € [0, 2] for the former
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PARAMETER VALUE
Price (p) 100
Cost (c) 50
Salvage Value (s) 25
Market Demand: Mean (w) 100
Morkqt Demand: Coefficient of 03
Variation (6)
Market Share (o) 0.5

Table 4.1. Parameters for illustrative example

07 08 09 1

Profit Difference
o

Discount Factor

Figure 4.1. Profit Difference (A(z)) versus Discount Factor (&) for ABD without
updating



Managing Demand Uncertainty using Advance Booking Discount Programs 83

1.00

080 T

0.60

040 T —+—1=05
—b— f=]
0T )

Optimal Discount Factor

Coefficient of Variation

Figure 4.2. Optimal Discount Factor (Z) versus Coefficient of Variation (@) for ABD
without updating

O.m! t 4 t + t 4 +
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Market Share

+

Figure 4.8. Optimal Discount Factor (£) versus Market Share () when Coefficient
of Variation (#) = 0.3 for ABD without updating

case and 0 € (ﬁ,ﬂn] for the latter case. Since # < = 5.5 in both
cases, the first statement in Proposition 4.5 implies that & is increasing
in « for the former case and is decreasing in « for the latter case. These
results are confirmed in Figures 4.3 and 4.4, respectively.
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0.60 —_———————————
01 02 03 04 05 06 07 08 09 |

Market Share

Figure 4.4. Optimal Discount Factor (%) versus Market Share (o) when Coefficient
of Variation (#) = 2 for ABD without updating

4.2 Demand Forecast Updating

Let A(z) = #(z) — m, where A(z) (analogous to A(z)) measures
the profit difference between the ABD program with demand forecast
updating and the base case. Since the base case is independent of z, it
suffices to focus on A(z).

Prior to presenting the properties of the optimal discount factor Z,
we define two terms v and ¢, and a function h(z) that are useful in
simplifying the exposition. Let:

72 11—«
v T2 < 1, where r o (4.20)
go = Crp-de ; o —E)duad , (4.21)
h(z) = (zp—c)—(p—c)a+ (p— s)pvab. (4.22)

Notice that the term ¢ and the function &(z) are analogous to #° and
h(x) given in (4.14) and (4.15), respectively.

Lemma 4.6 i€ and h(z) have the following properties:
1 3¢ < 1.

2 h(z) <0 Vz<i® h(z)=0 when ¢ =3¢ and h(z) >0 Vz €
(z4,1].
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When f(z) = g(z), (4.1), (4.13), and (4.22) imply that:

A() = #(z) -7 =pf(@)h(z)+ (p - 5)6(1 - v)aus. (4.23)
When f(z) = 1 — 2/, the first derivative of A(z) can be expressed as:

Ax) = —pfa!'h(z)+ pp(l - zf). (4.24)
We define
s c+(p—ca _
g = m‘. (4‘20)

The following propositions describe the properties of the optimal dis-
count factor # that maximizes A(z) when f(z) =1 — zf.

Proposition 4.7 Z has the following properties:
116 <4, then 3¢ > 0, & € (2%1], and T satisfies the first order
condition A'(Z) = 0.
210 > 4, then 3¢ < 0, & € (0,1] and % satisfies the first order
condition N'(z) = 0.

Proposition 4.8 & has the following additional properties:
1If0<8, then Z is decreasing in §. In addition, if (p—c) — (p —
s)(ﬁGU% > 0, then & is increasing in « (and decreasing in «,
otherwise).
21If8 > é, then the optimal discount factor T has the following
properties:

(a) If f > 1, then & is decreasing in 6. In addition, if (p—c)—(p—
)gb@ﬁl:%—g > 0, then & is increasing in « (and decreasing
in o, otherwise).

(b) If 1 > f > 0, then a threshold 8¢ exists such that & is de-
creasing in 6§ when 8 < 0% (and increasing in 0, otherwise).
Moreover, a threshold 6° exists such that T is increasing in

_ 3
o when § < 0° and (p—c) — (p s)rf)ﬂml;%{rg > 0 or when
8>06°and (p—c)—(p 3)(;;59{1%:57’}-5 < 0. Otherwise, % is
decreasing in «.

3 If f =1, then T can be expressed as follows:

p-c)l-a)+(p- S)qf)'ua(?.

z = 1-
2p

(4.26)
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Observe that Propositions 4.7 and 4.8 are analogous to Propositions
4.4 and 4.5 and thus, lend themselves to similar interpretations. Es-
sentially, the demand stability # and the brand market share « have a
significant impact on the effectiveness and the optimal discount factor
i associated with the ABD program, and therefore, on the effectiveness
of the ABD program.

The following Proposition compares the optimal discount factors that
maximize the expected profits with and without demand forecast updat-
ing:

Proposition 4.9 If8 < 0, then & > &. Otherwise, & has the Jfollowing
properties:

1 Iff>1, thenk = Z.

2 If1 > f >0, then a threshold 0° exists such that & > & when
0 < 0° and T < & otherwise.

Proposition 4.9 and Lemma 4.2 have the following implication. If the
retailer uses pre-committed orders to update the demand forecasts, then
the retailer can achieve a higher expected profit by offering a higher
price (i.e., Zp > Zp). This is because the demand variance is further
reduced when the retailer updates the demand distribution Dg(z) after
observing Dy ().

4.2.1 Illustrative Example. We now use the same numerical
example presented in Table 4.1 to illustrate Propositions 4.7, 4.8, and
4.9. Substituting the parameters from Table 4.1 into (4.21) and (4.25),
we get ¢ = 0.72 and § = 7.8. In our example, we have § = 0.3 < 7.8 = 4.

Since # < (3, the first statement in Proposition 4.7 implies that T &
(@°,1] = (0.72,1]. By using (4.23), we can compute A(z) for the cases
f = 0.5,1,2 by varying x from 0 to 1. In addition, we can compute
the optimal discount factor £ by solving (4.24). The first statement of
Proposition 4.7 (i.e., 2 € (1] = (0.72,1]) is illustrated by Figure 4.5,
where the optimal discount factor Z equals 0.96, 0.86, 0.87 for the cases
when f = 0.5, 1,2, respectively.

To examine the impact of 8 on Z, we vary # from 0.1 to 5 so that
§ < §. Thus, the first statement in Proposition 4.8 implies that I is
decreasing in #. This result is illustrated in Figure 4.6.

To examine the impact of & on &, let us consider two cases inwhich § =
0.3 and § = 2. When 0 = 0.3, (;)—(;)—(p—s)¢9ﬁgg >0for0<a <1,

Combining this observation with the fact that § = 0.3 < 7.8 = 8, the first
statement in Proposition 4.8 implies that & isincreasingin c. This result
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Profit Difference

Discount Factor

Figure {.5. Profit Difference (A(z)) versus Discount Factor (Z) for ABD with up-
dating
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Figure 4.6. Optimal Discount Factor (Z) versus Coefficient of Variation (#) for ABD
with updating



88 SUPPLY CHAIN MANAGEMENT

127
el
8
§ 0.6
&
2 047
£ ——t=0.
8 02 T —4— =]
+f=2
0.0

01 02 03 04 05 06 07 08 09 ]
Market Share

Figure 4.7. Optimal Discount Factor (Z) versus Market Share (a) when Coefficient
of Variation (8) = 0.3 for ABD with updating

is illustrated in Figure 4.7. When 0 = 2, (p—c)—(pvs)qhﬁa—__[_l;“}}% < Ofor

0<a<05 and (p—c)— (p—s)p0 s > Ofor 0.5 < o < 1. In this
case, the first statement in Proposition 4.8 implies that ¢ is decreasing
in & when a < 0.5 and increasing in « when « > 0.5. This result is
illustrated in Figure 4.8.

Finally, we compare the optimal discount factor & for the no-updating
case (Figure 4.2) and the optimal discount factor Z for the updating case
(Figure 4.6). For the case when < 5, we found that £ > & for the cases
when f = 0.5,1, and 2. Thus, this numerical result corroborates the
first statement in Proposition 4.9."

S. Non-identical Market Response Functions

We now numerically analyze the case when f(z) = 1 - z/, g(z) =
1-29 and f # g. As noted before, when f > g > 1, customers for
Brand A are more eager to accept the ABD offer than customers for
Brand B. The converse holds when f < g. We can also interpret the
case when ¢ < f < 1 and f < g < 1 in a similar manner. Throughout
this section, we shall use the same numerical example presented in Table

"%According to the second statement in Proposition 4.9, it is possible to have & <  when
f < 1and @ > 6°. However, it can be shown that the value of 6 > 100 so that it is unlikely
for this situation to occur in any real application.
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Optimal Discount Factor
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Figure 4.8. Optimal Discount Factor (£) versus Market Share (&) when Coefficient
of Variation () = 2 for ABD with updating

4.1, except that the parameter f is fixed at 1, and the parameter g is
set to 0.5, 1, and 2, respectively.

5.1 Uncorrelated Demands

When the demands associated with segments A and B are uncorre-
lated (i.e., Corr(Dy4,Dp) = 0), we can substitute f(z) and g(z) into
(4.12) and (4.13) to show that:

#@) = (@p-((l—a)a+(1-2%)(1-a)u
+(p— )zl ap — (p - s)p(k)zl apd | (4.27)
7(z) = (@p-c)((1-zNa+(1-29)(1-a))p+ (p-c)zlau

— 7g\2p2
~(p - 9)o(k) \/ @), (428)

For any given value of §, we compute the optimal discount factor
# that maximizes the expected profit function 7(z) for the case with
demand forecast updating. Figure 4.9 summarizes our numerical results
when we vary @ from 0.1 to 5."

Figure 4.9 shows that % is decreasing in &, consistent with Figures 4.2
and 4.6 (for the case when f = g). In addition, it corroborates the first

"' We also compute the optimal discount factor # that maximizes the expected profit function
#(z) given in (4.27) for the case without demand forecast updating. However, since the
numerical result has the same pattern as depicted in Figure 4.9, we omit the figure.
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Figure 4.9. Optimal Discount Factor (&) versus Coefficient of Variation (8) for ABD
with updating when f =1

statement of Propositions 4.5 and 4.8. Essentially, Figure 4.9 reports
that, as demand becomes unstable (i.e., as # increases), it is optimal for
the retailer to offer a lower discounted price to induce more customers to
pre-commit their orders prior to the selling season. As a larger portion of
the demand now becomes certain, the variance of the remaining demand
during the season is reduced.

In addition, Figure 4.9 illustrates the impact of different values of g
on . For a given value of #, Figure 4.9 shows that & decreases as g
increases, as the customers for Brand B become more responsive toward
the ABD program. This result seems to imply that as customers for
Brand B become more eager to accept the offer associated with the
ABD program, it is beneficial for the retailer to offer a lower discounted
price to induce more customers to switch to Brand A.

5.2 Correlated Demands

Let the demands associated with segments A and B be correlated
so that Corr(Da,Dpg) # 0. When the retailer does not utilize D;(z)
to update the distribution of Dy(z), the standard deviation of Dj(z)
during the season is equal to sy given in (4.5). Notice from (4.5) that
s9 is independent of Corr(D 4, Dp). Consequently, under this situation,
the retailer operates in the same manner, regardless of the correlation.
For this reason, it suffices to focus only on the case with demand forecast
updating. Suppose we substitute f(z) and g(z) into (4.8) and apply the
same approach described in Section 3. Then we have:
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Figure 4.10. Optimal Expected Profits (7(x)) versus Correlation Coefficient
(Corr(Da, Dg)) for ABD with updating when f =1

#(z) = (zp— ) (1 —af)a+ (1 -29)(1 - a))p+ (p— )zl ap
— (p — 8)p(k) (af ) x
\/ (1 — 29)2r2(1 — [Corr(Da, Dp)]?)

1-zf)2+(1—-29)2r2+2(1 —zf)(1 — 29)rCorr(Da, Dp)

Figure 4.10 summarizes the optimal expected profit 7 (z), while Figure
4.11 reports the optimal discount factor £ when we fix ¢ = 0.3 and vary
Corr(D4, Dg) from -1 to 1.

Figure 4.10 implies that, as the demands D4 and Dp become more
(positively or negatively) correlated, the retailer can obtain a higher
expected profit. This observation can be explained as follows. Under
correlated demands, pre-committed orders generated from customers
switching from Brand B to Brand A now provides informational value
for predicting the remaining demand during the selling season. As de-
scribed in Section 3, this additional information further reduces demand
variance, which increases expected profits. Figure 4.11 suggests that it is
optimal for the retailer to offer a lower discount when the demands D4
and Dp become more correlated. This result can be explained by the
fact that under demand forecast updating, highly correlated demands
naturally lead to a lower variance of forecast error. Therefore, it reduces
the need to reduce forecast error through price discounting. Finally, let
us examine how the optimal expected profit and the optimal discount
factor are affected by the parameter g. Figure 4.10 implies that the
retailer can achieve a higher expected profit as g increases (i.e., as the
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Figure 4.11. Optimal Discount Factor(Z) wversus Correlation Coefficient
(Corr(Da, Dg)) for ABD with updating when f =1

customers for Brand B become more responsive). This is because more
customers for Brand B switch over to Brand A under the ABD pro-
gram. Also, Figure 4.11 suggests that as g increases, it is beneficial for
the retailer to offer a lower discounted price.

6. Concluding Remarks

In this chapter, we have considered a problem of matching supply
with demand for products with short life-cycles and highly unpredictable
demands. Due to long replenishment lead-time and a short sales season,
the retailer is unable to re-stock during the selling season and respond
to market demand. As an alternative strategy, we have considered a
scheme called the Advance Booking Discount (ABD) program in which
customers can pre-commit their orders, with guaranteed delivery during
the season, at a discount price prior to the commencement of the sales
season.

We have developed a model that enables us to quantify two crucial
benefits of the ABD program including generating additional demand
and better matching of supply with demand through more accurate fore-
casting and supply planning. Our analysis provides objective guidelines
for deciding if, when and how such programs should be instituted. It is
important to note that the ABD program presented in this chapter is
amenable to many practical extensions including addition of a fixed cost
for administering this program or the case with multiple products with
fixed capacity constraints. Our future research focuses on testing the ro-



Managing Demand Uncertainty using Advance Booking Discount Programs 93

bustness of this model and results with alternate demand distributions
and different types of customer response functions.
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Appendix
Proof of Lemma 2 Notice from (4.14) that 2° > 1 if and only if § < _P[L;)éﬁl‘

This is impossible because the coefficient of variation 6 = 0. Thus, £ < 1. Next,
observe from (4.15) that h(x) is increasing in x and h(#°) = 0. The second statement
of the Lemma follows immediately from these two observations.

Proof of Proposition 4.4 Since # < § = ctle—cla ¢ gg easy to check from (4.14)

(p—a)pa ?
that 0 < #° < 1. For any x that has 0 < = < #° < 1, Lemma 2 implies that k(z) < 0.
In this case, one can show from (4.17) that A’(z) > 0 Ve € [0,¢]. Next, since
¢ £ 1, Lemma 2 implies that ft(l) > 0and that A’(1) < 0. It follows from the Mean
Value Theorem that there exists an optimal Z € (Z°,1] that satisfies the first order

condition.

Next, when 8 > 6 = %ﬁl, it is easy to check from (4.14) that £° < 0. In this

case, we have h{z) > 0 Vz € [0,1]. Hence, it can be shown from (4.17) that A’(0) >0
and that A’(1) < 0. It follows from the Mean Value Theorem that there exists an
optimal & € (0,1] that satisfies the first order condition. This completes the proof.

Before we present the proof of Proposition 4.5, let us prove the following Lemma that
will be useful.

Lemma A.1 Consider the function h(zx) given in (4.15) and the function f(x) =
1 —af, where f > 0. The term %, that has A'(%) = 0, has the following properties:

1 When 0 <8, the term (f - DA(Z) + 22p > 0.

2 When 8 > 8, the term (f —.l)f:&{.’ﬁ) + 2%p 2 0 when f 2 1. In addition, when
1> f >0, the term (f —1)h(&) + 2&p 2 0 when 8 is sufficiently small and the
term (f — 1)h(&) + 22p < 0 when@ is sufficiently large.

Proof of Lemma A.l1 Observe from (4.15) and (4.14) that h(z) = zp — #°p. Hence,
(f - 1DA(2) + 2ép = (f+ Dép— (f — 1)&°p. First, when 8 < 0, the first statement
of Proposition 4.4 implies that & > ¢ > 0. The term (f — 1)h(&) + 2&p = (f +
1)&p — (f — 1)@°pis non-negative because & > Z° = 0. Next, when & > 6, these
cond statement of Proposition 4.4 implies that £ < 0 and & > &°. In this case, the
term (f <4 1)@p — (f — 1)&°p is non-negative when f > 1. We finally consider the case
when 1 > f > 0. By substituting the expression for Z°given in (4.14) into the term
(f + 1)Zp — (f — 1)2°p. It can be shown that this term is non-negative (negative)

when @ is sufficiently small (large).
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Proof of Proposition 4.5 Let us consider the case inwhich 8 < § = %E%?f.

First, considering the fact that Z satisfies A’(#) = 0, we can use the implicit
function theorem to differentiate the function A’(#) with respect to . By considering
(4.17) and (4.15), it can be shown that:

¢ _  _ —%p - s)¢a
do (f - Dh(z) +2&p

By applying the result from Lemma A.1 to the above expression, one can see that
42 < 0. Thus, Z is decreasingin 6.
Next, let us differentiate thefunction A’(%) = 0 with respect to . Byconsidering

(4.17) and (4.15), it can be shown that:

d _ dp-c)-(p—s)0)

g (f = Di(@) +28p

Since § < f = %)f Lemma A.l implies that the denominator of the above

equation is non-negative. In this case, j—j > 0 if and only if the numerator Z[(p—¢) —

(p — s)¢8) is positive. The numerator is positive when 8 < p"’__;j 5. It follows from

the definition of  that A2=<L. « §. Therefore, we can conclude that the numerator

(p—a)e
is positive when @ € [0, 725 @]. This proves the
first statement.

For the case when # > §, we can apply the same approach to prove the second
statement. We omit the details.

Finally, when f = 1, we can determine the expression for by setting A’(£) = 0.

We omit the details. This completes the proof.

-

) and is negative when 6 € [(p_s i

pe-ald

Proof of Lemma 4.6 Since the term &° and the function h(x) are analogous to &°
and h(z), we can use the same approach presented in the proof of Lemma 2 to prove
Lemma 4.6. We omit the details.

Proof of Proposition 4.7 Observe that the term # and the function i(z) are anal-
ogous to the terms § and A(z). Also, notice that the first derivative of A(z) given in
(4.24) is analogous to the first derivative of A(x) given in (4.17). In this case, we can
use the same approach presented in the proof of Proposition 4.4 to prove Proposition
4.7. We omit the details.

Before we present the proof of Proposition 4.8, let us prove the following Lemma that
will be useful.

Lemma A.2 Consider the function h{z) given in (4.15) and the function f(x) =
1—xf,where f > 0. The term &, that has A'(Z) = 0, has the following properties:
1 When 6 <8, the term (f — 1)h(z) + 2&p > 0.

2 When 8 > 8, the term (f —Ml)fz{u‘v:) +2&p > 0 when f 2 1. In addition, when
1> f >0, the term (f — 1)h(Z) + 2&p > 0 when @ is sufficiently small and the
term (f — 1)h(Z) + 2Ep < 0 when@ is sufficiently large.
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Proof of Lemma A.2 Since the term #° and the function h(z) are analogous to
z¢ and h(z), we can use the same approach presented in the proof of Lemma A.1 to
prove Lemma A.2.We omit the details.

Proof of Proposition 4.8 First, differentiate the function A’(Z) = 0 withrespect
to # and «, getting:
di —&(p — s)pva
df (f — 1)h(&) +22p
- =143
di F|(p—c) - (p—s)g0%2]  &[(p—c) - (p— 5)d0 54

do = T (F- D) + 28p F— DA + 2ip

Then we can prove Proposition 4.8 by using the same approach as presented in the
proof for Proposition 4.5. We omit the details.

Proof of Proposition 4.9 Let us compare thefunction A’(z) given in (4.24) and the
function A’(z)given in (4.17). It is easy to check from (4.22) and (4.15) that the key
difference between A’(z) and A’(z) lies with the term v given in (4.20). Essentially,
A’(z) reduces to A’(z) when v = 1. Since v < 1, we can prove the Proposition by
showing that Z is decreasing in v. Let us differentiate the function A’(#) = 0 with
respect to v. By considering (4.24) and (4.22), it can be shown that :

ﬁ _ Z[(p — s)dad)

dv (f = VA(&) +28p
By applying the result from Lemma A.2 to the above expression, we prove the Propo-
sition. This completes the proof.
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Abstract It has been well documented that buyers can benefit significantly from
being able to place reactive orders in response to observed demand for
a short life cycle product. In practice, suppliers often fill these reactive
orders with less than total reliability. Although reactive order fulfill-
ment can allow the supply chain to capture more of the demand that is
realized, it can also deter retailers from ordering as much initially. In
this chapter, we investigate how this trade-off affects the retailers’ or-
dering behavior as well as the profits of the manufacturer, the retailers,
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and the supply chain as a whole. We also develop insight as to how a
manufacturer should offer a reactive ordering policy.

1. Introduction and Related Literature

In many industries that are characterized by short product life cycles,
manufacturers traditionally encourage retailers to order products well in
advance of the selling season. In many cases, the entire season’s demand
has to be satisfied with one preseason order. For example, apparel retail-
ers are often required to order products 3-6 months prior to the selling
season, as discussed in Hammond and Raman, 1996 and Fisher and Ra-
man, 1996. Often this is driven by manufacturers’ willingness to forego
responsiveness (i.e., short lead times) in return for low unit costs.

Recently, some manufacturers have begun to recognize the benefits of
quick response systems, in which retailers are able to place and receive
orders for additional quantities from the manufacturer during the selling
season. This allows a retailer to adjust his quantity decision based on
observations of early season sales. However, for a manufacturer to pro-
vide such responsiveness, she typically must either overproduce during a
single production run or employ more expensive methods of production
in order to produce on short notice. A considerable amount of analysis
has been done to study precisely this trade-off. See, for example: Eppen
and Iyer, 1997, Iyer and Bergen, 1997 and Lau and Lau, 1997.

In practice, manufacturers often provide the possibility, but not a
guarantee, of quick response (Signorelli and Heskett, 1984). That is,
when a retailer places an order after the start of the selling season, the
manufacturer will fill it if she can, but does not guarantee that it will be
filled. Clearly, a retailer’s initial, preseason order will be affected by his
confidence that the manufacturer will fill a subsequent order that he may
place. If the manufacturer deals repeatedly with the same set of retailers,
her history of order fulfillment influences the retailers’ confidence that
their orders will be filled. In this chapter, we investigate the way in which
a manufacturer’s quick response performance influences the size of the
orders that are placed by retailers, and the profits of both members of the
supply chain. In addition, we investigate the portion of all reorders that
the manufacturer should optimally fulfill, and analyze the combination
of wholesale price for reorders and portion of reorders filled.

The inclusion of a reorder opportunity introduces an interesting dy-
namic to the interaction between a manufacturer and her downstream
retailers. By filling reorders, the manufacturer may be able to capture
demand that would otherwise have been lost. At the same time, the
greater the retailer’s confidence that the reorder will be filled, the less
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he will tend to order initially. This will improve the profits of the supply
chain as long as the benefit of ordering with better information offsets
the potentially higher production, delivery, and backlog costs.

The remainder of the chapter is organized as follows. In section 2, we
develop a model of a supply chain consisting of a manufacturer and a
set of independent retailers in which the manufacturer provides partial
fulfillment of reorders during the selling season. We analyze the model
from the perspective of the manufacturer to determine how she should
determine the portion of reorders to fill as well as the mark-up on the
wholesale price for reorders. Our analytical results indicate that for uni-
form and exponential demand distributions, the manufacturer should
provide either complete fulfillment of reorders, or no fulfillment whatso-
ever. Intermediate levels of fulfillment are never optimal. In Section 3,
we perform numerical analysis to explore the effect of reorder fulfillment
policies on channel profits and coordination. In addition, we investigate
a variation of the original case, where the manufacturer makes only a
single production run after receiving the retailers’ initial orders, but can
build inventory in anticipation of reorders. Finally, in Section 4, we
discuss the practical implications of our results and suggest directions
for future research. Throughout the chapter, we adopt the convention
of using female pronouns to refer to the manufacturer, and using male
pronouns to refer to the retailers.

2. Partial Fulfillment Model

Consider a setting in which a manufacturer sells her product through
a set of N independent (i.e. non-competing) retailers. The manufac-
turer has two modes of production: one which is relatively inexpensive,
but has a lead time sufficiently long that production quantities must be
committed prior to the selling season; and the other which is more ex-
pensive but allows production to be done during the selling season. We
denote the per-unit production costs of these two modes by c; and ¢z
respectively.

The retailers have two opportunities to order the product: before and
after observing demand. However, the manufacturer does not guarantee
that the reorder will be filled. In reality, retailers typically order once
prior to the selling season in order to have the product available when
customers want it, and then place reorders during the season if early
season sales are strong. As discussed in Fisher and Raman, 1996, the
information provided by these early season sales dramatically increases
the accuracy of the demand forecast. To simplify the presentation of
our analysis, we assume that the request for restocking occurs at the
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end of the selling season, when the realization of demand has been fully
observed. Although this eliminates the possibility that a retailer can
both receive a second shipment and have excess stock at the end of the
season, our model provides insight into the trade-off that the retailer
faces between improved demand information versus higher costs and
lower certainty of getting what he has ordered.

To analyze the effect of the manufacturer’s policy of filling reorders
on supply chain performance, we assume that the manufacturer acts as
a leader by announcing the fraction () of reorder requests that she will
fill. In practice, such an announcement could be made by establishing
a reputation based on long term performance. We further assume that
individual requests for restocking are either filled completely or not at all,
such that from the perspective of an individual retailer, he will receive
all of the units requested in a reorder with probability «, and none of the
units with probability 1-—-a. This assumption can be justified in terms of
two practical considerations. First, if each retailer were allocated some
fraction of the amount that he ordered, then there would be an incentive
for retailers to inflate their orders. Second, this approach may reduce
shipping costs relative to those associated with sending partially filled
orders to all retailers.

In response to the manufacturer’s order refilling policy (a) and the
wholesale price w;, each retailer 7 places an initial order, denoted by @);.
The manufacturer then produces these quantities, at a cost of c¢; per
unit, and delivers to the retailers.

After receiving his initial order quantity, each retailer experiences a
single period of demand, earning revenue of p per unit sold. If the
realization & of demand at retailer ¢ exceeds (J;, we assume that the
excess demand (z — ;)" can be backlogged at a cost of b per unit, and
the retailer places a reorder with the manufacturer for the number of
units in the backlog.

The manufacturer then produces a fraction, a, of the total amount
backlogged by all of the retailers. We assume that the manufacturer fills
the fraction & of all reorders in a manner that is perceived as random by
the retailers. Note that this could result from either the manufacturer
filling all requests for reorders on a randomly chosen set of the products
that it produces, or by filling a portion of requests on all products. In
other words, we assume that it is not necessary for the manufacturer to
fill the fraction o of requests for each realization of demand, so long as
she fills the fraction & of requests in expectation. This second production
run incurs a cost of ¢g per unit and is sold to each of the retailers at
we per unit. The decision variables in the manufacturer’s optimization
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problem are the fraction « of reorders filled and the wholesale price ws
for reorders.

If a retailer’s restocking request is not filled, then he experiences lost
sales for the backlogged units. Alternatively, if a retailer receives his
requested units, then he earns revenue of p less a backlog cost of b
per unit. The last quantity captures the costs associated with special
shipping to the customer or services necessary for special delivery. Thus,
the backlog cost is not incurred if a retailer’s order is not filled by the
manufacturer. Other than the backlog cost b there is no other penalty
incurred by the retailer for shortages, such as loss of goodwill cost, etc.

Each retailer faces independent identically distributed (i.i.d.) demand
that has density f(z), and cumulative distribution function ¥'(z). For
simplicity, we assume that the manufacturer has the same information
about the distribution of demand as do the retailers.

In order to analyze this model, let us first consider the problem faced
by retailer ¢ in determining the appropriate amount to order at the first
opportunity. Taking w;,p and b as given, we can express the expected
profits of retailer 4 as follows:

Q:
R(Qs, o, w2) = —w1Q; +P/ zf(z)dz
0
+a(p —wy —b) / (z — Qi) f(z)dzx + pQ; F(Q;). (5.1)
where F(Q) is the converse cumulative distribution evaluated at Q.
Assuming of course that 0 < o < 1, and ¢g < wgq < p—b, it is easy to
confirm that (5.1) is concave with respect to (J;, and that the optimal
order quantity for retailer 7 can be expressed as:

Qiarwd) = Q) = F' (S s) . 62

Observe that the retailers’ order quantities are decreasing in o. Thus,
as the manufacturer becomes more reliable in responding to restocking
requests, the retailers decrease the amount that they order initially and
become more apt to require restocking.

Let us now consider the perspective of the manufacturer whose ex-
pected profits can be expressed in terms of the retailers’ optimal re-
sponses to her announced restocking policy:

M(a,wz) = N{(w; — a1)Q" (o, w2)

+ a(wy — ¢g) ];:; )(:c - Q" (a,w)) f(x)dz]. (5.3)
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Since the manufacturer can induce each retailer to order quantity Q =
Q" (a,ws) by setting « and/or wy appropriately, we can alternatively
express her profits as the following function of Q

M(Q) = N[(w1 - ¢1)Q + a(ws — c2) H(Q)], (5.4)

where

H(Q) = El(z - Q)7]
is the expected amount of backlogged demand at a given retailer. Note
that, since (x—@Q)™ is a nonnegative random variable, the expected value
can be expressed as E[(z—Q)*] = [;° P[(z— Q)" > y]dy. (Justification
is provided by Ross, 1998, among others.) Therefore,

Q= F dye= | Flgg. 5.5

@= [ F@+viy= [Ty (5.5)

2.1 Manufacturer controls only the Reorder
Fulfillment Rate

Let us first assume that the manufacturer can control only the rate
of fulfilling requests forreorders («). From (5.2), it can be shown that
in order to induce an order quantity of Q, the manufacturer must fill
reorders at rate:

(@ = ——— (v- ?‘@) . (5.6)

Substituting (5.6) into (5.4) and rearranging, we obtain a new expression
for the manufacturer’s expected profit as a function of the induced order
quantity:

M@ =N [(wl -a)Q+ S (pﬁ@) —wy g((g;)] . 67)

This expression allows us to make interesting interpretations of the in-
dividual terms. Recall that H(Q) is equal to the expected backlog at
a given retailer. The term H(Q)/F(Q) can be interpreted as the con-
ditional expectation of the amount reordered by a retailer, given that
his demand exceeds his initial order quantity. Unfortunately, M(Q)
is in general neither concave nor convex, as indicated by the following
Lemma.

o s
Qo

Lemma 5.1 a) M(Q) is convex (concave) if and only if pH(Q)—w,

is convex (concave).

(@)
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b) IFH(Q)/F(Q) is concave, then M(Q) is convex.

Proof. Part (a) is immediate. For (b), taking the second derivative of
(5.5) with respect to O, we have F”(Q) = f(Q) > 0. Thus, H(Q) is con-
vex, and a sufficient condition for M(Q) to be convex is for H(Q)/F(Q)
to be concave. &

Theorem 5.2 a) If demand is exponentially distributed so that f(z) =
e~ then M(Q) is convex. For any pair of wholesale prices (w1, ws),
the manufacturer will optimally offer total  fulfillment (e = 1) of restock-
ing requests if:

w2 (wa +b)

p
1 5.8
wy —ep un n('LU‘g-I-b) ( )

Otherwise, the manufacturer will optimally offer no fulfillment (o« = 0)
of restocking requests.

b) If demand is uniformly distributed so that f(z) = (U — L)™' for
z € [L,U], then M(Q) is convex. For any pair of wholesale prices
(wy,ws), the manufacturer will optimally offer total fulfillment (a = 1)
of restocking requests if:

w2—C 2[p — (w2 + b)](we + b)
wp—cr pwy

(5.9)

Otherwise, the manufacturer will optimally offer no fulfillment (a = 0)
of restocking requests.

Proof. a) If demand is exponentially distributed with parameter A,
then we have F(Q) = e *? and H(Q) = e™*?/\. Thus, H(Q)/F(Q) =
1/A and from Lemma 5.1(b) it follows that M(Q) is convex in Q. There-
fore, M(Q) is maximized by inducing retailers to order at one of the two
extreme points, i.e. either:

Q" (0,wq) = F (%) or Q*(1,wq) = F (w:b—l}- b) .

For the exponential distribution with parameter A, (5.2) can be ex-
pressed as:

* _ __1- w1
Q" (a,wn) = 5 In (p Y —— b)) . (5.10)
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We can now substitute for Q and H(Q) in (5.7) to obtain:

M@ () = N |~ - e (et

p—oap—w2—b)

a(wy — eg)wy
e T (1)

From this expression, we can substitute & = 1 and @ = 0, and rearrange
the terms to see that:

M(Q*(1,w2)) — M(Q*(0, wg)) =

_N _ P\ _ wiws—cy) .
) [(“"‘ a )l (u*2+b) wy + b ] - (512)

It is easy to see that the above expression is non-negative if and only if
(5.8) is true.
b) If demand is uniformly distributed on (L,U), then we have:

_ _ _ 2
F(Q) = g_gand H(Q) = H

Thus, H(Q)/F(Q) = (U — Q)/2 and from Lemma 5.1(b) it follows that
M(Q) is convex in Q. Therefore, M(Q) is maximized by inducing retail-
ers to order at one of the two extreme points, i.e. either:

. -2 p_ . =y —

Q (0,wy) =U P (U-=L) or Q" (1,we)=U 1U2+b(U L).

Substituting into (5.7) and rearranging, we have:
* = ] T _ r wl(U - L)
M(Q (GC, w2)) N (wl Cl)(D p— U:'(p — wy — b))
2
. awi(U — L) .
+ (w2 02)2(}) oy~ vyt B (5.13)

From this expression, we can substitute & = 1 and o = (0 to see that:

IM(CJ*(I, wg)) - JM(Q*(U, ’U?g)) =
wa+b—p (w2 —c2)wi

N n—c
(w1 =) p(’wz + b) 2(wg + b]z

} (U = Lywy. (5.14)

By rearranging the terms inside the bracket, it is easy to see that the
above expression is non-negative if and only if (5.9) is true. ¢



Partial Quick Response Policies in a Supply Chain 105

It is of interest that for both uniformly and exponentially distributed
demand, the manufacturer’s optimal policy fills all requests for restock-
ing if and only if the ratio of profit margins between the restocking and
the initial ordering opportunity exceeds a certain threshold.

Although the above analytical results do not extend to the gamma or
normal distributions, which are often used to model demand, we have
performed an extensive set of numerical experiments for these distri-
butions. These experiments indicated that for the gamma distribution
M(Q) is not always convex, but nevertheless it is maximized by either
filling all requests for restocking or by filling none of them. This also
appears to be true when demand is normally distributed. Although we
were able to construct some examples with normally distributed demand
in which the profit was maximized for some value 0 < e < 1, in all such
cases the manufacturer’s profit was practically constant in «, with a total
variation of less than 1% between the minimum and maximum values.
Thus, although the specifics of our analytical results do not extend to
the gamma or normal distributions, the basic conclusions carry through.

2.2 Offering Re-Stocking as a Benefit to
Retailers

In many situations, a manufacturer who is introducing a restocking
option must guarantee that a retailer can do at least as well after the
introduction of restocking, regardless of whether he chooses to take ad-
vantage of the option of restocking. For example, there may be many
retailers who are either unable or are unwilling to change their own busi-
ness practices in order to take advantage of restocking. In order to avoid
disenfranchising these retailers when a restocking policy is introduced,
the manufacturer may want to avoid changing the wholesale price (w;)
that she charges for the initial orders that are placed before observing
demand. Moreover, by leaving this early wholesale price unchanged af-
ter introducing restocking, the manufacturer signals retailers that the
new policy can only benefit them.

Lemma 5.3 Taking wy as fixed, and assuming that p > wy; = ¢1 and
p—b > co > c1, there is always a total reorder fulfillment policy (a = 1)
for which both the manufacturer and the retailers’ expected profits are at
least as large as without reorder fulfillment.

To see that this is true, note that by setting & = 1 and wy = p — b, the
retailers are indifferent between filling backorders through restocking
and experiencing lost sales. Thus, this policy induces the retailers to
make the same initial orders as if there were no reorder fulfillment. The
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retailers earn the identical profit as they would without the restocking
option, and any reorder requests that the manufacturer receives increase
her profits.

The above Lemma also implies that, if the manufacturer has control
over the wholesale price for restocking, she will always prefer «« = 1
to « = 0. As long as M(Q) is convex, as we have shown it to be
for uniform and exponential demand distributions, the manufacturer’s
optimal policy will be to set @« = 1 and find the profit maximizing
restocking wholesale price w3(a = 1). On the other hand, both for uni-
form and exponential demand distributions M (Q* (e, w2)) is unimodal
in wy. This is so because it can be shown that if the partial derivative
OM (Q* (o, wq))/Owe < 0 for some wo, then it remains negative for all
wh > wg. This gives rise to the following Theorem, the proof of which
we have omitted:

Theorem 5.4 a) If demand is exponentially distributed with parameter
A, then the manufacturer’s optimal restocking policy is to set « = 1 and

Wy = 2wy —e1)[p(1—a)+ab]+awi co
)

(i —xPw:~c1)) otherwise

: { p—>b if 2wy —ecq — ——le(ﬂ;”_b >0

b) If demand is uniformly distributed on (L, U), then the manufacturer’s
optimal restocking policy is to set « =1 and:

3wy — 2¢ 2w c:
w;-_—)“lﬁrin{p—b! (le (lJb+ 1()1(?2}.

2(31 — un

2.3 The Role of Re-stocking in Channel
Coordination

In this section, we address the issue of the extent to which the intro-
duction of a restocking policy can or will serve to coordinate the supply
chain. If the manufacturer and retailer interact only once, prior to the
observation of demand, the quantity that maximizes the channel profits
satisfies:

F(Q) == (5.15)
p
This is the solution to a standard newsvendor problem with the marginal
cost of production (c;) as the cost of overage, and the profit margin
(p — e1) as the cost of underage. The quantity ordered by the retailer
will satisfy:

F(Q) = %- (5.16)
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Clearly, the only way that the manufacturer can induce the retailer to
order the channel coordinating quantity is by setting w; so that (5.15) is
equal to (5.16), which implies that the channel can be coordinated only
when w; = ¢;. Hence, in this environment, we cannot both coordinate
the channel and allow the manufacturer to earn positive profit.
However, as shown in the following theorem, this is not the case if
the manufacturer introduces a restocking policy. Indeed, with a restock-
ing policy, the manufacturer can coordinate the channel with an early
wholesale price (w,) that is strictly greater than her marginal costs.

Theorem 5.5 As long as p— b > co, the manufacturer can coordinate
the channel, i.e. maximize channel profits, by setting o = 1 and setting

wy and wg such that: :
_wat
w1(Qe) =1 e

where Q. is the order quantity that maximizes channel profits.

(5.17)

Proof. From the channel perspective it can never be profitable to let
backorders go unfilled so long as p — & > ¢, which implies that @ = 1
is optimal. Therefore, the initial order quantity is the solution to a
newsvendor problem in which the cost of over-production is ¢;, and the
cost of under-production is ¢s — ¢; + b. Thus, the channel coordinating
order quantity must satisfy:

(Qc)=F_l( = ) (5.18)

c+b

The relationship in (5.17) follows from setting the retailer’s order quan-
tity as defined in (5.2) equal to the channel coordinating quantity in

(5.18). ¢

This result is significant because it implies that the introduction of a
restocking policy allows the manufacturer to use a linear pricing policy
to both coordinate the channel and extract a share of the profits from
the retailer, which is not true in the absence of a restocking policy.

3. Numerical Analysis
3.1 Total Supply Chain Profits

The analytical results derived in Section 2 characterize how the man-
ufacturer’s profits depend on «, the portion of reorders filled, and wo,
the wholesale price per unit for reorders. In this section, we perform
a numerical study to better understand the effects of partial replenish-
ment policies on the performance of the channel. Even in a simple case
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Varying a Varying wa
Case 1 2 3 4
Distribution  U(100,1000) U(100,1000) Exp(1/100) U(100,500)
P 200 100 50 50
b 0 3 1 7
c1 15 20 6 20
c2 40 30 29 26
w 49 35 25 22
'LU2:50 '!.U2;50 ulg=37 a=1

Table 5.1. Data for numerical examples

where the manufacturer’s profits are increasing in wg and the retailer’s
profits are decreasing in wq, the effect on channel profits is ambiguous.
Wholesale prices have only second order effects on channel profits via
their effects upon the initial order of the retailer. Changes in the por-
tion of reorders filled has both first and second order effects on channel
profits.

To demonstrate the relationship between restocking policies that max-
imize the manufacturer’s profits versus those that maximize channel
profits, we provide the following numerical examples. In these exam-
ples we have considered four cases for the demand distribution and the
various parameter values. The data used for each case are summarized
in Table 1.

Figure 5.1 shows the manufacturer and channel profits as a function of
a for Case 1. In this case, the manufacturer’s profits are strictly decreas-
ing in «. Although the channel profits decrease and then increase in «,
both the profits of the manufacturer and of the channel are maximized
at a = Q.

Figure 5.2 shows the manufacturer and channel profits as a function
of o for Case 2. In this case the manufacturer will choose not to offer a
reorder opportunity. However, we can see in Figure 5.2 (b) that channel
profits are increasing in « throughout the range. Therefore, channel
profits would be higher if a reorder opportunity was offered.

An example with exponential distribution also shows behavior in which
the manufacturer’s profits are decreasing then increasing, while the chan-
nel profits increase throughout the range, as is shown in Figure 5.3 for
Case 3. Note, however, that in this case the manufacturer will still
choose the channel optimal policy of a = 1.

We also consider the effects of selecting ws for a given o value. Figure
5.4 shows the manufacturer and channel profits as a function of w9 for
Case 4. We find again that the channel profits are strictly increasing or
decreasing in many of the cases. However, there are sometimes discrep-
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Figure 5.1. Manufacturer (a) and Channel Profit (b) - Case 1
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Figure 5.2. Manufacturer (a) and Channel Profit (b) - Case 2
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Figure 5.3, Manufacturer (a) and Channel Profit (b) - Case 3
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Figure 5.4. Manufacturer (a) and Channel Profit (b) - Case 4

ancies between what is best for the manufacturer and what is best for
the channel. Indeed for the case shown in Figure 5.4, the total channel
profits are maximized when ws = 29, whereas the manufacturer’s profits
are increasing over the entire range. As a result, the manufacturer will
tend to charge a larger wholesale price than would be optimal from the
perspective of the channel. Note that this is consistent with the results
of Jeuland and Shugan, 1983, who showed that in a bi-lateral monopoly,
both the manufacturer and the retailer will tend to set higher margins
than would be required to maximize channel profits.
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3.2 Single Production - Partial Fulfillment
Model

In many practical situations, manufacturers lack the operational flex-
ibility to respond to requests for restocking with additional production.
In such cases, if the product being sold is standardized, manufactur-
ers often produce more than enough to satisfy retailers’ initial orders
in anticipation of requests for restocking. In this section we perform
a numerical investigation to better understand the effects of such over-
production.

As before, we assume that there are N retailers facing independent,
identically distributed demand, and that the manufacturer fills requests
for restocking without regard for the number of units ordered, and that
each request is either filled completely or not at all. We assume that
N is large enough that the central limit theorem can be applied and
that the distribution of the combined requests for restocking from the
retailers can be represented by a normal distribution.

In contrast to our original model, we now assume that the manufac-
turer produces only once, prior to any observations of end demand. In
particular, we assume that, after receiving the retailers’ orders, the man-
ufacturer produces enough to fill these orders and to fill some portion
of the anticipated demand for restocking. Let ;(Q) denote the num-
ber of units of demand backlogged at retailer 4, given that he ordered
Q units initially. Then ;(Q),2 = 1,..., N are independent identically
distributed random variables with mean and variance

Ely(Q)] = /Q (@~ Q)f(2)d,

@ = [ - QUEd B @I
Let yp(Q) denote the total quantity requested for restocking by all retail-
ers given that they have each ordered Q units initially. By the central
limit theorem, yr(Q) is approximately normally distributed with the
following mean and variance:

Elyr(Q)] = NE[n(Q)),

2 . 2
%@ = Noy)

Thus, in order to insure that the expected amount of unsatisfied de-
mand for restocking is equal to 1 — - of the total expected demand for
restocking, the manufacturer must produce:

T =NQ+ Elyr(Q)] + 240y,.(Q)>
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where

g = p-1 L=V Ewr(@)y

Tyr(Q)
Lm:=£'m4wmm,

and ¢(z) is the density of the standard (unit) normal distribution. As-
suming that any shortages are allocated randomly among the retailers
and that they cannot misrepresent their backlogs, then -y is a good ap-
proximation to «. In other words, by filling a fraction y of the demand
for restocking, the manufacturer can, on average, fill the fraction a of
the requests.

From the retailer’s perspective, the manufacturer’s policy results in
requests for restocking being filled with probability o = ~, and each
retailer orders the quantity identified in Q* (v, ws), where ~ replaces a:

* o) — =i un e
@) =F (s ). (5.19)

Note, however, that when the manufacturer’s initial production quan-
tity is in excess of the combined initial orders from the retailers, the
manufacturer exposes herself to some risk, and may incur the cost of
unsold product. As a result, it will become prohibitively expensive for
her to guarantee complete fullfillment of reorders, i.e. v = 1. Specifi-
cally, the cost to achieve very high levels of service becomes prohibitive,
due to the large “safety stock”, represented by the term zyo,,. (), that
is required in this case. The manufacturer’s profits are shown in Figure
5.5 for v from O to 1, for a case where each retailer’s demand follows
uniform distribution between 100 and 1000, and N = 100,p = 100,b =
3,¢ = 20,w; = 35,ws = 50. This case is the same as Case 2 in Table
1, with the only difference being that all production takes place in the
first period at cost ¢;. There are two things worth noting: First, it
can be seen that, as expected, the profits show an abrupt decrease for
values of v close to 1 due to the prohibitive cost of producing enough
in advance to guarantee fulfillment of all reorder requests. Second, the
manufacturer’s profits are maximized at a value of - that is very close
to 1. Recall that when reorders had to be filled from higher cost produc-
tion the manufacturer’s profits were maximized by filling no reorders, as
shown in Figure 5.2. The main reason for this difference is that when
products are standardized and the manufacturer can use the inexpensive
early production to build inventory, she can earn a larger margin on the
reorders. Thus, she may encourage reorders when she can fill them from
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Figure 5.5. Manufacturer’s Profits in Single Production Partial-Replenishment

inventory, even though she would discourage them if she had to employ
an expensive mode of production to satisfy them.

4. Conclusions and Extensions

We have developed models for partial quick response policies used in
practice, and identified situations in which such policies are beneficial
not only to retailers but also to manufacturers.

For the uniform and exponential distributions, we analytically char-
acterized the optimal policies when the portion of reorders and/or the
wholesale price per unit of reorders are under the manufacturer’s con-
trol. For a given wholesale price, it is optimal to either fill all reorders
or not offer a reorder opportunity. It is optimal to offer a reorder oppor-
tunity when the ratio of the manufacturer’s profit margin on reorders to
her margin on the initial orders exceeds a certain threshold. For a given
portion of reorders filled, there is an optimal reorder wholesale price that
exists in the interval between the manufacturer’s production cost at the
reorder opportunity, and the value at which the retailer would be indif-
ferent to participating. Combining these results, we showed that if the
manufacturer controls both the portion of reorders filled and the whole-
sale price charged for reorders, the optimal policy is to fill all reorders
and charge the appropriate maximizing wholesale price for complete ful-
fillment.

We numerically explored this policy’s effect on the channel profits,
and found that the policy that maximizes the manufacturer’s profits
does not necessarily coincide with the one that maximizes channel profit.
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Therefore, without some additional mechanism, the manufacturer would
not always have an incentive to coordinate the channel.

In our numerical experiments, we also considered a related model of
partial replenishment in which the manufacturer lacks access to reactive
production but can build inventory before the selling season. Relative to
the case where she cannot build inventory, but can produce reactively,
this allows the manufacturer to utilize low cost production to satisfy
reorders. On the other hand, it can result in the manufacturer’s produc-
ing units that retailers do not need. There are a number of questions
that would be worth pursuing in this line of inquiry. For example, it
would be interesting to know how the manufacturer’s optimal produc-
tion quantity in anticipation of reorders would compare to the optimal
quantity for a vertically integrated channel. It would also be interesting
to investigate how a manufacturer would use a combination of inventory
and responsive production to satisfy retailers’ reorders.

Other directions in which this work could be extended include different
cost structures that take into account set-up and holding costs within
the period. Additionally, it could be useful to analyze the following
trade-off: as a retailer postpones making a request for a reorder, he
gains more information about demand, but incurs a greater risk that
the manufacturer will be unable to fulfill his request. It might also be
of interest to study the effects of competition, at either the retailer or
manufacturer levels. Finally, it will also be important to consider the
managerial issues of cooperation necessary to implement the policies
described here.
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Abstract This chapter considers a single period inventory (newsboy) problem in
which a manufacturer will both sell the item to the vendor outright as
well as offer the item to the vendor on a revenue sharing (consignment)
basis. In the latter case, the amount of money the vendor pays per unit
is less than if the item is purchased by the vendor, but the vendor must
share some of the revenue with the manufacturer. The purpose of our
analysis is to investigate the effect of such a strategy on the vendor’s
purchasing decision and demonstrate how such a revenue sharing scheme
can be used to achieve channel coordination.

1. Introduction

This chapter investigates the situation in which a vendor, in a news-
boy-type situation, has the option of purchasing the item outright and/or
obtaining the item through a revenue sharing agreement with the man-
ufacturer. Of specific interest is whether revenue sharing can be used to
achieve channel coordination.

The motivation for this work comes from an article in the March
25, 1998 edition of the Wall Street Journal dealing with the concept of
revenue sharing at video rental stores. The article described efforts by
Blockbuster Video to obtain tapes from Hollywood studios on a revenue
sharing basis. The article cited research by Time Warner that indicated
20% of customers were unable to obtain their first choice video due to a
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stock out situation. To remedy this situation, stores were being offered
videotapes for $8 each on a revenue sharing basis versus $65 each for
outright purchase.

The purpose of this chapter is to examine the strategy of revenue
sharing for a newsboy (single period) inventory model. The fact that
the problem faced by videotape rental stores is analogous to the news-
boy model was shown in Drezner and Pasternack [1999]. We note, how-
ever, that while our motivation for studying this problem originated
with videotape rental stores, the results of this work are applicable to
any newsboy inventory situation and may, for example, be of interest to
publishers of periodicals or manufacturers of perishables such as baked
goods.

The newsboy (single period) inventory model is covered in most in-
troductory management science texts (see for example Lawrence and
Pasternack 1998). There have also been numerous papers in the litera-
ture dealing with extensions to this model. Silver, Pyke, and Peterson
[1998] gave a partial review of the literature in their textbook. Khouja
[1999] presented an extensive review of the literature dealing with such
extensions. In this paper Khouja reviewed some 90 publications and
classified them into eleven categories based on the type of extension to
the classical newsboy problem.

Following Khouja’s classification, the material in this chapter would
fall into the category of problems dealing with different supplier pric-
ing policies. Extensions to the newsboy problem in terms of different
supplier pricing policies have focused on quantity discounts (see for ex-
ample Jucker and Rosenblatt 1985, and Lin and Kroll 1997), permitting
emergency supplies obtainable at a premium cost over the original cost
per unit (see for example, Khouja 1996), and multiple suppliers (see for
example, Kabak and Weinberg 1972).

As with the literature on the single period inventory problem, there
are a number of papers that have dealt with pricing policies to achieve
channel coordination (an excellent review of this literature can be found
in Tsay, Nahmias, and Agrawal 1999). For example, Jeuland and Shugan
[1983] and Monahan [1984] both considered discounting schemes that
achieved channel coordination. Lal [1990] looked at franchise fees and
monitoring schemes and their effect on channel coordination. These
papers however, did not deal with a newsboy type situation. For a
newsboy type good, Pasternack [1985] showed that a manufacturer could
set a pricing and return policy so that channel coordination could be
achieved. Lau and Lau [1999] extended Pasternack’s work to account
for the manufacturer’s and retailer’s attitude towards risk with a goal
of maximizing the manufacturer’s profit. Padmanabhan and Png [1997]
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developed a single period inventory model in which demand is linearly
related to price and examined the effect that full returns and no returns
have on retailer strategies and the manufacturer’s profit. Lariviere and
Porteus [1999] considered a newsboy type inventory model and looked at
structural issues for the manufacturer’s pricing policy as well as the effect
that market size and variability have on the pricing decision. Brown and
Lee [1998] examined a situation faced in the semiconductor industry in
which a vendor could both purchase units outright from a manufacturer
as well as purchase options for additional units. These options could
be exercised at a future point in time after additional information for
the good’s demand has been observed. They considered situations in
which several of the costing parameters could change and showed that,
for their model, channel coordination can be attained to allow greater
profit for both the manufacturer and the supplier. While the model
considered by Brown and Lee has similarities to the one presented in
this chapter, their model did not include the possibility of the vendor
incurring a goodwill cost due to unavailability of the item at the retail
level. As we will show, the inclusion of goodwill cost may lead to a
situation in which it is impossible for the manufacturer to gain in a
channel coordination scheme without the use of a side payment from
the vendor to the manufacturer.

The focus of this chapter is on the vendor’s optimal procurement
strategy and on the manufacturer’s pricing strategy for offering items
on consignment in order to achieve channel coordination. We allow the
vendor to obtain the item through two different costing schemes. In
particular, we assume that the manufacturer has been selling the item
to the vendor on a conventional basis and now wishes to also offer the
good to the vendor on a revenue sharing (consignment) basis. Hence,
the vendor will have the choice of purchasing the item outright, obtain-
ing the item on consignment, or doing a combination of both. As with
much of the literature on channel coordination, we will assume that the
manufacturer behaves like a Stackelberg leader and that the vendor acts
to maximize its expected profits. Our analysis will examine the ven-
dor’s procurement strategy and how a consignment scheme can achieve
channel coordination.

The chapter is divided into four sections. In Section 2 we introduce
the general model. We show conditions under which it is optimal for
the vendor to only purchase the item outright, only obtain the item on
consignment, or obtain the item through both outright purchase and
consignment. In Section 3 we discuss the issue of channel coordination.
We show that a consignment scheme can be used to achieve channel
coordination and present pricing formulas that a manufacturer can use
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to “force” the vendor to order, in total, what is in the best interests
of the channel. While this may likely be the most compelling reason
for manufacturers to adopt this strategy, we show that it is possible
for the manufacturer’s expected profit to decline as a result of such
coordination. Formulas for the vendor’s and manufacturer’s expected
profit are presented and examples are given for the case of a uniform
demand distribution. Section 4 contains some concluding remarks and
potential avenues for future research.

2. Optimal Strategies When the Vendor’s
Available Funds Are Unlimited

In this section we introduce the general model and investigate the
vendor’s optimal strategy. We assume that there are no limits on the
funds the vendor has available for procurement and that either the cost
of capital is low or the time horizon under consideration is short. (For
an analysis of the vendor’s optimal purchase/consignment strategy when
funding is limited see Pasternack [2000].) We note that because a vendor
does not have to obtain the item on consignment, in order for any con-
signment scheme to be attractive to a vendor, it must result in a higher
expected profit than if the vendor obtains all units through outright

purchase.
The notation we use is as follows:

= ¢; = the vendor’s cost per unit if the vendor obtains the item from
the manufacturer through outright purchase.

» p; = the retail price per unit and therefore the vendor’s revenue
per unit if the vendor obtains the item from the manufacturer
though outright purchase.

= s = the vendor’s salvage value per unit if the vendor obtains the
item from the manufacturer through outright purchase.

= g = the vendor’s goodwill cost per unit if the vendor is out of stock
of the item.

= m = the manufacturer’s production cost per unit.

s o = the vendor’s cost per unit if the vendor obtains the item from
the manufacturer on consignment.

= py = the vendor’s revenue per unit if the vendor obtains the item
from the manufacturer on consignment. (Note that p; — ps equals
the revenue paid to the manufacturer if an item purchased on con-
signment is sold by the vendor.)
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w (J; = the number of units the vendor obtains from the manufac-
turer through outright purchase.

m (Jo = the number of units the vendor obtains from the manufac-
turer on consignment.

= (O = the number of units ordered if the supply channel is coordi-
nated.

s EV(Q1,Q2) = the vendor’s expected profit if it purchases (7 units
and obtains (2 units on consignment.

s EM(Q;,Q2) = the manufacturer’s expected profit if the vendor
purchases @1 units and obtains (Jo units on consignment.

m EP(Q) = the total expected channel profit if the channel is coor-
dinated and the order quantity is Q.

= (] = the optimal number of units the vendor should obtain from
the manufacturer through outright purchase if the vendor wishes
to maximize its expected profit.

» ()5 = the optimal number of units the vendor should obtain from
the manufacturer on consignment if the vendor wishes to maximize
its expected profit.

w  ()* = the optimal number of units ordered for a coordinated supply
channel.

» f(x) = the probability density function of demand.

We will assume that due to competitive pressure, the values of ¢y, p1,
s,g, and m are fixed', however the manufacturer has control over setting
the values of co and pa. Given the cost structure set by the manufacturer,
the vendor will then determine the order quantity that maximizes its
expected profit.

Following this notation, we see that if the vendor purchases the item
outright from the manufacturer, the vendor earns a gross profit of p; —¢
for each unit sold and the manufacturer earns a gross profit of ¢; — m
for each unit ordered by the vendor. If however, the vendor orders the
item from the manufacturer on a consignment basis, the vendor would

'For example, videotapes are not only sold to stores that rent tapes, but also to stores which
sell tapes outright to consumers. Even among stores that rent tapes, some may not wish to
participate in a consignment scheme. For these reasons it is assumed that the vendor’s cost
per unit, ¢;, and the retail price per unit, p;, are not affected by the introduction of the
consignment scheme.
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pay the manufacturer ¢o per unit plus an amount equal to p; — pp for
each unit sold. As aresult, for each unit purchased on consignment and
sold by the vendor, the vendor earns a gross profit of p» — ¢z and the
manufacturer earns a gross profit of p; — pg + ¢cg — m.

We further assume that if the vendor purchases the item outright from
the manufacturer the salvage value, s, from each unsold unit accrues to
the vendor, whereas if the item is obtained from the manufacturer on a
consignment basis the salvage value accrues to the manufacturer. In all
cases the goodwill cost per unit due to shortage, g, is assumed to accrue
to the vendor.

The following conditions are assumed to hold regarding py, p2, €1, C2,
and s.

m p; > p2 (The vendor’s revenue per unit is greater if it purchases
the item than if it obtains the item on consignment.)

m ¢; > ¢9 (The vendor’s cost per unit is greater if it purchases the
item than if obtains the item on consignment.)

m ¢; > s (The vendor’s cost per unit for purchasing the item is
greater than its salvage value)

» p; > ¢ (For items purchased, the vendor’s revenue per unit is
greater than the cost per unit.)

m p; —pe > ¢ — ¢ (For it to be worthwhile for the manufacturer to
offer the item to the vendor on a consignment basis, the manufac-
turer’s gross profit per unit from consignment should be greater
than the gross profit from outright sale to the vendor. This also
states that the vendor’s gross profit per unit from outright pur-
chase is greater than if it obtains the item on consignment.)

Note that we will not require pg > cz. That is, for items obtained on
consignment, the vendor’s revenue per unit may be less than the cost
per unit. While such a situation would rarely arise, it is conceivably
possible that it may be worthwhile for the vendor to obtain goods on
consignment even if they would be sold at a loss in order to avoid the
potential of incurring extremely high goodwill costs.

Operationally, because a vendor earns a larger gross profit on the units
it obtains through outright purchase than on consignment, we assume
that the vendor will first sell the units it purchases outright and will only
sell those it obtains on consignment after all purchased units have been
sold. The basis for our analysis is to investigate the Karush-Kuhn-Tucker
(KKT) conditions in order to determine optimal strategies. Based on
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the above notation, we have:

EV(Q1,Q2) =
o) Q1+Q2
/ [pr1z + s(@Q1 — z)| f(z)dz + / [(p1 — p2)@1 + poz]f(z)dx
0 (o5
[ 9@+ 7 - gl - @ - Qu))f (@)
Q1+Q2
—c1Q1 — c2Q2 (6.1)
and
Q1
EM(@1,Q) = [ sQuf(@)io
0
Q1+Q2
+ [ le-m)e=- @) + 5@+ Q- D) f(a)de
(931
+ [ - p)Quf@do + (e~ m)Qs + (2 —m)@a. (62)
Q1+Q2

The first term in equation (6.2) arises due to the fact that any items

ordered by the vendor on consignment and unsold are returned to the

manufacturer who will then dispose of them for their salvage value.
The problem faced by the vendor is therefore:

Maximize EV(Q1,Q2) (P1)
s.t. ~@Q1 <0
—-Q2 <0.
The partial derivatives of EV{(Q;, Q2) are as follows:
OEV(Q1,Q2) _
Q1

F(Qi)(s—p1+p2) —F(Qi+Q2)(p2+9)—c1 +m+g (6.3)

and

aEV({gg: Q?) — [1 _ ‘F(Ql + Qg)}(pz + g) . (64)
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The following KKT conditions (see Hillier and Lieberman [2001]) are
therefore required for optimality:

(1) 1Q7 =0

(2) 2Q5=0

(3) FQ)(s—p1+p2) — F(Q}+Q3)(p2+9)—c1+p+g9=-1
(4) 1-FQ+Q)p2t+9) —c2=-Y2

(5) Y1 >0,Y2>0,Q; > 0,Q3 >0

where Y; and Y5 are the Lagrange multipliers (dual variables) for this
problem.
We also see that:

FTEV@1Q) . 1(0,)(s — p1 +p2) — (@1 + Q2)lp2 +9)(65)

00}
%‘;(—g;% —f(@1 + Q2)(p2 + 9) (6.6)
2
and
w —f(Q1 + Q2)(p2 + g)- (6.7)

0Q10Q2

By looking at the second-order partial derivatives for EV(Q1,Q2) we
note that if p; — po — s > 0, then EV(Q, Q2) is concave.

Our interest lies in determining the structure of the optimal strategy
for the vendor. This gives rise to the following three theorems.

Theorem 6.1 It is impossible for Q7 =0 and Q5 >0

Proof: If )5 > 0 then from KKT condition (2) ¥> = 0. Hence, from
KKT condition (4) we have:

F(QT+Q3) = (p2+9—c2)/(p2 + 9)- (6.8)
Substituting equation (6.8) into KKT condition (3) gives:
FQ1)(s~p1+p2) +(p1 —p2 —c1 + ¢2) = =Ya. (6.9)

But if Q] = 0, then F(Q]) = 0 and it would be impossible for equation
(6.9) to be satisfied.

Theorem 6.1 states that it would never pay for the vendor to obtain
the item from the manufacturer only on a consignment basis.
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Theorem 6.2 pr2+g >p1+g—s
Co c — 8
and Q5 = 0.

Proof: Suppose Q7 > 0. Then from KKT condition (1) we have Y1 = 0.
If we also assume that (5 = 0, from KKT condition (4) we have:

prtg—cat+Ys

, then it is impossible for Q7 > 0

FQ) = ——-—=< 6.10
@ o (6.10)
while from KKT condition (3) we have:
* Pi + g—cC
F = = J - 6.11
@) = 57— (6.11)
. - Fg—co+ Y, +g-—c
But, if ﬁz+9>101+9 s,thCTl P2+ g—cCat 22102 g (z>
&) =-S5 P2ty P2ty
mtg—c
pr+g-—s’

Since we know from Theorem 6.1 that obtaining the good only on
consignment cannot be optimal, Theorem 6.2 gives conditions under
which it is optimal to both purchase the item outright and obtain it by
consignment. In essence, what Theorem 6.2 states is that if the ratio
of revenue to cost for goods obtained on consignment is high enough, it
will never be optimal for the vendor to only purchase the good. Such
a condition will occur if the salvage value is low and the goodwill cost
is high®. In such cases the optimal amount for the vendor to purchase
and to obtain on consignment can be determined by recognizing that ¥;
= Y5 = 0 and solving for KKT conditions (3) and (4). This gives the
following relationships for (J7 and Q5.

* * p2t+g—c \
FQI+Q3) = ﬁ (6.12)
and

* p1—p2tc—C o

F(Q1) = (6.13)
Pr—p2— 39
Theorem 6.3 If s > ¢; — ¢, then F(Q7) = mtg—a g Q35 =0.
p1+g—3s

Proof: We show in this case that it is impossible for both 7 > 0 and
(25 > 0. In particular, if 7 > 0 and @5 > 0, then KKT conditions (1)

p'z+9> pt+g—s
c2 cg—§

’This observation can be seen by rewriting as pgey —pice +gley —ez) >

(p2 + 9 —c2)s.
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and (2) imply that ¥ = ¥, = 0. Hence, equations (6.12) and (6.13)
must be satisfied. But if s > ¢; — ¢o then from equation (6.13) we would
have F(Q7) > 1, which would be impossible. Also, we know from The-
orem 6.1 that it is impossible for @7 = 0 and @3 > 0. Hence, @7 > 0
and Q5 = 0. The result follows from KKT condition (3).

Theorem 6.3 states that if the salvage value per unit is greater than
¢1—cg, then the vendor would obtain all items through outright purchase.
The purchase amount would be identical to the amount the vendor would
purchase if there were no consignment option.

Given this as a background we now turn our attention to how the
manufacturer can set the values of pp and ¢y to achieve channel coordi-
nation. This is examined in the next section.

3. Using Revenue Sharing to Achieve Channel
Coordination

The idea of channel coordination is that a manufacturer, through its
pricing strategy, will ensure that an independent vendor will order the
same amount as if the manufacturer controlled the vendor. In such cases
the total expected profit for the channel is maximized.

Channel coordination is desirable to a manufacturer since if total
channel profits are maximized while the vendor’s expected profit re-
mains constant, the manufacturer’s expected profit will be maximized.
Of course, one difficulty that can occur with channel coordination is
that the vendor’s expected profit may increase to such an extent that
the manufacturer receives a lower expected profit. In such cases, how-
ever, channel coordination can still be desirable to the manufacturer if
the manufacturer can obtain a side payment from the vendor equal to a
substantial enough portion of the vendor’s expected gain.

We will again assume that the vendor has no restrictions on the fund-
ing available for obtaining the goods. We make this assumption because
a manufacturer would generally not know if a vendor has any limita-
tions on funding and if such limitations existed they would be vendor
specific by their nature. Also, if the vendor has limitations on funding,
channel coordination may be impossible to achieve. Even if coordination
could be achieved, it is doubtful in such cases whether a manufacturer
could develop a pricing plan for multiple vendors that would meet the
guidelines of the Robinson-Patman act’.

*The Robinson-Patman Act is United States federal legislation that prohibits a manufacturer
from engaging in price discrimination among its customers.
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We will also assume that the vendor’s purchase price and sales price
under outright purchase does not change as a result of the manufacturer
offering the good through revenue sharing. Instead, channel coordination
will be achieved by the manufacturer selecting appropriate values for py
and ¢ under a revenue sharing plan. We make this assumption since the
manufacturer may have multiple means of distribution, not all of which
would be subject to a possible revenue sharing scheme. For example, a
video tape manufacturer would sell video tapes not only to video tape
rental chains interested in participating in revenue sharing, but also to
discount stores, e-commerce retailers, and independent video tape rental
stores not wanting to engage in revenue sharing. Our objective is to
evaluate the impact that revenue sharing will have on the total channel
expected profit as well as the expected profits for both the manufacturer
and the vendor.

Let us first focus on the conditions on ¢z and p> that will be necessary
in order to achieve channel coordination. These are given in the following
theorem.

Theorem 6.4 If the manufacturer wishes to achieve channel coordina-
tion then it will be necessary to set ¢y = Mﬂﬂ
pLt+g—s

Proof: Clearly, if the manufacturer wishes to achieve channel coordi-
nation, it must set the price for the goods obtained on consignment at
an attractive enough level so that Q5 > 0. We know from Theorem 6.1
that it is impossible for (7 = 0 and @5 > 0 and from Theorem 6.3 that
if s > ¢; — cp then @3 = 0. Hence, ¢y must be set such that ¢; —cp > s
and we will focus on the case where )7 > 0 and Q3 > 0.

If the channel is coordinated, from the results of the standard newsboy
model it must be true that Q] and Q% satisfy the following relationship:

prLt+g—m

F(QT + Q3% 6.14
@+@) = BoiT (6.14)
Also, we know from KKT condition (4) that:
—~ * * P2 + g—c2 .
F n = 2t - 6.15
@+e) = B (6.15)

Equating the two expressions for F(Q7 + @Q3) results in the relationship
for ¢o.

Corollary 6.5 It is necessary to setcy < (m — 8) in order to achieve
channel coordination.

Proof: Equating (6.14) and (6.15) gives:
(m—s)(p2t+g9)=c2(pr+g—s) (6.16)
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The result follows since p; — pz > ¢} — ¢2 > s and therefore p; — s > pa.

The implication of Theorem 6.4 and Corollary 6.5 is that for the manu-
facturer to achieve channel coordination, it would have to offer consigned
goods to the vendor at a cost that is less than the manufacturer’s pro-
duction cost minus the good’s salvage value.

Let us assume that the manufacturer selects values of and ¢9 and p2
that satisfy the conditions for achieving channel coordination. In such
situations we wish to analyze the effect that achieving channel coordi-
nation will have on the vendor’s and manufacturer’s expected profit.

It should be clear that under channel coordination, the vendor’s ex-
pected profit will never decline relative to that without channel coor-
dination. This is because the vendor could always adopt a strategy in
which @2 = 0. Hence, while under channel coordination the total ex-
pected profit for the manufacturer and vendor increases over the case
where the good is not offered on consignment, if the manufacturer does
not receive a side payment from the vendor its expected profit might
actually decrease. The next theorem gives formulas for the vendor’s and
manufacturer’s expected profit under channel coordination. These for-
mulas can then be used to determine the effect that channel coordination
has on the expected profit of the vendor and manufacturer.

Theorem 6.6 If the manufacturer sets c; and pz to achieve channel
coordination, then:

w1

EV@i.Q) = [ (- oaf)de
0

QT+Q3 oo
+ / poxf(z)dx — / gz f(z)dz (6.17)

and
QI+Q;3
EM@Q) = [ (i-m- sl (6.18)
o}
Proof:

EV(Q1,Q3) =
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Q3 QI+Q3
/ o +5(@Qi -2 @do+ [ (b1~ p2)Q + poal f(a)ds
0 Q;
+ [ i@+ 2 - glo - Q1 - Qi) - Q] - cas
QT+Q5
— Qi(s -1+ p)F@Q) — (2 + 9)(Q5 + QF(Q} +Q3)
Q3 QI+Q3 o
+ / (b1 — )z (2)dz + / pazf (z)dz — [ gz (z)dx
0 Q3 Q1+Q3
+ p1Q} + 2@} + 9(Q} + Q) — 1] — 2}, (6.19)

P1L—pP2—Ci+C " P2tg—c
and F(Q] + Q5) = ———
pr—p2—s @i+ Q) ="
into equation (6.19) gives the resulting formula for EV(Q7, Q3).
To show the result for EM(Q7, @3), we note that:

Substituting F(Q7) =

M(Q;Q5) =
Qi+Q3

SQIF(Q)) + [ (p1 — P2 — )2 ()dz
(o]}

—(p1 —p2 — 8)QI[F(Q] + Q3) — F(Q7)]
+ sQ3[F(Q1 + Q3) — F(QD)] + (p1 — p2)@3[1 = F(Q] + @3)]

+ (e —m)QT + (62 - m)Q;. (6.20)
Substituting F(Q7) = _ P et into equation (6.20) gives the
br—p2—38
following:
Qi+@Q3
M@LQ) = [ (i-pe-oaf(@do
Q

— (P +9— ) Q)+ Q3)F(Q] + Q3)
+ (p2 + 9)(Q1 + Q3)F(Q] + Q3)
+ (p1 — p2 + c2 — m)(Q] + Q3). (6.21)

2l p2+g-—
Substituting F(Q} + PLT 9T ond F(QE + =_Z =
g F(QI+@3) = P (Q1+Q3) = ey

into equation (6.21) results in the formula for EM(Q7,Q%).
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To illustrate the consequences of Theorems 6.4 and 6.6, let us consider
the case of a uniform demand distribution, f(z) = 1/(B—A)for A<z <
B, 0 elsewhere, and examine the effect that the manufacturer’s choice
of p, has on its expected profit. We select the uniform distribution
for demand since it will enable us to generate closed-form expressions
for 7, @5, and the resulting expected profits for the vendor and the
manufacturer.

For a uniform demand distribution the formulas for EM(Q7, Q3) and

EV(Q7,Q3) are as follows:

EV(Q1,Q3) =
[(p1 — p2 — &1 + ¢2)? L2ty c2)? ] (B-4)
L PL—p2— 8 p2+g
+ A(p1 —c) (6.22)
EM(Q1,Q3) =
[(p1+g—m)(c1 —m) (e1 —m)?
L p+g—s 2(101—102—3)} W —4)
+ Ay ~m). (6.23)

(See the appendix for the proof of these two expressions.)

We therefore see from equation (6.23) that the manufacturer’s ex-
pected profit is monotonically decreasing in ps and the manufacturer’s
optimal strategy would be to set pa as low as possible. Unfortunately,
if pg is restricted to being nonnegative, it may not be possible for the
manufacturer to set po low enough to ensure that its expected profit
will increase over the case in which revenue sharing is not offered. The
conditions required for the manufacturer’s profit to not decline under
channel coordination are given in the next theorem.

Theorem 6.7 If demand follows a uniform distribution and the man-
ufacturer wishes to set comsignment pricing to achieve channel coordi-
nation, the manufacturer will need to set ¢y to be less than or equal to
(m — $)/2 in order for its expected profits to not decline.

Proof: Without channel coordination, the manufacturer’s expected
profit will be:

EM(Q1) = (%) (et —m)(B—A)+ A1 —m) (6.24)

Comparing equation (6.24) with equation (6.23) gives the desired result.
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Corollary 6.8 If demand follows a uniform distribution and the man-
ufacturer sets consignment pricing to achieve channel coordination so
that its expected profits do not decline, a necessary condition for pa > 0

is that py 2 g + s.

Proof: The result follows from Theorems 6.4 and 6.7.

Examples

To illustrate these concepts, let us consider the following two exam-
ples. In the first example we deal with a case in which p; < g+ s. In
particular, suppose:

p1 = $100,¢; = $40,s = $10, ¢ = $100,m = $20, and f(z) = U(0,95).

If the vendor does not have the option of obtaining items through con-
signment, we know from the newsboy problem solution that the vendor’s
optimal purchase quantity would be @] = 80. In this case the vendor
would earn an expected profit of:

80

EV(80) = /[100m +10(80 — x)]glgdx
0
95
+ / 100 * 80 — 100(z — 80)]—915913: —40-80
80
= $1,650

and from equation (6.24) we have that the manufacturer would earn a
profit of 80 ¢ ($40 — $20) = $1,600. Total channel expected profit in this
case would therefore be $3,250.

Under channel coordination, the optimal order quantity would satisfy

the relationship: F(Q") = &%:E, which for this example, results
PrTg—s$§

in a value of @* = 90. The total channel expected profit in this case
would be:
80

/ (1002 + 10(90 — z)]
]

1
95d$

EP(90)

95
1
+ / (100 - 90 — 100(z ~ 90)] 5=d — 20 - 90
90

= $3,350.
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Thus, by coordinating the channel, total channel expected profits would
increase by $100 or 3.1%.

Now, let us assume that the manufacturer offers the good on consign-
ment to the vendor at a cost of $8, e.g. co = 8. We know from Theorem
6.4 that ps should be set to satisfy the relationship:

ca(pr+9 - )
pp= ——
m—3=8

— g.Hence, pp should be set equal to 52.

In this case, we can use equations (6.12) and (6.13) to determine the
values of @7 and Q3. Solving the relationships:

F(Q7 + Q%) = 0.94737 and F(Q}) = 0.42105
gives Q7 = 40and Q3 = 50.

For these values the vendor’s expected profit would be:
EV(40,50) =
B {(100 —52—~40+8)% (52 + 100 — 8)? 100J (95 - 0)

100 — 52 — 10 52 + 100 2
= $2,050

and the manufacturer’s expected profit would be:

EM(40,50) =
[(100 +100 — 20)(40 —20) (40 — 20)? } (95 -0)
(100 + 100 — 10) 2(100 — 52 — 10)
= $1,300.

Thus, we see that even though channel coordination is achieved, this is
at the expense of the manufacturer seeing a $300 decline in expected
profit.

In fact, for this example, unless the manufacturer selects a value of
co less than or equal to $5, the manufacturer’s expected profit would
be less than if it did not offer the goods on consignment. If, however,
co < $5, then ps < —85. Since a manufacturer would have great dif-
ficulty convincing a vendor to take goods on consignment if py < 0,
revenue sharing in this case would result in a lower expected profit to
the manufacturer. As mentioned earlier, one possible way around this
dilemma would be for the manufacturer to require the vendor to make
a side payment to the manufacturer. This side payment would have to
be equal to a large enough portion of the vendor’s expected increase in
profit so that both the vendor and manufacturer show some gain from
revenue sharing. While such an approach has appeal, the manufacturer
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may also face difficulty in convincing the vendor to make such a side

payment.
Now let us consider a case in which p; > g+s. In particular, suppose:

1 = $100,¢; = $40, s = $10, g = $50,m = $20, and f(z) = U(0, 98).

In this case, without revenue sharing the vendor’s optimal order quantity
would be @7 = 77, the vendor’s expected profit would be $1,785, and
the resulting profit to the manufacturer would be $1,540. If the channel
were coordinated, the total channel expected profit would be $3,465,
representing a potential increase of $140 or 4.2%. If the manufacturer
sets ¢y = $4, for example, then py would need to be set at $6 in order
to achieve channel coordination. Using these values, the manufacturer’s
expected profit would increase to $1586.67 and the vendor’s expected
profit would increase to $1,878.33. Here we see that since p; > g + s,
channel coordination can be achieved in a manner that increases both
the vendor’s and the manufacturer’s expected profits.

4. Conclusion

As we have shown, revenue sharing is an intriguing method for a man-
ufacturer to achieve channel coordination. Unfortunately, if the manu-
facturer wishes to maintain the current pricing structure for the good
while allowing for revenue sharing, it is possible that without a side pay-
ment from the vendor the manufacturer’s expected profit would actually
decrease.

There are several avenues for further research in this area. In par-
ticular, one could investigate the situation in which the manufacturer
is free to change both ¢; and ¢y and the vendor is free to set p;. Such
an analysis would require an estimation of the demand curve. Another
possible avenue for further research is to extend the results of Section 3
to distributions other than the uniform. A third possible extension of
the model is to a multi-vendor environment and to determine the pricing
policy that maximizes the total channel profit in such situations.

Appendix

Proof of Equation (6.22): From Equation (6.17) we have for a uniform distribution
that:

. (1 — 8)z° Q] (p2a® Qi+Q; gz? B
EV(Q1,Q3) = + - (6.A.1)
12 2(B-4) , " 2B-4) (B=4) 4:10;
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From Equation (6.13) we have that

Q = (B-4A) RIRre-a L, (6.A.2)
Pr—pz2—3
while from Equation (6.15) we have that
* * P2 + g—c2
= (B—-A) ——— A 6.A.3
Q1+ Q2 ( ) P + ( )

Substituting (6.A.2) and (6.A.3) into (6.A.1) and simplifying gives

N— (pr—p2—a1 +C2)2 (p2 + 9~ 52]2 (B-4)
EV(Q1,Q3) = T - +A(p1—¢).
(Q1,Q3) PL—pa—3 P2 +9 B (p1—¢)

(6.A.4)

Proof of Equation (6.23): From Equation (6.18) we have for a uniform distribution
that
: * - _ (;Ul = 0% — slwz Qi+es ] 3
EM(Q1,Q2) = RECET (6.A.5)

or

pM@iQp = Lon o JEdir Qi (6.A.6)

From Equation (6.14) we have

- - n +9_m
=(B-a) BEI"™ L 4 6.A.
Q+@i=(B-4) BZII 4 (6.A7)
Define Qf = a(B—A)+Awhere o= B P21 2~ 0y 02103 = (B-A)+ 4,

5. PL—p2—38
P2+ g —C

where 3 = 2 Then from (6.A.6) we have:
pa+tg

(6.A.8)

EM(@Q3,@5) = ( —p2 = s)(f-) A+ QFOEZA)

But, from the definition of & and 3 we have:

(m+g-m) (m—p2tec2—ci)

= — 5 — ¥ = —p2—8
(p1—p2—s)(B—a) (1 —p2—8) T P —p2—39)
(P +g—s+s—m)(p-ps-s)
= —prt+pz—c2ta
(pr+g-s)
_ (3—m)(p1+9—5—P2_ﬂ)+C]_(:2_5
(pr +9g—s)
= _(7”'“ 5){;}3 -i-g)+cl—{,’2—?n
P+g—s5

= ¢ —m. (6.A.9)
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The last substitution in (6.A.9) follows from Equation (6.16). From (6.A.9) we have
that

&%:j[(ﬁ—“)(ﬁﬁ-a)] M

Il

2
- _m)(‘;_ B+26)  (s.a.10)
But from (6.A.9) we have that (a — 3) = —p(clpi)q. Hence, from (6.A.9) and
1 — M2 —

(6.A.10) we have

B (1 —m)? +2{c1—m)(p1+g—m] B-A

Aley — .
- Tt g8 3 + A(e; —m)

(6.A.11)

EM(Q1,Qz) =
Rearrangingthe terms in (6.A.11) gives Equation (6.23)
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Abstract

Consider a manufacturer or wholesaler who supplies some item to re-
tailers facing demand rates which depend on the shelf or display space
devoted to that product by themselves and their competitors. The man-
ufacturer, via the use of financial levers at her disposal, wishes to co-
ordinate this decentralized chain while making a profit. With a single
retailer, we show that the manufacturer can achieve this goal by using
a two-parameter contract: a wholesale price and an inventory holding
costs subsidy offered to the retailer. When multiple retailers compete
in that product’s market, there are two ways to envision and model the
demand and market split. One assumes that market demand depends
on aggregate inventory displayed, and then splits according to individ-
ual display levels. The other “assigns” customers to retailers according
to their display levels, and then assumes that purchases are a function
of the display level at the retailer selected. We characterize retailers’
Nash equilibria in these models, and explore whether the manufacturer
can coordinate such channels. Information requirements for channel co-
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ordination and profit allocation are discussed throughout the analysis.

1. Introduction

Advertising, promotions, extended business hours, improved service
and product variety are well known means for attracting more demand
(e.g., Eliashberg and Lilien 1993 and references therein). Retailers can
often affect sales volume of a product or a product family by increasing
the shelf space allocated to it. It is recognized by marketing/consumer
behavior researchers and practitioners that, with certain types of items,
the quantity displayed can have a motivational effect on demand and
sales (Schary and Becker 1972, Kollat and Willet 1969, Krugman 1965
and Corstjens and Doyle 1981). At least two types of stimuli effects of
inventory on demand have been identified. The first and more obvious
one is referred to as the “selective effect”, where more items in inventory
provide customers with more to choose from and thus induce them to
purchase or purchase more. This will happen where the units of an item
(e.g., fresh fruits, vegetables, etc.) are not identical, and a customer
may like the feeling of a wide “selection”. For certain baked goods (e.g.,
doughnuts), low stocks may raise customers’ perception that the units
are “left-overs” and not fresh (Pasternack 1990 refers to this phenomenon
as “balking”).

The second type of stimulus of inventory is the “advertising effect”. A
large displayed quantity often gives consumers the impression that the
item is popular in the market, which may signal good “value” (low price,
high quality, etc.) and hence induce more consumers to buy it and each
to buy more. Thus, displayed inventory acts as a way of advertisement.

For these reasons, manufacturers often like their products to be widely
displayed, and retailers want their shelf space fully utilized/filled. Since
increased shelf space or displays often require the retailer to keep higher
inventories, choosing an item’s shelf space is part of choosing its in-
ventory level. Thus, some operations management researchers have in-
corporated inventory-level-dependence of demand into various inventory
control models (Johnson 1968, Iglehart and Jaquette 1969, Baker and
Urban 1988). Wang (1992, Chapter 5) and Parlar et al. (1994) consid-
ered general EOQ models (possibly with random yield) with inventory-
level-dependent demand rates. Gerchak and Wang (1994) analyzed a
periodic-review model where the demand per period is the product of a
random variable and a function that increases in the period’s inventory
level. This literature dealt exclusively with a single decision-maker (the
retailer).
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Since a manufacturer’s or wholesaler’s decisions (e.g., on wholesale
prices) affect their retailers’ inventory policies, it seems important to
take into account the dependence of demand on the displayed inventory
level, and to address issues related to supply chain coordination in such
environments. So far, however, most of the coordination literature (e.g.,
Jeuland and Shugan 1983, Eliashberg and Steinberg 1993, Tayur et al.
1999) has viewed demand, whether deterministic or stochastic, as ex-
ogenous and unaffected by the chain’s activities (other than the retail
price). The model by Tsay and Agrawal (1998; see also their references)
does include demand dependence on service as well as price (in a com-
petitive setting), which is related to our “exposure” concept, but their
linear demand function is quite different from our market split mod-
els. It is our goal to analyze a decentralized manufacturer-retailer(s)
supply chain, which, though physically greatly simplified, recognizes the
positive dependence of demand on the quantity displayed.

The specific supply chain we try to model can be envisioned as a mar-
ketplace of multiple vendors/retailers who are located in close proximity,
perhaps within the same open area or the same building. These types of
marketplaces are widespread and best exemplified by fresh food (fruits,
vegetables, fish, meats, etc.) vendors who can easily be found in any
Chinatown district, Italian market or farmers’ market. These vendors’
operations can be characterized by the following common features. Ven-
dors in the market often stock/sell the same product(s) (e.g., apples, let-
tuce, etc.), which are often purchased from the same grower/distributor.
Second, since shelf space is very costly/limited, a vendor replenishes
her shelf essentially as soon as a customer withdraws inventory from
the shelf. (Since the shelf space is often very limited, say, a few dozen
square feet, “reviewing” the stock level continuously and reacting to
changes immediately is very easy.) Third, customers can readily observe
the displayed inventory of all the vendors in the marketplace, since stalls
are very close to, or even attached to, each other. Also, customers often
like to walk through the market before selecting which vendor to buy
from.

We first analyze a stylized model by assuming that a supplier (“manu-
facturer” ) supplies some product to a single retailer. The retailer decides
to allocate some shelf space to display S units of a product. Once al-
located, the shelf is replenished via the (S — 1,S5) policy with zero lead
time, so the displayed inventory will be kept at level S all the time. That
mimics store replenishment situations when replenishments are very fre-
quent. The demand rate depends on S via a general increasing concave
function. The item’s retail price is assumed to be fixed due to com-
petition, and the inventory holding (shelf space) cost rate is constant
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(linear). With a fixed wholesale price charged by the manufacturer,
the displayed amount that maximizes the retailer’s long-term average
profit can be uniquely determined from her demand function and cost
parameters.

The manufacturer’s decisions in a decentralized setting pertain to the
financial arrangement with the retailer. The key variable is, of course,
the wholesale price charged. If the manufacturer chooses to coordinate
the chain using only the wholesale price — a price-only contract — its
profit will be zero, since the only such contract which coordinates the
channel is for the wholesale price to be equal to the manufacturer’s
marginal production cost. (We follow the literature in assuming that the
manufacturer cannot appropriate all the rents by charging the retailer a
fixed fee.) If the manufacturer maximizes its profit, the displayed level
(and sales) by the retailer will be lower than the system-optimal level,
and thus the total-profit pie smaller, due to the well-known “double
marginalization” phenomenon (Spengler 1950). We provide an example
of a situation where the manufacturer needs no information about the
retailer’s holding cost to set up the optimal wholesale-price, and another
example where he does need this information.

To coordinate the channel as well as to make a profit, the manu-
facturer needs an additional financial lever. We suggest a holding cost
subsidy offered to the retailer, which will cause the retailer to stock
more. With the two levers — the price-plus-inventory-subsidy contract,
the manufacturer can achieve not only channel coordination, but also
any desired allocation of the channel profit between himself and the re-
tailer. We show that as far as channel coordination is concerned, the
manufacturer does not need to know the inventory-level-dependent de-
mand function to offer such a contract. But, for the purpose of channel
profit allocation, the manufacturer may need the demand information,
depending on whether a percentage or a dollar-amount type of alloca-
tion is to be achieved. We also generalize the scenario to non-linear
(convex) inventory holding costs and show that a price-plus-inventory-
subsidy contract can still coordinate the supply chain. On the other
hand, compared with the linear cost case, the design of a coordinating
contract will require the manufacturer to possess information about the
retailer’s demand function.

We then extend our analysis to two retailers who share, and compete
in, the same market of the supply chain. Displayed inventory by a
retailer now has two functions: to motivate customer demand, and to
gain more market share. We propose two ways to model the customer
demand and retailers’ competition processes. The first model envisions
a situation where a customer selects her demand quantity based on the
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aggregate inventory of both retailers and then chooses from which retailer
to buy based on their relative inventory levels. This aggregate-inventory
dependent demand function is motivated by the “advertising effect” of
inventory on demand as discussed earlier. The basic assumption is that
a customer selects her consumption based mainly on her perception of
the item’s “popularity”, and the total displayed inventory she sees in
the market is the major determinant of her perception. As described
earlier, a customer can indeed observe the total inventory of the “whole
market” (i.e., of all retailers) in the type of marketplace we intend to
model.

In the second model, a customer will first choose the retailer based
on the relative amounts of inventories displayed by both retailers and
then decide on the purchase quantity based on individual inventory level
at the chosen retailer. This demand function form applies to situations
where the “selective effect” of inventory is the predominant factor de-
termining a customer’s consumption quantity. The individual inventory
of the retailer chosen by the customer will limit/provide the “pool” of
units from which she can select the ones she likes, assuming that the
transaction cost for her to buy the same item from both retailers will be
too high. Of course, any real-world situation or a customer’s decision
process will be much more complex than any of these two stylised models
can capture.

How does a customer choose from which retailer to buy? We assume
for both models that the split of customers between the two retailers
is proportional to their relative inventory. The rationale here is that a
customer would prefer to buy from a bigger pool of inventory, which is
supported by the “selective effect” of inventory. Since displayed inven-
tory acts as means of marketing/advertising efforts, this proportional
market split form is also consistent with the general market share mod-
els where the determinants correspond to advertising (Moorthy 1993,
Section 5.1) and to any general marketing efforts (Cooper 1993, p. 262;
Monahan 1987). In fact, Kotler (1984, p. 231) refers to such mar-
ket split as the “Fundamental Theorem of Market Share”. In contrast,
Deneckere and Peck (1995), Dana and Spier (2000) and Dana (2000)
envision a situation where the total (random) demand is not influenced
by a firm’s inventories (capacities), but where customers select firms so
as to maximize their chances of obtaining the product.

Concrete insights into duopoly equilibrium and supply chain coordi-
nation are then obtained by assuming that each customer’s demand is
a concave power function of the displayed inventory. Specifically, for
the first model of competition (where demand is a function of aggre-
gate inventory), we show that there exists a unique Nash equilibrium
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of displayed inventories for any given contract offered by the upstream
manufacturer. As expected, two competing retailers always display more
inventory in total than a monopolist retailer for a given manufacturer’s
contract, and thus competition would generate inefficiency at the down-
stream of the supply chain. Surprisingly, however, the manufacturer, by
using the price-plus-inventory-subsidy contract, can still achieve chan-
nel coordination for this competitive supply chain! On the other hand,
compared with the single retailer chain, coordination here will require
the manufacturer to know and use the demand-function information.

It turns out that the second model of competitive retailers (where
demand is a function of individual inventory) is much more complex
to analyze. We characterize one symmetric equilibrium solution of the
problem. One key insight we obtain here is that, with demand function
of individual inventory, the manufacturer cannot coordinate a compet-
itive supply chain. As we show, for the first model, the “efficiency” of
the supply chain depends only on the aggregate (total) displayed inven-
tory (but not on the allocation of inventory between the two retailers),
which the manufacturer can control through contract parameters. For
the second model, however, supply chain efficiency depends not only on
the aggregate inventory but also on the inventory allocation between the
two retailers. Inventory allocation is determined through a competition
mechanism, over which the manufacturer has no control. Specifically, for
the second model we show that splitting inventory among two retailers
would cause waste/inefficiency. Thus, any attempt (or contract type) to
coordinate the channel will require the contingency of closing down one
of the retailers.

Although our models have been motivated by the concrete settings
of fresh-food/farmers-markets, the model assumptions can be relevant
to many other, if not all, retailing industries, like automobile dealer-
ships and supermarkets. As mentioned earlier, the motivational effects
of displayed inventory on demand/sales are widely recognized by practi-
tioners and discussed by marketing and consumer-behavior researchers.
Balakrishnan et al. (2000) report on stores which display huge invento-
ries (sufficient to meet many years of demand) of items like blank video-
tapes, clearly aiming at stimulating demand. Thus, our model analyses
and managerial insights generated can well be relevant to the retailing
industry in general. It is also interesting to observe that the booming
Internet is a marketplace where all retailers are located virtually in the
same ‘“‘place”, and many of the Internet retailers also provide information
on stock levels. These features actually fit well into out model settings.

Finally, we note that our work is not the first to suggest inventory-
holding subsidies to downstream retailers in decentralized supply chains.
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Anupindi and Bassok (1999) use such an incentive mechanism to design
decentralized distribution systems and to identify conditions that will
benefit the different parties involved. Moses and Seshadri (1996) propose
extended credit-terms, which act like holding cost subsidies. However,
none of these studies addresses issues related to channel coordination.

The rest of this paper is organized as follows. In Section 2, we present
our model and analysis for a manufacturer-single-retailer supply chain,
centralized and decentralized. Sections 3 and 4 study the manufacturer-
competitive-retailers models with demand being a function of aggregate
and individual inventory, respectively. We then make some concluding
remarks in Section 5. For the convenience of readers, all mathematical
proofs are relegated to an Appendix.

2. A Manufacturer and Single Retailer Supply
Chain

2.1 The Model and Centralized Control

A single product is produced by a manufacturer and then sold to con-
sumers through (for now) a single retailer. The marginal production
cost and retail price are constant at ¢ $/unit and p $/unit respectively,
where p > ¢. The demand rate for the item will depend on the amount
of inventory displayed at the retailer’s shelf. Specifically, a constant
inventory level of I units generates a demand of D(I) units/year. In
general, D(I) can be assumed to be an increasing and concave function
(i.e., D'(I) > 0 and D(I) < 0) to reflect the motivational effect of inven-
tory on demand and the “diminishing returns”. For technical purposes,
we also assume that D(I) is continuous and twice differentiable with
D'(0) — oo, D'(¢) — 0 and D(I) > 0O for any I > 0. Displaying in-
ventory at the retailer is costly. Assume that a constant inventory cost
of h $/unit/year is charged. So the key decision here is to choose the
displayed inventory level I to trade-off increased sales against inventory
costs. Note that, once I is chosen, the system is assumed to keep the
inventory at level [ all the time by continuously replenishing it.

Now, if this supply chain is centrally owned and controlled, the objec-
tive is to maximize the long-run average channel profit (i.e., the profit
rate):

flf}%a: °(I) = (p— ¢)D(I) — kI, (7.1)
where the first term is the sales revenue net of production cost and the

second term is the inventory holding cost. One can easily verify that
TI¢(1) is concave and thus the unique solution /¢ is given by the first
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order condition:
D'I¢)=h/(p—c) ie, I°=D"Yh/(p--c)). (7.2)

We next consider a decentralized system where the manufacturer,
through contractual arrangements, wholesales the product to the retailer
who then chooses its displayed inventory level and, hence, the demand
rate. We consider two specific contractual arrangements: a price-only
contract, in which the manufacturer selects only the wholesale price, and
a price-plus-inventory-subsidy contract where a wholesale price plus an
inventory cost subsidy are offered by the manufacturer.

2.2 Price-Only Contract

Here, the manufacturer offers the retailer a take-it-or-leave-it contract
which specifies only a wholesale price, say, w $/unit. If the retailer takes
the contract, she then selects a (permanent) displayed inventory level /
which determines the sales rate D(I). For simplicity, assume that both
the manufacturer and the retailer have an opportunity cost of zero. So,
as long as w is chosen such that ¢ < w < p, it will be a viable contract
for both parties. In determining the inventory level, the retailer wishes
to maximize her own profit (rate):

MagTI"(I) = (p - w)D(I) = hI. (7.3)

The unique optimal inventory level I" for the retailer is thus given by
D(I") = h/(p—w) ie, I'=D"h/p-w).  (74)

Since D'(]) is a decreasing function, by simply comparing (7.4) with
(7.2), we see that, as long as the manufacturer charges a wholesale price
w above his marginal cost ¢, the inventory level I" in a price-only con-
tractual arrangement will always be lower than the inventory level I¢
in a centralized system. This phenomenon is essentially the “double
marginalization” problem studied in the economics and industrial orga-
nization literature (Spengler 1950, Cachon 1999 and Lariviere 1999). We
assume that the manufacturer is not able to charge the retailer a fixed
fee. If that was feasible, then by setting w = ¢ the manufacturer could
coordinate the system and extract all the channel profit.

Knowing that the retailer will choose the inventory level according to
(7.4), the manufacturer chooses the wholesale price w so as to maximize
his own profit:

Maz II"(w) = (w—c)D(I"). (7.5)

cTw<p
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Example 7.1 Let D(I) = al®, 0 < b < 1. Then, D'(I) = abI®"1, so
D'~(y) = ab/yml_b). Thus,

ab 1/0-6)7°
Hﬂe(w) — (w — c)a l(m) )
= h(l—b)]bal/'(l—b)bb/(l—b)(w _ C)(p _ w)b;‘(l—b).

We observe that the optimal value of w does not depend on h. Thus,
whether or not the manufacturer has information about retailer’s holding
cost, the optimal wholesale price is not affected. Maximizing II"™(w) in
this example amounts to maximizing

(w - ) (p—w)”70 = Aw).

Now, A'(w) = (p — w)¥ (-9 (1 - ﬁ)
For ¢ < w < p, solving A'(w) =0 for w, we get the unique solution

_ptc
D)

Furthermore, A'(w) > 0 as w — ¢ and A'(w) <0 as w — p. Thus, w
is the unique maximizer of A(w) and, hence, of TI"(w).

W

Example 7.2 Let D(J) = aln(b+1), a,b > 0. Here, D'(I) = a/(b+1),
so D' (y) = a/y —b. Thus,

I™(w) = (w—c)aln {b 3 {W—“_wj = b] }

= a(w-—c)[lna+n(p —w) — Inh] = B(w).

w=e

We then have B'(w) = a [lna +In(p—w)—Inh — p—w] , and

" o _ 1 __p—c —!
B(w)—_a[ p— (p«-w)zj<0

The optimality condition is then

w—_c
In{p — w) —
( )

= In(a/h).

—w
So, here w does depend on h.

For the general optimization problem of (7.5), the concavity of II"(w)
is not guaranteed for all demand function forms D(:). To generate some
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further insights into the uniqueness of the solution to (7.5), we note
that there is a one-to-one correspondence between w and /™ — they are
related to each other through (7.4). So, when the manufacturer chooses
a value for w (¢ < w < p), he is equivalently choosing a value for I"
(I¢ > I" > 0). Thus, substituting w = p — h/D'(I"), the optimization
problem over w in (7.5) can be written as the following optimization
over I":

Iérg!ﬁﬁuﬂ (I")=I|p—h/D'(I") — ]D(I"). (7.6)
(A similar approach was employed by Lariviere and Porteus 1999).

Taking the derivative of II"™(I"), we have,

dH L ( Ir )
dlr

Now, the second term in (7.7) is always positive and decreasing and
the first always negative. Thus, for a given demand function D(-), if the
first term in (7.7), i.e., D"(I")D(I")/[D'(I"))? is non-increasing, then
the manufacturer’s profit function is unimodal and, hence, the solution
to (7.6) is unique. For the demand functions of Examples 7.1 and 7.2,
one can check that this condition is always satisfied.

= hD"(I")D(I")/[D'(I)}? + [p = h/D'(I") = | D'(I"). (7.7)

2.3 Price-Plus-Inventory-Subsidy Contract

Suppose now that the manufacturer offers the retailer a wholesale
price of w $/unit and an inventory holding subsidy of s $/unit/year
towards any inventory the retailer chooses to hold on shelf. The retailer’s
problem then becomes

MagII'(I) = (p = w)D(I) = (h = )1, (7.8)

and her optimal inventory level /™ is given by
D(I") = (h—s)/(p—w) ie, I' =D (h-5)/(p—w)). (79)
Comparing (7.9) with (7.2), we have the following important observation:
Proposition 7.3 For any contract (w,s) such that
(h—8)/(p—w)=h/(p—2c), i.e, s=h—-h(p—w)/(p—-c), (7.10)
we have I" = I°.

In other words, for any wholesale price w, ¢ < w < p, offered by
the manufacturer, if he accordingly chooses an inventory subsidy s =
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h — h(p —w)/(p — ¢), then the retailer will always be induced to choose
the centralized-system-optimal inventory level I, and, hence, such a
contract coordinates the decentralized supply chain. Thus, there exists
a continuum of (w, s) contracts that coordinate the supply chain.

In choosing (w, s), the manufacturer will want to maximize his own

profit. So, presumably, he solves the following problem:

nggﬁﬁzﬂ I™(w,s) = (w—¢)D(I") — s, (7.11)
where I" is determined through (7.9). The first term in (7.11) is his sales
revenue net of production cost, and the second term is her inventory
subsidy to the retailer.

Instead of solving (7.11) directly, the following argument (Pasternack
1985) illustrates how the manufacturer can find his best strategy: Focus
on the set of contracts {w,s) which satisfy (7.10) with ¢ < w < p.
We know from Proposition 7.3 that any contract within this set will
coordinate the channel and, hence, achieve the maximum channel profit.
But, as we will show next, different contracts within this set, represented
by different values of w, provide the retailer with a different amount of
profit - the rest of the maximal channel profit will go to the manufacturer.
As a consequence, the manufacturer needs simply to choose a value of
w so as to allocate any amount of profit required by the retailer (so that
she will accept the contract) and thus to extract as much profit out of
the supply chain as he can! Now, with s = h — h(p — w)/(p — ¢) and
I = I¢, after some algebra, the retailer’s profit in (7.8) can be written as

" (1°) = [D(I€) = hI¢/(p = ¢)](p — w), (7.12)

which is linearly decreasing in w.
The total channel profit II°(/¢) can be obtained simply by substituting
I = I¢into (7.1). We can show that

I (1°)/I(I€) = (p — w)/(p — ©)- (7.13)

So, the proportion of the channel profit allocated to the retailer is also
linearly decreasing in w.

To summarize, a properly designed price-plus-inventory-subsidy con-
tractual arrangement (w, s) can achieve: 1. coordination of the supply
chain channel; 2. any desired allocation of channel profit between the
manufacturer and the retailer.

Finally, we discuss the information the manufacturer will need in or-
der to coordinate this supply chain. First, we see from (7.10) that for any
given wholesale price, w, the manufacturer only needs the cost param-
eters (i.e., p, ¢ and h) to determine a corresponding inventory subsidy



148 SUPPLY CHAIN MANAGEMENT

s. Here he does not need information about the demand function D(-).
The value of w will determine the portion/amount of channel profit allo-
cated to the retailer. If he is only interested in the proportion allocated,
then equation (7.13) shows that the manufacturer still does not need the
demand information. Only if his aim is to achieve a specific allocation
of absolute profits does he need this information - equation (7.12).

2.4 Non-Linear Holding Costs

We now relax the linear holding/shelf space cost assumption by con-
sidering a general convex cost function, which is arguably more realistic
for most retailing situations where shelf space is a limited resource. We
derive the retailer’s optimal inventory decision and discuss if and how
the manufacturer can coordinate the supply chain.

Assume that, when displaying [ units on shelf, the retailer incurs total
inventory cost of H(I) $ per year, where H(I) is a general increasing and
convex function. For a given contract (w, s) offered by the manufacturer,
the retailer chooses her inventory level so as to maximize her own profit
as follows

ﬂ?}anwl_["(f): (p=w)D(I)—~ H(I)+ sl. (7.14)
We can easily check that I1"(/) is concave and, hence, the retailer’s op-
timal inventory level I” can be found by solving the first order condition
whichyields,

(p—w)D'(I") = H'(I") - s. (7.15)

When the channel is centrally controlled, the optimal inventory level
I¢ is determined by solving problem (7.14) with w = ¢ and s = 0. That
18,

(p—c)D'(I°) = H'(I°).

In a decentralized setting, a (w, s) contract offered by the manufac-
turer will coordinate the channel if and only if it induces the retailer to
choose the system-optimal inventory I°. Such channel coordinating con-

tracts can be characterized by (7.15). That is, for any given wholesale
price w, the corresponding inventory-subsidy s is determined by

s=(p—w)D'(I€) — H'(I°).
Note that the manufacturer will have to possess information about the
retailer’s demand function (as well as her holding cost function) in order
to offer a coordinating contract. In a sharp contrast, he does not need

to know the demand function when the retailer’s holding cost is linear,
as shown in (7.10).
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3. Two Competitive Retailers with Demand a
Function of Aggregate Inventory

Here a manufacturer faces two competitive retailers (R1 and R2) who
share a market with a constant selling price p. (We do not model the
creation of this price in the duopolistic market since our focus is on the
effect of stock levels on demand.) The total demand will depend on their
aggregate inventory, i.e., D(I; + I3), where I; and I are the inventory
stocking levels of R1 and R2 respectively. The two retailers compete for
this total demand based on their inventory levels. Say, R1 secures a por-
tion A(I, I;) of D(I; + I), where the fraction A([,I,) is a function of
I and 5. So, R2 has the rest,i.e., 1- A(ly, I2) of D(I1+12). A(L1, I2)is
increasing in I; and decreasing in [, capturing the shelf space-exposure
competition between the retailers. This should be contrasted with split-
ting rules of the type analyzed by Lippman and McCardle (1997, Section
2), which are independent of the retailers’ actions.

The manufacturer offers both retailers an identical price-plus-invento-
ry-subsidy contract (w, s). Then, each retailer chooses her own inventory
stocking level so as to maximize her own profit, knowing her profit also
depends on the other retailer’s action. Thus, their decisions affect each
other’s. That is,

Maa:l'[i(h,fg) = (p—UJ)A(Il,I-z)f)(II—f—IQ)

520

—(hy — 8)I1, for R1; (7.16)
f‘lrffgﬂz o(l1,12) = (p—w)[l—A(L,LL)|D(I) + L)

—(hg — s)I, for R2, (7.17)

where h, and hs are the inventory holding costs for RI and R2, respec-
tively.

Before analyzing the behavior of the two competitive retailers, we
want to comment on a scenario where the two retailers (but not the
manufacturer) are centrally controlled, so as to maximize the total profit
0, (I, Iy) + Us(Iy, I2) by choosing I; and I3 jointly. This centralized
scenario is of interest on its own right. Also, the results obtained
here will provide interesting insights into our later analysis of competi-
tive/decentralized retailers. From (7.16) and (7.17), we have that

HI(II‘ fg) + Hg(fl,fg) = [p - u.')D(fl + fg) = UH - .‘:‘)1'1 - (hg - S)Ig,

Note that I} and [5 appear here in the first term (i.e., total revenue net
of wholesale costs) in an aggregate form, i.e., I; + I, but they appear
separately in the holding cost terms. Thus, without loss of generality, if
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R1 has a lower holding cost (i.e., Ay < hg), the best centralized decision
will be to stock only at R1, and the optimal quantity will thus be the
same as when R1 alone owns the whole market. Furthermore, we have
that if the two retailers are identical (i.e., h; = ho) and are centrally
controlled, their total profit I1y(Iy, I2) + II2(1y, I3) will depend only on
their total inventory level I; + Iz (i-e., it does not matter how any given
total inventory is allocated between the retailers). The optimal total
inventory will be the same as when one of the retailers is the only one
operating on the given marketplace.

Let us now return to the competitive retailers setting. For this sup-
ply chain, we are interested in the following questions: For any given
manufacturer contract (w, s), what are the retailers’ equilibrium inven-
tory decisions and their properties? Is the equilibrium unique? Can this
two-parameter contractual arrangement coordinate the supply chain?

The general problem in (7.16) and (7.17) is too complex to analyze.
To gain some concrete insights, we will consider the specific demand
function of example 7.1:

DI+ ) =a(l1 +1)%a>0,1>b>0.

Such form of inventory-level-dependence was previously used (in a sin-
gle retailer case) by Wang (1992) and Parlar et al. (1994). Note that
[dD(1)/dl)/[D(I)/I] , the demand’s inventory-elasticity, equals b. Sec-
ond, we will use the proportional demand allocation model, which was
motivated in the Introduction. That is,

A(l, ) = I/(Iy + I3), and so 1 — A(I1, I3) = I /(1) + I).
Finally, we consider the case of two identical retailers; so we let hy =

hs = h. With these specifications, problem (7.16) - (7.17) now reduces
to

(p—w) - h/(h + L) a(ly + L)’

Il

f}ff’gg?m(fl,fz)

—(h = s8)h, for R1; (7.18)
MazTly(I1, 1) = (p—w)-I2/(Ii+ I)-a(h + L)’
225
—(h = s)1Iy, for R2. (7.19)

The following theorem characterizes the competitive equilibrium for the
game defined by (7.18)-(7.19):

Theorem 7.4 The unique Nash equilibrium for each of the two retailers

is to stock

I = a1+ ) - w2/ -] . (7.20)
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At the equilibrium, the system-wide inventory of both retailers will
be

21V = [a(1 4 b)(p — w)/2(h — 5)]1/ (78, (7.21)

Now, had one of the retailers occupied the entire market (and faced the
same manufacturer contract), her optimal inventory would have been
(specializing (7.9) to our particular demand function):

I" = [ab(p — w)/(h — s)]/079) (7.22)

Comparing this with (7.21), since oo > (1+b)/2b > 1for 0 <b < 1,we
have 27V > I". That is,

Corollary 7.5 For any given manufacturer contract (w,s), the total
inventory displayed by two competitive retailers is always higher than
that of a single retailer (or two centrally controlled retailers). Thus,
competition generates inefficiency at the retail stage of the supply chain.

Corollary 7.5 assumes that the prices in the monopolistic and duopolis-
tic markets, which are not modelled, will be equal. In practice, the latter
is likely to be lower due to competition. It is easy to check that in order
for the Corollary’s conclusion to be reversed it will have to be lower than
w + 2b(p — w)/(1 + b), where p is the monopoly price.

The inventory displayed by one of the competitive retailers (I Ny can
be higher or lower than that of a single retailer ("), depending on the
value of the inventory elasticity parameter b. Note that the conclusions
here also hold for a price-only contract, since that is merely a (w,s)
contract specialized to s = 0.

Can a (w, s) contractual arrangement coordinate this manufacturer-
competitive retailers supply chain? The answer is yes! To see this we
only need to show that such a contract can bring the two retailers to
choose the centralized or system-optimal inventory levels. But, from
Proposition 7.6, we know that the fotal inventory of two retailers (inde-
pendent of inventory allocation between them) maximizing the system-
wide performance will be the same as that maximizing the performance
of a system with a single retailer. Thus, to achieve channel coordina-
tion, one only needs to design (w, s) such that the decentralized total
inventory given in (7.21) be equal to the centralized optimal inventory,
which can be derived from (7.2) for a single retailer system (specializing
to our specific demand function) as

I° = [ab(p — ¢)/h]/ %), (7.23)

Thus, one can easily show,



152 SUPPLY CHAIN MANAGEMENT

Proposition 7.6 If (w,s) is offered such that
s=h—(1+b)(p—w)h/2b(p - ¢), (7.24)
then 2IN = I°,

In light of Corollary 7.5, this coordinating property of a (w,s) con-
tract is particularly valuable: it can actually eliminate the inefficiency
generated by the presence of competing retailers within the supply chain!

When coordination is achieved, each retailer’s inventory is IV = I¢/2.
Substituting (7.24) into either (7.18) or (7.19), we can show that the
retailers’ profits will be

I1; = Iy = [a(1°)%/2 — (1 + b)hI¢/4b(p — ¢)](p — w). (7.25)

Thus, again, not only can a (w, s) contract coordinate the supply chain,
but it can also achieve, by varying w, any desired allocation of the total
channel profit between the manufacturer and the retailers.

In concluding this section, we compare the (w, s) coordination mech-
anisms for a single retailer to that for two competitive retailers. First,
we see from (7.10) that in the single retailer case the manufacturer does
not need to know anything about the demand function D(:) in order to
design a coordinating contract, assuming profit allocation is not a con-
cern. In a sharp contrast, to coordinate a supply chain with competing
retailers, he does need to know the demand pattern, captured via the
parameter b as shown in (7.24). Second, for a given wholesale price w,
the two-retailer supply chain needs a smaller inventory subsidy s to be
coordinated than the single retailer chain does. (With (1 + b)/2b > 1,
this can be seen by a direct comparison of (7.10) with (7.24).) This
second point is not surprising since we know from Corollary 7.5 that
two competing retailers will always hold more inventory with the same
(w, s) contract. This observation seems to suggest that as the number
of retailers grows the optimal subsidy declines. Future research needs to
explore that behavior, and in particular whether the subsidy declines to
zero as the number of retailers grows to infinity.

4. Two Competing Retailers with Demand a
Function of Individual Inventory

In this section we model a situation where a customer chooses be-
tween R1 and R2 based on their relative displayed-inventory levels, but
her demand quantity then depends solely on the inventory of the cho-
sen retailer. Specifically, the competition process of the two retailers
can be thought of as follows: When their displayed inventories are [
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and Iy units respectively, a portion A(ly,{2) of the total N customers
will choose R1, each with a demand quantity of D(I;), and the remain-
ing portion 1-A([y, I2) of the N customers will choose R2, each with a
demand quantity of D{I5).

With a manufacturer’s (w, s)-type contract and inventory holding
costs of h; and hg respectively, the retailers face the following decisions:

I}/fgg. H](I],Ifg) = (p - w) £ A(Il,fg) N D(fl)
Joe

—(hy — 8) - I1, for RI; (7.26)
MazTly(l, Ip) = (p—w)-[1—A(l, 1) N-D(h)
—(hg = s) - Iz, for R2. (7.27)

Consider the case where A(I1, L) = I/(I1 + I1), N = a, D(I) = I*
with 0 < b < 1, and hy = hy = h (i.e., identical retailers). Then,
(7.26)-(7.27) reduce to

I}/:’gg: i (N, I7)

(p-w)-h/(h+ D) a1}

—(h—s8)- L, for R1; (7.28)
MazTly(I1, 1) = (p—w) L/ + 1) -a- 1}
I: >0

—(h—38) Iy, for R2. (7.29)

We note that here the two retailers essentially face the same market (i.e.,
the same a customers) as that in (7.18)-(7.19). The difference is that a
customer who chooses, say, R1 will here contribute a demand of I {’, while
in (7.18)-(7.19) it was (I; + Ig)b. Thus the total demands are different
in the two scenarios even when the inventory levels are the same.

It turns out that problem (7.28)-(7.29) is much more complex to an-
alyze than problem (7.18)-(7.19). Instead of trying to fully characterize
the response curves and equilibrium point(s), in the following we simply
identify one specific equilibrium — the symmetric equilibrium, where the
two retailers display the same amount of inventory. Intuitively, since the
two retailers are identical, the most likely equilibrium, if any, should be
symmetric.

From (7.28), a symmetric equilibrium, if any, can be found by sub-
stituting I} = Ir = IN into

Ol (I, I) /06, = Fi(I1, 1) =
alp—w)Pbl + (1 + b)) /(L + )2 —(h—8) =0  (7.30)
and solving for I, We thus obtain the unigue solution

IV = [a(1 + 2b)(p — w)/4(h — 5)]/ 70, (7.31)
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The next Theorem states that, if b < 0.5, I1 = I, = I" is indeed an
equilibrium point.

Theorem 7.7 (IV,IV) constitutes a Nash equilibrium point of (7.28)-
(7.29) if b < 0.5.

Now, suppose that the two retailers are centrally controlled, so as to
maximize their total profit by choosing jointly how much inventory each
should stock (i.e., I; and Iz). We have the following result,

Proposition 7.8 If the two retailers are centrally controlled, then, for
any given total inventory, the best policy is to stock at only one of the
retailers (and, hence, to close down the other).

The intuition here is as follows. Since each customer’s demand depends
(increases) only on (in) the size of ONE pile, and as the total number of
customers is constant in this model, then for any given total inventory,
stocking all of it at one location will induce more demand than splitting
it into two piles. While the demand function itself is concave, the profit
function it gives rise to is convex (see proof in Appendix) and hence the
boundary solution.

Can the manufacturer coordinate such a supply chain? It depends on
how the retail stage operates. If the two retail locations are centrally
controlled, Proposition 7.8 shows that one should close down one of the
locations, and, thus, the retail stage acts just like the single-retailer.
Then, as we have showed earlier, a (w,s) contractual arrangement of-
fered by the manufacturer can coordinate the supply chain. But, when
two retail locations co-exist through competition, Proposition 7.8 states
that inefficiency/waste will occur within the retail stage. As a result,
with a (w, s) contract arrangement, the manufacturer will not be able
to coordinate the supply chain. Any attempt of coordination here must
have, among other arrangements, the contingency of physically pooling
inventory. In contrast, as we have shown in Section 3, supply chain co-
ordination can be achieved with two competing retailers when customer
demand depends on the ‘“aggregate” inventory of both retailers. The
fundamental difference is that there the allocation of inventory between
the retailers does not in itself cause inefficiency.

S. Concluding Remarks

As argued by Moorthy (1993, p.182), “The ... interesting issues in
channel competition arise from the effect of downstream (retail) compe-
tition on relations between the manufacturer and the retailers...”. Our
model indeed attempted to capture such interactions within a concrete
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setting. We did so (in the analysis of two competitive retailers) by view-
ing the system as that of a Stackleberg leader (the manufacturer) who
considers the effect of its actions on the resulting Nash equilibrium of
the competing retailers (for a similar modelling philosophy, see Gerchak
and Wang 2000).

While our work was motivated and presented through demand’s shelf
space (or inventory displayed) dependence, the model is, in fact, rather
general; [ could correspond to any marketing effort. As such, our model
can be viewed as a marketing problem as well as an operations problem.
As pointed out, some components of our model — notably the demand
split ratios — are often used by marketing researchers. The coordination
issues and mechanism we addressed, however, seem new or different than
models explored in the marketing literature.

Future research could deal with more general market-share models.
For example, with n competing retailers, when each retailer ¢ allocates
shelf space [;, retailer j has a market share of «;I;/ ) a;l;, where the

coefficient «; represent retailers i's relative eﬁ‘ectivenless of shelf space
utilization in attracting demand (e.g., Cooper 1993). Another would be
LA L%

Ou; models took retail price as given. A more general setting will
have a demand which depends on price as well as inventory, and where
price is a decision variable. In the duopolistic setting, that may call
for a Bertrand-type approach. Since the prices will then depend on the
type of market, the relations among the optimal inventory levels will be
affected.

Our current models assumed a setting with complete information
(though in the single-retailer setting the manufacturer did not always
need to know the demand function and holding costs experienced by
the retailer). A natural extension is to consider various scenarios where
either the retailers or the manufacturer have some private information
regarding costs or demand parameters. For recent work, see Ha (1998),
Corbett and Tang (1999), Cachon and Lariviere (1999) and references
therein.

Another extension to the current models is to consider stochastic de-
mand which is influenced by inventory/shelf space. In a periodic review
setting, Gerchak and Wang (1994) studied such models for centralized
systems. Interesting issues of channel coordination might arise if one
considers decentralized decisions with competition in such settings.
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Appendix

Proof of Theorem 7.4: We note first that Anupindi et al. (1999, Theorem 4.1)
provide two sufficient conditions for the existence and uniqueness of symmetric equi-
librium. Unfortunately, we found that our model can not satisfy their second condi-
tion when b < (.5. Now, to find the Nash Equilibrium, we will first characterize R1’s
reaction function denoted by Fi(I;,I2); R2 will have an identical reaction function.
Prom (7.18), it follows after some algebra that

8]._[1(11,12) bl + I2
—— = = F} 2) = = T T i — 8) = edde
o, (11, I2) = a(p w}(‘rl 1) (h—8)=0, (7.A.1)
and
62I11(1'1,I-_;) . bl + 21>
T]?_ — —{i’.{] —b)(p— 'w)m < 0.

So, IIy (I, I2) is concave in [; and, thus, (7.A.1) indeed defines the reaction function.
The following lemma partially characterizes the shape of Fy([ly,l2); see Figure
7.A.1.

Lemma A.1: In the (I1, I2) plane:
1) Fi(I1, I2)passes through the following four points:
Pl: L) = [ab(p — w)/(h — s)]/ P b =0
P2 Iy = ab(p—w)(2—b)"2/(h—s) /"7

I =(1-b)I = (1= b) ab((p—w)(2—-b)*"2/(h—s) /O

P3: I == a(1+b)(p—w)22/(h-s) /"7

Pa: I =0; I, = [u(p — w)}((h _ 3)]1/(1—b)

2) The horizontal coordinate Is of P4 is longer than the vertical coordinate Iy of
Pl

3) Fi(li, I2) is increasing from PI to P2, and is decreasing from P2 to P4.

Proof of Lemma A.l:
Part 1) For P1, substituting Iz = 0 into (7.A.1), we find I;. P2 is the intersection of
Fy(I,, I7) with the line I, = I3 /(1 — b); so, together with (7.A.1),we can find I, and
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h,

P17

Figure 7.A.1. The Reaction Curve of Retailer 1

Iz. For P3 and P4, using (7.A.1) together with I} = I; and [s = 0 respectively, we
can verify their coordinates as well.

Part 2) Since 0 < b < 1, the result can be verified immediately.

Part 3) By implicit differentiation, one can show from (7.A.1) that

di(l) _ (1-bh -1
dl; bl + 217

At P2, we have It = I/(1 — b). Now, from P1 to P2, we have I1 > I/(1 — b) and,
hence, dI;(I2)/dI2 > 0,which indicates that Fy(/1, [2)is increasing. But, from P2 to
P4, we know that Iy < I2/(1 —b), and so dI1(lz)/dl; > 0, and thus Fy([1,3) must
be decreasing.

End of Proof for Lemma 1.

With our characterization of the reaction function, we are ready to identify the
Nash equilibrium point. If we place the reaction function F3(I1,Iz) of R2 on the same
(11, I2) plane with Fy (I, I2), they will be symmetric across the line I; = Iz, since the
two retailers are identical; see Figure 7.A.2. Thus, we immediately identify point P3,
where F;(Ih,I2) and Fy{Iy, I2) intersect, as one Nash equilibrium. To complete the
proof of Theorem 7.4, we next show that P3 is the unique equilibrium point.

For any given value of Iz, let (I{,I2) and (I%, I2) be the corresponding points on
Fi(I, I) and Fy(I4, I,) respectively; see Figure 7.A.2. We need to show that I{ # I}
except at point P3, that is, F1([1,Iz) and F(I1,I2) do not intersect other than at
P3.

Now, (I, Iz)satisfies (7.A.1), so we have

bi+L _ h-—s
5= = ap—w) (1.A.2)
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h‘F
L7/ -b)

AT

PAT~_ 12

=1/ - b)

=

Figure 7.A.2. 'The Unique Nash Equilibrium Point

Similarly, byderiving F2({1, Iz} from (7.19) and then substituting (I}, I2), we have

2+bl;  h-s
B+L ~ ab-w) ("A-3)

We next show that, except for P3, the segment P4’-P3 of Fy(I,I») does not
intersect with segment P1-P3 of Fy(Iy,Iz),i.e., I # IZ. (That P3-P4 of Fi(I,I2)
does not intersect with P3-P1° of Fy([ly,I2) will then follow immediately from the
symmetry of Fi(f1, [a) and F3(l1, I2).) Note that on P1-P3 of Fy(I,,I2), we have

Ii > L. (7.A.4)
Now, suppose that I] = If. Then, from (7.A.2) and (7.A.3), we must have
bl + =1 +bly => (1 -b)=If =blf =I{(1~b) = I = I{,
which contradicts (7.A.4)!

Proof of Theorem 7.7: We need to show that if R2 chooses I; = I, the best
choice for R1is I; = I™ as well, that is, l'[l(IN, [N) > H](I]_.IN) forall I = 0. To
that end, we will show that IT, (I, I™), starting at I1, (0, IY) = 0, has an “S” shape,
and it reaches its maximum at [; = IN; see Figure 7.A.3.

The “S” shape of II1({1,1") can be shown by studying its derivative function
A, (I, IN) /86 = Fi(1,, V). From (7.30), we have,

Fi(I, IN) = 204010

ET)
—b(1=b)1% ~2(1-b2)1, IV +b(14+b) (1N )?

= a(p - w) TS (7.A.5)
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Hl(ﬂ.!")

Ry

-(h-9)

Figure 7.A.8. The Symmetric Equilibrium (7%, V)

Now, since its numerator, namely, —b(1 — I —2(1 - 52}11 J b(1+ BY(IN)?, is
strictly decreasing, Fi(I;,I"™) will start positive and then become and remain nega-
tive, which implies that Fy(Iy, I™) itself will initially be increasing and then become
decreasing (i.e., it is unimodal). Furthermore, we can check from (7.A.5) that

FlUN, 1Yy = —2(1-2v*) <0, if b< V2/2,

which implies that I; = I is at the decreasing portion of Fy (I, I™). This, combined
with Fy(IN, IV) = 0, indicates that Fy(I1,IV), starting at Fy(0,IV) — (h —s) < 0,
increases to a positive value at some point before I; = I and then decreases to zero
at I = I, and stay negative after [, = I. Thus, we have showed that II,([;, %)
has the “S” shape.

Now, to have II,(IV,IN) > I1,(I;, I") forall I; > 0 and b < 0.5, we only need
I (IY, 1Y)y > 0 for b < 0.5, which can be demonstrated simply by substituting
Iy = Iz = I" into (7.28). This completes the proof.

Proof of Proposition 7.8: From (7.28) and (7.29), we can show that the total
profit of the two retailers is

1
L+

IL(Nh, I2) + M2(1h, I2) = a(p — w) (L + L) ~ (h=s)(Ih + ).

For any given total inventory, say k units, substituting Iy + Iz = k and [ = k — I
into the above equation, we have

l + +h1
(L, 1) + Ta(lh, o) = a(p = w) 2 [7° + (k= 1)} = (h = s)k.

Thus, it is easy to show that in order to maximize the total profit, the optimal solution
is to set I to be either zero (i.e., to stock only at R2) or & (i.e., to stock only at R1).
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Abstract A number of retail firms use a “private-label” strategy in which mer-
chandise is sold under a brand name exclusive to the retail firm, but
manufactured by one or more independent vendors. While offering a
number of benefits, this approach also poses a different set of supply
chain challenges than manufacturer-brand-based retailing, in that the
retail firm must take a more active role in organizing and coordinating
the planning and materials management activities in a supply base that
is often dispersed and heterogenous.
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This chapter describes a methodology for planning capacity commit-
ments, scheduling shipments, and managing inventory for an assortment
of private-label retail merchandise produced by multiple vendors. The
vendors differ in their lead time requirements, costs, and production
flexibility. Product demand is uncertain, and fluctuates over time. We
develop an optimization model to choose the production commitments
that maximize the retailer’s expected gross profit, given market demand
forecasts and vendors’ capacity and flexibility constraints. The model
has been incorporated into a PC-based decision support system called
the Sourcing Allocation Manager (SAM). This was developed in col-
laboration with supply chain planners at a global retailer of seasonal
and fashion merchandise, and has been tested by buyers at two major
retailers.

Keywords: Sourcing Strategy, Retailing, Capacity Planning, Multi-item Inventory
Planning

1. Introduction

A number of retail firms use a “private-label” strategy in which mer-
chandise is sold under a brand name exclusive to the retail firm, but
manufactured by one or more independent vendors. This practice can
allow a retailer to avoid the premium charged by brand-name vendors,
fill gaps in its product assortment, exercise greater control over product
attributes, gain leverage in the manufacturer-retailer balance of power,
and convert product brand loyalty to store loyalty. For well-received
products, there are additional benefits to be enjoyed from being the ex-
clusive seller. However, this also poses a different set of supply chain
challenges than manufacturer-brand-based retailing, in that the retail
firm must take a more active role in organizing and coordinating the
planning and materials management activities in a supply base that is
often dispersed and heterogenous'. As a result, some such retail firms
have become increasingly interested in tools and techniques for effective
supply chain management and design. This is the case with the retailer
(a multinational firm with several billion dollars of annual revenue from
private-label sales) that approached us with the business problem moti-
vating the research described here.

"Private-labeling poses a number of marketing challenges as well. The retailer takes sole
responsibility for brand management tasks such as advertising and creating store displays,
and foregoes manufacturer-sponsored provisions that mitigate market risks, such as return
privileges and price protection. Our intent is not to address the question of when a retailer
should use private-label, but to provide guidance on supply chain planning when this strategy
is pursued.
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We consider the problem of how to optimally plan and execute the
sourcing of seasonal and fashion private-label merchandise carried by
department stores and specialty retailers. For a given selling season,
the sourcing decisions, typically made by the retail buyer responsible for
each merchandise department, include the following components: (1)
purchases of raw materials (e.g., fabric) for use by vendors, (2) sup-
ply contracts and production commitments with vendors, (3) a weekly
plan for sales, shipments, and inventory, and (4) adjustments based on
subsequent market information. This research develops a formal plan-
ning methodology for this decision problem that accommodates multiple
products and multiple suppliers, and explicitly accounts for demand un-
certainty and adjustments to the plan during the season. The resulting
optimization model has been embedded within a PC-based decision sup-
port system named the Sourcing Allocation Manager (SAM).

A more theory-oriented treatment of this modeling research is pre-
sented in Agrawal et al. (2001). Parts of that document describing the
model formulation are included here for the reader’s convenience, but
those who are interested in such a perspective and an extensive numer-
ical case study should refer to that paper. This chapter focuses on the
software implementation and how the business environment influenced
the design of the graphical user interface.

The Business Setting

Many of the challenges of this application are due to attributes of the
demand patterns and the supply base, and how they interact. Demand
in this environment typically fluctuates sharply throughout the year.
This is exemplified by the data in Figure 8.1, which illustrates recent
sales for a men’s casual slacks product.

This type of demand becomes most challenging when production ca-
pacity is constrained, which is commonly the case in this industry.
Specifically, demand during the peak Fall (“Back to School”’) and Christ-
mas seasons typically exceeds available manufacturing capacity, while
surplus capacity tends to exist during the Spring and Summer. Produc-
ing in advance of peak periods improves the ability to meet demand, but
creates inventory buildup arid requires that commitments to production
and fabric purchases be made under greater uncertainty.

Sourcing strategies must also reflect the performance capabilities of
the supply base. In most cases there are a variety of possible vendors
that differ in costs, lead times, and flexibility of production. Vendors
with the lowest cost generally offer virtually no flexibility with respect to
capacity commitments. These vendors tend to have long lead times for
booking capacity (e.g., nine months), shipment times of several weeks,
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and often require that the total production be allocated relatively evenly
throughout the year. More responsive vendors may have shorter lead
times and allow greater flexibility vis-a-vis production commitments.
Additionally, different vendors may be willing to store limited amounts
of finished product prior to delivery for a fee.

Retailers tend to leverage a portfolio of such vendors, resulting in
supply chains such as that shown in Figure 8.2. The portfolio approach
enables strategies such as exploiting lower cost production for the more
predictable segment of demand, while sourcing the more speculative seg-
ment via the more flexible, but more costly, vendors. Operationalizing
this strategy in a multi-product, multi-vendor setting is nontrivial, and
is further complicated by many production and logistical constraints de-
scribed later. This was our retail collaborator’s motivation in sponsoring
this project. In fact, our methodology is unique in its focus on designing
contracts with a portfolio of vendors that simultaneously exploits the
comparative advantages of each, as opposed to selecting a single most
desirable vendor.

Research Contribution
Relative to previous academic research detailed in Section 2, our for-

*Since the retailer providing this data aspires to and usually achieves very high fill rates for
this product, the difference between sales and demand is insignificant.
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mulation of the multi-vendor sourcing problem is novel in representing
the complex constraints and changing states of information under which
different sourcing commitments must be made. We address numerous
issues associated with the design of the supply chain, and provide in-
sight into a universal question in sourcing: how to balance unit costs
versus supplier attributes such as flexibility. Overall, our model builds
on the key aspects of the literature described in Section 2, incorporat-
ing seasonal patterns in demand and detailed production and logistical
constraints in a stochastic demand environment with forecast updating.
While subsets of these issues have been treated previously, we believe
our formulation to be unique in addressing all of them simultaneously.
Our formulation evolved in close collaboration with retail practition-
ers, whose involvement occurred at two different levels. A committee
of senior executives from different firms regularly reviewed our assump-
tions and problem framing to ensure the broad applicability of our model
to a variety of retail settings. However, the specifics were developed in
collaboration with executives and buyers at a particular retailer, who
confirmed that our level of detail captures the key complexities faced by
retail planners. Their help was especially useful in identifying the cost
tradeoffs and constraints most important for sensitivity analysis, lead-
ing to variable and constraint modifications that allowed discovery and
presentation of the most critical shadow prices. Furthermore, feedback
from these buyers and planners was instrumental in the incorporation
of our model into a decision support software package with a graphical
user interface. Given the depth and breadth of the practitioners’ par-
ticipation, we believe this model to be widely applicable to retail firms
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that manage the sourcing and production of private-label merchandise,
and to certain nonretail firms as well.

Organization of This Chapter

The remainder of this chapter is organized as follows. Section 2 reviews
the relevant literature. Section 3 details the mathematical formulation of
the optimization model, discussing in depth the assumptions we made to
capture the salient features of the particular retail environment. Section
4 describes the decision support software, the business issues motivat-
ing the design features of the user interface, and summarizes our retail
collaborator’s experiences with the software, and Section 5 concludes.

2. Literature Review

The use of formal decision models in aggregate production planning
has a long tradition, and has been the subject of hundreds of academic
studies. See Silver and Peterson (1985) for a textbook treatment and
some historical background. A review of the academic literature is pro-
vided in Nam and Logendran (1992), and a survey of the usage of such
models in practice is provided in Buxey (1993) and Buxey (1995). The
predominant optimization approach is based on linear programming
(LP), which allows for non-stationary but deterministic demand, and
can handle large numbers of products simultaneously. Forecast uncer-
tainty and information updating are usually dealt with only in an in-
direct fashion, by using a rolling-horizon implementation of a snapshot
deterministic solution (the formal term for this is “Open-Loop Feedback
Control”, cf. Bertsekas (1976)), and also perhaps through the specifi-
cation of safety stock levels, usually exogenously (e.g., Guerrero et al.
(1986), Gunther (1982), Heath and Jackson (1994), Miller (1979)).

More direct treatment of demand uncertainty is called for in the re-
tail setting, especially where hard-to-forecast fashion or style goods are
involved. This can be provided by newsvendor-style models, but at the
expense of sacrificing the dimensionality and detailed constraint struc-
ture that can be supported by LP formulations. In this type of approach,
the entire selling season for a product is summarized as a small num-
ber (possibly one or two) of random variables with known joint proba-
bilities. This allows analytic incorporation of forecast uncertainty into
production planning (e.g., Crowston et al. (1973), Hartung (1973), Haus-
man and Peterson (1972), Murray and Silver (1966), Ravindran (1972),
Wadsworth (1959), and more recently Brown and Lee, Donohue (2000),
Eppen and Iyer (1997), Fisher and Raman (1996)), albeit in stylized
ways. Various approaches to obtaining the probability distributions of
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these demand random variables, especially for fashion products, are pro-
posed by Chang and Fyffe (1971), Hausman and Sides (1973), Hertz and
Schaffir (1960), Riggs (1984), Riter (1967), and Wolfe (1968).

The efforts closest in spirit to our work are Bitran et al. (1986), Eppen
et al. (1989), Kira et al. (1997), and Nuttle et al. (1991). The first
three are based on mathematical programming, while the fourth takes a
simulation approach. We discuss them briefly below.

In Bitran et al. (1986), the authors perform multi-period production
planning for families of consumer electronics products which in turn con-
sist of specific items. Setup costs for switchovers between families are
such that each family will be run only once during the season, while
switchovers between items within a family are assumed costless. De-
mand occurs in the last period, and estimates of this demand are re-
vised each period. Demands for all items are assumed to be normally
distributed, and the standard deviation of forecast error at each time
period is known, given by an arbitrary, decreasing sequence of numbers
which must be provided as data. The updated forecasts at each period
also follow a joint normal distribution, with a known covariance matrix.
The exact problem is a difficult-to-solve, stochastic mixed-integer pro-
gram, for which the authors develop a deterministic mixed-integer ap-
proximation. While both their model and ours consider multi-product
planning with forecast updates, the respective areas of emphasis differ.
Whereas they take production capacity as given and then determine how
to schedule the production of a variety of items, we consider as decision
variables the capacities to be reserved with a variety of vendors at dif-
ferent points in time. They model the operations within a single factory
at a greater level of detail, whereas our scope spans multiple vendors’
factories as well as the retailer’s distribution center, and includes the
scheduling of shipments from the former to the latter. Their representa-
tion of item demand is more general but also data-intensive. We pursue
a discrete simplification of forecast dynamics as part of an overall strat-
egy of retaining a basic LP structure that allows an exact solution in
real time.

In Eppen et al. (1989) a model is developed for General Motors to aid
in making decisions about capacity for several lines of automobiles pro-
duced in multiple factories. A general sequence of events is considered
in each of five years: (1) the available capacity is configured in terms
of tooling the production lines for specific products, (2) demand occurs,
and (3) a production plan is implemented that attempts to meet the
demand given the capacity configuration. Demand uncertainty is repre-
sented by defining three different “scenarios” for each year that specify
the demand and price for individual products. Scenario probabilities are
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assigned, and are assumed to be independent from year to year. The re-
sulting optimization problem is a mixed-integer program that maps out
individual sample paths of all possible scenario combinations. This sce-
nario approach is similar to our representation of demand uncertainty.
However, our production decisions are based on imperfect demand sig-
nals, while theirs assume that all uncertainty has been resolved. Further,
our notions of capacity are slightly different. Their optimal capacity con-
figuration is selected from a discrete number of predefined possibilities,
hence the integer variable structure. Ours is chosen from a simplex re-
gion defined by a variety of constraints that explicitly represent features
of the business relationship between the retailer and each vendor.

In Kira et al. (1997), the authors use a probability structure sim-
ilar to that in Eppen et al. (1989), with a single-factory production
environment that is much simpler than ours. Capacity planning is not
treated, and the nuances of managing a supply chain composed of mul-
tiple, independently-managed physical nodes are not incorporated into
their formulation.

In Nuttle et al. (1991) a software application called “The Sourcing
Simulator” is described, which was developed by researchers at North
Carolina State University in concert with the Textile/Clothing Tech-
nology Corporation and the American Textile Partnership-Demand Ac-
tivated Manufacturing Architecture (AM-TEX-DAMA) project. This
treats the same industry setting as we do, and makes many similar
assumptions in addressing the question of how the replenishment fre-
quency and lead time of a vendor affects a retailer’s performance. This
purely descriptive simulation approach allows a detailed representation
of certain aspects of the setting, especially in the range of allowable
replenishment strategies and consumer behavior. However, because it
assumes single-sourcing (with the single vendor abstracted as simply a
lead time and reorder frequency), it cannot simultaneously allocate pro-
duction across a portfolio of time-phased vendors. Like the three models
described previously, the scope of this formulation is largely confined to
a single firm. Nevertheless, various studies based on this model (Hunter
et al. (1992), Hunter et al. (1996) and King and Hunter (1996)) have
validated the importance of the ability to react to improved demand
information, which is a key rationale for the sourcing strategies that we
model.

3. Model Specification

This section outlines the mathematical formulation of the planning
problem faced by a retailer leveraging a portfolio of time-phased ven-
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dors. Our discussion uses the language of apparel retailing because this
is our sponsor firm’s primary line of business. However, we believe our
underlying methodology to be broadly applicable to other product set-
tings.

3.1 Timeline of Events and Information
Assumptions

In chronological order, the critical time points for the retailer’s se-
quential decision problem for a specified “selling season™ are as follows:

to= time at which initial vendor commitments and fabric purchases’
are made

t; = second time at which commitments to vendors are made, for those
vendors allowing capacity decisions to be deferred to this time’

t, = beginning of selling season

ty = end of selling season, when actual demand becomes known.

We assume that our model analysis is performed at some time at
or before ¢y for a selling season that spans the horizon (¢,ts). The
retail planner’s information regarding demand evolves continuously over
time, shaped by economic forecasts, new fashion and color trends, and
observed sales results for similar products. However, for our formulation
it is only necessary to define the possible states of information at the
specific points in time at which decisions are made. Evaluation of the
expected profit also requires knowledge of the actual demand information
at time t;. To represent the evolving demand information, we define the
following random variables:

3This might correspond, for example, to the Fall season (running from roughly August
through January) or the Spring season (February through July). For certain merchandise,
some retailers use four or more shorter seasons per year. In some instances a season may be
as short as 8 weeks.

*In many cases the fabric is purchased by the retailer and shipped to vendors for cutting and
sewing. This provides control of raw material quality and leverages the buying power that a
major retailer enjoys.

>Our discussions with the retailer’s production planning managers indicated that two decision
points (times £y and ¢, ) are adequate for a typical apparel planning decision process. However,
the formulation can easily be extended to include more decision points by simply adding more
variables to the model.

SFor example, we have assumed that the initial demand information for any product at time
tp is deterministic,i.e., Xo has only one possible value. At time t;, the demand information
demand has three possible values based on what has been observed since £p: High, Medium,
or Low, with different probabilities. The remaining uncertainty about the actual demand is
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X} = arandom variable corresponding to the market demand informa-
tion that the retailer has at time ty, for k = 0,1,f.

At each time point, X} has a discrete set of possible values. Finally, at
time ¢y, the actual demand corresponds to one of a discrete set of demand
scenarios. We define the following probability distributions to describe
the likelihood of observing particular sequences of demand information:

p(&) = P{X:1 =&} for each possible &; value at time ¢;

p(&rl&1) = P{X; = &;| X1 = &} for each possible combination of {; and
&5, and

p(&1,€5) = p(&l€1) p(&1) = the joint probability of X; and X;.

Clearly, this structure can be generalized to characterize information
that is revealed in any number of stages, but we will describe only the
two-stage case since that corresponds to our particular application.

Market “scenarios” are frequently used by retailers in developing mar-
keting plans for alternative contingencies’. We extend this concept to
include market demand information that is revealed in stages, resulting
in the sequential stochastic decision model illustrated in Figure 8.3. The
underlying assumption is that as the selling season gets closer, the sales
estimates in the plan improve for several reasons. For example, there
is new sales information for related products. Also, updated sales esti-
mates are at least in part the result of revisions in the merchandise plan,
e.g., deciding to feature more or less of a particular type of merchan-
dise, giving it a more or less prominent display and floor space, etc. For

then described by the conditional probability distribution, and is not completely resolved
until the end of the selling season at time ty. We also note that this modeling structure is
easily generalizable to include additional stages of information and decision points.

"We model demand uncertainty through discrete scenarios for three reasons. The first reason
is analytical tractability. Modeling uncertainty using continuous random variables would rule
out certain complexities categorically declared by our corporate collaborators to be essential
attributes of their business setting. The second reason is consistency with common manage-
rial practice. Our corporate collaborators indicated that their planning methodology often
requires the articulation of “worst case,” “most likely,” and “best case” scenarios for market
uncertainties. However, in the past these scenarios have typically been used only for financial
planning, due to a lack of technical know-how for translating them into contingency plans
for vendor and production management. The third reason is that there is an established
precedent in the literature for using scenarios to model uncertainty in a variety of contexts.
As described in Section 2, Eppen et al. (1989) and Kira et al. (1997) used a scenario approach
similar to ours for capacity planning. Discrete demand scenarios were used in Smith et al.
(1998) to obtain optimal inventory and promotional plans for retail chains. Of course, there
is a rich tradition in the financial economics literature of modeling uncertainty in the prices
of stocks and securities this way (cf. Cox and Rubinstein (1985)). More recently, Huchzer-
meier and Cohen (1996) have used discrete scenarios to study the operations management
implications of exchange rate fluctuations.
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changes of this type, there is a good base of experience for the buyers
to update their subjective estimates of the demand. This determines
the conditional probabilities p ({7|§1). Note that in principle the same
method can use early sales results to update the demand probabilities
(after the selling season begins) and in fact, our formulation approach
is compatible with Bayesian updating of the probabilities of the discrete
demand levels based on early sales results. However, for this application
the vendor deadlines did not permit changes in capacity commitments
after the start of the selling season, other than changes in the color, style,
or size mix. Since our model is meant to support capacity planning at
an aggregate level, this is appropriate for our application®. With some
assistance from the authors, the retail planners at two major retailers
were able to subjectively estimate the required probabilities.

3.2 Decision Variable Definitions

The following indices will be used for variabledefinitions: j for prod-
ucts, ¢ for vendors, t for the time increment used for production, ship-

$Most papers that consider updating of forecasts in a model of reasonably realistic detail
only consider updating prior to the occurrence of any sales. This includes the mathematical-
programming-based models most similar to ours, as described in Section 2. Those models
that do accommodate forecast updating based on in-season sales tend to have very simplified
inventory analysis that would not scale to the constraint and decision variable complexity in
our decision model (e.g. Chang and Fyffe (1971), Crowston et al. (1973), Fisher and Raman
(1996), Hartung (1973), Murray and Silver (1966)).
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ment, and sales decisions (typically weeks), and g for the time increment
used for reservation of capacity (typically quarters). In this model, we
assume that the term “product” refers to an aggregation of styles, not to
an individual SKU (distinguished by style/size/color). Variable names
in upper case represent decision variables, while those in lower case or
Greek symbols are fixed parameters.

The main basis for classifying vendors (into “short lead time” and
“long lead time” types) is the time at which commitments for each prod-
uct must be made. This is denoted by

Ty = time at which a commitment is required by vendor ¢ for product
Js

and the corresponding state of retailer information

Xi; = demand information available at time 75, which takes on discrete
values &;;.

For our implementation, 7;; = £y or ¢;, since these are the only pro-
duction commitment time points. It follows that X;; is either Xy or X

for every combination of ¢ and j.
For each possible (£1,£y) combination, the production and inventory
variables are defined as follows:

F; = fabric commitment (in yards) made at time ¢y for product j
P;; (t|&;) = production by vendor ¢ of product j during period ¢
Z; (g|&1) = total production by vendor ¢ during quarter g

Zf (€1) = yards of fabric actually used for product j

M;; (t|€1) = beginning inventory of product j stored by vendor 7 in pe-
riod ¢

Sij (t|€1) = quantity of product j shipped from vendor ¢ in period t
Uj (t|€1,&5) = retailer’s unit sales of product j in period ¢
I; (t|€1,&5) = retailer’s beginning inventory of product j in period ¢

The decision variables depend on the information states in different
ways, i.e., what information is known when each variable’s value is spec-
ified. These dependencies determine the dimensionality of the variables.
We denote this dependence explicitly in our formulation, using the “|”
notation. For example, since the production schedule of an item 7 at a
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vendor j is fixed at time 7;;, when the state of information is &;;, the cor-
responding vendor production variables are denoted as Pj; (¢[&;;). The
total production and total fabric usage depend upon &; because they are
defined for both short and long lead time production decisions. Similarly,
the vendors’ inventory and shipment decisions depend upon &; because
that is the information available to the vendor when the shipping deci-
sions are made. However, the realized unit sales, and consequently the
retailer’s on hand inventory, depend on both &; and £;. This is because
the on-hand inventory depends on both the actual demand scenario and
all the production decisions, some of which depend on &;. Since the unit
sales are affected by the inventory level, this depends on &; and &; as
well. In the LP optimization, the information states §; and & are simply
treated as additional “subscripts” on variables.

3.3 Inventory Balance Equations and
Production Constraints

The production, inventory, and shipping variables are related to each
other by the following inventory balance equations for the retailer and
vendors:

I (t+1061,€5) = I; (H6, €1) + D, Sig (E = Lil&)) = Uj (¢, €5)

i|t>7+1l;

for all 4, j, &1,65, ¢, (8.1)

where [; is the shipping delay for vendor ¢,

My (t+ 11€,) = My; (t&1) + Pij (tl€i;) — Siz (1),
for all 4, j, &1, . (8.2)

When the states of information “subscripts” in one constraint are
different for different variables, the variable with fewer subscripts simply
keeps the same value for a subset of the equations.

For simplicity, our model considers only the total inventory in the
retailer’s system, as opposed to inventory levels in individual stores’.
This assumes that inventory is generally balanced across the stores, and

Once the merchandise reaches the retailer’s distribution center (DC), it is usually distributed
to the stores and displayed for sale within two to three days. In order to maximize the
productivity per square foot, there is generally little storage space in stores, and all store
merchandise is placed on display for sale as quickly as possible. The only significant delays
in this type of supply chain arise from production commitment lead times, which are usually
several months, and shipping times, which may be several weeks for surface shipments.
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is appropriate because inventory is re-balanced during the season by al-
locating replenishments to the stores that most need additional stock.
For some merchandise, transshipments are made from one store to an-
other to balance the inventory, but only if the repackaging and shipping
costs can be justified.

Constraints on each vendor’s storage space can be represented as

Z v Mi; (t€1) < w; (t) = vendor 7’s maximum storage for period ¢,
J

for all i,t, & (8.3)

where v; = storage space required per unit of product j.
A retailer may also specify an upper bound on the amount of inventory
contained within its system'’. This can be specified by

Z vil; (t|€1,€5) < wh(t) = retailer’s maximum storage for period ¢,
i

for all f,, 6[,5; (84)

The initial and final inventories may also be required to satisfy con-
straints of the form:

I; (tslé1,&5) 2 z'? = minimum initial retailer inventory for product j
for all &1,&y

I (ty|€1,&5) > z':: = minimum final retailer inventory for product j
for all &,&f

M;j (tp)€1) > :rn?j = minimum initial inventory of product j at vendor %
for all &

M;; (tsl&1) < m{j = maximum final initial inventory of product j at
vendor 4 forall £;.

The initial inventory 1? must be sufficient to create an attractive dis-
play of merchandise with which to begin the selling season. For contin-
uing, or “basic” products, the minimum final inventory z{ may be set
to the desired initial inventory for the subsequent season. The vendor’s
initialinventory m?g can be used to satisfy demand in the current season,

while the final inventory m;'; is available for the subsequent season.

"This can represent either a physical or budget restriction. In the latter case, v; will have
a different meaning.
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For some aspects of aggregate production planning, managers use
quarters as the appropriate increment of time. Using g (¢) to denote
the quarter corresponding to a time period ?, the following relationship
tallies the total production of vendor ¢ within a quarter y:

Yo ) kiP5 (Hey) = Zi(wl6y), foralli,y,&;  (8.5)
J th(t]=y

where k; = production capacity required per unit of product j. This
enables us to model quarterly constraints. For instance, to ensure di-
versification a vendor may be willing to commit only a fraction of its
quarterly capacity to a single retailer. On the other hand, less flexible
vendors may also insist on a minimum quarterly production commit-
ment from the retailer as a condition for doing business. These can be
included as follows:

ki (q) < Zi (ql&1) < ki(g), forall i,q, & (8.6)

where the bounds do not depend on the demand information. To achieve
the economic benefits of level production, certain vendors also permit
only limited changes of total production from quarter to quarter, which
can be expressed as follows:

(1= i) Zi (g = 1|&1) < Zi (ql61) < (1 +B) Zi (¢ — 1]&1)
for all i, q, & (8.7)
where 0 < a; < 1 and B; > 0. In general, vendors that allow later
commitments also typically allow greater quarter-to-quarter flexibility
(larger «; and [; parameters).
Production is also constrained by the fabric procurement decision as
follows:

Z Z Y K[ Py(tgy) = Zf (&) < Fj, forall j,&  (8.8)

7 t|et)=y
where n. =yards of fabric required per unit of product j.

34 Modeling Product Demand

The demand pattern for each product over time is an input to the
model that is conditional on the demand scenario £y, denoted as follows:
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d; (t|¢5) = actual demand for product j in period ¢.

To specify these values, we used a forecasting model form that has
been applied successfully to retail sales forecasting. Econometric mar-
keting studies have found that multiplicatively separable models of the
form

(Period t demand ) B (Total season dcma,nd)

for product j for product j

Seasonality Marketing

effect at ¢ effects at ¢
fit observed retail sales data well (Achabal et al. (1990), Kalyanam
(1996)). Thus we let

d; (t1€7) = bj (€5) - £ (8) - o5 (1) (8.9)
where
b; (&5) = full-season demand for product j under demand scenario &y

fi (t) = fraction of total demand for product j that occurs in period ¢

pj (t) = marketing effects for product j during period ¢, including price/
advertising effects.

This approach greatly reduces the model dimensionality by confining
the effect of information updating to the full-season demand, which is
a scalar. The full set of relative seasonality factors f; (t), such as that
shown in Figure 8.1, generally do not require updating. Similar represen-
tations of demand have been used by Chang and Fyffe (1971), Crowston
et al. (1973), and Hartung (1973). The specification of demand pa-
rameters and price variations due to any retail promotional strategies is
exogenous to the optimization model, hence does not affect the linearity
structure.

3.5 Calculating Unit Sales

Unit sales volume in period ¢ is bounded by the period’s demand, so

While traditional inventory models assume that lost sales occur only
when inventory is fully exhausted, in retail marketing environments the
amount of on-hand inventory can influence sales. In apparel, for exam-
ple, sales rates can deteriorate as inventory drops because the remaining
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inventory consists of increasingly broken assortments with incomplete se-
lections of sizes and colors (Smith and Achabal (1998)). Low inventory
also increases the likelihood that some stores are inadequately stocked,
i.e., the inventory is not “balanced.” While the relationship between
inventory level and sales is not necessarily linear (Smith and Achabal
(1998)), a linear approximation is reasonable within the range of values
of the inventory level that is expected in practice. This lends consider-
able analytical tractability to our formulation. Therefore, we allow unit
sales to depend upon the beginning inventory according to the following
constraints:

Uj (t1&1,&5) < myl; (8|€1,€f), for all j,t, &, & (8.11)

where 7); = maximum fraction of the beginning inventory that can be
sold in one period''. Because of (8.1) and the production capacity con-
straints in (8.6) and (8.7), it is also possible that neither (8.10) or (8.11)
will be binding for a given t.

Constraints (8.10) and (8.11) assume that the unfilled demand is lost
(to competitors, for example), which is more common than backorder-
ing for most retail merchandise. Backordering, which is actually more
straightforward to model, can easily be accommodated within our for-
mulation by modifying the inventory balance equations.

3.6 The Objective Function

The objective function will be defined in terms of the following eco-
nomic parameters:
7; (t) = average selling price for product j in period ¢

¢ij = unit procurement + shipping cost (“landed cost”) for product j
purchased from vendor ¢

rj = residual value per unit of product j at the end of the selling season

c¥ = cost per yard of fabric for product j

J

rf" = residual value per yard of fabric for product j at the end of the
selling season

h; = retailer’s unit holding cost per period for product j

""Retailers typically track the “sell-through” rate, i.e., the fraction of the beginning on-hand
inventory that is sold in each time period. If the sell-through rate is too high, it is assumed
that some sales have been lost due to insufficient inventory (see Smith et al. (1998) for further
discussion).
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v;; = vendor ¢'s unit storage charge per period for product j

The average selling price 7; () may vary by time period to allow
periodic price markdowns during the season. The value of r; hasdifferent
interpretations for seasonal and fashion items. For a seasonal item, it
corresponds to the unit value of this product in the next selling season
(i.e., the avoided replacement cost minus any holding cost). For fashion
items it describes a “salvage value.” At the selling season’s end, any
remaining fashion items may be sold through outlet stores or in bulk to
discounters, resulting in markdowns to prices possibly below the original
cost.

The expected revenue and cost for each product, denoted as R; and
Cj, respectively, are:

Ri = Y p&é)) {wj(t;igf){,g(u,gl,gf)

€16 s
+ril (tlen )+ (F - 20 (€@))  (812)
Ci = > p(&){eyPy () + vi Mij (2161}
4,t,£1
+ Z (&1,€5) by (t61,€5) + 5 Fj (8.13)
t.€1,€5

where p (€1,&y) and p (&) are the previously defined joint and marginal
probabilities, respectively. The total objective to maximize is then
> {Ri —Cj}

The fabric commitments, production capacity commitments, and ship-
ping schedules that optimize this objective function correspond to a se-
quence of decisions under uncertainty, where the demand information
changes at each decision point. In general, this can be viewed as a
stochastic dynamic programming problem (with linear constraints). Un-
fortunately, the size of the resulting state space and the complexity of
the objective make this solution approach impractical. However, as long
as the states of information are restricted to a discrete set of values, the
equations for R; and C} are linear in the d601s10n variables, so that this
optimization problem is a linear program'?

"This approach for handling uncertainty within an LP formulation was first suggested by
Dantzig (1955). Including decision variables whose values may be chosen after the resolution
of the uncertainty leads to what is generally termed as a stochastic linear program with
recourse. See Hansotia (1980) and Infanger (1994) for discussion of various technical aspects
of solving such models and extensive reviews of the literature.
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3.7 Model Extensions for Sensitivity Analysis

Important insights from an optimization analysis are often derived
from shadow prices and other sensitivity outputs. In vendor sourcing,
this information can identify the most critical vendor production and
storage constraints, and therefore guide the retailer in negotiating these
limits or in identifying alternative vendors with appropriate capabilities.
The retailer’s storage limits or end—season inventory requirements may
also be opportunities for performance improvement.

Because of the multitude of variables and constraints associated with
the specific time periods and information states, most individual shadow
prices in our model are not directly meaningful. However, useful sensi-
tivity information can be obtained by introducing additional variables.
For instance, since increases in production and storage capacity would
typically be made for the entire horizon rather than by individual pe-
riods, it is appropriate to introduce a single variable that increments a
given vendor’s capacity uniformly in all periods and information states.
If this variable is then constrained to be 0, the corresponding shadow
price will reveal the marginal benefit of increasing the vendor’s capacities
in all periods at once. We add variables for these aggregate constraints
as follows:

i

A; = increase in quarterly production capacity (000’s) for vendor i for

all quarters

A, = decrease in quarterly minimum production (000’s) for vendor 7 for
all quarters

w; = increase in storage capacity at vendor ¢ (cartons)

The appropriate constraint equations ((8.6) and (8.3)) are then re-
placed with the following:

ki (@) — A; < Zi(ql&1) < ki (q) + Dy, for all i,q,& (8.14)
Zv}-ﬂff@j (t1€1) < w; (t) +wy, forall 4,¢,& (8.15)

i
A, Aj,w; = 0. (8.16)

This enhancement was made for components of the formulation deemed
most important by the retail planners: vendor production capacity, ven-
dor flexibility, vendor storage, end-season retail inventory, and product
demand.
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3.8 Positioning This Model in the Retailer’s
Planning Process

Our discussions with executives at our retail sponsor highlighted two
key issues relevant to the implementation of our methodology. The first
deals with the timing of the analysis. Even though our planning model
formulates the demand and supply dynamics over a finite horizon, like
many other such models it would actually be used on a rolling horizon
basis. (As noted earlier, this approach can be termed “open-loop feed-
back control.”) Thus, the production planning actions recommended by
each run of the model will serve as important inputs to the subsequent
run">. The second issue deals with the level of product aggregation at
which the analysis is performed. The retail executives envisioned this
model being used for analysis at the product category level (e.g., T-
shirts, denim jackets, or denim pants) as well as at a lower product type
level (e.g., Pocket Tees, V-Neck Tees, and Crew Neck Tees). The for-
mer analysis will typically be of interest to product managers who are
responsible for the profitability of separate categories. The latter will be
of primary interest to buyers who devise procurement plans for product

types.
4. The Decision Support System

With extensive input from sourcing managers at the retail chain, the
optimization model described above was implemented as a PC-based
decision support system (DSS) named the Sourcing Allocation Manager
(SAM). The user interface screens were programmed in Visual Basic and
the optimization engine is LINGO, supplied to us by LINDO Systems.
For test problems with four products, four vendors, a nine-month plan-
ning horizon, and 27 distinct sample paths of information realizations,
the LP has several thousand decision variables and constraints. It was
solved on a 300 MHz Pentium II PC in approximately 3-5 minutes.

The DSS development was a “proof of concept” exercise with several
goals: (1) to provide a context for defining the user inputs and outputs
of the model, (2) to test the practical viability of the optimization algo-
rithm, (3) to demonstrate to the sourcing managers the potential benefits
of the system, and (4) to identify through experience the cost tradeoffs

BFor example, within the context of our formulation, at time ¢y one could be planning for a
six month selling season that begins six months hence (i.e., t; —to = 6 months, and ty —t, = 6
months). The entire planning horizon thus consists of 4 quarters, with planning decisions
being revised at a weekly level. In this case, the previously committed production, which
might be the result of a prior run of the model, can serve as input constraints to the current
run of the model.
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Figure 8.4. SAM Screen Flowchart

most important for planning. These goals were largely achieved, and
the extensive involvement of retail planners profoundly influenced the
resulting system in numerous ways. For instance, over the course of its
development, the DSS evolved from a batch-processing application that
generated the optimal sourcing plan for a particular text file consisting of
all relevant parameters, to a system that enables beginning users to per-
form sensitivity and cost tradeoff analyses interactively. Feedback from
users over the course of their cumulative experience with the DSS led to
a number of key enhancements of the core mathematical formulation as
well.

4.1 Graphical User Interface

The logical flow of the DSS screens is illustrated in Figure 8.4. In
general, all input screens must be completed before any output screens
can be viewed, although input scenarios can be stored for subsequent
analyses. Data for the input screens can either be keyed in manually or
read from a Microsoft Excel spreadsheet file, which a user can view and
modify interactively. In a full-scale implementation most of these values
would likely be fed directly from other applications or databases.
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Figure 8.5. Calendar Setup Screen

Below we will describe the main screens, although space limitations
preclude the inclusion of all screen views.

Input Screens
The Calendar Setup Screen in Figure 8.5 allows the user to specify dates
delineating the timetable for planning. The first date field is for Fab-
ric Commitment, indicating when the fabric must be ordered for all
products under consideration. The second and third dates are the com-
mitment times for the long and short lead-time vendors, respectively.
For reasons discussed in Section 3.1 and Section 3.2, all commitments
with vendors are modeled as being made at one of these two dates. How-
ever, a single vendor is allowed different commitment dates for different
products. The Selling Season corresponds to the retailer’s season for
this set of products or the time frame for which this set of production
commitments is in effect, whichever is shorter. (For continuing products,
linkage to selling periods beyond this season is achieved by requiring end
of season inventory, as described in Section 3.3.) This screen also allows
the specification of vendor and product names (up to 4 of each).
Figure 8.6 shows the screen displaying vendor and product attributes.
These are organized into a matrix with column headings (vendor names),
row headings (product names), and interior cells that each provide click-
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Figure 8.6. Vendor/Product Information Screen

through access to the appropriate type of information. This matrix
framework persists throughout the DSS.

This screen has two different views accessible via the folder “tabs”
at the top of the screen. These present the most significant attributes
of each vendor-product sourcing combination — Commitment Date and
Unit Cost. In the Commitment Date view depicted in Figure 8.6, the
interior cells report the commitment deadlines required by each vendor
for supplying each product. Short and long lead-time vendors are dif-
ferentiated by color coding of these cells (although this is not apparent
in a black-and-white graphic). Clicking on an interior cell calls up the
dialog box presented in the foreground, in which a user can view or alter
the Commitment Date or the Unit Cost. Toggling to the Unit Cost view
presents the matrix of unit costs for all vendor-product combinations.
Reflecting the richness of detail which our model can accommodate, sep-
arate input screens are required to fully specify the attributes of each
vendor and each product. These may be accessed by clicking the appro-
priate column or row heading buttons, as described below.

Clicking a column heading button in the Figure 8.6 screen calls up
the vendor information shown in Figure 8.7. The allowable quarter-to-
quarter production volume adjustment (see equation (8.7)) and shipping
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Figure 8.7. Vendor Information Screen

lead time dictate the relative flexibility of this vendor. The Vendor Pro-
duction Capacity button allows access to a screen detailing each vendor’s
total production capacity by quarter, shown in Figure 8.8. The storage
capacity and total quarterly production capacity are shared across all
products made by this vendor.

Clicking a row heading button in the Figure 8.6 screen calls up the
Product Information screen shown in Figure 8.9. Here each product’s
sales forecasts (for the “Most Likely” case, as described in Section 3.1),
retail prices (week by week to accommodate frequent price changes if
dictated by the retailer’s promotional strategy), inventory costs and re-
quirements, and fabric information are entered (or taken from a spread-
sheet using an embedded interface accessible from the “Show Spread-
sheet” button) and displayed. The inventory constraints and costs on
this screen apply only to inventory held in the retailer’s distribution
system and stores.

The Projected Sales Levels button on the left-hand menu calls up
the screen shown in Figure 8.10, which solicits the retail planners’ be-
liefs about demand uncertainty. The “Most Likely” total season forecast
for each product is automatically computed by summing the estimated
weekly sales shown in Figure 8.9. The user specifies what a “Low”
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Figure 8.10. Projected Sales Levels Screen

and “High” forecast update would mean for each product in terms of
a percentage deviation from the “Most Likely” volume. The percent-
age changes input here for a product capture the uncertainty about its
demand, i.e., the extent to which the projections about that product’s
demand might change between f, and ¢,. Stable products will tend
to have more narrow ranges than newer or fashion-oriented products.
These parameters are used to scale the weekly sales according to the de-
mand model described in Section 3.4. At the bottom area of the screen
the user must specify relative likelihoods for each of the three scenarios.
After considerable discussion and experimentation, this input format
was preferred by the sourcing managers because they are accustomed to
developing strategies for three scenarios (cf. footnote 7).

Output Screens

A complete set of inputs allows the optimal sourcing plan to be deter-
mined by the LP solver engine. Since this plan contains considerable
detail as well as contingency plans, the output is summarized across
several screens. The main output screen is shown in Figure 8.11, which
reports the total amount of each product that should be committed to
each vendor under the three scenarios. (The buttons along the bottom
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Figure 8.11. Aggregate Capacity Plan

of the screen allow the user to toggle through the plans for each indi-
vidual scenario, or to juxtapose all three as shown in the figure. Each
scenario button has a different color, which is used to display the cor-
responding plan in the “Show All” view.) By definition, long lead-time
vendors must have the same commitments in all scenarios, while short
lead-time vendors may receive commitments that depend on the sce-
nario. This flexibility justifies any cost premium the latter vendors may
charge. The summary provided by this screen can give each vendor a
reasonable picture of how its total volume of business might vary. The
buttons on the row and column headings are analogous to those in Figure
8.6, in that they provide paths to further details by vendor or product.

To eliminate any potential LP infeasibility due to the vendor storage
constraints, the formulation was modified to allow unlimited auxiliary
storage (at some very high price, to discourage the pursuit of this op-
tion). The Extra Vendor Storage cells at the bottom of the screen report
the additional space (in thousands of cartons) required by the modified
formulation’s optimal plan. The sourcing managers considered this re-
laxation to be reasonable since, in spite of formally stated vendor storage
limits, additional storage can almost always be obtained at some price.



190 SUPPLY CHAIN MANAGEMENT

l J Product Level Capacity Plan and Shipments |
- Product Name:
I 2| | sales Tevels Weekly Sales and Replenishment Plan

ot Unit Price | 156 158 158 158 158
T BEm— [Paciic Su %4 00 00 00 00 68
[T Aggegae || ?—-’;T | 1036| 304 00 76 0O 29
| |

|
|
Pb‘ml.nu il 1600] 304 00 76 00 87

5| ety | | [~ Baginning . (000s) 1084 1018 1048 894 1037
g — | Al 1|
| i |
i j,l 5:::::-” H Fabric Commiment[ 775.2  Yard(000)
_______ '___________ii FabicLet Ovee [ ¥ arde000z)
T sem | i
‘J[ Seenaios | "":3':”.'""‘ Low | Iumuut-l Heh | ‘
Sop Sero] |
E=it {
o S

Figure 8.12. Product-Level Capacity Plan and Shipments Screen

The Product-Level Capacity Plan and Shipments Screen in Figure
8.12 shows week-by-week sourcing plans by product, including shipping
receipts and fabric commitments for each scenario (displayed, as always,
by toggling via the buttons near the screen’s bottom). Figure 8.13 pro-
vides the vendor perspective on quarterly production and shipments for
all products under each scenario. Barcharts are presented beneath the
numerical table to visually illustrate the changes in vendor commitments
for each product across the scenarios.

Figure 8.14 presents a summary of key retail performance metrics for
each of the sales scenarios. GM represents gross margin dollars, inven-
tory turnover is the total annualized sales divided by the average in-
ventory level during the season, and GMROI (Gross Margin Return On
Investment) is the product of the inventory turnover and the gross mar-
gin per unit (cf. Berman and Evans (1998)). Average cost is scenario-
dependent because salvage revenues vary with the amount of residual
fabric and end-of-season inventory. Again, the metrics take different
values for each scenario, and the barcharts compare the values for each
metric across the three scenarios.
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Figure 8.15. Sensitivity Analysis Screen

Sensitivity Analysis

Figure 8.15 shows the screen interface to the sensitivity analysis frame-
work described in Section 3.7. Clicking on the vendor or product name
buttons takes the user back to the appropriate input screen to view the
current parameter value and make any desired modifications. This al-
lows “What if?” analyses to be conducted quickly and easily for a wide
range of assumptions. Added at the request of our retail sponsor, this
screen has had the longest evolutionary path of any of the SAM screens
and is considered to have the greatest strategic importance. By running
the DSS, the retailer can determine which of each vendor’s constraints
are the most significant obstacles to improved profitability and can also
estimate the value of relaxing any particular constraint. This can play a
valuable role in negotiating with vendors by providing information that
was not previously quantifiable.

Figure 8.16 shows the screen associated with the Save Scenarios but-
ton on the left menu. Because of the large number of input parameters,
and to facilitate what-if analysis, SAM allows the capture of inputs and
outputs for up to five problem scenarios. The user can annotate these
in the text window near the bottom of the screen, where the various
scenarios can be saved and retrieved.
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Figure 8.16. Save Scenarios Screen

4.2 User Experiences with the DSS

Experience with the SAM DSS was obtained through an analysis con-
ducted with our sponsor firm, using representative but disguised data.
The retailer’s goal for this analysis was to gain experience with the model
and develop an understanding of the key tradeoffs between vendor ca-
pabilities and unit costs. The details are presented as a case study in
Agrawal et al. (2001). Some of the resulting insights are as follows:

1 Building a stochastic model allows presentation of distributional
information about any system performance metric. This can pro-
vide valuable insight about the extent of intrinsic risk to which a
decision-maker is exposed. The sourcing managers were able to
connect this to their strategies for managing risk, including those
related to the selection of product assortments. This would not be
possible under any deterministic planning methodology.

2 Under reasonable assumptions, SAM’s recommendations can im-
prove expected profits by several percentage points relative to typ-
ical sourcing practices. Since net profit margins in retailing tend
to be very small, this suggests that our methodology can offer very
meaningful gains.
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3 There can be value in using a portfolio of vendors with differing

production flexibility. In practice, while buyers know at an intu-
itive level that flexibility has value, the inability to quantify this
has left them biased toward vendors quoting the lowest unit costs.
Our model easily demonstrates that additional vendor flexibility
can indeed be worth a price premium when demand uncertainty
exists, and we provide a means to evaluate this tradeoff with a
realistic level of detail.

Not all production capacity is created equal. Capacity cannot be
properly valued independently of its flexibility constraints, such
as commitment lead time and allowable production change from
quarter to quarter. The effect of these conditions is a function of
the attributes of the type of merchandise, in particular the pre-
dictability of demand and the cost of obsolescence.

While conventional wisdom suggests that inventory turnover is de-
termined by the replenishment policies adopted at the store level,
tension between demand seasonality and the vendors’ desire to
maintain stable production schedules profoundly affects retailer
inventory levels. Thus, efforts to increase turnover should also
consider negotiations with vendors to seek greater production flex-
ibility.

From an organizational point of view, our methodology can pro-
vide a vehicle for facilitating cross-functional communication and
negotiation. Specifically, in a retail firm the merchandising, sourc-
ing, and finance organizations typically have somewhat conflict-
ing objectives with respect to inventory management strategy. (In
mathematical terms, each group typically perceives a different seg-
ment of the overall objective function.) An early insight for us
and our corporate sponsors was that our DSS could serve as a tool
for brokering the concerns of these groups by solving the global
optimization problem, explicitly quantifying tradeoffs, and, most
importantly, defining a common vocabulary for discussion.

Conclusion

Estimating the value of adding or dropping a vendor, renegotiating
the terms of a supply contract, or improving forecast capability requires
the respecification of the production schedule in ways that may differ
dramatically from past plans. The complexity of such decisions renders
the subjective selection of optimal or even near-optimal plans extremely
difficult or impossible. While many retail buyers and merchandise plan-
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ners rely on extensive databases and query tools for decision support,
there are few computer-based methods for optimal decision making or
sensitivity analysis regarding these decisions. Our model and the associ-
ated decision support software provide retail planners with the power to
identify and evaluate a wide variety of potential supply chain improve-
ments that they are not currently able to consider.

Capturing market uncertainty through discrete scenarios is a famil-
iar mechanism that simplifies the required user inputs and allows the
application of linear programming optimization. Because of the many
types of production and sales constraints that may apply in a retail en-
vironment, simplicity of use is essential to the practicality of a decision
support tool. Tests of our model by buyers and planners within a major
retail organization indicate that our framework is compatible with the
production commitment decisions they face.
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Abstract

Recent business and technological trends have transformed the struc-
ture and performance requirements for distribution channels in many
industries. Higher service level expectations of retail customers, distri-
bution outsourcing by manufacturers, and the proliferation of advanced
information technologies drive these transformations, presenting new
problems in supply chain management. Motivated by a project with
a leading building-products manufacturer, this paper addresses some
of these new issues. Over the past two decades, this manufacturer
witnessed the migration of building-products sales from independent
specialty retailers to large retail chains, prompting it to create a new
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network of independent distributors to meet the service expectations
of these ‘big-box’ retailers. This paper addresses three important chal-
lenges in managing the new distribution network. We first develop a
fee-setting model to decide the manufacturer’s compensation scheme
for the services provided by its independent distributors. Next, we ad-
dress a tactical distribution planning problem, incorporating resource
acquisition and deployment decisions, for scheduled deliveries when de-
mand is highly variable. Lastly, we investigate possible mechanisms
for limiting retail store-order variability, and analyze the system-wide
cost benefits resulting from variability reduction. In addition to identi-
fying new modeling opportunities and discussing their implications for
the building-products manufacturer, this paper highlights new research
opportunities resulting from the evolving dynamics of supply chain man-
agement.

1. Introduction

Distribution channels in many industries have experienced major trans-
formations in recent years — in their architecture, collaborative part-
nerships, operations practices, and performance requirements. These
channel transformations stem from several factors that have altered the
ground rules for providing competitive distribution services. We at-
tribute these changes largely to three major driving forces:

1 Customers and retailers are raising their suppliers’ service expecta-
tions. Customer demands for product variety and ready availabil-
ity are propagating throughout supply networks. Powerful retail
chains, responding to these customer needs, have in turn increased
their service expectations, requiring that their suppliers provide
shorter delivery lead times and more frequent deliveries of a wider
variety of products in smaller batches.

2 Manufacturers are increasingly outsourcing distribution. Partner-
ships with third party logistics providers allow manufacturers to
focus on their core competencies while taking advantage of the
distribution efficiency and expertise of independent distributors.
In turn, distributors are expanding the scope of their activities be-
yond their traditional warehousing and transportation functions to
include customization and postponement services (such as merge-
in-transit and just-in-time assembly).

3 Information technologies are providing more timely and detailed
supply chain data. Advances in information technologies—both
in reach and connectivity—increase the potential for information
sharing and enable tighter integration among channel partners.
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New web-based and enterprise integration systems permit visibility
of information from various points in the supply chain, significantly
reduce information and order lead times, and facilitate distributed
monitoring and control.

These transformations present many new planning and decision mak-
ing challenges. Recent supply chain management research identifies
many modeling opportunities associated with these challenges. For in-
stance, studies of optimal buyer-supplier contracting schemes specify ap-
propriate service level requirements, revenue-sharing incentives, and de-
livery and payment terms (e.g., Tsay, 1999, Li and Kouvelis, 1999, Moin-
zadeh and Nahmias, 2000). A significant body of work focuses on multi-
stage supply chain planning and coordination models. These models typ-
ically seek to streamline the flow of goods through the chain by tightly
integrating the operations of channel partners or aligning their incen-
tives (e.g., Cachon and Zipkin, 1999, Lee and Whang, 1999, Chen, 1999,
Porteus, 2000). Another stream of literature emphasizes the benefits of
sharing accurate and timely information in supply chains, made possible
through advances in information technology (e.g., Gavirneni, Kapuscin-
ski, and Tayur, 1999, Lee, So, and Tang, 2000). Our aim is to add to the
existing literature by discussing three new models—on delivery compen-
sation, distribution planning, and order variability reduction—that sup-
port improved distribution chain coordination and performance. These
models are motivated by a project with a leading building-products man-
ufacturer who recently redesigned its partnered distribution network to
respond to the needs of its important retail customers.

1.1 Project context

Trends over the past decade in the distribution channels for build-
ing and home improvement products illustrate the channel transforma-
tions many industries have undergone. In the 1970s, the overwhelming
majority of building-products sales to the residential market occurred
through small, independent hardware stores. The channel transforma-
tion for building-products sales began in the 1980s when national home
improvement retail chains such as The Home Depot and Lowe’s began
to grow rapidly in sales and market share. These ‘big-box’ superstores
now dominate the market for do-it-yourself home-improvement prod-
ucts by offering one-stop-shopping for a wide variety of products at low
prices. The big-box retailer concept thrives in many industries today
(e.g., Sam’s Club, Toys R’ Us, Office Depot). Major retail chains such
as The Home Depot, which has opened over 1000 stores since its founding
in 1978, are often successful in leveraging their vast purchasing power to



202 SUPPLY CHAIN MANAGEMENT

negotiate low prices and strict delivery terms from suppliers. Offering a
wide variety of products to consumers with slim profit margins requires
big-box stores to keep low inventories; to achieve these goals, big-box
stores insist on receiving frequent and reliable deliveries from suppli-
ers under short lead times. Meeting these strict delivery requirements
presents significant new challenges to suppliers.

Faced with these challenges, a leading building-products manufac-
turer (henceforth called the “manufacturer” or “firm”) initiated a project
with the authors to study and suggest ways to improve its distribution
planning practices and operations. The manufacturer supplies over 250
SKUs—grouped into three main product lines—to each of over 1,000 na-
tionwide big-box retail stores and warehouses every week. Stores and
warehouses can place their orders up to one day prior to their scheduled
delivery date, and are not required to order in large batches. Big-box
customers require a single point-of-contact (within the manufacturer’s
organization) for placing orders, and expect consolidated shipments of
items from the manufacturer’s various product lines. To meet these
needs, the manufacturer established a nationwide network of approxi-
mately 10 independent distributors to support distribution to the big-
box retailers. Each distributor is responsible for servicing the product
needs of all retail stores within its exclusive geographical region. At the
time of the study, the manufacturer had already made some overarching
strategic logistics decisions, such as the locations of distribution centers
and their assigned retail stores. So these issues were outside the scope
of our study.

The role of distributors in the big-box network differs significantly
from their traditional role. Traditionally, distributors typically carried
only a subset of the manufacturer’s product lines and were responsible
for providing sales and credit services for the independent retailers. In
contrast, distributors serving the big-box retailers have no responsibility
for sales and credit functions, but they must stock and distribute all of
the product lines and supply a large geographic region. For the big-box
retailer accounts, the manufacturer handles the marketing and sales of
its products, including retail pricing and handling accounts receivables.

Each store in the big-box retail network places its orders directly with
the manufacturer, and requires regular deliveries of consolidated ship-
ments containing all ordered items at scheduled times each week. Nearly
all stores receive replenishments of the manufacturer’s products once per
week. Upon receiving an order from a store, the manufacturer transmits
the order to the corresponding regional distributor. The distributor is
then responsible for delivering the ordered goods at the scheduled deliv-
ery time. Each distributor is responsible for managing its own delivery
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and inventory processes, but must ensure that the ordered products are
delivered to each store on time.

To facilitate the coordination and control of the new distribution sys-
tem, the manufacturer recently made significant investments in upgrad-
ing their information technology (IT) capabilities. The new IT systems
facilitate information visibility throughout the supply chain. The man-
ufacturer can now track detailed point-of-sale (POS) transactional data
from retailers, retailer-to-manufacturer orders, and distributor-to-store
shipment data on a daily basis. Our research project with the man-
ufacturer, initiated approximately one year after the new big-box dis-
tribution network was established, started with a broad charter: using
the detailed transactional data on sales, shipments, and inventories at
various locations throughout the big-box supply chain, conduct a “man-
agement audit” of current logistics and distribution operations in the
big-box network, and identify opportunities to improve the performance
of the system. The project was motivated both by the desire to ex-
ploit the newly available data, and also by feedback (complaints and
suggestions) from distributors and customers.

In this paper, we discuss three specific modeling opportunities our
diagnostic analysis identified. The first problem, fee-setting for delivery
services, occurs at the manufacturer-distributor interface. The manu-
facturer must establish a consistent, fair, and equitable scheme to com-
pensate its big-box distributors for the warehousing and delivery ser-
vices they provide. Our initial data analysis indicated that the man-
ufacturer was over-compensating certain distributors (relative to their
costs), while under-compensating others. We developed a new delivery
fee-setting model that reduces over-compensation while ensuring that
no distributor is under-compensated. The second problem, distribution
planning with stochastic demands and scheduled deliveries, focuses on
improving distributor delivery operations and capacity planning. In or-
der to consistently meet delivery commitments, distributors create fixed
delivery routes that do not change from week-to-week. In construct-
ing these routes, however, distributors have difficulty planning for the
impacts of variability in stores’ weekly orders. We developed a distri-
bution planning model that explicitly accounts for demand variability
(and 1its associated costs) when designing delivery routes. Our model
considers the availability and costs of “overflow” options for delivering
on time when demand exceeds truck capacity. The third problem, up-
stream variability control mechanisms, focuses on improving operations
at the distributor-retailer interface. Many distributors felt they were in-
curring unnecessarily high safety stock and delivery costs due to stores’
highly variable order quantities. After verifying that the stores’ order
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variability led to distribution system inefficiencies, we developed an an-
alytical framework encompassing several logistics coordination models
to study the ability of certain variability control mechanisms to lower
system-wide logistics costs, including inventory, backlog, transportation,
and expediting costs.

The three problems we discuss in this paper have not been previously
addressed in the literature. We propose appropriate deterministic and
stochastic optimization models to address each problem, and apply the
models using real data from the manufacturer. Our model formulations
are designed to be sufficiently generic to permit application outside of
the building-products industry. This paper motivates and develops each
model, and summarizes the results from our analysis and computations.
The remainder of this paper is organized as follows. Section 2 discusses
the fee-setting problem for developing a fair and consistent compensa-
tion scheme for distributor deliveries. Section 3 presents our distribution
planning model to provide scheduled delivery services when demand is
stochastic. Section 4 considers the impacts of order variability on dis-
tributor costs, and proposes variability control mechanisms to improve
distribution system coordination and performance. Section 5 presents
concluding remarks.

2. Optimal Compensation for Distributors

As manufacturers strive to make their supply chains more responsive
to market needs, they have come to recognize the critical importance
of the distribution function in achieving this goal. Third-party logis-
tics firms or distributors, with their specialized expertise and resources,
provide an attractive outsourcing option to handle delivery activities.
Just as manufacturers need to develop tight linkages with their vendors,
they must also establish collaborative partnerships with distributors to
ensure streamlined flow, timely deliveries, and customer satisfaction.

Partnering with third-party distributors requires actions and nego-
tiations on many fronts—installing compatible information systems to
exchange transactional data (e.g., conveying orders for delivery), estab-
lishing operational procedures and mutual responsibilities, agreeing on
service expectations and metrics, and negotiating the payment scheme
for compensating distributors for delivery services. In our project with
the building-products manufacturer, the process of deciding an appro-
priate compensation scheme surfaced as an important issue for the firm,
one that led to a novel optimization model and decision support system.

We next describe the problem context, formulate a basic version of the
problem as a mathematical program, discuss model enhancements, and
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present results from actual application of the model to the firm’s big-box
distribution operations. Balakrishnan, Natarajan, and Pangburn (2000)
discuss this problem and approach in greater detail.

2.1 Fee-setting decision context

As noted earlier, to supply the customer base consisting of over 1,000
retail stores nationwide, the firm relies on a select group of regional dis-
tributors to deliver products from their respective distribution centers
(DCs) to assigned stores. The firm compensates distributors for their
delivery services by paying a per-delivery fee that depends upon the
delivery weight and distance from the DC to the store. This payment
scheme, modeled after the tariff structure commonly used in the less-
than-truckload (LTL) industry, partitions the store-to-DC distances and
delivery weights into (discrete) sets of contiguous distance and weight
ranges. For instance, if the maximum DC-to-store distance is 300 miles,
the table might categorize distance into three ranges, say, 0 to 50 miles,
50 to 150 miles, and 150 to 300 miles. The fee table contains one row
and column, respectively, for each weight and distance range; the value
in each cell of this table denotes the fee payable for any delivery that
falls into the corresponding distance and weight range. To avoid conflicts
and perceptions of differential treatment among distributors, the firm de-
cided to apply the same fee table uniformly to all the distributors. This
fee table-based compensation approach offers many advantages. Dis-
tributors readily relate to this approach since it is similar to LTL tariff
structures, and incorporates the primary drivers of transportation cost:
delivery distance and weight. From the manufacturing firm’s perspec-
tive, the scheme is easy to administer and update (when transportation
costs or distribution profiles change), and offers the added advantage
of compensating distributors for services rendered rather than simply
resources consumed.

Designing the fee table-based compensation scheme entails two sets
of decisions: a relatively long-term range selection decision, and a peri-
odic fee setting decision. Range selection refers to the choice of distance
and weight ranges—both the number of ranges, and the width of each
range—that define the rows and columns of the fee table. For a given
choice of ranges, fee setting (or fee revision) pertains to selecting the fee
value for each cell of the corresponding table. Fees are revised periodi-
cally (e.g., once a year) due to changes in transportation costs, demand
patterns, store assignments, and so on; the ranges impact the structure
of the table, and so are changed less often. In this section, we focus on
modeling the fee setting decision.
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How should the firm select the fee values for each cell of the fee ta-
ble? One option is to base these fee values on commercial LTL freight
rates. This approach has several disadvantages. First, commercial rates
vary by carrier and by region, making it difficult to infer a single set of
rates to serve as the basis for fee setting. More importantly, commercial
rates typically apply to ad hoc shipments, and can therefore be signifi-
cantly higher than rates that are appropriate for long-term distribution
contracts such as those between the firm and its distributors. However,
commercial rates do provide some useful benchmarks for fee setting. In
particular, these rates and their increments from one range to the next
might serve as guidelines (e.g., upper bounds) for selecting fee values.

Although the firm expects to pay its distributors less than commercial
rates, it must also ensure that each distributor receives adequate total
compensation to cover its cost and provide a reasonable margin. We
refer to this condition as the cost coverage requirement. Motivated by
this consideration, the firm initially (prior to applying our model) used
a cost-based approach to decide fee values. The approach consisted of
performing a detailed study of delivery routes from DCs to stores as-
suming deterministic demands, costing each route, and allocating these
costs to individual routes in order to estimate the per-delivery costs
(and hence fees) for each distance and weight range. Unfortunately, this
heuristic method does not necessarily guarantee cost coverage. The in-
herent difficulties associated with cost allocation schemes combined with
the week-to-week variations in actual delivery weights, render these cost
estimates unreliable. Indeed, after using the cost-based fee table for a
year or so, review of the total actual compensation versus cost for each
distributor revealed that some distributors received significant surpluses
(i.e., compensation far exceeded costs) whereas others showed marked
deficits. Naturally, distributors who experienced deficits argued for in-
creasing the fee values. However, from the manufacturer’s perspective,
fee increases have a multiplier effect on the firm’s total payment, since
the same fees apply to all distributors, not just those distributors show-
ing a deficit. The firm was, therefore, interested in developing a system-
atic and “equitable” fee-setting approach that covers distributors’ costs
while simultaneously reducing disparities in overcompensation.

2.2 Problem definition and formulation

To address the fee-setting decision, we developed a linear program-
ming model that incorporates both market conditions (i.e., commercial
rates) and cost considerations via constraints. The model uses data on
commercial freight rates to generate upper and lower bounds on permis-
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sible fee values. And, instead of allocating costs to individual deliveries,
the model employs constraints to ensure that the total expected weekly
compensation for each distributor equals or exceeds anticipated costs.
We next formally define the fee-setting problem and develop its mathe-
matical formulation.

We are given [ weight ranges and J distance ranges that define the

rows and columns of the fee table. Fori = 1,2,..., T, the i** weight range
corresponds to all delivery weights belonging to the pre-specified inter-
val [w;, wiy1); similarly, for j = 1,2,...,J, the given interval [d;,d;;1)

defines the distances corresponding to the jt* distance range. Suppose
the firm uses K distributors, indexed from £ = 1 to K, to deliver its
products. Each distributor & serves a pre-assigned set of stores. For each
store, we know the store’s distance from its assigned DC (and hence the
distance range corresponding to deliveries to this store), and the proba-
bility distribution of weekly demand (expressed in terms of total weight
of products ordered by the store). Using this information, we can com-
pute, for each distributor, the expected number of deliveries per week
that fall within each distance and weight combination in the fee table
(see Balakrishnan et al., 2000, for details of this computation). Let a;;
denote this expected number of weekly deliveries by distributor k& that
fall within weight range ¢ and distance range j.

Our model requires an estimate of each distributor’s expected total
cost per week, denoted as C}, to deliver orders to its assigned stores.
This estimate might include the fixed costs of delivery resources such as
trucks and drivers, operational costs for fuel, maintenance and insurance,
contingency costs if demand exceeds truck capacities, and a reasonable
profit margin. Section 3 describes one approach to estimate this cost
using a detailed model of delivery activities; alternatively, the estimate
might be based on historical data.

The fee-setting model must decide the fee value for each cell of the
table. Let g;; represent the fee value selected for weight range ¢ and
distance range j. The fee values must be monotonically increasing, i.e.,
fees must increase as distance or weight increases. Moreover, to assure
acceptance of the fee values by distributors, the firm might wish to re-
late these values to commercial freight rates by imposing appropriate
upper or lower bounds on the individual fee values. Let l;; and u;; de-
note these exogenous minimum and maximum permitted fee values for
cell (i, j) of the table. Finally, cost coverage requires that, for each
distributor, the total expected compensation must equal or exceed cost.
For convenience, we define an auxiliary decision variable s denoting
the expected surplus (i.e., expected compensation minus cost) for each
distributor k = 1,2, ..., K. The model can be specified using two alter-



208 SUPPLY CHAIN MANAGEMENT

native objective functions. To develop a compensation scheme that is
“equitable” across distributors, we might choose to minimize the maxi-
mum surplus among all distributors. Alternatively, from the perspective
of the manufacturing firm, we might minimize the firm’s total expected
weekly payments to all distributors, or equivalently minimize the sum
of distributor surpluses. Both of these objectives are easy to model. To
illustrate the problem formulation, we consider the latter minsum ob-
jective function, and represent the fee-setting decision problem as the
following linear program [FSP]:

[FSP]
K
minimize El Sk (9.1)
subject to:
I J
Cost Coverage : 1'21 _12 aijkgi; — Sk =Cr, k=1,..., K, (9.2}
Monotonicity Gij = Gi—14, 1=2,...,I, (9.3)
i=1...,4
Gij 2 Gij—1, i=1,...,1, (9.4)
J = &5y J:
Fee Bounds lij < gij < uij, i=1,...,I, (9.5)
i=1,...,J,
Nonnegativity : Gijs Sk = 0, i=1,...,I, (9.6)
j=1,...,J,
Ee=ly el

The objective function (9.1) minimizes the sum of distributors’ ex-
pected surpluses (and hence the firm’s expected payments). Constraints
(9.2) ensure cost coverage for all distributors. The first term on the left-
hand side of this equation represents the expected weekly compensation
that distributor k receives. Since the surplus variable s; must be non-
negative (9.6), equation (9.2) ensures that the total expected compen-
sation exceeds the distributor’s anticipated cost Cj. Constraints (9.3)
and (9.4) specify that fee values must increase with weight and distance,
and constraints (9.5) impose the upper and lower bounds on fee values.

Formulation [FSP] is simple, yet remarkably versatile. First, although
delivery quantities are stochastic, the model captures the impact of this
stochasticity on distributor compensation, i.e., it accounts for the vari-
ability in stores’ orders in computing the fees that distributors receive.
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Second, the model can easily accommodate the alternative minmax ob-
jective of minimizing the maximum surplus over all distributors. Third,
the model can also incorporate a variety of additional constraints to con-
trol the “shape” of the fee function (with respect to weight and distance).
For instance, we can specify minimum and maximum permissible fee in-
crements from one range to the next, and impose concavity constraints
that ensure scale economies in weight or distance. Finally, we can easily
adapt the model to represent alternative fee structures that specify in-
cremental fees per mile or pound, rather than the fixed fee g;;, in each
cell of the table. Balakrishnan et al. (2000) discuss these enhancements
in detail.

2.3 Model application and impact

The fee-setting linear program [FSP] is easy to implement and solve
using standard linear programming packages on a personal computer.
As we mentioned in Section 1, the manufacturing firm had recently up-
graded its information system to integrate both internal and external
operations (e.g., order processing, point-of-sale and distribution trans-
actions). Consequently, sales and shipment data for each store were
relatively easy to obtain. The firm generated estimates of distributors’
total costs based upon the results of an activity-based model as well
as detailed financial data provided by its distributors as part of their
partnership arrangements. Bounds on fee values and increments were
determined from representative commercial freight rates.

Based on these inputs, the model generated a new fee table that not
only provided more equitable compensation to distributors but also re-
duced the firm’s total expected payments compared to the option of
using the firm’s current (manually chosen) table.! In particular, us-
ing the current table, expected distributor surpluses ranged from 0 to
59% above cost. The optimized table (using the current ranges) ensured
better parity among distributors by reducing the maximum surplus to
under 28%, and simultaneously decreasing the firm’s total expected pay-
ments by over 12%. Iterative application of the [FSP] model for different
choices of weight and distance ranges led to further improvements in the
fee table. Balakrishnan et al. (2000) present a more detailed discussion
and interpretation of these results. A year after the optimized fee table
was introduced, the distributors were supportive of the new fee-setting

'Due to cost increases, the fee values in the current table had to be inflated to ensure that
no distributor makes a loss.
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approach, prompting the firm to apply the optimization-based approach
again to revise fee values.

In addition to these tangible benefits, the model provided a structured
framework for managers to think about fee setting. Modeling constructs
such as the cost coverage and fee credibility constraints facilitated man-
agers’ understanding of the structure of the fee-setting problem, its eco-
nomic impact, and the complicated interrelationships among fee values.
The [FSP] model shows how to obtain an accurate representation of dis-
tributor compensation by explicitly incorporating demand variability,
and also provides diagnostic capabilities. By comparing distributor sur-
pluses, planners can identify “inefficient” distributors whose operations
and costs necessitate higher fees than do other distributors. Such analy-
ses might suggest operational improvement initiatives, or perhaps even a
reassignment of stores to distributors. The model also greatly facilitates
sensitivity analysis. For instance, it permits studying the behavior of
compensation as a function of variability in store demands. This type
of analysis revealed that, under some circumstances, total compensation
can actually decrease as demand variability increases. This counter-
intuitive behavior occurs because, as demand variability increases, a
higher proportion of demand might fall in lower weight ranges; if the
fee values for these lower ranges are significantly smaller, then total fees
paid to a distributor will decrease.

In summary, the fee-setting model proved to be an effective deci-
sion tool to support compensation negotiations with distributors. This
model, which has not been previously addressed in the literature, is
applicable to a variety of partnership settings where a uniform compen-
sation scheme, based upon fee tables, is needed. The model also opens
avenues for further research on compensation design. The [FSP] model
focuses on fee setting, assuming that the weight and distance ranges are
pre-specified. At a higher level, one can consider a model that simul-
taneously incorporates both range selection and fee setting decisions.
Although easy to formulate, this problem is non-linear and therefore
much more difficult to solve. Developing effective solution methods for
this problem is a promising direction for further research.

3. Distribution Planning for Scheduled
Deliveries with Uncertain Demand

The estimates of each distributor’s expected weekly cost to meet deliv-
ery obligations serve as critical inputs for the fee-setting model described
in Section 2. The manufacturer would like to accurately estimate these
costs, both to ensure that distributors’ operations are efficient and to
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reduce the overall fee payments needed to cover costs. In turn, these
costs depend on the distributors’ resource levels and delivery activities.
Specifically, distribution costs consist of fixed costs for delivery resources
(e.g., trucks and drivers) plus activity-dependent costs (e.g., costs that
depend on trip mileage and duration). In addition, since big-box retail-
ers’ order sizes vary from week-to-week, deliveries to stores might entail
extraordinary costs to accommodate unusually high demands. Conse-
quently, accurate cost estimation requires modeling each distributor’s
operations. In this section we describe a distribution planning model
that can support distributors’ tactical decisions (e.g., acquisition and de-
ployment of delivery resources), and can also serve as a cost estimation
tool for the manufacturer. Given the stores served by each distributor
and their projected demands, the cost-minimizing model incorporates
resource-sizing decisions (i.e., choosing the appropriate truck fleet size),
and determines a set of truck routes for each day of the week in or-
der to meet all stores’ demands. The manufacturer and its distributors
can use the model to provide cost and efficiency benchmarks, assess the
impacts of demand variability, and identify opportunities for improving
distribution operations.

This section focuses largely on motivating and developing the distribu-
tion planning model, and only briefly discusses our implementation of a
particular heuristic solution approach (based on genetic algorithm search
techniques). Three characteristics of our distribution planning problem
differentiate it from existing deterministic and stochastic vehicle rout-
ing problems in the logistics literature: (i) store deliveries must follow a
fixed schedule; (ii) when demand is high, the distributor can use contin-
gency resources to make deliveries, i.e., demand can “overflow” or exceed
truck capacity, but at a cost; and (iii) since the same truck can serve
different routes on different days, the model must incorporate “delivery
calendaring,” i.e., assigning truck-routes to days of the week. Section 3.1
reviews the big-box retailers’ delivery requirements, and discusses their
implications for efficient delivery strategies. In Section 3.2, we formally
define and formulate the distribution planning problem as a stochastic
optimization model. Section 3.3 briefly discusses an embedded overflow
optimization subproblem needed to compute the cost coefficients for the
model, and Section 3.4 outlines a genetic algorithm that we developed
to approximately solve this problem. Section 3.5 reports preliminary
computational results.
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3.1 Distribution challenges and delivery
strategies

Distributors face several challenges in meeting the big-box retailers’
stringent supply requirements to support their high-volume, high-variety
sales strategy. Prom the delivery planning perspective, the following
three requirements are important:

1 Scheduled deliveries: each store requires periodic (typically weekly)
deliveries, on the same day(s) and time each week.

2 Unconstrained order quantities: stores can order items in any de-
sired quantities, without limits on minimum or maximum order
sizes; orders can be placed as late as the day before a scheduled
delivery.

3 Single, consolidated delivery: orders placed before each scheduled
delivery must be delivered fully on a single truck—unless the order
size exceeds a full-truckload.

Stores require single, scheduled deliveries due to the bottlenecks they
face at their unloading docks. Since stores stock a wide variety of prod-
ucts supplied by numerous manufacturers, and since they require fre-
quent deliveries (in small lot sizes) to minimize inventories, their loading
docks are highly congested. Consequently, they require tightly coordi-
nated deliveries from suppliers.

To illustrate the scope of distributors’ operations, consider the require-
ments facing one distributor whose operations we studied in detail. This
distributor supplied 67 stores within a 325-mile radius from the ware-
house. The average distance from warehouse to store was 130 miles.
Over 95% of these stores required one delivery per week; a few larger
stores required multiple deliveries per week, while three small stores or-
dered products only once every two weeks. On average, stores ordered
approximately 5,400 pounds?, or one-eighth of a truckload, per delivery.
But, order quantities varied widely from week-to-week. The coefficient
of variation of demand (defined as the standard deviation of order weight
divided by mean order weight), averaged across all 67 stores, was ap-
proximately 0.85; the ratio of maximum to mean order quantity ranged
as high as 6.3 for a single store.

Let us now examine the implications of these delivery requirements in
terms of viable strategies for the distributor. Since stores often order far

2Since the products are quite dense, truck capacities are constrained by the total weight
rather than volume of products.
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less than a full truckload and since they can be quite distant from the
warehouse, visiting just one store on each trip is not cost effective. In-
stead, the distributor operates “milk runs” or multi-stop delivery routes,
originating at the warehouse. We refer to the subset of stores served on
a route under “normal” circumstances (i.e., when the total actual de-
mand of these stores does not exceed the truck’s capacity) as a group.
Since each store requires delivery at the same time each week, the store
groups are static. That is, the set of stores to be served on a route does
not change from week to week.

If the weekly order quantity for each store were constant, then a de-
terministic vehicle routing algorithm (incorporating truck capacity con-
straints) might prove adequate to decide optimal (cost minimizing) store
groups and truck routes. Even in this scenario, however, the model
should incorporate fleet sizing and scheduling decisions, i.e., assigning
groups to days of the week, and assigning trucks to groups in order to
minimize the number of trucks needed to meet all delivery needs. On
the other hand, if stores did not insist on strict delivery times but in-
stead permitted deliveries at any time during their scheduled delivery
day, then the distributor could dynamically decide the store groups and
store visitation sequences each day—after observing demands. In this
case, the associated planning decision consists of deciding the number of
trucks to acquire in order to meet the total daily delivery requirements;
a newsvendor type model might be appropriate for this problem. The
big-box distribution context, however, is more complex than either of
these two scenarios because order sizes vary significantly from week to
week and stores will accept deliveries only at the scheduled time.

Distributors might employ two broad strategies to cope with vari-
ability in stores’ demands while providing scheduled delivery services—
maintaining safety capacity or using contingent capacity. The safety ca-
pacity approach refers to planning for some buffer capacity in the truck
by selecting store groups such that, on average, the total weekly demand
for the group is less than the capacity of the truck. Note that this strat-
egy reduces the capacity utilization of trucks. Contingent capacity refers
to the option of opportunistically using external resources—short-term
truck rentals and temporary drivers or third-party delivery services—to
handle demand overflow. That is, if on a particular day the total realized
demand for all stores in a group exceeds the capacity of the regular truck
(the distributor-operated truck that is assigned to this group), then the
distributor “offloads” some of the stores from the regular truck, and uses
outside resources to deliver to these stores. Embedded in this strategy
are decisions regarding which stores to offload for each combination of
store demand realizations, and how to route the trucks to cover the ac-
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tual stores assigned to them. Distributors incur higher costs when they
offload deliveries to outside sources compared to their regular delivery
costs, i.e., contingent capacity is more expensive than regular capacity.
Note that the safety capacity and contingent capacity strategies are not
mutually exclusive, i.e., the distributor might plan for some buffer ca-
pacity in trucks while simultaneously relying on outside resources for
high-demand scenarios.

Having examined the delivery constraints facing the distributor, and
the delivery strategies to meet these constraints, let us now examine
the distributor’s cost structure. Weekly distribution expenses consist of
regular costs to own and operate the distributor’s delivery resources,
and overflow costs when demand exceeds truck capacities. Regular
costs have two components: fixed costs including truck leasing expenses,
insurance, driver salaries, and administrative overhead, and activity-
dependent costs that depend on actual mileage and duration of delivery
routes such as gasoline costs, mileage charges, and overtime costs. Route
duration includes both driving time and the time needed to unload or-
ders at each store, and so activity-dependent costs can also depend on
the number of stores visited on a route. Overflow costs can include
a fixed cost for each overflow occurrence as well as activity-dependent
components. If overflows are handled by renting trucks temporarily, the
fixed cost might represent the daily truck rental charge. On the other
hand, if the distributor relies on a commercial package delivery service
or a less-than-truckload carrier for overflow deliveries, then the over-
flow cost might be additive across stores, depending only on the delivery
weight and distance from the warehouse to each individual store. Due
to demand variability, only the fixed regular costs for a given distri-
bution plan can be determined with certainty; activity-dependent costs
and even the fixed portion of overflow costs will not be known until de-
mands are realized. Since stochastic demands cause uncertainty in costs
a priori, we minimize expected weekly costs during the planning phase.

To cost-effectively satisfy stores’ service requirements, distributors
must carefully plan their acquisition and deployment of resources. Reg-
ular fixed costs depend on resource acquisition or capacity planning de-
cisions. Because activity-dependent routing costs and contingency costs
are also significant (accounting for more than one-third of total delivery-
related costs for the distributor we studied), the capacity-planning de-
cisions should be made in conjunction with detailed routing consider-
ations, and should reflect the impact of stochastic demands. When
making these planning decisions, distributors face numerous complex
tradeoffs. What is the best compromise between maintaining safety
capacity and using contingent capacity? Should stores with relatively
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stable demands be grouped together so that these groups have minimal
overflows, or should each group contain a mix of stable- and variable-
demand stores? Should stores near the distribution center be grouped
onto one route, or should such stores be dispersed across routes to serve
as convenient stores to remove from routes when overflow occurs? To
provide answers to such questions, we next propose a quantitative model
that considers both resource capacity planning and resource deployment.

3.2 Problem definition and formulation

Given the set of stores served by the distributor, their respective lo-
cations, delivery frequencies, and demand (probability) distributions,
we wish to minimize the distributor’s expected weekly distribution ex-
penses, including regular and overflow costs, to meet these demands.
Costs depend on the following interrelated tactical decisions:

m  Resource (fleet and driver) sizing: deciding the number of regular
trucks to acquire, and number of full-time drivers to employ;

m  Store grouping: forming groups of stores to be served by regular
truck routes;

w  Truck assignment: assigning each chosen group to an available
(regular) truck; and,

m  Delivery calendaring: deciding the day of the week on which each
group will be served.

For simplicity, let us assume that each store requires one delivery per
week.’ Since stores require single, consolidated deliveries, we must assign
each store to exactly one group. Store grouping decisions might be
constrained in various ways. For instance, human resource policies might
dictate that a regular tour cannot extend more than two days; in this
case, each group must be chosen such that a truck can visit and drop off
loads at all stores in the group and return to the warehouse within two
days. Similarly, for operational reasons, the distributor might impose
an upper limit on the number of stores in each group. The delivery
calendaring decision, in conjunction with the truck assignment decisions,
must ensure that trucks are only assigned to one group at a time. Again,
this decision might be constrained if individual stores have requested
deliveries on specified days of the week.*

*If a store requires multiple deliveries in a week, we can equivalently replicate the store so
that each replicate orders once per week.

*Negotiating delivery day and time with stores might be an iterative process. Based on
current plans, the distributor might propose the delivery day and time to each store. If the
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The expected activity-dependent costs for regular trucks and expected
overflow costs depend on several factors: store grouping and truck as-
signment decisions, variability in store demands, and the policies used
for truck routing and overflow handling. These latter policies include:

m  offloading policy: deciding which stores to offload from the regular
truck when total realized demand for a group exceeds the assigned
regular truck’s capacity; and,

» visitation sequencing policy: deciding how to route (regular and
possibly overflow) trucks once stores have been offloaded.

We will later elaborate on the cost tradeoffs that these policies must
consider. For brevity, we will refer to the activity-dependent costs for
regular trucks as regular routing costs.

Our model assumes that the regular routing costs and overflow costs
are separable by group. That is, for a particular group, these costs de-
pend only on the stores assigned to that group (and the associated truck
assignment, as well as the offloading and visitation policies), indepen-
dent of store assignments to other groups. The offloading policies that
distributors use in practice support this assumption. For instance, sep-
arability of regular routing costs holds because tight delivery-scheduling
constraints preclude assigning an offloaded store from one group to an-
other group (for which the regular truck might have available capacity)
scheduled for the same day. Similarly, overflow costs are separable if
distributors do not combine offloaded stores from different groups into
a single overflow route, or if the cost of overflow deliveries to individual
stores are additive.

We next present a mathematical formulation of the distribution plan-
ning problem with stochastic demands and scheduled deliveries, abbre-
viated as the DPSS problem. Let i = 1,...,n index the n stores that
a given distributor must serve. Trucks can be of different types, with
varying capacities and different fixed and operating costs. For each
truck type, suppose we can determine the maximum number of regu-
lar trucks needed of that type, using, for instance, rough-cut overall
demand-capacity analysis or industry norms. Let K denote the total
number of candidate regular trucks (over all truck types) needed to serve
the n stores. We index the candidate trucks from k =1,..., K, and as-
sociate a truck type with each truck index k. Let F} denote the fixed
cost (per week) for truck k, and let By be truck k’s capacity. Suppose

store cannot accommodate this schedule, the distribution plan needs to be revised so that
the group containing that store is assigned to the required day.



Coordinating the Distribution Chain: New Models for New Challenges 217

we enumerate all feasible groups of stores, and index these groups from
g=1,...,m. A group of stores is feasible if it meets restrictions on
tour duration and group size, as well as other requirements (e.g., we
might require that two proximate stores must always be assigned to the
same group, or two distant stores should never be assigned to the same
group). For i = 1,...,n, let G(7) be the set of all groups g that include
store 1.

Let Cgr and Dy denote, respectively, the expected regular routing
cost and expected overflow cost to serve all stores in group g if regular
truck k is assigned to this group. We defer discussion on how to compute
these costs in order to first present the overall DPSS formulation. To
simplify the exposition, we assume that a truck can be assigned to at
most one group on any day of the week. If T denotes the number of
days of the week when stores accept deliveries (e.g., T = 5 or 7), let
t=1,...,T index the available delivery days in the week.

To model the various decisions of the DPSS problem, we define the
following binary decision variables:

Group selection: y, =1, ifwe select group g, and 0
otherwise, forall g = 1,...,G;

Group-truck-day

assignment :  Tgiy = 1, if we assign group g to truck k for

deliveries on day t, and 0 otherwise,
forallg=1,....,G k= 1,..., K
and t = 1,...,T; and,

Truck selection: zr =1, ifwe acquire truck k, and 0
otherwise, for all k =1,..., K.

Using these decision variables, we can formulate the DPSS problem as
follows:

[DPSS]

K

m K
minimize kE Frz + E Z Cgk + Dgi) E Tyt (9.7
=i : k=1

subject to:
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Store assignment : Y Yo =1, g 1y me o M (9.8)
9€G(i)
K 1
Group assignment © Y. 3 ZTgkt =Yg, G=1,...,m, (9.9)
k=1t=1
T
Truck assignment : D Tk 2= 2 k=1,...,K, (9.10)
g=1

t=1,...,T, and
Integrality - Tokty Yg, 2k € {0,1}, for all g,k, and t. (9.11)

The objective function (9.7) minimizes the total fixed and activity-
dependent regular costs and overflow costs. The store assignment con-
straints (9.8) specify that each store must be assigned to exactly one
selected group. Constraints (9.9) relate the group selection decisions to
the assignment of groups to truck-day combinations. These constraints
specify that if we select a group g (i.e., if y, = 1), then this group must
be assigned to exactly one truck-day combination. Note that we can
incorporate store delivery-day preferences by including only the relevant
assignment variables, thus reducing the size of the formulation. That is,
if a store in group g cannot accept deliveries on day ¢’, then we can omit
the variable zgyy for all truck indices k. Constraints (9.10) serve both
as truck-scheduling restrictions and truck-selection forcing constraints.
We can assign a truck k to any group and day only if we select the truck
(i.e., if z = 1); and, if we select the truck, the constraint specifies that
we cannot assign it to more than one group on the same day.

The DPSS model differs from classical deterministic and stochastic ve-
hicle routing models in several respects; the model considers stochastic
demands, overflow options, truck-to-route assignments, and delivery cal-
endaring (i.e., route-to-day assignments). Deterministic vehicle routing
models, for instance, ignore variability in demands, and impose truck ca-
pacities as hard constraints. Stochastic vehicle routing models typically
do not incorporate shared resources (trucks) across routes, and ignore
the delivery calendaring problem (see Bertsimas and Simchi-Levi, 1996,
Gendreau, Laporte, and Seguin, 1996, and Stewart and Golden, 1983,
for a discussion of the scope of stochastic vehicle routing models found
in the literature).

The distribution planning problem is a large-scale stochastic integer
programming problem with recourse (see Birge and Louveaux, 1997,
Higle and Sen, 1996). Under the stochastic programming framework,
decisions regarding which trucks to choose and how to group the stores
constitute the first stage decisions. The recourse decisions entail de-
termining, for each possible realization of store demands, which stores
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to offload and how to route regular and overflow trucks to minimize
the regular (routing) and overflow costs. Formulation [DPSS] explicitly
represents the first stage decisions of group and truck selection and as-
signment. The cost coefficients Cgr and Dy reflect the expected costs
of the second stage overflow offloading and (regular and overflow) truck
routing decisions. Stochastic integer programming problems are noto-
riously difficult to solve. Note that the number of feasible groups, m,
in formulation [DPSS] can be exponential in the number of stores. The
structure of formulation [DPSS] suggests using a column generation ap-
proach to solve the problem or its linear relaxation. As we discuss next,
the costcoefficients Cgr and Dgy for each group can be difficult to com-
pute since they entail solving subproblems that are equivalent to or more
difficult than the traveling salesman problem.

3.3 Determining the expected routing and
overflow costs

Our cost separability assumption implies that we can compute regular
routing costs and overflow costs independently for each group g. Given
the set of stores in a group, the corresponding regular and overflow
cost coefficients Cyr and Dg depend on several factors—the underly-
ing cost drivers (e.g., delivery weights and driving distances), overflow
handling policies, and visitation sequencing. Estimating the cost co-
efficients, therefore, entails solving an embedded optimization problem
in order to select routing and overflow handling policies that minimize
Cgk + Dy, for each store group g and assigned truck k. We refer to this
embedded problem as the overflow optimization subproblem’, and note
that it is a stochastic optimization problem because it must consider the
random variations in store demands.

Let us now consider some overflow modeling assumptions and options
that apply to the big-box distribution context. In this setting, tight
delivery schedules and large distances between the warehouse and cer-
tain stores prohibit regular trucks from handling overflow demand. So,
when an overflow occurs, the routing cost for the regular truck is propor-
tional to the travel distance (and time) to serve only those stores that
have not been offloaded. In contrast, Gendreau, Laporte, and Seguin
(1996) consider a vehicle routing problem with stochastic demands in
which, if the total demand for all stores in a group exceeds the truck
capacity, the regular truck returns to the warehouse for reloading at

*Note that, although we refer to the subproblem as the “overflow” optimization problem, it
alsodeterminestheactivity-dependentcomponents, Cyy, of regular costs.
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appropriate intermediate points in the route. Gendreau et al. assume
that the (regular) truck visits the stores in the same sequence regardless
of the actual demand realization. We make a similar static visitation
sequence assumption for the big-box distribution context. Our overflow
optimization model decides the relative order in which stores must be
visited. When an overflow occurs and stores are selected for regular and
overflow deliveries, the truck (regular or overflow) follows the specified
visitation sequence but only visits those stores to which it must deliver.
This assumption is appropriate for big-box deliveries since there is little
opportunity to dynamically vary the visitation sequence because stores
are not willing to accept deliveries before or after their scheduled time.
Two other problem characteristics determine the structure of the over-
flow optimization model—the offloading policy, and the overflow cost
structure. We next discuss the choices along each of these dimensions.

s Offloading policy: To decide which stores to offload when an over-
flow occurs, we might use either a static offloading policy or a
dynamic offloading policy. Under a static policy, the sequence in
which stores from the group must be offloaded is predetermined (by
the overflow optimization model); when an overflow occurs, stores
are offloaded in this specified sequence until the demand for the
remaining stores is less than or equal to the regular truck’s capac-
ity. In contrast, dynamic offloading policies make state-dependent
offloading decisions based on the actual store demand realizations.
Dynamic offloading policies are likely to be more cost-effective;
but, they vastly complicate the overflow optimization problem,
and can be difficult to implement.

m  QOverflow cost drivers: Overflow costs might be either route-based
or store-based depending on the outside delivery service option
that the distributor uses for overflow deliveries. With route-based
costs, the overflow delivery cost depends on the actual distance
that the truck travels and/or the actual duration (including un-
loading time at stores) of the route. In contrast, with a store-based
cost structure, the delivery cost decomposes by store, i.e., the cost
to deliver to a subset of stores is the sum of costs for delivering to
each store. This store delivery cost might depend on the weight of
items delivered and the store-to-warehouse distance—similar to the
tariff structure that commercial carriers use for less-than-truckload
shipments. Note that store-based cost structures simplify the over-
flow optimization problem, making overflow delivery sequencing
decisions irrelevant.
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For our tactical planning model, we will assume that the distributor uses
a static offloading policy. In this class of policies, we highlight one par-
ticularly interesting offloading rule that relates the offloading sequence
to the visitation sequence. This rule, which we call the reverse visitation
rule, offloads stores in reverse visitation order. That is, when an overflow
occurs, stores are offloaded in last-visited-first-offloaded order until the
remaining demand fits in the regular truck. Note that, by returning to
the warehouse for reloading at intermediate points in the fixed visita-
tion sequence, Gendreau et al.’s model implicitly follows this offloading
rule. The reverse visitation rule is easy to implement in practice, and be-
cause this policy assigns “contiguous” stores from the original visitation
sequence to both the regular and overflow trucks, it avoids additional in-
termediate truck idle time between scheduled store deliveries. Moreover,
making the offloading rule a function of the visitation sequence elimi-
nates one set of decisions, thus simplifying the overflow optimization
problem.

The overflow optimization problem entails deciding the static visita-
tion and offloading sequences that minimize the expected routing plus
overflow costs to service the stores in the group. We do not present a
formal mathematical formulation for this problem, but instead examine
one of its ingredients, namely, how to compute the expected costs for a
given (static) visitation sequence and offloading sequence (not necessar-
ily the reverse visitation sequence). Let L denote the number of stores
in the group. Suppose we index the stores from 1 to L in the order in
which they will be offloaded if we follow the given offloading sequence,
i.e., in the event of an overflow, store 1 is offloaded first, and so on. For
I =0,...,L,let B = {l+1,....L} denote the set of stores that the
regular truck services when 1 stores are offloaded; let O; = {1,...,1} be
the complement of Ry, i.e., the set of offloaded stores. For expositional
convenience, assume either that the overflow costs are store-based or
the overflow truck has unlimited capacity (so that at most one overflow
truck is needed for any group on a given day). For !l =0,...,L, let ¢
and d; denote, respectively, the expected cost for the regular truck & and
the expected overflow cost if [ stores are offloaded. The regular cost ¢
is easy to compute since the visitation sequence is given (otherwise, we
must solve a traveling salesman problem over the set of locations R;).
Similarly, if overflow costs are route-based, the given route determines
the value of d;. If overflow costs are store-based, then d; is the sum of
expected delivery costs to each store in O;, which depends only on the
warehouse-to-store distance and the probability distribution of demand
for each store. Now, let pj; denote the probability that exactly ! stores
will be offloaded (i.e., the probability that the total demand for all the
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stores in the set Ry is less than or equal to the truck capacity By, and
adding the demand of the [** offloaded store exceeds the truck capac-
ity). Then, the expected regular and overflow costs corresponding to the
given visitation sequence and offloading sequence are:

L L

Cok = Y _pici and Dgx =Y pued. (9.12)
=0 {=0

The overflow optimization subproblem requires deciding the visitation
and offloading sequence that minimizes the sum of these two expected
costs. In our solution procedure, described in the next section, we do
not solve the overflow subproblem optimally, but instead use heuristic
rules to decide visitation and offload sequencing.

34 Genetic algorithm for the DPSS problem

As our discussions in Section 3.3 suggest, solving the DPSS problem
optimally is practically impossible. The problem has a vast number
of decision alternatives (e.g., store groupings, group-truck-day assign-
ments), and even computing the expected cost for a given store group
and truck assignment can be intractable. We, therefore, developed a
genetic algorithm (GA) (see, for example, Goldberg 1989) that itera-
tively generates distribution plans (store groupings and group-truck-day
assignments). We provide only a sketch of the algorithm here, omitting
several details of our implementation.

Since the number of regular trucks needed varies only within a rela-
tively small range, our GA does not incorporate fleet sizing decisions, but
takes as input the desired number of trucks. By changing the fleet size
and reapplying the GA, we can determine the number of trucks needed to
achieve the lowest-cost solution. The central algorithmic decision when
applying GA to any optimization problem concerns the representation of
feasible solutions as genes. Let K denote the desired number of trucks,
and let 7 be the number of delivery days in a week. For expositional
convenience, we assume that each truck can handle at most one multi-
stop route each day; some routes might require multiple days. Instead
of considering group-truck combinations as in formulation [DPSS], we
now consider truck-day combinations. We index the truck-day combina-
tions from j = 1 to KT, starting with the first day for the first truck;
thus, the index j corresponds to using truck number k = |j/T| on day
t = j mod (T'). Note that the number of truck-day combinations, KT,
also serves as an upper bound on the number of groups that will be cho-
sen. If n denotes the total number of stores served by the distributor, we
represent the gene as an integer vector V of length n. The i** position
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of this vector (the i allele) can take any integer value v(7) between 1
and KT; this value represents the index of the truck-day combination
assigned to store ¢. Thus, all stores assigned to the same truck-day com-
bination constitute a group. If the full route to cover all of the stores
in a group assigned to truck k on day ¢ takes multiple days, then day ¢
represents the starting day for the route.

The value or fitness function of a gene specifies the total regular and
overflow costs for all of the grouping, truck assignment, and scheduling
choices implied by the alleles of the gene. Thus, evaluating the fitness
of each gene requires solving the overflow optimization problem for each
group-truck assignment that the gene selects. The value also includes
penalties for violating constraints on group sizes and tour durations. For
instance, if the distributor specifies that a group can contain no more
than 10 stores, then any gene that assigns more stores to a group receives
a high penalty. Similarly, we use penalties to preclude tours that require
more than two days. We also assign a high penalty if one group requires
a two-day route, and the truck assigned to this group is also assigned to
start deliveries to another group on the second day.

Starting with an initial generation of genes, the GA generates succes-
sive generations through the standard neighborhood-defining operations
of crossovers, mutation, and selection (see Goldberg, 1989). For the
DPSS application, mutation corresponds to randomly changing the cur-
rent value v(%) of an allele in a particular gene to another value between
1 and KT. Crossovers correspond to interchanging a range of allele
values between pairs of randomly chosen genes. Given a generation of
genes, members in the next generation are selected based on the fitness
values for the members and their neighbors from the previous genera-
tion. The method stops when the best solution does not improve over
successive generations or upon reaching the maximum specified number
of iterations.

3.5 GA implementation

We implemented the GA on a personal computer, using C++. Our
implementation does not solve the overflow optimization problem op-
timally in the algorithm’s fitness evaluation module. Instead, we in-
corporate heuristic rules to select the (static) visitation and offloading
sequences, and apply a method similar to the approach used to derive
the cost expressions in (9.12) to estimate the expected routing and over-
flow costs for each group-truck combination. Because the big-box stores
tend to be co-located within major population centers, the topology of
the distribution network resembles a tree network connecting dense store
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clusters. These store clusters are relatively easy to identify by imposing
limits on the diameter of each cluster and visually examining maps of
a distributor’s coverage region. Given the group of stores to be covered
on a route and the “cluster’” to which each store belongs, we used a
simple “sweep” heuristic to decide the sequence in which to visit the
clusters. Approximations of inter-cluster and intra-cluster distances,
together with estimates of average driving speeds, simplify route dis-
tance and duration calculations. We tested various alternative offloading
policies—offloadinglargest demands first, offloading closest stores first,
and offloading in reverse visitation order; based on preliminary results,
we chose to use the reverse visitation rule. Note that, although we used
approximate procedures, the GA framework permits using more sophis-
ticated fitness evaluation routines, including exact methods to solve the
overflow optimization subproblems.

Based on our analysis of weekly demand patterns, we assumed that
store demands are normally distributed; the mean and variance of de-
mand for each store were estimated from historical data. Our routing
and overflow-costing model assumes that store demands are indepen-
dent. When analyzing route overflow conditions, we permit using mul-
tiple (capacitated) overflow trucks per store group, up to a maximum
number. For our data set, we found that the likelihood of requiring five
or more overflow trucks was negligible, and therefore limited the number
of overflow trucks per store group to five.

Based on preliminary computational experiments, we chose the re-
quired GA parameter settings such as crossover and mutation probabil-
ities. We did not attempt to systematically compare the relative perfor-
mance of competing GA approaches, or to fine-tune the performance of
the algorithm. Our immediate goal was rather to simply apply a stan-
dard genetic algorithm for the purpose of answering the two primary
questions that motivated the distribution planning exercise:

m can we accurately estimate distributors’ delivery costs via a ro-
bust model-based approach, considering all the associated problem
complexities, including stochastic demand?; and,

m does the extent of retail store-order variability significantly influ-
ence distribution costs?

3.6 Preliminary computational results

Our initial efforts during the model-testing phase focused on model
validation. The manufacturer had previously developed planned routes
using a deterministic route-optimization software package and, working
with distributors, had derived cost estimates for each route using a de-
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tailed activity-based costing approach. For the distribution operation
(covering 67 stores) that we studied, we first applied our fitness function
evaluator to the manufacturer’s planned routes. Inputs to the evaluator
included actual store locations and underlying cost parameters (e.g., per-
mile and per hour costs for regular and overflow deliveries, truck fixed
costs) provided by the manufacturer. Assuming (as the manufacturer’s
cost estimation method did) that store demands are deterministic (and
equal to their average demands), the costs predicted by our model for
the store groups proposed by the manufacturer were remarkably close
to the manufacturer’s estimates—the costs differed by less than two per-
cent. These results confirmed that our modeling approximations (e.g.,
store clustering and using the sweep heuristic for visitation sequencing)
were appropriate.

Next, using the planned routes chosen by the manufacturer (derived
via a deterministic algorithm), we introduced stochastic demands and
applied the DPSS model to determine the expected total cost as a func-
tion of variability. Demand variability can be easily adjusted in the
model by specifying alternative values for the demand coefficient of vari-
ation (COV) for all stores served by the distributor. Figure 9.1 shows
how expected total cost varies as demand becomes increasingly uncer-
tain; distribution costs are relatively low when variability is low, but
increase with variability. When COV increases from O to 1, for example,
total cost increases approximately 20%. Although the building-products
manufacturer had previously recognized that store-order variability re-
sulted in high costs for the distributors, the firm found our DPSS model
particularly useful for quantifying the cost of that variability.

Finally, we used the GA to generate new near-optimal store groupings
and truck-day assignments. We wished to compare the expected costs
of our solutions to the manufacturer’s planned routes and also study the
impact of store-order variability on delivery costs—providing the man-
ufacturer with results that it could not previously obtain. Figure 9.1
compares the cost performance of GA-optimized routes with the man-
ufacturer’s proposed solution. The figure shows results for two choices
of regular trucks—3 trucks and 4 trucks (the planned routes used by
the manufacturer assumed 4 trucks for this distributor); for each choice,
the figure shows the total cost of the best GA solution at each value of
COV. As these preliminary results suggest, genetic algorithm techniques
can serve as a powerful method for generating good tactical plans for
distributing products to big-box stores.

Our computational tests also showed that distribution plans optimized
for low levels of variability tended to perform poorly when uncertainty
increased, whereas plans designed for uncertain conditions were more
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Figure 9.1. Expected cost of planned routes versus store-order variability

robust to changing variability. This finding implies that routes derived
from deterministic routing packages might prove very costly in practice
because such packages strive for high truck utilization and ignore the
possible overflow consequences.

4. Controlling Variability in the Distribution
System

The two problems considered in Sections 2 and 3 stressed the need for
modeling approaches that account for the impact of variability in store
orders on distributor compensation and delivery costs. Suppliers facing
high demand variability also require significant investments in inventory
to meet high customer service level expectations. The building-products
supply chain context we studied provides an excellent example of the
burden order variability places on the system. Due to large uncertainties
in stores’ order quantities, distributors often experience either:

= insufficient stock and/or transportation capacity to meet the un-
usually large orders, or

m significant amounts of excess stock and idle transportation capacity
due to unexpectedly small orders.
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The short delivery lead times and high fill rates required by big-box
retailers exacerbate these problems, forcing distributors to make last-
minute arrangements for additional transportation capacity or expedited
supply shipments at significant added cost.

The majority of supply chain inventory models discussed in the liter-
ature account for exogenous demand variability when optimizing strate-
gic and operational decisions at each stage of the chain (e.g., Clark and
Scarf, 1960). But, it is equally important to assess the extent to which
actions and policies of channel members internal to the supply chain un-
necessarily contribute to increased upstream demand variability, and to
identify steps to decrease this variability in order to reduce system-wide
safety stock and transportation costs. In this section, we expand the
scope of our analysis of distributor-retailer interactions, encompassing
both inventory and transportation costs, in order to assess the impact of
demand variability at different stages in a supply chain. However, unlike
the distribution planning model of Section 3, we take a more aggregate
view of distribution operations, ignoring the detailed truck routing and
scheduling issues.

To study the impact of store ordering policies on system costs, we con-
sider order variability along two dimensions—SKU variability and load
variability. SKU variability refers to week-to-week variation in the total
order amount (measured, say, in pounds) for a particular stock-keeping
unit (SKU) by all stores served by a distributor. Clearly, this variability
affects the distributor’s safety stock costs for that SKU since safety stock
is typically proportional to the standard deviation of total weekly de-
mand. On the other hand, as we have seen in Section 3, transportation
costs depend on each store’s load variability, the week-to-week variation
in the total weight of all items that the store orders. Note that since
SKU variability requires aggregation of demand for a particular SKU
over stores, whereas load variability aggregates demand over items for
a particular store, it is possible to have high SKU variability for some
products and still have low load variability (e.g., if a store’s orders for
different SKUs are negatively correlated).

Our analysis of variability-propagation in the distribution chain be-
gins with an examination of transactional data history to assess the scope
of the problem in the building-products distribution network. Section
4.1 reports the results of our diagnostic analysis, confirming the cost
burden that stores’ variable ordering policies place on distributors. We
then describe, in Section 4.2, a stylized distribution system model rep-
resenting the distributor-retailer system, and present variance-damping
mechanisms intended to increase channel coordination by reducing up-
stream (i.e., store order) variance in the supply chain. Finally, based
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on our computational test results, we assess the potential system-wide
savings from using one of our proposed variance reducing policies.

4.1 Variation propagation in multi-stage
systems: The bullwhip effect

Recent literature has emphasized the so-called “bullwhip effect” in
supply chains—the tendency for demand variability to increase at up-
stream stages in the supply chain. Lee et al. (1997) cite several factors
causing the bullwhip effect under rational decision making on the part of
channel members, and suggest methods (such as information sharing and
strategic partnerships) to decrease the amount of variance amplification
in the supply chain (see Simchi-Levi et al. 1999). To assess the extent
to which the bullwhip effect exists in the big-box distribution chain,
we first used the available supply chain transactional data to compare
week-to-week variability in end-customer demand (faced by the stores)
with the current variability in stores’ order quantities. The data consists
of detailed POS (point-of-sale) transactions at each store served by one
distributor, orders from stores to the distributor, and actual shipments
from the distributor to stores. Of the 67 stores served by the distributor
during the time frame for our analysis, 62 stores were open for more
than one year; so, we consider only these 62 stores in our analysis of
variability.

Let us first compare the load variability in end-customer demand with
the load variability in store orders. Henceforth, we refer to end-customer
demand facing the stores as “demand,” and stores’ orders to the distrib-
utors as “orders;” all quantities are measured in pounds of product. For
two selected stores, Figure 9.2 shows the total demand, aggregated over
all SKUs, and total orders received by the distributor from each store in
each week of a 26-week period. In this figure, we have divided the actual
demand and order quantities by their respective mean values over the
26 weeks, and show only the deviation from the mean (i.e., the y-axis
corresponds to the ratio of each week’s demand or orders to its mean).
As the charts show, while the demand facing each store was relatively
stable over time for both stores, the orders these stores placed to the
distributor exhibited much greater variability, especially in the case of
Store A.

If o, and g4 denote a store’s standard deviation of weekly orders and
weekly demand, respectively, then the ratio 0,/04 measures the store’s
load variability amplification. For Store B, 0,/04 equals 2.52 for the 26-
week period shown in the graph. Store A, with o,/04 = 5.94, amplifies
its demand significantly more.
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Figure 9.2.
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Turning to SKU variability, Figure 9.3 shows, for two representative
SKUs, the total demand at all 62 stores (relative to mean demand) and
total quantity ordered from the distributor in each week over a 26-week
period. The amplification of demand variability (measured by the ratio
of the v, to vy, where v, and v; denote respectively the standard devia-
tion of weekly SKU orders and weekly SKU demand for all stores) equals
approximately 1.5 for SKU 1 and 1.8 for SKU 2. Although amplification
in SKU variability is not as severe as the amplification of load variability,
these ratios still represent a 50% increase in the standard deviation of
orders seen by the distributor for SKU 1 and an 80% increase for SKU
2, resulting in a costly safety stock burden at the distributor.

Similar analysis of load and SKU variability for other stores and SKUs
showed that store ordering practices contributed significantly to vari-
ability amplification in the upstream stages of the distribution system,
leading to both disruptions in weekly delivery planning (or increased
transportation capacity requirements) and increased safety stock levels.

4.2 Upstream variability control mechanisms

With this evidence of variability amplification by stores, the manufac-
turer was interested in exploring alternate store inventory management
policies that might reduce variability and wanted to estimate and the
economic impact such reduction might have on logistics costs. Recent
research has focused on coordinating supply chain operations through
various mechanisms such as quantity- and time-flexible contracts (e.g.,
Tsay, 1999, Li and Kouvelis, 1999, Moinzadeh and Nahmias, 2000), syn-
chronized and extended ordering cycles for multiple retailers (e.g, Ca-
chon, 1999), linear transfer payments (e.g., Cachon and Zipkin, 1999),
and innovative accounting systems that align individual and system-wide
incentives (e.g., Lee and Whang, 1999, Chen, 1999). Baganha and Co-
hen (1998) considered the relationship between demand variability and
inventory costs at various echelons in a supply chain, and presented con-
ditions under which variability should be dampened to promote better
system performance. Our approach considers the impacts of demand
variability on both inventory and transportation costs in the supply
chain, and develops control mechanisms to mitigate variability between
supply-chain stages. We next introduce and motivate these variability-
damping mechanisms, and demonstrate their effectiveness via numerical
studies based on actual data from the building-products manufacturer.

Each variability-damping mechanism we propose provides an ability to
tune the level of store-order variability by changing some specific system
or policy parameter. Figure 9.4 provides a conceptual representation of
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how a store’s ordering policy serves as a control mechanism to influence
the variability of orders received by the distributor. By constructing
a model of the distributor-retailer distribution system and expressing
system cost as a function of a specific policy parameter, we seek the
best parameter value, and hence variability level from a system-wide
view. Our approach effectively treats the variability of flows at the
distributor-retailer interface as decision variables. We next summarize
the important elements of our modeling approach (for more details on
the model see Geunes, 1999).

4.2.1 Distributor-retailer modeling approach. Our model
focuses on the operations of a single distributor supplying its assigned
stores. Our goal is to develop an expression for fotal system-wide cost
(including both the distributor’s and stores’ inventory and logistics costs)
for a given class of store inventory management (and ordering) policies,
assuming that all stores follow the same policy type, but with policy
parameters that are tuned to their end-customer demand. The pur-
pose of the model is to capture the relevant dynamics and costs of the
distributor-retailer portion of the building-products supply chain and
to demonstrate the potential for variance-damping mechanisms to re-
duce supply chain costs. We consider the distributor’s inventory and
transportation costs, as well as stores’ inventory costs. We assume that
stores can backorder retail demand if they run out of stock during a
replenishment interval, and distributors can expedite supplies from the
manufacturer in order to fully meet stores’ orders each week. So, our
system-wide cost includes the costs associated with these backlogging
and expediting options. Since both the stores and distributor order pe-



Coordinating the Distribution Chain: New Models for New Challenges 233

riodically (and the ordering period is predetermined), we do not consider
fixed setup or ordering costs.

Distributor transportation costs

As we noted in Section 2, retail stores served by the distributor are
generally clustered together into one of several metropolitan areas. Our
methodology creates a separate transportation cost model for each area
or cluster® of stores after aggregating the demand for all stores in that
cluster. As in Section 3, distributor transportation cost components

include:

m  Regular fleet and driver costs: cost of leasing and operating a fleet
of regular trucks (including the costs for corresponding drivers) for
weekly deliveries to cluster; and

= QOverflow costs: cost of extra shipments when demand for a cluster
exceeds the total capacity of regular trucks assigned to that cluster.

Instead of the detailed model of overflow management employed in Sec-
tion 3, we now assume the overflow cost is linear in the total excess or
overflow weight, as would typically be the case when the overflows are
carried within a local region by a third party LTL carrier. We also do not
consider detailed routing and truck assignment decisions. Let C denote
the number of store clusters in the distribution region. Forc=1,...,C,
the estimated weekly driver, mileage, and truck lease costs combined
with the expected distance and time for shipments to cluster ¢ provide
an estimate of the (weekly) fixed cost for each truckload shipment to the
cluster, which we denote by K.. Our model treats each store cluster as
a single aggregate store, and then determines the regular truck capacity
to be allocated to the cluster (in integer multiples of full truckloads). It
then computes the expected transportation cost for each cluster based
on the cluster’s order distribution, allocated regular transportation ca-
pacity, and fixed plus volume-dependent shipping costs. Let K. and
K, denote the cost per unit weight shipped via regular and overflow
capacity to cluster ¢, and let T, denote the transportation capacity al-
located to cluster ¢. If z€ is the random variable for the total weekly
ordered weight in cluster ¢, and f(z¢) denotes the probability density
function (pdf) of z° then the expected weekly transportation cost for

®Here “cluster” refers to stores within the same geographical proximity, not the store groups
discussed in Section 3.
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cluster ¢, G(7¢), is given by

Te
G(T(‘) — (Kc + I{)‘(:)TC - Kr(:/ﬂ (T(‘ - xc)f(xc)dmc {913)

+ Koe /oc (2 — T¢) f («€)dz".
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We can show that G(T) is convex in T, when K, > Ky, i.c., when the
cost of overflow capacity is greater than or equal to the cost of regular
capacity. The convexity of Equation (9.13) allows us to easily deter-
mine the optimal value of T, (Equation 9.13 is similar to the classical
newsvendor equation in single-period inventory analysis; see Nahmias,
2000).

Distributor inventory and shortage costs

We now consider the distributor’s inventory-related costs. Letj index
the set of products stocked by the distributor. The distributor attempts
to fill all orders placed in a period from its own stock; if stock on hand
is not sufficient, the distributor obtains expedited shipments from the
manufacturer (who is assumed to have unlimited capacity) in time to
meet all store orders. Expediting product j entails an additional expe-
diting cost of e4; per unit of product. The distributor incurs a holding
cost, hgj, per unit of inventory of product j remaining at the end of a
period, and incurs a cost of ¢g; per unit of product j procured from the
supplier. If orders to the distributor for each product are independent,
identically distributed random variables’, the distributor then minimizes
its inventory holding plus shortage costs for each product j by using a
simple (stationary) base-stock policy with a target base-stock level S;
(see Nahmias 2000). Letting z; denote the random variable for weekly
orders received by the distributor for product j (with pdf f(z;)), the
single-period inventory cost equation at the distributor for product j,
L4(S;), given a starting inventory of I, is given by

S;
Ld(Sj) = Cdj(Sj - Ij) + hdj -/u (Sj — xj)f(xj)da:j (9.14)

+ ﬂdj/S_ (zj — ;) f(zj)dz;.

a1

7Although the assumption that successive orders to the distributor are statistically indepen-
dent holds for our “base model” under no coordination, it does not necessarily hold under
the coordination mechanisms we propose in the following subsections.
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Equation (9.14) is a standard newsvendor equation, which is convex in
S; (see Nahmias, 2000). We next consider the relevant costs incurred by
the retail stores.

Store inventory and shortage costs

Based on patterns observed from past POS data for the manufac-
turer’s top three product lines, we assume that weekly (end-customer)
demand at the stores for SKUs are stationary random variables. Each
store follows a periodic review policy, with a period length of one week.
Store inventory holding costs are assessed against end-of-period inven-
tory in each period. We assume that if a store runs out of inventory for
a particular SKU before receiving its next delivery, then it can backlog
demand (at a per unit backlogging cost). The expression for each store’s
expected inventory holding plus backlogging cost is the same as Equa-
tion (9.14), except that the store’s holding, purchasing, and shortage
cost and demand parameters replace those of the distributor. Under our
cost assumptions, if stores wish to minimize their inventory and backo-
rder costs, they should follow a simple order-up-to or base stock policyg;
we refer to this policy as the base model.

We next discuss two heuristic approaches for minimizing total ex-
pected system cost through mechanisms that reduce order variability
at the distributor-retailer interface. Ideally, we would like to determine
store-ordering policies that minimize total system (Distributor + Stores)
cost. But, finding the optimal store ordering policy under our model is a
highly complex problem. Therefore, we adopt two alternative (heuristic)
approaches. In the first penalty-based approach, we assign a (possibly
fictitious) penalty when actual store orders deviate from the mean order
quantity. We then determine the policy that minimizes the stores’ in-
ventory and backorder costs (not system-wide costs) plus penalty costs,
and compute the total system cost for this policy. The second approach,
called the policy-driven approach, consists of selecting policies that are
known to control or dampen upstream variance—such as a policy of or-
dering an amount equal to the moving average of past weekly demands.
For each family of such order damping policies, we determine the optimal
parameter settings that minimize total system costs.

4.2.2 Penalty-based approach. Consider the weekly orders
that a store places for single item (or SKU). Let ¢ be the random vari-
able denoting a store’s order quantity each week (for a single SKU), and

8Transactional data analysis indicates that stores do not always follow this policy, suggesting
further cost reduction opportunities.
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let © = E(g) be the mean order quantity per week. Consider a penalty
function f(g—u) to discourage deviations of actual order quantities from
the mean. For instance, for a given penalty parameter p, we might con-
sider f(q — u) to be either the absolute deviation function p|g, — p| or
the squared deviation function p(g, — ). Both functions penalize pos-
itive as well as negative deviations of actual order quantities from their
mean. We are interested in determining the optimal inventory (order-
ing) policy that a store must follow in order to minimize expected weekly
inventory, backlogging, and penalty costs, assuming that end-customer
demand follows a given stationary demand distribution. To motivate
our penalty-based approach, consider the following general formulation
of a (upstream) variance-constrained distribution problem (VCDP). Let
v denote a preferred maximum level of store order variance, and consider
the problem:

[VCDP]

minimize E[{Distributor Inv. + Transp. Cost} + {Store Inv. Cost}]
subject to:

Order variability limit : El(g—p)? < v (9.15)

As v decreases, we would expect distributor cost per period to de-
crease and store cost per period to increase. Although this model is not
analytically tractable, formulation [VCDP] provides insight into meth-
ods for solving this problem. Stores’ policy decisions translate into the
distributor’s demand process, resulting in a complex nonlinear program,
particularly when store-order variance is a decision variable (see Ge-
unes, 1999). Dualizing Constraint (9.15) in formulation [VCDP] (by
multiplying it by a Lagrangian multiplier p and adding it to the objec-
tive function) results in the term p(g, — x)° within the expected value
expression in the objective function. As a heuristic approach, we next
focus on minimizing those costs in the objective function (after dual-
izing the constraint) incurred by the store, i.e., the expected inventory
holding, backlogging, and penalty costs. The penalty function serves as
a surrogate for the cost burden that store-order variability imposes on
the distributor.

Let I, denote the store’s on-hand inventory in period n (we num-
ber the periods in reverse) prior to receiving a replenishment, and let
y» denote the store’s beginning inventory level in period n following
replenishment. If L(y,) denotes the store’s single-period expected pur-
chasing, holding, and shortage costs, given a starting inventory of y,,
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the minimum expected n-period store cost (including the added variabil-
ity penalty function) as a function of the period n order quantity, gy,
becomes

gn(In) = yinzi?,,{L(yﬂ) + f(gn — 1) + BE[gn-1(yn — zn)}, (9.16)

where ¢, = y, — I,. Equation (9.16) is a recursive equation giving the
minimum expected n-period cost, g,(I,}, as a function of the initial
inventory I,,. The third term in Equation (9.16) reflects the minimum
discounted expected cost for period n - 1 onwards, where 3 is a discount
factor.

Geunes (1999) characterizes the structure of the store’s optimal policy
for minimizing Equation (9.16) (over an infinite horizon) under the abso-
lute value penalty, and provides a method to find the optimal parameters
of this policy. This policy structure, called afinite-generalizedbase-stock
policy (see Porteus, 1990, and Henig et al., 1997) involves setting two
base-stock levels, S; and S; (where S; > S;) and requires ordering ei-
ther: up to Sj, up to Ss, or precisely p depending on the inventory
position before ordering. When compared to a standard base-stock pol-
icy (our base model), the finite-generalized base-stock policy leads to
lower upstream order variability, since the store orders the fixed quan-
tity g in certain periods (assuming Sy # S»; otherwise this policy reduces
to a standard order-up-to policy). The decrease in order variability seen
by the distributor is clearly a function of the value of the deviation pre-
mium, p. When p = 0, the store follows its optimal base-stock policy
and the distributor observes the same variability as the store. When
p = oo, the store absorbs all variability costs by always ordering u, and
the distributor therefore sees no variability. Tuning the value of p al-
lows us to find better levels of order variability from a system-wide view,
i.e., levels of store-order variability that lead to lower system costs com-
pared to system costs without any coordination mechanisms. Note that
this approach generalizes the approach proposed by Henig et al. (1997),
which applies a premium only to quantities exceeding a contracted value
between supplier and customer.

4.2.3 Policy-based approach. Under the policy-based ap-
proach, we assume that stores agree to implement specific variance-
reducing inventory replenishment rules. The most promising among such
policy-based mechanisms is the weighted moving average (WMA) mecha-
nism, due to its ease of use and tractable mathematical analysis. Under
a two-period weighted moving average policy, for example, the store
order quantity consists of a weighted average of the last two demand
realizations (Geunes, 1999, extends this scheme to an m-period WMA).



238 SUPPLY CHAIN MANAGEMENT

We use a single-product, single-store case to illustrate this mechanism,
although the model readily extends to multiple stores and products
(assuming product and store demands are all independent) as in the
building-products supply chain. Let d;, denote the end-customer de-
mand seen by the retail store in period . Given a smoothing parameter
o between O and 1, the two-period WMA policy determines the store’s
order quantity for period ¢ as:

gy = O:dg._l + (1 - O,‘)di_-z. (91?)

Note that, by setting @ = 1, we obtain the base stock policy as a special
case of the WMA policy. The variance of the store’s order quantity, 03,
for this policy is:

02 =(a? +(1-a)’)o?. (9.18)

Equation (9.18) shows that a two-period WMA policy decreases the vari-
ance of order quantities facing the distributor compared to the variance
of ¢ under the base model. Changing the value of a allows us to dampen
the level of order variability. Observe that since ¢, = ad;_; + (1 — a)d;—o
and ¢;—1 = ad;—2+ (1 —a)d;_3, the store’s successive orders to the distrib-
utor are autocorrelated under the WMA policy mechanism. If, however,
the distributor knows the value of d;_; in period £ - 1 (when it places a
stock replenishment order that will arrive at the beginning of period t),
the (1—a)d;_» part of the future store order, g;, is known to the distribu-
tor at the time it places an order’. The only stochastic component of the
future order g¢; is the ad,_; portion of the order. From the distributor’s
point of view, each store order contains both a deterministic component
and a stochastic component. The stochastic order components are inde-
pendent, stationary random variables with mean eu and variance a?c?,
leading to an even greater store order variance reduction than indicated
by Equation (9.18).

We next summarize selected computational results using our system
model and actual supply chain transactional data'®. Using the base
model as the benchmark for comparison, we evaluate the cost perfor-
mance of the proposed variance-damping mechanisms. In particular, we
discuss the impacts of using the two-period WMA policy assuming that

°The distributor can obtain the values of past store demands through either information
sharing or by reconstructing successive demands based on knowledge of the store’s ordering
]i)g)licy combined with a record of past store orders. o )

Note that the results presented here assume that the distributor uses a stationary base-
stock level for each product, which is not necessarily optimal under an autocorrelated order
process, which occurs under our proposed coordination mechanisms. Because of this we can
view the results presented here as providing a lower bound on potential savings.
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all stores apply the same damping parameter, o (for test results on the
penalty-based approach under randomly generated problem instances,
see Geunes, 1999)''. We partitioned the set of 62 stores into 18 customer
clusters. Although the distributor stocks and supplies products belong-
ing to several of the manufacturer’s product lines, we focus on the three
major product lines (containing 248 SKUs) that account for more than
85% of distribution by weight. We obtained transportation and inven-
tory cost parameters based on estimates provided by the manufacturer.
By evaluating total system cost at various values of & between 0 and 1,
we found that the minimum total expected system cost occurred at a =
0.8, which provides a 68% reduction in variance at the distributor-store
interface (using Equation 9.18). Compared to the base model, the simple
two-period WMA policy provided approximately 2.76% savings in total
expected system cost; extrapolating these savings to all distributors in
the manufacturer’s nationwide network implies system savings in excess
of $1M annually. Past literature on the bullwhip effect emphasizes the
need to lessen the amount of demand amplification at upstream stages
in the supply chain. Our results support this conclusion and show that
supply chain costs can be further reduced if variability is dampened at
the trailing end of the supply chain (i.e., at the retail store level).

S. Concluding Remarks

This paper has discussed three interesting and new models, applica-
ble to practical distribution problem settings, that arose through a joint
project with a leading US building-products manufacturer. Our analysis
of the distribution system came at an opportune time, following a major
change in the architecture and performance requirements of the system.
These major system transformations resulted from a significant change
in the purchasing patterns of US consumers over the past two decades.
Over this period, consumers shifted from traditional independent retail-
ers to large retail chains in many industries because of the combination
of price, product quality, and service these retail chains provide. Specif-
ically, the problems we consider are motivated by the new challenges
that the big-box retailers presented to the large building-products man-
ufacturer. Coping with these novel distribution challenges requires re-
searchers and industry practitioners to develop new models and solution
techniques.

ISystem costs can decrease further by using product- and store-specific damping parameters;
however, in this case, the solution space dramatically increases due to the increased number
of decision variables.
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The problems we address arise at different points in the supply chain:
the fee-setting problem occurs at the manufacturer-distributor interface,
the delivery planning under uncertain demands problem arises within the
distributor’s operations, and the upstream variability control problem re-
lates to the distributor-retailer interface. Although we can isolate the
particular supply chain stages where each problem arises, we emphasize
that performance improvements at these isolated points will often pro-
vide indirect benefits throughout the chain. For example, reducing or-
der variability at the distributor-retailer interface not only leads to lower
costs at these stages, but also leads to less compensation paid out by the
manufacturer, since distributor costs decrease. As distribution channels
continue to evolve, particularly through the use of advanced informa-
tion technologies, new and interesting distribution planning problems
and modeling opportunities will likely continue to arise.
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Abstract

In this paper, we study the design of global facility networks. We
present a mixed integer programming model that captures essential de-
sign tradeoffs of such networks and explicitly incorporates government
subsidies trade tariffs and taxation issues. The resulting formulation
can be solved for reasonable size problems with commercially avail-
able mathematical programming software. Focusing on special cases
of the problem enables us to provide useful insights on preferable in-
ternational facility networks for various environments. We demonstrate
the pervasive, and often dominating, effects of subsidized financing, tar-
iffs, regional trade rules, and taxation in shaping the manufacturing and
distribution network of global firms.
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1. Introduction

1.1 Different Approaches in Structuring Global
Networks

Structuring global manufacturing and distribution networks is a com-
plicated decision making process. The typical input to such a process is
a set of markets to serve, a set of products that the company will produce
and sell, demand projections for the different markets, and information
about future macroeconomic conditions, transportation and production
costs. Given the above information, companies have to decide, among
other things, where to locate factories, how to allocate production ac-
tivities to the various facilities of the network, and how to manage the
distribution of products (e.g., where to locate distribution facilities).
There are three main approaches in structuring global facility networks:
(1) Product Family-Focused: where plants may be located in different
parts of the world and each specializes in a specific product family (a
set of products with similar process and market characteristics). Each
product family plant is essentially an independent small company that
supplies its product group to all markets in which the product is sold.
(2) Process Focused: where individual plants are typically dedicated
to performing specific process steps for a variety of different products.
Sometimes a product is produced entirely by a single plant, but more
often the plant is only one of several in the process chain. (3) Market-
Focused: where plants are located at markets that they plan to serve.
All products sold in that market are served locally. Each market is es-
sentially insulated from other markets, and plants serve the needs of the
local market only.

Most global facility networks firms use are hybrids of the above ap-
proaches. For example, Product/Process Focused networks have
plant subnetworks that produce specific product families. The prod-
ucts within a product family can be completed in more than one facility
of this subnetwork, and their various subassemblies are allocated to the
various plants of the subnetwork. In other words, the plants within
the subnetwork are process focused, but the subnetworks are product
focused.

1.2 The Importance of Facility Financing and
Corporate Taxation

Among the most important factors distinguishing the organization of
global production activities from strictly domestic ones are the influ-
ences of various governmental policies. Governments often use special
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financing and taxation incentives to stimulate production investments
in their country. The most important of such subsidies are:

m Cash grants: usually given as an incentive for investment either
in a particular development region or for development of a partic-
ular product or industry. Northern Ireland offers tax free grants
of up to 50 percent of the cost of new factory buildings, machinery
and equipment. Of a similar nature is Israel’s Capital Investment
Encouragement Law where firms can receive cash subsidies up to
38 percent of the project’s cost. Israel has recently provided Intel
with a 600 million dollar cash grant for a 1.6 billion dollar new
facility.

» Loans at reduced interest rates: the size of these loans can
be related to the total investment capital and may vary both in
size and interest rate according to the importance of the region or
the project. For example, in Austria the European Recovery Pro-
gramme provides loans at interest rates significantly below market
levels for several types of investments, and loans for large projects
could amount to up to 50% of the total investments.

s Taxation Related Incentives: for locating in high priority re-
gions or manufacturing products that the government is trying
to foster, firms might be exempt from paying income tax or pay
lower rates for a number of years. For example, in Brazil reduced
income tax rates are available in the Monaus region — Amazon
forest, while in Northern Ireland the corporate income tax rate is
among the lowest in the world.

In this paper we present a mathematical modeling framework that ex-
plicitly considers financing and corporate taxation issues in the design
of Hybrid Product/Process Focused facility networks. The multi-
period model maximizes the discounted after-tax cash flows of the firm.
The paper maintains a modeling rather than an algorithmic focus.

1.3 Literature Review

One of the early papers in this area, which presents a single period
model for determining simultaneously international plant location and
financing decisions under uncertainty, is by Hodder and Dincer [1986].
The model uses a mean-variance approach in the objective function to
incorporate price/exchange rate uncertainty and risk aversion in the lo-
cation problem, an approach that builds on earlier work of Jucker and
Carlson [1976] and Hodder and Jucker [1985a, b]. Aspects of subsidized
government financing, tariffs and taxation are not modeled.
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A succession of papers by Cohen and Lee address a variety of issues
of facility network design in a global context. Cohen and Lee [1988] deal
with intra-firm international trade issues. In their model, plants are
specialized units that produce the sub-assemblies of the final product
and the Distribution Centers (DCs) perform the final assembly. Plants
are charged with fixed and variable costs, while DCs are charged only
with variable costs. Cohen and Lee [1989] developed a normative in-
teger programming model for resource deployment decisions in a global
manufacturing and distribution network for a U.S. based manufacturer of
personal computers. Their model enables estimation of before and after-
tax profitability, including exchange rate effects to a numeraire currency.
Their implementation is in GAMS/MINOS (Brooke, Kendrick and Meer-
aus 1988), which has no integer programming capability. Consequently,
they only solve the continuous versions of their models, pre-specifying
“alternate sets of integer decisions variables.” Cohen, Fisher and Jaiku-
mar [1989] presented a multiperiod extension of the above model, which
explores tradeoffs between centralization and localization of supply chain
decision making. A hierarchical procedure is proposed as a heuristic so-
lution approach to the problem. Huchzermeier and Cohen [1996] present
a modeling framework that integrates the network flow and option val-
uation approaches to global supply chain modeling. The model max-
imizes discounted, expected, global after-tax profit for a multinational
firm in terms of numeraire currency. The results in the paper provide
a methodology for quantifying the risks and returns of flexible global
manufacturing strategies. Their work clearly demonstrates how flexi-
ble facility networks with excess capacity can provide real options to
hedge exchange rate fluctuations in the long term. This work does not
emphasize explicit modeling of facility financing and tax incentives and
the resulting implications for the global network structure. Finally, var-
ious company-specific facility network design issues and decision sup-
port systems have been discussed in the applications-oriented literature,
see Breitman and Lucas [1987] work on General Motors, Arntzen et al.
[1995] work on Digital Equipment Corporation and Davis [1993] work
on Hewlett-Packard.

Our work in this paper is along the research directions pointed out
in the recent paper of Revelle and Laporte [1996]. As they point out,
even though plant location and configuration of production/distribution
networks have been studied for many years, a number of important real
world issues have not received adequate attention. Even though there is
ample anecdotal evidence on the strong effects of financing and taxation
factors on the structure of global manufacturing and distribution net-
works (see Bartmess and Cerny [1993] and MacCormack et al. [1994]),
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there is a lack of reasonably simple, yet comprehensive, models which

illustrate the effects of such factors on global location/network configu-

ration decisions. Our research in this paper attempts to fill this gap.
The main contributions of this paper are:

a) the incorporation of such issues as government subsidies in facility
financing, trade tariffs and taxation in a manageable size linear
integer program that captures the multiperiod nature of interna-
tional plant location and distribution network configuration deci-
sions;

b) a model which explicitly captures intra-firm material flows (from
plants to DCs) and provides insights on preferable international
facility network structure for various environments;

c) the illustration of the dominating effects of subsidized financing,
tariff and local content rules, and taxation in shaping the optimal
structure of global facility networks.

The structure of this paper is as follows: In Section 2 we present a
mixed integer programming formulation of the global facility network
design problem explicitly accounting for government financing and tax-
ation issues, and report on the computational experience with the model
via standard mathematical programming software. Section 3 uses a spe-
cial case of the model (“identical countries”) to provide insights on the
effects of financing, taxation, regional trading zones and local content
rules on the structure of global facility networks. Use of the mixed inte-
ger programming model in an illustrative international location decision
in Section 4 further demonstrates the pervasive effects of the above fac-
tors in global facility network design. Many of the managerial insights
obtained in the “identical countries” special case reappear in the realistic
environment of our illustrative decision instance.

2. Problem Statement and Formulation
2.1 Problem Statement

A firm uses a Hybrid Product/Process Focus approach in designing
its global network of plants and distribution centers. The firm plans
to produce a new product with sales expectations in many countries.
The product is composed of many different subassemblies, but requires
only one unit per subassembly (i.e., a two level product tree, with level
0 the final product and level 1 all its subassemblies). A network of
facilities will be developed dedicated to the production of this product,
and each one of the plants within the network will be dedicated to the
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production of a specific subassembly. In order to assemble the final
product, distribution centers (DCs) will be located in various countries.
To influence the firm’s location decision, various governments are willing
to grant to it loans with subsidized interest rates and tax incentives that
reduce the facility costs. The firm wants to develop a network of plants
and DCs that maximizes its discounted after-tax profit over the planning
horizon for this product.

2.2

Model Assumptions

There are two facility levels: plants (producing subassemblies) and
distribution centers (assembling the final product).

Plant and DC locations are selected among an identified set of
candidate locations.

The plants and DCs remain open throughout the finite planning
horizon.

The firm is a price taker in each market. All prices are quoted in
the currency of the market the product is sold and then translated
into a common currency (say $) by using the real exchange rate.

The market demand and the selling price are independent of the
structure of the facility network.

At most one Distribution Center (DC) is allowed in each country.
The main rationale behind this assumption is that since shipment
cost of a subassembly or a final product within a country is as-
sumed constant in our model, the opening of a second DC will
result in additional fixed costs with no transportation cost sav-
ings.

Demand and supply clear in each time period and hence there are
no inventory costs.

Corporate income tax is paid on profit in each country of operation.

2.3 Notation

Indices

i subassembly index, ¢t =1, ..., I;

n: country of operationindex, n = 1,...,N;

k: distribution center (DC) (as well as country that DC is located)

index, k=1,...,N;
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m: country (potential plant location) index, m = 1,... ,N;
j: country (market) index, j=1,..., J;

t: time period, t=1,...,T;

Parameters

fime: fixed cost of plant that produces subassembly ¢ in country m in
period t;

vym¢: Unit variable production cost of subassembly ¢ produced in coun-
try m in periodt;

Fy,: fixed cost of a DC in country k in period t;
Vie: unit variable assembly cost of a DC in country & in period ¢;

Skjt: cost to ship one unit of the final product from a DC in country
k to market j in period ¢ (shipment cost calculations include any
assessed trade tariffs and other duties);

¥ Smre: cost to ship one unit of subassembly i from country m to coun-
try k in period ¢ (i.e., subassembly transportation cost is expressed
as a fraction of the transportation cost of the final product, with
9; the fraction for subassembly i);

Dji: demand of the final product in country j in period ¢;
Tt per-period interest rate on the loan in country n;

R, (r,T): capital recovery factor for period t given interest rate r and
planning horizon T;

pt (r,T): interest calculation factor for period ¢ given interest rate 7
and planning horizon T;

Aim: required investment to build a plant for subassembly ¢ in country
m;

Wp: required investment to build a DC in country k;
tnt: marginal corporate income tax rate in country 7 in period ¢;

Pj: sales price of the final product (translated into $ with a real ex-
change rate) in country j in period ¢;

Pimke. transfer price of subassembly i made in country m shipped to
DC in £ in period ¢;
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d,;: applicable depreciation rate in country n in period ¢ (% per period);
Ky capacity of a plant producing subassembly ¢ in country m;

C: capacity of a DC in country k;

Bnt: discount rate of after-tax cash flows in country n in period ¢;

B,,: maximum loan that country n can give to the firm;

Decision Variables

Ximke: units of subassembly ¢ produced in country m and assembled
in country k in period ¢;

Y,j¢: units assembled in country n and used to satisfy demand in mar-
ket j in period ¢;

wyg: the loan that country k government will grant to the company to
build a DC;

m: the loan that country m government will grant to the company to
build subassembly plants;

Yim: = 1 if a plant to produce subassembly i is located in country m,
and 0 otherwise;

zr: = 1 if a DC is operated in country k, and O otherwise.

24 Basic Components of the Model

2.4.1 The Objective Function. Revenue of units assembled
(ane) and subassemblies produced (ji¢) in country n in period ¢, where:

J I N
ant = 3, PjtYnjt and pnt = Y- > Pinkt Xinkt.
j=1 i=1 k=1
Transportation costs from a DC (an¢) and subassembly plants (by) lo-
cated in country n in period t, where:

J I N
ant = Y SpjtYnjt and bpy = 3~ Y ViSnke Xinke.
j=1

i=1 k=1
Annual fixed costs of a DC () and subassembly plants () in country
n in period t, where:

I

Ont = 2nFne and vpr = Z Yin fint-
i=1
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Cost of goods sold for the final product assembled at the DC (c;,;) and
assembly related costs of a DC () in country n in period ¢, where:
I N J
Cnt = ), ). DimntXimnt and ops = Ve 3 Yoji.
j=1

i=1 m=1

Variable production costs of subassembly plants in country n in period
t

I N
Ent = Z Vint (Z X‘inkt) .
i=1 k=1

Loan payment in period ¢ (gn¢) and interest payment (g;,;) for loan given
by country n for the construction of subassembly plants in its territory,
where:

gnt = wan (TIHT) and g:q,t = w"mot (Tn; T)

Loan payment in period ¢ (hy;) and interest payment (h,) for loan given
by country n for the construction of a DC in its territory, where:

hnt = wa Ry (1, T) and by, = wnps (7n, T).
Depreciation expense in country n in period ¢,
i
Tnt = (Z Ainyin + I’Vnzn) dnt-
i=1
Before-tax income in country n in period ¢,

Tt = [@nt + pint — (@nt + bnt + Yot + One + Cne
tent + @t + Gt + Pig + Tat))-

Corporate income tax paid in country n in period ¢,
CTut = Tnitne.

Cash expenditures in fixed assets in year O that are not financed by
external sources.

N I N
IN = Z—l [(E:l Aimy'im) - wm] + kgl (Wka - ’l'..l'.-'k}.

i=

So the objective function which maximizes the net present value is:

Ew?r:l Z'tF:l (Tne + g;t + Rt + Tnt — gnt — hnt — CTnt)
(1+ Bre)t — IN

OBF = max {
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2.4.2 The Set of Constraints. The Constraints are:

JI\‘f
1) Demand Constraints: »_ Yy < Dy, ¥V j,t

n=1

N
2) Plant Capacity Constraints: Y Ximkt < Kim, V 2,m,1
k=1

J
3) DC Capacity Constraints: ) Y < Ck, Vk,t

j=1

N J
4) Conservation of Subassembly Flows: > Ximre = D Yaje, V0, k, ¢
A :

m= j=1
5) Country Budget Constraints: ¥, + wp < By, Vn

6) Compatibility of Decision Variable Values constraints:

N T J T
Yo 2 Ximkt < Yim - M, Viomand ) Y Y < 2 - M, VK,
=1 b=l j=1i=1

J T
where M is a large number such that M > 5" >° Dy.
j=1 t=1

7) Nonnegative Profit in Each Country in Each Period (assumption of
convenience to avoid unnecessarily complicated tax calculations):
Tt = 0, ¥V n,t.

AimYim, ¥ m and wi < Wiz, VE.
1

8) Loan Ceilings: ¢, <

I

(3

2.5 Computational Experience with Proposed
Model

The following table reports computational results for solving various
size problems. Table 10.1 provides sizes of our model with the use of stan-
dard mathematical programming software (specifically GAMS/OSL2)
on a Cyrix 686-P90 processor.

We would not, however, want to give the false impression that sub-
stantially larger size problems can be solved on standard PCs. Larger
size formulations (in our experience up to I = 10, N = 10, J = 100,
T = 10) can be solved on minicomputers, (e.g., VAX 6400) with the use
of standard mathematical programming software in less than an hour of
CPU time.
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Number of
Candidate
Number of Location Number of Number of Time Solution
‘ 3 : 6 . 5 14
5 [ 100 5 41
20 6 100 5 106
5 20 100 5 140
5 25 50 5 108
3 35 35 5 121
5 10 250 5 187
5 100 15 257
5 10 50 15 273
10 15 50 5 87
10 10 100 5 104
Table 10.1. Computation Time for Various Size Markets
3. Special Case: Identical Countries
3.1 Base Case: Tariff and Transportation Cost
Considerations

In this section we analyze a special case of our model to obtain useful
insights into the nature of location decisions in a global environment.
We have relaxed the capacity constraints on plants and DCs (i.e., un-
capacitated situation) and assume straight-line depreciation. Initially,
we assume no financing and equal tax rates across countries (we refer to
this as the “base case”).

We consider “identical countries” and “identical periods” (i.e., Dj =
D,Pj; = Pty = t, and fj; =  for all j) with a trade tariff assessed
on flows crossing their borders. The product consists of I “identical
subassemblies” in terms of revenue and cost parameters in our model.
For example, ¥; = ¥ for all . The assumption is not intended to imply
physical similarity but only similarity of cost parameters. We assume
that only one plant of each subassembly type will be built (due to, for
example, economies of scale). Also, there is no differentiation among
subassembly plants or DCs (we use the term “identical plants or DCs”
with an analogous meaning) and specifically

Aim = A, Vim =0, fim=flori=1,2,...,Jand m=1,2,...,N;

and Wy =W, Vi, =V, Fp,=Ffork=12,...N.

Without loss of generality, we also assume that a DC can be con-
structed in every market (i.e., N = J). The transportation costs within
the countries are C per unit of final product (i.e., S = C); however,
they increase by the assessed trade tariff whenever borders are crossed.
Specifically, transportation costs per unit of final product across borders
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equal Sg; = C(1+A), A > 0,forall (k,j7),k # j. We assume that the
transfer prices p are the same for all subassemblies and based on a world-
wide market standard that is closely monitored by governments (i.e., the
firm cannot change transfer prices to take advantage of tax conditions).
Finally, we assume that prices and costs are structured such that the
firm will always show nonnegative profit in every country as long as a
DC in any country serves at least the total demand for the country of
its location.

Proposition 10.1 shows that we can ignore all cases where subassembly
plants are located in different countries.

Proposition 10.1 Given [ identical plants which can be constructed in
any of N identical countries, it is preferable, or at least as profitable as
any other configuration, to build all I plants in one country.

Thus, it makes sense for all subassembly plants to be located in one
country, but we still must determine how many DCs to build. We
examine two cases where the number of DCs equal to 1 or g (where
1 < g < N). The Net Present Values (NPVs) of these configurations are
given below, and the DC locations that maximize the NPV are assumed
(i.e., markets that do not contain a DC are all served from the same DC
located in the country containing the subassemblies):

NPV(1DC)=-1A-W + i {(1-t)[INPD—-(N+NA-A)CD

w=1

—~NISCD — If — F — NIvD — NDV] + 4y /(1 4 gy,

After rearranging terms, the NPV (g DCs) is equal to:

-
NPV (¢ DCs) = ~IA—qW + 3. {(1-t)[NPD
1

+CD(IYA(1—q)+A(g— N)—N({I9+1))—If —gF — NIvD — NDV]
+UALTY /(1 + By

The following proposition provides insights on the nature of the DC

configuration for this special case.

Proposition 10.2 For the case of identical plants and identical coun-
tries,

(a) It is preferable to either build a single DC in the country where all
plants are located or to construct DCs in all countries;

(b) For the infinite time horizon case (I' — oc), a single DC is op-
timal if either (1) I¥ > 1, or (2) IY < 1 and D < Dx, where
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Dx = [BW /(1 —t) + F]/[AC (1 — IV¥)]; otherwise a configuration
with DCs in all countries is optimal.

According to the above proposition, if it is more expensive to trans-
port the subassemblies individually than to transport the final product
(I9 > 1), then it is preferable to use a centralized distribution structure
with the product transported from the country where it is manufactured
and assembled to all of its final markets. If the condition is reversed,
i.e., transportation of the final product is more expensive, then given a
substantial demand in foreign markets, it is preferable to open a DC in
each one of the markets (i.e., a decentralized distribution structure) and
transport subassemblies from the subassembly manufacturing plants.

The analysis of this special case provides the following insights for
environments where the transportation cost elements (in our case trans-
portation cost differences were generated through the A factor,i.e., trade
tariffs and other restrictive cross-border flow regulations) tend to domi-
nate:

(a) when transportation of subassemblies is expensive, firms prefer a
centralized manufacturing and distribution structure;

(b) as the transportation cost element between countries and/or cross-
border flow government imposed penalties increase firms tend to
open DCs in markets away from the manufacturing facilities; and

(c) governments can attract DC investments in such environments by
offering financing help through loans.

3.2 Government Incentives: Financing and
Taxation

Governments can attract facility investments in their country via sub-
sidized financing of facility (plant and/or DC) construction, as the fol-
lowing proposition illustrates:

Proposition 10.3 For the case of identical plants and identical coun-

tries, if only one country offers attractive financing for facility construc-
tion with interest rate v < /(1 —t), then all I plants and a distribution

center will be built in that country.

As we demonstrate in Section 4, in many cases even relatively small
subsidization of loan interest rates by the government is adequate to
attract facility investments in the country. However, the level of facility
investment in the country by a firm is non-decreasing with the level of
subsidized financing provided by the government.
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Next we explore the situation where one country charges a lower tax
rate than the rate of other countries.

Lemma 10.4 [fthere is only one DC, the plants and the DC are located
in the country with the lower tax rate.

Lemma 10.5 [fmore than 1 DC is open, the plants and the DC serving
any markets without a DC will be located in the country with the lower
tax rate.

Proposition 10.6 follows from the two lemmas.

Proposition 10.6 For the case of identical plants and identical coun-
tries, if one country offers a lower tax rate (t) than the rest (t), then
all I plants will be built in that country. In addition, it is preferable to
either build a single DC in the lower tax rate country or to construct
DCs in all countries.

Let us observe the relevant expressions for NPV(1 DC) - NPV (g
DCs) in the base case (see proof of Proposition 10.2) and lower tax
rate country case (see proof of Proposition 10.6). The difference in these
two expressions is the term (t — ') D[P — Ip—V — C (1 + A) + ACIT9Y),
which is positive due to the assumption of the price structure ensuring
nonnegative profits in each country of operation. This implies that it is
easier to satisfy the inequality NPV(1 DC) - NPV (¢ DCs) > 0 in the
lower tax rate country case than under the base case. Therefore, the
firm is more likely to desire complete centralization of its distribution
network when one country offers a lower tax rate than for the case where
all countries offer the same tax rate.

According to Proposition 10.6 and the above observations, by lowering
its tax rate, not only may a country entice firms to open plants and/or
distribution centers, but also the amount of demand flowing through
existing distribution centers in that country may increase. Country en-
vironments with differential tax rates tend to favor more centralized
manufacturing and distribution network structures. Even rather small
tax rate differences can induce firms to move their facility investments
to countries with lower tax rates, as will become more apparent through
our discussion in the next section.

3.3 Tariff Structure: Regional Trading Zones
and Local Content Rules

Governments sometimes enter into multilateral trade agreements which
allow for tariff-free trade among nations that belong to the pact. In this
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section we introduce trading pacts into the special case and describe the
changes that the agreements may cause for a firm’s global distribution
network configuration. We begin by stating two lemmas.

Lemma 10.7 For the case of identical plants and identical countries, if
the N countries are divided into Z tariff-free trade zones, then no more
than one DC should be located in each trading zone.

Lemma 10.8 For the case of identical plants and identical countries,
if the N countries are divided into Z tariff-free trade zones, then all I
plants should be built in any of the countries that form the trading zone
which contains the most countries.

Lemmas 10.7 and 10.8 allow us to construct the following proposition,
which describes the impact that trading zones have on the degree of
centralization of a firm’s distribution network.

Proposition 10.9 Consider the case of identical plants and identical
countries, where the N countries are divided into Z tariff-free trade
zones. If IY > 1(I19 < 1), then a completely centralized distribution
network, with only one DC, is more likely (less likely) to be optimal than
for the case without tariff-free zones.

Proposition 10.9 implies that the centralization/decentralization dis-
tribution network configuration decision is more sensitive to the relative
transportation cost of subassemblies vs. the final product when trad-
ing zones are introduced. Specifically, if it is more expensive to trans-
port the subassemblies individually than to transport the final product
(/9 > 1), then a centralized distribution is more likely than in the base
case, as the penalty for transporting the final product from one loca-
tion is smaller as the home (tariff-free) market is bigger. On the other
hand, if transportation of the final product is more expensive (19 < 1),
then centralized distribution is less likely than in the base case, as the
penalty for transporting subassemblies across borders is smaller as fewer
are charged the tariff (i.e., more subassemblies are transported tariff free
to the DC in the same zone).

The impact of trading zones can be summarized by stating that when
trading zones are established and the cost of transporting subassemblies
is not high compared to the final product, then the distribution network
is likely to become “regionalized” instead of centralized in one country or
decentralized among all markets. In other words, the network becomes
decentralized over trading zones (instead of countries) but centralized
within each zone. On the other hand, if economies of scale exist such
that only one plant will be built for each subassembly, and if the total
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cost of transporting subassemblies is high compared to the final prod-
uct, then the establishment of trading zones will more likely result in
manufacturing and distribution centralization, i.e., all facilities in one
location. In that case, the zone offering the best incentives may attract
all of the firm’s worldwide investment.

Many governments establish “local content rules,” which require firms
to have a certain portion of their final products originate from that coun-
try. The percentage requirement has been known to be as high as 90%,
and the specific rules and penalties may vary greatly among countries
(Munson and Rosenblatt 1997). Consider a local content rule which
imposes a tariff A for domestic shipment from the distribution center
unless the value of the subassemblies from domestic plants plus the value
added at the distribution center is at least as high as the local content
percentage times the final good’s value. In other words, the country
treats the final product as an imported good unless a certain portion of
that good is produced in the country. This type of rule prohibits firms
from using cheap foreign labor to produce the bulk of the product while
adding little value in the country of sale.

Since the countries are identical under the base case scenario, if one
government introduces a local content rule, then a DC and all [ plants
will be diverted to that country (because there would be no penalty for
doing so). Therefore, we will examine the situation from Section 3.2
where one of the countries (A) has a lower tax rate than the other coun-
tries, and country B introduces a local content rule in order to attract
investments. Now if conditions are such that, prior to the introduction of
any local content rules, a completely centralized distribution network is
optimal, then from Lemma 10.4, country A will have all of the facilities
(including the only DC). The local content rule introduced by country
B will have no effect because the firm currently has no DC in country B.
Therefore, we will assume that conditions are such that each country has
a DC, and (from Lemma 10.5), all / plants currently reside in country
A. Country B introduces the local content rule to try to “force” some of
the plants to move to that country.

Clearly, based on Lemma 10.5, the firm will want to move as few plants
as possible from country A to country B in order to satisfy the local
content requirement. The local content rule is defined here as ®pD +
VD > Q(IpD+ VD), where ® is the number of subassembly plants
located in country B and €2 is the local content percentage (0 < < 1).
Therefore, the number of subassemblies that the firm has to move in
order to satisfy local content is the smallest integer ®* such that

> [QUp - (1- Q) V] /p.
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Proposition 10.10 describes the conditions under which the firm should
satisfy the local content requirement imposed by country B.

Proposition 10.10 For the case of identical plants and identical coun-
tries with country A having a lower tax rate than the other countries, it
is worthwhile for the firm to move ®* subassembly plants from country
A to country B in order to satisfy country B’s local content rule if:

Q" < (10.1)
-W+ST_ 1-thACD+ (1 -t)F - (t—t)D(P—Ip-C=V) /(1L +B)”
Yo _(t—=t) NDp—(N-1)(14+AWCD-9CD ~ f —NDv~— 4 [(1+8)”

w=1

If the right-hand-side of (10.1) is greater than I, then country B can
impose any size 2 (up to 100%) and still induce the firm to transfer
its production facilities in order to satisfy the local content rule. How-
ever, a country can become too greedy and create a “boomerang” effect,
whereby setting too high of a rate not only fails to attract investment but
also causes the company to leave the country altogether (close its DC),
see Munson and Rosenblatt [1997]. For the special case described here,
Corollary 10.11 gives the local content percentage which “backfires” on
country B.

Corollary 10.11 For the case of identical plants and identical countries
with country A having a lower tax rate than the other countries, the local
content percentage ) imposed by country B will result in the closing of
all plants and DCs in that country if

Q Vv
>fp—|—V{ -+

—W+E’::l (l—t’)&CD-{—%—(l—-t)Fu- t-t)D(P-Ip—C-V) /(14 8)*

Sr_(t—t) NDp— (N -1)1+AWCD-9CD—f-NDv— 42 /(1+8)*

4. Illustrative Use of the Model: Effects of
Financing, Tariffs, Local Content, Regional
Trading Zones and Taxation

We explore the potential effects on a firm’s location decisions from
1) financing incentives, 2) tax incentives, 3) regional trading blocks,
and 4) local content requirements with the use of our model. For the
base case problem we consider a company making a product which sells
for $2,000 in all markets, irrespective of tariffs. The product has four
major subassemblies with significant fixed and variable costs for the
subassembly plants. Distribution centers, on the other hand, have lower

3
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Market Demand Market Demand

Europe Asia
United Kingdom 1,500 China 1,200
Ireland 300 India 1,200
Germany 3,500 Taiwan 300
France 1,500 Afghanistan 500
Romania 200 Pakistan 300
Sweden 800 Thailand 400
Portugal 400 Malaysia 500
Spain 600 Singapore 600
Norway 600 The Philippines 400
Finland 400 South Korea 1,500
Russia 1,000 Japan 3,000
The Netherlands 600
Belgium 400 North America
Luxembourg 50 Eastern U.S. 5,000
Denmark 800 Western U.S. 5,000
Switzerland 100 Mexico 600
Austria 300 Canadz 1,500
Italy 1,000
Greece 600
Turkey 500
Poland 500
Hungary 400
Bulgaria 200
Ukraine 600
Belarus 400

Table 10.2. Demand in Each Market

fixed and variable costs. The firm sells to 40 countries in Europe, Asia,
and North America. (The U.S. market is split into two “countries,” East
and West U.S., in order to account for large geographical distances. Of
course, no trade tariffs are charged on flows between these two markets.)
Table 10.2 shows the demand of each country.

The firm has identified 12 of the countries as potential locations for
subassembly plants and distribution centers. Table 10.3 shows the rel-
evant cost information. No financing is offered for the base case. Each
country has a 40% effective income tax rate, and cash flows are dis-
counted at 20% in each country. The time horizon is five years, and
cost and demand factors do not change over time. All investments have
an annual 20% depreciation rate. The subassembly transportation cost
factor i equals 20% for each subassembly i. The transportation costs
for the final product are 2 cents per mile per unit. In addition, every
final product that crosses a national border is charged a $200 per unit
tariff ($40 per unit for each subassembly).

The transfer price p;mit Was set equal to a 20% markup over costs
calculated as the sum of depreciation and fixed costs for plant 7 in coun-
try m divided by the total worldwide demand, the transportation cost
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UK. Ireland  Germany France Romania Sweden

Subassembly 1

Investment Cost  $500,000 $500,000 $500,000 $500,000 $12,000,000 $500,000

Annual Fixed Cost $200,000 $200,000 $200,000 $200,000 $200,000 $200,000

Variable Cost $350 $320 $350 $350 5140 $350
Subassembly 2

Investment Cost ~ $500,000 $500,000 $500,000 $500,000 $250,000 $500,000

Annual Fixed Cost $1.5Mil. $1.5Mil. $1.5Mil. S$1L5Mil. SL5SMil. $1.5 Mil.

Variable Cost $300 5300 $300 3300 $300 $300
Subassembly 3

Investment Cost SIMil.  $S12Mil. SIMil.  S12Mil. SLSMil.  $1.2 Mil.

Annual Fixed Cost $800,000 $800,000 $800,000 $800,000 $800,000 $800,000

Variable Cost $300 $290 $300 $300 $270 $300
Subassembly 4

Investment Cost  $200,000 $200,000 $200,000 $200,000 $200,000 $200,000

Annual Fixed Cost $150,000 $150,000 $150,000 $150,000 $130,000 $150,000

Variable Cost $380 $360 5380 5380 $350 $380
Distribution Center

Investment Cost  $20,000 320,000 $20,000 $20,000 $20,000 $20,000

Annual Fixed Cost $12,000 $12,000 $12,000 $12,000 512,000 $12,000

Variable Cost $20 $20 $20 $20 $15 $20

East US. WestUS. Mexico China India Taiwan

Subassembly 1

Investment Cost  $500,000 $500,000 $400,000 $400,000 $400,000 $400,000

Annual Fixed Cost $200,000 $200,000 $200,000 $200,000 $200,000 $200,000

Variable Cost $350 $350 $280 $280 $280 $300
Subassembly 2

Investment Cost ~ $500,000 $500,000 $400,000 $400,000 $400,000 $400,000

Annual Fixed Cost $1.5Mil. SLSMil. $1.5Mil. SLSMil. SLIMil $1.5Mil

Variable Cost $300 $300 $250 $250 $250 $260
Subassembly 3

Investment Cost $1 Mil SIMil,  SISMil. S1SMil. SLSMil  $1.2 Mil.

Annual Fixed Cost $800,000 $800,000 $800,000 $800,000 $800,000 $800,000

Variable Cost $300 $300 $280 $280 $280 $280
Subassembly 4

Investment Cost ~ $200,000 $200,000 $200,000 $200,000 $200,000 $200,000

Annual Fixed Cost $150,000 $150,000 $130,000 $130,000 $130,000 $130,000

Variable Cost $400 $390 $270 $280 $270 $29%0
Distribution Center

Investment Cost $20,000 $20,000 $20,000 $20,000 $20,000 $20,000

Annual Fixed Cost $12,000 $12,000 $12,000 $12,000 $12,000 $12,000

Variable Cost $20 $20 $15 $20 $15 $15

Table 10.3. Country-Specific Cost Data
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of subassembly ¢ from country m to the distribution center in country k&
and the unit variable production cost of i in m.

Base Case

The base case solution has a net present value of $38,940,519. India has
plants for all four subassemblies. In addition, Mexico has a plant for
subassembly 4. There are nine active distribution centers. They are lo-
cated in all potential locations except for Ireland, Romania, and Taiwan.
Each distribution center serves its local demand. The distribution center
in India also serves the customers of all countries that do not have their
own distribution center. The three potential DC locations that did not
open were the ones with the smallest demands. As the reader can easily
verify, the resulting facility configuration in this more complicated deci-
sion environment is along the same lines and fits nicely with the insights
obtained from the special case discussion in Section 3.1.

Scenario 1 - Government Financing

In this scenario we examine whether government loans can induce in-
vestment in that country. In the base case, despite the very low variable
cost, the high investment cost for subassembly 1 plant (mostly due to
a lack of transportation, telecommunications and technology infrastruc-
ture) prevented its location in Romania. However, government financing
can make production in Romania attractive. For this example, if Ro-
mania offers to finance all possible investments at an interest rate less
than or equal to 33.2%, the plants for subassemblies 1 and 3 move from
India to Romania (at higher interest rates the base case solution is still
optimal).

The shift in locations to Romania has global distribution impacts.
With the production network more spread out, it is optimal to now
open distribution centers in all 12 potential locations. Also, the DC in
India now only serves the markets in Asia which do not have their own
DCs. The Romanian DC serves all other markets in Europe and North
America without their own DCs.

Reducing the interest rate from 33.2% does not change the new allo-
cation of demand, even when the rate is 0%. The NPV does increase,
of course, as the interest rate decreases. Figure 10.1 shows the percent
increase in NPV as a function of the interest rate offered by the Roma-
nian government. At 0% the NPV is $44,349,287. The rate of 33.2%
necessary to induce the configuration change is the one prescribed in
Proposition 10.3 (i.e., (3/1 —t)).

Scenario 2 - Tax Incentives
Ireland has traditionally offered low tax rates to try to increase foreign
investment. Since Ireland has no locations in the base case, in Scenario
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Figure 10.1. Scenario 1-Government Financing
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2 we lower the tax rate in Ireland while keeping the rate in all other
countries at 40%. It only takes a 4% reduction in tax rate to 36% to
entice the firm to open a distribution center in Ireland to serve its own
customers. All other demand allocations from the base case remain the
same.

At 25%, the plant configuration as well as the DC configuration
change. The plant for subassembly 1 moves from India to Romania, and
the plant for subassembly 3 moves from India to Ireland. In addition,
all 12 countries on the candidate location list open distribution centers.
India continues to serve the customers in Asian markets without DCs,
but all other markets without DCs are now served by Ireland. Another
configuration change occurs at a 5% tax rate. The plant for subassembly
2 moves from India to Ireland. In addition, all DCs in Europe except
for Ireland’s close, and the Ireland DC now serves all markets which do
not have their own DCs.

Figure 10.2 shows the percent increase in NPV as a function of Ire-
land’s tax rate. The curve is piecewise-linear, with the kinks occurring
at tax rates that cause a change in network configuration and/or demand
distribution among DCs. At 0% the NPV is $45,073,946.

The results of our example for Scenario 2 clearly indicate that lower
tax rates can encourage companies to change their location decisions,
and the larger the difference between the rates of low-tax and high-tax
countries, the more centralized the manufacturing/distribution network
structure tends to become (i.e., similar insights to Proposition 10.6). In
addition, firms can take advantage of tax rate differences by changing
their intra-company transfer prices. (Overindulgence in such activity
requires caution, however, because governments often monitor transfer
prices.) We ran the model to take additional advantage of Ireland’s lower
tax rates by setting the transfer prices to cover the subassembly plants’
fixed and variable costs only (assuming full satisfaction of worldwide
demand). The DC and plant configurations were not always the same
for the new transfer prices. For example, if Ireland’s tax rate is set to
0%, Romania has the plant for subassembly 1, India has the plants for
subassemblies 2 and 4, and Ireland has the plant for subassembly 3; and
there are only two DCs — one in India which serves the Indian market
only and one in Ireland which serves the rest of the world. The NPV
increases substantially with the new transfer prices for lower tax rates
and achieves its maximum difference (Figure 10.3) at the 0% tax rate,
where the NPV is $50,306,318, a $5,232,372 increase compared to the
old transfer price case.
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Table 10.4. Demand Allocation to Distribution Centers for the Regional Trading
Agreements Case

Scenario 3 - Regional Trading Agreements
Regional trading agreements such as NAFTA encourage trade among
countries within the region. For this example, we ran the model elimi-
nating the $200 tariff between countries who were members of the same
regional trading blocks. We defined three trading blocks as 1) NAFTA:
The U.S., Mexico, and Canada; 2) European Union: The U.K., Ireland,
Germany, France, Portugal, Spain, The Netherlands, Belgium, Luxem-
bourg, Denmark, Italy, and Greece; and 3) Asian Union: Taiwan, Thai-
land, Malaysia, Singapore, The Philippines, South Korea, and Japan.
Under the trading blocks scenario, the plants for subassemblies 1 and
3 move from India to Romania. Also, demand gets substantially reallo-
cated among DCs to take advantage of the tariff-free trade zones. Table
10.4 shows the new demand allocation to DCs, which demonstrates the
“regionalization” effect on the distribution network structure. One DC
in each of the trading zones is supplying the demand for all countries
within the free trading region (except for the DC in the West U.S. which
was also open along with the East U.S. DC in the base case due to the
significant, albeit tariff-free, distances). This result is along the same
lines as the insights of Lemma 10.7 and Proposition 10.9. The NPV of
Scenario 3 is $42,624,747, a $3,684,228 increase from the base case.

Scenario 4 - Local Content Requirements
We examine the effects of a local content rule which imposes the $200
tariff for domestic shipment from a DC unless the value of the subassem-
blies from domestic plants plus the value added at the DC is at least as
high as the local content percentage times the final good’s value.
Symbolically, we altered the program in the following way. If a country
has a local content rule, then two new decision variables are added: 1) a
binary variable 'y, which is activated if country k has a DC in period
t but the local content constraint is not satisfied; and 2) a nonnegative
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linear variable Ax; which represents the additional tariff cost for domestic
shipment of goods that do not satisfy the local content requirement. Two
new constraints per period are needed:
(1 - Q) th Z ijt > _Mrkt +Q (z Z: piv!ektXivnkat) 3 A4 k: t;
J

i meL

and Ape 2 A | ) Yije = M (1=The)|, V£, 2(Age 2 0),
jEL
where L is a set that contains all of the markets in the tariff-free zone,
2 is the local content percentage, M is a very large number, and A
represents the additional tariff penalty per unit. The tariff penalty Ag;
is then added to the DC transportation cost term ak; in the objective
function.

Trading blocks may impose local content requirements as well. For
example, NAFTA uses a 62.5% rule in some cases. In the example prob-
lem, we examine the effect of a local content requirement in the Asian
Union, where no subassembly plants exist in the optimal solution of
Scenario 3. We obtained solutions for local content percentages ranging
from 10% to 100%, incrementing by 10%.

At 10%, a plant for subassembly 4 is opened in Taiwan, and the
distribution of demand among the DCs remains the same as in Scenario
3. At 30%, however, a major worldwide shift occurs. First, a plant for
subassembly 3 is opened in Taiwan in addition to the subassembly 4
plant. Furthermore, the two plants in Romania are closed, and a plant
for subassembly 1 is opened in both Mexico and India. This also causes a
distribution center to be opened in Mexico to serve the domestic market
there. Finally, the DC in Romania closes, and India now serves all of
Romania’s former markets.

Another change occurs at 50%. The plant configuration in Taiwan
is the same, but the plants for subassembly 1 close in both India and
Mexico (as does the DC in Mexico), and the subassembly 1 plant is re-
opened in Romania. This is the high investment, low variable cost plant
in Romania. The transfer price per unit of subassembly 1 charged by
Romania to Taiwan is $319.98 vs. a price of $404.57 charged when Tai-
wan “received” subassembly 1 from India. (Although the distance from
Romania is further and the depreciation expense is larger than from a
subassembly 1 plant in India, these effects on the transfer price are more
than offset by the substantially lower variable production cost in Ro-
mania). So while in a physical sense the same subassemblies (3 and 4)
are made in Taiwan under a 50% local content rule vs. a 30% rule, the
total value of the product in Taiwan decreases since the transfer price of
subassembly 1 decreases by $84.59 compared to the price charged pre-
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viously by the plant in India. In other words, Taiwan satisfies the local
content rule not by increasing the numerator (value of local content),
but by decreasing the denominator (value of the total product). This
allows the DC in Taiwan to continue to satisfy local content with just
two plants. Finally, the opening of the plant in Romania causes its DC
to reopen, although India now continues to serve the markets of Norway,
Finland, and Russia.

A third plant (for subassembly 1) opens in Taiwan under the 60% rule.
Following the insights of Proposition 10.10, reasonable size increases in
the local content rule of a trading region induce further manufacturing
investment in the region. This move causes the subassembly 1 plant and
the DC to close again in Romania. In addition, the subassembly 1 plants
reopen in India and Mexico. The DC configuration returns to the 30%
rule case.

Countries or trading blocks can become too greedy, however. An 80%
rule in the Asian Union becomes too costly to try to accommodate. At
that point all plants in Taiwan are closed. Now India has plants for all
four subassemblies, and Mexico has plants for subassemblies 1 and 4.
(The DC in Mexico remains open to serve the domestic market there.)
Even the DC in Taiwan closes, so now India serves all of the Asian Union.

A similar “boomerang” effect occurred when we tried a local content
rule for Germany and China only. The demand was insufficient in those
countries to induce any plants to open. Instead, the DCs were forced to
close in each case, “robbing” the local governments of any employment
or income tax revenue. The insights of the “boomerang” effect of local
content rule changes, as well as relevant conditions for it to occur, are
also described in Corollary 10.11 of the previous section. Munson and
Rosenblatt [1997] observe a similar effect for a different type of local
content requirement.

Clearly local content rules can greatly affect the size and type of in-
vestment in a country or trading block, and the implications may af-
fect the entire worldwide configuration. Companies should monitor such
rules closely and take them into account early in the network design
stages.

5. Conclusion

Government subsidies in facility financing, tariffs and regional trading
rules, and favorable corporate taxation laws are main factors in explain-
ing the structure of global manufacturing and distribution networks. We
have presented a modeling framework that provides (for decision support
purposes) the effects of such factors on the structure of global facility
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networks. From our analysis of special cases of the model, we obtained
useful insights on the structure of such networks, which we present in a
summary form below:

(i) when transportation of subassemblies is expensive, firms prefer
centralized manufacturing and distribution structures;

(ii) increased trade tariffs favor gradual decentralization of the distri-
bution networks;

(iii) differential tax rates tend to favor more centralized manufacturing
and distribution network structures, with the low-tax countries
attracting not only plants and DC investments but also serving a
larger portion of the worldwide demand via their DCs;

(iv) formation of trading zones in certain environments (e.g., when the
transportation cost of subassemblies is relatively insignificant com-
pared to the final product) tends to have a “regionalization” effect
on the facility network (i.e., the facility network becomes decen-
tralized over trading zones but centralized within each zone);

(v) reasonable increases in local content requirements within a country
or a trading zone entice firms to transfer facilities to that country or
zone; however, inappropriate setting of local content requirements
may result in exactly the opposite effect (i.e., withdrawal of all
facilities from the country or zone);

(vi) even a small subsidy of facility financing by a country’s government
is in most cases adequate to attract facility investments in the
country.
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Appendix

Proof of Proposition 10.1: The only component of the objective function affected
by this decision is by, i.e., the transportation cost of subassemblies to DCs. For
each subassembly i, transportation costs are minimized by locating in the country
containing the DC serving the largest demand. This way we minimize the additional
trade tariffs (i.e., A component of the transportation cost). For the case where all
countries have DCs in them, the subassembly plant location has no effect on the
objective function, and thus the proposed solution of this proposition is among the
optimal ones.
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Proof of Proposition 10.2:

NPV(1 DC) — NPV(q DCs) =

G5 —)[ACD([Y - 1) + F] - ¥
(-1 w3 L= 0125+ﬁ)i) |- 4 )

The term inside the large parenthesis may be positive or negative. If it is positive,
then only one DC should be used. Ifit is negative, then N DCs should be used because
the difference NPV (IDC) — NPV (gDCs) is maximized when g = N. As T -» oo, the
term inside the large parenthesis equals W + (1 — t) [ACD (I — 1) + F]/8, whichis
positive if /4 > 1. If [¥ < 1, the expression is decreasing in D and equals zero when
D= [BW/(1 - t) + F|/[AC (1 — I9)].

Proof of Proposition 10.3: Due to the deductibility of interest, the cost of debt
is (1 —¢)r. Since the firm’s cost of capital is /3, the company should accept a loan
as long as the cost to service the debt is less than what it can earn on the principal,
ie, (1=t)r < g, orr < 8/(1—t). This is true for any size investment as long as
the firm’s debt ratio does not change significantly. Propositions 10.1 and 10.2 imply
that, for the base case, all / plants will be located in a country with a DC. Since the
countries are identical, the firm will increase NPV by placing all 7 plants and a DC in
the country offering the financing, assuming that the interest rate satisfies the stated
condition.

Proof of Lemma 10.4: Let country A be the one with the lower tax rate (t').
Country B will represent any of the other arbitrary countries with tax rate of ¢ (¢’ < t).
We need to consider four cases:

Case Cl-all markets served from A and all plants are located in A;
Case C2-all markets served from B and all plants are located in B.
Case C3-all markets served from A and all plants are located in B;
Case C4-all markets served from B and all plants are located in A;
The cases only differ with respect to their annual cash flows (ACF). We use the

notation ACF(Cl), ACF(C2), etc., to denote annual cash flows for cases Cl and C2,
respectively. These expressions are:

ACF(C1) = (1 ~ t')[NPD - (N + NA — A)CD — NIWCD — If — F — NIvD —
NDV] + M;

ACF(C2) = (1-t)[INPD—(N4+NA-A)CD~NIYCD—If—-F~-NIvD-NDV|+
tIA+W)

T )

ACF(C3) = (1 -¢t)[IND(P~Ip) - (N+ NA—-A)CD-F - NDV]|+ ’!Tw +(1 —
t)(NDIp ~ (1 + A)NISCD — If — NIvD] + 42,

ACF(C4) = (1 = t)[IND(P — Ip) — (N + NA - A)qD -~ F—NDV]+ 5 +(1 -
t)[NDIp— (1 + A)NISCD — If — NIvD] + A,

After subtracting the annual cash flows and rearranging terms:

ACF(C1) - ACF(C2) = (t —t")INPD— (N + NA - A)CD - NI9CD - If - F —

NIyD — NDV — {4f%).
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ACF(C1) - ACF(C3) = (t—t')[NDIp—NISCD—I1f—NIvD -2+ (1-t)ANIICD;

ACF(C1) - ACF(C4) = (t —t')[IND(P—Ip) — (N - NA—-A)CD - F - NDV —
21+ (1 —t)ANISCD.

All three differences are positive due to the assumption of the price structure ensuring

nonnegative profits in each country of operation. Thus, Case 1 has the largest NPV,
which proves the lemma.

Proof of Lemma 10.5: We need to consider five cases:

Case C5 — all markets without a DC are served from A and all plants are located
in A;

Case C6 — all markets without a DC are served from B, A has a DC, and all plants
in B;

Case C7 — all markets without a DC are served from A and all plants are located
in B;

Case C8 — all markets without a DC are served from B, A has a DC, and all plants
in A;

Case C9 — country A has no facilities.

The cases only differ with respect to their annual cash flows. These expressions
for C5-C8 are:

ACF(C5) = (1-t"){[N—(¢g—1)]D(P—Ip)—-CD—(N—q)(1+A)CD+NDIp-I9CD
—(g—1)I9CD(1+A)—(N-q)I9CD—If—F—NIvD~ [N —(¢g—1)|DV}+
LULEW) (g~ 1){(1 - ¢)[D(P — Ip) - CD - F - DV] + L},

ACF(C8) = (1-t){(N~1)D(P—-Ip)—(¢g—1)CD—[N—(q—1)](1+A)CD+NDIp—
WCD —(q—-1)I9CD(1+A)—(N—q)I9CD—-I f—(g—1)F-NIvD-(N-1)DV}
4 UIAEG-UW) 4 (1 _¢/)[D(P — Ip) - CD — F — DV| + £,

ACF(CT) = (1—-t'{[N-(¢-1)]D(P-Ip)—-CD—(N-q)(1+A)CD—-F—[N—(g—
1))DV}+EE 4+ (1-t){NDIp—I9CD~(N~1)I9CD(1+A)—1f-NIvD}+44
+(g—D){(1 - t)[D(P—Ip)—CD - F — DV] + &}

ACF(CB) = (1-8){(N-1)D(P—Ip)—(q—1)CD—[N—-(¢—1)](1+A)CD — (g -
1)F — (N - 1)DV} + 4= 4 (1 — ¢){NDIp - I9CD — (N - 1)I9CD(1 +
A)y—If — NIvD} + &4 (1 -¢")[D(P - Ip)-CD - F - DV| + £X£,

After subtracting the annual cash flows and rearranging terms:

ACF(C5) - ACF(C6) = (t—t"){NDIp—I9CD—(g—1)I9CD(1+A)~(N—g)IdCD—
If =NIvD -2 (N - q)D|(P—1Ip) -V - 1+ A)C]} + (1 - t)(1 + A)CD;

ACF(C5) - ACF(CT) = (t—t'){NDIp~ NIJCD —If - NIvD— 44} + I9CDA[(1—
N =-1) = (1 -t)(g— 1))

ACF(C5) - ACF(C8) = (t —t"){(N —q)D|{(P - Ip) -V —(1+A)C]}+ (1 = t')(N -
@IICDA +(1 —£)(1 + A)CD

All three differences are positive due to the assumption of the price structure ensuring
nonnegative profits in each country. Finally, Case C5 dominates Case C9 using the
following argument. Suppose that (g-1) DCs have already been located in the higher

tax rate countries and they serve their home market only. The final DC which serves
the rest of the markets must be located in either country A or country B. This is
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a one-DC location problem described by Lemma 10.4, which implies that the DC
should be located in country A.

Proof of Proposition 10.6: The first statement is a direct result of Lemmas 104
and 10.5. The two net present values, then, that need to be considered are:

NPV(1 DC) = —IA — W+Z{(1—t}[NPD-—(N+N& AYCD - NI9CD —
If-F~NIvD -~ NDV]+—EM-1};1+6

NPV(q DCs) = —IA — qW + Z‘, (1 = ){[N - (¢ = )]D(P — Ip) — CD — (N —
g)(1+A)CD + NDIp —19CD — (g - 1)11900(1 +A)— (N —-q)I9CD—If ~

F—NIvD—|N —(q—1))DV] + 4y L g 1){(1-t)[D(P-1p)—CD -
F—DV]+5£})/(1+ 8)~.
Subtracting the two:

NPV(1 DC) - NPV(q DCs) = (g ~ 1)(W + E {(1-t)ACD(I® - 1)+ (1 - )F

T +(t—t)D[(P-1Ip)-C~ V]}f’(l + ﬁ )*)-
As with the base case, if the term inside the large parenthesis is positive, then only
one DC should be used (in country A). If it is negative, then N DCs should be used
because the difference is maximized when g = N.

Proof of Lemma 10.7: Each DC that is built requires an investment plus an annual
fixed cost. The only benefit of building more than one DC is to avoid the tradetariff A.
The proof follows since transportation within a tariff-free zone has no A component.

Proof of Lemma 10.8: Along the lines of Proposition 10.2, it can be shown that
either one DC should be built for the whole company or one DC should be built in
each zone. If Z DCs are built, then subassembly transportation costs are minimized
by building all I plants somewhere in zone Z1. If one DC is built, then it should be
built in Z1to minimize the transportation costs of the final product. In that case as
well, subassembly transportation costs are minimized by building those plants in ZI.

Proof of Proposition 10.9: Let z' countries be located in the zone Z1 that contains
the most countries. Then by Lemmas 10.7 and 10.8, the NPVs of the two possible
configurations are:

NPV(1 DC) = —JA - W + i {(1 = t)[NPD ~ 2'CD — (N = 2')(1 + A)CD -
NIOCD —If — F —m;;l— NDV] + 81234y /(1 4 g);

NPV(Z DCs)= —IA~2ZW+ i {(1=t)[INPD—-NCD—2'I9CD—(N~2')19CD(1+
AY e F o Bl NIvDu:INDV] H HIALZWIL /(1 4+ B~

NPV(1 DC)-NPV(Z DCs) = (Z - )(W + 3 {(1 —t)[Z=='ACD(I¥ ~ 1) + F) -
FHA+6)7)
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As with the base case, a centralized distribution network is optimal if and only if
the term inside the large parenthesis is positive (it is one of alternate optima if the
term equals zero). That term only differs from the corresponding base case by the
factor (N — z')/(Z — 1), which is greater than 1 assuming that at least one zone other
than 7\ contains more than one country. Thus, the term ACD (I9 — 1) is weighted
more heavily than under the base case. So when that term is positive (19 > 1), the
entire term inside the large parenthesis is more likely to be positive than under the
base case, but when that term is negative (19 < 1), the entire term inside the large
parenthesis is more likely to be negative than under the base case.

Proof of Proposition 10.10: The denominator represents the NPV of the cost of
moving one subassembly plant from country A to country B. The numerator is the
NPV of the cost of not satisfying the local content rule. If the local content rule is not
satisfied, then with a tariff of A charged to domestic shipments of the final product,
the firm would desire to close the DC in country B and serve that market from the
DC in country A (due to the lower tax rate and elimination of the tariff-free domestic
shipment). If this occurs, then the firm will have one less distribution center but will
incur a tariff on final products shipped to country B. The numerator must be positive
or it would not have been optimal to have a DC in country B in the first place.

Proof of Corollary 10.11: Let ' be the largest @ which satisfies (10.1). Then the
local content percentage is too high if ®* > &', which occursif [Q2/p — (1 — Q) V]/p
is greater than the right-hand-side of (10.1).
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Abstract  We propose a planning model for multiple products manufactured across
multiple manufacturing facilities sharing similar production capabilities.
The need for cross-facility capacity management is most evident in high-
tech industries that have capital-intensive equipment and a short tech-
nology life cycle. Our model is based on an emerging practice in these
industries where product managers from business units dictate manufac-
turing planning in facilities that are equipped to produce their products.
We propose a multicommodity flow network model where each commod-
ity represents a product and the network structure represents linked
manufacturing facilities capable of producing the products. We analyze
in depth the product-level (single-commodity, multi-facility) subprob-
lem when the capacity constraints are relaxed. We prove that even the
general-cost version of this uncapacitated subproblem is NP-complete.
We develop a shortest-path algorithm for this problem and show that
it achieves optimality under special cost structures. We analyze and
pinpoint specific cases where the algorithm fails to produce optimal so-
lutions. To solve the overall (multicommodity) planning problem we
develop a Lagrangian decomposition scheme, which separates the plan-
ning decisions into a number of single-product, multi-facility subproblems
and a resource subproblem. Through extensive computational testing,
we demonstrate that the shortest path algorithm is an effective heuris-
tic for the MIP subproblem, yielding high quality solutions with only a

fraction (roughly 2%) of the computer time.
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1. Introduction

This research is motivated by production problems in the electron-
ics, semiconductor, and telecommunications industries. These indus-
tries struggle with their production planning problems in an increasingly
complex and rapidly changing supply chain environment. Specifically,
to better utilize their capital-intensive equipment they are pressured to
produce a wide variety of products in each of their production facili-
ties. However, since these products may each belong to a different sup-
ply channel operating under different delivery and outsourcing contracts
and demand characteristics, production planning decisions are often rel-
egated to product managers who are most familiar with their specific
customer and supplier issues. On the other hand, production managers
must consider resource consolidation and capacity management issues
in a consistent fashion across manufacturing facilities. These competing
viewpoints complicate supply chain planning significantly.

Coordinating production under a complex supply structure is not a
new problem. However, two recent trends in these industries exacerbate
the intensity of the problem. First, the trend toward increased market
responsiveness intensifies the operational dependency within the supply
chain. In the past, excess inventory was generally used to reduce the im-
pact of variation across different facilities. Today, most manufacturers
are moving away from carrying substantial inventories. Second, the rate
of technological innovation significantly shortens the life span of manu-
facturing equipment, which in turn increases the cost of manufacturing
capacity. This combined with increased product variety and decreased
product volumes prompts manufactures to cross-load their manufactur-
ing facilities.

In this paper, we focus on cross-facility operational planning faced by
high-tech manufacturing companies in a supply chain environment. Our
research is motivated by experiences in a production management sys-
tem at a major semiconductor manufacturer for their world-wide supply
base, and by the quantitative supply chain literature. Quantitative anal-
ysis of supply chain management has been focusing on channel design
in general and stocking policies in specific using extensions of inventory,
game-theoretic, and strategic models (Tayur et al., 1999). Cohen and
Lee (1988), (1989), Sterman (1989) and Davis (1993) are among the pi-
oneers who made significant early contributions. Various developments
of these models remain an area of active research (c.f., Tayur et al. 1999,
Lee et al. 1995, Hahm and Yano 1995a,b and Arntzen et al. 1995). In
addition to supply chain design, coordinating various aspects of supply
chain operations has been an area of active research as well. This line of
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work is exemplified by Vidal and Goetschalckx (1997), Hahm and Yano
(1995a,b), and Ertogral and Wu (1999). A related, but distinctively
different, line of research focuses on the extension of production models
in the context of MRP systems (c.f., Billington et al. 1983, Carlson and
Yano 1983, Gupta and Brennan 1995, Balakrishnan and Geunes 2000).
The focus here is manufacturing planning in the context of multi-echelon
and multi-facility production. This line of research is rooted in multi-
level, multi-period, capacitated lot-sizing models. A number of surveys
(c.f., Bahl et al. 1987, Goyal and Gunasekaran 1990, Baker 1993, Kimms
1997) provide an excellent overview for research in this area. While our
proposed model can be linked directly to the multi-level lot sizing litera-
ture, it has two distinctive features that were not previously addressed:
first is the explicit consideration of facility selection decisions. Most ex-
isting work assumes either a single facility, or multiple tiers of facilities
as defined by the product structure, but the facility selection decisions
are given a priori. Second, we study a single-item subproblem (with
facility selection decisions) that has been overlooked in the literature.
Unlike it’s single-facility counterpart, this subproblem is NP-complete
even in the uncapacitated case. Despite this, we show analytically and
empirically that a shortest path algorithm can be extremely effective.

2. A Multi-Facility Production Model

We now consider a multi-facility production model where a set of end-
items is to be produced in multiple facilities over multiple periods. Each
end-item has a bill of materials described by a product structure. In
addition, there is a supply structure where a set of alternative facilities
could be setup to produce each item described in the product structure.
Figure 11.1 illustrates the product and the supply structure. The product
structure in Figure 11.1 can be represented by an nxn matrix [a;;] where
a;r 1s the number of units of item ¢ (directly) needed to produce one
unit of item k. We define a supply structure matrix [r;;] where r;; = 1
if facility j could be used to produce item %, and 733 = 0 otherwise. In
this paper, we will focus our attention on the supply structure.

2.1 A Multicommodity Flow Model

Production planning in the above multi-facility environment is com-
plex in that the facility selection decisions are combined with multi-stage,
multi-item, multi-period production decisions. To approach this problem
we take the viewpoint of a subset of manufacturing facilities in the supply
network. Each manufacturing facility can produce a variety of products
(items) (i = 1,2,...,n)over multiple periods (¢t = 1,2,...,T),while
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Figure 11.1. A Supply Network with Three End-Items (1, 2, and 3), Six Facilities (I
to VI) and a Maximum of Three Alternative Facilities for an Item

each item % can be produced in a specified set of alternative facilities
(j € Ji,J; €1,2,...,m). Each facility can be setup to perform certain
production processes with a setup cost. Now consider a multicommod-
ity network G(N,A) where each item % corresponds to a commodity in
the network. Let D} denote internal demands for item 4 in period t as
defined by the end-item demand and the product structure. Suppose
D}i can be determined a priori; we can then define a multicommodity
flow network corresponding to the supply network as shown in Figure
11.2. This multicommodity flow network has three main parts: a set of
source nodes representing demand dispatching points, a set of sink nodes
representing demand fulfillment points, and a set of production subnets
in between, each representing multi-period production to be carried out
by a facility. Each commodity (product) i has a source node s, and T
sink nodes dt, one for each period t.

We first describe the overall network structure. The input flow for
source node st is the total demand over T periods for item i (37, Di),
and the outflow on sink node di is the demand for item 4 in period
t, (D}). The presence of an arc going from source node st to facility
subnet 7 signifies the fact that facility j can be setup to produce item
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1. These arcs are specified by the supply structure matrix, i.e., there is
an arc (i,j) corresponding to each non-zero entry of matrix [rj;]. The
subnets between the set of source and sink nodes represent production
facilities shared by the products. The arcs going from facility subnets
j=12,...,Jiperiod t, to sink node d} represent the requirement that
item 7’s demand in period t is to be fulfilled by the production and/or
inventory from all (or some subset) of its .J; alternative facilities. Note
that the production subnet can be further “customized” according the
structure of each manufacturing facility. For example, the structure in
Figure 11.2 shows the familiar single-stage multi-period lot-sizing model.
This can be extended to a multi-stage model (c.f., Afentakis 1984), or
other multi-period models. To streamline the analysis, we assume single-
stage facility subnets throughout the paper.

We now characterize arc labels in the multicommodity network. Each
arc in the network is characterized by (f%,ct,u): arc flow f*, per unit
cost ¢!, and arc capacity u. The interpretation of these values varies
according to the types of arcs. The arcs going from source nodes s to
the facility subnets j’s are facility selection arcs As C A, characterized
by (:E;-,Cj-,uij) : mj} represents the total production of item i to be per-
formed at facility j over t = 1,...,T, ¢ represents the (per unit) costs
that differentiate the facilities (e.g., by quality history, reputation), and
capacity uj; represents the maximum amount of items that can be pro-
duced in facility 7. When the dynamic lot-sizing model is used in the
production subnet, two types of arcs are used: arcs going from left to
right are production arcs A, C A, characterized by (xj,-t, "’;ta capji): pro-
duction quantity 1*'3;'1, unit production cost C}u and production capacity
capjp. Arcs going from the top down are inventory arcs A C A charac-
terized by (1%, hl, invj¢): inventory carried from period ¢ to ¢ + 1, I},
unit inventory holding cost h;-t, and inventory limit inv;;. Finally, an arc
going from facility 7 in period ¢ to sink node d:' belongs to the demand
arcs Ag C A,characterized‘by | (b}t,f‘;t,capﬂ}: b}t represents facility j's
contribution to demand Dj, rj, represents the per unit transportation
cost from facility j to the demand point %, and cap;; is the transportation
capacity in period .

Given the above specification, we can define the general multicom-
modity constraints (11.1) and (11.2) as follows:

General arc capacity constraints for all arcs
-T;' < Uij, V(tj} € AS!

> BY < fluje, V(5 t) € AyU A7 U Ay, (11.1)
i=1
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Figure 11.2. A Multicommodity Flow Network for the Production Problem
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where [is the capacity consumption rate. Denote «as the node-arc
incidence matrix for the multicommodity flow network G(N,A) and ¢!
the net balance flows for commodity 7. The mass balance constraints
are as follows:

Mass balance constraints for each commodity
aft=¢, VieN. (11.2)

In addition to the general multicommodity flow constraints as speci-
fied by the network structure G(N,A), we define additional constraints
for each facility submodel. Consider the multi-period lot-sizing model
we use for all facility subnets. While the inventory balance constraints
are part of the mass balance constraints (11.2), we need to define ad-
ditional constraints due to setups. Let ajt denote the rate of capacity
consumption for setup activities; 5; is a binary variable indicating the
existence of a setup for item i(= 1,...,n) at facility j(= 1,...,m) in

period t(=1,...,T). The production specific constraints are as follows:

Production capacity constraints for production and setup
T
> (Bl + ay0h,) < capje, V(4. t) € Ap. (11.3)

Setup constraints

%, < M6k, Vi€ N, (j,t) € Ay, (11.4)

jts
where M is a sufficiently large constant.

Demand for each item must be satisfied
m . .
> b% =D}, Vt,i € No. (11.5)
j=1

The end-item demand triggers internal demands in the supply chain as
defined by the product structure.

Denoting Kj as the set-up cost for item ¢ at facility j, we state an
objective function with all cost components defined for the production
subnet. A cost component unique to each product i, say Si(f%,c, u),
could be added to the objective to reflect special requirements imposed
by the supply channel of i. Since this does not affect our analytic results
significantly, we will not consider this cost term here. Thus, a multicom-
modity flow formulation of the multi-facility production problem (P) is
as follows:
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Problem (P):
J

2 I
DD (chage + Ko + BTy + 15,05,)

1 i=1 j=1

-

T
Minimize z =
(4

S.t.

<General Multicommodity Flow Constraints (11.1)-(11.2)>
<Production Specific Constraints (11.3)-(11.5)>
<Nonnegativity Constraints> f",:n}t,ljt,b; >0

<Binary Constraints> &;, € {0,1}

It is useful to note that in this multicommodity flow model, only the
capacity constraints (11.1) and (11.3) are bundling constraints. All the
other constraints can be decomposed by commodity (product). (P) is a
multi-period, multi-item, multi-facility production planning model.

3. Model Analysis

To explore special subproblem structures that will later help the solu-
tion of model (P), we consider two submodels in the following sections.

3.1 Uncapacitated Single-Item, Multi-Facility
Model without Transportation Costs

As stated above, model (P) can be decomposed by commodity af-
ter relaxing the bundling capacity constraints (11.1) and (11.3). We
first consider a capacity-relaxed single-item, multiple-facility subprob-
lem (without transportation costs) for commodity 7 as follows:

(7)

T J
Minimize ) ) (cjizje + K0 + hjljt)
t=1j=1

S.t.
<mass balance constraints for commodity i (11.2)>

<setup constraint for commodity i (11.4)>
<nonnegativity and integrality constraints for commodity © >

Subproblem (P;)represents a subset of the decision problem for the
product manager of ¢ who must decide where to produce her prod-
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uct among a certified' set of manufacturing facilities J;. Note that we
dropped the cost component S;(f%, ¢, u) from the objective, hence the
facility selection and the transportation costs are assumed to be zero.
Figure 113 depicts a subnetwork defined by commodity 1 (for problem
(P1)) corresponding to the example in Figure 11.2.

While the above facility-selection/lot-sizing problem has not been well
studied, the single-facility, single-item, uncapacitated lot-sizing problem
has been studied intensively in the literature. Despite the binary vari-
ables it is well known that this problem can be solved in polynomial time
using Wagner-Whitin (1958) type algorithms. In recent years, more ef-
ficient implementations of Wagner-Whitin algorithms have been devel-
oped (c.f., Federgruen and Tzur 1991, and Wagelmans et al. 1992), which
have complexity of O(n log n) or better. Embedding these polynomially
solvable problems as submodels, the multi-item, capacitated lot-sizing
problems are frequently solvable in a reasonable amount of time for
realistic size problems (cf. Tempelmeier and Derstroff 1996). Since a
primary new consideration in our model (P) is the selection of alterna-
tive facilities, it is important to know the structure and the complexity
of subproblem (P;). This analysis is important to the solution of (P)
since (1) (P;) has the form of a mixed integer program, and (2) there is
no straightforward (efficient) decomposition from the multi-facility case
to a single-facility problem. In the following, we first show that (F;) is
NP-complete when the holding cost hj; is general and not restricted in
sign. We then show that an efficient algorithm exists under a special set
of conditions. Later in Section 4 we show computationally that under
general cost conditions this algorithm is an effective heuristic, solving
most instances of (F;) optimally.

Theorem 11.1 [Non-splitting property] There exists an optimal solu-
tion to the uncapacitated, single-item, multiple facility problem (P;) such
that item i’s demand in period t is satisfied by the production or the in-
ventory of exactly one of the J; facilities, i.e., exactly one b}t among

j € Ji is non-zero (= D}) for each period t.
Proof: See Appendix.

As we shall see in the following exploration, the insight provided by
the non-splitting property plays an important role in the development

'"The notion of facility certification is important in Semiconductor Manufacturing where a
product can only be produced in a facility that has been pre-certified for quality and yield.
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Figure 11.8. Subnetwork Corresponding to Commodity 1, with 2 alternative facili-
ties, 4 periods

of solution algorithms for the uncapacitated subproblem (F;) as well
as the overall problem (P). Nonetheless, despite its promising outlook,
subproblem (P;) can be only solved efficiently under more restrictive
conditions due to the existence of several special cases. In the following,
we first show that under generalized cost conditions subproblem () is
NP-complete.

Theorem 11.2 The uncapacitated, single-item, multiple-facility prob-
lem is NP-complete when the inventory holding cost hj is a generalized
cost coefficient not restricted in sign.

Proof: See Appendix.

Upon examining the proof it should be clear why NP-completeness is
only constructed for the case where arc cost is not restricted in sign. In
the following, we show that the NP-complete status remains when the
demands or the setup costs are constant.

Corollary 11.3 The problem stated in Theorem 11.1 remains NP-com-
plete when the period demands Dy are constant over periodst =1,...,T.

Corollary 11.4 The problem stated in Theorem 11.1 remains NP-com-
plete when the setup costs K; are constant across facilities j = 1,...,m.
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In the following, we go on to show that despite the NP-complete status
of problem (FP;) and its variations, under special conditions a shortest
path algorithm solves problem (7;).

Proposition 11.5 The uncapacitated, single-item, multiple-facility prob-
lem (P;) can be solved in polynomial time using a shortest path algorithm
if the following conditions hold:

(i) No simultaneous production of item i over more than one facil-
ity can take place in a given period. In other words,a:}tx}ct =

0Vi,j,k # j, t.

(ii) No production of item i will be scheduled at all if there is inventory
carried over from a previous period in one of the facilities. In other
words, x}tf,it_l =0Vi, j,k,t.

Proof: We will state the proof using a familiar graphical representation
as in Figure 11.4. The first row of nodes denotes facility 1 and the i‘*
row denotes facility J;. There are 7 + 1 time epochs: 0, 1, 2, 3, and
a period is the interval between epochs, i.e., between epochs 0 and 1 is
period ¢ = 1, and between 1 and 2 is period ¢ = 2, etc. A horizontal
arc denotes the production that satisfies all the periods’ demand within
the time epochs. The arc cost includes production, inventory and setup
costs. A vertical arc denotes a switch from one facility to another and
the cost associated with these arcs is 0. There is an artificial source and
sink, and arcs adjacent to these nodes have 0O cost. In a general graph for
each time epoch there are arcs for all the facility periods. So production
of an item may switch from one facility to any other in different periods.
From condition (ii), there will be production scheduled for item % only
if there is no inventory carried over from a previous period in one of the
facilities. In other words, in an optimal solution exactly one arc will
be chosen to enter a given node in the network. On the other hand,
condition (i) states that there can be no simultaneous production of
items in more than one facility in any given period. In other words, in
an optimal solution exactly one arc will be chosen to leave a node in the
network. This means that an optimal production schedule corresponds
to a source-to-sink path in the network, and it corresponds to a shortest
cost path. ¢

Unfortunately, there are cases where conditions (i) and (ii) in Propo-
sition 11.5 do not hold in the optimal solution. This is caused by special
cases such as the following: under completely general production and
inventory holding costs, it could be optimal to produce :r,;-t in a facility
j in period t, and hold this amount in inventory for a future period £ + !
(I > 1) without using it in periods t+1,...,t+ [ — 1. Since more than
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Facility J,

Figure 11.4. 'The Multi-Facility Production Problem as a Shortest Path Problem

one facility may produce, the demands in periods t+1,...,t4+1—1 could
be satisfied by a number of facilities other than j. This creates the pos-
sibility of “multiple-path” production (see Figure 11.5). For instance, in
Figure 11.5-(b), production is started in period 1 at both facilities 1 and
2, while the former is used to satisfy demands in periods 2 and 3, and
the latter is produced for period 1. This is possible when the production
cost for facility 1 in period 1 is higher than that of the facility 2, but
the combination of production and holding costs for periods 2 and 3 is
lower in facility 1 than that of facility 2. Note that this particular case
violates condition (i) and our shortest path algorithm will not identify
this as a solution. Similarly, in Figure 11.5-(a),(c),(d), condition (ii) is
violated since production takes place in one facility despite the fact that
the other facility holds inventory.

Proposition 11.6 When it is optimal to start a production at facility
J in period t for a future period t + 1 (I > 0) while the demands in
periods t,...,t+1—1, are satisfied by facilities other than j (none of j’s
inventory is consumed during t,...,t+1— 1), then subproblem (F;) can
be no longer solved by our shortest path algorithm on the given network.

Proof: It is sufficient to make an observation that under the above
situation either condition (i) or (ii) in Proposition 11.5 will be violated.
It is known from the Leontief structure that b}, for a facility j can be
either D or 0. Suppose the demand for period ¢ is satisfied by facility
k but not facility j, i.e., for facilities j and k, bj, = 0 and b}, = Dj,
respectively. Since zh + Ly — I = b5y, Vi, it is possible to have
(Case1) (2%, = I}, = D}, and I}, _; =0) and (z}, = Dj and I, = I}, ,)
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Figure 11.5. Four examples cases where the Shortest Path Algorithm may fail

(violation of condition (i)) (Case 2) (:.c;t = 0 and I;:t = I;t—l = D§+£ )
and (z}, = D} and I, = I}, ;) (violation of condition (ii)) Recall that
conditions (i) and (ii) in Proposition 11.5 are as follows:

(i) 2%, =0, Vi, 5,k # 4.t
(i) o i, , =0, Vi, j ki t.

In Case I above, it is clear that condition (i) is violated while in Case
2, condition (ii) is violated. ¢

The fact that the shortest path algorithm is not always optimal for
subproblem (F;) should not come as a surprise as Theorem 11.2 shows
that the generalized cost version is NP-complete. Nevertheless, the short-
est path algorithm is a valid heuristic for subproblem (FP;). In the com-
putational experiments, we will show that the shortest path algorithm
is an effective heuristic, and yields optimal or near-optimal solutions in
most test cases.

3.2 Uncapacitated Single-Item, Multi-Facility
Model with Transportation Costs

Recall that in the multicommodity flow network (Figure 11.2) and
the single-item subnetwork (Figure 11.3) a demand arc Aq C A goes
from facility j in period ¢ to demand point d} that is characterized by
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(bt,, %, capji) where b, represents facility j’s contribution to demand
Dt, r}t represents the per unit transportation cost from facility 5 to the
demand point %, and capjs is the transportation capacity in period £. In
Section 3.1 we assumed the transportation cost r;-t = 0 and cap;: = 4.
We will now consider the single-item subproblem where the transporta-
tion cost is positive but we will not consider transportation capacity.
The subproblem can be stated as follows

(F)

Minimize Y
t=1;

J;
(Cﬁ.’l’.‘j; + Kj(jj + hj;fjt + Tjtbj;)
=1

S.t.

<mass balance constraints for commodity i (11.2)>
<setup constraint for commodity 1 (11.4)>
<nonnegativity and integrality constraints for commodity >

Theorem 11.7 The uncapacitated, single-item, multiple-facility prob-
lem with non-negative transportation cost rj; is NP-complete.

Proof: See Appendix.

Algorithm Complexity

We now explore possible algorithms for problem (F;) and their com-
plexity as related to the number of facilities and number of periods. A
first observation is made by viewing the single-item, multi-facility prob-
lem depicted in Figure 113 as a Directed Steiner Problem (Leibling,
1999): the subnetwork represents the problem graph, while the source,
the root of each production subnet, and the demand nodes (on the right)
are “compulsory” nodes, and the remaining are “optional” or Steiner
points. The Directed Steiner Tree Problem is to find an arborescence
of minimal total length that spans all compulsory nodes using one or
more Steiner points. If arc lengths can be determined a priori using
production, inventory, and transportation costs, an optimal Steiner so-
lution corresponds to an optimal solution to (P/). It is known that a
dynamic programming algorithm (Dreyfus and Wagner, 1972) solves the
Steiner Problem in O[(N. + Ns) - 3™ 4 (N. + N;)? - 2V5] where N is the
number of Steiner points (i.e., number of facilities x number of periods)
and N, is the number of compulsory points (i.e., number of periods).
While this observation suggests that a dynamic programming algorithm
constructed in this fashion is exponential in the number of facilities and
periods, using the well-known Wagner-Whitin results, we could improve
the complexity significantly. This is stated as follows.
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Theorem 11.8 There exists an algorithm for the uncapacitated, single-
item, multiple-facility problem with non-negative transportation cost
(Problem (P})) that is polynomial in the number facilities and exponen-
tial in the number of periods.

Proof: Consider a simple algorithm as follows for problem (FP}):

1 Make all combinations of assignments of Dy,..., Dy to facilities
j=1,...,m (this takes O(m7))

2 Given each assignment, solve for each facility j = 1,...,m an
uncapacitated, single-item, single-facility lot-sizing problem using
the Wagner-Whitin Algorithm (this takes m- O(T log T'))

The algorithm has complexity O(m?+!. T log T'), which is polynomial
in the number of facilities but exponential in the number of periods. {

3.3 Special Cost Structure

Despite these negative results, the shortest path algorithm remains
a viable option under certain cost structures. Specifically, when trans-
portation and production costs are fixed, when there is no incentive to
hold inventory for more than four periods without starting a new setup,
and when holding inventory in afacility j for two periods always costs
more than holding inventory elsewhere for one period (i.e., when holding
costs are not dramatically different), all cases stated in Proposition 11.6
and Figure 115 disappear.

Proposition 11.9 The uncapacitated, single-item, multiple-facility prob-
lem with non-negative transportation cost (P]) can be solved in polyno-

mial time using a shortest path algorithm if the following conditions hold:

(1) The transportation and the production costs are fixed across facilities
and periods

(i1) There is no setup that would last more than four periods, i.e.,
1+3
z l""'J;,i-rlw-)'r 2 Kj,Vj
=t

(iii) Inventory holding costs of any two facilities 7 and k satisfy the
relationship hj + hj,£+l > hgpi+1 V9, K, 2L

It should be intuitive when conditions (i)-(iii) above hold in the data
set, the condition in Proposition 11.6 is eliminated, while conditions (i)
and (ii) in Proposition 11.5 will be satisfied, i.e., the shortest path al-
gorithm will produce optimal solution. These conditions can be thus
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used as a test to be performed on the data set before calculations start.
It is quite likely that even when the above conditions are violated, the
shortest path algorithm remains an effective heuristic. To put this point
under solid empirical testing, we conducted two sets of computational
experiments: the first experiment simply compares the optimal solu-
tions for (P;) obtained by an MIP (Mixed Integer Programming) solver
versus the solution provided by a shortest path algorithm. The results
are summarized in Section 3.4. The second set of experiments is more
complicated; here we test the quality of the single-item shortest path al-
gorithm as a subproblem heuristic for the multi-item problem (P). This
will be detailed in Section 4.

34 Performance of the Shortest Path Algorithm

To instantiate the insights gained from the analytic results, we con-
duct intensive empirical testing by varying setup, holding, production,
and transportation costs, the number of facility and period combina-
tions, and levels of demand lumpiness. This results in 17,500 instances.
We first generate a nominal case as follows:

Setup cost, K; ~ Uniform[1500,3500]
Production cost, ¢j; ~ Il ]
Transportation cost, 74; ~ Uniform [5,15]
Holding cost, hj; ~ || | 1
Number of facilities: 4

Number of periods: 6

Demand, D; ~ || |

No demand lumpiness

Demand lumpiness is used to generate clustered demand patterns to
more closely resemble practical situations. While generating random
demand for D; in period ¢, we first generate a random number between
0 and 1; if it is less than the current lumpiness threshold ¢, then D is
set to 0, otherwise, Dy is set to the generated demand. We adjust the
demand levels such that the expected demand remains the same as the
base case.

By varying one or more factors from the nominal case, we generate
three groups of test problems as follows:

(Group One): Fixed setup costs across all periods, i.e., the setup cost
is generated once and fixed for all periods (by varying the following cost
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factors, we generate 65 sub-groups where 100 replications are generated
for each subgroup)

al-al0: varying the setup cost levels from Uniform [0,500] to Uniform
[5000,10000]

all-a20: varying the holding cost levels from Uniform [1,5] to Uni-
Sform[100,200]

a2l-a30: varying the production cost levels from Uniform/[l,5] to Uni-
Sform [100,200]

a31-a40: varying the transportation cost levels from Uniformf[1,5] to
Uniform[100,200]

a4 l-a60: varying the number of facilities (J;)/number of periods (T)
combinations, or | J; | x | T |, where | J; | = 2, 3, 4, 5, and 6, and
|T|=6,8,10, and 12

a6l-a65: varying the demand lumpiness threshold (= 0, 0.2, 0.3, 0.4,
0.5

(Group Two): Variable setup cost across periods, i.e., setup costs are
randomly generated for each period t. Again, 65 sub-groups are gener-
ated as above with 100 replications each.

(Group Three): Fixed production and transportation costs, i.e., the
production and transportation costs are fixed to their expected value
(10). This eliminates subgroups a2l/-a40 above, resulting in 45 sub-
groups with 100 replications each.

A summary of the test results is given in Figure 11.6. As shown in
the figure, except for subgroups a37-a40, the shortest path algorithm
produces nearly identical solutions to the MIP (i.e., less than 3 occur-
rences per 100 instances, with a maximum solution deviation less than
0.2%). When more significant deviations are observed in subgroups a37-
a40 (cases where the transportation costs are high at Uniform [40,80],

.., Uniform [100,200], respectively), although the number of occur-
rences is much more pronounced (up to 49 per 100 instances), the maxi-
mum amount of deviation is still under 0.5% in all cases. Also observed
from the experiments is that more significant deviation results (between
MIP and shortest path) when the setup costs are variable across periods
(Group Two). Now consider the Group Three results: there is no devia-
tion between shortest path and MIP solutions in any of the 4,500 cases
tested. (Of course this is only an empirical observation.) Consider this



296 SUPPLY CHAIN MANAGEMENT

result along with Proposition 11.9. It is interesting to note that when
the production and transportation costs are fixed (condition (i) in the
proposition), even when conditions (ii) and (iii) do not hold, the shortest
path algorithm produced optimal solutions. These results confirm our
insight from Proposition 11.6 that cases exist where the shortest path
algorithm produces sub-optimal solutions; upon examining these cases,
we found that they are indeed caused by circumstances as depicted in
Figure 11.5. On the other hand, the empirical results show that the
shortest path algorithm is a very effective heuristic for the single-item,
multi-facility subproblem. In the following section, we consider this
single-item subproblem in the context of the multi-item problem.

4. A Solution Methodology for the Multi-Item,
Multi-Facility Problem (P)

We propose a Lagrangean Decomposition scheme for solving the multi-
item, multi-facility problem (P) where the single-item problem (F;) is
a subproblem. Lagrangean Decomposition, as described in Guignard
and Kim (1987), has been applied to a variety of NP-hard problems
including multi-item single-facility lot-sizing problems (Thizy 1991). A
main advantage of Lagrangean Decomposition over the better known La-
grangean Relaxation is that the theoretical Lower Bound obtained from
Lagrangean Decomposition is at least as tight as that from Lagrangean
Relaxation. We start our exposition by first listing the mass balance
constraints 11.2 explicitly:

” i Ji .
D=3 f Vi € N, (11.6)
t=1 j—l
3 T 3
f; = lefm Yie N,j € Ji, (11.7)
i=
oty + Iy = b+ Iy, Vi€ N,(j,t),€ A (11.8)
Jio .
Zb}t:Dg, Yie N,teT. (11.9)
j=1

If we assume that the system must return to its initial inventory at
the end of the planning horizon, i.e., Iy = It = 0, we may simplify the
above mass balance constraints. From (11.8) and (11.9) we have,
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Group One: Fixed Setup
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Group Three: Fixed Production and Transportation Costs
In all 4,500 instances in this group, the Shortest Path Algorithm produces
the same solution as the Mixed Integer Program, i.e., the number
of occurrences and the maximum % of difference are 0in all cases.

Figure 11.6. Comparing the Shortest Path and the MIP Solutions (the bars represent
the number of different solutions out of 100, while the line graph represents the

maximum % of differences)
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. Ji . ) .
Di= 3 (‘T}t + 1y - I;c)g Vi, t, thus
=1

Ji

1=

L

J
T . . .
X D=3 % @t G~ 1) (11.10)

1j=1

but since [y = It

=]

T T
S =L+ JL—Z LA Ir =Y I, (11.11)
t=1 =1 t=1

so we can rewrite (11.10) as
P Ji _
Y Di=> "> i, VieN (11.12)
t=1 j=1t=1
Note that (11.12) implies constraints (11.6) and (11.7). This allows us
to consider problem (P) with only two sets of balance constraints (11.8)

and (11.9) since (11.6) and (11.7) will be satisfied automatically. Now,
consider the objective function of (P):

T n Ji .
Minimize z = thl g Chyxhy + Ki0% + BTy + 15,0%)

Since bt i = :.c .+ I I;Et (from (11.8)), the objective can be rewritten

as follows

Minimize z = Z} Zl Z Ty + U"'jn '+ T'ﬁ_i_l) 2+ K‘é‘t)
i=1j=

If we set ¢ i = r ¢+ "";::: and fz}t = h}z L i1 to be the generalized

productlon and holding costs, the objectlve becomes
T n J; -
S T 3 ors _ 18t
Minimize z = a—E “_E le_ (&, + hﬁ Jt + K365,)

The basic idea of our decomposition is to separate the multicommod-
ity flow problem (P) into two subproblems: the first with the capacity
and the mass balance constraints, but not the setup constraints; the
second is a commodity-decomposable subproblem with the mass bal-
ance and the setup constraints. The latter defines separable single-item
problems (F;), which have special structure as analyzed in Section 3.
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In this decomposition, the first subproblem is a linear program and the
second is a collection of MIP problems. If we make use of the shortest
path algorithm for each MIP (as a heuristic), all subproblems are easy
to solve. To demonstrate this solution methodology we use a slightly
simplified formulation of problem (P) by dropping the transportation
term in the objective (as above), and assuming that a setup does not
consume capacity (dropping (11.3)). We then restate the multi-facility
production problem (P) with duplicated variables as follows:

(P')

- 1
Minimize z = Z Z ((5;:53;: + ﬁ;tfjt + K;ﬁj-t) (11.13)
t=1 i=1 j=1
S.t.
2:1 Bk, < wjt, Y(j,t) € A, (11.14)
zh+ L, — I 20, Vie N, (j,t) € A, (11.15)
Ji i .
Z( ey + I, —I4)=D;, VieNteT, (11.16)
I;c a::rﬂ, Vie N,je JteT, (11.17)
I, =1L, Vie N,je JteT, (11.18)
axl, + 1L, , — 1L}, > 0, Vie N,(j,t) € 4, (11.19)
Ji . .
Zj(m +IL, ,-1I})=Dj, VieN,teT, (11.20)
zzh, < M6, Vie N,jeJteT, (11.21)
Jt,r;t>o Vie N,je JiteT, (11.22)
zxhy, 11}, > 0, Vie N,jeJiteT, (11.23)
&%, € (0,1), Vie N,je JiteT. (11.24)

In the above formulation, we make copies of the variables z* e and 1 ‘:t
as m:ﬂ and T 7t~ We then use the copies to split the original constraints
into two sets of constraints: (11.14)-(11.16), (11.22) and (11.19), (11.20),
(11.21), (11.23), (11.24) plus the linking constraints (11.17)-(11.18). It
should be clear that (P) = (P’). We then separate (P’) by relaxing
the linking constraints and placing them in the objective function with
Lagrangean multipliers /\m and /\zjt This yields the following subprob-
lems:
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Resource Subproblem:

T Ji
Minimize z1 = Z Z Z (&3¢ + Mje)zse + (R + A{jz)f;a) = z1(A)

=1 i=1 j=1

3

s.t. (11.14), (11.15), (11.16), and (11.22).
n Product Subproblems:

n T

Ji n
Minimize zg = Z ZZ mmt ;;L”zt + qujt = ZZE{)‘)
i=1 t=1 j=1 i=1

s.t. (11.19), (11.20), (11.21), (11.23), and (11.24).

Note that under the general framework of Lagrangean Decomposition,
constraints (11.15) and (11.16) do not need to be duplicated for both sub-
problems, i.e., these constraints can be assigned to either subproblem.
However, our computational experience indicates that as long as the
added constraints do not add computational burden to the subproblems,
constraint duplication improves the speed of convergence and yields bet-
ter lower bounds since the solutions proposed by the subproblems tend
to be similar. A lower bound to problem (P’) given the Lagrangean
multiplier set A is as follows:

LBy\(P") =v(z1(A\) + év z

where v(.)denotes the optimal value of the objective. Note that the re-
source subproblem is a linear program, and the product subproblem z
has similar structure to problem (P;) described earlier. Prom the lower
bound solution, an upper bound for problem (P’) can be generated using
the following feasibility restoration routine: given the solution for the
resource subproblem we add setups for the periods where production is
nonzero, i.e., we set qj-t to 1 whenever z;t We then calculate the objec-
tive function using the original cost function. This results in an upper
bound for the original problem. The lower bound can be maximized
by searching for the set of Lagrangean multipliers A that maximize the
Lagrangean dual. Both dual ascent and subgradient search methods can
be used for this task. In this paper, we use the latter approach, which is
summarized in Section 4.2. As we will demonstrate in the computational
section, we can achieve solutions with very small duality gaps using the
bounds and the search algorithm.
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4.1 Managerial Insights Related to the
Decomposition

Our choice of Lagrangean Decomposition is not purely motivated by
computing. The decomposition of the multi-facility production model
into a resource subproblem and multiple product subproblems has in-
teresting managerial implications. As recognized by several researchers
(c.f., Jornsten and Leisten 1994, Burton and Obel 1984), mathematical
decomposition often leads to insights for general modeling strategies or
even new decision structures. The decomposition suggested earlier al-
lows further analysis concerning modeling flexibility in the context of
multi-facility manufacturing planning. Suppose we consider each prod-
uct subproblem as a decision problem for a product manager and the
resource subproblem as a decision problem for a production manager
overseeing multiple facilities. Thus, the decomposition can be viewed
as a decision system where product managers, each responsible for a
product, compete for resource capacity available from manufacturing
facilities. The production manager, on the other hand, represents the
interests of efficiently allocating resources from multi-facilities to the
products. Clearly the solutions proposed by the production manager
(z,I) do not agree with the collective solution proposed by the product
managers (xzzx, II). A search based on Lagrangean multipliers essentially
penalizes their differences, while adjusting the penalty vector iteratively.
This process stops when the degree of disagreement (the duality gap) is
acceptably low, or when further improvement is unlikely.

The above viewpoint is useful in evaluating the flexibility model (P)
represents. First, it should be clear that each product subproblem (F;)
could be customized to represent the distinctive needs of each product.
So long as its basic network structure is maintained there will be no
additional computational burden. Similarly, as long as the resource sub-
problem remains a linear program, it can be customized with various
facility submodels each reflecting the distinct production structure of
a facility. However, a different constraint duplication strategy may be
necessary when changes are made to the base model.

4.2 The Subgradient Search Algorithm

In this section, we summarize the subgradient search algorithm used
to adjust the Lagrangean multipliers. At each iteration s, we calculate
Lagrangean multipliers using the following equations:

x5+l _ yx,8 1,8 1,8
’\t’jt = ’\z'jt + u"(xﬁ — TT}, ),

I,s+1 I, s¢ 7, i,8
Ai.i;f+ :)‘ijf+u (Ijts_IIjt )s (11.25)



302 SUPPLY CHAIN MANAGEMENT

where
7s(UB;5 = (v(21(A%)) E
uf = R— = y (11.26)
PIDID BN (¢ —Mj;)z + (I Ik — ”“ )|
i=1i=1j=1
and

s = a scalar set to 1 and reduced by half if the lower bound fails to
improve after a fixed number of iterations

UB? = the best upper bound obtained up to iteration s

In our testing, we terminate the algorithm after a prespecified number
of iterations. The best upper bound obtained at the end of the itera-
tions provides the heuristic solution to the problem. We summarize the
algorithmic steps as follows:

Step 1: Initialize s, A, u,y and UB*.
Step 2: Solve the resource and the product subproblems. Compute the
lowerbound (v(z1(X®)) + 3 v(24(\®)) for the current iteration, s.
i=1

Step 3: Compute an upper bound U By from the optimal solution of the
current  resource subproblem Min z();). IfUBs, < UB}_;, set
UB} «— UB;.

Step 4: Update the multipliers using equations (11.25) and (11.26)

Step 5: Stop if a prespecified iteration limit is reached. Otherwise go

to Step 2.
S. Computational Testing
5.1 Effectiveness of Lagrangean Decomposition

and Subgradient Search

We implemented the subgradient search algorithm using the math-
ematical programming language AMPL with the CPLEX solver. The
experiments are conducted on a Pentium-200 personal computer with
64Meg RAM. To test the effectiveness of the Lagrangean decomposition
and the subgradient search algorithm, we generate 450 test instances
with 30 distinctly different problem characteristics. The product sub-
problems are solved using the CPLEX MIP solver. For each test instance
we use 150 iterations of subgradient search and record the best lower and
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upper bounds at the end of the iteration to compute the duality gap.
We first generate two sets of nominal case problems (C 1) with 4 facili-
ties and 6 periods. The first set assumes fixed transportation (FT) costs
while the second set assumes variable transportation (VT) costs. The
demand and cost parameters used for the nominal case are summarized
in the footnotes of Table 11.1. As shown, the production, inventory and
setup costs as well as item demands are randomly generated using a Uni-
form distribution. To generate capacity we use the following procedure:
we first calculate cumulative demands by adding the randomly gener-
ated demands of all items up to period t, for t = 1,...,T. For the first
period, we multiply the total demand for the period by some constant
(> 1). We then use this number as the total capacity available in the
period and assign a fraction to each facility. For the coming periods, to-
tal capacities assigned for the previous time periods are subtracted from
the cumulative demand of that period and then multiplied by some con-
stant to generate the capacity. Using this procedure, we may generate
relatively challenging (but feasible) test problems with tight capacity
constraints. For the nominal test problems these constants are set at
1.3. Fifteen replications are assigned to each case. We then alter the
nominal cases by changing problem characteristics and sizes to gener-
ate 14 additional cases (C2-C15) each including the fixed and variable
transportation cost (FT and VT) cases and each are repeated for 15
replications. This results in 450 test instances and the average duality
gaps are summarized in Table 11.1. For simplicity, we assume ﬁ;t (the
consumption rate of facility j’s resource by item ¢ at period ¢) is equal
to 1. We also assume the starting and ending inventory to be zero. For
most of the test problems the lower bound increases significantly in the
first 20 iterations whereas the upper bound improves slowly. There ap-
pears to be a strong correlation between the quality of the lower and the
upper bounds, i.e., when the lower bound obtained is tight, the upper
bound restored from the lower bound solution is also of higher quality.
We observed a quite consistent convergence pattern throughout all test
problems. Convergence typically occurs quite early resulting in a very
small duality gap. We summarize the observations from Table 112 as
follows:

1 As shown in the table, setup cost appears to have a significant
effect on the duality gap. Low setup instances have an average
gap of 1.72% and 1.39% compared to 7.25% and 6.51% for the
high setup instances. This result is not surprising since increased
setup costs widen the gap between the resource subproblem (which
is an LP ignoring the setup cost) and the product subproblems.
On the other hand, since the original problem is a mixed integer
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Ci c2 C3 |C4 |C5 Co | C7
407 | 1.72 | 725|182 | 091 | 436 | 227
402 | 139 | 651 {187 | 094 | 400 | 254
cs | C9 clofCcnjci2 [C13|Cl4|Cl5
FT [ 373 | 493 | 084|209 | 3.10 | 123 | 705 | 25.9
VI | 278 | 513 | 084|201 | 264 | 124 | 6.83 | 259

Duality gaps are caiculated as (UB-LB)/UB *100% each table entry is averaged over
15 replications.

C1- Nominal Case: Demand-~U(0.200). Setup cost~U(1500,3500), Holding
cost~U(5.15), Production cost~U(5.15). 30 items, 4 facilities, 6 periods, Capacity
tightness factor =1.3, Transportation cost:10 for FT, U~(5,15) for VT,

The following cases represent variations from the nominal cases by the indicated
factor(s):

C2- Low setup where setup cost ~Uniform (0,1000).

C3- High Setup where setup cost~Uniform (4000.8000).

C4- High Production Costs where Production cost~Uniform (40.80).

C5- Very High Production Cost where Production cost~Uniform(100,200).

Cé- Lumpy demand: expected demand is 100 but there is a 0.3 probabillity that
demand is 0.

C7- Low demand variability where Demand ~Uniform (50,150).

C8- Loose capacity: capacity tightness factor s set at 1.8.

C9- Tight capacity: capacity tightness factor is set at 1.15.

C10- Number of facilities=1.

C11- Number of facilities=2.

C12- Number of facilities=3.

C13- Number of items=10.

C14- Number of items=20.

C15- Projected worst case: Lumpy demand, High setup cost, Tight capacity,
number of items=10.

S| 3| e

Table 11.1. Duality gaps for 450 test instances over various cost structures and prob-
lem sizes
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program with binary setup variables, as the setup costs increase
the problem behaves closer to a combinatorial problem then an
LP.

2 The number of facilities appears to have an effect on the duality
gap as well. Consider cases C/ and CI0-CI2. As the number of
facilities increases we observe a monotonic increase in duality gap
as well. This result is useful in that making alternative facility
production decisions is a unique feature of our model. The results
suggest that the added dimension has a noticeable effect on the
difficulty of the problem. On the other hand, it also shows that
the proposed algorithm is quite effective in solving the traditional
single-facility problems (C10).

3 The effect of capacity levels is much less pronounced. This may
be due to the fact that the capacity generation procedure pro-
duces relatively tight capacity in all instances. Since the difference
between non-capacitated and capacitated lot sizing models is well
known, we did not make an attempt to further loosen the capacity.

4 Increasing the number of items appears to have an effect on the
duality gap as well. Problems with a larger number of items appear
to have a smaller duality gap.

5.2 Effectiveness of the Shortest Path Algorithm
as a Subproblem Heuristic

The results in Table 11.1 are produced by Lagrangean Decomposition
using subgradient search where each single-item, multi-facility subprob-
lem is solved as an MIP. As demonstrated in Section 3.4, the shortest
path algorithm can be an effective heuristic for the single-item subprob-
lem (the solution never deviates from the optimal by more than 0.5%).
We are interested in the effectiveness of the shortest path algorithm as a
heuristic in the context of subgradient search. The potential savings in
computing time is significant as the subgradient search algorithm must
solve | NV |single-item subproblem at each iteration; this results in up to
3,000 calls to the subproblem (i.e., 20 items, and 150 iterations). How-
ever, it should be recognized that the subgradient search method might
not work properly when the shortest path algorithm is used to solve the
subproblems. This is the case when the shortest path algorithm pro-
duces suboptimal solutions to the (capacity-relaxed) subproblem and
the solution values (of the relaxed subproblem) exceed the optimum
of the original (capacitated) problem. In Table 11.2, we compare the
bounds generated for the multi-item multi-facility problem (P') when
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Cl | C2 | C3[C4[C5} C6]CT

# of times" UB(SP)<UB(MIP) | 14 9 13 12 13 10 15
% difference in UB values™ | 0.40 | 0.43 | 1.02 | 0.25 | 0.24 | 0.97 | 0.49

# of times' UB(SP)>UB(MIP) 1 [] 2 3 2 5 0
% difference in UB vaiues™ 265)10.18 1003 | 045|004 | 025|000
|# of times’ 1 0 0 0 0 0 0
UB(SP)=UB(MIP)

# of times' LB(SP)>LB(MIP) 7 4 10 4 4 5 4
% difference in LB

values” 003|018 | 004 [ 001 | 0.01 | 0.04 | 0.03

# of times LB(SP)<LB(MIP) 5 7 4 3 6 6 3

% difference in LB values”™ | 0.02 | 0.02 [ 0.03 | 0.02 | 0.01 | 0.02 | 0.01
# of times’

LB(SP)=LB(MIP) 3 4 1 8 5 4 8
Cg | Co|CiojCn|Ci2({Cla|Cl4|ClI5

1# of times" UB(SP)<UBMIP) | 14 8 11 13 12 14 11 12
% difference in UB values™ | 0.51 | 0.57 | 0.20 | 0.00 | 0.00 | 1.28 | 1.04 | 1.96
# of times UB(SP)>UBMIP) | 1 7 4 2 3 1 4 3
% difference in UB values™ 0451064 | 014|003 1034|004 |059 |08
# of times’ 0 0 0 13 12 0 0 o]
|UB(SP)=UB(MIP)

# of times LB(SP)>LB(MIP) o] 3 0 0 1 7 7 5
% difference in LB

values” 001|006 | 000 | 0.00 | 001 | 0.03 [ 0.08 | 0.06
# of times LB(SP)<LBMIP) | & 11 0 0 0 7 4 9
% difference in LB values™ | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.06 | 0.03 [ 0.23
# of times’
ILB(SP)-LB(M.'P) 4 1 15 15 14 1 4 1

the number of occurrences out of 15 instances
" averaged over the number of occurrences in the cells above
cases C1-C15 are equivalent to cases defined in Table 1

Table 11.2. Comparing the quality of bounds for the multi-item problem when the
single-item problems are solved by the MIP and the shortest path algorithm

MIP and the shortest path algorithm are used to solve the single-item
subproblems.

It should be evident that when the shortest path algorithm is used to
solve the single-item subproblem, it produces nearly identical lower and
upper bounds for the multi-item problem. The percentage difference
in lower bounds produced by shortest path and MIP never exceeds 1%
in all but 2 cases (out of 450 instances) and, in most cases, the differ-
ence is less than 0.02%. Even in the worst cases (case CI5) where the
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Cl1é c17 ci18 cle Cc20
|# of times* UB(SP)<UB(MIPY 12 0 2 3 1
(% difference in UB values'| 0.29 0.00 0.03 0.04 0.01
|# of times UB(5P)>UB(MIP) 3 15 10 10 14
% difference in UB values’| 0.16 0.24 0.08 0.05 0.09
of times’
UB(SP)=UB(MIP) 0 0 3 2 0
of times LB(SP)>LB(MIP) 0 0 0 2 0
% difference in LB
values” 0.00 0.00 0.00 0.03 0.00
|# of times’ LB(SP)<LB(MIP) 15 15 15 12 15
% difference in LB vaiues” 0.10 0.20 0.06 0.06 0.12
of times’
B(SP)=LB(MIP) 0 0 0 1 0

“the number of occurrences out of 15 instances
" averaged over the number of occurrences in the cells above
C16: High Transportation Costs ~Uniform(40.80)
C17: Very High Transportation Costs ~Uniform(100,200)

C18: Low Setup ~Uniform (0,1000), High Transportation Costs ~Uniform(40,80)
C19: Low Setup ~Uniform (0,1000), High Transportation Costs ~Uniform(40,80),
Lumpy Demand
C20: Low Setup ~Uniform (0,1000), Very High Transportation Costs ~Uniform(100,200)

Table 11.3. Comparing the quality of bounds for specially generated worst cases

shortest path is expected to generate different solutions than MIP, the
actual difference averaged at 0.23%. To further test these worst cases,
we generate an additional five classes of test problems (C/6-C20) by in-
tentionally increasing the transportation costs, lowering the setup costs,
and employing combinations of the two. These additional results are
given in Table 11.3. As can be seen from the table, the difference in
bound quality between shortest path and MIP is still less than 0.29% on
average. However, MIP does generate better upper bounds and tighter
lower bounds in these cases.

Another point of interest is how often during the subgradient search
the shortest path solution deviates from the solution generated by MIP.
The statistics collected on this particular measure are given in Figure
11.7.

A main incentive for studying the single-item, multi-facility shortest
path algorithm is the potential computational saving when solving the
multi-item problem. We conduct an additional set of experiments that



308

SUPPLY CHAIN MANAGEMENT

g

:

out of 7500

ml
O

’

Number of Occurences

-888

Cl €3 C5 C7 C9 CI1 C13 CI15 C17 CI19

T T T T T T T

Test Cases

Figure 11.7. The average frequency when the shortest path solution deviates from
MIP during the subgradient search (150 iterations x 50 Items = 7500 instances under
each test case, averaged over 15 replications)
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Figure 11.8. Comparison Between Shortest Path Algorithm and MIP in the Multi-
itemn problem (each data point represent 150 iterations of subgradient search}
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compare the computational efficiency of the shortest path algorithm with
MIP. While it is obvious that the shortest path algorithm will take much
less time in each single-item problem, we are interested in knowing the
real savings in the context of the multi-item, multi-facility problem, and
the effect of increasing the number of facilities and number of periods.
We generate 20 multi-item problems with 2, 3, 4, 5, or 6 facilities, and 6,
8, 10 or 12 periods. Each problem is solved using subgradient search with
150 iterations implemented in AMPL/CPLEX. The total computer time
is recorded in CPU minutes, and the results are summarized in Figure
11.8. As shown in the figure, when the shortest path algorithm is used
for the single item subproblem, the computer time increases in a near
linear fashion as the number of facilities increases. On the other hand,
when we solve an MIP for each subproblem, the computer time increases
much more dramatically. An exponential growth in computer time can
be observed when testing the 12-period problem, where we can only solve
up to 5 facilities with the 5,000 CPU-minute limit. For problems that are
solvable using the MIP subproblem we observe a much sharper increase
in CPU time as the number of periods increases. This is consistent with
the complexity insights given in Theorem 4.
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Appendix

Proof of Theorem 11.1. It is easy to verify thatproblem (F;) satisfiestheLeontief
structure. The setup cost K can be incorporated into the production cost Cj, as a
fixed charge function as below:

Cje = 0, if o, =0

Other constraints are linear while the objective function is concave. Thus model (F;)
has the following features: all nonnegative variables z, I, b, appear exactly once with a
positive (+1) coefficient; in all other occurrences they have a negative (-1) coefficient.
It follows that if more than one variable appears with a positive coefficient in the same
constraints, then only one of these variables can be positive in an optimal solution,
which results in the following conditions:

bibi =0 fort=1,...,T,i=1,...,J,k=1,...,J;

This condition states the non-splitting property. Similarly, the Leontief structure
states the following:
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:::}EI jt—1 = 0, Vi, j,t or no production of item ¢ will take place when there is inventory
in the same facility. ¢

Proof of Theorem 11.2. We first state the uncapacitated single-item production-
planning problem over alternative facilities by writing out the mass balance con-
straints. We concentrate on the problem where inventory holding costs h are not
restricted in sign, we call this problem UCAP-N.

(UCAP-N)

T Ji
Minimize Z Z (cjexje + K50 + hjedje)

t=1 j=1
S.t.

Tje + Ljr—1 — Lig = by, VieJiyt=1,...,T,

Ji

3 bje =Dy, vt=1,...,T,

i=1

zje < Mdje, Viedi,t=1,...,T,
e, e 2 0, Vieldiyt=1,...,T,
8. € {0,1} vt=1,...,T.

To show that UCAP-N is NP-complete we will show that the uncapacitated facility
location (UFL) problem can be reduced to UCAP-N. Specifically, we will show that
for any given instance of the NP-complete problem UFL, there is a corresponding
instance of UCAP-N. The decision version of UFL is given as follows:

(Uncapacitated Facility Location) Construct m facilities, and set J; = 1,...,m
for all demand points i = 1,...,n. Each demand point can be assigned to one of the
facilities (some facilities may not be possible for a specific demand point). When a
demand point i is assigned to facility j (when y;;i is set to 1), a demand assignment
cost d;; is incurred. It is necessary that all demand points be assigned to some facility.
When one or more demand points are assigned to a facility j there is a cost, f; to
open the facility; otherwise there is no cost. Given the above conditions, is there an
assignment of demand points to facilities such that the total cost is lower than k¥

For convenience, we also state the optimization version of the UFL problem as follows:
(UFL)

n m m

Minimize 2= Y divi + 3 fiXs
iml j=1 =1

s.t.

T

Z Yii = 1, Vi,

g=1

n
Yii S x50 VI
i=1

f=

Yiia X5 € {D’I} V?'SJ
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For a given instance of the UFL problem we construct the following UCAP-N
instance: Construct T = n + 1 periods including an initial period s before period
1 so that each demand point 1,...,n corresponds to a planning period in UCAP-N.
Construct J; = 1,...,m Vi =1,...,n facilities such that a facility in UFL correspond
to a facility in UCAP-N. Define set up cost K; for facility j according to facility
opening cost f;. Set ¢;js =0 and ¢j; = M fdar=1,...,n, where M is an arbitrarily
large number. Set inventory holding costs & and demands D according to the demand
assignment cost dj; asfollows:

lh'l.*:"—)l = dll FREAS h-ru.le . drﬂl
(his + h11) D2 = di2 e (hms + hm1}D2 = dm2
(his+ ...+ hin1)Dn = din oo (Amat oo+ Amn—1)Dn = dimn

Or more generally,
t—1
(Z}LJ:T]D,; =dj, fort=1,..,n. (11.A.1)

Further, set Dy = 0 and Jp = 0. In the case where facility j cannot be used to
satisfy the demand of point %, i.e., when d;j; = co in a UFL instance, set dj; to an
arbitrarily large number M. Thus, so long as the holding cost hj; is not restricted
in sign, it is always possible to construct an instance of hj; and D; that satisfies
all equations above. This and the above parameter setting allow us to construct
an UCAP-N (with parameters ¢, h, K, D) instance given any UFL instance (with
parametersd, f).

Now consider the solution of this specially constructed UCAP-N instance. From
Theorem 11.1 (the non-splitting property) we know that there exists an optimal so-
lution to UCAP-N where item i’s demand in period t is produced in exactly one of
the J; facilities. Since ¢;s = 0 and ¢j; = M fort = 1,...,n, production will only take
place in period s at facility j. Demands in periods 1 to n are satisfied completely by
inventory carried over from period s, i.e.,

Tjs = ZDtéﬂ,‘V‘j‘ and I = Z D.8;r, Vg, t (11.A.2)

t=1 r=t+1
Thus, the optimal solution to the UCAP-N instance has a corresponding UFL
solution as follows:

(i) A production setup corresponds to facility opening, i.e.,

n—1
xs=1if Y 821 (11.A.3)
t=s
x; =0, Otherwise (11.A.4)
(ii) Production setup costs correspond to facility opening cost f;, for each x; = 1,
ie.,
n=1 m m
DD Kibi=_ fixs (11.A.5)
t=s j=1 j=1
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(iii) Total holding costs correspond to demand assignment costs (from eq. (11.A.1)(11.A.2)),

ie.,
n—-1 m n—1 m
DN (haelie) =3 (hael Z D,4;+))
t=8 j=1 t=s j=1 T=t+1

i Z}lj'.—)Dg)éc = iidji'yji

i=1 7=s i=1 j=1

Ma

t

Il
1]

In summary, the optimal value of the specially constructed UCAP-N instance pro-
duces the optimal value of the UFL instance, i.e., in an optimal UCAP-N solution,

nooom m T

> (ciexse + Kibje + hielje) = Z > dyaysi + Zf,x,

t=s j=1 i=1 j=1

Thus, if the optimal solution of the UCAP-N instance has a total cost less than k,
then there is a corresponding UFL solution that has a total cost less then & (a yes
answer to the decision problem). Otherwise, there is no assignment of demands to
facilities with total cost lower than x (a no answer).

Since UFL is known to be NP-complete, this proves that UCAP-N is also NP-
complete.

Proof of Corollary 11.3.

The proof for this corollary can be done by a simple observation as follows: if all D;’s
are constants in equation (11.A.1) above, we can still construct an UCAP-N instance
by finding hj:’s. The rest remains the same as the standard case. ¢

Proof of Corollary 11.4.
To prove that when the setup cost Kj; is constant across facilities UCAP-N remains
NP-complete we only need to show that UFL with constant facility opening cost f; is
NP-complete. We will show that the vertex cover ( VC) problem can be polynomially
reduced to UFL. For a given vertex cover instance, we construct a UFL instance as
follows: associate each edge in VC to a demand point, and each vertex to a facility.
When an edge is (not) incident to a vertex, the corresponding demand point can (not)
be assigned to a facility (i.e., there is an edge (%,j) between the demand point and
the facility in UFL). Set d;; = 0 for all edges present and set facility opening cost f;
to a constant 1 for all facilities j. It is easy to verify that a solution to this specially
constructed UFL instance corresponds to a solution to the original VC instance.
Therefore, UFL with constant facility opening cost is NP-complete, thus UCAP-N
with constant setup cost is NP-complete. §

Proof of Theorem 11.7. The proof is similar to that of Theorem 11.2. It is there-
fore sufficient to outline the reduction from Uncapacitated Facility Location (UFL) to
(P!). For a given instance of UFL problem we may construct a (P} instance as follows:
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Given an UFL instance... Construct a (P) instance such that

Demand points (). i=1.....n Periods (D), 1=1.....n

Facllities (), j=1.....m Facilities ), j=1.....m

Facility opening cost fj=1.....m | Setup costK. j=1.....m

Demand assignment cost g, Transportation cost r,=d, vij.t
Production cost ¢,=0 and c,=m+Ifor
t=2.....n
Holding cost h,=0, forj=1.....m t=1.....n
Demands D=1

Consider the solution of this specially constructed (£f) instance. The following
are true:

1 From Theorem 11.1 (the non-splitting property) we know that there exists an
optimal solution to (P) where item 4’s demand in period ¢ is produced in
exactly one of the J; facilities. Since ¢;1 =0 and ¢je =m +1fort =2,...,n,
production will only take place in period 1 at facility j. Demands in periods
2 to n are satisfied completely by inventory carried over from period 1, i.e.,
production in period 1 at facility 7 is

n
T =) Didje, Vi,

t=2

and
Liv= )" D:& Vit
T=t+1
2 Total transportation costs correspond to demand assignment costs, i.e.,

mnoom

>3t = 303
t=1 j=1 i=1 j=1
3 Total setup costs correspond to facility opening costs

It is easy to verify that the optimal value of the specially constructed (FP) instance
produces an optimal value of the UFL instance. Thus, if the optimal solution of the
(P;) instance has a total cost less than k, then there is a corresponding UFL solution
that has a total cost less then x (a yes answer to the decision problem). Otherwise,
there is no assignment of demands to facilities with total cost lower than & (a no

answer).
Since UFL is known to be NP-complete, this proves that (P/) is also NP-complete.

¢
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Abstract

Keywords:

This paper addresses logistics decisions for an aviation firm and its joint
venture in Chengdu, China. The major logistics cost items for outsourc-
ing aircraft engine components to the joint venture are identified and
a number of transportation alternatives are examined based on cost ef-
fectiveness. Under the current structure of the company’s global supply
chain, we have evaluated five transportation options for moving ma-
terials inbound and outbound: all air, water-rail full container load,
water-rail less than container load, water-truck full container load, and
water-truck less than container load. A cost optimization model for
each of these transportation modes using shipping quantity as a major
decision variable is developed and the associated solution procedure is
provided. These models provide useful guidelines for formulating sound
transportation policies. Although the evaluation framework is estab-
lished based on a particular company’s global supply chain, it is appli-
cable for many companies that are practicing global sourcing strategies.

Global supply chain, Global sourcing, Logistics system, Transportation,
Optimization
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1. Introduction

Logistics processes comprise essential elements of fulfilling customers’
orders. They form the critical loops of supply chains and oversee the
flows of materials, information and cash. The costs associated with
logistics activities normally consist of the following components: trans-
portation, warehousing, order processing/customer service, administra-
tion, and inventory holding (e.g., Lambert et al. (1998); CMA Maga-
zine, anonymous (1999)). Not surprisingly, total logistics costs represent
a large portion of total supply chain costs, especially when the supply
chain is extended to global markets. Previous studies have found that
logistics costs have ranged from 4 to over 30 percent of sales (Ballou
(1999)). As more organizations are outsourcing their products or ser-
vices from all corners of the world, it becomes more critical for companies
to understand and be able to estimate the various logistics cost compo-
nents in order to assure their profit margin. This project analyzes the
global logistics system of Company P in the US aviation industry (as
requested by the company, we disguise the company’s name), with em-
phasis on its transportation policies for moving materials between its
headquarters and its joint venture located in Chengdu, China. In what
follows, we will first provide a general background of the two compa-
nies and a description of the motivation for this research project. Then,
we will explain the objectives, expectations and major results of this
research effort.

1.1 Background

Company P is a leader in the design, manufacture and support of
engines for commercial, military and general aviation aircraft, and space
propulsion systems, as well as a pioneer in flight and technology. With an
understanding of the nature of demand in today’s competitive aviation
industry, which is thrust at the lowest possible cost and highest level of
reliability, the company strives to provide its customers with the services
they need to focus on flying people and cargo safely around the world.
In a business that shrinks the globe, Company P is truly worldwide: it
has representatives in 76 cities in 47 nations. Its partnerships and joint
ventures have reached to Asia and Europe and have kept the company
at the forefront of flight.

Given the nature of aircraft engines, vertical integration is tradition-
ally the dominant form of business structure in the aviation industry.
However, potential market penetration and competition from foreign
suppliers have led several big aircraft engine manufacturers in the U.S.
to go global. With the decrease in U.S. military jet engine development
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in the early 1990’s, international sourcing has taken a more strategic
role. One example of such outsourcing strategy for Company P is a
green-field joint venture located in the Sichuan province of China and
established in 1996 through governmental arrangements (again, we will
use Company C for this joint venture to disguise its identity). Company
P supplied the initial capital investment and machinery for the project
and continues to provide technical assistance and tooling for Company
C. Manufacturing at the joint venture is divided into four major cen-
ters. These consist of welded sheet metal fabrication, major rotating
part medium machining, simple machining and brazed assembly. These
centers manufacture four types of engine parts: burner cans, pin disks,
shrouds and shroud vane assemblies.

With a joint venture located in the Far East, Company P is increas-
ingly concerned with the logistics costs associated with moving raw ma-
terials and finished products. The company and its joint venture have
formed a vendor-required-material (VRM) relationship from the first day
of operation of the joint venture. In this VRM relationship, Company P
purchases the raw materials from one of its licensed suppliers and sends
the materials through a preferred freight forwarder to the joint venture
in China. It also holds the financial responsibility for shipping the ma-
terial to and from Company C and paying for the value-added service
provided by the joint venture. Adding to this heavy financial burden is
the major transportation mode that is currently utilized by Company
P: the raw materials as well as the finished products are all shipped by
air between its headquarters and Chengdu, China, due to various rea-
sons. Therefore, one of the major problems confronted by Company P is
the estimation of the cost and profitability associated with the products
outsourced to China.

1.2 Objective of This Study

The feasibility of outsourcing to China involves numerous issues, such
as the internal operations of both companies, coordination between the
two companies, Company P’s partnerships with raw material suppliers,
freight forwarders and end-customers, China’s inland transportation in-
frastructure, transportation decisions, and import-export procedures, to
name just a few. In this portion of the project, we have focused our
attention and efforts on transportation policies. Specifically, we have
identified major logistics cost components and classified them into dif-
ferent categories for the company to compile and collect data on in the
future. We have also developed a decision framework with the aid of op-
timization models to evaluate the cost-effectiveness of various possible
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transportation methods. The minimum total logistics costs associated
with each transportation mode, along with the shipping quantity, for
materials transferred to and from Chengdu can be obtained and thus
compared. A procedure for conducting sensitivity analysis is also pro-
vided based on the optimization models. It is necessary to mention that
our intention in this project is not to point out which transportation
mode is the best, since the final decision depends on numerous factors;
instead, the goal is to provide methods for Company P to estimate the
logistics costs resulting from global sourcing.

Since Company C is located in Chengdu, in the Sichuan province of
China, which is an inland, mountainous and medium-sized city and far
away from a major metropolitan area, the shipping route for Companies
P and C consists of two major segments: outside of China and within
China. After careful consultation with the two companies, we present the
transportation routes in Company P’s global supply chain in Figure 12.1.
Figure 12.1 illustrates the possible transportation modes and routes for
shipping both raw materials and finished goods. We see from Figure
12.1 that air can be used entirely between the two companies and that, if
water is chosen for transport between Company P and Shanghai (a major
port city in China and about 1,000 kilometers from Chengdu), then
either truck or rail can be utilized to move materials between Shanghai
and Chengdu. Therefore, three potential transportation modes, namely
all air, water-rail combination, and water-truck combination, should be
considered and compared. At present, the latter two options are not
being practiced and there is no evaluation framework in place to help
Company P make sound transportation decisions.

Thus, the major objectives of this study are three-fold and explained
as follows. First, the major cost components involved in this global
logistics systems need to be identified and documented for analysis. Al-
though these cost items are derived based on this case study, we believe
that they are excellent representatives of many global logistics systems,
or at minimum serve as good references for many companies that are
outsourcing materials in foreign countries. Second, optimization mod-
els that seek to minimize total logistics costs as a function of shipping
quantity for each transportation mode are developed. Third, solution
procedures for the cost optimization models are provided, which eventu-
ally yield the best combination of transportation modes for inbound and
outbound movements. Finally, a framework for performing sensitivity
analyses of in-transit time (or delivery lead time) and capital interest
rate for the final mode selection is suggested and illustrated.

This chapter is organized in the following manner. In Section 2, a
review of existing literature related to logistics cost analysis is given
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first, followed by a description of the cost components considered in
Company P’s global logistics system. In the last portion of this sec-
tion, we present the general optimization model in detail. In Section
3, the development and analysis of the cost minimization models for all
transportation modes, along with the solution procedures, are provided.
Section 4 contains a numerical analysis of the current practice at Com-
pany P, sensitivity analysis, and a summary of managerial implications
and discussion of the limitations of the mathematical models. Finally,
concluding remarks are given in Section 5.

2. General Modeling Approach
2.1 Total Logistics Costs: Literature Review

Before the general model for this research is presented, we first provide
some theoretical background based on existing literature. We divide the
literature that reports study results on logistics cost into two streams.
One stream focuses on strategic elements of logistics, and the other deals
with optimal logistics decisions. A large amount of literature exists dis-
cussing the strategic role of logistics in creating value and its relation-
ship to a company’s financial performance. As reported by Richardson
(1995), logistics controls a significant amount of assets and has direct
impact on cash flow and the bottom line, adds value through continuous
productivity and service improvements, and possesses a strong relation-
ship with a firm’s customer service level and revenues. As global sourc-
ing is rapidly arising as a prerequisite for competing in today’s markets,
capturing and evaluating the logistics costs involved in a global supply
chain appears as increasingly critical and important as uncovering the
strategic benefits (Fagan (1991)). The greatest challenge faced by the lo-
gistics professional stems from the nature of the global sourcing process:
it is time-consuming, complex and volatile (McGowan (1997)). Numer-
ous factors can drive up logistics costs substantially, which may offset
the benefits of doing business with international suppliers. One way to
account for the logistics costs is presented by van Damme and van der
Zon (1999), who provide an activity-based costing approach for analyz-
ing financial information and helping top management make logistics
decisions. Maltz and Ellram (1997) identified those logistics activities
that affect outsourcing decisions and presented a ten-step procedure for
comparing make or buy alternatives using total cost relationships.

The major trend of the second stream focuses on examining system
costs, which include transportation costs in conjunction with inventory
and purchasing expenses. Examples of studies restricted to a domestic
logistics system include Lee (1986); Russell and Krajewski (1991); Ter-
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sine and Barman (1991); Bertazzi et al. (1995), and Tyworth and Zeng
(1998), where the optimal order/purchase quantity is derived based on
minimizing the system cost for a particular transportation mode. An-
other characteristic of these efforts is the inclusion of the effect of freight
or quantity discounts on the ordering quantity and the associated to-
tal cost. Demand patterns considered in these research efforts are as-
sumed to be deterministic, except in the study of Tyworth and Zeng
(1998), and issues in vehicle routing, scheduling and consolidation are
ignored except in the article of Bertazzi et al. (1995). Few research
efforts have been devoted to evaluating transportation policies in the
context of global supply chains. Vidal and Goetschalckx (1997) present
a framework and point out the future research opportunities for model-
ing international production-distribution chains. There are two studies
on logistics cost that bear some resemblance to this project. One effort
given by Liao (1997) focuses on the freight cost structure for three ma-
jor shipping modes and the cost of locating manufacturing facilities in
a foreign country. The only international factor included in the total
cost model is that of duties and taxes. The impact of holding pipeline
inventory, a major cost driver in any global logistics systems, and the
order processing cost are ignored. In addition, the solution algorithm
is limited to a domestic-system environment. The other study com-
pleted by Fera (1998) attempts to identify and then classify the relevant
cost factors for evaluating the feasibility of the international outsourc-
ing strategy of Company P. Although a comprehensive list of recurring
and non-recurring cost items associated with international sourcing is
provided, minimization of the total cost is not attempted, nor is the
evaluation of the various transportation alternatives.

Our project modifies the general cost drivers developed by Maltz and
Ellram (1997) to accommodate Company P’s situation and aims at de-
veloping cost minimization models that account for the major cost fac-
tors in a global logistics system and at assessing the economic perfor-
mance of the available transportation choices. The theoretical results
from the optimization framework will provide helpful guidelines for the
international purchasing group at Company P to formulate sound trans-
portation policies. In what follows, the cost components will be pre-
sented and discussed first, followed by the general optimization model
and its assumptions.
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2.2  Logistics Cost Components Considered in
This Study

The greatest difficulty associated with this study is the identification
of the major cost components. After a couple of months of analysis of
Company P’s practices, we have classified the key cost items into the
following six categories: transportation, inventory holding, administra-
tion, customs charges, risk, and handling and packaging, as shown in
Figure 12.2 (a detailed discussion of these cost items is provided in a
project report prepared for the company, which is available from the
author upon request). We can see from Figure 12.2 that each category
consists of a few cost items and the dimension of each cost item is also
given. It is necessary to mention that although duties/tariffs are com-
monly incurred in international trade, they do not apply to this case,
because the joint venture in China does not import anything for sale
within China and Company P is a participant in a protected industry.
As indicated by the dimensions, cost items fall into one of the follow-
ing categories: weight-based ($/kg), value-based (%), frequency-based
($/shipment), or time-based ($/$/year). While previous research has
suggested some guidelines for classifying logistics costs, such as activity-
based or occurrence-based, our classification is primarily driven by the
availability of the company’s data, the possibility to derive the needed
information based on the given data, and the format we used to con-
struct the optimization models. We have shown the total cost structure
to related personnel at Company P and received agreement. We next
move ahead to the cost minimization model.

2.3 The Optimization Model

Apparently a large number of cost items inevitably accrue when mov-
ing materials along a global supply chain. Figure 12.2 contains notation
for each type of cost component and subcategories within each cost cat-
egory are denoted using numerical subscripts. For instance, C}, refers
to the fractional charge of holding pipeline inventory per dollar per year.
In addition, the following notation will be used throughout this chapter.

D = Total annual demand (units/year)

v, = Value of the raw material per unit ($/unit)

vy = Value of the finished product per unit ($/unit)
wy, = Unit weight of raw material (kg/unit)

wy = Unit weight of finished part (kg/unit)

tp = Total in-transit time from one destination to the other (years).
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Figure 12.2. Cost components in the global logistics system
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In addition, the decision variables are:

Shipment size of the finished parts per year (kg/shipment)

Qy
Qr

Shipment size of the raw material per year (kg/shipment).

Before we present the mathematical models, it is necessary to point
out the scenarios we will examine and some general assumptions. We
will restrict our attention to the transportation issues associated with
the joint venture in China; hence, the costs associated with purchasing
the raw materials and manufacturing at Company C are not considered.
Additionally, the assumptions used to develop the models are explained
as follows.

(1) The demand for products outsourced to Company C is determinis-
tic, and the associated demand for the raw materials can be derived
based on the information on the finished items. As Company P
has established long-term relationships with its customers, the de-
mand for the parts to be used in building aircraft engines remains
fairly stable.

(2) Since Company C supplies more than one finished engine compo-
nent, aggregate values of the product characteristics, such as the
demand, weight, volume, and value for both raw materials and fin-
ished goods, will be utilized. This assumption is reasonable since
materials at both their initial and final stages have well-defined
dimensions.

(3) Manufacturing intervals accommodate shipping frequencies, i.e.,
Company C always has the quantities of finished goods ready for
shipment for any value of shipment size derived from the cost mini-
mization model. The same assumption holds for the raw materials
suppliers.

Note that since the U.S. dollar is used as the main currency and Com-
pany P pays all the logistics costs, the currency exchange rate is not an
issue in this study.

In what follows, the optimization models for finding the optimal ship-
ment size of raw materials from the parent company to the overseas
supplier and the shipment size of the finished products in the opposite
direction will be developed and discussed. Note that since the cost com-
ponents are symmetric for both directions, we will ignore the subscripts
(r, f) in the models. Given the cost categories listed in Figure 12.2, the
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general cost minimization model can be given as follows:

minimize: Expected Total Annual Cost (ETAC) =
Transportation + Holding + Customs + Administration
+ Risk + Material Handling Costs

Each cost component is calculated on a yearly basis (i.e., $/year) and
the formulas are given as follows:

. D
Transportation cost : C; = f(Q) + g(Q) + ?w (Cyy + Cty)
Inventory holding cost : Cj = (Dv)Ch,tp + Q(v/w)Ch,

3
Dw
Customs charge : C.=—— > C
Py

3
. . Dw
Administration cost : Cj = o) ; Cl;
Risk cost : C, = (Dv)(Cyr, + Cp,)

4
D
Material handling cost : Cy, = —C;—U- ZCmi + (Dv)Crpg

Most of the above cost functions are straightforward based on the di-
mension of each of the cost item, but the inventory holding cost deserves
some explanation and clarification. The first term indicates the annual
cost of carrying pipeline inventories (where ¢, denotes the time inven-
tory spends in the pipeline. This item encompasses the total time spent
on a series of events that take place when moving materials. The mov-
ing process typically begins with consolidation, and involves transferring
the consolidated goods to the airport/sea port by rail or truck, storage
in warehouses, loading, actual transit, unloading, customs clearance,
transfer to the destination, and finally ends with receiving.) The second
term calculates the safety stock holding cost. It is necessary to men-
tion that although the annual demand is considered deterministic, given
the uncertainties involved in a global supply chain, we assume that one
shipment size is always held as a buffer stock in case of emergencies or
discrepancies occurring between demand and supply. This assumption
is also being practiced at the two companies. Note also that the cycle
stock holding cost is not included, as it is incurred on the shop floor of
the joint venture and not paid by Company P (all cost components in
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the model are paid by Company P). Letting

3 4
91 = CgB +C¢4 + zca, + Zom,-

i=] i=1
and
92 - Crl + Cr2 + Cm5

then the total cost function can be written as

ETAC = % 61+ Q(v/w)Ch, + (f(Q) + 9(Q)) + (Dv) (02 + Ch, tp) -
Notice that two cost components, namely the freight cost f(Q), and the
consolidation cost g(@), are expressed as general functions. The con-
solidation cost is incurred when materials are crated in order to accom-
modate carriers’ needs. The form of these functions will depend on the
transportation mode under consideration and the rate scheme charged
by the carriers. In the next section, we will study the explicit total cost
function for each of the transportation options considered feasible by
both Company P and Company C.

3. Analysis of Transportation Alternatives

The current transportation structure of the company’s global supply
chain as shown in Figure 12.1 suggests that the combinations of water,
truck and rail are possible shipping approaches in addition to air. When
these options are considered, both full container load (FCL) and less-
than container load (LCL) options should be examined. As a result,
a total of five potential transportation alternatives, namely water-rail
FCL, water-rail LCL, water-truck FCL, water-truck LCL, and air, be-
come potential candidates for moving raw materials and finished goods.
Note that if the ocean is used, the materials must be transferred from
Company P’s headquarters to Long Beach, California by either rail or
truck. This portion of cost within the U.S. is taken into account as
follows. The total in-transit time will include three major segments:
the travel time across the U.S., the transit time between the U.S. and
China, and the transit time within China. We assume that the same
mode is used when goods are moved within each of the two countries
(i.e., if truck is used for transporting within China, then the same is
used within the U.S.) and that the same freight rate is used for both
countries due to the unavailability of data from the two countries. In
the following subsections, we develop cost minimization models for all
five shipping alternatives.
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3.1 Water-Rail Combination

In this scenario, we will examine the effectiveness of using FCL or
LCL for both water and rail alternatives.

3.1.1 Water-Rail FCL. This option implies that both water
and rail FCL are employed. In this case, the FCL cost structure for water
using Landbridge (a service in which foreign cargo crosses a country en
route to another country; see Lambert et al. (1998)) is a fixed, one-time
charge for each shipment. The cost charged for using a full load in rail
depends on the container volume, not the shipping size. The freight
charge for the associated consolidation fee is also a constant for each
shipment. Let the freight charge of ocean and rail and the consolidation
fee be denoted as Ci,, Ci,, and Ci,, respectively. Hence, the annual
freight cost i s calculated a Cy, = (Dw/Q) (Cy, + Ct,.). e total cost
function is given as follows:
Dw

ETACwr-rcL = o (6y + Cy,, + Ct, + Ciy)

+ Q(v/w)Chy + (Dv) (B2 + Chytp) . (12.1)

The structure of the cost function (12.1) is similar to that of the classic
economic order quantity (EOQ) function (Silver et al. (1998)). There-
fore, it is straightforward to show that the minimum cost occurs when
the shipment size equals

Dw) (0, +C;, +C:. + C,
Q{m—l-'cr‘:\/( ©) (61 + Gy + Gy + Cia) (12.2)

(v/w)Ch,

It is necessary to mention that since the full container load size is usually
very large and the products considered in this study are of high value
and low demand, the likelihood for the optimal shipment size in (12.2)
to be greater than the full container load is almost zero. Hence, it is
reasonable to assume that the optimization problem shown in (12.1) is
unconstrained. Substituting the shipping quantity in (12.2) into the cost
function (12.1) yields the minimum total cost in this scenario as

ETACWR-rcrL =
21/(Dv) (61 + Ci, + Ci, + Ci;) iy + (Dv) (62 + Ci ).

3.1.2 Water-Rail LCL.  When using the LCL option, the freight
charge for water is calculated based on either the weight or the cubic
size (measured in cubic meters, CBM) of the material to be shipped.
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Since the two parameters have a linear relationship for a standard, well-
shaped raw material and finished item, i.e., the rate expressed in $/CBM
can be converted to $/kg, or vice versa, we continue to use $/kg as the
dimension for the ocean rate. The freight rate for rail and associated
consolidation fee, however, are dependent on the container load size; let-
ting L; denote the container load size for container j, the rate structure
can usually be displayed in the following format:

Load size breakpoints Rail freight rate (LCL) Consolidation fee

($/container) ($/container)
0<Q<L c) ct)’
e . (4) ()

Li-,<Q< Ly Ca,. Caz
Lu-1<Q< L o oy’

It is important to mention that the container volume is much smaller
than that used in the FCL case and that the charge is not proportional
to the shipment weight, i.e., a fixed amount of cost is incurred for using
a container even if the container is not filled up. The Ct(f) and Ct[';)
values are increasing at a decreasing rate with container size. This cost
structure is similar to an all-units discount structure, except that here
we have an increasing step function cost structure in the total quantity
shipped. However, it is straightforward to show that a similar procedure
for finding the optimal shipment quantity holds as for the all-units dis-
count case (see Silver et al. (1998)). We first find the EOQ value that
is realizable (falls within the proper quantity interval) starting from the
highest discount level and then check the cost at all lower breakpoints.
The reason for this is that, given the cost structure, we may be able to
save on both shipping and holding costs by reducing the EOQ at lower
discount breakpoint levels. Increasing to a higher breakpoint above the
highest realizable EOQ increases holding costs, while either maintain-
ing or increasing the per-shipment fixed cost. Note that L, denotes
the largest container and that the rail freight rate is not distance-based,
rather, it is dependent solely upon weight.

We assume that in each option, only one container of each size is
utilized. This assumption is reasonable as both the raw materials and
finished goods are neither bulky nor heavy. The following solution algo-
rithm is presented to determine the best shipment quantity.
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Step 1.

Step 2.

Step 3.

Calculate the shipment size at each LCL freight rate using
the following formula

(Dw) (0 + P + )
(v/w)Chy

and denote the shipment size that applies to both the freight

rate and consolidation charge by @Q,. If L;_1 < @, < Lj, then

this order quantity is realizable for the appropriate discount
range. If so, calculate the associated total cost using

ETACq, =TCgq + D (vbs + wC;, ) + D(vCh,tp), (12.4)

where

; (12.3)

Q=

D v
TCq = Q’“’ (01 + ¢+ C3) + Qulv/w)Ch,

2
v

= 2\/ (Dv) (01 +C 4 ij)) Chy» (12.5)
and the values (Ct:"),Cf;)) correspond to the weight range
where the @ is located. Let @} and ’I"C’C"g denote the values
of (12.3) and (12.5) at the realizable order quantity at the
highest discount level.

Let Lg be the largest container load size less than Qj. As
the last two terms in (12.4) are independent of the shipping
weight, only the first portion of the total cost needs to be
calculated as follows:
Dw

TCL = T (01 + Ct(f} + Ct{:)) + Lo(v/w)Ch,.  (12.6)
Repeat the calculation of Equation (12.6) at all discount break-
points lower than Lg and let TC} denote the breakpoint value
that gives the minimum value of (12.6).

Choose the shipment amount that yields
TC* = min (TC,TC7) .

The freight rate scheme used in the LCL case implies that using EOQ
formula in (12.3) does not necessarily lead to a valid shipping weight
for each pair of freight rate and consolidation charge. As a fixed freight
rate and consolidation fee are charged for a range of shipping weight,
a certain amount of savings in freight and consolidation costs can be
realized if the range limit is used. Hence, it is necessary to compare the
calculated quantity and the quantities at lower price breakpoints.
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3.2 Water-Truck Combination

Truck is another alternative for transporting the materials between
Shanghai and Chengdu. Analogous to rail, this option has two scenarios,
namely FCL and LCL.

3.2.1 Water-Truck FCL. In this scenario, an FCL rate will
be used for both water and truck. For water, the rate is a constant
as mentioned in the preceding section; for truck FCL, the freight rate
per shipment is also a constant and is denoted as Cy,. In addition, the
consolidation charge is measured on a per-shipment basis. The analysis
follows in a similar manner to that in the water-rail FCL case. Letting
the fixed FCL charge rate ($/shipment) be C;, and C;, for ocean and
truck, respectively, the optimal shipment size can be obtained as

Q* o (Dw) (9[ + th + Cﬁk -+ 7”6)
WK-FCL (0/w)Ch,

3.2.2 Water-Truck LCL. This option is similar to the water-
rail-LCL alternative, except that the charge rate for truck will be differ-
ent from the rail rate. The dimension of the ocean freight rate remains
in dollars per kilogram ($/kg), and the charging scheme for using truck
is based on the truck container size, which is weight-based and indepen-
dent of the distance according to the operational procedure at Company
P. Note that in general, LCL rates depend on both weight and distance,
but this is not the case for these two companies. Hence, the solution
procedure presented in Section 3.1.2 remains the same for this scenario
and will not be repeated here.

3.3 Air

Both raw materials and finished products can be shipped by air for
the entire route. Company P normally uses a preferred freight forwarder
for all shipments, whose freight rate scheme is described in table 12.1.

In this scheme, both the freight rate and the consolidation fee are
charged in dollars per kilogram, which is different from the water-rail
LCL case, and the their values are decreasing in volume and correspond
to a decreasing step function structure. This scheme is equivalent to a
fixed annual contract price for air freight plus a consolidation fee that
depends on the shipment quantity (and, hence, frequency). A lower
value of Q implies more frequent shipping and should, therefore, involve
a higher annual cost. Because of the dimension of the structures above,
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Table 12.1. Freight rate scheme for air shipments

Weight breakpoints  Air freight rate Consolidation fee

(8/kg) (3/kg)
0<Q<Wi o ct)’
Wis1 < Q< W; ci g
W1 < Q < W i g

the annual freight cost and consolidation charge is computed as

1@ +9(@ =5 (¢ + )

for a shipmentsize (J;. Furthermore, since a maximum allowable weight
for each shipment is normally imposed for air shipping, it is important to
incorporate this constraint into decision-making. Let this shipping limit
be denoted as W;,, (in kg, note that the Wy, here is much smaller than the
largest containers used in rail LCL and truck LCL, respectively). Thus,
the optimization problem for finding the best air shipping quantity can
be expressed as

minimize ETAC,;;, = %TE 6;
+ Q(v/w)Ch, + (Dv) (02 + Ch,tp) + (F(Q) +9(Q))  (12.7)
subject to
Q< W

It is straightforward to show that in this case, since both freight cost and
consolidation charge have a decreasing step function structure, the same
approach used in the standard all-units discounting scheme can be used,
i.e., find the realizable EOQ value at the highest discount level, and check
the cost at all higher discount breakpoints. However, the EOQ formula
used in this problem is slightly different from that established in the
literature. Since the value paid by the buying organization (Company P)
excludes the freight and consolidation charges, the EOQ is independent
of these two parameters and is calculated as follows:

(Dw)6,

Quir =\ To/w)Cry”
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Therefore, once the value of (J,; is obtained, the freight and consolida-
tion rate pair in the scheme that applies to (4 can be determined. Then
the associated total cost of using Q. needs to be compared with the
cost at all other freight and consolidation rate pairs at higher discount
breakpoints.

Each of the prior sections was devoted to a particular transportation
mode combination, in which the cost model and solution procedure are
provided. Here the rate structure for freight and consolidation cost is the
key for finding the solution algorithm. The optimal order quantity with
all-unit discounts established in the literature serves as a good basis, but
does not always apply to various cost structures in reality. In our study,
we have extended the existing solution procedures to incorporate the
cost schemes of not only the freight rates, but also consolidation rates.

4. Numerical Examples and Sensitivity Analysis
4.1 Computational examples

To demonstrate the effectiveness of the mathematical models pre-
sented in the preceding section, we have conducted a few numerical
studies using the data and current practices provided by the companies.
For the protection of confidential information, we will not use the freight
forwarders’ names. Also most of the data items are slightly modified,
some of which are combined into one fixed parameter (such as #; and
f2). As a result, the fixed as well as the variable input parameters are
summarized in Tables 12.2 and 12.3, respectively. One important pa-
rameter in Table 12.3, namely the in-transit time (f,), deserves some
attention. As defined before, this item encompasses the total time spent
on a series of events that take place when moving materials. Due to
the large number of events involved, the uncertainty associated with the
in-transit time is normally very high, which is revealed by the possible
delay time listed in Table 12.3. To capture the risk level involved in
each transportation mode, we use the following percentages for comput-
ing the loss and damage cost associated with water-rail, water-truck and
air, respectively: 1%, 2%, and 0.5% of total values shipped. The freight
rate schemes for air, truck and rail for both directions are listed in Table
12.4. We will refer to the situation in which all parameters take the
values indicated in Tables 12.2 and 12.3 as the base case.

The optimal shipping quantity, in kilograms per shipment, and the
minimum total annual logistics cost for the base case are obtained us-
ing the solution algorithms provided in the preceding section and are
reported in Table 12.5. We can observe from Table 12.5 that
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Table 12.2. Fixed Parameters in the Numerical Example

Parameter Value (US to China) Value (China to US)
D (unit/year) 2,900 2,900
v ($/unit) 1,000 3,000
w (kg/unit) 31 29
Ch, ($/8/year) 0.12 0.10
Ch, (8/8/year) 0.10 0.10
C;, FCL (%/shipment) 2,947 2,947
C,, LCL (3/kg) 0.604 0.968
C:, FCL (8/shipment) 1,960 1,960
Cy, FCL (8/shipment) 320 320

Table 12.3. Variable Parameters in the Numerical Example

Parameter US to China China to US
Air Water- Water- ~Air  Water- Water-
Rail Truck Rail Truck
C:, (FCL) 40 100 40 40 100 40
6, (8/shipment) 200 1,795 1475 395 1,835 1,808
62 (%) 3 3.5 4.5 3.3 4 4.8
tp (day) Mean 5 50 33 5 47 36
t, (day) Delay 3 20 18 5 22 17

Table 12.4. Rate Schemes

(1) Air, JFK to Chengdu

Shipment weight (kg) 50 100 150 300 550 1,000 2,000

Freight rate (8/kg) 4.65 410 3.25 3.10 295 280 2.75

Consolidation, C:, ($/kg) 0.80 0.70 065 060 050 045 0.40
Atr, Chengdu to JFK

Shipment weight (kg) 50 100 150 300 550 1,000 2,000

Freight rate ($/kg) 560 520 4.80 4.70 460 440 4.35

Consolidation, C;,, (8/kg) 0.80 070 065 060 050 045 040

(2) Rail LCL, Chengdu-Shanghai

Container size 1,000 5,000 10,000
Freight rate ($/container) 200 600 900
Consolidation, C;, ($/container) 30 90 120
(3) Truck LCL, Chengdu-Shanghai

Container size 3,000 5,000 8,000
Freight rate ($/container) 120 200 280

Consolidation, Cy, ($/container) 10 15 20
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Table 12.5. The Optimal Shipping Quantity and Total Logistics Cost for the Five
Transportation Modes: the Base Case

US to China China to US
Mode Quantity (kg) ETAC ($/yr) Quantity (kg) ETAC (3/yr)
W-R FCL 13,768 237,999 7,458 614,333
W-R LCL 8,857 260,615 4,531 635,175
W-K FCL 11,544 236,442 6,449 636,826
W-K LCL 7,033 261,639 4,055 668,722
All Air 2,000 394,277 1,792 735,568

(1) for materials moving from Company P to the joint venture, using
the water-truck FCL shipping mode yields the lowest total cost
($236,442), and the water-rail FCL performs the best for the other
direction ($614,333); and

(2) the maximum allowable weight (W, = 2000) is used for air ship-
ping from the parent company to the joint venture.

Considering the total cost of both directions, we have calculated the
sum of the costs incurred for both directions and presented the results
in a matrix format as seen in Table 12.6. The numbers on the diagonal
indicate the total cost using the same transportation mode for both
directions. Table 12.6 shows that using air to move materials, although
reducing the holding cost of pipeline inventory, is the most expensive
method for the case considered due to its high freight cost. Table 12.6
also pinpoints the combined best transportation modes, which are water-
truck FCL from the U.S. to China and then water-rail FCL for the way
back, together leading to savings of $279,233 (= $1,130,008 — $850,775)
compared to the cost of using all air. In summary, the mathematical
models we have proposed not only identify the shipping quantity and
associated logistics costs for a given transportation mode combination,
but also help evaluate the various combinations of the transportation
modes based on their cost effectiveness.

4.2 Sensitivity analysis

A quick comparison of the transportation modes considered in this
study reveals their immediate advantages and disadvantages. For ex-
ample, air shipping provides the most reliable and fastest service, which
is reflected in the holding cost of pipeline inventories and risk charges.
However, the high cost of transportation tends to offset the benefits. The
other options enjoy lower transportation cost but involve high degrees
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Table 12.6. The Minimum Total Logistics Cost of Materials Flow between Company
P and China Using Various Transportation Modes: the Base Case (all numbers are
expressed in thousands)

China to US

W-RFCL W-RLCL W-KFCL W-KLCL Al Air

614.3 635.2 636.8 668.7 735,568

§ W-RFCL 2380 852.3 873.2 874.8 906.7 941.8
S W-RLCL 260.6 874.9 895.8 897.4 929.3 964.4
fg W-K FCL  236.4 850.7 871.6 873.3 905.2 940.2
o W-KLCL 2616 876.0 896.8 898.5 930.4 965.4
S All Air 394.4 974.6 995.5 997.1 1,029.0 1,130.0

of variability and risk. Therefore, it would be worthwhile to compare
their performance in various situations.

We rely on varying two parameters to conduct the sensitivity of the
mode preference, namely the in-transit time and the inventory holding
cost rate for the following reasons. First, based on our analysis of the
company’s data and previous practices, we have noticed that the uncer-
tainty involved in the in-transit time of using ocean, rail and truck can
be very high, and we have compiled data for both average and possible
delay time shown in Table 12.3. Second, since the percentage holding
cost rate depends on the opportunity loss of capital, which has a strong
relationship with the interest and inflation rate, it is reasonable to use a
range, rather than a fixed number, to describe the holding rate. Finally,
we assume that the holding rate of pipeline inventories is more influ-
ential than that of the safety stock due to the amount of the pipeline
inventories held in a global supply chain. Hence, we fix the safety stock
holding rate but vary the pipeline holding rate. Moreover, we use the
total cost of air shipping as a benchmark to evaluate the performance of
other shipping alternatives.

Consequently, we vary the in-transit time, t,, and the holding rate,
Ch,, as follows:

t, = base value (in days) + 7, 1=1,2,...,7

and

Cp, = base value (percentage) + /100, 1=1,2,...,7

for both shipping directions. These values generate 49 (= 7 x 7) combi-
nations for each shipping direction. The cost values for all 49 problems
were calculated and the optimal total cost of both directions for each
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Table 12.7. Sensitivity Analysis Using Air as a Benchmark (Minimum annual cost
of using air is $1,130,008)

In-transit Time Increase (days)

1 2 3 4 5 6 7
850,775 854,112 857,449 860,786 864,123 867,460 870,797
864,600 868,254 871,909 875,564 879,219 882,873 886,528
878,424 882,397 886,369 890,342 894,315 898,287 902,260
802,249 896,539 900,830 905,120 909,410 913,701 917,991
006,073 910,682 915290 919,898 924,506 929,115 933,723
019,898 924,824 929,750 934,676 939,602 944,528 949,454
933,723 938,967 944,210 949,454 954,698 959,942 965,186

Holding Rate
Increase (%)
O LI LA TR

problem was obtained in the following manner:

Total Cost =
min. cost {W-R FCL; W-R LCL; W-K FCL; W-K LCL}yg_,cp +
min. cost {W-R FCL; W-R LCL; W-K FCL; W-K LCL} ¢y, us-

The results are reported in a matrix shown in Table 12.7. As indicated
by Table 12.7, even if the in-transit time of using combinations of water,
rail and truck is extended by one week and the holding rate is increased
by 7 percent, air remains the most expensive mode of transporting goods
(Recall that the total cost of using air is $1,130,008 per year). The sav-
ings can range from $279,233 per year in the base case to $164,822 per
year under worse conditions. Although we didn’t consider the perfor-
mance of water, truck and rail combinations in worse situations, this
example illustrates the procedure for conducting sensitivity analysis of
various combinations of the values. The matrix format, as presented in
Table 12.7, is useful for comparing the performance of the transportation
modes in different scenarios.

4.3 Discussion of model limitations and
managerial implications

In the previous sections, we presented a set of mathematical models
with the objectives of minimizing the total logistics costs and identifying
the shipping size for various transportation alternatives, along with their
solution algorithms. The numerical analysis has demonstrated that the
models can be used for assessing the cost-effectiveness of various avail-
able transportation mode combinations, which will help the international
purchasing group at Company P and its joint venture in China to make
sound logistics decisions.
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It is important to point out some of the limitations underlying the
models. The first limitation has to do with the demand pattern, which
is assumed to be level over time. This is valid only if both companies
coordinate their ordering and manufacturing decisions. Efficient coor-
dination can be only achieved through fast and accurate information
sharing and communication, quick transfer of MRP schedules, accurate
demand forecasting, and close relationships with raw materials suppliers.
While these issues are beyond the scope of this portion of the project,
they provide a foundation for the mathematical models.

The second limitation is that the effect of payment frequency is ig-
nored in the models. As pointed out before, Company P is the major
party responsible for most of the costs. Therefore, it is concerned with
not only the magnitude of the total logistics cost, but also the speed
of cash flow and the value of capital. This concern also represents a
direction for future research.

Finally, although our optimization models are able to identify the
most economic transportation mode, the final decision regarding trans-
portation mode preference depends on numerous external and internal
factors. For example, China’s transportation infrastructure, additional
risk factors, and Company P’s relationship with freight forwarders within
and outside of the U.S., to name just a few, can affect the final decision
significantly.

S. Concluding Remarks

With outsourcing becoming an integral part of a corporation’s pur-
suit of competitive advantages, a clear understanding of all hidden costs
associated with this strategy has received a great deal of attention. Com-
pany P, one of the leaders in the aviation industry, formed a joint ven-
ture in Chengdu, China in 1996 and has been deeply concerned with the
costs and benefits resulting from outsourcing some of the aircraft engine
parts to this joint venture. This project focused on analyzing Company
P’s global logistics system and developing sound techniques that aid
the companies in making effective transportation policy decisions. The
major cost components of the logistics system that affect transporta-
tion policies were identified and serve as critical inputs in the decision-
making process. A set of optimization models and solution methods for
five potential transportation mode combinations were developed. The
cost components, the results derived from the optimization models, and
the use of sensitivity analysis on proposed solutions have provided help-
ful guidelines for Company P to evaluate the cost effectiveness of each
potential transportation alternative.
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Abstract

We discuss the supply chain of the Chilean forestry sector. The chain
starts with a basic raw material, consisting of standing trees in forests.
The products, at different stages of transformation, then proceed to
local markets or are exported: as logs, lumber, manufactured products,
pulp and paper. Processes involve primary and secondary destinations
for the logs, with transformations carried out at different plants, such
as sawmills and pulp plants. Transportation plays an important role in
moving products along the chain. A series of mathematical models have
been successfully implemented along the chain to support decisions. We
discuss the flow of material along the chain, as well as links between
decision making processes, pointing out where improvements should be
made to improve coordination.

Keywords: forestry, supply chain, mathematical models, logistics

1.

Introduction

For forest products, the production chain starts with standing trees in
the forest and then continues on to one or more stages of transformation,
before goods are sent out to customers as final products. We will describe
the forestry supply chain from the perspective of Chilean forestry firms,
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whose final products go to local markets (pulp and paper, lumber or
sawn pieces mostly) or are exported in the form of logs, lumber, plywood,
manufactured pieces, paper, or pulp. The industry relies mainly on pine
plantations with a growth cycle of about 25 years, located in southern
Chile.

The shape of pine trees defines their best possible use. The lowest,
widest part of the tree is the most valuable, and is either exported as
logs or used by local sawmills for higher priced manufactured products.
The tree’s mid-section, of medium diameter, is sent to local sawmills for
less valuable lumber. The highest part of the tree, which is narrowest
and least valuable, is used for the pulp mill. Sometimes downgrading of
timber occurs: that is, thicker logs may be used for lower-value products
at a loss. Combining these end uses makes for the best use of forests,
because the whole tree is used appropriately.

The supply chain starts with logging operations in the forest, where
harvesting machinery brings logs of different sizes, already cut to certain
dimensions, to the roadside. Trucks take loads of these logs to their first
destination, which may be:

a. Pulp and paper mills. Firms have one or two pulp mills usually
located by the coast for technological reasons, given the need for
large quantities of water. Most paper mills use pulp to produce
paper, but a few use logs to produce paper by a mechanical process.

b. Sawmills and plywood plants. A typical firm has several sawmills,
each with different characteristics, spread out among forest plan-
tations to minimize transportation costs. Plywood plants are also
a first destination for logs.

c. Ports, where logs are sent directly for export. These logs disappear
from our supply chain once they are loaded onto a ship.

d. Stockyards, where logs are kept over the short term, or from sum-
mer to the rainy winter season, then sent on to their next destina-
tion.

e. A collection-transformation center, located near pulp mills, where
some of the logs that have not been cut to final size in the field
are sent for cutting and sorting. From there, the logs are sent on
to their next destination.

Products go from these initial destinations on to secondary destina-
tions. Boards of different size require transportation to go from mills to
local markets or ports for export.
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Other boards go to manufacturing plants, usually located near mills,
for manufacturing into more complex final products, to be used in build-
ing and industry. These manufactured pieces again go to local markets
or to port for export.

From a pulp mill the product, pulp, goes to a paper plant for further
manufacturing into paper, or is exported directly. Paper is mainly used
for the local market but some is exported. Plywood is also oriented to
international markets.

A set of systems based on mathematical models have been imple-
mented and are being used at different levels of the supply chain to
support operating decisions. We will describe how these models support
decisions at this level, analyzing the linkages between each stage. Figure
13.1 provides a basic diagram of a supply chain.

Section 2 shows two systems developed and implemented at the forest
level. One is a short-term harvesting model, to decide which areas to
harvest, how to cut the trees, and where to send them to satisfy short-
term demand. The second system decides the location of harvesting
machinery and access roads. Both systems are used by many firms in
Chile.

Section 3 describes a system based on a simulation model using heuris-
tics, implemented to handle forest to primary destination transport, and
transport from mills to final destinations. Again, this system is heavily
used by forest firms.

Section 4 describes secondary processes, mainly related to sawmills
and remanufacturing and includes the description of a scheduling model,
which has not been implemented.

Section 5 discusses the overall supply chain, as shown in Figure 13.1,
and the links between each stage, in terms of decisions regarding mate-
rial, information and communication flows. In particular, we discuss the
limitations in the supply chain in terms of coordinating different stages
and the need to introduce technology, such as GPS, bar codes, and real
time flow of information, to improve overall performance.

We note that in most cases there is mixed ownership of assets. Major
firms own most of the timber lands harvested, but also purchase timber
from small landowners. They own pulp, industrial, and paper plants
and most of the sawmills, but third-party mill operations are also hired.
Timber harvesting and transportation is mainly subcontracted.

2. The supply of timber

Recall that the basic raw material is standing timber. Large firms own
from 50,000 to 400,000 hectares of pine plantations. At the operating
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Figure 13.1. The Supply Chain

level, at any moment some areas have mature timber ready for harvesting
and for which access roads have already been built.

For the purpose of harvesting, forests are divided into reasonably ho-
mogeneous areas, called stands, characterized by similar tree age, site
quality and management conditions, which lead to similar tree lengths
and diameter. On any given day, harvesting goes on in a number of
stands or points within the forest. The harvesting process starts when
loggers fell a tree. Once on the ground, the branches of the tree are cut
off. Next the tree is cut into pieces according to instruction so as to
obtain the products demanded by length and diameter (bucking) or the
whole log can be sent to a sorting center for bucking.

The loggers receive instructions on how to buck trees in a given area.
Figure 13.2 shows a simplified example, where a first cut is 12 m long
and at least 27 cm in diameter, yielding an export log. A second cut is 4
m in length and at least 22 cm in diameter (sawmill log) and the rest of
the tree, with a diameter of over 8 cm, goes to a pulp plant. Inventory
simulators based on sample plots estimate the volume to be obtained for
each product, given a bucking pattern.
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Figure 13.2. Simplified Example of Bucking

Basic decisions at this level are:

a. Which stands will be harvested in each period (a week is a typical
period here).

b. The bucking or tree cutting instructions to be used for each stand
and period.

c. The products to be sent to different destinations, to satisfy specific
demands for length and diameter during each period.

d. General needs for harvesting machinery and trucks.

OPTICORT (Epstein et al. 1999), a Linear Programming (LP) model,
was developed to support these decisions.

OPTICORT makes decisions on how to produce the many different
products, as defined by the length and diameter needed each week to
satisfy varying demands for exports and at sawmills and pulp plants.
Loggers are given instructions on how to buck or cut every tree, to
obtain up to seven pieces according to a list. These instructions are
called bucking patterns and use information from an inventory simulator
that indicates how many m3/ha will be obtained for each defined product
in a given stand using any given bucking pattern.

A basic, simplified structure of the model defines two variables.

Yiake = Volume of timber (m®) transported from stand i to destination d, of
product & in period ¢

Volume of timber (m*) produced in standi, with buckingpattern j
in period {.

Kije

The objective is to maximize net returns:
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> RiawYiare — ), CostiKijy (13.1)
i=1 ijit
where R4 represents sales revenues minus transportation costs and
Cost; denotes harvesting costs.
The main constraints are:

> Ky <Vol;  forall i (13.2)
it
so that total volume harvested is limited to existing timber Vol;

> Kij <CAC,  forall t, (13.3)
i,j

so that timber harvested is limited by machine capacity, CAC;, and

> RENjKiji— Y Y >0 forall ikt (13.4)
j d

as volume transported is limited by production of each product by stand
and period. The parameter RE Njjy. is the fraction of volume for product
k, when using bucking pattern j in stand 2, which is obtained from an
inventory simulator based on sampling techniques.

The problem is a standard LP, except for the extremely large number
of possible bucking patterns. For this purpose, column generation was
used to generate branching patterns. Given an optimal solution for a
set of defined bucking patterns, additional bucking patterns are created
through a specially developed branch and bound column generation sub-
routine. At the source node, the first branches consist of all possible first
cuts by length and diameter (e.g 12m/26cm). These create a set of 10
to 30 branches (compared to two branches in a 0-1 branch and bound
scheme). At most a tree can have seven depth levels, which constitute
the maximum number of possible cuts in a bucking pattern. A path in
the branch and bound tree corresponds to a bucking pattern.

The dual variables of the present LP and the yields per product from
the simulator lead to the value of each node in the branching.

The model works with demand data provided in the form of inputs
based on the estimated needs of sawmills, pulp mills and exports. Ex-
ports of logs are defined by contracts, while mill requirements are defined
by estimates of requirements, which in turn are driven by estimates of
demand for final products.

Data on harvesting and transportation cost are based on experience,
as well as results provided by a machine-location model and a trans-
portation system, discussed below.
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Several Chilean firms use this model and a large Brazilian firm uses
a similar model. The model runs in about ten minutes on a personal
computer, using a commercial LP code, and has led to significant savings.
The model’s main advantage is that it identifies a good match between
product demand and standing timber, which significantly reduces the
downgrading of higher diameter logs and the cutting of excessive timber.

Based on model indications for the first week and feedback from op-
erations, operations are scheduled daily. This involves scheduling daily
production from each source, the exact daily volume for each product
obtained through bucking, and how daily demand will be met. A weekly
program is basically the combination of daily programs, which will vary
from day to day, due to operating dynamics: schedules are not met ex-
actly, external conditions such as demand may vary daily, or unforeseen
events, such as changing weather conditions, may occur.

At present, daily operations are scheduled manually. A scheduling LP
model to support daily decisions will be developed in the near future.

A second model to support harvesting deals with the following prob-
lem. Given an area of say, 500 hectares, scheduled to be harvested in the
next several months, where should harvesting machinery be located and
what secondary roads should be built? There are basically two types
of harvesting machinery used to bring felled logs to the roadside. On
flat terrain, skidders or tractors are used, while for steeper slopes ca-
ble logging or towers are used to bring logs up hill or, in some cases,
downbhill.

Short access roads connect these operations to existing primary roads.
Given the slow speed of skidders, it is not considered economical to use
them for distances of over 300 meters from roadside. This defines the
road requirements for flat areas.

For steep areas, wherever a cable logging operation is installed, an
access road must be built, along with a flat area to stock logs before
loading them into trucks.

A decision making system, PLANEX (Epstein, et al. 1999) was de-
veloped to support these decisions. The system uses data provided by
a GIS for information on timber existence, topographical height lev-
els, and geographical features, such as rivers, and existing roads. The
information given by the GIS, typically in vector format, is converted
to a raster format with cells, typically of 10 x 10 meters. The user,
normally the planning engineer, provides additional information on the
productivity of harvesting machinery and road building, harvesting and
transportation costs. Thus, the data is derived from users and GIS in-
formation. An interactive graphic interface helps the user observe and
modify solutions. The determination of solutions is based on heuristics.
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In a first step, a greedy approach selects best locations sequentially. For
any given (and still available) location, the timber and revenues that can
be obtained by a machine at this location are determined using GIS in-
formation and harvesting costs. GIS information on topography is used
to evaluate possible roads to be built, while considering constraints such
as maximum slope and turn radius. A shortest-path algorithm on this
network builds the minimum cost path from the location to an exist-
ing road (transportation costs are negligible given the short distances
involved). The location with best net benefits is chosen, cells harvested
through it are excluded from further consideration, and the path thus
defined is used as existing for further iterations. When enough locations
are defined to extract all profitable timber, a local exchange algorithm is
used to improve locations. Finally, the ultimate set of roads to be used
is determined using a spanning tree that connects all chosen locations.

Several Chilean forest firms use this system and it is also being in-
stalled in Colombia at present. It has provided significant improvements
over manual approaches using maps. The main result is the need to build
fewer roads, which offers both monetary savings and better environmen-
tal impacts.

Some of the information provided by PLANEX on harvesting costs
and productivity is an input to the short-term OPTICORT harvesting
model.

Note also the interaction between the two models. The machine loca-
tion system feeds cost and productivity information into the short-term
harvesting system, while the latter supports decisions on which stands to
harvest. We will discuss this point further in Section 5. Note also that
the machine location model indicates positions for the machinery but
not timing. The short-term harvesting model will indicate when to use
skidders and towers in each respective stand, and includes limitations
on the availability of each type of machine.

The machine location problem can be seen as a combination of an
uncapacitated plant location problem, where the machines correspond
to plants, and cells containing timber act as customers, combined with
a network design problem when looking for the best road network. Sev-
eral researchers have attempted to solve a mathematical formulation of
this problem. Guignard et al. 1996 attempted to solve a formulation
of such a model using Lagrangian Relaxation and strengthening the LP
formulation. Epstein et al. (2000) applied a dual strategy to an ex-
panded formulation of the problem. We expect better algorithms from
this research in the near future.



The Supply Chain in the Forest Industry: Models and Linkages 351

3. Transportation to first destination

As described in Section 1, daily harvesting operations lead to logs
being delivered at the roadside. In the case of skidders, these bring the
logs to specified points along the road, where they are stacked and a
loader machine loads them onto trucks. At tower locations, a loader in-
stalled in the flat area will do the loading. These logs are already sized by
length and diameter and planners know their possible destinations: port,
sawmill, pulp mill, industrial plant, paper plant, sorting center or stock-
yards. Usually, at each location stock remains from the previous day
and production is scheduled throughout the day. At destinations, spe-
cific demand for products is organized according to priorities. Sending
logs for export to Japan on a ship that is leaving in three days naturally
has a higher priority than demand at a mill with safety stock. (We will
discuss the issue of safety stock in Section 5.) Forest firms work with a
fleet of from 50 to 300 subcontracted trucks depending on the size of op-
erations. Loading or unloading takes about 20 minutes, while trips last
from 30 minutes to several hours. Trucks travel between multiple origins
in the forest and different destinations. A system, ASICAM (Weintraub
et al. 1996), was developed to schedule daily trips. Truck scheduling
is carried out at a transportation center typically located close to the
forest firm management.

The system is based on a simulation model driven by heuristics. The
model takes as inputs:

a. Demand for each product, at each destination, with priorities for
next day.

b. Next day availability of stock of each product at each origin.

¢. Scheduled production of each product at each origin for the next
day.

d. Loading and unloading capacities at origin and destination.

e. The fleet of trucks available (not in maintenance) by type of truck,
which determines load capacity and type of logs trucks can carry
(e.g. regular trucks can only carry shorter logs) and operating con-
ditions (some trucks cannot climb steep slopes when loaded).

f. Times and costs for loading at origin and unloading at destination,
loaded travel from origins to destinations, and unloaded travel back
to origins.

With this information the model simulates the operation. At 6.30
a.m. for example, loading starts at origins. Besides existing stocks,
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production for each product at origins is assumed to arrive uniformly
throughout, for example from 9 a.m. to 4 p.m., as defined by the sched-
uler. After trucks are loaded, they leave for destinations and new trucks
start loading. Once trucks reach their destinations, they receive a new
assignment: go to an origin, load, travel to and then unload at a new
destination. Trucks must queue if loaders are busy. Heuristic rules were
derived for assignments. After extensive testing, a set of heuristics was
found that proved robust and led to efficient solutions. Under heuris-
tic rules, trucks that will become free in the next hour are scheduled
jointly, to avoid shortsighted solutions. A 15-minute rolling horizon is
used. Rules basically pick trips for trucks that satisfy urgent demand for
product delivery and minimize traveling and queuing costs. They also
avoid causing queuing congestion affecting other trucks. The simulation
proceeds through the day, assigning trips to trucks. Its results indicate:

a. Needs for trucks and loaders the next day.

b. Specific destination of products (the same product can be produced
at different origins).

c. A schedule for each truck and loader for the next day.

A mathematical model has also been developed to solve this problem.
The problem is based on two submodels, one defining the trips to be
made, the other assigning trucks to trips. The models interact through
a Lagrangian decomposition approach (Equi et al. 1997). The current
CPU requirements to solve this model, however, make it uncompetitive
with the heuristic method already in use, which takes just a few minutes.
Such a model approach could become useful in the future to integrate
daily production and transportation.

Schedules are delivered by fax or e-mail to drivers and loader operators
early in the afternoon. During the day, the transport center ensures that
drivers keep to their schedules (a driver who does not arrive on time must
wait). It also deals with deviations from the program. About 80% to 90%
of the trips are carried out as scheduled. Unforeseen events, such as a
truck or loader breaking down, cause deviations from the schedule, which
at present are handled manually by the transport operator. Changes in
schedule are communicated by radio.

Most Chilean forestry firms are using the system, with very significant
savings of about 15% of total costs. Brazilian and South African firms
also use it, and the latter won the South African Logistics Prize of 1996
using this system.

It has also helped the supply chain, as the system’s use has compelled
forest managers to keep a much tighter control on stocks in the forest,
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thus reducing losses and thefts. The system has improved companies’
ability to satisfy demand for products at destinations, as well as pro-
ducing a steadier stream of arrivals, which has helped to synchronize
downstream operations. We believe the system has also helped forestry
companies to significantly decrease their safety stocks at destinations.

The system now is in the first stage of making decisions in real time.
This requires the use of GPS and real time communication between
trucks, loaders, and the transport center providing data and instructions.

We note the interaction between the transportation system and har-
vesting decisions.

= By running the transportation system under different scenarios,
the firm has information on the needs for loaders and trucks for
the short term harvesting problem.

m The daily harvesting schedule and the transport schedule must be
consistent. At present, harvesting schedules are carried out first
and then results are sent to the transport center. The schedule
allows flexibility by setting priorities. The transport center usually
makes several runs to evaluate different transport and demand
satisfaction scenarios and it can decide, for example, to add a few
more trucks to carry additional timber products.

m The expected level of timber production will indicate the basic di-
mensions of the fleet. Based on this information, annual contracts
are signed with trucks owners.

4. Secondary Processes

In this section we describe downstream operations. This description
will include the necessary transportation. A description of these pro-
cesses follows, with its linkages to the system, and how decisions are
made at each level.

a. Stockyards. In a seasonal cycle, stocks are accumulated in the
summer to cover the rainy winter season. Stocking up in summer
allows using cheaper dirt roads to access forest areas. Part of the
harvested timber is carried to stockyards, located nearer to sec-
ondary process facilities, with access by gravel roads, which can be
used year-round. At the operating level, stockyards, in particular
those in pulp plants and sawmills, act as safety stocks. Typical
stocks are enough for a few days’ use up to several weeks. On a
daily basis, therefore, some products will be shipped to stockyards,
while other will be shipped out. Forest firms also use stockyards
as centers for buying timber.
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b. Sorting Yard. A second intermediate type of process is the sort-

ing yard, like that of Bosques Arauco, the largest Chilean forestry
firm. Located in the pulp mill area, it receives whole trees (with-
out bark, branches and top) which are bucked there automatically,
according to the needs of different destinations, which are either in
the area or close by. The advantage of the sorting yard over buck-
ing in the forest is that logs, which in the forest would be subject
to one bucking pattern, will be analyzed individually, and bucked
according to the best use for that particular tree, given its di-
mensions, curvature, defects and needs at nearby destinations. In
addition, automatic sorting yards provide products of better qual-
ity than those bucked manually. Transportation costs, however,
rise due to the intermediate station thus introduced. Scheduling
of additional transportation to next destination is done manually
and specially assigned trucks are used.

Sawmills. Large forestry firms handle a set of sawmills. The
sawmills usually receive logs that are four meters long, with di-
ameters starting at 16 cm. There are different types of sawmills,
which vary by level of technology and ability to handle different
log diameters, and produce different products, but there is a ba-
sic process pattern. The logs go first to a primary cut, producing
outer, more valuable boards. These boards are cut by rotating
the log and cutting pieces, called lateral boards, to given specifi-
cations. The remainder of the log, called the central piece, can be
sold as is, or go on to a secondary process, where it is cut into thin
boards. Depending on the quality of the secondary sawing process,
these lower quality boards can have different levels of smoothness.
Again, the secondary board can be sold as is, or go on to drying
and in some cases sanding before being cut into smaller boards of
different sizes, for example 20 cm x 4 cm X 0.8 cm, before being
sent to market. The higher quality lateral boards may go to re-
manufacturing plants, where they are further processed into the
more elaborate pieces used in construction or furniture. In both
sawing processes a significant percentage of the log turns into chips
and sawdust, which are used for fuel at sawmills and pulp mills.

Typically the sawmilling operation has a reliable demand forecast
for final products, over a six week horizon. There are hundreds
of final products, defined by length, width and diameter, as well
as remanufactured products. Sales and production departments
communicate directly, so that orders can be assigned to specific
sawmills, and then go on to the drying and sanding processes.
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In contrast, coordination of timber inputs is ad hoc. Sawmills
take log input for granted and forests plan the type and volume
of logs to send to each sawmill based on general notions, such
as, “send thicker logs to such-and-such” a sawmill. Short-term
harvesting and distribution need to become more integrated into
sawmill planning and production.

A linear programming model was developed to optimize the assign-
ment of specific tasks for each sawmill and other processes over a
six-week horizon, given orders (local market and exports) and log
inflow to mills. A prototype test was carried out, where data for
expected sales and log stocks at sawmills was input manually.

Results of the test were successful, showing a better use of logs and
satisfaction of orders, as the model fully exploits the characteristics
and relative advantages of each sawmill. However, the model has
not yet been implemented, as the firm is developing a data system
to feed on-line information on sales and log movements directly
into the model. Given the high quantity of data involved, trying
to feed data into the model manually in a real daily to weekly
planning situation is unrealistic.

The model basically follows the flow of logs as they are processed
by the sawmill, as shown in Figure 13.3 with flow conservation and
transformation. Decision variables start with the selection of logs
to be used, from among those available in stock. In the primary
sawmill process, a simulation model embedded as a subroutine
determines probabilistically the expected number of specific pieces
to be obtained for each cutting pattern. The user specifies a certain
number of possible cutting patterns and the model selects specific
cutting patterns to be used. In a similar way, decisions in the
model are formulated for secondary processes, drying, sanding,
use of third-party processes and purchases, and the transportation
of products.

The resulting LP model is a standard one, with a large number of
constraints and variables, due to the many different processes in-
volved. Different options for logs sent to sawmills can be analyzed
by running the model with several log stocking options for each
mill.

The model is designed to run on a weekly rolling-horizon basis.
Each week, information is added on new orders and past produc-
tion. While adding new orders to sawmills (within their capacities)
causes no problem, as a rule taking away orders not yet produced
is not considered an acceptable practice, so the model inputs exist-
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ing assignments from previous runs and imposes a heavy penalty
on such modifications. Some parameters are difficult to determine,
e.g., the time required for different sawmilling operations, which
in strict rigor depends on the surface and length of boards.

Since these parameters were not well-known, we used estimates
based on average performance. The model used only user-selected
cutting patterns. A column generation process, similar to the one
used in OPTICORT, could be added in the future.

The largest sawmill company in Chile schedules transportation
of end products to clients using a modified version of ASICAM.
They report significant savings, as well as better performance, by
using computerized decision models to coordinate transportation.
The company decided to incorporate this tool after its successful
experience with forestry operations.

d. Remanufacturing plants are usually located near sawmills. They
receive as inputs high quality pieces from lateral stock, in given
sizes, e.g., 20 cm x 6 cm X 0.8 cm, and process them into specific
products used in carpentry, housing, furniture and industry. There
is a specific demand for these products, which are both exported
to meet specific contracts and sent to local markets.

e. Other plants, of secondary value in monetary terms, take in tim-
ber products and by-products like chips and sawdust to produce
products such as fiber board for local markets and export.

f. Pulp plants are the core of the operation, financially. Logs are
fed into the mill, which needs constant input. As mentioned, pulp
mills take in thinner, less valuable logs normally, but if needed to
satisfy mill demand, thicker logs may also be used, at a loss. Pulp
plants are located on the coast, as they need a lot of water and
waste disposal possibilities. Presently, reprocessing within plants
allows for relatively clean residues. Moreover, being near ports
reduces transportation costs, as most of products are exported.
Pulp mills produce pulp, which can be exported directly, or sent
to a local plant to be transformed into paper. There are different
qualities of paper: newsprint, wrapping, etc, which go through
different processes and plants before being sent to market.

g. Paper Plants use pulp to produce paper by chemical processes.
Other plants use a mechanical process to produce paper directly
from logs, then sell it on local and international markets. Typically
newsprint is produced this way.
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h. Plywood Plants are increasing in the Chilean forestry sector.
New plants produce high quality plywood oriented for international
markets.

S. Description of the Supply Chain

We have described the supply chain for forestry firms with its ba-
sic elements: harvesting, plants, sawmills, stockyards and the exit from
the supply chain through ports for export or local markets for the dif-
ferent products in the chain: logs, lumber, manufactured pieces, other
products, pulp and paper.

At most stages, mathematical models play an important role in de-
cision making. It has been shown that the use of systems based on
operations research models can bring significant improvement to each
of the processes described. These systems won the 1998 Edelman Price
of INFORMS, the US Society for Management Science and Operations
Research (Epstein et al. 1999).

There are significant differences with typical supply chains, as de-
scribed in Simchi-Levi et al. 2000, for example. One difference is owner-
ship. Third parties along the chain exist (owners of timber land, mills,
kilns, etc.) but play a relatively minor role. The main processes in the
chain, i.e., timberlands, sawmills, and pulp mills, belong legally to dif-
ferent firms, and are operated by independent management; but, since
they belong to the same holding company, management coordinates the
different firms. Of particular interest is setting transfer prices along the
chain; these are decided at the corporate level. It should be noted that
the high cost of log transportation creates certain monopsonies in tim-
ber purchasing. As we will discuss, some links between supply chain
components are weak, particularly the transmission of information and
coordination of decisions. Figure 134 summarizes the physical supply
chain.

The arcs joining processes correspond to transportation activities.
Stocks are held at most stages. In the forest, standing timber in mature
and accessible areas can be treated as inventory, which can be obtained
by harvesting at any time. The policy of a Brazilian firm, Aracruz, is
to leave a minimum amount of standing timber in easily accessible areas
as safety stock. There are also small stocks of felled trees in the forest,
usually to start daily operations.

Stockyards store timber, mostly from summer to winter. Stocks in the
form of logs of the necessary size are held at the different sawmills and
pulp plants before processing. These safety stocks, which cover needs
from several days to weeks, are not used to cover demand uncertainty,
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but rather to cover for poor weather or other contingencies that may
hold up log supplies. Another reason for the stocks is the need to cover
for weaknesses in coordination.

Stocks of intermediate products are held in the sawmilling process,
before drying and sanding for example. Finally, stocks of final products,
from logs to manufactured products, are also kept, before shipping. For
example if we consider a ship to be loaded with 20,000 m’ of different
products: given the speed of harvesting and transportation, stocking of
products at port should start ten days before the ship arrives.

In this case, stocks and production along the supply chain are driven
by demand information, which is relatively reliable. This means the
Bullwhip Effect (Lee et al. 1997) is not an important factor. Demand
uncertainties usually arise from spot sales, which are transmitted im-
mediately to the plants. For their part, forest operations are flexible
enough to react to modified orders when needed. Moreover, downgrad-
ing, the practice of using thicker logs when thinner logs are unavailable,
also adds flexibility to plant supply (Gavirneni et al. 1999).

It is important to consider the level of information and coordination
quality in the supply chain. Following the description in Figure 13.1 we
can point out the weaker points in the chain:

a. Improvements in the daily coordination of timber harvesting and
transportation to first destination would strengthen the integration
of both activities. In this form, jointly planning daily production
and transportation would improve the overall process.

b. There is little coordination between decisions on harvesting to sup-
ply logs to sawmills and the processing required to satisfy known
demand for sawn products. A proposed model that integrates these
two aspects is presented in Lidén and Ronnqvist (2000). It is im-
portant to integrate the decisions of log supply to sawmills with the
demand for end products and mill processes, to maximize overall
revenue, including timber value.

c. Sales demand and sawmill planning are poorly integrated, given
the rudimentary, manual planning process presently used. A model
to better coordinate sales and sawmill production was described
above.

d. Transport decisions, aside from their lack of integration in harvest-
ing, are not carried out in real time, leading to loss of flexibility.
The main advantage of real time scheduling would be “just in time”
dispatching from the forest, as timber availability, communicated
in real time, makes it possible to reschedule trucks and harvesting
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during the day in response to new requirements. Technology in
data transmission allows these improvements, and some prelimi-
nary efforts in this direction have been carried out in several coun-
tries with promising results. Ronnqvist and Ryan (1995) report
on one case in New Zealand where a real time decision model to
schedule trucks was used for a short period, but later abandoned.

6. Conclusion

We have described the physical supply chain in the case of Chilean
forestry firms and discussed the use of models and computer systems at
different stages, as well as the weak coordination between some stages.

If we look at a desired future system, with proper technology the
whole supply chain could be linked in real time, integrating daily forest
harvesting and transportation, short-term sawmill processes, scheduled
sales, and log supply.

Bar codes on logs being loaded into trucks, containing specifications
(length, diameter) and transmitting data instantaneously to a central
scheduling office would keep track of logs throughout the process, per-
mitting integrated decisions on harvesting, tree bucking, and transporta-
tion in real time. On a daily basis, it would also make sawmill handling
more integrated and flexible. Given how the price of the necessary tech-
nology (GPS, GIS, and data communication) is falling, at least some of
these technologies will likely be applied in the near future.
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1. Introduction

A supply chain is a network of firms, activities, organizations, and
technologies that performs the functions of procurement of material from
vendor firms, transformation of this material into intermediate and fin-
ished products and the distribution of these finished products to cus-
tomers. It is often easy to identify a supply chain in a manufacturing
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enterprise, although the complexity of the chain may vary from industry
to industry or even company to company. As an example, a wine pro-
ducer has several sets of suppliers, with its vineyards, bottlers, cork and
carton manufacturers and so on. These firms ship to the winery. Once
the wine has been made and aged, the winery supplies a set of customers,
consisting of retailers, pubs, hotels, wine-bars, as well as the ultimate
consumers ordering via the Internet. In the book publishing industry,
Barnes and Noble uses more than 20,000 suppliers, consisting of major
publishers to small University presses, to stock over one million books at
their Jamesburg, NJ distribution center. The distribution center replen-
ishes retail locations daily based on point of sale data transmitted by
stores. On the other hand, Barnes and Nobles Internet fulfillment center
(bn.com) stocks and replenishes over one million books for immediate
delivery to the customer.

As the above examples indicate, a supply chain consists of a number
of entities interacting with each other in complex ways. A supply chain
could have vendors; International Purchasing Organizations (IPOs) to
procure raw materials; a variety of transportation options to ship them;
numerous ways to produce the product; and finally several channels to
distribute the product. Any firm can do some or all of these operations
in-house or decide to outsource them, typically to Third Party Logistics
(3PL) providers. One can also imagine the innumerable number of flows
within and across these entities—the flow of product from the supplier
organizations to the point of sale; the flow of information between sup-
ply chain entities such as orders, tracking requests, etc.; there are cash
flows including invoice preparation and transacting payments; there are
process and work flows that manage operations between these entities;
and finally intra-firm collaborative teams constitute the people flows in
the supply chain.

Research in managing many of the flows described—popularly referred
to as supply chain management (SCM)-has grown exponentially over
the last decade. If one culls out the various research streams in SCM,
they align themselves in one of five broad categories: (i) competitive
strategy, (ii) costs and benefits of information sharing, (iii) managing
product variety (via product postponement), (iv) supply contracts, and
(v) the economics and logistics of network location and optimization (for
a comprehensive review of the literature, see Ganeshan et al., 1998).
Our emphasis in this research is to study the importance of informa-
tion sharing in a complex supply chain. Specifically, as ensuing sections
will describe, our supply chain consists of four echelons with many en-
tities in each echelon: the supplier, the plant, the distribution centers,
and retail outlets. Within this framework we study, through a Simula-
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tion model, how collaborative planning, be it for forecasts, production
plans, or replenishment between pre-determined entities of the supply
chain produces value to the firm, the customer, and ultimately to the
shareholder.

The idea behind supply chain management is to view the chain as
a total system, and to fine-tune the decisions about how to operate
the various components (firms, functions, technologies, and activities)
in ways that produce the most desirable overall system performance in
the long run. Doing so is extremely difficult due to the number and
complexity of the decisions to be made, as well as the inter- and intra-
organizational issues that must be addressed. Herein lies the dilemma
for today’s researchers. Should one model the complexity of the realis-
tic supply chain? Doing so will, in all certainty, make the problem at
hand intractable. On the other hand, one can simplify the models to get
some key insights but run the risk of diluting the richness of the model
to such an extent that it cannot be extrapolated to “realistic” scenar-
ios. Simulation often provides the right middle ground to analyze such
complex models. Although simulating the supply chain we are about to
describe in this paper is quite a difficult task, it nevertheless provides
us with a tool to analyze the impact of relevant parameters on supply
chain performance.

The bulk of SCM research on the costs and benefits of information
sharing, at least in the operations management realm, studies it from a
myopic perspective. Specifically, since modeling the entire gamut of enti-
ties in the supply chain — i.e., from the suppliers to the end customers — is
intractable, researchers often resort to stylistic models to study the costs
and benefits of information sharing. The supply chain structure typi-
cally consists of arborescent structures typically limited to two echelons,
a system of order transmission between these echelons (such as the re-
order point system), and a simple, often inventory-related cost structure
that encompasses the two echelons. The results and insights are often
studied within these stylized environments (for a good overview on the
modeling approaches see Tayur, Ganeshan, and Magazine, 1998, pages
337-465). Although such models are very practical, and are effective in
providing insight into inventory-related supply chain performance, their
primary shortcoming arises from the fact that their results, barring a few
exceptions, cannot be easily extrapolated to realistic supply chains. Our
objective in this chapter is to evaluate the value of information sharing,
especially through simulating emerging supply chain initiatives such as
Collaborative Planning, Forecasting, and Replenishment (CPFR), in a
realistic supply chain. We base our analysis and results on data collected
from a Fortune-500 company. This chapter, in addition to simulating
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CPFR in realistic situations using realistic data, is unique in two other
ways: one, we use the three key dimensions of supply chain performance
oft-cited in the literature but seldom used together—customer service,
time, and shareholder wealth. Second, as the methodology section will
illustrate, our simulation includes most of the relevant costs and con-
straints, and captures the essential elements of product, information,
and cash flows in a typical fast-moving consumer-goods supply chain.

The remainder of this chapter is organized the following way. In sec-
tion 2, we will present the research hypothesis and the relevant perfor-
mance measures we will be using. Section 3 describes our data, Section 4
the supply chain simulation and the methodology, and finally in Section
5 we provide a discussion and conclusions.

2. Research Hypothesis and Performance
Measures

Research on information sharing in the supply chain was initiated by
Forrester (1961) who demonstrated that information in a supply chain,
such as orders, propagates upstream with increased volatility. Recently
Lee, Padmanabhan, and Whang (1997a & b) have christened this phe-
nomenon the “Bullwhip” effect. The bullwhip effect has the negative
impact of increased inventory levels or large stock-outs for SKUs whose
demands are volatile at the customer level. In an effort to curb the bull-
whip effect, and to improve working capital efficiency, several firms have
initiated programs that work towards sharing forecast and other plan-
ning information (for a discussion see Lee, Padmanabhan, and Whang,
1997a). The premise, of course, is that centralizing demand information
will make all plans in the supply chain react to the same data, miti-
gating the bullwhip effect (Chen et al., 1998) and improving working
capital efficiency. One example of such an information-sharing initiative
is Vendor Managed Inventory (VMI). Under this initiative, the supplier
or vendor is empowered to monitor and eventually replenish the cus-
tomer’s inventory according to pre-determined contractual agreements.
Specific company examples include Barilla SpA (see HBS Case: 9-694-
046) where inventory levels substantially reduced while maintaining high
item fill-rates. Clark and Hammond (1997) show that the use of VMI
in Campbell Soup has provided better performance gains. An example
of vendor managed inventories in the grocery and consumer products
industry commonly referred to as Continuous Replenishment Programs
(CRP) is Pillsbury. The frozen foods division of Pillsbury maintains and
monitors product and inventory flows to downstream retailers, such as
Kroger and HE Butt (Long, 1999), enhancing inventory performance.
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Efficient Customer Response (ECR) is another initiative to reduce
volatility and uncertainty, primarily in the grocery industry. A key idea
in ECR, in addition to reengineering the order management processes,
involves sharing point-of-sale data between various links in the supply
chain, enabling better replenishment, assortment planning, product in-
troductions and promotions. Sharp and Hill (1998) estimate that ECR
could potentially save more than 6% of sales in logistics costs and around
41% reduction in inventories for the grocery industry. Several other in-
dustries have adapted ECR to fit their unique needs: quick response
(QR) in the apparel industry; efficient foodservice response (EFSR) in
the foodservice industry; and efficient health consumer response (EHCR)
in the medical/hospital supplies industry. All these initiatives have a
common theme—share real-time information to improve working capital
efficiencies and speed the product to the customer.

All the initiatives described above require some sort of technology to
exchange information, which is typically done through Electronic Data
Interchange (EDI) protocols. However, with the advent of the WWW,
collaborative planning of forecasts and inventory replenishments (popu-
larly called CPFR) can be done via the Internet. Initiated by the Vol-
untary Inter-industry Commerce Standards (VICS) association, CPFR
promises a new business model the central theme of which is for busi-
nesses to align processes and standardize technologies to share forecast
and other planning information securely, simultaneously, globally, and in
real-time (see for example White, 1999). The key idea behind the CPFR
initiative is that trading partners, e.g., the retailer and the manufacturer,
collaboratively create forecasts (see Figure 14.1). Both the retailer and
the manufacturer collect market intelligence on products; the retailer
provides information on marketing programs, etc., and shares it in real-
time over the Internet. In most cases, the retailer owns the sales forecast.
If the manufacturer agrees with the forecast, automatic replenishments
are made to the retailer via predetermined business contracts in order to
maintain a specified inventory or customer service level. If the manufac-
turer and retailer cannot agree on the forecasts or if there are exceptions,
such as an unusual demand season or a store opening, the forecasts are
reconciled manually. The trading partners must agree on several key is-
sues prior to implementing CPFR, such as how to measure service levels
and stock-outs, how to set inventory and service targets. As the rela-
tionship develops over time, the retailer and manufacturer may jointly
redesign key business processes in order to improve system performance.
Several pilots of the CPFR business model are underway that allow re-
tailers (e.g., Wal-Mart) and vendors (e.g., Lucent and Sara Lee) to “share
information regarding key planning parameters (i.e., promotions, store
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openings etc.) impacting forecasts; and communicate/resolve variances
within item level forecasts.” (from www.cpfr.org).

In contrast, in the ROP procedure, retail level planners collect prod-
uct information and marketing programs at the store level (see Figure
14.2). Combining that with the point-of-sale (POS) data, item-level fore-
casts and event calendars that record promotion dates, special marketing
programs, etc., are generated. Based on inventory and/or service level
targets, the forecasts and the corresponding errors are used to generate
reorder points. When inventory of a specified item reaches the reorder
point, the retailer places an order to the manufacturer. If the product
is available, it is shipped to the retailer; if not, the retailer will look for
alternative solutions to replenish the item. The manufacturer, on the
other hand, collects product knowledge and marketing programs of ma-
jor retailers from public sources. Based on retailer orders and historical
shipment information, the manufacturer generates a forecast by item,
and in most cases, by retailer. These forecasts also drive the production
of the items.

The research literature has little, if any, systematic process to deter-
mine the benefits of the CPFR process. Our intention is to simulate
the process and compare it to traditional ordering and planning mech-
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anisms, specifically the reorder point system (ROP). We will measure
performance on three dimensions - customer service levels (fill-rates),
Shareholder Value (as Economic Value Added (EVA)), and the time
dimension (as Supply Chain Cycle Time).

2.1 Performance Measures

Fill-rate: The firm in question, as the Data section will show, has six
distribution centers (DCs) supplying to sixty-three retail markets. An
overall fill-rate is computed using the volume-weighted average of the
fill-rates at each of the DCs (for a similar measure, see Deuermeyer and
Schwarz, 1981).

Economic Value Added (EVA): Since we do not model market forces and
stock prices, we use the EVA, a measure developed by Stern Stewart as
a measure of shareholder wealth. This is simply the profit less the true
cost of capital. The profit is just the revenue less all the relevant costs
that are involved in operating the supply chain. Capital is all the in-
vestment outlays incurred—including all infrastructure and technologies
used in the supply chain.

Supply chain cycle time: This is defined as the total time spent by a
product in the supply chain. It includes time at the supplier warehouse,
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transit to the plant, as raw material, WIP, and finished goods in the
plant, transit to the DC, as inventory in the DC, and finally in transit
before it reaches the retailer establishment. Since there is more than
one entity in each echelon of the supply chain, time is just the volume-
weighted average of the all the relevant times in a particular echelon.

2.2 Hypothesis

Our intention is to see if an information-sharing initiative such as
CPFR has any tangible benefit for the above performance measures.
To do this we will compare it to a traditional “reorder point” (ROP)
methodology. Under the ROP method, the downstream facility in the
supply chain (such as a DC) will place an order to its trading partner
(such as a manufacturing plant) when reorder points, set independently,
for different products are triggered. On the other hand, under the CPFR
initiative, the trading partners (the DC and the manufacturing facility)
will plan the replenishment quantities together, i.e., share information
about demands. While benefits of such information sharing initiatives
are proven in stylistic models, they have not been confirmed in a re-
alistic and complex supply chain as the one we are about to describe.
We would expect, even in the complex system, for CPFR to provide a
higher level of fill-rate than the traditional reorder procedures. Formally,

HIi: CPFR produces a higher fill-rate than the ROP method.

Since sharing of information produces better forecasts, the use of an
information-sharing initiative reduces inventory in the supply chain. The
hypothesis can be summed up as:

H2: CPFR results in lower supply chain inventories than the ROP
method.

With accurate forecasts and low inventory, one can expect the supply
chain cycle time or “response time” of the supply chain to be lower with
the CPFR system:

H3: CPFR results in a lower supply chain cycle time when compared to
the ROP method.

Finally, information-sharing initiatives are sustainable only if they add
intrinsic value to the company and consequently to the shareholder. To
the best of our knowledge, we have not seen the impact of information
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sharing on shareholder wealth, even in simplistic models. Since the use
of CPFR-like initiative reduces working capital by reducing inventories,
one would expect such initiatives to ultimately add shareholder value.
Since we measure shareholder wealth by EVA, we frame the hypothesis
as:

H4: CPFR results in higher EVA when compared to the ROP method.

3. The Data

The data used to fuel the simulation model is adapted from the supply
chain of a Fortune-500 consumer products company (see Table 14.1).
To maintain confidentiality, we have masked the data. Specifically, we
have changed the nomenclature of the supply chain structure, i.e., the
names of the markets, DCs, plant, and the suppliers are not the same
as the original company. However the relative magnitude of the data is
preserved. We chose one product from a product family of household
cleaners that typically sells for around $2/pound.

The product in question can potentially be sold at retail locations in
any one of sixty-three markets in the continental United States. These
retail outlets are replenished by DCs via Less-Than-Truckload (LTL)
shipments on a regular basis. Depending on the market location, and
the supplying DC, the order cycle times (i.e., time from the retail or-
der to the point of fulfillment by the DC) to these retail outlets range
from one to five days. The freight rates from the DCs to the markets
range from 0.0466 to 0.16 $/pound shipped (the data tables are quite
cumbersome—for the sake of brevity, we have chosen not to show it).
We divide the year into thirteen accounting periods, and each of these
periods has twenty operating days. The demand is seasonal, peaking
during the Spring-cleaning season.

Because of the large number of shipments to customers and the long
distances to be covered, this company has several distribution centers
(DCs). These are located in Los Angeles, California; Denver, Colorado;
Dallas, Texas; Chicago, Illinois; Atlanta, Georgia; and Kansas City, Mis-
souri. The cost structure is therefore piecewise linear, changing with
the volume of product that is shipped through the DCs. The DCs
are replenished through one of four modes of transport: Less-Than-
Truckload (LTL), Truck Load (TL), Trailer or Container on Flat Car
(TOFC/COFC), and Railbox Car shipments, each having a shipping
capacity of 20,000; 40,000; 50,000; and 90,000 respectively.

The product in question is produced in one manufacturing facility,
located in Denver, CO. For the purposes of this study, we assume that
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Table 14.1. The Data

the Denver manufacturing facility has enough capacity to satisfy the
downstream demand. The initial investment to build and get the plant
running was $13 million. Once the product is produced, it is stored
in an “out-bound” plant warehouse (different from the DC) adjoining
the facility. The operating economics of the plant-warehouse are, as
before, piecewise linear and depend on the throughput. The product
requires three raw materials, Cans/Bottles, Corrugated, and Chemicals,
that make up 10, 30, and 60 percent of the product. Each of these
raw materials is sourced from three major suppliers, located along the
Gulf Coast and the Mississippi river. Each of these suppliers charges
a different price, based largely on the quantity that is ordered and the
delivery performance that is promised. The shipments from each of these
suppliers to the Denver plant can be made through four available modes
of transport-LTL, TL, COFC/TOFC, and Rail Boxcar. The freight
rates, mean and standard deviation of transit times for these modes are
also available to us.

Describing our data requirements in such detail, we believe, is valu-
able in two respects: one, it provides the reader with a list of data
requirements that will be needed to simulate a realistic supply chain. Of
course such data requirements will not be homogenous from company to
company, but we believe that most retail distribution channels for fast
moving consumer goods are likely to have similar data needs. Second,
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the reader can perhaps appreciate the difficulty in obtaining the data to
simulate a supply chain. Even the addition of new transport modes to
the analysis will exponentially increase the data needs!

4. The Simulation

Simulating a complex chain is obviously a difficult endeavor. To accu-
rately capture all the costs and constraints and to appropriately model
the CPFR business model, we wrote our own simulation routines in Vi-
sual Basic, a programming platform for the Windows operating system.
Figure 14.3 shows the general outline of the simulation. For the purposes
of brevity and to enhance clarity, we keep our explanation of the details
of the simulation to a minimum. The simulation first reads all the data
required for a run. This includes the products, markets, and sales data;
detailed data on the operating economics of each facility in the supply
chain; the freight options, cost structure, and delivery performance of
each of the transportation modes. We then input the structure of the
supply chain, i.e., market, DC, plant, and supplier locations, and the
corresponding arcs that connect these “nodes” in the supply chain. The
underlying data and the supply chain structure will remain constant
across different simulation runs.

Our planning horizon is thirteen periods (one year), each period con-
sisting of twenty days. The simulation begins by forecasting the demand
for each period at each of the DCs. The total average demand for each
market is known, and therefore the annual average demand on each sup-
plying DC is also available. Based on seasonality of each period, the
average demand for each period in each DC can also be computed in
a straightforward way. We use the following procedure to “simulate” a
forecast in each of the periods at the distribution centers (see also Srid-
haran and Berry, 1990)

Forecast in period ¢ = Sales in period t + forecast error,

where the forecast error is assumed to be a normal variable with mean
zero and a variance, o2, that is estimated from company data as (see
Stenger, 1994) aS?, where S; is the average sales in period 7, and a and
b are positive constants.

Under a traditional reorder point system (ROP), the planner at the
DC will use the forecasted demand, forecast error, on-hand inventory,
scheduled receipts, transport mode characteristics (lead-time performance
and lot-size) and a pre-determined fill-rate target to compute reorder
points via well-known inventory methods (see Silver and Peterson, 1987,
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Figure 14.5. Simulation Overview

pages 269-276). An order is placed as soon as the inventory level reaches
the reorder point. The supplying plant will then fulfill the order via its
plant warehouse on the chosen mode of transport. If sufficient inventory
is unavailable, the shipment is delayed until the appropriate lot-size (for
the chosen mode) is available. The supplying plant warehouse, in turn,
forecasts the orders it receives from the DCs. To simulate this, we use
exactly the same procedure as in the DC forecasts, i.e., perturb the real
orders with a pre-determined error component.

Under the CPFR type system, however, the plant (Denver in our case)
has perfect visibility of the DC needs. This is achieved via a common
planning database the firms share over the Internet. As in the ROP case,
the DCs plan period-by-period product needs so that a pre-determined
fill-rate is met. However, with CPFR, the plant and the DCs jointly plan
the fulfillment of these needs. The plant-warehouse shipping schedule
is achieved by first aggregating the DC needs in a given period and
offsetting it by required transportation lead-time.

The production plan over the planning horizon is then computed as
the quantity required to satisfy the warehouse shipping schedule and the
safety stock requirements at the plant warehouse. Once the production
plans are known, a standard MRP procedure is used determine raw
material needs and shipping schedules from the suppliers. At the end of
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the “planning cycle” (beginning of every month) of the simulation, all
plans—DC needs, plant warehouse shipping schedules, production plans,
and raw material needs and shipping schedules are determined.

Once the plans are laid out for the coming year, the simulation starts
simulating material flow every day according to these plans, collecting
supply chain performance data every day of the simulation. All plans,
from distribution, production, to raw material procurement are done
using “averages,” for example, when doing MRP, the mean lead-time
is used to generate schedules and so on. Therefore, as the simulation
proceeds with specific instances of forecasts, production and transport
lead-times, the plans tend to deviate from reality. So the simulation
updates the plans (for the horizon) at the end of month, i.e., the DC
forecasts are updated, ROP or CPFR is performed, production and raw
material plans are generated and so on. In our simulation model, after
an initial warm-up period of three months, statistics are collected for
three years to average random effects. Any product demand not satis-
fied is backordered except at the DCs, where it is accounted for as lost
sales (and consequently fill-rates are collected). The actual service level
at each of the DCs; the average inventory levels; transit statistics; and
the financial performance at each entity in each of the four echelons are
the key outputs of the simulation. In addition, we also compute the
following overall supply chain measures:

Overall Customer Service level: Weighted average (by volume of product
sold) of service levels at each DC. If p; is the service level at DC; and V; is
the volume of product flow at DC;, then the overall service level is Lp;V;

Economic Value Added (EVA): Profit - Cost of capital

Profit = Sales — Operating expenses (including inbound, production,
outbound distribution)

Cost of capital = Cost of working capital (including inventory at various
levels) + Cost of investment

Time through the supply chain: Weighted average by volume of either
raw material, WIP, or finished goods of:

Time spent in transit from supplier to the plant 4 + Holding time in the
plant (as raw material) + manufacturing time + holding time in the
out-bound warehouse + transit time to the DCs + time spent in the
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DCs + transit time to the customer.

For example, there are six plant warehouse-DC links (one for every DC).
The “transit time to the DCs” is the weighted average of transit times
from the plant warehouse to the DCs, weighted by the volume that was
shipped on each of these links. This measures the time dimension in the
supply chain or the “responsiveness” in the supply chain.

S. The Experiment

Our intent is to test the impact of collaborative initiatives on supply
chain performance under a number of different operating conditions. To
do so, we constructed a full factorial design to evaluate our hypotheses
via the ANOVA procedure. We have chosen to change the following
parameters as we believe that these are the most typical operating ranges
of this supply chain:

a. Planning Options: CPFR or ROP.

T3]

b. Forecast Errors: “High” or “Low.” High corresponds to an “a
parameter of 5; and Low to an “a” parameter of 3, with the pa-
rameter “b” estimated at 0.8. This represents the typical range of

values observed for the forecast errors.

c. Service levels at the DCs: 90%, 95%, 99%. These are target fill-
rates at the DCs. Effectively these are responsible for the appro-
priate levels of safety stock at the DC location.

d. Transport Modes: LTL, TL, TOFC/COFC, Rail Boxcar.

e. Levels of Safety Stock at the plant warehouse: 0.5, 1.0, 1.5 weeks
of supply.

f. Average Levels of Demand: 45, 70, and 105 million pounds per
year.

There are a total of 432 parameter combinations. Each combination
was run at least 15 times, more if there were any outlying runs, for a
total of 6522 runs.

We used SPSS v7.0 to analyze the outputs from these runs. To test our
hypotheses, we use all the main effects and two significant interactions,
Planning Options with Forecast Accuracy; and Planning Options with
Fill Rates. We only report our key findings in this Chapter. For the
interested reader, detailed analysis is available in Boone et al. (2000).
ANOVA analysis shows that all the terms have a significant impact in
determining fill rates, inventories, cycle times, and EVA.
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Next, we proceeded to compare the mean levels of performance be-
tween the CPFR and the ROP control methods. Table 14.2 illustrates
the relative performance of CPFR over the ROP method. For example,
using the CPFR method yields on average fill-rates that are 1.8% higher
relative to the ROP method. The standard error is small enough to
make this percentage difference significant. This seems to provide evi-
dence for the first hypothesis that the use of the CPFR method produces
a higher fill-rate for the supply chain. For our data, the difference in fill-
rates translates to additional sales anywhere from 675,000 pounds of the
product (at the 45 million pounds level of demand) to 1,575,000 when
the demand is 105 million pounds. Therefore the use of CPFR becomes
very important for high volume items. When forecast errors are higher,
CPER yields fill-rates that are 3.3% higher relative to the ROP measure.
Again, the standard errors are small making the difference significant.
This suggests that the impact of CPFR on fill-rate increases as forecast
errors increase, further confirming the fact that the biggest benefits of
CPFR are when forecast errors are high.

Performance Improvement
Performance Measure from using CPFR Standard Error
Supply Chain Time -1.74% < 0.5%
Supply Chain Inventory -1.94% < 0.3%
Observed Fill Rates 1.80% < 0.1%
EVA 5.99% < 1%

Table 14.2. Relative Performance of the CPFR Procedure

The CPFR procedure uses on average 1.94% less inventory (signifi-
cant at 99% confidence) relative to the ROP, confirming hypothesis H2.
Herein lies the biggest impact of information-sharing initiatives—they
increase the fill-rates while reducing inventories. This is possible be-
cause the Denver plant has complete visibility of all the DC inventories.
Therefore, Denver can plan shipping and production schedules more ef-
ficiently. Additionally, when forecast errors are higher, the decrease is
5.80%, indicating again the magnified impact of collaborative planning
in high uncertainty.

CPFR procedure yields a cycle time that is on an average 1.74% less
than that of the ROP procedure (significant at 99% confidence level),
confirming hypothesis H3. The CPFR procedure warrants lesser in-
ventory, and consequently a higher turnover ratio thus increasing the
velocity of product flow across the supply chain.

Finally, the biggest impact of CPFR can be seen in the increase in
shareholder wealth as measured by EVA. The CPFR procedure yields
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on average an EVA that is 5.99% higher than the ROP procedure (sig-
nificant at 99% confidence), supporting H4. This difference can be at-
tributed to the reductions in working capital and increase in revenues
due to the CPFR procedure. At every entity, at each echelon in the sup-
ply chain, there is (i) a reduction of inventory, (ii) faster turnover rates
leading to lower operating costs (recall that at the DCs and plants, the
fixed and variable costs are a function of the volume), and finally (iii)
higher revenues brought about by higher fill-rates. However the effect
of CPFR on EVA may be exaggerated by our assumption that CPFR
costs are 0.5% of the sales.

6. Summary and Conclusions

Our intent in this Chapter was to analyze in a systemic manner the
benefits of information sharing mechanisms, specifically CPFR on four
dimensions: fill-rates, supply chain inventory, supply chain cycle time,
and shareholder value. We hypothesized that using CPFR increases
margins and decreases working capital, consequently increasing fill-rates
and EVA; and decreasing inventories and supply chain cycle time. We
built an elaborate simulation of the supply chain, whose operations are
adapted from a real company and uses real data. We then tested the
impact of CPFR and the traditional ROP inventory planning method
under a number of supply chain configurations and the subsequent anal-
ysis led to the following findings.

a. CPFR increases fill-rates: An increase in fill rates translates to a
larger volume of product sold to the retail outlets thereby increas-
ing the revenues and profit margins, due to lower costs. Addition-
ally, the impact of CPFR is higher when the forecast errors are
higher.

b. CPFR decreases supply chain inventories: At the plant-DC level,
joint planning reduces any inventories that are used to buffer the
added uncertainties that ROP systems warrant. This implies the
plant will not have to inflate its production schedules to meet
this excess inventory. This in turn impacts procurement of raw
materials—plants with realistic schedules demand lower quantities
and consequently hold lesser amounts of cycle inventories of raw
materials in their warehouses. All this reduces the overall inventory
level in the supply chain. Furthermore, the reduction in inventory
is greater when the forecast errors are high. In certain industries
with high uncertainty, like fashion goods, collaborative planning
mechanisms can make a significant impact on reducing inventory
levels.
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c. CPFR reduces supply chain cycle time: The reduction of inventory
in the entire pipeline increases the number of turns and hence
speeds up the flow of the product from the raw material to the
retail outlets. Hence CPFR leads to a time-compressed and a
responsive supply chain.

d. CPFR increases shareholder wealth: High fill-rates and low inven-
tories lead to higher margins and lower working capital, increasing
EVA.

Although our research shows that collaborative planning has a sub-
stantial impact on the firm, we have not considered any implementation
issues. We simulate the supply chain under the assumption that CPFR
process can be easily implemented. This is not always the case as the
CPFR system is not always quickly or easily adopted. The premise
is that real-time data shared and planned together will benefit both
parties. Several firms may not be willing to share sensitive sales or fi-
nancial data. Furthermore, implementation of collaborative practices
requires collaboration-support technology such as EDI, e-commerce ap-
plications, front-end and back-end application servers, and the appropri-
ate databases to feed these collaborative-support technologies. It is easy
to confuse the technology with ‘collaborative planning’, but the success
of any partnership depends on the ability to use information, not having
access to it. This would mean setting up joint teams between trading
partners to analyze the data and to make joint decisions on demand, re-
plenishment, and production in such a way that it benefits all involved.
The role of the forecasting/logistics divisions of a firm will find itself
in a different role-as partner and collaborator-but will make similar
decisions: forecasting, safety stocks, production and shipping schedules,
etc.

There is no simple formula to effectively implement CPFR initiatives
in a firm. As Austin (1998) suggests, firms should use a three-pronged
approach. First, a firm should evaluate the risk and rewards of a collab-
oration initiative. Much like the simulation described in this chapter,
a firm can access the cost of implementation and the potential ben-
efits of a collaborative initiative. Second, there is a need to reshape
relationships between trading partners. Relationships between compa-
nies should move from just electronic transaction-be it over EDI or
the Internet-to a more interactive one with the customer perspective in
mind. Issues of trust and goodwill need to be addressed explicitly before
the collaborative arrangements are undertaken. Third, as the nature of
collaborative agreements change with time and with the improvement
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of technology, firms should make it a priority to reevaluate and execute
newer and more effective collaborative agreements.

Future research can focus on the feasibility, costs, and benefits of
CPFR and/or other information sharing agreements in other industries,
especially in high technology and fashion industries, where compressed
product life cycles and high uncertainties often lead to operating ineffi-
ciencies in the supply chain.
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